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ABSTRACT 
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The influence of the benthic filter feeders, such as bivalves, on ecosystem plankton, and nutrient 

dynamics is considered significant in shallow marine and freshwater systems. Recent indirect 

evidence showed that the profundal quagga mussels (Dreissena rostriformis bugensis) have 

fundamentally altered energy flow and dynamics of nutrients and phytoplankton in Lake 

Michigan and other Great Lakes. To investigate the phytoplankton grazing rate of the quagga 

mussel and the mussel siphon currents induced bio-mixing, a self-contained in situ Underwater 

Particle Image Velocimetry was developed to measure the turbulence structure and the turbulent 

diffusion coefficient immediately above the profundal quagga mussel covered substrate in the 

deep-water site located in Lake Michigan. The system was deployed from July to October 2018, 

and 500 sets of datasets were acquired with 400 snaps of 2D velocity and particle concentration 

maps for each set. The diffusion coefficients were estimated and compared from multiple 

methods with measurements of turbulence and particle density. Field data analysis suggested that 

in the low energetic deep lake benthic boundary, mussels’ siphon currents are the major source 

of turbulence. Turbulent diffusivity/viscosity varied between 10-6 to 10-5 (m2 s-1), which seemed 
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to correlate with the ambient particle concentration. Collective pumping rates of mussels were 

also estimated from measured near-bed turbulent flux of particles. Data also showed that near-

bed turbulent diffusivity increases linearly with mussels’ pumping rate. This empirical linear 

relation was applied to a one-D numerical model. Simulation results proved the hypothesis that 

profundal mussels can maximize their grazing efficiently by the enhanced near-bed turbulence 

due to siphon currents. Modeling simulation also suggested that an optimal collective pumping 

rate may exist, which varied between about 1 to 5 liters per day per individual, depending on the 

ambient mixing condition.  
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CHAPTER 1. INTRODUCTION 

1.1 Background and Motivation 

During the past several decades, the Dreissenid mussels continue to spread in the Great 

Lakes and have successfully established a large population in the most bottom areas(Fahnenstiel 

et al., 2010b; Karatayev et al., 2015). Two invasive dreissenid mussels (i.e., zebra and quagga 

mussels), were major focus of research at Great Lakes region during past decades(Ackerman et 

al., 2001; Fanslow et al., 1995; Nalepa et al., 2009). Zebra mussel and quagga mussel spread 

from Europe to the Great Lakes in the late 1980s and early 1990s, zebra mussels first dominate 

the shallow rocky nearshore region while quagga mussels restricted to the offshore deep 

waterbed due to the better tolerance of cold water and less food. Quagga mussel can survived in 

the deepwater because of the tolerance of low temperature(around 4 ◦C) (Baldwin et al., 2002), 

ability to survive in most surfaces of deep site(Cuhel and Aguilar, 2013), and the lower 

metabolic rate (Stoeckmann, 2003). Zebra mussels had been displaced by quagga mussels in 

most benthos of the Great Lakes in recent decades (Nalepa et al., 2010).   

The quagga mussel has a high filtering rate compared to its size, and coupled with its 

high density in the Great Lakes, has a significant impact in the ecosystem. G. Fahnenstiel et al. 

analyzed the data sampled in the past 30 years at two offshore site of south Lake Michigan and 

found that the phytoplankton depletion was related to the mussel density, the large decrease (66-

87%) of phytoplankton occurred in 2007-2008 compared to 1995-1998 and 1983-1987. He also 

predicted that the changes of phytoplankton communities will change while the profundal mussel 

density turns to be stable (Fahnenstiel et al., 2010b). Kerfoot et al. (Kerfoot et al., 2008) also 
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found a large decrease in chlorophyll in the offshore region, which confirmed with the result 

published by Fahnenstiel. Fahnenstiel summarized the related papers and concluded that the 

lower food web of the Lake Michigan and the other Great Lakes has been significantly altered by 

the invasion of the mussels (Fahnenstiel et al., 2010a).  

Figure 1.1 shows the picture of a quagga mussel in the clear water tank, the picture was 

downloaded from the NOAA website. The two tubes that protrude from the mussel shell are 

siphons, which are mainly used to inhale water containing food and exhale the filtered water. 

The mussel uses hair-like cilia on its gills to pull water containing impurities into its shell 

through the inhalant siphon, the collected impurities which can be easily ingest are then selected 

for ingestion inside, and the impurities which are hard for ingest or toxic are then rejected 

through the siphon. The current, moves over the gills, also utilized for respiration, can provide 

oxygen for the mussels. The filtered water then expelled via the exhalant siphon to the higher 

levels of the water body for avoiding the contamination of the food source. The expelled filtered 

water contains higher value of dissolved phosphorus (after digestion) and a lower value of 

dissolved oxygen (by respiratory). As showing in , the inhalant siphon is longer than the exhalant 

siphon, the long siphon could let the mussel to access higher water level with higher food 

abundance.  
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Figure 1.1 Quagga mussel, from NOAA website(Glassner-Shwayder and Myers, n.d.).  

 

Studies of impacting of dreissenid mussels to the eco-system of the Great Lakes were 

mainly focused on the mussels impact on the shallow nearshore areas, where they have been 

found with more dense population (Qualls et al., 2007; Vanderploeg et al., 2009) back then and 

the vertical mixing is sufficient to let the mussel grazing accessing the whole water column in the 

shallow-water areas. Hecky introduced the hypothetical construct of “nearshore shunt” that the 

phytoplankton harvested by the nearshore mussels might originated partly in the offshore water 

that transferred by advection (Hecky et al., 2004). Karatayev  (Karatayev et al., 2018) found that 

profundal habitant quagga mussel may have very limited impacts on the ecosystem due to both 

severe food depletion and cold temperature.  

However, Mosley argued that profunda quagga mussels in offshore still played an 

important role due to the much greater distribution in the whole lake. The recent studies have 

provided indirect evidence that the quagga mussels have fundamentally changed the dynamics of 

nutrients and phytoplankton in Lake Michigan and other Great Lakes (Mida et al., 2010; 
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Turschak and Bootsma, 2015). There are some papers applying numerical methods in the 

phytoplankton research(Bravo et al., 2019; Rowe et al., 2017, 2015; Shen et al., 2018) .Rowe et 

al. built the FVCOM modeling analysis and found that the quagga mussels have had a significant 

influence to the ecosystem that both the spatial and temporal distribution of phytoplankton 

abundance were altered by the mussel grazing (Rowe et al., 2017, 2015). Mosley (Mosley and 

Bootsma, 2015) measured and found that the profundal quagga mussel phosphorus grazing rate 

is several times larger than the phosphorus passive settling, and suggest that passive settling is no 

longer the primary mechanism to deliver phytoplankton to the bottom. If this indeed the case, the 

accelerated delivery rate to the lakebed is caused by the joint impact from the depletion of 

phytoplankton density by mussel grazing and the transport of the Benthic boundary layer by 

vertical mixing.  Bootsma et al. suggested that more observational data need to be measured for 

calibrating the models by the changes of the situation (Bootsma et al., 2015).  
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1.2 Documented mussel mixing studies and hypotheses 

Because the activities of the mussels are highly limited by the local mixing of the Bottom 

Boundary Layer (BBL) (Ackerman et al., 2001), a variety of studies have been conducted to 

study the effect of benthic bivalves on the mixing of BBL. The majority of these works were 

carried out in simulated laboratory settings or Computational Fluid Mechanics (CFD).  

Some works indicate that the bottom roughness element increase on BBL hydrodynamics 

due to the patch of bivalves (Ciutat et al., 2007; Folkard and Gascoigne, 2009; Quinn and 

Ackerman, 2015; van Duren et al., 2006). Ciutat performed a flume experiment and found that 

the patch of the bivalves increased the Reynolds shear stress and further enhanced the sediment 

disturbance and resuspension (Ciutat et al., 2007).  Folkard studied the heterogeneous 

arrangements of mussel patches, the results implied that the increase of the patch gaps enhanced 

the near bottom TKE (Folkard and Gascoigne, 2009).  

Some other works indicate that the exhalant jet from the mussels contains momentum 

that can enhance turbulent mixing at BBL (Lassen et al., 2006; Nishizaki and Ackerman, 2017; 

Riisgård and Larsen, 2017; Widdows et al., 2009). Lassen performed the experiment in the flume 

with mussel activities triggered by the concentration of the phytoplankton, the result shows that 

the mussel activities enhanced the near-bottom turbulent mixing not only for the slow flow but 

also the fast flow. But Duren conducted a similar experiment with the result that the 

enhancement of turbulent mixing is significant only when the flow velocity is low. H F E Jones 

et al. found that the bed shear stress was enhanced with the bivalve activity 

(Austrovenusstutchburyi) at three different background current speeds, with the enhancement 

ratio decreased with the increase of current in their laboratory experiment (Jones et al., 2011). 

Nishizaki applied Particle Image Velocimetry(PIV) observation in the lab around mussel 
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aggregations, the result from the flow visualization indicated that the siphonal jets can increase 

mixing around and above the aggregations in the low flow condition (Nishizaki and Ackerman, 

2017).   

In sum, the mussel patch and the siphonal jets both enhanced the turbulent mixing 

immediately above the bottom. The enhancement from the bottom roughness depended on the 

ambient velocity. When the enhancement from the bottom roughness decreases as the velocity 

decreases, the part from the siphonal jet will become significant compared to the bottom 

roughness.  

From the conclusions from the literature listed above, the exhalant jets of mussel may 

support higher productivity at low-speed flows, which indicates that the mussel exhalant jet may 

be the main source of the turbulent mixing in the deep water with the low-speed condition. Thus, 

we hypothesize that profundal mussels can enhance near-bed turbulence due to siphonal currents, 

thereby maximizing food capture rate by keeping particles in suspension in a thin layer 

immediately above the mussel bed in the low energy flow condition.  

The objectives of the thesis are to quantify the impact of the profundal mussel activities 

on the eco-system of Lake Michigan during the summertime, when the study site was in the 

stratified period of the lake, the bottom of the study site is in low energy statues without strong 

ambient turbulence.   The goal is to resolve the high-resolution vertical structures of mean flow, 

Reynolds shear stress, turbulent intensity, eddy viscosity/diffusivity and other statistics of 

turbulence that response to the mussel patches and filtration effect.  

To address the hypotheses and reach the goal above, a new designed in-situ Underwater 

Particle Image Velocimetry (UWPIV) was deployed at the bottom of Lake Michigan routinely 

through the summer of 2018 to the fall of 2019. with hydrodynamics measurement and particle 
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concentration analysis, the UWPIV could extract turbulent structure and phytoplankton 

concentration immediately above the mussel colonies with high spatial and temporal resolution.  

1.3 Particle Image Velocimetry (PIV) and Underwater PIV(UW-PIV) 

Human eyes are exceptionally well adapted to recognize moving things, which by 

evolutionary theory, can capture food and avoid vulnerability. One can throw a piece of a tree 

branch to a river surface to evaluate the velocity of the running water and detect the flow 

structures. Followed by this idea, scientists in the 19th century used particles as the tracer to 

visualize turbulence in fluid in flumes and wind tunnels with photography (Raffel et al., 1998), 

however, quantitative data could not be obtained during that time. Thanks to the advances of the 

digital image recording and processing techniques which replaced the analog techniques, image-

based velocity measurement techniques like Particle Image Velocimetry (PIV) or Particle 

Tracking Velocimetry (PTV) have become increasingly popular for quantitative flow 

visualization in fluid mechanics in the last three decades.   

PIV can obtain instantaneous velocity distributions and related properties in fluids by the 

image pairs of particles which suspended in the fluid. Compare to standard measurement 

techniques such as Hot Wire Anemometry (HWA) and Laser Doppler Velocimeter (LDV) which 

only allow to extract the flow velocity at a single point, PIV can extract information about the 

spatial organization of the flow, which can satisfy the requirement of spatial statistical methods 

(Adrian, 2005; Raffel et al., 2017; Willert and Gharib, 1991), and offers the capability of 

extrapolation of Turbulent kinetic energy (TKE), Reynolds stresses, production and dissipation 

of TKE. Westerweel (Westerweel et al., 2013) claimed that PIV has largely superseded LDV and 

HWA even they beat PIV in some applications.  
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PIV has become the dominant approach in experimental fluid mechanics in the three 

decades since it was introduced. While most of the experiments were limited to lab studies, it is 

reasonable to question whether one can extrapolate real natural behavior from the laboratory(i.e., 

which measured in a flume). It is technically feasible although challenging to deploy the PIV in 

the natural aquatic field, and some configurations for field work need to be conducted. A team 

led by Dr. Katz from Johns Hopkins University devised a submersible oceanic PIV system for 

turbulence measurements in Bottom Boundary Layer(BBL) of coastal oceans (Bertuccioli et al., 

1999a; Nimmo Smith et al., 2002; Smith, 2007). Katz team found that the natural seeding in the 

ocean is sufficient for obtaining high-quality PIV data like the laboratory applications which 

mostly seeded with microscopic tracer particles. The oceanic PIV was submersed into the ocean 

and mounted on a hydraulic scissor-jack to enable obtaining the turbulence characteristics like 

production and dissipation of Turbulent Kinematic Energy (TKE) and true spatial turbulence at 

various elevations above the seafloor.  
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Figure 1.2 Literature review of the underwater PIV. 

 (a) is the Ocean PIV made by Katz team(Doron et al., 2001), (b) is the UPIV by 

Kremien(Kremien et al., 2013) (c) is the SCUVA system by Dabiri team, Stanford 

University(Katija and Dabiri, 2008) (d) is the previous version of the UWPIV in our 

lab(Liao et al., 2009).   

 

Katija and Dabiri developed the Self-contained Underwater Velocimetry Apparatus 

(SCUVA) (see Figure 2.2(c)) for investigating the natural real behavior of animal’s swimming 

motions in field. The portable design of the SCUVA system enables a single SCUBA (Katija and 

Dabiri, 2009, 2008) and robot diver (Katija et al., 2015) to make in-situ  PIV measurements of 

animal-fluid interaction in the field. The measurement concluded that the animal swimming 

generated turbulence is comparable to the levels caused by winds and tides.  

Liao and Wang developed a low-cost self-contained in situ underwater PIV system and 

applied it in the region near bottom and air-water interfaces (Liao et al., 2015, 2009; Wang et al., 

2015; Wang and Liao, 2016a), and upgraded to a dual-beam dual-camera system for fast flow 

(b)
(a)

(c)
(d)
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measurement (Wang et al., 2012). However, Underwater PIV measurements in the field are 

limited by its spatial extension due to the large dimension of environmental flow. It is thus only 

useful for the investigation of very specific problems, focusing on turbulent transport near 

environmental interfaces, such as the water-air and water-sediment interfaces. Moreover, 

environmental flows are much more complicated than simulated laboratory conditions. Flows are 

usually transient, and external driving terms (such as surface gravity gradient, winds, and waves) 

affect the transport process over a wide range of temporal and spatial scales. Canonical theories 

of turbulence analysis, such as the Law-of-Wall (LOW) and an equilibrium boundary layer TKE 

budget, may not apply well in analyzing realistic environmental flows (Liao et al., 2009; Wang 

and Liao, 2016a). Questions remain on how to extract meaningful mixing and transport 

parameters from PIV-resolved velocity distribution in 2D or even 3D spaces. One major 

objective of this dissertation is to explore analytical methods to estimate turbulence statistics for 

parameterizing environmental transport models that evaluate flux across environmental 

interfaces where canonical boundary layer theories may not apply. 
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1.4 Structure of the thesis 

Chapter 1 introduced the quagga mussel caused eco-system problems, and the researches 

related to this problem. From the literature review of the papers published, we hypothesize that 

profundal mussels can enhance near-bed turbulence due to siphonal currents, thereby 

maximizing food capture fate by keeping particles in suspension in a thin layer immediately 

above the mussel bed in the low energy flow condition.  The main task of this thesis is to verify 

this hypothesis and to quantitatively measure the turbulent mixing rate above the mussels to 

further estimate the environmental impact of mussels. The PIV technology applied in the 

measurement is also introduced in this chapter.  

