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ABSTRACT 

RELIABILITY OF BRIDGE SUPERSTRUCTURES IN 

WISCONSIN 

by  

Azam Nabizadeh 

The University of Wisconsin-Milwaukee, 2019  

Under the Supervision of Professor Habib Tabatabai 

Abstract (Summary) 

The fatigue of engineering materials under repetitive loading is a significant issue affecting the 

design and durability of components and systems in a variety of engineering-related applications 

including civil, mechanical, aerospace, automotive, and electronics. Many factors can affect the 

service life of a component or system under repetitive loading, such as the type of structure, 

loading, connection details, stress state, peak stress or stress range, surface condition, 

temperature, and environmental exposure. Currently, there is no comprehensive probabilistic 

approach that can systematically address all the factors that contribute to fatigue on a single 

mathematical platform. However, advanced analysis techniques developed for and used in 

various medical research applications may hold some answers. In such research, probabilistic 

assessments of time to reach a milestone (e.g., time to recurrence of a disease) is considered 

under the influence of a range of numerical and/or categorical parameters. The experimental data 

obtained from observations during research is used to generate the analysis models. Such 

“survival analysis” involves comprehensive, multi-parameter nonlinear regression techniques 

that incorporate various baseline statistical distributions. 
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This research aims to develop, apply, and verify long-standing survival analysis techniques, 

widely used in medical research, to the engineering fatigue problem. This research will also use 

conditional survival analysis techniques derived from the conditional probability theory to 

address the remaining service life and load sequence effects in a probabilistic manner. A 

comprehensive literature review, theoretical development of fatigue survival models for various 

engineering applications, and verification of these models using existing or new experiments, 

and synthesis of results constitute the scope of this research.  
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Chapter 1. Introduction 

1.1. Research Background 

Metal fatigue is a form of progressive damage resulting from crack propagation under repetitive 

fluctuating stress. Fatigue damage can lead to failure of civil, mechanical and electrical systems 

and components due to cyclic loading. During past decades, the challenge of developing new 

approaches for assessment of various mechanical systems’ reliability and remaining useful life 

under fatigue damage has been a focus of much research worldwide. Many factors can affect the 

service life and sustainability of a component or system under repetitive loading. These include 

the type of structure, loading, connection details, stress state, peak stress or stress range, surface 

condition, temperature, and environmental exposure. Although, fatigue has been widely 

investigated from a micromechanical viewpoint, stochastic processes inherent in fatigue failure 

make it a random phenomenon, and thus probabilistic methods are suitable for fatigue life 

prediction.  

For some engineers, the relative simplicity and probabilistic nature of the phenomenological 

approach make it a generally more attractive fatigue analysis option when compared to the 

micromechanical models. Although both approaches can be complimentary to each other, the 

phenomenological approach can empower the micromechanical constitutive models, especially 

when using advanced statistical tools (Pyttel et al., 2016).  

In phenomenological fatigue analysis, data on the number of cycles to failure are typically plotted 

versus stress (or strain) as S-N diagram, also known as Wohler diagram. The stress range or peak 

stress is commonly considered as an independent variable, and the number of cycles to failure is 

viewed as a dependent variable. Material engineers have been using statistical analyses to interpret 
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the S-N (or Ɛ-N) data assuming that the test specimens are a random sample of the subject 

structure/material under a certain set of test conditions. Therefore, the characterized fatigue 

properties of the structure/material could be used to predict performance of any other sample of 

the same structure/material (under the same test conditions) (ASTM E739-10).  

Typically, multiple tests are performed on a component or structure to assess fatigue life under 

several constant-amplitude stress cycles (or stress range cycles). The results are usually displayed 

on a log-log scale, and a linear or multilinear S-N curve is drawn to collectively represent the data. 

There are a variety of ways to arrive at the S-N curve. ASTM E739-10 assumes that the data at 

each stress level are lognormally distributed and the distributions at different stress levels have the 

same variance. Based on this, ASTM E739-10 provides equations for the two parameters of the 

linear S-N curve using the maximum likelihood estimation. Others may fit distributions to the 

results from each stress range tested and fit a straight line through the mean of the distributions. In 

other cases, a line may be drawn at a specific distance away from the mean. A constant variance 

is again assumed in such cases.  

The National Cooperative Highway Research Program (NCHRP) sponsored extensive studies on 

experimental fatigue behavior of steel bridge members during the 1960s to 1980s.  As a result, 

current standard AASHTO design S-N curves were established as a deterministic approach to 

fatigue life estimation of different categories of steel bridge details. The current AASHTO Bridge 

Design Specifications (AASHTO 2018) assume a linear relationship between the log of stress 

range and the log of the number of cycles to failure. The slope of this linear relationship is taken 

as a constant (-3), and the intercept is determined from a linear regression analysis of the test data. 

The intercept is set at 1.96 standard deviations below the mean value of the intercept (representing 

97.5% probability of exceedance assuming a lognormal distribution for the values of the intercept) 
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(NCHRP Report 102 by Fisher et al., 1970; NCHRP Report 147 by Fisher et al., 1974; and NCHRP 

Report 286 by Keating and Fisher, 1986).    

The stochastic nature of fatigue damage is due to variability of fatigue resistance (uncertainties 

inherent in the material properties and component geometry) and loading (Shen et al., 2000).  

Probabilistic assessments of fatigue service life in bridges has received widespread attention 

during the past decades. Despite extensive studies on fatigue reliability analysis, fatigue life 

prediction analyses and procedures are not well-established at the present time. There is a need for 

a comprehensive set of tools for probabilistic assessment of fatigue resistance based on test data. 

The survival analysis techniques have the potential to provide a well-established platform for such 

analyses in various areas of engineering including bridge engineering. 

Large-scale data related to various diseases, treatments, and drugs have long been obtained from 

a wide range of medical and biomedical studies. In such research, probabilistic assessments of 

time to reach a milestone is frequently considered under the influence of a range of numerical 

and/or categorical parameters, in which the covariates used must be uncorrelated (i.e., independent 

of each other). The time-to-event parameter may include the patient’s age when a disease appears, 

time to death of a cancer patient since diagnosis, time to recurrence of a disease after treatment, or 

time for a disease, tumor, or condition to reach a critical stage. The experimental data obtained 

from observations during research is used to generate the analysis models. Over the last 40-50 

years, a powerful set of mathematical/statistical tools have been developed that collectively form 

the “survival analysis” platform for analysis of time-to-event data (Hosmer et al., 2008; Liu, 2012). 

Survival analyses include comprehensive, multi-parameter nonlinear regression techniques that 

can incorporate various baseline statistical distributions. Although survival analyses are mostly 

used in medical and biomedical research, they have also found growing applications in 
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engineering, economics, finance, and other fields. A number of studies have applied survival 

analysis techniques to bridge structures (Tabatabai et al., 2011; Tabatabai et al., 2015; Tabatabai 

et al., 2016, Nabizadeh et al., 2018) and medical applications, including development of new 

survival models (Tabatabai et al, 2007; Tabatabai et al., 2008). This study develops survival 

analysis techniques for probabilistic analyses of fatigue resistance in steel bridges by considering 

the number of stress cycles as a fictitious “time-to-event” parameter, and stress range and detail 

category as covariates. 

1.2. Problem Statement 

It is estimated that the annual cost associated with fatigue failures in the U.S. is more than US$100 

billion (Safarian, 2014). Optimum design, maintenance, and management of systems and 

components that are subject to fatigue can result in significant economic benefits. A 

comprehensive methodology and tools for probabilistic fatigue assessments, including remaining 

service life estimates, can lead to improved design and maintenance strategies. This research aims 

to develop and verify a methodology for data-based probabilistic assessment of fatigue resistance 

of steel bridges using the survival analysis techniques. The proposed concept has the potential to 

bring nearly all computational aspects of probabilistic fatigue analysis onto a single analytical 

platform.  

Bridge fatigue deterioration is inevitable despite applying best practices for bridge prevention such 

as cathodic protection, electrochemical chloride extraction, epoxy and metal alloy coating, and 

inhibitors (Kordijazi, 2014; Kordijazi, 2019). Therefore, there is a growing need to develop field 

performance-based tools that could help to evaluate bridge fatigue life (Nabizadeh et al., 2019). 
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There are several important issues with the current approach to probabilistic assessment of fatigue 

resistance and remaining service life in a broad range of engineering applications (not limited to 

bridges). Although there are works that address one or more of the items listed below, currently 

there is no comprehensive approach that can systematically address all of the following issues on 

a single mathematical/statistical platform.  

1. The current approach typically considers the number of cycles to failure as a dependent 

variable and the stress as the independent variable. In fact, the number of cycles applied, and 

the stress range, can both be considered independent variables that influence the probability of 

fatigue failure. 

2. The effect of potential contributing parameters (covariates) on fatigue resistance, other than 

stress range (or stress), is typically not considered within a single probabilistic analysis. When 

deemed important, data associated with the covariates are typically considered in separate 

analyses. Covariates may include structure type (detail type), temperature, mean stress, 

existence of corrosion, environmental exposure/chemical exposure, and differing surface 

conditions.  

3. The types of data considered in the analyses are generally not comprehensive. In some cases, 

data on run-outs or suspended tests are not included in the statistical analyses, even though 

they contain valuable information and should be systematically considered in the mathematical 

model. Furthermore, non-numerical (or categorical) data are typically not considered except 

as separate analyses. For example, if a component were to be subjected to either high, medium, 

or low temperatures during cyclic load testing, a parameter to be considered could be a 

categorical temperature parameter with possible outcomes of L (low), M (medium), or H 

(high). 
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4. The points along the linear S-N curve (on a log-log scale) are not associated with a uniform 

probability of fatigue failure. In fact, points along the AASHTO S-N design curves for bridges 

could have a wide range of probabilities of failure (Pytell et al., 2016; Albrecht, 1983).  

5.  The current procedures do not typically consider conditional service life probabilities. For 

example, if a detail or component has already sustained 1.2 million cycles of loading at a stress 

range of 10 ksi, what is the probability that it could sustain 500,000 more cycles at the same 

stress range? The knowledge that survival was achieved at 1.2 million cycles alters the original 

probability of failure at 1.7 million cycles. Furthermore, what is the probability of survival if 

the additional 500,000 cycles were applied at a different stress range? 

6.  The current procedures do not systematically consider the statistical significance of covariates 

on service life. If a parameter is considered in the fatigue analyses, there should be an objective 

measure to decide the statistical significance of that parameter and whether it can be omitted 

from further consideration.  

1.3.Objectives and Scopes  

The objective of this research is to develop, apply, and verify long-standing survival analysis 

techniques that are widely used in medical research to the fatigue resistance problem in bridge 

engineering applications. This study will also use conditional survival analysis techniques derived 

from the conditional probability theory to assess the change in the probability of exceeding fatigue 

resistance during the service life (as the number of cycles increase). This work includes 

development of theoretical survival models of fatigue resistance for bridge engineering 

applications using experimental data from the 1970s and 1980s (NCHRP Report 102 by Fisher et 

al., 1970; NCHRP Report 147 by Fisher et al., 1974; and NCHRP Report 286 by Keating and 

Fisher, 1986). These data form the basis for the current fatigue design provisions in the building 
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and bridge design codes in the U.S. Although the focus of this work is on fatigue resistance in 

bridges, the proposed approach can be used to develop probabilistic fatigue resistance models in 

other civil engineering disciplines as well as aerospace, mechanical, materials, electrical, and 

industrial engineering applications. Effective probabilistic assessments can lead to important 

economic benefits in the design and maintenance of fatigue-prone components and systems made 

using a wide variety of materials.  
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Chapter 2. Literature Review 

2.1. Deterministic fatigue damage models 

The mechanisms of metal fatigue failure have been discussed and characterized extensively over 

the last few decades. Examples include works by Schijve (1967), Ritchie (1986), Miller (1987) a, 

b, Shang et al. (1998), and Cui (2002). Fatigue failure has been mainly characterized as a three-

stage phenomenon (Corten and Dolan, 1956). In the first stage, slip and fragmentation of lamella 

results in localized damage in some regions. Second stage involves nucleation of microcracks 

(crack formation) around the localized slip lines, especially when closely spaced. The third stage 

includes crack growth (crack propagation) that can potentially evolve into failure (Craig, 1952; 

Love, 1952; and Forsyth, 1952, Corten and Dolan, 1956). At the crack propagation stage, sub-

microcracks enlarge and may join and form larger cracks and voids, contributing to failure. Each 

of these stages can occur at different locations and can affect the fatigue life of a component. 

Therefore, fatigue life includes the effect of all localized defects. It has been reported that 50 to 99 

percent of a metal fatigue life is accompanied by second (crack formation) and third (crack 

propagation) stages, depending on the stress level, material properties, surface condition, and other 

environmental effects (Demer, 1955; Weibull, 1954; Martin, 1955).   

Structures and mechanical components are also subject to random fluctuating stress during their 

service life. However, fatigue tests conditions cannot simulate all the fluctuations in loading 

history of a component, and thus the tests are typically conducted under constant amplitude 

conditions. 

Fatigue damage is cumulative with respect to applied cyclic stresses. Cumulative fatigue damage 

theory has long been investigated (Freudenthal and Heller, 1959; Stallmeyer and Walker, 1968; 

Tanaka and Akita, 1975; Shimokawa and Tanaka, 1980; Tanaka et al., 1980; Manson and Halford, 
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1981). Many fatigue damage models have been developed, which were mostly phenomenological 

before 1970s and progressed into micromechanical models after the 1970s (Fatemi and Yang, 

1998).  

The linear damage rule (LDR) was first proposed by Palmgren (1924). A similar theory was 

introduced by Langer (1937) while studying fatigue in steel pressure vessels and piping 

components. In 1945, Miner formulated cumulative fatigue as linear summation of cycle ratios 

(Equation 2.1) and applied it to axial tension fatigue in aluminum alloy aircraft skin.  

𝐷 =  ∑𝑟𝑖

𝑛

𝑖=1

= ∑
𝑛𝑖

𝑁𝑖

𝑛

𝑖=1

                                                                                        Equation  2.1 

Where D is an indicator of cumulative damage, n is the number of different levels of stress cycle, 

𝑟𝑖 is the ith cycle ratio, 𝑛𝑖 is the number of stress cycles applied at the ith stress level, and 𝑁𝑖 is the 

total number of cycles to failure under the ith stress level. It is assumed that fatigue failure would 

occurs when D reaches 1.0. This damage model would result in a diagonal straight line on a 

damage versus cycle ratio (D-r) diagram (Figure 2.1). 