In chapter 2, the experiment methods are introduced including the information of the 

experiment site, hardware of the instrument, the digital image processing methods for the 

postprocessing. The measurements carried out with our PIV measurement also introduced in this 

chapter.  

Chapter 3 shows the turbulence feature extraction methods and results. The methods for 

Turbulence Kinetic Energy (TKE, TKE dissipation rate, and turbulent diffusivity estimation are  

discussed. The correlations between the turbulent features and the other parameters, e.g. mean 

velocity and particle concentration were also discussed in this chapter.  

Chapter 4 is the hypotheses testing by modeling analysis. Both the analytical and 

numerical modeling analysis was applied in the One-D advection-diffusion model for 

phytoplankton concentration. The Soluble Reactive Phosphorus (SRP) flux been estimated from 

the turbulent diffusivity and the measured SRP profile.  
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Chapter 5 contains the conclusion and discussion. The result of the hypothesis testing and 

the impact of the mussel on the environment are discussed. And the limitations of the 

measurements and the modeling are also discussed in the discussion section.  
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CHAPTER 2. METHODS 

 

2.1 Instrumentation: an Underwater-Particle Image Velocimetry (UW-PIV) system 

Taking the advantages of PIV measurements, which can resolve instantaneous spatial 

structures as well as temporal evolutions of turbulent flows, the focus of this thesis study is to 

quantify turbulence structures in the benthic boundary layer of Lake Michigan.  Due to the 

extreme low Reynolds number, mussels’ bioturbation, and very low seeding density in the 

benthic lake, it is challenging to evaluate turbulent mixing parameters with traditional acoustic 

instruments (e.g., ADV). Classic theories, such as the Law-of-Wall (LOW), may not be applied 

in such hydrodynamic conditions. One main objective of my thesis work is to explore practical 

procedures to parameterize mixing processes using 2D PIV analysis, specifically, to extract the 

Reynolds stress, Turbulent Kinetic Energy (TKE), TKE dissipation rate, and turbulent 

viscosity/diffusivity from spatial-temporal filtering of velocity maps resolved from particle 

image pairs. 

A detailed description of the working principle of a battery-powered UnderWater PIV 

(UW-PIV) system can be found in Liao et al. (2009). In the present study, the construction of the 

UW-PIV system is similar in concept with a free-floating PIV (FPIV) system developed by 

Wang et al. (Wang et al., 2013), for measuring near-surface turbulence measurement. In their 

study, the system was designed to be sealed in two waterproof housings, i.e., a camera-computer 

unit, and a laser-battery unit, which was connected through 8-pin bulkhead connectors for signal 

transfer and power supply. The current UW-PIV system was updated by using three underwater 

housings: a laser housing was arranged at the top to introduce the "laser sheet" to the lake 

bottom; an imaging system housing was arranged near the lake bottom to view the “laser sheet” 
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from an orthogonal angle; and a battery housing was mounted on the top of the frame for easy 

access, tuning, and recharging, and to avoid reconfiguration of the laser and camera between 

consecutive deployments. The three housing units are mounted on a rigid platform made of cast 

iron water pipes connected with galvanized pipe couplers and fittings (see Figure 2.1), which are 

easy to assemble and position housings in field deployments. The three units were connected 

through two underwater eight-pin cables and coupling water proof bulk-head connectors 

(SubConn Inc.) for electricity and signal transmition. Specifically, the computer-camera unit was 

connected to the battery unit for the power supply and laser unit for signal synchronization and 

power supply. Communication to the imaging unit from a host computer was made through a 

SubConn underwater Gigabit Ethernet bulkhead connector, thus the host computer can access the 

imaging system via the Secure Shell (SSH) protocol for configuration, tuning and data 

download. Batteries were wired to a timer switch in the battery housing for the convenience of 

charging and setting deployment duty cycles.  The dimensions of the UW-PIV system are shown 

in Figure 2.2.   

 
 

Shading

board

Membrane
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Figure 2.1 Structural configuration of the Underwater PIV system. 

 

 

 

Figure 2.2 The dimensions of the UW-PIV frame. 

The overall size of the UW-PIV frame is 0.73m*1.3m*0.77m; the distance between the FOV 

and front of the camera-computer unit is 0.58m; the distance from the background board 

to the FOV is about 0.21m.  

 

Since the invasion and expansion of zebra and quagga mussels in Great Lakes over the past 

thirty years, their filtration activities have reduced the biomass (primarily phytoplankton) in the 

water column significantly. This has resulted in an increase in water clarity. Preliminary tests 

showed that light intensity from solar radiation during summer daytime is strong even at the 55-

m deployment site for this study. Since the camera in the UW-PIV system is not a specialized 

PIV camera, the inter-frame transfer time is limited by the maximum frame rate, i.e., it is not 

possible to maintain a short exposure duration and a short interval time simultaneously between 

two consecutive exposures. A “throttle” approach was applied to adjust the PIV inter-exposure 

time (Δ𝑡) with the timing of laser-firing (Liao et al., 2009). Consequently, the camera exposure 

time has to be set as the reciprocal of the maximum frame rate, e.g., 33 ms of minimum exposure 

for a 30Hz of maximum framerate. Such a long exposure time results in over-exposed images 
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during daytime deployment even at the 55-m depth and with a narrow-band optical filter (50 nm 

width centered at the laser’s optical wavelength) applied to the camera. To partially overcome 

the over-exposure problem, a “shading” board (i.e., a background blackboard) was attached on 

the front leg of the platform (see Figure 2.1) to prevent scattered sunlight from entering the 

camera lens orthogonally during daytime measurements. The size of the “shading board” is about 

20 cm high and 10 cm wide. The effectiveness of the shading board can be demonstrated in 

Figure 2.3. It should be noted that the shading board could not completely solve the over-

exposure problem, particularly on sunny days around noon.  

 

Figure 2.3 Particle images captured during daytime and night.  

The comparison shows that the background board shows excellent performance of 

blocking the sunlight.  

 

2.2 Components of the UW-PIV system 

A major upgrade of the UW-PIV system had been made to minimize its perturbation to 

the flow field.  The sizes of both the Camera-computer unit and Laser unit were reduced 

significantly compared to the previous version (Liao et al., 2009). The size reduction was 
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achieved through adopting a new set of electronic components centered on an Arm-Linux based 

single-board computer Odroid-XU4 with USB 3.0 and Gigabit Ethernet I/O interfaces. The 

Odroid-XU4 boasts sufficient data transfer speeds for camera streaming demand. The data 

acquisition card which synchronizes camera triggering and laser triggering were developed from 

an open-source microcontroller Arduino Due. The synchronizing method was referred to mode 

(g) PIV imaging configuration (Raffel et al., 1998). Due to the recent development of diode 

lasers, more power-efficient lasers in the 440~450 nm wavelength are available. A 15W 445 nm 

(nominal) continuous-wave (CW) laser was selected, replacing the 2W CW laser in the previous 

version of UW-PIV system. Since the turbulence/current level in benthic Lake Michigan is 

typically low, it is affordable to choose a relative long inter-exposure time (Δ𝑡 = 5~20 ms) for 

PIV imaging. Meanwhile, the enhanced laser power allows longer exposure time for each 

“pulse” without causing serious “motion blurring” effects.  Therefore, laser “sheet” was 

generated through the classic and straightforward cylindrical lens setting, eliminating the need 

for the scanning mirror component in the previous UW-PIV system (Liao et al., 2007).  With 

Ubuntu Linux running on the PIV computer, the computer could be remotely accessed as a 

server via SSH. Through the Ethernet socket in the computer and camera unit, the user can 

download recorded images by bash scripts running on a host laptop. A CMOS machine-vision 

camera with USB3 interface (Point Gray Research GS2-U3-32S4M-C) was selected for PIV 

imaging, primarily due to its support with Arm-Linux based host computer. Image acquisition 

software was developed with the camera’s SDK in C language and compiled into a dynamic 

library on the Arm-Linux platform. A python program was written to call the image acquisition 

library and to communicate with the signal generation system (the Arduino Due module) for 

system synchronization.  
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Major imaging components and their layout in the waterproof housing is shown in  

Figure 2.4. The signal flows among major components is illustrated in Figure 2.5. The 

specifications of major hardware components adopted for the UW-PIV system are listed in Table 

2.1.  

 

 Figure 2.4 Inside the Camera-Computer unit.  

The circuit board and camera were arranged compacted by Solidworks for fitting the 4-

inch housing provided by Blue Robotics.  

 

 

 

Figure 2.5 UW-PIV synchronization signal flow chart  
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Table 2.1 UWPIV hardware list 

Equipment list  
Computer Odroid XU4, Ubuntu 18.04, USB 3, 1000Gb/s Ethernet (GigE 

supported) 

Synchronizer Arduino Due, Clock speed: 84 MHz 

Laser Power: 15Watts, Wavelength: 445nm, Pulsed mode control: TTL+ 

Camera Point Grey GS2-U3-32S4M-C, Frame rate: 121 FPS, Color: Mono, 

Resolution: 2048 × 1536, With a C-mount 16mm lens, the 𝐹𝑂𝑉 =
29° × 19°  

Battery Li-po 15AH,12V 

Housing Blue Robotics aluminum enclosures (4” series and 3” series) 

Cables SubConn 8 pin underwater cables, SubConn Ethernet cables 

 

2.3 Deployment locations and timings 

Multiple versions of in-situ Underwater Particle Image Velocimetry systems have been 

routinely deployed in coastal waters of Lake Michigan near the city of Milwaukee during the 

past decade. For this thesis study, field experiments were conducted in Lake Michigan from the 

summer of the year 2018 to the fall of the year 2019, with nearly a full year of data 

characterizing the near-bed turbulence primarily at a deep site of Lake Michigan. The site is 

located at (42°58.809'N 87°39.800'W) to the east of Milwaukee, Wisconsin with a 55-m depth 

(see Figure 2.7a). The bed material is a mix of sand (from fine to coarse) and silt. The lakebed at 

the sampling site was mostly covered by quagga mussels, with relatively small size (i.e., 

averaged mussel size is about 0.9 cm with only 1~2 largest ones of 2.8 ~2.9 cm per Ponar grab 
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(area is about 22.5X22.5cm2)) compared to those found in coastal regions. Figure 2.6 shows the 

underwater image of the mussel-covered lakebed at the measurement site (Troy et al., 2016).  

 
Figure 2.6 Profundal mussel density in 55m site of Lake Michigan, Photo from Bootsma 

Team, UWM 

 

In addition to the 55-m site, a few deployments were made at two shallower sites with 

10-m and 25-m depths, respectively. The 10-m site has been extensively sampled with an 

autonomous observational platform for meteorological conditions, water temperature profiles 

and other biochemical parameters over the past decades. Since it is about 1 mile off the coast 

near the Atwater Park in Milwaukee, WI, it was named as AW10. Accordingly, the other two 

sites are denoted as AW25 and AW55, respectively. The AW10 site has a rocky substrate that 

provides support to mussel establishment. Locations of all three sites are presented in Figure 2.7 

and Table 2.2. The AW25 site was selected with the objective to examine mixing near the 

summer thermocline (20~25 m when stratified). In this thesis, only data from AW55 were 

analyzed since the main objective was to examine the effects of bio-mixing in the profundal 

water of Lake Michigan.  
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Figure 2.7 UW-PIV deployment locations.  

The three sites were named as AW55, AW25, and AW10 for the location of the sites near 

the Atwater Park, Milwaukee, WI. Map: Google Earth 

 

Table 2.2 Deployment sites information 

Name Coordinate Depth 

AW55 (43°04.35′ 𝑁, 87°51.87′ 𝑊) 55m 

AW25 (43°06.62′ 𝑁, 87°50.68′ 𝑊) 25m 

AW10 (43°05.71′ 𝑁, 87°51.87′ 𝑊) 10m 

 

The density and size distribution of mussels at AW55 were estimated from replicate bottom 

Ponar Grab (sample area was 22.5X22.5cm2). The total mussel density was approximately 8300 

mussels/m2 (greater than 0.2cm) and 5200 mussels/m2 (greater than 0.5 cm) (Mosley and 

Bootsma, 2015).  

The UW-PIV system was deployed from R/V Neeskay, UWM, by lowering it down to the 

lake bottom from a winch (Figure 2.8 a). The system was then left on the bottom for 5~10 days 

with a string cable connecting to a surface marker buoy to indicate its "landing" location for 

retrivement (Figure 2.8 b). During the deployment, a waterproof action camera GoPro was 

mounted on the platform and recorded a video for several hours after the deployment to check 

the surrounding environment of the deployment site. It has been observed that the 55-m site was 
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covered with high-density patches of mussels during the last few years, almost every UW-PIV 

deployment has landed on a substrate covered with quagga mussels.  

        

Figure 2.8 Deploying UW-PIV on Lake Michigan.  

The UW-PIV frame was deployed on the deck of R/V Neeskay, UWM  

 

The Linux-based computer in the camera housing was accessed remotely through the 

underwater Ethernet cable with SSH before and after the deployment for setting parameters and 

downloading recorded images. The sampling frequency was set to be 1 Hz (e.g., 1 image pair per 

second) for PIV imaging acquisition. The total sampling time per data set was approximately 10-

13 minutes, which allows acquisition of about 400-600 pairs of images, including the system 

boot time.  

Table 2.3 summarizes location, time, duration and PIV acquisition configurations for each 

deployment from July 2018 to September 2019.  The winter season between November 2018 and 

April 2019 was skipped for safety concerns.   

Figure 2.9 shows the histograms of horizontal velocity components measured at 25 cm 

height above the lake in August 2017 at the AW55 site (Data courtesy from David Cannon). The 

histogram shows that the typical velocity magnitude near the bottom is from 0cm/s to 5cm/s. 

This velocity range was used to set approximate PIV inter-exposure time to be Δ𝑡 = 20 ms by 

considering the image resolution and ten imaging pixels as the optimal particle image 
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displacement for the cross-correlation analysis.  As shown in Table 2.3,  Δ𝑡 was set to 20 ms for 

most cases, except for a few cases where it was 10 ms, particularly at the more dynamic 

shallower AW10 and AW25 sites.  

  

Figure 2.9 Histogram of the velocity measured by an ADV at the height of 25cm above the 

lake bottom.  

Data were acquired in August 2017 at the AW55 site. The full width at half maximum of 

the fitted Gaussian distribution is around 4.6cm/s.  
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Table 2.3 UW-PIV deployment date 

Record date 

Sample 

site 

Data 

sets 

PIV 

Δ𝑡(ms) 

Laser pulse 

width(ms) 

Data set 

number 

7/17-7/18/2018 AW25 12 5 2 0004-0016 

7/24-7/31/2018 AW55 64 10 5 0018-0081 

7/31-8/9/2018 AW25 71 10 5 0084-0155 

8/9-8/16/2018 AW55 55 10 5 0157-0212 

8/16-8/22/2018 AW55 111 10 5 0214-0325 

8/23-9/4/2018 AW55 139 20 5 0327-0466 

10/9-10/16/2018 AW55 48 20 5 0485-0533 

5/2-5/14/2019 AW55 180 20 5 0554-0735 

7/1-7/11/2019 AW55 166 20 5 0741-0907 

8/27-9/20/2019 AW25 231 20 5 0916-1146 

9/23-10/14/2019 AW10 N/A 10 5 N/A 

 

 

Figure 2.10 shows some sample images acquired at the three deployment sites. The 

deployment case AW25-01 was on a mussel bed which was covered with algae; nearly half of 

the images were blocked by the algae grow on the mussel bed. The deployment of AW25-02 was 

on a flat sandy lakebed without mussels. All of the deployments at AW55 were landed on a 

mussel-covered substrate, and mussel siphons can be clearly seen in these sample images. 

Another observation is that the particle density at site AW25 was significantly higher than that at 

the AW55 site. The low particle density brings technical challenges for PIV analysis, and it was 

also found that acoustic-based velocity measurements were unsuccessful in the near-bed region 

at the AW55 site due to extremely low signal to noise ratio. The resolution of the acquired 

images is 2048*1536, the laser sheet width in the image is about 10 cm, then the effectively FOV 

is around 20 cm in height and 10 cm in width.  
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Figure 2.10 Sample images of deployments. 

 

2.4 Companion measurements, Micro-profile coupled with PIV 

The membrane method for measuring the chemical profiles near the lake bottom was 

introduced by our companion Rae-Ann MacLellan-Hurd from Harvey Bootsma Lab, UWM. This 

sampling technique relies on molecular diffusion through the membrane until the water inside 

the membrane is in equilibrium with the ambient water.  

The sampler that was attached with our UWPIV frame and was deployed with the 

UWPIV deployments; Figure 2.11 shows the photos of the sampler and the UWPIV frame, two 

samplers were attached in case one of the samplers failed. The UWPIV was deployed not less 

than six days, which is long enough for the sampler to reach chemical equilibrium with ambient 

water, based on laboratory equilibration experiments carried out in Harvey Bootsma Lab, UWM. 

Upon retrieval, the membranes were sampled using syringes for each, and analyzed in the lab for 

the Soluble Reactive Phosphorus (SRP) profile.  
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Figure 2.11 The membrane tube attached in the UWMPIV frame 

2.5 PIV interrogation and post-processing 

To minimize the impact of ambient light, particularly for those images acquired at 

daytime, PIV images were pre-processed to remove the “background” before interrogation 

analysis.  A local median filter was applied based on a 60×60 pixel window to the raw image, 

and the result is considered as the “background” image, which was then subtracted from the 

original image.  

The 2-D velocity field was calculated through a central difference based (2nd order 

accurate in space), anti-aliasing PIV interrogation algorithm (Liao and Cowen, 2005). PIV 

interrogation analysis includes a single-pass analysis with a subwindow size of 40×40 pixels 

(3.84×3.84 mm physically). PIV mesh was constructed with a 50% subwindow overlap, 

therefore the spatial resolution of the measured 2-D velocity field was 20×20 pixels, or 

1.92×1.92 mm.  
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PIV measurement errors in this study were primarily due to low particle seedings 

(because of mussels’ filtration) and occasional strong out-of-plane motions. To minimize the 

impact of measurement errors, raw PIV data were post-processed to remove “outliers” of 

velocity measurements based on the so-called “median test” approach, which is the most widely 

used method to identify “spurious” vectors in post-interrogation validation of PIV data 

(Westerweel, 1994). Specifically, an improved adaptive “median test” (Westerweel and Scarano, 

2005) was adopted here, and the procedures is summarized as the following. First, consider a 

measured velocity at a given PIV mesh grid, 𝑣0, which can be either component of the 2D 

velocity vector. Its neighboring data are selected from the local 5×5 mesh grids (excluding 𝑣0), 

and they form a data series 𝑣𝑖 ≡ {𝑣1, 𝑣2, … , 𝑣24}. The median value of the data series is then 

calculated and denoted as 𝑣𝑚. The residual of the local data, defined as 𝑟𝑖 = |𝑣𝑖 − 𝑣𝑚  |, and their 

median 𝑟𝑚 can be evaluated. Therefore, a local-adaptive and normalized residual of the 

measurement 𝑣0 is defined as: 𝑟0
′ ≡

|𝑣0−𝑣𝑚|

𝑟𝑚
. The measured velocity is deemed as valid if  𝑟0

′ is 

less than a threshold value, which is set to 2.0 in this study as suggested in (Westerweel and 

Scarano, 2005).Otherwise, it is considered as a spurious vector. Subsequently, spurious vectors 

were removed and replaced by the local median 𝑣𝑚.  

Results of PIV pre-processing, interrogation and post-processing procedures are 

demonstrated through an example illustrated in Figure 2.12. The velocity quiver plot shows two 

velocity components that are subtracted by their mean values averaged over the entire FOV. The 

coordinate was defined as shown in this figure, where 𝑧 =  0 was selected to be just above the 

mussel bed. Active mussel siphons were clearly seen in the PIV images. Ideally, a small spatial 

resolution should be chosen to provide more accurate small-scale turbulent structure analysis 

(e.g., turbulent dissipation rate can be estimated base on the gradients of instantaneous vector 
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distribution). However, due to the strong depletion effect of high-density mussels in deep, low 

energetic waters, the particle density is relatively low for PIV interrogation if smaller sub-

windows were used. It was estimated that the Kolmogorov length scale in this study was in the 

range of 𝜂 = 0.7~1.1 mm. According to the relationship between total fraction of dissipation rate 

and resolved wavenumber, the underestimated dissipation rate is smaller than 5% if the grid 

resolution is less than 5𝜂 (3.5 ~ 5.5 mm) (Cowen et al., 1997). This suggests that PIV resolution 

in this study (1.92 mm) is sufficiently high for using direction spatial differentiation as a good 

approximation for local velocity gradient, thus the “Direct Method” can be applied to estimation 

the dissipation rate of TKE.  

 

 

 

.  

 
Figure 2.12 An example of PIV pre-process, interrogation result and post-process (adaptive 

median test) result.  
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2.6 Analysis of particle concentration data 

Particle images provide another interesting and important information to characterize the 

bio-mixing processes by quagga mussels. Specifically, the instantaneous distribution of particle 

density can be estimated if individual particles can be identified and registered. It was assumed 

in this study that numbers of particles identified in a defined window are proportional to particle 

volume concentration, i.e., all particles are same in size. Thus, the turbulent flux of particles 

−𝑢𝑖
′𝑐′ can be estimated, where 𝑢𝑖

′ and 𝑐′ are velocity and particle concentration fluctuations. 

Subsequently, the “eddy” diffusivity of particles can be estimated following the Fickian transport 

theorem, i.e., turbulent flux is proportional to the mean gradient, and the proportionality is the 

turbulent (“eddy”) diffusivity.  

In this thesis study, particle density distribution was obtained through digital image 

processing that identified individual particles on images. The detail of the particle counting 

algorithm is similar to that presented by (Liao et al., 2009). The procedures is summarized as the 

following: 

1) A raw PIV image is pre-processed to remove the background, similar to the PIV pre-

process.  

2) The background-removed image is smoothed through a Gaussian image filtering to 

reduce image “noise”. 

3) A binary image is generated from the smoothed image by finding the regional maximum.  

4) Particles and their locations are identified by analyzing pixel connectivity of the binary 

image. 

5) The number of particles is counted in interrogation windows, which is then considered as 

the surrogate of particle density distribution.  
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Figure 2.13 demonstrates the particle identification procedure through a sample image 

from the data set AW55-0023. The result from this algorithm seemed to be as good as that can be 

identified by bare eyes. However, it was also found that some particles with very low image 

intensity and some particles adjacent to one big bright particle were not able to be identified by 

this algorithm.  

Figure 2.14 shows the particle density evaluated from counting the positioned particle 

location from the same example case. The counting window was chosen to be the same as that 

for the PIV interrogation. The particle density, about 4 particles per interrogation window (IW) 

on average, is lower than that typically required for robust PIV measurements (usually greater 

than 5-10 paired particles per IW (Bertuccioli et al., 1999b).  
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Figure 2.13 An example that illustrates the particle identification algorithm. 

 (a) Raw PIV image, (b) image after background removing and smoothing, (c) binary image 

generated by regional maximum finding, (d) particles identified are marked with circles.  
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Figure 2.14 The particle counting results 

 (a) original particle image, (b) instantaneous particle concentration field resolved from the 

same IW of PIV analysis (from data set AW55-01-0023).    
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CHAPTER 3.  MEASUREMENT RESULTS AND DATA ANALYSIS 

Turbulent diffusion is the transport of mass, heat, and momentum due to turbulence. 

When turbulent mixing is intense, the molecular diffusion is negligible compared to the turbulent 

diffusion. The turbulent diffusivity or eddy viscosity is the parameter for quantifying the speed 

of turbulent diffusion. In this chapter, data cleaning methods are introduced for removing the 

wrong datasets and “Outliers” in the velocity maps. And the methods for extracting turbulent 

parameters from velocity map and particle concentration are conducted and evaluated for the 

turbulent diffusivity estimations.  

 

3.1 The uncertainties of the mean flow direction and instrument perturbation 

In the benthic environment of a deep offshore site of the Lake, the main currents appear 

to be random without noticeable prevailing directions, particularly when the velocity magnitude 

is lower than 5 cm/s (see Figure 3.1, the red dots) at the AW55 site.  However, current flow 

speed exceeding 5cm/s (the yellow dots) seems to prevail along the northwest-southeast 

direction, which is approximately parallel to the shoreline near the site. Since the “landing” of 

the UW-PIV at the depth of 55m is often with random direction, it is certain that the PIV laser 

plane will be more likely not parallel to the main flow direction. With only one camera in the 

UW-PIV system, the third velocity component which is perpendicular to the image plane could 

not be resolved, thus we applied the “shading board” to artificially guide flows from random 

directions to be more or less aligned with the laser lane.  However, it is unnecessary to have the 

measurement parallel to the main current in characterizing turbulent mixing processes while the 

turbulent flow could be assumed as isotropic. The assumption of isotropy is certainly not true for 

classic wall turbulence due to unidirectional external flow, i.e., near-wall streamwise velocity 
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fluctuation has a greater intensity than spanwise and vertical fluctuations. However, in the 

presented study, turbulence from mussels’ “bio-mixing” processes can be assumed to be 

isotropic while the primary source of turbulence was from mussels’ filtration activities. 

 

  
Figure 3.1 Near bottom velocity distribution measured by ADV (Acoustic Doppler 

Velocimeter) on the site of AW55 in August 2017.  

The ADV sample volume was located 25cm above the lake bottom which is close to the PIV 

measurement ROI (from 0cm to 20cm above the bottom), every data points represents a 

ten minutes average. (Data courtesy from David Cannon, Purdue University)  

 

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Site: AW55, Time: Aug,2017



 

 

 

 
35 

 
Figure 3.2 Histogram of the velocity magnitude from ADCP measurement, Aug 2017.   

Data provided by David Cannon, Purdue University. 

 

However, concerns remain with cases where the ambient flow approaches to the laser 

sheet with large oblique angles. The UW-PIV system itself can block the flow from the front by 

the shading board or the back by the camera housing (see Figure 2.1), which may introduce 

significant perturbations (e.g., artificial wake turbulence) that can be advected to the 

measurement region. Thus, it is necessary to identify these cases and develop a criterion to 

discard them from subsequent analysis.  

Time series of horizontal velocity at height 𝑧 = 5 cm was extracted from PIV results for 

analysis. Most time series present a combination of slow transient trend, some low-order 

undulations and random (turbulent) motions (Figure 3.3a). A linear regression of the entire series 

was applied to represent the transient trend (dashed line). A lowpass filter (with an averaging 

time window of 50 s) was applied to preliminarily remove random motions, and the smoothed 

result is shown as a dotted line.  
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A few cases stood out with apparently organized oscillations with a fairly constant period 

of about 10 seconds (Figure 3.3a). Spectrum analysis of the horizontal velocity component 

shows a sharp peak located at the frequency of around 0.1 Hz (Figure 3.4a). It was hypothesized 

that the 0.1 Hz oscillation could be an indication of the instrument wake due to mean flows 

approaching the camera housing or shading board from large oblique angles. Other possible 

contributions were excluded from the analysis, such as the basin-scale lake seiche or internal 

waves (cycling period in the order of hours or days) and surface waves (due to the significant 

water depth).  

Consider a main current flow against the measurement plane, the front shading board or 

the camera unit can obstruct the flow and generate a von Karman vortex street which is an 

unsteady oscillating flow. The frequency of the von Karmen vortex street can be estimated from 

similarity analysis. The width 𝐷 of the shading board or the camera unit are around 0.1~0.2 m 

depended on the different flow directions, and the typical approaching velocity 𝑉 is in the range 

of 1 cm/s to 5 cm/s, the kinetic viscosity 𝜈 in the temperature(about 4 ℃) is 1.5 × 10−6 m2s−1. 

So the Reynolds number, 𝑅𝑒 = 𝑉𝐷/ν, is in the range of 600~3000, by simplifying the obstacle 

as a cylinder. In this Reynolds number range the Strouhal number 𝑆𝑡 is nearly a constant around 

0.2 from the classic similarity analysis (Achenbach and Heinecke, 1981). The definition of the 

𝑆𝑡 number is: 

𝑆𝑡 = 𝑛𝐷/𝑉                                                     (3.1) 

Where 𝑛 is the oscillation frequency, which can be calculated as 𝑛 = 𝑆𝑡𝑉/𝐷. This 

analysis indicates that 𝑛 = 0.005 ~ 0.1Hz, which seems to agree with the peak frequency 

observed in some data series (see Figure 3.3(a), Figure 3.4 (a)), particularly when the current 

flow is on the higher end (~ 5 cm/s).  
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Following this analysis, a data rejection procedure was established according to the 

velocity spectrum of the measured time series. Datasets showing a significant “peak” around 0.1 

Hz were then considered susceptible to instrument wake perturbation and removed from 

analysis. About 15% cases were rejected in this study.  Figure 3.3(b) and Figure 3.4(b) show the 

time-series velocity and the spectrum of the case without a significant abnormal peak.  

 
 

Figure 3.3 Time series of the streamwise velocity at z = 5cm.  

(a) A typical Time series of the streamwise velocity at z = 5 cm from data set. The dotted 

line represents the lowpass filtered (= 50 s) velocity signal. The solid line is the horizontal 

velocity, where the dashed line and the dotted line are lowpass filtered and linear regressed 

velocities. (b) is a case with normal time series streamwise velocity  

 

(a) 

(b) 
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Figure 3.4 Velocity spectrum analysis of the velocities on Figure 3.3 

. 

 (a) is the velocity spectrum of the abnormal case and (b) is the velocity spectrum of the 

normal case.  
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3.2 Turbulent diffusivity estimation 

The concentration diffusion in turbulent flow has a similar formation as Fickian 

diffusion. The turbulent diffusivity could be modeled as the same as the Fick’s Law. The flux of 

diffusion could be modeled as the diffusion term:  

𝑤′𝑐′̅̅ ̅̅ ̅̅ = −𝐷𝑧
∂𝐶̅

∂𝑧
                                                       (3.2) 

 

Where the left term is turbulent particle flux estimated by the covariance of vertical 

velocity fluctuation 𝑤′ and particle concentration fluctuation 𝑐′, the time series mean 

concentration is notated as 𝐶̅. The turbulent diffusion could represent how strong the turbulent 

mixing in the height 𝑧. By the isotropy and homogenous assumption in the horizontal direction, 

we could only consider the vertical diffusion in our analysis.  

3.2.1 Direct method 

The very straightforward method is the direct method, which derived from the definition 

of turbulent diffusivity (Equation 3.2). Since both the concentration gradient and the turbulent 

particle flux could be extracted from the PIV velocity map and the particle concentration map, 

we could estimate the vertical diffusivity directly by 

 

𝐷𝑧 = −
𝑤′𝑐′̅̅ ̅̅ ̅̅ ̅

∂𝐶̅/∂𝑧
                                                       (3.3) 

3.2.2 Reynolds averaging method (Covariance method) 

The turbulent diffusivity of momentum transferring could be written in the same format 

as the mass diffusivity. Following the turbulent-viscosity hypothesis, the turbulent viscosity can 

be estimated by  
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𝜈𝑇 = −
𝑢′𝑤′̅̅ ̅̅ ̅̅ ̅

∂𝑈/∂𝑧
                                                       (3.4)         

                        

Where  𝑢′𝑤′̅̅ ̅̅ ̅̅   is the Reynolds shear stress. Liao (Liao et al., 2009) claimed that the eddy 

viscosity and the turbulent diffusivity have the same order magnitude, the turbulent diffusivity 

𝐷𝑧 is proportional to the turbulent viscosity ν𝑇, so we could use the eddy viscosity for estimating 

the turbulent diffusivity as well.  

However, by checking the mean velocity profiles, the lake bottom flow profile often has 

the profiles with too many turning points, which makes most cases unable to apply this method, 

so we gave up using the method in this thesis.   