The linear damage rule has long been used for its simplicity and agreement with special cases of 

experimental data. However, LDR is not accurate under all cases as evidenced by several 

experimental results. For example, Newmark (1950) reviewed cumulative fatigue damage models 

and reported that, based on experimental data by Dolan et al. (1949), the cumulative damage value 

can be much larger than D=1. Kibbey (1949) tested rotating beam specimen under multiple stress 

levels under increasing and decreasing stress amplitudes, and reported LDR damage values of 1.49 

and 0.78 for ascending and descending stress sequences, respectively.  
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Figure 2.1. Miner’s cumulative damage rule, (Miner, 1945) 

LDR assumes that under any stress level σ1, the fraction of fatigue life 𝛼 (equal to  
𝑛1

𝑁1
) is consumed 

and the remaining fatigue life fraction under stress level σ2 is (1-α), regardless of the stress level 

(Marco and Starkey, 1954). Primary deficiencies inherent in LDR are lack of consideration of the 

effect of load level, load sequence, or load interactions. Experimental results for load sequences 

of low to high (L-H) loading, and from high to low (H-L) loading, resulted in cumulative damage 

levels above and below 1, respectively (Marco and Starkey, 1954).  

Over time, many modifications to LDR have been proposed including the damage curve approach 

(DCA), endurance limit approach, S-N curve modification, two-stage damage approach, and crack 

growth-based approach (Fatemi and Yang, 1998). Some of these theories and modifications to 

LDR are briefly discussed below.  

Richard and Newmark (1948) introduced the damage curve approach (D-r curve) to address the 

deficiencies associated with LDR and reported that the damage curve should be different at various 
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stress levels. Marko and Starkey (1954) tested fatigue specimens fabricated of aluminum and steel 

alloys under sequential loads. The authors proposed a fatigue damage model as a function of cycle 

ratio and suggested a power function for cumulative damage as follows: 

𝐷 = 𝑓 (
𝑛𝑖

𝑁𝑖
⁄ ) = ∑(

𝑛𝑖
𝑁𝑖

⁄ )
𝑥𝑖

= ∑𝑟𝑖
𝑥𝑖                                                     Equation 2.2 

Where, 𝑟𝑖 and 𝑥𝑖 represent cycle ratio (
𝑛𝑖

𝑁𝑖
⁄ ) and loading variable at stress level i, respectively.  

 

Figure 2.2. Damage vs cycle ratio curve, 𝐷 = ∑(
𝑛𝑖

𝑁𝑖
⁄ )

𝑥𝑖
 (Marco and Starkey, 1954) 

Figure 2.2 illustrates a graphical representation of D-r curves with different stress levels. It is 

obvious that Miner’s rule is a special case of D-r approach when 𝑥𝑖 = 1. As shown in Figure 2.2, 

damage accumulation with power law results in 𝐷 < 1 when stress amplitudes follow descending 

pattern (high to low load sequence, 𝜎1 to 𝜎3) and 𝐷 > 1 when the load pattern is ascending (L-H 
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load sequence, 𝜎3 to 𝜎1) (Marco and Starkey, 1954). The transition between different damage 

curves occurs through a horizontal line indicating damage equivalency. It is evident that at a lower 

stress level, fatigue damage propagates slowly at the early age of loading, and as cracks develops, 

damage grows more rapidly. On the contrary, at a higher stress level, growth of fatigue damage 

starts rapidly at early cycles.  

A damage model was presented by Grover (1960), considering load interaction and load sequence 

effects in accumulated fatigue damage. The crack initiation (Equation 2.3) and crack growth 

(Equation 2.4) conditions were considered as the main damage phases. In this approach, α, the 

proportion of life during crack initiation phase, should be determined for different stress levels.  

∑
𝑛𝑖

𝛼𝑁𝑖
= 1                                                                                                                       Equation 2.3 

𝑛

𝑖=1

 

∑
𝑛𝑖

(1 − 𝛼)𝑁𝑖
= 1                                                                                                           Equation 2.4

𝑛

𝑖=1

 

Kaechele (1963) examined Grover’s theory for a variable stress spectrum (Figure 2.3). Grover’s 

theory is more conservative than Miner’s rule, thus predicting fewer number of cycles to failure. 
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Figure 2.3. Two-stage damage cycle relationship considering stress level effect (Grover, 1960). 

Manson et al. (1961) proposed a double linear damage rule (DLDR) to model the fatigue crack 

initiation and propagation stages. In this approach, the crack initiation period (N0) and the crack 

propagation period (ΔN)f  are presented in terms of the total fatigue life Nf, as follows: 

(𝛥𝑁)𝑓 = 𝑃.𝑁𝑓
0.6                                                                                   Equation 2.5 

𝑁0 = 𝑁𝑓 − (𝛥𝑁)𝑓 = 𝑁𝑓 − 𝑃.𝑁𝑓
0.6                                                           Equation 2.6 

A “P” value of 14 was determined based on experimental test data performed on 1/4-inch-diameter 

(6.35-mm) specimens of notched ductile materials (Manson, 1966; Manson and Hirschberg, 1966; 

Manson et al., 1967). Figure 2.3 shows a schematic representation of DLDR for a fatigue test 

involving two different stress levels (high and low, H-L). Figure 2.4. shows residual cycle ratio 
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(
𝑛2

𝑁𝑓,2
⁄ ) at a second stress level versus the cycle ratio (

𝑛1
𝑁𝑓,1

⁄ ) applied at an initial stress level 

(Manson et al., 1961). 

 

 

Figure 2.4. Double linear damage rule for fatigue test involving two stress levels (H-L) (Manson et al., 

1961). 

The authors further investigated the validity of the proposed model for two types of steel (SAE 

4130 and an 18-percent nickel maraging steel). Experimental investigation was carried out on 

specimens under two-level-cyclic tests in rotating bending as well as two-strain level tests in axial 

reversed strain cycling (Manson et al., 1967). Bilir (1991) also applied the two-level stress 

approach on notched 1100 aluminum fatigue test specimens. They reported that test data was in 

good agreement with the remaining life predicted through DLDR.  
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Crack growth theory is another approach employed in fatigue damage models. In this approach, 

damage can be measured using the crack growth rate, which is a function of stress and material 

properties (Equation 2.7).  

𝑑𝑎

𝑑𝑁
= 𝐶. 𝑓(𝜎). 𝑎                                                                                                       Equation 2.7 

In Equation 2.7, 𝐶 is a constant related to material properties, “a” indicates crack length, 𝑓(𝜎) is a 

function of loading pattern, and 𝑁 is number of cycles to failure. Examples of studies considering 

crack growth as a measure of damage include works by Shanley (1952), Valluri (1961a, 1961b), 

and Scharton and Crandall (1966).  

Corten and Donald (1956) tested 721 steel wire samples under constant- and variable-amplitude 

fluctuating stress levels and analyzed the experimental results. They modeled the cumulative 

damage using the power function and investigated the effect of constant- and variable-amplitude 

stresses on crack initiation, crack propagation and damage level. The authors used a power function 

(Equation 2.8) to represent damage at each damage nucleus.  

𝐷′ = 𝑟𝑁𝑎                                                                                                  Equation 2.8 

Therefore, for “m” damage nuclei, cumulative damage can be expressed as: 

𝐷 = 𝑚𝑟𝑁𝑎                                                                                               Equation 2.9 

 Where, 𝑚 is  umber of damage nuclei, 𝑟 is coefficient of rate of damage propagation, N is number 

of cycles to failure, and a is exponent on 𝑁 in damage propagation process. Failure at a constant 

stress level (Si) was presumed at 𝐷𝑓 = 𝑚𝑖𝑟𝑖𝑁𝑖
𝑎𝑖. Cumulative damage (𝐷) as a function of the 

number of cycles to failure (𝑁𝑓) at each constant-amplitude stress level is shown as in Figure 2.5. 
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The authors expressed cumulative damage under fluctuating stress levels as 𝐷 = ∑𝛥𝐷 as shown 

in Figure 2.6. Several other nonlinear damage accumulation models have also been proposed 

(Gatts, 1961; Manson and Halford, 1981). Fatemi and Yang (1998) reviewed proposed 

phenomenological and analytical methods on fatigue damage assessments (Fatemi and Yang, 

1998).   

 

Figure 2.5. Theory of cumulative fatigue damage under constant amplitude stress (𝑆1 > 𝑆2) (Corten and 

Donald, 1956).  

 

Figure 2.6. Theory of cumulative damage under variable stress amplitudes (Corten and Donald, 1956). 

S1 
S2 
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2.2 Reliability Index 

Due to uncertainties in design, loading, construction procedures, material properties and strength 

parameters, there is always a slight risk of failure in any structure. Although absolute safety is not 

realistic, an acceptable risk level consistent with safety and economic considerations is inherent in 

the design provisions for bridges (AASHTO), steel buildings (AISC), and offshore platforms (API) 

(Frangopol, 1999).  

Developments in probability theory and risk analysis along with available statistical data on load 

and resistance have changed the traditional approach for structural design. In the early design 

methods, a single safety factor was used to determine allowable stresses. The traditional allowable 

stress design, however, generally resulted in non-uniform levels of reliability across various 

elements of a structure. The reliability-based approaches aim for a more uniform level of reliability 

cross all elements and components of the bridge (Frangopol, 1999).  

For strength-based reliability models, the basic random variables are resistance (R) and load or 

load effect (S). Each of these two parameters may be dependent on other random variables. Live 

load has uncertainties related to magnitude of truck loads and positions of those loads on a bridge.  

A function representing each random variable can be expressed based on available statistical 

information (Frangopol, 1999).  

In general, a limit state failure function g is defined as follows (Frangopol, 1999): 

𝑔 = 𝑅 − 𝑆                                                                                          Equation 2.10 

If 𝑔 > 0, resistance of the element under consideration exceeds the corresponding load effect, and 

thus failure would not occur. When 𝑔 < 0, the applied load exceeds the resistance of the element 

under consideration and the element would fail. The probability of failure may be written as (𝑃𝑓): 
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𝑃𝑓 = 𝑃[𝑔 < 0]                                                                                  Equation 2.11 

Strength-based reliability assessment involves evaluating the risk associated with load exceeding 

resistance considering the variability of both parameters (Figure 2.7). The probability of failure 

can be controlled through the choice of load and resistance factors in the design specifications. 

Risks are measured based on a comparison of demand and capacity and the uncertainties related 

to these parameters (Frangopol, 1999). This approach is not intended to eliminate the risk of 

failure, but to realize an “acceptable” level of risk. 

Strength-based reliability in structures including bridges is usually calculated through an 

assumption of normal (or log-normal) distributions for random variables. The reliability index, β, 

can be determined using the following equation (Nowak, 2000): 

𝛽 =
𝑔 

𝜎𝑔
⁄                                                                                                 Equation  2.12 

Where, 𝑔 is the mean of the failure function g and 𝜎𝑔 is the standard deviation of g. The reliability 

index β indicates the number of standard deviations that the mean of the failure function is 

distanced from g=0 (failure). A larger β value is representative of higher reliability.  
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Figure 2.7. Schematic view of load and resistance concept (Chung, 2004). 

Evaluation of the reliability index is another approach that has been widely used in reliability 

analysis of fatigue life. Limit state functions have been defined considering variability of load and 

resistance through commonly used (normal and lognormal) probability density functions 

(Wirsching and Chen, 1987; Albrecht, 1983; Wu et al., 1997), and to a lesser extent, through the 

Weibull distribution (Zaccone, 2001; Munse et al., 1983).  

Wirsching (1984) defined a limit state function for fatigue failure considering stochasticity in 

cumulative damage range: 

𝐷 − ∆ ≥  0                                                                                             Equation 2.13 

The author used fatigue test data from Miner’s study (Miner, 1945) and assumed a lognormal 

distribution to the reported cumulative damage at failure (∆), with a mean of 1.0 (𝜇 = 1 in 

agreement with Miner’s rule) and a coefficient of variation of 0.3.  
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Hirose (1993) used reliability analyses to estimate the mean fatigue life corresponding to the 

service stress and threshold stress. He used the inverse power law for the stress-fatigue life 

relationship and incorporated the threshold stress into the model. Experimental right-censored data 

from an accelerated life-test on polyethylene terephthalate (PET) was used to develop failure time 

models at different stress levels. The reliability model was based on the Weibull distribution. Using 

actual accelerated test data, the author showed that there was a threshold stress below which the 

service life was indefinite (Figure 2.8).  

 

Figure 2.8. Accelerated Fatigue life, (Hirose, 1993). 

As damage accumulates in a component, the cumulative damage distribution may change over 

time as shown in Figure 2.9 (Rathod et al., 2011). Rathod et al. (2011) developed a “nonstationary” 

fatigue cumulative damage model and calculated a reliability index based on the accumulated 

damage criteria. In their model, accumulated damage (D) was considered to be a function of fatigue 
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life (Nf). A normal distribution was assumed for fatigue life at each stress level (Figure 2.10), and 

a PDF of damage accumulation was calculated at each stress level (Figure 2.11).  

 

Figure 2.9. Degradation change pattern over time, (Rathod et al., 2011). 

 

Figure 2.10. Probability Based S-N Curve, (Rathod, et al., 2011). 

 

time 
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Figure 2.11. Probability distributions of accumulated damage under variable stress amplitude, (Rathod, et 

al., 2011). 

2.3. Probabilistic Damage Accumulation Models 

The Miner’s rule has been commonly used in fatigue life estimation due to its simplicity. However, 

experimental results from constant and variable amplitude tests have shown widely scattered 

fatigue life (Marko and Starkey, 1945; Dolan et al., 1949; Kibbey, 1949). Therefore, interest in 

probabilistic assessment of cumulative fatigue damage has increased, and many studies have 

applied reliability-based analyses of fatigue data.  

As discussed earlier, the LDR deterministic approach (Miner, 1945) assumes that fatigue failure 

would occur at D = 1. However, experimental data indicate that the actual value of D may range 

from 0.5 to 2.0 (Miner, 1945; Sobczyk and Spencer, 1992).  