 

3.2.3 k-epsilon method 

The k-epsilon method is the improvement of the mixing length method, and it is the most 

widely used model in Computational Fluid Dynamics for turbulent flow conditions (Pope 2000; 

Launder and Spalding, n.d.1974). By assuming that the turbulent viscosity is isotropic, in other 

words, the turbulent viscosity is the same in all directions, the eddy viscosity (turbulent 

viscosity) was approximated as: 

𝜈𝑇 = 𝐶μ
𝑘2

ε
                                                          (3.5) 

Where 𝐶𝜇 is a constant equal to 0.09, 𝑘 is the turbulent kinematic energy (TKE), ε is the 

TKE dissipation rate.  

 However, the isotropy assumption is not strictly established here, especially in the region 

near the bottom. It is expected that the 𝑘 − ε method has a better estimation for where far from 

the bottom than where the near bottom.   
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3.3 TKE and Reynolds stress estimation 

For applying the methods introduced in the above sections for the turbulent diffusivity 

estimation, the Reynolds stress, TKE, and covariance of concentration and vertical velocity 

fluctuation were required. The method for calculating the parameters will be discussed in this 

section.  

Reynolds decomposition is a mathematical technique that can separate the fluctuation 

from the time-average value. The definition of Reynolds decomposition of u is 

𝑢 = 𝑢′ + 𝑢                                                           (3.6) 

Where 𝑢′ is the fluctuation and the 𝑢 is the time-averaged velocity component. The 

Reynolds stress is defined as 𝑅𝑖𝑗   ≡  𝑢𝑖
′𝑢𝑗

′, which is the covariance of the velocity fluctuations.  

3.3.1 Random wave-induced fluctuation removal 

Accurate estimation of Reynolds stresses and TKE in the coastal ocean are difficult due 

to the inherent complications associated with separating surface wave-induced unsteady motions 

from the turbulence. The wave-induced component of the fluctuations includes contributions 

from both surface and internal waves. It is not always practical to separate the two different 

fluctuations in natural flow since both of them are random. Following the Hussain's 

decomposition (Hussain and Rees, 1995) instead of Reynolds’ decomposition, the velocity 

component u could be decomposed as 

𝑢 = 𝑢̅ + 𝑢̃ + 𝑢′                                             (3.7) 

Where the additional term 𝑢̃ is the wave-induced part.  
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3.3.2 Low-pass filtering method 

There are many ways to define the combined part of the mean velocity and wave-induced 

fluctuation, the very straightforward way is by applying the low-pass filtering to the time series 

of the velocity, because the random wave-induced fluctuation might have a lower frequency 

compared to the turbulence.  

Figure 3.5 shows the time series of the horizontal velocity 𝑢 in one 400s measurement at 

the height of 5cm above the bottom, the lowpass filtered dotted velocity curve and linear fitted 

dash line shows that the wave-induced fluctuation do happen in the measurement of the 

profundal area of Lake Michigan, but compared to the ensemble flow like tide flow which 

usually can fit with an ensemble sinusoid curve, the fluctuation in the measurements of this 

thesis is more random.  

 

 
Figure 3.5 Time series of the streamwise velocity at z = 5 cm from data set AW55-0023.  

The dotted line represents the lowpass filtered (= 50 s) velocity signal. The solid line is the 

horizontal velocity, where the dashed line and the dotted line are lowpass filtered and 

linear regressed velocities. The sample rate is 1Hz.  

 

By applying the Hussain decomposition to the Reynolds stress (Nayak et al., 2015), we 

have 

𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅  =  (𝑢𝑖 − 𝑢𝑖̅ − 𝑢̃𝑖)(𝑢𝑗 − 𝑢𝑗̅ − 𝑢̃𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                         (3.8) 
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By applying the lowpass-filtered time-series of velocity as the sum of mean velocity and 

the wave-induced velocity 

𝑢𝑖̅ + 𝑢̃𝑖 ≈ 𝑢𝑖(𝑙𝑜𝑤𝑝𝑎𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)                                     (3.9) 

The Reynolds stress  could be derived as 

𝑢𝑖′𝑢𝑗′̅̅ ̅̅ ̅̅ ̅  =  (𝑢𝑖 − 𝑢𝑖(𝑙𝑜𝑤𝑝𝑎𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))(𝑢𝑗 − 𝑢𝑗(𝑙𝑜𝑤𝑝𝑎𝑠𝑠𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅             (3.10) 

In later discussion, the method was named as the “lowpass filter method” in this thesis for 

convenience. however, in actual data processing, we applied the moving average for the filtering, 

which is recognized as one of the standard approaches in related research papers (Nimmo Smith 

et al., 2002). Figure 3.6 shows the comparison of the result by using the lowpass filter method 

and the method without removing the wave-induced fluctuation. It is not surprising that the 

Reynolds normal stresses are in large difference, the removing wave-induced oscillating process 

decreased the value significantly. But Figure 3.6(a) shows that the reductions are varied for the 

near-bottom region and the top region of the set of data; the reason might be that the wave-

induced fluctuation contributed different proportions in the different elevations.   

Figure 3.6(b) shows that the Reynolds shear stress smaller difference for the two 

methods, the low-pass filter method reduced the Reynolds shear stress estimation on the top (z > 

10cm) which is the same as the Reynolds normal stress, but there is an increase on the bottom 

which is abnormal to the intuition. However, it is pointless to compare the result by only one 

specific dataset since the flow condition in our research site, and the correlation analysis will be 

carried out in the next sections with the whole datasets. 
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Figure 3.6 Reynolds normal stress calculated from mean velocity and low pass velocity. 

 (a) (b) are the comparison of the Reynolds normal stress 𝒖′𝒖′̅̅ ̅̅ ̅̅ , 𝒘′𝒘′̅̅ ̅̅ ̅̅ ̅.The Reynolds stresses 

profile were spatially averaged in the horizontal direction. From the comparisons, the 

fluctuation calculated from the low pass filtered velocity is smaller than from the mean 

velocity, which implied that the low-frequency fluctuation, which probably came from 

waves, indeed influences the Reynolds stress estimation.  

 

In sum, the lowpass filter method is one of the very straightforward methods applied in 

the Reynolds stress calculation with wave-induced fluctuations. It is widely applied in some 

cases with ensemble waves i.e. tidal flows. However, in the profundal area of Lake Michigan 

bottom, the waves are mostly random, the filter size needs to be carefully selected.  
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3.3.2.1 Data processing procedures 

In applying the lowpass filter method in the data batch processing, we did not follow the 

exact procedures mentioned above for convenience. Instead of smoothing the 3D matrix (time 

series of 2D velocity map), the spatial average in the horizontal direction was conducted before 

the moving average procedure. The 3D matrix was reduced to a 2D matrix which significantly 

saved the computation and storage space in the data processing. The spatial averaging is 

equivalent to a lowpass filtering applied in time series if assuming the flow is homogeneous in 

the horizontal direction.  

The procedures of the data processing could be summarized as below and shown in 

Figure 3.7. 

1. Calculate the instantaneous mean velocity profile by averaging the rows of the 

instantaneous velocity map, save the velocity profile to a 2D matrix, which is the 

history of the mean velocity profile. 

2. Smooth the 2D matrix in the time series direction with the different filtering 

size(5s,9s,11s) 

3. Expand each filtered profile history to a 2D velocity map, which is the 

approximation of the sum of mean velocity and wave-induced fluctuation.  

4. Subtract the filtered velocity map from the instantaneous velocity map,  
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Figure 3.7 Lowpass method data processing steps 

 

3.3.3 Second-order structure function method 

Nimmo Smith (Nimmo Smith et al., 2002) introduced the second-order structure function 

method by taking advantage of the 2-D velocity map provided by PIV. This method was 

followed by the idea from Trowbridge (Trowbridge, 1998). In Trowbridge’s paper, the 

difference of the velocities measured in two different points with the distance of 𝑟𝑖 was defined 
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as Δ𝑢𝑖 = 𝑢𝑖(𝑥𝑖 + 𝑟𝑖) − 𝑢𝑖(𝑥𝑖). The second-order velocity structure function is defined as the 

covariance of difference in velocities between two points, 

𝐷𝑖𝑗 = cov[Δ𝑢𝑖 , Δ𝑢𝑗] = [𝑢𝑖(𝑥𝑖 + 𝑟𝑖) − 𝑢𝑖(𝑥𝑖)][𝑢𝑗(𝑥𝑖 + 𝑟𝑖) − 𝑢𝑗(𝑥𝑖)]̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                (3.11)  

by assuming the horizontal homogeneity, the turbulence parameters in different points in 

horizontal direction should be in the same, then  

𝑢𝑖(𝑥𝑖 + 𝑟𝑖)𝑢𝑗(𝑥𝑖 + 𝑟𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  =  𝑢𝑖(𝑥𝑖)𝑢𝑗(𝑥𝑖) ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                            (3.12) 

 

𝑢𝑖(𝑥𝑖)𝑢𝑗(𝑥𝑖 + 𝑟𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  = 𝑢𝑖(𝑥𝑖 + 𝑟𝑖)𝑢𝑗(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                             (3.13) 

By substituting (3.12) (3.13) to (3.11), the covariance can be simplified as:  

cov[Δ𝑢𝑖 , Δ𝑢𝑗] = 2𝑢𝑖(𝑥𝑖)𝑢𝑗(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − 2𝑢𝑖(𝑥𝑖 + 𝑟𝑖)𝑢𝑗(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                             (3.14) 

Decomposing the 𝑢𝑖 by Hussain decomposition (Equation(3.8)) and substituting in 

Equation (3.14), and assuming there’s an negligible correlation between the turbulent 

fluctuations and the wave-induced oscillations, i.e. 𝑢𝑖′𝑢𝑗̃
̅̅ ̅̅ ̅̅ ̅̅ ≈ 0. Equation (3.14) could be derived 

as  

cov[Δ𝑢𝑖 , Δ𝑢𝑗] = 2(𝑢𝑖′(𝑥𝑖)𝑢𝑗′(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑢̃𝑖(𝑥𝑖)𝑢̃𝑗(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)  − 

2(𝑢𝑖′(𝑥𝑖 + 𝑟𝑖)𝑢𝑗′(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑢̃𝑖(𝑥𝑖 + 𝑟𝑖)𝑢̃𝑗(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)                           (3.15) 

In this thesis, if the PIV ROI size is much smaller than the wavelength (Nimmo Smith et 

al., 2002), the wave-induced terms could be canceled out. 

cov[Δ𝑢𝑖 , Δ𝑢𝑗] = 2𝑢𝑖′(𝑥𝑖)𝑢𝑗′(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  − 2 𝑢𝑖′(𝑥𝑖 + 𝑟𝑖)𝑢𝑗′(𝑥𝑖)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅       (3.16) 

In the second term of Equation(3.16),  𝑢𝑖
′(𝑥𝑖 + 𝑟𝑖) and 𝑢𝑗

′(𝑥𝑖) are statistically uncorrelated 

when the 𝑟𝑖 is larger than the integral length scale. So, the second term will converge to zero 

when the 𝑟𝑖 reached the integral length scale.  
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If the distance of the two points 𝑟𝑖 meet the conditions that: (1) 𝑟𝑖 ≪ 𝛾; and (2) 𝑟𝑖 >  𝑙, 

where 𝛾 is the wavelength of the wave, and 𝑙 is the integral length scale. The Reynolds stress can 

be estimated by the second-order structure-function,  

𝑢′2̅̅ ̅̅ =
1

2
𝐷11(𝑟), 𝑤′2̅̅ ̅̅ ̅ =

1

2
𝐷33(𝑟), 𝑢′𝑤′̅̅ ̅̅ ̅̅ =

1

2
𝐷13(𝑟)                           (3.17) 

Figure 3.8 shows the structure functions 𝐷11, 𝐷33 and 𝐷13 with respect to the distance of 

the two measured points on the velocity map. Figure 3.8(a) show good convergence for the 

height of z = 3cm and z = 4cm at 𝑟1  =  4.5𝑐𝑚 and 5cm, the situation that z=3cm converged 

early than the z =4cm matches the theory that the convergence is depended on the integral length 

scale, which here we can approximate as the distance from the bottom (Nayak et al., 2015). 

Thus, for z= 3cm and z = 4cm, the integral length scale is smaller than the maximum value of 𝑟1, 

the convergence will show in the structure function curve, while for z = 6cm and 8cm, the 

integral length scales increased to the value larger than the width of the PIV measurement, which 

means the convergence will not show in the structure-function curve.  

In Figure 3.8(b), the structure-function 𝐷33 is relatively nosier than the 𝐷11, but there still 

exist a flat region on the structure-function curve with the heights of z = 3cm and z = 4cm, the 

plateau intervals are considered as the convergence region. Figure 3.8(c) shows the structure-

function 𝐷13 with respect to 𝑟1, the 𝐷13 is much nosier than 𝐷11 and 𝐷33, there’s not a clear 

convergence region on the curve. In the data batch processing of all datasets, it is not possible to 

find the convergence region of the curve manually, so the convergence region was approximated 

set as the last five points of the structure-function, and the converged value of the structure-

function is approximately estimated as the mean value of the last five points. 
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Figure 3.8 Structure function 𝑫(𝒓𝟏) at z = 3cm, 4cm, 6cm and 8cm. 

 (a) 𝑫𝟏𝟏(𝒓𝟏) , (b) 𝑫𝟑𝟑(𝒓𝟏) , (c) 𝑫𝟏𝟑(𝒓𝟏) . The result was subtracted from AW55-0023 

dataset.   

 

As mentioned above, the width of the UWPIV is not sufficiently large for the structure 

method, we still apply the method in estimating the Reynolds stress. Figure 3.9 shows the 
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comparison of the structure method and the lowpass method. The lowpass method reduced the 

value of the stress in both the two normal stresses (𝑢′𝑢′̅̅ ̅̅ ̅̅  𝑎𝑛𝑑 𝑤′𝑤′̅̅ ̅̅ ̅̅ ̅) in all elevations, but the 

structure-function method reduced more values on the top part of the curve. By tracking back to 

the structure-function, the reason might be that the structure-function didn’t reach the 

convergence region in our measurement, then the structure function method might have the 

underestimated result at the height z >10cm by theoretical analysis. Figure 3.9 (c) shows the 

result of the Reynolds shear stress, the Reynolds shear stress by the structure-function also 

estimated a smaller value at the top comparing to the near-bottom region.  
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Figure 3.9 (a)(b) Reynolds normal stress and (c) Reynolds shear stress by second-order 

structure function method and the lowpass filter method.  
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3.3.4 Correlation analysis 

The two methods introduced in 3.3.2 and 3.3.3 both have the advantage and the weakness 

in calculation of the Reynolds stress in the situation with the random wave. Preliminary 

comparison and analysis of the two methods were carried out in 3.3.3 for one typical dataset, 

however, the comparison needs to be carried out statistically for the whole datasets. 

 

3.3.4.1 Turbulent kinetic energy (TKE) calculation 

For evaluating and selecting the best method for our application, we applied the lowpass 

filter method and the Second-order structure function method in the TKE and Reynolds stress 

estimation. The definition of TKE is 

𝑇𝐾𝐸 =
1

2
(𝑢′𝑢′ + 𝑣′𝑣′ + 𝑤′𝑤′)                                       (3.18) 

Which could be calculated from the Reynolds normal stress. In the 2D-PIV measurement, 

we have the 𝑢′𝑢′ and 𝑤′𝑤′. By assuming the homogenous and isotropy turbulence, we can 

approximately estimate the missing Reynolds normal stress  𝑣′𝑣′ as 

𝑣′𝑣′  =  
1

2
(𝑢′𝑢′ + 𝑤′𝑤′)                                              (3.19) 

Then the TKE could be calculated by the equation 

𝑇𝐾𝐸 =
3

4
(𝑢′𝑢′ + 𝑤′𝑤′)                                               (3.20) 

To compare the two different methods and optimize the filter size, we calculated and 

plotted all datasets measured. Because the structure-function method may have different 

performance in the different heights, the top (z>10cm) and bottom (z=2~5cm) were plotted and 

analyzed separately.   
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Figure 3.10 is the comparison of the TKE estimation, the filtering size increased from (a) 

to (d). The overall TKEs estimated by the lowpass filter is smaller compared to the structure-

function method. The dashed lines in the figures are the linear fitted results, the slope of the 

linear fitted lines decreases as the filter size increases, which is because larger filtering size 

represents the less fluctuation remained in the subtracted portion, then more fluctuations kept in 

the result. As using the structure-function method as the reference, it is more scattered while the 

lowpass filter size increased, but the slope is closer to one while with the filter size increasing. 