The Miner’s rule for fatigue life under the application of two sets of constant amplitude cyclic 

stresses applications (1 and 2) would be: 

𝑛1

𝑁1
+

𝑛2

𝑁2
= 1                                                                                                  Equation  2.14 
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Where 
𝑛1

𝑁1
 and 

𝑛2

𝑁2
 are cycle ratios corresponding to stress amplitudes 𝜎1 and 𝜎2, respectively. 

However, there is scatter in measured values of 𝑁1 and 𝑁2, fatigue resistance (number of cycles to 

fatigue failure), under both stress amplitudes. Therefore, using the mean life  (𝑁̅) of the individual 

test specimen, the Miner’s rule could be restated as (Tanaka and Akita, 1975): 

𝑛1

𝑁̅1

+
𝑛2

𝑁̅2

= 1                                                                                                 Equation 2.15       

Tanaka and Akita (1975) reported that Equation 2.14 would not be valid for individual samples 

and modified it as: 

𝑛1

𝑁̅1

+
𝑛2

𝑁̅2

=
𝑛1

𝑁1
.
𝑁1

𝑁̅1

+
𝑛2

𝑁2
.
𝑁2

𝑁̅2

= 𝛼 (
𝑛1

𝑁1
+

𝑛2

𝑁2
)                                        Equation 2.16  

Where 
𝑁1

𝑁̅1
 and 

𝑁2

𝑁̅2
 , “relative strength” of specimens under stress 𝜎1 and 𝜎2, respectively, were 

introduced as the ratio of life of a specimen to its corresponding mean life (
𝑁

𝑁̅
= 𝛼). It was assumed 

that the relative strength ratio is independent of the stress level. According to the Miner’s rule 

(
𝑛1

𝑁1
+

𝑛2

𝑁2
= 1), cumulative damage is independent of stress levels and stress interaction. Therefore, 

Equation 2.16 could be revised as: 

𝑛1

𝑁̅1

+
𝑛2

𝑁̅2

= 𝛼                                                                                              Equation 2.17 

Based on materials, testing procedures, stress ranges and the specimen affect the range of 𝛼.  

According to available fatigue life data from several studies (Yokobori, 1965; Dolan and Brown, 

1952; Siclair and Dolan, 1953; Levy, 1955; Konishi and Shinozuka, 1956; Matolcsy, 1969; Tanaka 

and Akita, 1972), Tanaka and Akita (1975) assumed a normal distribution for fatigue life (x), (with 
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mean of µ and variance 𝜎2) and used a coefficient of variance 𝑉 = 𝜎
𝜇⁄  of 0.2. The authors 

considered that the probability of fatigue life being one standard deviation from the mean ( 𝜇 −

𝜎 ≤ 𝑥 ≤ 𝜇 + 𝜎), therefore, range of 𝛼=0.8-1.2. The resulting probability of survival (or reliability, 

𝑅) for specimens under two different stress levels is shown in Figure 2.12. However, the authors 

stated that the probability of survival with respect to fatigue life ratio (
𝑁

𝑁̅
) is almost equivalent for 

different stress levels (𝜎1 and 𝜎2) (Figure 2.13). A plot of the probability of survival with respect 

to the normalized fatigue life (
𝑁

𝑁̅
) was considered to be a normalized reliability curve. 

 

Figure 2.12. Probability of survival (reliability) versus number of cycles to failure (N) (Tanaka and Akita, 

1975). 
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Figure 2.13. Probability of survival (reliability) versus normalized fatigue life (
𝑁

𝑁̅
) (Tanaka and Akita, 

1975). 

Tanaka et al. (1980) first introduced the Transfer Law of Reliability Curve (TLRC) for prediction 

of fatigue life under variable stress amplitudes from reliability curves under constant amplitude 

stress. The TLRC assumes that if a specimen undergoes 𝑛1 cycles under stress level 𝜎1, it would 

follow its respective reliability curve (corresponding to stress level 𝜎1). After switching to stress 

level 𝜎2, fatigue life transfers to the reliability curve corresponding to stress level 𝜎2 along a 

horizontal line of equal reliability from point B to E, as shown in Figure 2.14.  

 

Figure 2.14. Schematic representation of TLRC (Tanaka et al., 1980). 
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a 

 

b 

Figure 2.15. Reliability curves a) versus (N) and b) versus (
𝑁

𝑁̅
) or normalized, (Tanaka et al., 1980). 

The authors tested 1000 nickel-silver test specimens under constant and variable amplitude loading 

and summarized the results as follows (Tanaka et al., 1980): 

➢ From the experimental data, it was shown that the distribution of normalized failure life 

(
𝑁

𝑁̅
) under constant amplitude loading was almost equivalent to the distribution of ∑

𝑛

𝑁̅
 under 

variable amplitude loading.  

➢ It was also noted that the expected value of damage was equal to 1 (E(∑
𝑛

𝑁̅
) = 1) and the 

standard deviation of ∑
𝑛

𝑁̅
 under variable amplitude tests was equal to the coefficient of 

variation of fatigue life (N) under constant amplitude tests.  

➢ The area under the reliability (R) versus fatigue life (N) curve for a specific constant 

amplitude stress is equal to mean fatigue life under that stress level (Figure 2.15a).  

➢ The area under the reliability (R) versus normalized fatigue life (
𝑁

𝑁̅
) is equal to unity and 

independent of stress level (Figure 2.15b).  

➢ When the constant amplitude stress levels change, at number of cycles 𝑛1
∗ (point B), to 

either a lower (path ABC′) or higher (path ABC″) stress level, the area under the 

normalized reliability curve for the two consequent-amplitude stress levels would be either 
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larger or smaller than unity, as shown in Figure 2.16.  

 

Figure 2.16. Reliability curve for two-level stress transformation (Tanaka et al., 1980). 

2.4. AASHTO Fatigue Curves 

The main limit states for welded connections in steel bridges can be generally categorized as 

strength, serviceability, and fatigue limit states. Although, 80-90% of steel structure failures are 

related to fatigue and fracture issues (ASCE Committee on Fatigue and Fracture Reliability, 1982; 

Zhao et al., 1994). 

AASHTO fatigue design specifications (AASHTO, 2018) provide relationships for fatigue life as 

a function of cyclic stress range for various design categories as shown below: 

𝑁𝐶 = 𝐴𝑆𝑟
−𝐵                                                                                     Equation 2.18 

Where, 𝑁𝐶 is total number of stress cycle to failure; 𝑆𝑟 represents constant-amplitude stress range; 

and A and B are constants that are provided for various fatigue categories. The S-N curve is 

normally plotted as a log-log scale. Taking log of Equation 2.18: 

𝑙𝑜𝑔𝑁𝐶 = 𝑙𝑜𝑔𝐴 − 𝐵 𝑙𝑜𝑔𝑆𝑟                                                              Equation 2.19 
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The coefficient (𝑙𝑜𝑔𝐴) is the intercept, and the exponent B is the slope of the code-specified S-N 

curve on a log-log scale plot. 

The National Cooperative Highway Research Program (NCHRP) sponsored several studies related 

to fatigue evaluation of steel bridges (NCHRP Report 102, NCHRP Report 147, NCHRP Report 

227, NCHRP Report 267, NCHRP Report 286, NCHRP Report 354, NCHRP Report 417) during 

the 1960’s to 1980’s. Researchers conducted several experimental fatigue studies on steel beams 

and plate girders with a variety of details. Several different design categories were defined (A, B, 

C, D, E, and E′). Using linear regression analysis of experimental test results (log 𝑁𝐶 and log 𝑆𝑟) 

for each different design category, the best fit B and 𝑙𝑜𝑔𝐴 values were first determined (NCHRP 

Report 102 by Fisher et al., 1970; NCHRP Report 147 by Fisher et al., 1974; NCHRP Report 286 

by Keating and Fisher, 1986) for the data associated with each design category. Using these two 

parameters, the 𝑙𝑜𝑔𝐴 values for all experimental data sets were determined and the standard 

deviation of 𝑙𝑜𝑔𝐴 values was determined. The authors assumed that the 𝑙𝑜𝑔𝐴 values were 

lognormally distributed and used the mean value of 𝑙𝑜𝑔𝐴 minus two standard deviations to come 

up with the recommended intercept to be used for the design equation. Therefore, the value of B 

from the linear regression analysis and the 𝑙𝑜𝑔𝐴 value associated with two standard deviations 

below its corresponding mean were recommended as design values to be used in conjunction with 

Equation 2.18 or 2.19 (NCHRP Report 286 by Keating and Fisher, 1986). In a later study (NCHRP 

Report 286 by Keating and Fisher, 1986), it was recommended that the B values for different 

design categories (values ranging from 3.000 to 3.372) be unified and made equal to a constant 

equal to 3.0 for all design categories (NCHRP Report 286 by Keating and Fisher, 1986). 𝑙𝑜𝑔𝐴, 

which is equal to the y-intercept of fatigue S-N curve, is different for each category. According to 

NCHRP Report 286 (Keating and Fisher, 1986) this recommendation is the basis of the current 
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AASHTO Design Specifications (AASHTO 2018) (Figure 2.17). The AASHTO standard S-N 

curves are reported by some to correspond to a 95% probability of exceedance (Albrecht, 1983; 

NCHRP Report 286 by Keating and Fisher, 1986; Chung, 2004), or two standard deviations below 

the mean of a lognormally distributed pdf at each stress level (i.e. a horizontal distribution as shown 

in Figure 2.18) (Zhao et al., 1994, Chung, 2004). The design curves were reported by the authors 

to represent a probability of failure of 5% at any specified detail (category) and stress range (Zhao 

et al., 1994, Chung, 2004). In fact, the developed design relationships were not based on an 

assumption of a horizontal lognormal distribution at each stress range. The variability assumed in 

the development of the AASHTO S-N curves was associated with the intercept parameter alone 

(NCHRP Report 286 by Keating and Fisher, 1986). Furthermore, the 95% confidence interval 

presumed in the development of the design recommendations was based on two standard 

deviations below the mean of the intercept, indicating 2.5% probability of exceedance (of the 

intercept) for a lognormal distribution of 𝑙𝑜𝑔𝐴. 
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Figure 2.17. AASHTO fatigue design curves (NCHRP report 286 by Keating and Fisher, 1986). 

 

Figure 2.18. Schematic S-N curve for a typical AASHTO category (Chung, 2004) 
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2.5. Bridge Fatigue Reliability  

AASHTO fatigue design curves (S-N curves) represent the resistance side of the reliability 

assessment, while the long-term load data (field monitoring data) typically represent the load/stress 

side. The AASHTO Design Specifications (AASHTO, 2018) provide a set of procedures for 

calculating the stress range and the number of cycles based on a standard truck load. Field 

monitoring data typically include variable amplitude stresses, which must be first converted into 

equivalent constant-amplitude stresses. Several cycle-counting methods such as the rain-flow 

method have been developed to convert variable-amplitude stress data into equivalent constant-

amplitude stress cycles (Meggiolaro and de Castro, 2012; Bisping et al., 2014; Marsh et al., 2016). 

Uncertainties associated with load/stress ranges, material properties, and environmental exposure 

should be considered in probabilistic assessment of fatigue failure. 

In a bridge fatigue reliability assessment, a load versus resistance limit state function is commonly 

used, and probability density functions (such as normal, lognormal and Weibull) are assigned to 

each random variable. As discussed earlier, the fatigue reliability assessment has been investigated 

through limit state functions applied on Miner’s cumulative damage rules. In this section we 

review literature on fatigue reliability assessment incorporating AASHTO S-N curves.   

Incorporating the equations of S-N curves into the Miner’s rule (Eq 2.1) with variable amplitude 

stress, we have (Zhao 1991; Zhao et al., 1994):  

𝐷 = ∑∆𝐷𝑖 = ∑
𝑛𝑖

𝑁𝑖

𝑛

𝑖=1

𝑛

𝑖=1

=
𝑁𝐶

𝐴
𝐸(𝑆𝑟

𝐵)                                                                             Equation  2.20 

Where A is fatigue strength coefficient and B is exponent of S-N curve. 𝐸(𝑆𝑟
𝐵) is the expected 

value or mean of 𝑆𝑟
𝐵, while, 𝑆𝑟 is the stress range (as a covariate).  
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The reliability approach is intended to be implicitly embedded in the AASHTO S-N curves (Yang 

et al., 2011) and other design codes to ensure a consistent level of reliability (of fatigue strength) 

in members and details of structures (Albrecht, 1983). To evaluate fatigue reliability of steel bridge 

components, commonly used statistical distributions (such as lognormal and Weibull) have been 

frequently used to define the basic random variables such as A, B, and 𝑆𝑟 in the limit state 

equations (Equation 2.21). Combining the Miner’s rule with AASHTO S-N curve, the limit state 

function, 𝑔, can be written as (Zhao et al., 1994): 

𝑔 = ∆ − 𝐷 ≤ 0   𝑜𝑟 

𝑔 = ∆ − [
𝑁

𝐴
𝐸(𝑆𝑟

𝐵)] ≤ 0                                                                                            Equation  2.21 

Chung (2004) reported on the application of Rayleigh, Weibull, Beta, Polynomial, and lognormal 

distributions for calculating an equivalent stress range in fatigue analysis. Pourzeynali and Datta 

(2005) used lognormal and Weibull distributions to estimate fatigue reliability of suspension 

bridges. They reported that the choice of stress range distribution plays a significant role in fatigue 

reliability calculations.     

Kwon and Frangopol (2010) utilized the reliability index approach to evaluate bridge fatigue 

reliability. The authors used field monitoring data to calculate equivalent stress range and 

cumulative number of cycles. Stress range (𝑆𝑟) and fatigue detail coefficient (𝐴) were considered 

as load and resistance random variable, respectively. The authors employed lognormal, Weibull, 

and gamma distributions as assumed PDFs for stress range.  

Yang et al. (2011) developed a reliability index approach for assessment of fatigue life of bridge 

welded details, based on long-term load monitoring data. They included the number of cycles as a 
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random variable in addition to the equivalent stress range. They studied the effect of traffic (load) 

variations and traffic growth on the reliability of bridge details with respect to fatigue. Results of 

their study indicated that traffic growth had a significant effect on reducing the reliability of welded 

details in bridges.   

Although crack size and crack growth are important factors in assessment of fatigue failure and 

fatigue cumulative damage, they are not explicitly considered in the AASHTO fatigue equations 

(AASHTO, 2018). To establish an alternative fatigue reliability analysis including crack growth, 

Zhao et al. (1994) combined a linear elastic fracture mechanics theory (LEFM) with the Miner’s 

rule to develop a probability function for fatigue failure of steel bridge members. The 

corresponding limit state function was defined based on crack size at N number of cycles (𝛼𝑁) and 

critical crack size (𝛼𝐶) (Equation 2.23). The Weibull distribution was used to represent the variable 

amplitude stress in the limit states function covering uncertainties associated with loading.   

𝑔 = 𝛼𝐶 − 𝛼𝑁 ≤ 0                                                                              Equation 2.22 

Albrecht (1983) studied the probability of fatigue failure in highway bridges under variable 

amplitude loads. The author used a normal distribution for both stress range (as load) and number 

of cycles to failure (as resistance) and calculated a reliability index for fatigue of highway bridges. 

He also calculated an equivalent stress range (constant stress range) using data recorded on bridges. 

Comparing the results from reliability-based analyses and AASHTO design specifications, he 

showed inconsistencies in fatigue reliability of typical bridge details.                                                                                                     
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Chapter 3. Survival Analysis 

3.1. Background 

Survival analyses has been extensively used in medical research. There are three general categories 

of survival analysis: non-parametric, semi-parametric, and parametric. The parametric survival 

analysis is the most comprehensive approach, as it can provide the most detailed probabilistic 

answers. When conducting a parametric survival analysis, an assumption must be made about the 

distribution function. The chosen distribution would affect the survival and hazard functions. The 

best fit model to the data can be chosen based on the shape of the hazard functions or comparing 

different models according to Akaike Information Criteria (AIC).  

When a medical study reports that one in four persons would die from cancer during their lifetime, 

the results were likely obtained from a non-parametric Kaplan-Meier (K-M) analysis of cancer 

data. Non-parametric analyses cannot address the effect of influential covariates on the outcome. 

On the other hand, semi-parametric survival analysis (also known as Cox regression) involve an 

important assumption of proportionality of hazards (which may not be true under many 

circumstances) (Tabatabai et al., 2011). Furthermore, the semi-parametric models do not make any 

assumptions or representations regarding the underlying statistical distributions. Although the 

semi-parametric analysis is simpler to use (when the assumption of proportionality of hazards is 

satisfied), the parametric approach provides the most complete and detailed information and is the 

preferred approach. If a set of “time-to-event” data along with observation data on various 

covariates corresponding to the event is available, a parametric survival analysis can be performed. 

There are two terms commonly used in survival analyses that may not be commonly used in 

conventional engineering reliability analyses: 
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1. Survival (or reliability in engineering terms) refers to the probability of not failing (or 1 – 

the probability of failure) at any given time. The survival function, S, represents the values 

of survival at various times. 

2. Hazard is the conditional failure rate at any given time, assuming survival up to that time. 

The shape of the hazard function with time is an important characteristic of the problem at 

hand. The time to failure of different products may have different characteristic hazard 

shapes. For example, electronic components may have “bathtub” hazard shape when failure 

rates are higher at both early and advanced ages. Other hazard shapes may be 

monotonically increasing or decreasing with upward or downward concavity or have 

unimodal or multi-modal shapes. 

Most statistical distributions can represent only a very limited number of hazard shapes (Tabatabai 

et al., 2011); therefore, one statistical distribution may not be applicable to all fatigue reliability 

cases (or to all diseases). Finally, the probability density function (pdf) and cumulative density 

function (CDF) are defined in a similar manner to those in conventional statistics and reliability 

theory. 

3.2. Survival Functions 

Three distinct functions commonly used in survival analysis are: 1) survival function, (S(t), 

2) probability density function, (f(t), and 3) hazard function (h(t) (Tabatabai et al., 2016): 

𝑆(𝑡) = 𝑃(𝑇 > 𝑡) = 1 − 𝐹(𝑡)                   Equation 3.1 

𝑓(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

𝑃(𝑡 < 𝑇 < 𝑡 + 𝛥𝑡)/𝛥𝑡                  Equation 3.2 

ℎ(𝑡) = lim
∆𝑡→0

𝑝(𝑡 < 𝑇 < 𝑡 + ∆𝑡|𝑇 > 𝑡)/∆𝑡                 Equation 3.3 
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where T indicates the survival time as a random variable, t is the time, and F(t) denotes the 

cumulative probability of failure at various times. S(t) = 1 at t = 0 and S(t) → 0 as t → ∞. 

In survival analysis, the study time may not cover the entire survival time. For instance, a patient 

may leave the clinical investigation early and the researchers are unable to follow up and determine 

the actual survival time. In other cases, reasons unrelated to the study may lead to the end of 

survival. These kinds of observations are called “censored”. Censoring corresponds to missing 

data within the observation time. When survival extends beyond the observation period, this is 

referred to as right censored data. When a component fails before the observation interval begins, 

the associated data is called “left censored”. The right censored data are more common (Sobanjo 

et al. 2010). 

In parametric survival analyses, the baseline statistical distribution must be determined for specific 

types of data at hand; therefore, the appropriate distribution cannot be assumed upfront without 

first finding the best fit model. Statistical distributions used in survival analyses, including weibull, 

lognormal, log-logistic, and hypertabastic, can represent specific hazard shapes, and thus it is 

important that the correct hazard shape be represented using the appropriate distribution function. 

Typically, the Akaike Information Criterion (AIC) and the chi-squared goodness-of-fit test are 

used to find the best-fit baseline distribution function, as well as the parameters associated with 

each covariate, using the method of maximum likelihood. 

There are several types of parametric survival models, the most common of which are the 

Proportional Hazard model (PH) and the Accelerated Failure Time (AFT) model. If the 

proportionality of hazards is established (generally through an initial non-parametric K-M 

evaluation), then the PH model can be used. When the covariates act multiplicatively on the time 
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scale, the AFT model is commonly used. The proportional hazard model has a hazard function, 

which represents the instantaneous failure rate at time t, given survival up to time t, of the form: 

( ) ( ) ( ) xgthxth 0, =       Equation 3.4 

Where,   is a vector of unknown parameters and x is a p-dimensional vector of covariates. For 

categorical parameters, x can take values of either 0 or 1. When a categorical parameter has more 

than two possible outcomes, additional binary parameters (x1, x2, …) can be used to represent the 

various outcomes. For example, for a categorical parameter with three outcomes, three binary 

parameters (x1, x2, and x3) can be used. 

Outcome 1: x1 = 1; x2 = 0; and x3 = 0 

Outcome 2: x1 = 0; x2 = 1; and x3 = 0 

Outcome 3: x1 = 0; x2 = 0; and x3 = 1 

 ( )xg  is a non-negative function of x, satisfying the condition that 1)0( =g , and

( ) 1

p

k k

k

x

g x e


 =


= . 

Let ( )th0  be the baseline hazard function. For the PH model, the survival function ( ),xtS  is 

defined as:  

( ) ( )  ( )


xg
tSxtS 0, =       Equation 3.5 

The probability density function for the PH model is defined as: 

( ) ( ) ( )  ( ) ( )


xgtStfxtf
xg 1

00,
−

=     Equation 3.6 
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The AFT model uses a hazard function ( ),xth  of the form: 

( ) ( )( ) ( ) xgxtghxth 0, =      Equation 3.7 

For the AFT model, the survival function is defined as:  

( ) ( )( ) xtgSxtS 0, =                  Equation 3.8 

The probability density function for the AFT model is: 

( ) ( )( ) ( ) xgxtgfxtf 0, =      Equation 3.9 

The data collected from observations are used to determine the model parameters using the 

maximum likelihood estimation. This is accomplished by maximizing the likelihood functions 

(described below). The effect of censored data (such as runout data in fatigue) is considered in the 

likelihood functions. 

In the absence of censoring, the log-likelihood function is: 

( ) ( ) 
=

=
n

i

ii xtfxLL
1

,ln:                   Equation 3.10 

Where n is the total number of observations. For right-censored data, the log-likelihood function 

is: 

( ) ( )  ( ) ( )
=

+=
n

i

iiiii xtSxthxLL
1

,ln,ln:     Equation 3.11 
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where i = 0 if the ith observation is right-censored; and i = 1 if otherwise. Tabatabai et al (2011) 

report the log-likelihood functions for data with other types of censoring. The chi-squared test and 

the AIC criterion are typically used to find the best fit models for the specific data at hand.  

In this study, lognormal, log-logistic, Weibull, and hypertabastic distributions were considered for 

the analysis of fatigue data for bridge, and the AIC was the criterion used to determine the best fit 

distribution (Tabatabai et al., 2011). Also, the K-M nonparametric method was used to determine 

if PH or AFT models should be used. In the following sections, the basic equations for the K-M 

estimation are presented. Also, the distribution functions considered for the fatigue survival 

analyses are briefly discussed.  

3.3 Nonparametric Survival Models - The Kaplan-Meier (K-M) or Product Limit Method 

The K-M method is one of the most common methods used to estimate the empirical distribution 

of survival time. This method is non-parametric because the influence of potential parameters 

contributing to the outcomes are not explicitly considered. In this method, the observation time is 

divided into a series of time intervals such that only one failure occurs at the beginning of each 

time interval. In other words, the survival times are first sorted, and then ranked from lowest to 

highest. The probability of survival at time t, Ŝ(t), can be estimated using the Kaplan-Meier method 

as follows (Lee and Go, 1997): 

𝑆̂(𝑡) = ∏[
𝑛 − 𝑟𝑖

𝑛 − 𝑟𝑖 + 1
]𝛿𝑖 , 𝑡 ≤ 𝑡(𝑛)                                                        Equation 3.12 

𝑡𝑖<𝑡

 

Where 𝑡𝑖 represents the ith survival time (can be censored or uncensored), 𝛿𝑖 is a parameter taken 

as 0 for censored data and 1 for uncensored data, 𝑟𝑖 is the rank of 𝑡𝑖, n is the total number of 

observation intervals, and 𝑡(𝑛) indicates the longest survival time (Lee and Go, 1997).  
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K-M survival estimates performed on different categorical data sets can be used to establish 

whether the appropriate survival model should be PH or AFT. If the survival curves for different 

categories intersect each other, then the AFT model should be used in the survival analysis. In 

contrast, parallel K-M survival curves indicates proportionality of the hazard function.  

In fatigue survival analysis, K-M survival curves of each fatigue category, category A through E′, 

were developed and according to the results, AFT model was selected for further survival analysis, 

as will be discussed in detail in Chapter 4.   

3.4. Lognormal Distribution 

A random variable is lognormally distributed if the logarithm of the random variable follows the 

normal distribution. The lognormal distribution has been commonly used to model the fatigue 

failure modes. The baseline lognormal probability density function is defined as: 

𝑓(𝑡) =
1

𝑡. 𝜎√2𝜋
𝑒𝑥𝑝 {

−(𝑙𝑛(𝑡) /𝜇))2

2𝜎2
} ; 𝑡 > 0                                           Equation 3.13 

where parameters µ and σ are the mean and the standard deviation of the random variable, 

respectively. The baseline lognormal survival function and cumulative distribution functions are 

given in Eqs. 3.14 and 15, respectively.  

𝑆(𝑡) =
1

2
−

1

2
𝑒𝑟 𝑓 [

𝑙𝑛(𝑡) − 𝜇

√2𝜎
]                                                                     Equation 3.14 

𝐹(𝑡) = 1 − 𝑆(𝑡) =
1

2
+

1

2
𝑒𝑟 𝑓 [

𝑙𝑛(𝑡) − 𝜇

√2𝜎
]                                              Equation 3.15 

where erf is the Error function. The baseline lognormal hazard function h(t) can be calculated 

using: 
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ℎ(𝑡) =
𝑓(𝑡)

𝑆(𝑡)
= −√2𝑒

−
(𝑙𝑛(𝑡)−𝜇)2

2𝜎2
1

√𝜋
𝑡−1𝜎−1 {−1 + 𝑒𝑟𝑓 [

√2(𝑙𝑛(𝑡) − 𝜇)

2𝜎
]}

−1

; 𝑡

> 0        Equation 3.16 

The lognormal hazard function increases with time until it reaches a maximum point and then 

decreases (unimodal function).  

As described earlier, in proportional hazard models, it is assumed that the hazard functions for 

groups of risk factors are proportional within the observation time, which means that hazard 

function curves are not intersecting over time (Breslow, 1975). AFT hazard functions, as opposed 

to proportional hazard models, are introduced when the effects of covariates on the failure time is 

multiplicative with time. When using right censored data, the log-likelihood function for the 

lognormal AFT model can be written as: 

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(𝛿𝑖 ln ( ℎ (𝑡𝑔)). 𝑡𝑖𝑔(𝑥𝑖|𝜃) + 𝑙𝑛 [𝑆(𝑡𝑔)])

𝑛

𝑖=1

 

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(ln(
1

2
−

1

2
. erf (

ln(𝑡𝑔) − 𝛼

√2. 𝛽
))

𝑛

𝑖=1

+ 𝛿𝑖[𝑡𝑖𝑔(𝑥𝑖|𝜃). [
1

𝛽. 𝑡𝑔. √2𝜋
. exp (−

1

2
(
(ln(𝑡𝑔 − 𝛼)

2

𝛽
))]

− ln (
1

2

−
1

2
. erf (

ln(𝑡𝑔) − 𝛼

√2. 𝛽
))])                                                                     Equation 3.17 

Where,ti is the ith survival time, and 𝑡𝑔 and 𝛿𝑖 are defined as following: 
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𝑡𝑔 = 𝑡𝑖𝑔(𝑥𝑖|𝜃) 

 𝛿𝑖 = {
0                            𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
1                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

3.5. Log-logistic Distribution 

Log-logistic distribution is a continuous probability function of non-negative random variables. 

This distribution is used in different applications (lifetime or service time) such as survival 

analyses of cancer patients, hydrology, and economics.  