We also observed that there is a bifurcation occurred at the low dissipation rate location, this 

abnormal happened also with the filter size increased. The slopes of the linear regression were 

listed in Table 3.1. A trade-off for the filter size selection has been made because there are many 

side effects while increasing the filter size. In this thesis, the filter size of 9 s was selected for the 

filtering because the filter size is not too scattered but the linear fitted slope close to one.  

 

Table 3.1List of the slopes of the linear regression in Figure 3.10 

Filter size 1s 5s 9s 11s 
Z = 2~5cm 1.92 1.66 1.41 1.33 
Z > 10cm 1.93 1.66 1.41 1.33 
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Figure 3.10 TKE comparison of the lowpass filter method and the structure function 

method, (a) lowpass filter =1, (b) lowpass filter = 5, (c) lowpass filter = 9, (d) lowpass filter = 

11.   

 

Figure 3.11 shows the Reynolds shear stress 𝑢′𝑤′ comparison between the structure 

method and the lowpass filtering method. The trend of the Reynolds shear stress comparison is 

very similar to the TKE comparison, the slope of the linear regression decreased and the 

comparison turned to be scattered while the filter size increased.  
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However, the slope of the linear regression of the lower level elevation and the higher 

level elevation slightly differs. The slope of the top is larger than the bottom in Figure 3.11(a) 

but the result in Figure 3.11(d) is reversed, which means the decrease speed of the top-level line 

is faster than the bottom level line while the lowpass filter size increased.  

This result indicated two possible conclusions, one is the wave-induced fluctuations do 

not the same in different elevations, while the second is that the structure-function method has 

the different performance in wave removal in different elevations. It is hard to tell which 

conclusion is correct. Here we followed the same procedures as the TKE calculation and made a 

trade-off between the different methods, and chose the lowpass filter method with filter size = 9 s 

as the final method. 
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Figure 3.11 Reynolds shear stress comparison of the lowpass filter method and the 

structure function method. 

 (a) only spatial filter without lowpass, (b) lowpass filter = 5 s, (c) lowpass filter = 9 s, (d) 

lowpass filter = 11 s.   
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Figure 3.12 Particle concentration flux 𝒘′𝒄′  estimation comparison of the lowpass filter 

method and the structure function method. 

 (a) lowpass filter = 1s, (b) lowpass filter = 5 s, (c) lowpass filter = 9 s, (d) lowpass filter = 11 

s.   

 

Figure 3.12 shows the comparison of the particle concentration flux estimated by 

structure-function method and the lowpass filter method, the result is similar to the Reynolds 

shear stress, but compared to the Reynolds shear stress result, the data are more scattered when 

applying the lowpass filter, the reason might be the particle concentration counting result is a bit 

of noisy compared with the velocity. The same lowpass filter method with filter size = 9 s was 

selected for the particle concentration flux estimation.  
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By summarizing all the comparisons, the lowpass filter method with filter size = 9s is 

selected by the reason of robust and good correlation with the structure-function method. 

Although there are some shortcomings of the method in some cases, this is already the best 

solution we have tried to find.  

 

3.4 TKE dissipation rate estimation 

For the k-epsilon method introduced above, the TKE dissipation rate needs to be 

estimated from the velocity maps for the diffusivity calculation. And determining the vertical 

profile of the dissipation rate is of interest as it relates to the mixing process in the surface layer. 

The TKE dissipation rate, which denoted as ε, is the rate of the TKE dissipated to heat in 

turbulent flow. However, in the literature, there's no general agreement as to be the best method 

to estimate the TKE dissipation rate from the velocity maps measured by PIV; The TKE 

dissipation rate is defined as (Pope, 2000) 

ε = 2ν⟨𝑠𝑖𝑗𝑠𝑖𝑗⟩ = ν ⟨
∂𝑢𝑖

∂𝑥𝑗

∂𝑢𝑖

∂𝑥𝑗
+

∂𝑢𝑗

∂𝑥𝑖

∂𝑢𝑖

∂𝑥𝑗
⟩                                        (3.21) 

Where the 𝑠𝑖𝑗 is the rate-of-strain tensor, 𝑢𝑖 is the fluctuation of velocity in 𝑖𝑡ℎ direction. 

In this section, we will describe how we apply several common approaches to estimate the 

turbulent energy dissipation rate from PIV measurement. In the next four sections, four different 

methods will be introduced for estimating the dissipation rate from PIV 2D velocity maps.  
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3.4.1 Direct method 

The TKE dissipation rate could be estimated “directly” from the instantaneous 2D in-

plane velocity gradients which extracted from the PIV data. Five terms of the equation could be 

calculated by the spatial velocity derivative directly: (
∂𝑢

∂𝑥
)

2
, (

∂𝑤

∂𝑧
)

2
, (

∂𝑤

∂𝑥
)

2
, (

∂𝑢

∂𝑧
)

2
, (

∂𝑤

∂𝑥

∂𝑢

∂𝑧
). 

(
∂𝑣

∂𝑦
)

2
 could be estimated by the continuity equation: 

(
∂v

∂y
)

2
= (−

∂𝑢

∂𝑥
−

∂𝑤

∂𝑧
)

2
                                     (3.22) 

By assuming the mean of missing out-of-plane cross gradients is equal to their in-plane 

gradients by Hinze (J. O Hinze, 1987) 

𝜀𝐷1 = 4ν [(
𝜕𝑢

𝜕𝑥
)

2̅̅ ̅̅ ̅̅ ̅
+ (

𝜕𝑤

𝜕𝑧
)

2̅̅ ̅̅ ̅̅ ̅̅
+

𝜕𝑢

𝜕𝑥

𝜕𝑤

𝜕𝑧

̅̅ ̅̅ ̅̅ ̅
+

3

4
(

𝜕𝑢

𝜕𝑧
+

𝜕𝑤

𝜕𝑥
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
]                            (3.23) 

 

Or (Doron et al., 2001). 

 𝜀𝐷2 = 3𝜈 [(
𝜕𝑢′

𝜕𝑥
)

2̅̅ ̅̅ ̅̅ ̅̅
+ (

𝜕𝑤′

𝜕𝑧
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅
+ (

𝜕𝑢′

𝜕𝑧
)

2̅̅ ̅̅ ̅̅ ̅̅
+ (

𝜕𝑤′

𝜕𝑥
)

2̅̅ ̅̅ ̅̅ ̅̅ ̅
+ 2

𝜕𝑢′

𝜕𝑧

𝜕𝑤′

𝜕𝑥

̅̅ ̅̅ ̅̅ ̅̅
+

2

3

𝜕𝑢′

𝜕𝑥

𝜕𝑤′

𝜕𝑧

̅̅ ̅̅ ̅̅ ̅̅
]       (3.24) 

Where the water viscosity ν = 1.5 × 10−6𝑚2/𝑠 in around 5℃ near the deep lake bottom. 

In this thesis, dissipation rate estimated by Equation (3.23) and (3.24) were denoted as 𝜀𝐷1 and 

𝜀𝐷2. Figure 3.13 shows the dissipation rate calculated by Hinze’s method (𝜀𝐷1) (Figure 3.13(a)) 

and Doron’s method (𝜀𝐷2) (Figure 3.13 (b)). The result shows that these two methods have 

similar results, their differences are very subtle. The values on the edges have relatively large 

errors, which are caused by the errors in calculating the velocity gradient at the boundaries. The 

values near the bottom also have relatively large anomalies, by checking back to the original 

images, these anomalies are located near the mussel siphons where the velocity measurement has 



 

 

 

 
60 

a significant error which can contaminate the gradient. These error values were removed out 

from the final analysis. 

 

Figure 3.13 (a) TKE dissipation rate calculated by Hinze’s direct method. (b) TKE 

dissipation rate calculated by Doron’s direct method. The dataset is AW55-0023. 

3.4.2 Linear-Fit in Inertial Subrange of a 1-D Velocity Spectra 

Assume that turbulence is homogeneous along the streamwise direction, and an 

equilibrium inertial subrange exists in turbulent velocity spectra, the dissipation rate can be 

determined by the one-dimensional longitudinal and transverse velocity spectrum 𝐸11 and 𝐸33, 

which are equivalent to the Fourier transform in the wavenumber space, 𝜅1 ≡
2𝜋

𝑥
,  of the 

autocorrelation function of the streamwise and spanwise velocity fluctuations 𝑢′ and 𝑣′. The 

dissipation rate can be subtracted by fitting the measured velocity spectrum with the universal -

5/3 power law in the inertial subrange (Pope, 2000; Wang and Liao, 2016b),  

    𝐸11(𝜅1) =
18

55
(

8𝜀𝐿𝐹

9𝛼
)

2 3⁄

𝜅1
−5 3⁄

                          (3.25) 

𝐸11(𝜅1) ≈
3

4
𝐸33(𝜅1)                                    (3.26) 
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Where 𝛼 = 1.5 is a universal constant. Dissipation rate estimated as the best linear fitting 

parameter to log 𝐸11 ~ log 𝜅1 is then denoted as 𝜀𝐿𝐹.  

 
Figure 3.14 Spatial spectral analysis of the velocity. 

 (a) is the streamwise horizontal velocity spectrum 𝑬𝟏𝟏, (b) is the streamwise vertical 

velocity spectrum 𝑬𝟑𝟑.   

  
Figure 3.15 log linear fitting of the velocity spectrum.  

The dashed lines are the fitted lines.  

 

Figure 3.14 shows the log-log plot of the 1-D horizontal wavenumber spectrum for both 

horizontal and vertical velocity with Kolmogorov scaling, where the Kolmogorov length scale 

η = (ν3/ε)1/4 was estimated from the direct method introduced above. The figure shows fairly 

good fit with the -5/3 slope. Figure 3.15 shows the linear fitting of the log-log wavenumber 

spectrum, the dashed lines are the linear fitting results. Figure 3.15(a) shows the trend that the 



 

 

 

 
62 

spectrum increased as the z decreased, while the three lines in Figure 3.15(b) are sort of 

overlapped and don’t show there is a significant trend of increasing while the z decreased.  

The difference between the vertical and horizontal spectrum results in different distances 

above the bottom indicates that the near-bottom turbulence flows are anisotropic. By plotting the 

ratio of the dissipation rate calculated by horizontal and vertical velocity spectrum, Figure 3.16 

shows that the ε𝐿𝐹11 is larger than ε𝐿𝐹33, while the ratio converged to one while the z increased 

to the top. This result shows the methods with isotropy assumption might have a significant error 

in the near-bottom region. 

 

 

 
Figure 3.16 Ratio of the linear fitting methods by horizontal and vertical velocity spectrum.  

 

3.4.3 Structure-function fitting method 

By following the Kolmogorov’s second similarity hypothesis, the second-order structure 

function follows the equation 

𝐷11(𝑟) = 𝐶2(ε𝑆𝐹𝑟)2/3                                                     (3.27) 
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𝐶2 = 2.12 (Sreenivasan, 1995) While 𝐷11 is the second order structure function in 

Equation (3.11), the dissipation rate ε𝑆𝐹(dissipation estimated by structure function) could be 

estimated by fit Equation (3.27) in the integral length range.  

Figure 3.17 shows the structure-function with the linear fitting result; three different 

levels are plotted in the figure. The trend of the structure functions is fairly well matched with 

the 2/3 slope lines. The structure-function also shows the trend that the dissipation rate is higher 

in the bottom than the top as the spectrum method. 

 
Figure 3.17 Secondary structure-function and the linear fit of the 𝒍𝒐𝒈(𝑫𝟏𝟏) and 𝒍𝒐𝒈(𝒓𝟏𝟏).  

 

3.4.4 Large Eddy PIV method 

The Large Eddy PIV method was first proposed by Sheng et al. (Sheng et al., 2000), 

following the concept of the Large Eddy Simulation (LES) algorithm in turbulence modeling. 

Since the PIV applies image correlation on a sub-image window frame with a finite size, it is 

conceptually equivalent to velocity filtering in LES: the instantaneous velocity 𝑢𝑖 (𝑖 = 1, 2 for 

2D PIV measurements) can be decomposed into a PIV-resolved velocity 𝑈𝑖, and an unresolved 

sub-grid scale (SGS) motion 𝑢̌𝑖: 
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𝑢𝑖 =  𝑈𝑖 + 𝑢̌𝑖                                                            (3.28) 

Applying the decomposition into the Navier-Stokes equation, the dissipation term can be 

represented as 2𝜏𝑖𝑗𝑆̅𝑖𝑗, where 𝜏𝑖𝑗 =  𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ − 𝑈𝑖𝑈𝑗, is the SGS stress tensor, and the SGS strain rate 

tensor is: 

𝑆̅𝑖𝑗 =
1

2
(

𝜕𝑈𝑗

𝜕𝑥𝑖
+  

𝜕𝑈𝑖

𝜕𝑥𝑗
)                                                     (3.29) 

Then the dissipation rate denoted as 𝜀𝐿𝐸𝑃 (LEP for Large Eddy PIV method), can be 

estimated as: 

𝜀𝐿𝐸𝑃 ≡  〈𝜀𝑆𝐺𝑆〉 =  −2〈𝜏𝑖𝑗𝑆̅𝑖𝑗〉                                                (3.30) 

where the operator “〈 〉” represents ensemble averaging. For the SGS stress tensor 

estimation, Sheng proposed two models for the experimental applications.  

 The SGS stress tensor 𝜏𝑖𝑗 could be extrapolated from measured 2D surface flow field 

using the eddy viscosity mode from Smagoristky (Smagoristky,1963) 

 𝜏𝑖𝑗 =  −𝐶𝑠
2𝛥2|𝑆̅|𝑆̅𝑖𝑗                                                         (3.31) 

where 𝛥 is the interrogation window size and the 𝐶𝑆 is a model constant with a value of 

0.17 in many LES applications, and 

|𝑆| = √2𝑆𝑖𝑗𝑆𝑖𝑗                                                        (3.32) 

 The model is expected to give a better result in high Reynolds number turbulent flow 

because it is too dissipative in the laminar region. However, it was also noted that the numerical 

value of 𝐶𝑆 for estimating ε𝐿𝐸𝑃 may differ from 0.17 as it depends on the degree of PIV 

interrogation window overlap, on the way in which spatial gradients are approximated by finite 

difference, and on which components of the strain tensor are used to estimate 𝑆 (Bertens et al., 
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2015). Sheng also mentioned that there’s a dynamic method which replaces the 𝐶𝑠 to a number 

obtained depending on the flow structure, but it is not suitable for the PIV measurement.  

In our 2D PIV measurement, 5 out of 9 components of SGS strain rate tensor 𝑆𝑖𝑗 can be 

calculated directly, the other 4 missings could be estimated by continuity and isotropy 

assumption. 

 

∂𝑈2

∂𝑥2
 =  −

∂𝑈1

∂𝑥1
−

∂𝑈3

∂𝑥3
                                                  (3.33) 

∂𝑈1

∂𝑥2
=

∂𝑈2

∂𝑥1
=

∂𝑈3

∂𝑥2
=

∂𝑈2

∂𝑥3
=

1

2
√(

∂𝑈1

∂𝑥3
)

2

+ (
∂𝑈3

∂𝑥1
)

2

                          (3.34) 

Then the TKE dissipation rate ε𝐿𝐸𝑃 could be calculated by putting the equations above 

together. Figure 3.18 shows the TEK dissipation rate map calculated by the LEP method, there is 

a certain similarity between that distribution and the distribution calculated by the direct method, 

but the average value of the LEP method is about three times of the direct method for this 

dataset. The outside two layers are with a glaring error value which is from the numerical 

gradient calculation in the boundary values. The boundary values were cut out in the final 

analysis as the same as the direct method.  
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Figure 3.18 Distribution of TKE dissipation rate 𝛆𝑳𝑬𝑷. 

Estimated from the dataset AW55-0023.  