When a random variable is represented with a log-logistic distribution function, the logarithm of 

the variable follows logistic distribution. A log-logistic random variable (𝑡) with parameters α and 

β has the following probability density function: 

𝑓(𝑡) =
(𝛽 𝛼⁄ )(𝑡 𝛼⁄ )𝛽−1

(1 + (𝑡 𝛼⁄ )𝛽)2
                                                                               Equation 3.18 

Where 𝛼 and 𝛽 are both positive and define the scale and shape parameters, respectively. The 

cumulative distribution function is given as shown below: 

𝐹(𝑡) =
1

1 + (𝑡 𝛼⁄ )−𝛽
                                                                                    Equation 3.19 

The log-logistic survival function is defined as below:  

𝑆(𝑡) =
1

1 + (𝑡 𝛼⁄ )𝛽
                                                                                      Equation 3.20 

The log-logistic hazard rate and cumulative hazard functions are shown in Eqs. 3.21 and 3.22, 

respectively. The shape of the log logistic hazard function can be either monotonically decreasing 

or have a single-mode shape. 
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ℎ(𝑡) =
(𝛽 𝛼⁄ )(𝑡 𝛼⁄ )𝛽−1

1 + (𝑡 𝛼⁄ )𝛽
                                                                            Equation 3.21 

𝐻(𝑡) = − ln(𝑆) = ln (1 + (𝑡 𝛼⁄ )𝛽)                                                       Equation 3.22        

 

When right censored data are present (such as fatigue run-out data), the log-likelihood function for 

log-logistic AFT model can be defined as: 

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(𝛿𝑖 ln ( ℎ (𝑡𝑔)). 𝑡𝑖𝑔(𝑥𝑖|𝜃) + 𝑙𝑛 [𝑆(𝑡𝑔)])

𝑛

𝑖=1

 

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(𝛿𝑖 𝑙𝑛 (
(𝛽 𝛼⁄ )(𝑡𝑔 𝛼⁄ )𝛽−1

1 + (𝑡𝑔 𝛼⁄ )𝛽
𝑡𝑖𝑔(𝑥𝑖|𝜃))  

𝑛

𝑖=1

− 𝑙𝑛 (1 + (𝑡𝑔 𝛼⁄ )𝛽)        Equation 3.23 

The 𝑡𝑔 and 𝛿𝑖 are defined in section 3.4.  

3.6. Weibull Distribution 

Weibull is a continuous distribution also called type III extreme value distribution. Probability 

density function of a random variable (t) following Weibull distribution is shown as: 

𝑓(𝑡) =
𝛾

𝜃
(
𝑡

𝜃
)
𝛾−1

𝑒𝑥𝑝 (−
𝑡

𝜃
)
𝛾

                                                                                          Equation 3.24 

Where parameters 𝜃 and 𝛾 represent scale and shape factors, respectively. Eqs. 3.25 through 3.27 

define survival, hazard rate, and cumulative hazard functions for Weibull distribution. Failure rate 

of a Weibull distribution can follow a constant, monotonically decreasing, or monotonically 

increasing pattern.  
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𝑆(𝑡) = 𝑒𝑥𝑝 (−
𝑡

𝜃
)

𝛾

                                                                                                          Equation 3.25 

ℎ(𝑡) =
𝛾

𝜃
(
𝑡

𝜃
)
𝛾−1

                                                                                                               Equation 3.26 

𝐻(𝑡) = (
𝑡

𝜃
)

𝛾

           𝑡 ≥ 0 𝑎𝑛𝑑 𝛾 ≥ 0                                                                           Equation 3.27 

The log-likelihood function for Weibull AFT model for right-censored data is shown in Equation 

3.28. 

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(𝛿𝑖 ln ( ℎ (𝑡𝑔)). 𝑡𝑖𝑔(𝑥𝑖|𝜃) + 𝑙𝑛 [𝑆(𝑡𝑔)])

𝑛

𝑖=1

 

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(𝛿𝑖𝑙𝑛 (
𝛾

𝜃
(
𝑡

𝜃
)

𝛾−1

. 𝑡𝑖𝑔(𝑥𝑖|𝜃)) + (
𝑡𝑔

 𝜃
)

𝛾

)

𝑛

𝑖=1

                            Equation 3.28 

The 𝑡𝑔 and 𝛿𝑖 are defined in section 3.4.  

3.7. Hypertabastic Distribution 

The hypertabastic distribution is a relatively new type of distribution, which was introduced by 

Tabatabai et al. (2007). It has been used in several applications including studying the effect of 

covariates on the survival time of cancer patients and engineering applications (Tabatabai et al., 

2007; Tran, 2014; Nikulin and Wu, 2016; Tahir et al., 2017). The most prominent feature of the 

hypertabastic survival function is its capability to represent a variety of different hazard shapes 

(Tabatabai et al., 2007).  
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Considering the continuous random variable t (representing time to an event or waiting time for 

the occurrence of the event), the hypertabastic cumulative distribution function could be 

represented as follows (Tabatabai, 2011): 

𝐹(𝑡) = {
1 − 𝑠𝑒𝑐ℎ{𝑊(𝑡)}     𝑓𝑜𝑟 𝑡 > 0
0                                 𝑓𝑜𝑟 𝑡 ≤ 0

                                                                Equation 3.29 

Where, 𝑊(𝑡) = 𝛼[1 − 𝑡𝛽coth (𝑡𝛽)]/𝛽. The parameters α and β are both positive and sech[] and 

coth[] are hyperbolic secant and hyperbolic cotangent functions, respectively. The probability 

density function of hypertabastic distribution is given as (Tabatabai, 2011): 

𝑓(𝑡) = {
𝑠𝑒𝑐ℎ[𝑊(𝑡)][𝛼𝑡2𝛽−1 csch2(𝑡𝛽) − 𝛼𝑡𝛽−1 𝑐𝑜𝑡ℎ(𝑡𝛽)]𝑡𝑎𝑛ℎ[𝑊(𝑡)]    𝑓𝑜𝑟 𝑡 > 0

0                                                                                                                      𝑓𝑜𝑟 𝑡 ≤ 0
      

Equation 3.30 

Where csch[] is hyperbolic cosecant. 

The hypertabastic survival function is defined as (Tabatabai, 2011): 

𝑆(𝑡) = 𝑠𝑒𝑐 ℎ[𝑊(𝑡)]                                                                                                       Equation 3.31 

The hypertabastic hazard function, h(t), is defined as (Tabatabai, 2011): 

ℎ(𝑡) = 𝛼[𝑡2𝛽−1 csch2(𝑡𝛽) − 𝑡𝛽−1 𝑐𝑜𝑡ℎ(𝑡𝛽)]𝑡𝑎𝑛ℎ[𝑊(𝑡)]                                   Equation 3.32    

And the cumulative hazard function H(t) is defined as: 

𝐻(𝑡) =  − ln(𝑆𝑒𝑐ℎ[𝑊(𝑡)])                                                                                          Equation 3.33 

When right censored data is used, the log-likelihood function for the hypertabastic AFT model is 

defined in Equation 3.34 (Tabatabai et al., 2011).  
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𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑥) = ∑(ln [Sech(
𝛼(1 − [𝑡𝑔

𝛽
𝐶𝑜𝑡ℎ(𝑡𝑔

𝛽
))

𝛽

𝑛

𝑖=1

)] + 𝛿𝑖 ln[𝑡𝑖(( 𝛼[𝑡𝑔]−1+2𝛽𝐶𝑠𝑐ℎ([𝑡𝑔]𝛽)
2

− 𝛼[𝑡𝑔]−1+𝛽𝐶𝑜𝑡ℎ([𝑡𝑔]𝛽))

∗ tanh (
𝛼[1 − [𝑡𝑔]𝛽𝐶𝑜𝑡ℎ([𝑡𝑔]𝛽)]

𝛽
))𝑔(𝑥𝑖|𝜃)]                                       Equation 3.34 

The 𝑡𝑔 and 𝛿𝑖 are defined in section 3.4.  

3.7. Conditional Survival 

Conditional Survival (CS) analyses have recently (last 10-15 years) found more widespread 

applications and use in medical research (Merrill and Hunter, 2010; Zabor et al., 2013; Hieke et al., 

2015). Survival estimates, as discussed here up to this point, are based on information available at 

the initial time or time of prognosis (t = 0). For example, a patient (or a fatigue-prone component) 

may be given 10% chance of survival 10 years (or 1000,000 stress cycles) after diagnosis (or start 

of stress applications). As time passes by (stress cycles accumulate), additional information 

(knowledge) is gathered that can improve future survival forecasts. The knowledge, that the 

additional evidence provides, can be used for updated estimates of survival as time progresses. For 

example, after five years (or 500,000 cycles), the fact that the patient (or the component) has 

survived (not failed) alters the 10-year (1000,000 cycle) probability of survival from 10% to a 

higher number. This conditional survival estimate depends on the shape of the original (overall) 

survival function. The original (OS) and conditional (CS) survival can also be considered as 

“static” and “dynamic” estimates of the survival function, respectively. Based on the conditional 

probability theory, the probability of survival at time t, given that the patient (component) has 

already survived 𝑡𝑠 years can be calculated using the following equation: 
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𝐶𝑆(𝑡, 𝑡𝑠) = {

1 𝑤ℎ𝑒𝑛                 0 ≤ 𝑡 ≤ 𝑡𝑠
𝑆(𝑡)

𝑆(𝑡𝑠)
                 𝑤ℎ𝑒𝑛 𝑡 > 𝑡𝑠

                                                               Equation 3.35 

The above equations indicate that, given the fact that survival has been achieved up to time 𝑡𝑠, the 

conditional probability of survival would be equal to 1 (100%) at or before time 𝑡𝑠. The originally 

estimated survival probabilities are then adjusted using Equation 3.35. The change in the 

probability of survival at times greater than 𝑡𝑠 (as reflected in Equation 3.35) also changes the 

expected life beyond time 𝑡𝑠. 

This relationship is graphically illustrated in Figure 3.1. The original (static) survival curve is 

shown on the left (solid curve), while the CS curve (dynamic survival) associated with known 

survival at time 𝑡𝑠 is shown on the right (dashed line curve). Since survival was achieved at time 

𝑡𝑠, the conditional reliability jumps to 1.0 (100%) at time 𝑡𝑠. The rest of the response is in 

accordance with Equation 3.35. 

 

Figure 3.1. Original and conditional survival functions. 
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3.8. NCHRP Fatigue Data 

The AASHTO bridge design specifications include specific provisions for the fatigue design of 

steel bridges. These specifications are defined based on fatigue resistance curves (S-N curves) for 

different categories of bridge details. The AASHTO fatigue provisions were primarily based on 

results of research sponsored by the National Cooperative Highway Research Program (NCHRP) 

in the 1970s (NCHRP Report 102 by Fisher et al., 1970 and NCHRP Report 147 by Fisher et al., 

1974). These research reports included discussions of tests on full-scale beams as well as welded 

test specimens that provided a significant dataset of fatigue test results. Several subsequent fatigue 

studies (also sponsored by NCHRP) were also conducted that expanded the available fatigue data 

to a wider range of details and sizes (NCHRP Report 181 by Barsom and Novak, 1977; NCHRP 

Report 188 by Schilling et al., 1978; NCHRP Report 206 by Fisher et al., 1979; NCHRP Report 

227 by Fisher et al., 1980; NCHRP Report 267 by Fisher et al., 1983).  

The initial NCHRP projects (NCHRP Report 102 by Fisher et al., 1970; NCHRP Report 147 by 

Fisher et al., 1974) conducted experimental tests on 530 test specimens. The experiments were 

designed to provide data for evaluation of contributing factors and their significance on fatigue life 

of steel beams and girders. The primary design variables considered in the tests included the type 

of weld detail, stress conditions, and type of steel.  However, the combined influence (interaction) 

of these variables was not evaluated. Other factors that could affect the fatigue strength including 

rate of loading, temperature, surface condition, and corrosion were not considered (NCHRP Report 

102 by Fisher et al., 1970).  

The main emphasis of the two initial NCHRP studies was on cover-plated beams, web and flange 

attachments, and stiffeners. Weld details included longitudinal and transverse fillet welds. Plain 
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rolled and welded beams were also tested to evaluate the fatigue strength without cover-plate and 

flange splice. All these tests were limited to constant-amplitude cyclic loading. 

Controlled stress variables included the minimum stress, maximum stress, and the stress range. 

The point of maximum moment for plain rolled beams and the point of maximum flexural stress 

at the tension flange of base metal in the welded detail were considered as the points for stress 

range measurements. Three different steel types (A36, A441, and A514) were used, which covered 

yield strengths ranging from 36 to 100 ksi (248 to 690 MPa) (NCHRP Report 102 by Fisher et al., 

1970).     

The major general findings of these reports included the following: 

1. Stress range was the prominent stress variable (among all controlled stress variables) in 

all specimens including those with different weld details and steel types. 

2.  Type of the steel was not a significant factor affecting the fatigue life. 

3. the type of detail significantly influenced the fatigue strength of welded elements.  

4. The log of the number of cycles to failure at different stress ranges showed nearly normal 

distributions. 

5. The empirical exponential model relating the number of cycles to the stress range (shown 

below) fit to the test data in all specimens:  

𝑁 = 𝐴. 𝑆𝑟
−𝐵 

Where, 𝑁𝐶 is number of cycles and 𝑆𝑟 is stress range.  

The relationship between the stress range and the number of cycles to failure can be 

represented as a straight line (constant slope) on a log-log plot in nearly all detail types: 

log𝑁 = log𝐴 − 𝐵. log 𝑆𝑟 
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Where, log 𝐴 is the intercept and 𝐵 is the slope of the S-N line.   

6. Linear regression analyses of test data showed that all curves (related to different detail 

categories) had a slope of approximately -3.0.  

The fatigue test data related to plain rolled beams (obtained from various NCHRP studies) were 

grouped together to develop the detail category A (data points are shown in Figure 3.2) (NCHRP 

Report 286 by Keating and Fisher, 1986).  Category B data grouped the fatigue test data on 

longitudinal welds and flange splices. The individual Category B data points areas shown in Figure 

3.3. Transverse stiffeners and short (2-in) attachments were used to define category C (Figure 3.4). 

Intermediate attachments were considered in the development of Category D, (Figure 3.5). 