 

3.4.5 Comparison and conclusion 

Figure 3.19 shows the comparison between the direct method 1 and the direct method 2, 

The results of the two methods are correlated very well, and the slope of the fit is close to 1, in 

the other words, the two methods are consistent. The dashed line and the solid line are with 

nearly the same slope, indicating that either the top or the bottom estimations are identical for 

both the methods. The R-squared value of the two linear regressions are both very close to 1.  

Thus, in the later comparisons, only the first direct method ε𝐷1
 was selected, because the first 

direct method is more popular in the literature.  
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Figure 3.19 Dissipation rate estimation difference between the two direct methods 

 

Figure 3.20 is the comparison between the direct method and the large eddy method, The 

R-squared value of the linear regression shows that the correlation between the two methods is 

very good, because they both use the spatial velocity gradient for calculation. But the slope of the 

linear regression is not close to one, the large eddy method is about one order higher than the 

direct method. The different results for the two methods is because the two methods don’t share 

the same assumption, the assumption of the direct method is that the resolution of the PIV is high 

enough for resolving the eddies in the dissipation range while it is assumed that the resolution for 

velocity gradient calculation is larger than the size of the eddies for the Large-eddy method.  
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Figure 3.20 Dissipation rate estimation comparison between the direct method and LEP 

method 

 

Figure 3.21 shows the comparison of the 𝐿𝐹11 method and the direct method.  The 

correlation between the two methods is also very good, the 𝑅2 is 0.94 for the top points while the 

𝑅2 is 0.89 for the bottom points. But the linear fitting method shows a significantly higher value 

than the direct method. The spectra linear fitting methods require the wave number in the Inertial 

Subrange(IR), however, the range of wavenumber is around 1/η (see Figure 3.15), which is on 

the edge of the IR where the linear fitting might have more errors.  
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Figure 3.21 Comparison of the direct method and the 𝑳𝑭𝟏𝟏method 

 

Figure 3.22 shows the comparison between the direct method and the LF33 method; the 

figure shows that the slope of the linear regression for the bottom and top elevations are 

different. As the conclusion in (3.4.2), the dissipation rate estimated by the LF33 might be less 

dissipated near the bottom compared to the LF11 method due to the anisotropy.   
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Figure 3.22 Comparison of the direct method and the 𝑳𝑭𝟑𝟑 method 

 

Figure 3.23 shows the direct method is correlated with the structure-function method 

fairly well, the 𝑅2 values are relatively small, but the two methods shared the same order 

aptitude. The linear regression of the bottom elevations has a smaller 𝑅2 value compare to the 

top elevation. The structure-function method requires that the distance is not in the range larger 

than the integral length scale. It is theoretically possible to cut the part larger than the integral 

length scale, but it is not doable to select the right range for the fitting manually. 

Figure 3.24 shows the comparison between the LEP method and the LF11 method; the 

figure shows that there is a significant correlation between the two methods. The similarity 

between the two methods proved that the two methods are statistically identical in the 

applications; however, this does not necessarily mean that the two methods are suitable in our 

application.   
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Figure 3.23 Comparison of the direct method and the SF method 

 
Figure 3.24 Comparison of the LEP method and the LF11 method 

 

In sum, the Direct method, Spectrum method, Structure-function method and Large Eddy 

PIV method were compared in this section. The anisotropy between the vertical direction and the 
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horizontal direction is observed in the comparisons, the anisotropy increased as the elevation 

decreased, and the anisotropy brings more noise when applying the LF33 method. From the 

velocity spectrum curve which is directly related to the resolution of the PIV, we found that the 

velocity spectrum is in the range near the end of the IR, where might not following the -5/3 slope 

very well, thus the methods with the assumption of in the IR might not suit for the flow condition 

in this thesis.  

Therefore, the direct method is selected in the thesis since the direct method is relatively 

robust and with fewer assumptions. And the LEP method was deprecated because it is too 

dissipate when estimating the flow with low Re number.  

 

3.5 Results and correlation analysis of turbulent diffusivity 

The direct method and the k-epsilon method were selected for the turbulent 

diffusivity/viscosity estimation. The eddy viscosity estimated by the k-epsilon method is 

denotated as ν𝑇 while the diffusivity by the direct method is 𝐷𝑧.  

3.5.1 Time series result and data selection 

By applying all the methods selection to all datasets, the vertical profile of the turbulent 

parameters could be calculated from the velocity maps and the particle concentration extracted 

from the recorded images. By using the 2D median filter in the time series of the profiles, both 

the spatial and the temporal are smoothed and with outliers removed. The filtered time series 

result is shown in Figure 3.25. From the time series mean velocity, we found that the deployment 

during October is very low energetic, but for the July and August, there were several high-

velocity events. The particle concentration time series shows there’s a decreasing trend of the 
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particle concentration from July to October. The depletion of the particle concentration was 

observed from the concentration profiles, the depletion layer is around 10 cm from the bottom. In 

Figure 3.25 (f), the particle flux is decreased from July to October, which indicated that the 

grazing rate of the quagga mussel was decreased due to the lack of food source. 

For the convenience of evaluating the time series data, we selected 27 periods from the 

time series results by following the criteria that the turbulent parameters are relatively identical 

in every period. For every period, the results were averaged for later analysis. The selected 

periods were attached in APPENDIX.  
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Figure 3.25 Time series of results 

 (a) Mean horizontal velocity |𝑼| , (b) Particle concentration C, (c) Dissipation rate 𝛆, (d) 

TKE, (e) Eddy viscosity 𝛎𝑻, (f) Particle flux 𝒘′𝒄′. 

3.5.2 Analysis of the selected data 

For the convenience of comparison, we selected the near bottom(z=2~5cm) and the top 

region(z>10cm) for the analysis, the results were averaged in the bottom region and the top 

region. Figure 3.26 is the comparison of the eddy viscosity and turbulent diffusivity, the figure 
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shows fairly good coupling for the eddy viscosity and turbulent diffusivity, the result 

corresponded to the Liao’s result (Liao et al., 2009) which applied the covariance method in the 

eddy viscosity method for a case with smooth mean velocity profile.  

 
Figure 3.26 Comparison of the turbulent viscosity and turbulent diffusivity 

 

For evaluating the source of the turbulent diffusivity, we plotted the comparison between 

the mean velocity and diffusivity. Figure 3.27  shows that the mean velocity is not correlated to 

the diffusivity very well, the uncorrelation between the mean velocity and the diffusivity implied 

that the major source of the diffusivity is not from the roughness of the lakebed, because the 

diffusivity should increase as the velocity increased if the bed roughness is the main source of 

turbulent diffusivity. This result implied that the other source of the turbulent diffusivity, mussel 

exhalant jet, might contribute to the major part of the turbulent mixing.    
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Figure 3.27 Comparison of the mean velocity and the turbulent diffusivity 

 

Figure 3.28 shows the correlation between the particle concentration and the eddy 

viscosity. The reason we compared the particle concentration with the eddy viscosity instead of 

the diffusivity is that the diffusivity calculation is calculated from the particle concentration 

fluctuation. The correlation between particle concentration and the eddy viscosity is relatively 

good, and there is a trend that the eddy viscosity increased as the particle concentration 

increased. This result implied that the profundal mussels exhalant jet might be the main source of 

the near-bed turbulent diffusivity.  
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Figure 3.28 Comparison of the particle concentration and the eddy viscosity 

 

3.5.3 Filtration rate of mussels 

In this study, it is assumed that near-bed vertical transport of particles through turbulent 

is primarily a result of mussel filtration. If the collective pumping rate of mussels is denoted as 𝑄 

(m3 s-1 per square meter, or m s-1), and mussels can filter out most if not all particles delivered to 

the bed,  

𝑄𝐶0 = −𝑤′𝑐′                                                (3.35) 

where 𝐶0 is the particle concentration immediately above the mussel bed, and the 

turbulent flux −𝑤′𝑐′ is assumed to be nearly uniform in a short distance above the mussel bed. 

With the data measured and averaged in each of the 27 sections, mussels’ pumping rate can be 

estimated, where 𝐶0 and −𝑤′𝑐′ are taken as the averages of measured profiles of particle 
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concentration and turbulent flux over 𝑧 = 2~5 cm. The time sequence of the estimated 𝑄 is 

shown in Figure 3.29, along with the measured near-bed turbulent diffusivity 𝐷𝑇 (i.e., average of 

𝑧 = 2~5 cm) 

 

Figure 3.29 Time series of estimate mussel collective pumping rate (converted to m/day) 

and near-bed diffusivity  

It appeared that mussels’ pumping rate, thus the filtration activity was relatively high in 

July and earlier August of 2018. It then gradually decreased. This showed a trend similar to that 

of the particle concentration and the near-bed diffusivity. A good linear correlation was found 

between the diffusivity and pumping rate, for both 𝑧 = 2~5 cm and 𝑧 = 10~18 cm, as shown in 

Figure 3.30. Linear regression was applied that suggested   

𝐷𝑇 = 𝛾𝑄                                                3.36 

where 𝛾 = 1.74 × 10−6  (
𝑚2𝑠−1

𝑚 𝑑𝑎𝑦−1) and 4.42 × 10−6 (
𝑚2𝑠−1

𝑚 𝑑𝑎𝑦−1) for 𝑧 = 2~5 cm and 𝑧 =

10~18 cm, respectively. Similarly, a good correlation was also found between the turbulent 

viscosity 𝜈𝑇 and the pumping rate 𝑄 (see Figure 3.31). These relations suggested that mussels’ 

filtration activity is the primary source of turbulence production in the otherwise very quiescent 

benthic boundary layer.  
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Figure 3.30 Correlation between turbulent diffusivity and mussels’ collective pumping rate. 

Dashed lines and equations in the figure represent linear regression of 𝑫𝑻 = 𝜸𝑸.  

 

 

Figure 3.31 Correlation between turbulent viscosity and mussels’ collective pumping rate. 

Dashed lines and equations in the figure represent linear regression of 𝝂𝑻 = 𝜸𝑸.  
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CHAPTER 4. TESTING HYPOTHESES WITH MODELING ANALYSIS 

To test the hypothesis that bio-mixing due to quagga mussels’ filtration activities may 

help them to maximize the grazing rate, a simplified One-D model is developed. Turbulence 

structures and “eddy” (turbulent) diffusivities measured and analyzed in Chapter 3 will be 

applied to parameterize the model, which can be solved numerically. The numerical model and 

empirical mixing coefficients will also be applied to evaluate the excretion of soluble reactive 

phosphorus (SRP), according to the measured near-bed SRP profiles at the 55m site in Lake 

Michigan.  

4.1 One D advection-diffusion model for phytoplankton transport 

Vertical transport of phytoplankton at the profundal site of Lake Michigan can be 

simplified through a steady-state one-dimensional advection-diffusion process. Since the primary 

objective of this study is to assess the effects of bio-mixing on transport, algae production, 

mortality and grazing are not included in the modeled water column. Source and/or sink terms 

will only be considered at boundaries. In addition, horizontal transport terms are ignored 

considering the main gradient occurs along the vertical direction only. With these assumptions, 

the governing equation can be written as  

𝜕

𝜕𝑧
(−𝐷

𝜕𝐶

𝜕𝑧
 −  𝑤𝑠𝐶) = 0                                                  (4.1) 

where 𝐶 is the concentration of phytoplankton;  𝑧 is the vertical coordinate, and 𝑧 = 0 on 

the lake bottom; 𝐷 is the vertical diffusion coefficient (e.g., the turbulent diffusivity); and 𝑤𝑠 is 

the magnitude of settling speed of phytoplankton particles (i.e., 𝑤𝑠 > 0). The simple One-D 

model is a statement that local advective transport of phytoplankton due to passive settling is 

balanced by the diffusion process due to turbulent mixing.  
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4.2 Analytical framework with constant diffusivity 

If the diffusivity 𝐷 is assumed to be constant, the transport equation can be simplified as 

the following, which is a linear differential equation that could be solved analytically.  

𝐷
𝜕2𝐶

𝜕𝑧2 + 𝑤𝑠
𝜕𝐶

𝜕𝑧
= 0                                                      (4.2) 

The solution of the equation above can only be made with appropriate assumptions for 

boundary conditions, particularly at the lake bottom where quagga mussels’ filter-feeding 

activities may affect transport of phytoplankton over the entire water column.   

4.2.1 Boundary conditions considering mussels’ grazing 

For the bottom boundary, the diffusive flux plus settling −𝐷
𝜕𝐶

𝜕𝑧
 −  𝑤𝑠𝐶 is assumed to be 

in balance with mussels’ grazing rate. By assuming the filtering rate to 100%, the mussel grazing 

rate (𝐺) can be calculated as  

𝐺 = 𝑑𝑞𝐶𝐵 = 𝑄𝐶𝐵    (4.3)  

where 𝑑 is the density of the mussels in (1/m2), q is the pump rate of an individual mussel 

which can be typically represented in (Liter/day), 𝐶𝐵 is the phytoplankton concentration on the 

lake bottom, i.e., 𝐶𝐵 = 𝐶(𝑧 = 0). The formula suggests that the mussels only acquire the 

particles in a thin layer near the mussel inhalant siphon, the mussel grazing rate is only related to 

the bottom concentration and its pumping rate. It is more convenient to define the collective 

filtration rate 𝑄 ≡ 𝑑𝑞, which has a dimension of volume of water filtered per unit time and per 

unit area of the lake bottom. Therefore, the unit of 𝑄 is equivalent to that of a speed in terms of 

(m/day). In the following analysis, the ratio between the collective filtration rate (𝑄) and the 

settling speed (𝑤𝑠) will frequently be used as an important parameter.  



 

 

 

 
82 

Another important factor is related to phytoplankton particles that are not grazed by 

mussels and “settled out” of the water column. Although those particles settled on the bottom 

might be resuspended due to hydrodynamic forces, they are not considered in this study since we 

focus on profundal mussels particularly in a quiet and stratified environment where mixing from 

ambient current is very weak. Therefore particles “settled out” will stay on the lake bottom. Here 

the area of “lake bottom” should exclude areas of opening incurrent siphons of mussels (see 

Figure 4.1). A “porosity” (𝛽) can be defined as the total area of open siphon cross-sections over a 

unit lake bottom area, i.e.,  

𝛽 ≡
𝑑𝐴𝑠

𝐴𝑢𝑛𝑖𝑡
      (4.4) 

With an estimated incurrent siphon diameter of about 2~4 mm, and a typical mussel 

density of 𝑑 = 2,000 ~ 10,000 m-2, The porosity 𝛽 could vary between about 1% to 13%. The 

relative area of the lake bottom that accepts settling of phytoplankton particles is then defined as  

𝛼 = 1 − 𝛽      (4.5) 
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Figure 4.1 Illustration of mussel “porosity” 𝜷, which represents the fraction of total areas 

of mussels’ incurrent siphons per unit area of the lake bottom. Parameter 𝜶 ≡ 𝟏 − 𝜷 thus 

represents the fraction of areas including the lakebed sediment and mussel shells (minus 

incurrent siphons).  

 

With all considerations and assumptions, the bottom boundary condition can be 

formulated as  

𝐷
𝜕𝐶

𝜕𝑧
+ 𝛽𝑤𝑠𝐶 = 𝑄𝐶     at   𝑧 = 0                                                (4.6) 

The top boundary can be considered at a height that is sufficiently far away from the lake 

bottom such that mussels’ filtration has negligible impact, and concentration gradient vanished. 

This condition can be written as  

𝑑𝐷

𝑑𝑧
= 0          at   𝑧 = ∞    (4.7) 

 

4.2.2 Analytical solution with constant diffusivity and finite water depth  

To solve the transport equation, there must be at least one Dirichlet boundary condition. 

Without loss of the generality, the bottom concentration 𝐶𝐵 can be considered as the reference 

value. Therefore, the analytical solution is  

𝐶(𝑧) = [
𝑄+𝛼𝑤𝑠

𝑤𝑠
+ (1 −

𝑄+𝛼𝑤𝑠

𝑤𝑠
) 𝑒−

𝑤𝑠
𝐷

𝑧] 𝐶𝐵                                      (4.8) 

This solution suggests that at the infinite distance (height), 𝐶∞ ≡ 𝐶(∞) =
(𝑄+𝛼𝑤𝑠)𝐶𝐵

𝑤𝑠
, 

which means the grazing rate at the bottom equals to the delivery of particle from infinity 

distance through settling multiplied by the siphon porosity, i.e.,  

𝑤𝑠𝐶∞ = 𝑄𝐶𝐵 + 𝛼𝑤𝑠𝐶𝐵                                               (4.9) 
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If the delivery from the infinite distance is fixed, mussels’ grazing rate is a constant value 

disregarding the pumping rate 𝑄 and the diffusivity 𝐷. A greater pumping rate will just result in 

a reduced bottom concentration 𝐶𝐵.   