Category E included cover-plated beams and long attachments (Figure 3.6). Later, the NCHRP 

report 206 (Fisher et al., 1979) resulted in an expansion of the cover-plated beam data, and 

therefore a new category E′ was proposed. Figure 3.7 shows the fatigue data for the coverplated 

beams in both E and E′ categories. Appendix A lists the numerical fatigue test data associated with 

each fatigue category. These data form the basis for the current AASHTO bridge design 

specifications (NCHRP Report 286 by Keating and Fisher, 1986). 
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Figure 3.2. Fatigue data of category A, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

 

 

Figure 3.3. Fatigue data of category B, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 
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Figure 3.4. Fatigue data of category C, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

 

Figure 3.5. Fatigue data of category D, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 
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Figure 3.6. Fatigue data of category E, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

 

Figure 3.7. Fatigue data of category E′, NCHRP Reports 206 and 227(NCHRP Report 286 by Keating and 

Fisher, 1986) 
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Table 3.1 shows the intercept and slope values for all S-N curves that were fitted to the fatigue test 

data through linear regression analyses for each category according to the results of NCHRP 

Report 286 (Keating and Fisher, 1986). The fifth column in Table 3.1 includes the lower 

(horizontal) intercept of fatigue data calculated two standard deviations from the mean of data 

assuming lognormally distributed. Figure 3.8 shows the 1986 AASHTO fatigue curves, according 

to regression results listed in Table 3.1 (NCHRP Report 286 by Keating and Fisher, 1986).  

Table 3.1. Regression Analysis results for 1986 AASHTO curves from NCHRP 286 (Keating and Fisher, 

1986) 

Category Slope 
Intercept 

 (mean) 

Standard 

Deviation 

Intercept 

(lower) 

A 3.178 11.121 0.221 10.688 

B 3.372 10.87 0.147 10.582 

C 3.250 10.038 0.063 9.915 

D 3.071 9.664 0.108 9.453 

E 3.095 9.292 0.101 9.094 

E′ 3.000     8.61 
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Figure 3.8. Fatigue design curves in the 1986 AASHTO specifications (NCHRP Report 286 by Keating 

and Fisher, 1986)  

Following to the original NCHRP reports 102 and 147, other NCHRP studies (including NCHRP 
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a linear regression analysis of the data (from prior works) for each fatigue category, the authors 

proposed that a constant slope of - 3 would best fit data from all categories (Equation 3.31), 

resulting in parallel fatigue curves (with different intercepts) for all categories. The values 

proposed for constant A are shown in Table 3.2. The modified fatigue design curves, as current 

AASHTO fatigue curves, based on the proposed values of slope and constants A are shown in 

Figure 3.9.  

𝑁 = 𝐴. 𝑆𝑟
−3                   Equation 3.31 

Table 3.2. Coefficient A for fatigue design curves (NCHRP Report 286 by Keating and Fisher, 1986) 

Category Constant A 

A 2.500E+10 

B 1.191E+10 

C 4.446E+09 

D 2.185E+09 

E 1.072E+09 

E′ 3.908E+08 

A comparison of the allowable stress ranges for different load cycles of 1986 AASHTO and the 

proposed values as a result of NCHRP Report 286 (Keating and Fisher, 1986) is given in Table 

3.3. The values outside the parentheses show 1986 AAHTO values and the values in the 

parentheses show proposed values from NCHRP Report 286.  

Table 3.3. Comparison of allowable stress ranges obtained from the 1986 AASHTO provisions and the 

values proposed in NCHRP report 286 (NCHRP Report 286 by Keating and Fisher, 1986). 

Allowable Stress Range, ksi 

Category 
100,000 

cycles 

500,000 

cycles* 

2,000,000 

cycles* 

Above 

2,000,000 

cycles* 

A 60 (63) ---(37) 24 (24) 24 (24) 

B 45 (49) ---(29) 18 (18) 16 (16) 

C 32 (35.5) ---(21) 13 (13) 10 (10) 

D 27 (28) ---(16) 10 (10) 7 (7) 

E 21 (22) ---(13) 8 (8) 5 (4.5) 

E′ 16 (16) ---(9.2) 5.8 (5.8) 2.6 (2.6) 
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* The values outside the parentheses show 1986 AASHTO values and the values in the parentheses 

show proposed values from NCHRP report 286.  

 

Figure 3.9. Current AASHTO fatigue curves (AASHTO, 2018) 

In this study, to apply the survival analysis to fatigue data to each category, an attempt was made 

to extract the numerical data for different categories from the original fatigue studies (i.e. NCHRP 

Reports 102, 147, as shown in Figures 3.2 to 3.7). However, not all the data points that are shown 

on the graphs were listed in tabular form in NCHRP Reports 102 and 147. More than 80% of the 

data shown graphically matched the tabular data.  Attempts to obtain a complete list of numerical 

data from the authors and the sponsor were unsuccessful. Therefore, the remaining (missing) data 

were recovered by digitizing the plots included in NCHRP Report 286. The entire dataset for 

categories A through E′ are listed in Table A.1 through A.6 of Appendix A.     
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Chapter 4. Application of Survival Analysis to Fatigue Test Data 

In this chapter, survival analysis of fatigue data is studied, considering the effect of different 

contributing factors (covariates) on the reliability of fatigue resistance and the corresponding 

failure rates (hazard). The fatigue data used in these analyses (listed in Appendix A) were obtained 

in the 1970’s (add references) and are the basis for the current design codes for steel buildings and 

bridges (reference AISC and AASHTO). The covariates considered here are the stress range 

(numerical parameter) and the fatigue detail category (categorical parameter). Four different 

baseline survival distributions (Weibull, log-logistic, lognormal, Hypertabastic) were considered 

and the model parameters were determined using maximum likelihood estimation. The best -fit 

distribution (among the four evaluated) was then selected based on the AIC criterion. A description 

of the data analysis methods and the survival models are given in the following sections of this 

chapter.    

4.1. Nonparametric Survival Analysis of Fatigue Data 

The K-M nonparametric analysis was first performed to the fatigue data (listed in Appendix A). 

Figures 4.1 and 4.2. show the K-M survival and cumulative failure curves for different fatigue 

categories based on the original NCHRP fatigue data (NCHRP Report 102 by Fisher et al., 1970; 

NCHRP Report 147 by Fisher et al., 1974). The reliability curves for different categories in K-M 

plot intersect each other in several points, which is an indication that the AFT model should be 

used in lieu of the PH model.  
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Figure 4.1. K-M survival curves for different detail categories of fatigue data 

  

Figure 4.2. K-M cumulative failure for different categories of AASHTO fatigue data  
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likelihood function was used to find the model parameters for each of the four evaluated baseline 

distribution functions. The AIC criterion was used to find the most suitable distribution function 

for the survival analysis of bridge fatigue data. The Mathematica® and SAS/STAT® software 

programs were used to perform the maximum likelihood estimation and to determine various 

model parameters and AIC values.  Appendix B includes the SAS and Mathematica codes used 

for the survival analyses in this study.   

Table 4.1 shows the results of maximum likelihood estimation and the AIC values for log-logistic, 

lognormal, Hypertabastic, and Weibull distributions. Based on the AIC results, the log-logistic 

distribution was selected as the best-fit distribution for the bridge fatigue data. Equation 4.1 shows 

the log-likelihood function for the parametric AFT model using the log-logistic distribution.   

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑡) = ∑(𝛿𝑖 𝑙𝑛 (
(𝛽 𝛼⁄ )(𝑍(𝑡𝑖) 𝛼⁄ )𝛽−1

1 + (𝑍(𝑡𝑖) 𝛼⁄ )𝛽
𝑡𝑖𝑔(𝑋𝑖|𝜃))  

𝑛

𝑖=1

− 𝑙𝑛 (1

+ (𝑍(𝑡𝑖) 𝛼⁄ )𝛽)                                                                                  Equation 4.1 

𝛿𝑖 = {
0                            𝑖𝑓 𝑡𝑖 𝑖𝑠 𝑎 𝑟𝑖𝑔ℎ𝑡 𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛
1                                                                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑍(𝑡𝑖) = 𝑡𝑖𝑔(𝑋𝑖|𝜃) 

The survival time for the ith data set (out of a total of n sets) is ti.  The α and β are positive constants 

representing the scale and shape parameters, respectively. 𝑋 is a vector containing p covariates, 

and θ defines a vector of p constant multipliers for the different covariates. The constants , , 

  7 need to be determined during the maximum likelihood estimation.  

In fatigue survival analysis, the number of cycles applied (nc) replaces the time to event parameter 

t discussed in Chapter 3 (Equation 4.2). There are two covariates (stress range and detail category) 
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in the fatigue analyses presented here. When a categorical parameter is binary (two outcomes), 

one parameter can be used and the corresponding covariates can take a value of either 0 or 1. When 

the categorical parameter contains more than two possible outcomes, additional binary parameters 

and coefficients are introduced. For example, for a categorical parameter with five possible 

outcomes, five parameters and five coefficients are introduced with each parameter having two 

possible outcomes of 0 or 1. This approach is illustrated in Table 4.2.  

The log-likelihood function for the AFT log-logistic model can be represented as follows:  

𝐿𝐿(𝜃, 𝛼, 𝛽: 𝑛𝑐) = ∑(𝛿𝑖 𝑙𝑛 (𝑡𝑖
(𝛽 𝛼⁄ )(𝑍(𝑛𝑐𝑖) 𝛼⁄ )𝛽−1

1 + (𝑍(𝑛𝑐𝑖) 𝛼⁄ )𝛽
𝑔(𝑋𝑖|𝜃)) − 

𝑛

𝑖=1

𝑙𝑛 (1 + (𝑍(𝑛𝑐𝑖) 𝛼⁄ )𝛽)   

                                                                                                                  Equation 4.2 

The function 𝑔(𝑥|𝜃)  for the fatigue analysis described here is defined as:  

𝑔(𝑥|𝜃) =  exp (𝑆𝑟 . 𝜃1 + 𝐶𝐴. 𝜃2 + 𝐶𝐵. 𝜃3 + 𝐶𝐶 . 𝜃4 + 𝐶𝐷 . 𝜃5 + 𝐶𝐸 . 𝜃6 + 𝐶𝐸′. 𝜃7) 

Where Sr is the stress range. 𝐶𝐴, 𝐶𝐵, 𝐶𝐶, 𝐶𝐷, 𝐶𝐸, and 𝐶𝐸′ represent categorical parameters 

corresponding to fatigue detail categories A through E′, respectively. For each categorical 

parameter, a value of 1 is assigned to the coefficient associated with the applicable category while 

0 is assigned to all other categories. For example, the covariate "𝐶𝐴", for the fatigue detail category 

A, would have a value equal to 1 for the data belonging to category A and 0 for the fatigue data 

associated with other categories. Parameters 𝜃1 through 𝜃7 are the constants that must be 

determined using the maximum likelihood estimation.  
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Table 4.1. Akaike Information Criteria (AIC) for different distribution functions 

Model Distribution -2 log-likelihood AIC 

Log-logistic -676.007 -686.007 

Lognormal -707.582 -717.582 

Hypertabastic -717.189 -727.189 

Weibull -811.709 -821.709 

 

Table 4.2. Binary covariates for categorical data 

Category  CA CB CC CD CE CE′ 

A 1 0 0 0 0 0 

B 0 1 0 0 0 0 

C 0 0 1 0 0 0 

D 0 0 0 1 0 0 

E 0 0 0 0 1 0 

E′ 0 0 0 0 0 1 

 

4.3. Log-logistic AFT Model for Fatigue 

Based on the results of analyses discussed in the previous section, the parametric log-logistic AFT 

model was selected for the survival analysis of the fatigue data related to structural steel. The 

probability of survival (S), probability of failure (F), probability density function (f), hazard rate 

(h), and cumulative hazard (H) functions for the log-logistic AFT model for fatigue data are given 

in Eqs. 4.3 through 4.7.  

𝑆(𝑛𝑐𝑔) =
1

1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽
                                                                 Equation 4.3 

𝐹(𝑛𝑐𝑔) = 1 − 𝑆(𝑛𝑐𝑔) =
1

1 + (𝑛𝑐𝑔 𝛼⁄ )−𝛽
                                   Equation 4.4 
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𝑓(𝑛𝑐𝑔) =
1

1000

(𝛽 𝛼⁄ )(𝑛𝑐𝑔 𝛼⁄ )𝛽−1

(1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽)
2 𝑔(𝑥|𝜃)                                 Equation 4.5 

ℎ(𝑛𝑐𝑔) =
1

1000

(𝛽 𝛼⁄ )(𝑛𝑐𝑔 𝛼⁄ )𝛽−1

1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽
𝑔(𝑥|𝜃)                                 Equation 4.6 

𝐻(𝑛𝑐𝑔) = − ln (𝑆(𝑛𝑐𝑔)) = − ln(
1

1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽
 )                  Equation 4.7 

Where 𝑛𝑐𝑔 and 𝑔(𝑥|𝜃) are defined as:  

𝑛𝑐𝑔 =
𝑛𝑐

1000
. exp(𝑆𝑟. 𝜃1 + 𝐶𝐴. 𝜃2 + 𝐶𝐵. 𝜃3 + 𝐶𝐶 . 𝜃4 + 𝐶𝐷 . 𝜃5 + 𝐶𝐸 . 𝜃6 + 𝐶𝐸′ . 𝜃7)               𝐸𝑞. 4.8 

𝑔(𝑥|𝜃) = exp(𝑆𝑟. 𝜃1 + 𝐶𝐴. 𝜃2 + 𝐶𝐵. 𝜃3 + 𝐶𝐶 . 𝜃4 + 𝐶𝐷 . 𝜃5 + 𝐶𝐸 . 𝜃6 + 𝐶𝐸′ . 𝜃7)                    𝐸𝑞. 4.9 

As mentioned in the previous sections, parameters , , 𝜃1, 𝜃2,…, and 𝜃7 are determined using 

the maximum likelihood method.  Table 4.2. lists the calculated parameters when the entire dataset 

is analyzed together (herein referred to as “Global Analyses”). A second form of analysis when 

datasets associated with individual categories are analyzed separately (“Category Analyses”) is 

discussed later. 
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Table 4.3. Parameter and Standard Error Estimation for Log-logistic AFT Model (Global Analysis) 

  All Categories   

Parameter Estimate Standard Error t value P-value 

α 7.161 135.209 0.053 9.578E-01 

β 3.150 0.098 32.248 1.184E-145 

𝜃 1 0.163 0.004 41.267 2.597E-198 

𝜃 2 -12.168 18.882 -0.644 5.195E-01 

𝜃 3 -9.626 18.882 -0.510 6.103E-01 

𝜃 4 -8.497 18.882 -0.450 6.528E-01 

𝜃 5 -7.507 18.882 -0.398 6.910E-01 

𝜃 6 -6.757 18.882 -0.358 7.206E-01 

𝜃 7 -7.503 18.882 -0.397 6.912E-01 

 

4.4. Comparison of Global Fatigue Survival Functions with K-M Results 

The developed global log-logistic AFT model (Eqs. 4.3 through 4.8) can estimate the reliability 

(with respect to fatigue resistance) and hazard rate as a function of number of cycles (nc), stress 

range (Sr), and fatigue category (𝐶𝐴 through 𝐶𝐸′). Figures 4.3 through 4.8 show survival curves for 

different fatigue categories using the global log-logistic AFT model. Survival curves for each 

fatigue category are shown for the stress ranges that were predominant in the experimental data. 

In other words, the plots shown are associated with the discrete stress ranges for the actual data 

points in each category as reported in the fatigue test data. For comparison, the K-M survival 

curves are also plotted for each stress range in Figures 4.3 through 4.8. A comparison of the K-M 

survival curves (nonparametric model) with the log-logistic AFT model (parametric model) can 

be used to assess the overall accuracy of the predicted model in comparison with the actual test 

data. The consistency observed between the K-M and global AFT model curves shows that the 

model parameters represented the fatigue data reasonably well for the most part.  Some stress 

ranges in different categories had very limited number of data points. Therefore, the K-M 

comparison may not be ideal in such cases. 
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Figure 4.3 shows survival curves using the global log-logistic AFT and K-M models for category 

A and Sr values of 30, 36, 42, and 57 ksi. For most stress ranges, the survival curves show 

acceptable agreement with the K-M curves. However, the survival curve at Sr = 30 ksi was not 

compatible with the corresponding K-M curve with limited data points (Figure 4.3).   

Figure 4.4 shows the survival curves for category B data for Sr values of 18, 24, 30, and 36 ksi. 

The survival curves for Sr values of 18, 24, and 30 show very close agreement with the 

corresponding K-M curves. The estimated survival curve Sr of 36 ksi follows the slope of the 

corresponding K-M curve, but there is a shift between the two survival curves.  

Figures 4.5 and 4.6 show survival curves for category C and D, respectively. Survival curves in 

these figures for all stress range are very close to the K-M curves, indicating that the global log-

logistic AFT model is a good representative of survival times of fatigue data in these categories. 

Survival curves for category E is presented for Sr values of 8, 12, 16, 20, and 24 ksi in Figure 4.7. 

The survival curves for most stress ranges are consistent with the corresponding K-M curves 

except for the curve at Sr = 8 ksi, which shows deviation from the corresponding K-M curve at 

that stress range.  

Figure 4.8 displays the survival curves for category E′. The number of data points for each stress 

range in this category was very limited and many were censored (run-out) data. Therefore, the K-

M results could not be properly estimated for comparison with the model results.  
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Figure 4.3. Global Log-logistic AFT survival curves versus K-M survival curves for Category A  

 
Figure 4.4. Global Log-logistic AFT survival curves versus K-M survival curves for Category B 
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Figure 4.5. Global Log-logistic AFT survival curves versus K-M survival curves for Category C 

 
Figure 4.6. Global Log-logistic AFT survival curves versus K-M survival curves for Category D 

 

0.00

0.20

0.40

0.60

0.80

1.00

10000 100000 1000000 10000000 100000000

R
el

ia
b

il
it

y

Number of Cycles (nc)

Log-logistic and K-M survival, Category C Sr=14 ksi
Sr=16 ksi
Sr=18 ksi
Sr=20 ksi
Sr=23 ksi
Sr=28 ksi
K-M, Sr=14 ksi
K-M, Sr=16 ksi
K-M, Sr=18 ksi
K-M, Sr=20 ksi
K-M, Sr=23 ksi
K-M, Sr=28 ksi

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10000 100000 1000000 10000000 100000000

R
el

ia
b
il

it
y

Number of Cycles (nc)

Log-logistic and K-M survival, Category D

Sr=12 ksi

Sr=16 ksi

Sr=20 ksi

Sr=28 ksi

K-M, Sr=12 ksi

K-M, Sr=16 ksi

K-M, Sr=20 ksi

K-M, Sr=28 ksi



 

68 

 

 
Figure 4.7. Global Log-logistic AFT survival curves versus K-M survival curves for Category E 

 

 
Figure 4.8. Global Log-logistic AFT survival curves versus K-M survival curves for Category E′ 
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survival model was not in full agreement with the K-M results for all stress ranges and detail 

categories. Therefore, to further improve the compatibility of the model results with the non-

parametric results, the survival analyses were performed separately on the fatigue data for each 

category. These are referred to as “category-based analyses”. A set of new model parameters were 

calculated using the category-based analyses. Tables 4.4 through 4.9 list the calculated parameters 

along with standard error and P-values for the category analyses.  

The initial category E’ (NCHRP Report 286) was developed using data for coverplated beams 

from NCHRP Report 102 and 147 that fell below category E. However, later NCHRP Report 227 

conducted test on different fatigue details including coverplates thicker than 1-in that showed 

strength less than category E. These data were used to expand the available data for category E’. 

In this research, the category E’ data was considered from original data base (NCHRP Reports 102 

AND 147).  

Table 4.11 provides a summary of parameters estimates for different categories. The equations for 

𝑛𝑐𝑔 and 𝑔(𝑥|𝜃) to be used within Equation 4.4 through 4.9 are restated as shown below:  

𝑛𝑐𝑔 =
𝑛𝑐

1000
. exp(𝑆𝑟. 𝜃1 + 𝜃2)                                                              Equation 4.10 

𝑔(𝑥|𝜃) = exp(𝑆𝑟. 𝜃1 + 𝜃2)                                                                    Equation 4.11 

Where 𝜃1and 𝜃2 are the applicable constants for stress range and categorical data, respectively. 

Since, the separated data for each category is used in the category-based analyses, 𝜃2 has a 

multiplier equal to 1.  
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Table 4.4. Parameter and Standard Error Estimation for Category A using Log-logistic AFT Model  

Category A 

Parameter Estimate Standard Error t Value P-value 

α 9.918E+00 7.299E-02 1.359E+02 1.448E-61 

β 1.611E+00 2.285E-01 7.051E+00 7.640E-09 

𝜃 1 1.089E-01 1.674E-02 6.507E+00 5.021E-08 

𝜃 2 -9.670E+00 7.239E-01 -1.336E+01 1.919E-17 

Table 4.5. Parameter and Standard Error Estimation for Category B using Log-logistic AFT Model 

Category B 

Parameter Estimate Standard Error t Value P-value 

α 5.097 0.040 127.848 2.023E-157 

β 2.975 0.207 14.396 3.002E-30 

𝜃 1 0.121 0.007 16.447 1.197E-35 

𝜃 2 -8.788 0.203 -43.246 1.103E-87 

Table 4.6. Parameter and Standard Error Estimation for Category C using Log-logistic AFT Model  

Category C 

Parameter Estimate Standard Error t Value P-value 

α 3.880 0.047 82.107 9.410E-118 

β 3.692 0.275 13.449 9.443E-27 

𝜃 1 0.168 0.009 18.541 4.733E-39 

𝜃 2 -9.215 0.183 -50.269 1.002E-89 

Table 4.7. Parameter and Standard Error Estimation for Category D using Log-logistic AFT Model 

Category D 

Parameter Estimate Standard Error t Value P-value 

α 7.479 0.025 297.819 5.235E-70 

β 4.471 0.587 7.622 2.210E-09 

𝜃 1 0.176 0.010 18.060 3.976E-21 

𝜃 2 -7.696 0.188 -40.980 6.757E-35 
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Table 4.8. Parameter and Standard Error Estimation for Category E using Log-logistic AFT Model 

Category E 

Parameter Estimate Standard Error t Value P-value 

α 2.299 0.029 79.249 2.582E-236 

β 4.364 0.189 23.039 8.278E-74 

𝜃 1 0.195 0.005 42.195 1.777E-144 

𝜃 2 -8.419 0.067 -126.190 0.000E+00 

Table 4.9. Parameter and Standard Error Estimation for Category E′ using Log-logistic AFT Model  

Category E′ 

Parameter Estimate Standard Error t Value P-value 

α 9.322 0.074 125.652 3.053E-41 

β 2.329 0.421 5.532 5.784E-06 

𝜃 1 0.893 0.098 9.108 5.259E-10 

𝜃 2 -12.370 0.692 -17.887 3.308E-17 

Table 4.10. Parameter and Standard Error Estimation for Category E′ using Log-logistic AFT Model  

Category E′ with Additional Data 

Parameter Estimate Standard Error t Value P-value 

α 5.572 0.084 66.348 6.334E-55 

β 1.877 0.222 8.445 1.438E-11 

𝜃 1 0.470 0.059 8.001 7.696E-11 

𝜃 2 -9.820 0.468 -20.983 3.311E-28 

Table 4.11. Summary of Parameter Estimation for Category A through E′ using Log-logistic AFT Model 

Category α β θ1 θ2 

A 9.918 1.611 0.109 -9.670 

B 5.097 2.975 0.121 -8.788 

C 3.880 3.692 0.168 -9.215 

D 7.479 4.471 0.176 -7.696 

E 2.299 4.364 0.195 -8.419 

E′ 9.322 2.329 0.893 -12.370 
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Figure 4.9. Log-logistic AFT survival curves versus K-M survival curves for Category A, analyzed 

separately 

 

Figure 4.10. Log-logistic AFT survival curves versus K-M survival curves for Category B, analyzed 

separately 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10000 100000 1000000 10000000 100000000

R
el

ia
b

il
it

y

Number of Cycles (nc)

Log-logistic and K-M survival, Category A

Sr=30 ksi

Sr=36 ksi

Sr=42 ksi

Sr=57 ksi

K-M, Sr=30 ksi

K-M, Sr=36 ksi

K-M, Sr=42 ksi

K-M, Sr=57 ksi

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10000 100000 1000000 10000000 100000000

R
el

ia
b
il

it
y

Number of Cycles (nc)

Log-logistic and K-M survival, Category B
Sr=18 ksi

Sr=24 ksi

Sr=30 ksi

Sr=36 ksi

K-M, Sr=18 ksi

K-M, Sr=24 ksi

K-M, Sr=30 ksi

K-M, Sr=36 ksi



 

73 

 

 
Figure 4.11. Log-logistic AFT survival curves versus K-M survival curves for Category C, analyzed 

separately 

 
Figure 4.12. Log-logistic AFT survival curves versus K-M survival curves for Category D, analyzed 

separately 
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Figure 4.13. Log-logistic AFT survival curves versus K-M survival curves for Category E, analyzed 

separately 

 
Figure 4.14. Log-logistic AFT survival curves versus K-M survival curves for Category E′, analyzed 

separately 
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Figure 4.15. Log-logistic AFT survival curves versus K-M survival curves for Category E′, analyzed 

separately 
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parametric survival curves shows that the effects of covariates are properly simulated, and the 

developed log-logistic AFT model can be used for survival assessments for various fatigue 

categories and stress ranges.  

Figures 4.15 through 4.20 show the probability density functions for the various fatigue categories 

at different stress ranges using the developed category-based log-logistic AFT model. As expected, 

with an increase in the stress range, higher peaks of probability of failure appear at fewer number 

of cycles. Table 4.12 shows the maximum probability of failure with corresponding number of 

cycles at different stress ranges for category A. At a constant number of cycles, the probabilities 

of failure increase as stress range increases. For example, at 105 cycles, the probabilities of failure 

for Sr values of 30, 36, 42, and 57 ksi are 2.2E-8, 6.28E-8, 1.77E-7, and 1.89E-6, respectively.  

Table 4.12. Maximum PDF and corresponding number of cycles for category A 

Sr (ksi) NC Max PDF 

30 2400000 1.02E-07 

36 1250000 1.96E-07 

42 660000 3.77E-07 

57 125000 1.93E-06 
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Figure 4.16. Category-based log-logistic AFT probability density functions 

 
Figure 4.17. Log-logistic AFT pdf curves, for Category B analyzed separately 
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Figure 4.18. Log-logistic AFT pdf curves, for Category C analyzed separately 

 
Figure 4.19. Log-logistic AFT pdf curves, for Category D analyzed separately 
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Figure 4.20. Log-logistic AFT pdf curves, for Category E analyzed separately 

 
Figure 4.21. Log-logistic AFT pdf curves for Category E′, analyzed separately  
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Figures 4.21 through 4.26 show the characteristic hazard shapes for fatigue categories A through 

E′. As it is evident in these figures, the peak hazard rates corresponding to higher stress ranges 

occur at fewer number of cycles for all fatigue categories. Therefore, at higher stress ranges, fewer 

number of cycles are needed to reach the peak hazard rate. For example, for fatigue category A, 

the peak hazard rates for stress ranges 30, 36, 42, and 57 ksi are 1.39E-7, 2.66E-7, 5.12E-7, and 

2.62E-6, respectively, and the corresponding number of cycles are 4,400,000, 2,300,000, 

1,200,000, and 230,000, respectively. Similarly, at a constant number of cycles, the hazard rates 

increase as stress range increases. For instance, in category A, the hazard rates for Sr values of 30, 

36, 42, and 57 ksi are 2.21E-8, 6.31E-8, 1.79E- 8, and 2.18E-6, respectively.    