However, it should be noted that this solution is certainly not practical. Water depth (𝐻) 

is a finite value, and it is more reasonable to assume a known concentration at the water surface, 

i.e., 𝐶𝐻 ≡ 𝐶(𝑧 = 𝐻). It is more practical that the solution is scaled with 𝐶𝐻, and the bottom 

concentration 𝐶𝐵 is not known a priori. From the solution (4.8) we know that  

𝐶𝐻 = 𝐶(𝐻) = [
𝑄+𝛼𝑤𝑠

𝑤𝑠
+ (1 −

𝑄+𝛼𝑤𝑠

𝑤𝑠
) 𝑒−

𝑤𝑠
𝐷

𝐻] 𝐶𝐵   (4.10) 

Therefore, the solution can be given more appropriately as  

 

𝐶(𝑧)

𝐶𝐻
=

𝑄+𝛼𝑤𝑠
𝑤𝑠

+(1−
𝑄+𝛼𝑤𝑠

𝑤𝑠
)𝑒

−
𝑤𝑠
𝐷 𝑧

𝑄+𝛼𝑤𝑠
𝑤𝑠

+(1−
𝑄+𝛼𝑤𝑠

𝑤𝑠
)𝑒

−
𝑤𝑠
𝐷 𝐻

    (4.11) 

Thus, the ratio of the bottom boundary concentration and the surface concentration is 

 
𝐶𝐵

𝐶𝐻
=

1

𝑄+𝛼𝑤𝑠
𝑤𝑠

+(1−
𝑄+𝛼𝑤𝑠

𝑤𝑠
)𝑒

−
𝑤𝑠
𝐷 𝐻

                              (4.12) 

To demonstrate the analytical solution, parameters are specified according to the typical 

hydrodynamic conditions at the 55-m site, particularly under the summer stratified conditions. 

Since mussels’ siphon jets and filtration activities are not significant sources of momentum and 

energy into the ambient environment, its interaction with the ambient hydrodynamic mixing and 

its impact on particle grazing and sedimentation were presented with an assumption of the 1-

meter water column. Phytoplankton’s passive settling rate was selected to be 𝑤𝑠 = 0.6 (m day-1) 

based on (Luo et al., 2012; Shen et al., 2018). Ambient turbulent diffusivity seldom exceeds 10-5 

(m2 s-1), thus it is specified to be varying between 𝐷 = 1.0 × 10−6 and 1.0 × 10−5 (m2 s-1). 

Mussels’ collective pumping rate was assumed to vary such that 𝑄/𝑤𝑠 = 0.01 ~ 50. Under these 
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conditions, the normalized phytoplankton concentration profiles 𝐶(𝑧)/𝐶𝐻, i.e., equation (4.11) is 

shown in Figure 4.2 

 
Figure 4.2 Analytical solution of phytoplankton concentration profiles in a 1-meter water 

column under varying ambient mixing coefficient 𝑫 and mussels’ collective pumping rate 

𝑸.  

 

Analytical solutions showed that concentration above mussels decreases as their pumping 

rate increases, creating a “particle-depleted” boundary layer. The ambient turbulent diffusivity 

affects the overall shapes of concentration profiles significantly. It was also noted that when 𝐷 <

1.2 × 10−6 (m2s-1), impacts of mussels’ filtration are limited within the 1-meter water column 
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with 𝑄/𝑤𝑠 up to 50, since the concentration gradient at 𝑧 = 1.0 m keeps zero, which suggests a 

zero-diffusive transport from the top, thus all particles feeding into this system is only supplied 

by passive settling, i.e., 𝑤𝑠𝐶𝐻.  With a higher 𝐷, it is apparent that a positive gradient starts to 

form at 𝑧 = 1.0 m, which means that mussels’ filtration starts to affect the entire 1-meter depth 

so mussels’ grazing will be fueled with additional diffusive transport from the top.  

To further illustrate this concept, mussels’ grazing efficiency can be defined as 𝐺/𝑤𝑠𝐶𝐻, 

i.e., the ratio of grazing to the passive settling supplied at the top of the water column. Following 

equation (4.12),  

𝐺

𝑤𝑠𝐶𝐻
=

𝑄𝐶𝐵

𝑤𝑠𝐶𝐻
=

1

(1−
𝛼𝑤𝑠

𝑄
)−[1−(1−𝛼)

𝑤𝑠
𝑄

]𝑒
−

𝑤𝑠
𝐷 𝐻

   (4.13) 

This relation between the grazing efficiency and pumping rate 𝑄/𝑤𝑠 at varying 

background diffusivity are shown in Figure 4.3. In this figure, the dashed line was defined as the 

“theoretical limit”, which assumes an unlimited water column height. Therefore, the grazing 

efficiency is independent of turbulent diffusion, and all grazed and settled out particles were 

completely supplied by passive settling at the infinite distance, i.e., 𝑤𝑠𝐶∞. According to equation 

(4.9), the grazing efficiency under the “theoretical limit” is   

𝐺

𝑤𝑠𝐶∞
=

𝑄𝐶𝐵

𝑤𝑠𝐶∞
=

𝑄

𝑄+𝛼𝑤𝑠
     (4.14) 

With diffusivity less than 1.2 × 10−6 (m2 s-1), the calculated grazing efficiency (red solid 

line in Figure 4.3) matches that of the “theoretical limit”, which means mussels’ grazing effects 

are limited within a 1-meter height. With the diffusivity increase, the efficiency exceeds that of 

the “limits”. This suggests that grazing effects extend beyond 1 meter, which increases the 

effective “settling” of phytoplankton particles by creating a positive gradient of concentration 

that enhances diffusive transport.  
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Figure 4.3 Mussels’ grazing efficiency as a function of pumping rate and background 

turbulent diffusivity. Here the efficiency was defined as the ration of grazing rate 𝑸𝑪𝑩 to 

the passive settling 𝒘𝒔𝑪𝑯.  

 

Moreover, grazing efficiency initially increases rapidly as the pumping rate starts to 

increase from zero. The rate of increase then reduces and the grazing efficiency seems to 

approach a “plateau”.  Considering the case of infinite water depth and constant concentration 

𝐶∞, the grazing efficiency will asymptote to 100% as 𝑄 approaching infinity (see equation 4.14). 

It is reasonable to consider that mussels are not willing to pursue a 100% efficiency as the energy 

spent on increasing the pumping rate has little increase of grazing efficiency in return.  It is, 

however, possible to achieve fairly high efficiency with a modest pumping effort.  If we define 

an “optimal” pumping rate 𝑄𝑜𝑝𝑡 as that produces a 95% efficiency, then we have 
𝑄𝑜𝑝𝑡

𝑄𝑜𝑝𝑡+𝛼𝑤𝑠
=

0.95, according to equation (4.14). This suggests that 
𝑄𝑜𝑝𝑡

𝑤𝑠
= 19𝛼 . For example, if 𝛼 = 1 − 𝛽 =

0.93, and 𝑤𝑠 = 0.6 (m/day) we have 𝑄𝑜𝑝𝑡 = 17.67 𝑤𝑠 = 10.6 (m/day). For a mussel density 

𝑑 = 10,000 (m-2), this is equivalent to an optimal pumping rate of about 1.06 liter per day per 
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individual mussel, on average. The optimal pumping rate is close to 3 liter per day from the 

empirical measurements of the large profundal mussels (>22mm) in  Lake Michigan by 

(Vanderploeg et al., 2010).  

  

4.3 Enhanced Mussel Grazing due to Bio-Mixing:  A Numerical Modeling Test 

The analytical solution presented above assumes a constant diffusivity profile, which 

does not account for near-bed mixing due to mussels’ filtration activities. As shown in Chapter 3, 

field measurements suggested a good correlation between mussels’ filtration pumping rate and 

near-bed turbulent diffusivity. To test the effects of the enhanced diffusivity, particularly on 

mussels’ grazing rate, a numerical model is needed to account for varying and nonuniform 

distribution of the diffusivity.  

A Finite Volume approach is selected for numerical modeling. The water column is 

discretized into 𝑁  “cells” with a uniform size Δ𝑧. Considering a cell with index 𝑖 (𝑖 =

0, 1, … , 𝑁 − 1), with the cell above and below indexed as 𝑖 + 1 and 𝑖 − 1, respectively (Figure 

4.4), the discretized equation that approximate the advection-diffusion equation (4.1) is  

−
𝐷

𝑖−
1
2

Δ𝑧
 𝐶𝑖−1 − (

𝐷
𝑖+

1
2

Δ𝑧
+

𝐷
𝑖−

1
2

Δ𝑧
+ 𝑤𝑠) 𝐶𝑖 + (

𝐷
𝑖+

1
2

Δ𝑧
+ 𝑤𝑠) 𝐶𝑖+1 = 0          (4.15) 

where an upwind scheme is applied for the advection due to settling, and the central 

difference scheme is applied for diffusive transport. The phytoplankton concentration is defined 

on the center of each cell and the diffusivities are defined on cell faces. Settling speed 𝑤𝑠 is 

assumed as a constant value throughout. As illustrated in Figure 4.4b, the bottom boundary 

condition is discretized as  

𝑤𝑠𝐶1 + 𝐷1

2

(𝐶1−𝐶0)

Δ𝑧
= 𝑄𝐶0 + 𝛼𝑤𝑠𝐶0                             (4.16) 
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i.e., the diffusive transport and settling into the bottom cell are balanced with mussels’ 

filtration and phytoplankton particles that “settled out” on the lake bottom. The top cell of the 

water column is assumed to maintain a constant concentration. For convenience, it is set as  

𝐶𝑁−1 = 1.0 

 

 
Figure 4.4 Illustration of the one-d FVM grid structure. 

(a) interior finite volume cell stencil (b) bottom boundary condition  

 

Modeling runs were conducted to evaluate the mixing and mussels’ grazing in a 

profundal environment in Lake Michigan. To be consistent with the analytical framework, the 

height of the water column was set to be 𝐻 = 1.0 m, considering the limited impact on 

momentum or energy from filter-feeding activities.  Since it is difficult to precisely describe the 

vertical distribution of diffusivity, a conceptual structure is specified with three controlling 

parameters: (1) a background diffusivity 𝐷𝐵 which is largely uniform almost over the entire 

water column; (2) a minimum diffusivity 𝐷𝑚𝑖𝑛 = 1.0 × 10−6 m2s-1 (i.e., a nominal value of the 

molecular viscosity of water); and (3) an enhanced diffusivity due to mussels’ bio-mixing, 

𝐷𝑠𝑖𝑝ℎ𝑜𝑛 , which is linearly proportional to mussels’ collective pumping rate:  

𝐷𝑠𝑖𝑝ℎ𝑜𝑛 = 𝛾𝑄 
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where the coefficient 𝛾 = 1.272 × 10−6 𝑚2𝑠−1

𝑚 𝑑𝑎𝑦−1, as derived from field data (see Chapter 

3).  In addition, if 𝐷𝑠𝑖𝑝ℎ𝑜𝑛 < 𝐷𝐵 , it is forced to be equal 𝐷𝐵, i.e., the enhanced diffusion due to 

bio-mixing is “buried” in the background mixing. With our best knowledge, the vertical 

distribution of diffusivities was designed into a “four-layer” structure: 

1. The linear bottom layer from 𝑧 = 0 to 2 cm: diffusivity increases linearly from 𝐷𝑚𝑖𝑛 to 

𝐷𝑠𝑖𝑝ℎ𝑜𝑛; This profile considers the fact that turbulent diffusivity usually is suppressed as 

it approaches to the solid wall.  

2. The constant mixing layer from 𝑧 = 2 to 20 cm: diffusivity is uniformly set as 𝐷𝑠𝑖𝑝ℎ𝑜𝑛; 

3. From 𝑧 = 20 cm to 𝑧 = 30 cm, diffusivity is linearly reduced from 𝐷𝑠𝑖𝑝ℎ𝑜𝑛 to 𝐷𝐵; 

4. From 𝑧 = 30 cm up to the water column top 𝑧 = 𝐻, the diffusivity is uniformly set as 

the background 𝐷𝐵.  

 

Figure 4.5 Illustration of the “four layers” structure 
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For comparison, simulation runs were also conducted by ignoring the enhanced 

diffusivity due to mussels’ bio-mixing. Thus, a profile is specified such that diffusivity increases 

linear from 𝐷𝑚𝑖𝑛 to 𝐷𝐵 in 𝑧 = 0~30 cm. It then remains constant 𝐷𝐵 for 𝑧 > 30 cm.  The two 

scenarios were denoted as “w/ mussel bio-mixing” and “w/o mussel bio-mixing”, respectively.  

Figure 4.6 shows modeling results for normalized phytoplankton concentration profiles 

(
𝐶

𝐶𝐻
) and the normalized grazing rate (

𝐺

𝑤𝑠𝐶𝐻
) with varying background diffusivity (𝐷𝐵 =

10−6~10−5 m2 s-1) and collective mussel pumping rate (𝑄 = 0.1 ~ 120 m day-1), for cases with 

and without the “bio-mixing” enhanced diffusivity.  Within the range of these variabilities, it 

appears that the additional diffusivity 𝐷𝑠𝑖𝑝ℎ𝑜𝑛  due to bio-mixing causes a dramatic change to the 

concentration profile. As 𝐷𝑠𝑖𝑝ℎ𝑜𝑛  increases with the pumping rate, a 30 cm layer above the bed 

with uniformly low concentration start to develop, forming a sharp gradient at 𝑧 = 30 cm.  This 

result is not surprising as the model was designed to assign 𝐷𝑠𝑖𝑝ℎ𝑜𝑛 in the bottom 30 cm. In 

addition, a greater gradient is formed at 𝑧 = 1.0 m, compared to the case w/o bio-mixing.  
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Figure 4.6 Results of numerical simulation for the phytoplankton concentration profile 

(left) and grazing rate (right) with varying collective pumping rate (𝑸) and background 

diffusivity (𝑫𝑩), with and without bio-mixing effects (i.e., 𝑫𝒔𝒊𝒑𝒉𝒐𝒏). Solid and colored lines 

represent concentration profiles with bio-mixing under different pumping rates. Dashed 

and colored lines are those without bio-mixing. The difference in 𝑸 is represent by different 

colors.  

 

The normalized grazing rate 
𝐺
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 can be considered as a grazing efficiency. Similar to 

the result of the analytical solution, the grazing efficiency increases with the pumping rate, and 

the increase “plateaus” as pumping rate becomes excessively large. When the background 

diffusivity is limited, e.g., 𝐷𝐵 = 1.0 × 10−6 (m2 s-1), mussels’ filtration effect seems to be 

limited within the 1-m water column as the concentration gradient at 𝑧 = 1.0 m is negligible. As 

a result, grazing efficiency curves, with or without biomixing 𝐷𝑠𝑖𝑝ℎ𝑜𝑛, are almost identical to that 

predicted by the “theoretical limit”, i.e., equation (4.14).  As 𝐷𝐵 increases, filtration starts to 

extend beyond 1-m by creating a gradient at 𝑧 = 1.0 m that promotes diffusive transport. 

Therefore grazing efficiency starts to exceed that predicted by the “theoretical limits” as 

mussels’ pumping rate grows. Moreover, grazing efficiencies for cases that include bio-mixing 

effects are greater than those without bio-mixing effects, and the exceedance increases with the 

background diffusivity 𝐷𝐵.   
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To evaluate the effects of filtration rate, the optimal pumping rate 𝑄𝑜𝑝𝑡  is defined, so the 

corresponding grazing efficiency reaches 95% of the asymptotic maximum according to 

simulation results. This analysis follows the same argument in the analytical modeling 

framework, i.e., it is not economical for mussels to pursue a 100% grazing efficiency considering 

their energy cost. The optimal pumping rate at different background diffusivity, the 

corresponding grazing efficiency with and without bio-mixing diffusivity are presented in Table 

4.1. 

Table 4.1 Optimal mussel pumping rate under different background diffusivity and the 

corresponding grazing efficiency.  

The individual pumping rate 𝑸𝒊𝒏𝒅 = 𝑸/𝒅, is calculated with the assumption of mussel 

density 𝒅 = 𝟏𝟎, 𝟎𝟎𝟎 (m-2). 

Background 

diffusivity 

𝑫𝑩 (m2 s-1) 

Optimal 

collective 

pumping rate 

𝑸𝒐𝒑𝒕 (m day-1) 

Optimal 

individual 

pumping rate 

𝑸𝒊𝒏𝒅 (L day-1) 

Grazing 

efficiency at 

𝑸𝒐𝒑𝒕 of the 

theoretical 

limit 

Grazing 

efficiency at 

𝑸𝒐𝒑𝒕 with bio-

mixing effect 

Grazing 

efficiency at 

𝑸𝒐𝒑𝒕 without 

bio-mixing 

effect 

1.0 × 10−6 9.12 0.912 0.942 0.954 0.958 

2.0 × 10−6 13.2 1.32 0.960 1.037 0.995 

4.0 × 10−6 26.4 2.64 0.979 1.334 1.112 

6.0 × 10−6 34.8 3.48 0.984 1.663 1.261 

8.0 × 10−6 44.6 4.46 0.987 2.011 1.411 

1.0 × 10−5 49.8 4.98 0.989 2.349 1.560 

 

Modeling results suggest that bio-mixing due to mussels’ filter-feeding can improve the 

grazing efficiency significantly, particularly with a certain background mixing effect. For 

example, when 𝐷𝐵 = 1.0 × 10−5 (m2 s-1), mussels’ grazing efficiency with the enhanced 

diffusivity at an optimal pumping rate of 49.8 (m day-1) is about 50% higher than that without 

bio-mixing.  
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It should be noted that modeling analysis here arbitrarily selected a water column of 𝐻 =

1.0 m, and assigned a constant concentration as the boundary condition at the top of the water 

column. This is certainly unnatural. A grazing efficiency greater than that predicted by the 

“theoretical limit” implies an additional source of phytoplankton is fed into the water column 

from above, due to a non-zero gradient at the top. Realistically, a grazing efficiency exceeding 

the settling limit can be more appropriately interpreted as an extended impact (e.g., beyond the 

specified height 𝐻) through additional diffusive transport which results in a greater “effective 

settling” than the “passive settling” (Mosley and Bootsma, 2015; Shen et al., 2018).  

 

4.4 Soluble reactive phosphorus flux estimation 

The numerical modeling framework presented in 4.3 was also applied to estimate the 

excretion rate of soluble reactive phosphorus (SRP) from mussels. Specifically, we consider a 

simple one-d diffusion process for SRP in a short water column immediately above the mussel 

bed without additional source or sink: 

𝐷
𝑑𝐶𝐷𝑃

𝑑𝑧
= 𝐹𝐷𝑃                                              (4.17) 

where 𝐶𝐷𝑃(𝑧) is the concentration of SRP, 𝐷(𝑧) is the turbulent diffusivity of SRP which 

is considered as the same diffusivity for phytoplankton, and 𝐹𝐷𝑃 is the flux of SRP from mussels’ 

excretion. The equation can be simply solved by integration for 𝑧 = 0 to any given height, i.e., 

𝐶𝐷𝑃(𝑧) = 𝐶𝐷𝑃0 − 𝐹𝐷𝑃 ∫
1

𝐷(𝑧′)
𝑑𝑧′

𝑧

0
                           (4.18) 

where 𝐶𝐷𝑃0 = 𝐶𝐷𝑃(𝑧 = 0). To estimate the flux of SRP, the solution is applied to 

“match” measured SRP profiles with the least-square fit.  
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Eight SRP profiles measured from the microprofilers were selected for this analysis (see 

Figure 4.7). Among them, only four datasets have both PIV and SRP available, i.e., data acquired 

on 31-July-2018, 16-August-2018 and 23-September-2018 (two profiles). For these datasets with 

PIV results, the profile of diffusivity is defined following the same approach in section 4.3. 

Specifically, diffusivity increases linearly from a background (𝐷𝐵) to 𝐷𝑠𝑖𝑝ℎ𝑜𝑛  from 𝑧 = 0 to 2 

cm, then it remained as a constant 𝐷𝑠𝑖𝑝ℎ𝑜𝑛  for 𝑧 = 2 to 30 cm. The near-bed diffusivity due to 

bio-mixing 𝐷𝑠𝑖𝑝ℎ𝑜𝑛 is set as the depth-average diffusivity from PIV analysis. A non-linear 

regression procedure was followed to estimate the two unknown parameters 𝐶𝐷𝑃0 and 𝐹𝐷𝑃 by 

matching the model solution (4.18) with the measured profile with the least square sense. For the 

other four datasets without PIV data, the least square regression was still conducted with three 

unknowns: 𝐶𝐷𝑃0, 𝐹𝐷𝑃  and 𝐷𝑠𝑖𝑝ℎ𝑜𝑛 . The same structure of diffusivity profiles was assumed except 

that there 𝐷𝑠𝑖𝑝ℎ𝑜𝑛  is estimated as part of the regression instead of from that measured.  

Measured SRP profiles and results of regression analysis are shown in Figure 4.7 and 

Figure 4.8. Estimated SPR flux and other modeling parameters for this analysis are presented in 

table Table 4.2. 
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Figure 4.7 Profiles of SRP from microprofiler measurement (circles) and from model 

solution (solid line), with the SRP flux 𝑭𝑫𝑷 and bottom concentration 𝑪𝑫𝑷𝟎  estimated with 

nonlinear fitting. Distribution of diffusivity 𝑫(𝒛) is modeled with average diffusivity 

measured by PIV during the same time period of SPR microprofiling measurements.  

 
Figure 4.8 Profiles of SRP from microprofiler measurement (circles) and from model 

solution (solid line), with the SRP flux 𝑭𝑫𝑷, bottom concentration 𝑪𝑫𝑷𝟎  and the diffusivity 

𝑫(𝒛) all estimated with nonlinear fitting, since PIV data were not available during the 

microprofiling measurements. 

 

Table 4.2 SRP flux estimation from PIV and microprofiler measurements. Estimated SRP 

fluxes on 8/23/19 and 7/11/19 were averaged between two replicate deployed microprofilers.  

 7/31/18 8/16/18 8/23/18 9/4/18 9/25/18 7/11/19 
𝐷𝑠𝑖𝑝ℎ𝑜𝑛 × 105 (𝑚2/𝑠) 1.28 4.53 0.29 0.19 1.46 0.63 

𝐹𝐷𝑃 × 103  
(μ𝑔 𝑠−1𝑚−2) 

42.5 65.4 4.9 -2.2 59.7 20.7 

𝐹𝐷𝑃  (μmol 𝑑−1𝑚−2) 118.6 182.3 13.7 -6.1 166.6 57.7 
𝑄 (m/day) 2.9 5.4 1.3 N/A N/A N/A 

 

Estimated SRP flux, which can be assumed as the excretion from mussels, showed a 

significant variation between 13.7 and 182.3 mol per day per square meter, except for the case 

on 9/4/18 with a negative flux, i.e. net transport from water to the substrate.  An mean SRP 

excretion rate of 63 µmol SRP m-2 d-1 with mussel samples collected at the same 55 m site was 

reported (Mosley and Bootsma, 2015), which is comparable with the average flux estimated 

from the eight measurements in this study. For the three measurement cases where PIV data were 

present, the estimated SRP flux has a good correlation with the estimated mussel collective 
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pumping rate (see Figure 4.9), which can be considered as a partial validation on the SRP flux 

estimation.  

 

 
Figure 4.9 Estimated SRP flux vs collected mussel pumping rate according to PIV and 

microprofiler measurements on 7/31/18, 8/16/18 and 8/23/18.  
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CHAPTER 5. CONCLUSIONS  

In this thesis study, an improved in-situ UW-PIV system had been developed for the 

bottom turbulence measurements immediately above the quagga mussels bed in a profundal site 

of Lake Michigan. Through a large number of deployments from summer 2018 to fall 2019, the 

PIV system has been proved to be reliable and robust for long term deployment (up to three 

weeks) in a deepwater environment. Moreover, with the powerful Linux-based micro-computer 

inside, the UW-PIV has high scalability for additional signal collection systems or sensors, 

which make it potentially a lake bottom monitoring platform for future research. 

The velocity map and particle density were extracted from the particle images by the 

cross-correlation method and particle counting algorithm. PIV measurements were post-

processed with a self-adaptive “median test” method to remove spurious vectors due to the low 

particle density. A velocity spectrum analysis was applied to help to identify cases where mean 

current flow may generate wake turbulence from the instrument.  

The turbulent mixing above the mussel bed was evaluated by estimating the turbulent 

viscosity and diffusivity. Since the Reynolds number of the boundary layer hydrodynamics was 

low and turbulence was likely produced by mussels’ filtration activities, a more universal 

approach, i.e., the TKE-dissipation method (𝑘 − 𝜖), was selected to evaluate the turbulent 

viscosity, which does not rely on the Law-of-Wall assumption. Turbulent diffusivity was directly 

calculated from the measure turbulent flux of particles and the mean particle concentration 

gradient, following a Fickian diffusive transport concept.  

For the analysis of Reynolds stresses, TKE, and turbulent fluxes in the boundary layer of 

the profundal site, it was found challenging to separate turbulence from low-order transient 
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various with unknown sources. Structure-function method and low-pass filtering approach were 

applied to evaluate turbulent fluctuations and their correlations. The two methods were cross-

validated in terms of the measured Reynolds stresses and TKE. A good correlation was found 

while the low-pass filtering produced results with fewer data scatter. The analysis suggested a 

practical approach to estimate turbulence parameters in such a low energetic environment with 

2D PIV measurement, i.e., irrotational random motions can be removed through low-pass 

filtering, while the smoothing window of the filter can be determined by validation with the 

structure-function method.  

Four methods were tested for the estimation of the TKE dissipation rate, i.e., the “direct” 

method, velocity spectrum, structure-function and Large Eddy PIV method. Results from 

different methods correlated well despite varying correlation ratios. The direct method was 

eventually selected for subsequent analysis since fewer assumptions and no parameter adjusting 

are required compared to other methods.  

Measured turbulent diffusivity from turbulence analysis had a good correlation with the 

turbulent diffusivity derived from turbulent flux. Such a correlation demonstrated that the 

analysis presented in this thesis are robust since the two parameters were estimated from two 

independent approaches. It also proved that the Reynolds analogy between turbulent viscosity a 

diffusivity may also be valid for the low energetic profundal benthic boundary layer.  

Measured turbulent diffusivity/viscosity varied between 10-6 to 10-5 (m2 s-1), which seemed to 

correlate with the ambient particle concentration. However, they are not correlated with the 

ambient mean current flow velocity. Collective pumping rates of mussels were also estimated 

from measured near-bed turbulent flux of particles. Data showed that near-bed turbulent 

diffusivity increases linearly with mussels’ pumping rate. These observations supported our 



 

 

 

 
101 

hypothesis that bio-mixing due to mussels’ siphon currents is the major source of turbulence the 

profundal boundary layer, and the enhanced mixing may improve mussels’ grazing efficiency.  

To further test the hypothesis, a One-D advection-diffusion model with analytical and 

numerical solutions was applied to examine the relation between mussels’ pumping rate and their 

grazing efficiency. A simple analytical solution suggested that mussels’ filter-feeding combined 

with turbulent mixing can improve grazing efficiency significantly, compared to the scenario of 

food delivery through passive settling. By assuming 95% of the potential maximum as the 

optimized grazing efficiency, the optimized pumping rate is about 1 liter per day for a single 

profundal mussel from the analytical solution. 

 Numerical modeling was applied to account for the effects of bio-mixing on mussels’ 

grazing. The observed linear relation between turbulent diffusivity and mussels’ pumping rate 

was applied to parameterized the model. Modeling results suggested that the grazing efficiency 

increases with biomixing. The grazing efficiency also depends on the background diffusivity, 

and mussels can access phytoplankton at higher positions of the water volume with a greater 

background diffusivity, therefore increase the grazing efficiency. Simulation results proved the 

hypothesis that profundal mussel can maximize their grazing efficiency by the enhanced near-

bed turbulence through siphon currents. Model simulation also suggested that an optimal 

collective pumping rate may exist, which varied between about 1 to 5 liters per day per 

individual, depending on the ambient mixing condition. 

The numerical solution also showed a sharp depletion layer of the phytoplankton 

concentration near the bottom which is caused by siphon-induced mixing. The result might 

conflict with the understanding that the quagga mussel can benefit from a longer siphon to access 

the higher level with higher food concentration. Field observation and numerical analysis in this 
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study showed that the siphon length is much shorter than the thickness of the particle-depleted 

layer.  

The SRP flux was estimated by comparing modeling analysis with measured SRP 

profiles through the least-square fitting. The SRP flux was assumed as the result of phosphorus 

excretion from mussels. The analysis showed a significant variation of SRP flux during the 

deployment period, between 13.7 and 182.3 mol per day per square meter.  An average SRP 

excretion rate of 63 µmol SRP m-2 d-1 with mussel samples collected at the same 55 m site was 

reported (Mosley, 2014), which seems to be comparable with the average flux estimated from 

eight measurements in this study. 
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APPENDIX. SELECTED TIME INTERVAL 

 

The selected time intervals were shown below.  

 

 

 

  

 Start time End time 

1 '24-Jul-2018 18:00:00' '25-Jul-2018 06:00:00' 

2 '25-Jul-2018 11:00:00' '26-Jul-2018 00:00:00' 

3 '26-Jul-2018 08:00:00' '26-Jul-2018 20:00:00' 

4 '27-Jul-2018 00:00:00'' '28-Jul-2018 02:00:00' 

5 '28-Jul-2018 06:00:00' '29-Jul-2018 04:00:00' 

6 '29-Jul-2018 08:00:00' '30-Jul-2018 02:00:00' 

7 '30-Jul-2018 06:00:00' '30-Jul-2018 14:00:00' 

8 '10-Aug-2018 00:00:00'' '10-Aug-2018 20:00:00' 

9 '11-Aug-2018 02:00:00' '11-Aug-2018 20:00:00' 

10 '12-Aug-2018 00:00:00'' '12-Aug-2018 22:00:00' 

11 '13-Aug-2018 02:00:00' '14-Aug-2018 04:00:00' 

12 '14-Aug-2018 18:00:00' '16-Aug-2018 00:00:00' 

13 '16-Aug-2018 04:00:00' '17-Aug-2018 21:00:00' 

14 '18-Aug-2018 02:00:00' '19-Aug-2018 05:00:00' 

15 '19-Aug-2018 08:00:00' '20-Aug-2018 00:00:00'' 

16 '20-Aug-2018 05:00:00' '20-Aug-2018 21:00:00' 

17 '21-Aug-2018 00:00:00'' '21-Aug-2018 23:00:00' 
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18 '24-Jul-2018 18:00:00' '25-Jul-2018 06:00:00' 

19 '25-Jul-2018 11:00:00' '26-Jul-2018 00:00:00'' 

20 '26-Jul-2018 08:00:00' '26-Jul-2018 20:00:00' 

21 '27-Jul-2018 00:00:00'' '28-Jul-2018 02:00:00' 

22 '22-Aug-2018 08:00:00' '24-Aug-2018 02:00:00' 

23 '24-Aug-2018 07:00:00' '25-Aug-2018 01:00:00' 

24 '25-Aug-2018 04:00:00' '26-Aug-2018 00:00:00'' 

25 '26-Aug-2018 03:00:00' '28-Aug-2018 01:00:00' 

26 '28-Aug-2018 04:00:00' '29-Aug-2018 09:00:00' 

27 '29-Aug-2018 19:00:00' '31-Aug-2018 20:00:00' 
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