 
Figure 4.22. Log-logistic AFT hazard rates for Category A analyzed separately 
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Figure 4.23. Log-logistic AFT hazard rates for Category B analyzed separately 

 
Figure 4.24. Log-logistic AFT hazard rates for Category C analyzed separately 
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Figure 4.25. Log-logistic AFT hazard rates for Category D analyzed separately 

 
Figure 4.26. Log-logistic AFT hazard rates for Category E analyzed separately 
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Figure 4.27. Log-logistic AFT hazard rates for Category E′, analyzed separately 

Figures 4.27 through 4.32 show the cumulative hazard for different fatigue categories using the K-

M and log-logistic AFT models. The cumulative hazard plots are shown at different stress ranges 

for each fatigue category. As it is evident from these figures, the estimated cumulative hazard 

using the log-logistic AFT model follows the non-parametric K-M cumulative hazard with good 

agreement.   
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Figure 4.28. Log-logistic AFT and K-M cumulative hazard for Category A analyzed separately 

 
Figure 4.29. Log-logistic AFT and K-M cumulative hazard for Category B analyzed separately 
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Figure 4.30. Log-logistic AFT and K-M cumulative hazard for Category C analyzed separately 

 
Figure 4.31. Log-logistic AFT and K-M cumulative hazard for Category D analyzed separately 
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Figure 4.32. Log-logistic AFT and K-M cumulative hazard for Category E analyzed separately 

 
Figure 4.33. Log-logistic AFT and K-M cumulative hazard for Category E′ analyzed separately 
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4.5. Conditional Survival (CS) Analyses for Fatigue  

The concept of conditional survival is based on the conditional probability theory. The probability 

of survival changes as time goes on without failure. The knowledge gained by the fact that failure 

has not occurred at a particular time changes the probability of survival in the future. The CS 

concept has experienced significant development and use in the medical field in recent years 

(Merrill et al., 1999; Kato et al., 2001; Harshman et al., 2001; Wang et al., 2007; Fuller et al., 2007; 

Chang et al., 2009; Janssen-Heijnen et al., 2010; Xing et al., 2010; Merrill and Hunter, 2010; 

Zamboni et al., 2010; Parsons et al., 2011; Baade et al., 2011; Yu et al., 2012; Zabor et al., 2013; 

Hieke et al., 2015).  This important concept has generally been neglected in probabilistic remaining 

service analysis of bridges subjected to fatigue. The CS approach can be a powerful tool in 

probabilistic assessments of the remaining fatigue service life of bridge components after they 

have been subjected to a history of stress applications without failure. Furthermore, the CS 

approach can provide an important platform for reliability assessments due to cumulative damage 

(of different stress ranges) including their sequence. 

If a component has sustained nc1 cycles at a stress range of Sr1, what is the probability that it would 

survive nc2 additional cycles at the same stress range (or a different stress range)? After surviving 

nc1 cycles, the information gained from the fact that must be updated to reflect the new knowledge 

gained. Conditional survival (Equation 3.35) can be used as a measure to estimate remaining 

number of cycles (nc2) for a given level of reliability (survival), when the component has already 

survived a specific number of cycles (nc1).  
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Conditional survival is calculated using Equation 3.35: 

𝐶𝑆(𝑡, 𝑡𝑠) = {

1 𝑤ℎ𝑒𝑛                 0 ≤ 𝑡 ≤ 𝑡𝑠
𝑆(𝑡)

𝑆(𝑡𝑠)
                  𝑤ℎ𝑒𝑛 𝑡 > 𝑡𝑠

 

In the example provided above, the CS equation for fatigue can be written as:   

𝐶𝑆(𝑛𝑐, 𝑛𝑐1) = {

1 𝑤ℎ𝑒𝑛                0 ≤ 𝑛𝑐 ≤ 𝑛𝑐1

𝑆(𝑛𝑐1 + 𝑛𝑐2)

𝑆(𝑛𝑐1)
              𝑤ℎ𝑒𝑛 𝑛𝑐 > 𝑛𝑐1

 

The 𝑛𝑐1 indicates the number of cycles that a component from a particular fatigue category has 

already survived at a specific stress range. The 𝑛𝑐2 is the number of cycles that the fatigue prone 

component can survive (after surviving 𝑛𝑐1 number of cycles) to achieve a particular survival 

(probability of failure). The terms 𝑆(𝑛𝑐1 + 𝑛𝑐2) and 𝑆(𝑛𝑐1) can be calculated using Equation 4.3. 

A series of CS estimates for fatigue categories A, C, and E are calculated and shown in Figs 4.33 

through 4.47. These CS curves are calculated for different stress ranges and 𝑛𝑐1 of 106, 5X105, and 

5X105 cycles for categories A , C and E, respectively. Tables 4.9 through 4.11 list the survival 

probabilities associated with additional nc2 cycles calculated at different stress ranges, for 

categories A, C, and E, respectively. These tables provide a comparison between the results 

associated with unconditional/original (OS) and conditional (CS) survival estimates. 

As noted earlier, any additional information obtained from continued survival with future stress 

applications would alter the conditional survival curves and provide a broader and more accurate 

perspective of the remaining fatigue life. According to Figures 4.33 through 4.47, the probability 

of survival (or failure) on updated curves increases (or decreases) as a component survives a 

specific number of cycles, 𝑛𝑐1. For example, OS and CS survival for fatigue category A at 𝑛𝑐1 = 
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2x106 and 𝑆𝑟  = 36 ksi are 0.671 and 0.779, respectively. The “survival dividend” (better prognosis 

or difference between OS and CS) resulting from continued survival is more noticeable at higher 

stress ranges. As stress ranges increase, the survival dividend increases. The estimates of such a 

difference for category A at Sr of 30, 36, 42, and 57 ksi (𝑛𝑐 = 2x106) are 0.048, 0.108, 0.191, and 

0.311, respectively. However, at lower stress ranges, the difference between OS and CS curves 

would still exist but would not be as significant.  

Table 4.13. Unconditional and conditional survival values for category A for different nc and Sr values 

Catg. A Sr= 30 ksi Sr = 36 ksi Sr = 42 ksi Sr =57 ksi 

nC OS CS OS CS OS CS OS CS 

2x106 0.854 0.902 0.671 0.779 0.416 0.607 0.049 0.360 

3x106 0.753 0.795 0.515 0.598 0.270 0.395 0.026 0.192 

4x106 0.657 0.694 0.400 0.465 0.189 0.276 0.016 0.122 

5x106 0.572 0.604 0.318 0.369 0.140 0.204 0.012 0.086 

6x106 0.499 0.527 0.258 0.299 0.108 0.158 0.009 0.064 

7x106 0.437 0.462 0.213 0.248 0.086 0.126 0.007 0.050 

8x106 0.385 0.407 0.179 0.208 0.071 0.103 0.005 0.040 

9x106 0.341 0.360 0.153 0.178 0.059 0.087 0.005 0.033 

107 0.304 0.321 0.132 0.154 0.051 0.074 0.004 0.028 

 

Table 4.14. Unconditional and conditional survival values for category C at different nc and Sr values 

Catg. C Sr = 14 ksi Sr = 18 ksi Sr = 23 ksi Sr = 28 ksi 

NC OS CS OS CS OS CS OS CS 

6x105 0.999 0.999 0.986 0.993 0.756 0.880 0.122 0.570 

7x105 0.998 0.998 0.975 0.982 0.637 0.742 0.073 0.341 

8x105 0.997 0.997 0.960 0.967 0.517 0.602 0.046 0.214 

9x105 0.995 0.995 0.939 0.946 0.410 0.477 0.030 0.141 

106 0.992 0.993 0.913 0.920 0.320 0.372 0.021 0.096 
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Table 4.15.  Unconditional and conditional survival values for category E at different nc and Sr values 

Catg. E Sr = 8 ksi Sr = 12 ksi Sr = 16 ksi Sr = 20 ksi Sr = 24 ksi 

NC OS CS OS CS OS CS OS CS OS CS 

6x105 0.998 0.998 0.906 0.948 0.244 0.585 0.011 0.457 0.0004 0.451 

7x105 0.993 0.995 0.831 0.870 0.141 0.339 0.005 0.235 0.0002 0.230 

8x105 0.988 0.990 0.733 0.767 0.084 0.202 0.003 0.131 0.0001 0.129 

9x105 0.980 0.982 0.622 0.651 0.052 0.125 0.0018 0.079 0.0001 0.077 

106 0.969 0.970 0.509 0.533 0.034 0.080 0.001 0.050 0.0000 0.049 

 

 
Figure 4.34. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

A at Sr=30 ksi 
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Figure 4.35. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

A at Sr=36 ksi  

 

Figure 4.36. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

A at Sr=42ksi  
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Figure 4.37. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

A at Sr=57 ksi  

 
Figure 4.38. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

C, at Sr=14 ksi  
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Figure 4.39. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

C, at Sr=16 ksi  

 
 

Figure 4.40. Log-logistic unconditional survival (OS) versus conditional survival (CS) of fatigue category 

C, at Sr=18 ksi  
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Figure 4.41. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue category 

C, at Sr=20 ksi 

 
Figure 4.42. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue category 

C, at Sr=23 ksi  
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Figure 4.43. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue category 

C, at Sr=28 ksi  

 
Figure 4.44. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue category 

E, at Sr=8 ksi  

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

10000 100000 1000000 10000000 100000000

S
u

rv
iv

al

number of cycles (nc)

Log-logistic survival Sr= 28 ksi, Category C

S

CS at NC=5x10^5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

100000 1000000 10000000 100000000

S
u
rv

iv
al

number of cycles (nc)

Log-logistic survival at Sr=8 ksi, Category E

S

CS at NC=5x10^5



 

96 

 

Figure 4.45. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue 

category E, at Sr=12 ksi 

 

 
Figure 4.46. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue category 

E, at Sr=16 ksi  
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Figure 4.47. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue 

category E, at Sr=20 ksi 

 

 
Figure 4.48. Log-logistic unconditional survival (S) versus conditional survival (CS) of fatigue category 

E, at Sr=24 ksi 
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4.5.1. Example: 

Consider a bridge connection detail (category C) under tension and compressive stresses of 20 ksi 

(±20 ksi). Determine the following: 

a) probability of survival (reliability) at 0.5X106 number of cycles? 

b) probability of (unconditional) survival at 106 number of cycles? 

c) Assuming the bridge connection already survived 0.5X106 number of cycles, determine 

the probability of surviving (conditional survival) another 0.5X106 number of cycles? 

d) Estimate the survival dividend, the difference between unconditional and conditional 

survival, at 106 number of cycles? 

Solution: 

a) According to Eqs. 4.3 and using calculated parameters for fatigue category C, shown in 

Table 4.4: 

α= 3.87952  β= 3.69204  θ1= 0.16813   θ2= -9.21465 

Probability of survival at Sr= 20 ksi and 𝑛𝑐 = 0.5𝑋106: 

𝑛𝑐𝑔 =
𝑛𝑐

1000
. exp(𝑆𝑟. 𝜃1 + 𝜃2) =

0.5 ∗ 106

1000
exp(20 ∗ 0.16813 + −9.21465) = 1.437 

𝑆(𝑛𝑐𝑔) =
1

1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽
=

1

1 + (1.437
3.87952⁄ )

3.69204 = 0.975 

Therefore, the probability of survival at 5𝑋106 is 97.5%. 

b) Similarly, probability of survival at Sr= 20 ksi and 𝑛𝑐 = 106 would be calculated as: 

𝑛𝑐𝑔 =
𝑛𝑐

1000
. exp(𝑆𝑟. 𝜃1 + 𝜃2) =

106

1000
exp(20 ∗ 0.16813 + −9.21465) = 2.874 
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𝑆(𝑛𝑐𝑔) =
1

1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽
=

1

1 + (2.874
3.87952⁄ )

3.69204 = 0.751 

c) The conditional survival can be calculated through Equation 3.35, as following: 

𝐶𝑆(𝑛𝑐, 𝑛𝑐1) = {

1 𝑤ℎ𝑒𝑛                0 ≤ 𝑛𝑐 ≤ 𝑛𝑐1

𝑆(𝑛𝑐1 + 𝑛𝑐2)

𝑆(𝑛𝑐1)
              𝑤ℎ𝑒𝑛 𝑛𝑐 > 𝑛𝑐1

 

𝐶𝑆(106, 5𝑋106) =
𝑆(0.5𝑋106 + 0. 5𝑋106)

𝑆(0. 5𝑋106)
=

0.751

0.975
= 0.770 
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Chapter 5. Proposed Fatigue Reliability Equations and Their 

Application to AASHTO Fatigue Curves  

This Chapter includes a proposed set of survival equations developed for probabilistic reliability 

assessments of fatigue resistance in steel structures considering various detail categories and stress 

ranges. These equations are based on a log-logistic AFT survival model that was derived using the 

same fatigue test data that is the basis of the current AASHTO bridge design specifications. 

Furthermore, using these survival models, the level of reliability (probability of survival) 

associated with the various points located on the current AASHTO fatigue design curves are 

assessed for all fatigue categories. This is meant to assess the consistency of probability of survival 

(or failure) associated with the design fatigue curves for each category as well as across all different 

categories. In addition, a set of equations are derived (based on the developed log-logistic survival 

model) to determine the number of cycles needed to reach any level of reliability (of fatigue 

resistance) for any specific stress range. Similarly, an equation is proposed to determine the stress 

range that would result in a particular level of reliability for any given number of stress cycles.  

5.1. Proposed Equation for Consistent Fatigue Reliability 

Survival functions for log-logistic AFT model were introduced in section 4.3 of this study. 

Equation 4.3 computes the probability of survival (reliability with respect to fatigue resistance) as 

a function of the number of cycles applied. An equation for calculating the fatigue life at any 

particular level of reliability and any stress range is derived in this section based on the developed 

survival model. The proposed equation can be used to generate a fatigue design curve that would 

result in a uniform level of reliability for different values of nc and Sr. The proposed equation is 

derived as a function of the number of cycles, Sr, and the required level of reliability (𝑆𝑟𝑒𝑞) using 

the following steps: 
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𝑆(𝑛𝑐𝑔) =
1

1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽
                                                                        Equation 4.4  

If 𝑆(𝑛𝑐𝑔) is kept at a constant level of reliability, Sreq, then:  

𝑆𝑟𝑒𝑞 . (1 + (𝑛𝑐𝑔 𝛼⁄ )𝛽) = 1                                                                      Equation 5.1  

Multiplying both sides by 𝛼𝛽: 

𝑆𝑟𝑒𝑞 . 𝛼
𝛽 + 𝑆𝑟𝑒𝑞. 𝑛𝑐𝑔

𝛽
= 𝛼𝛽                                                                      Equation 5.2 

Solving Equation 5.2 for 𝑛𝑐𝑔
𝛽

 results in: 

𝑛𝑐𝑔
𝛽

=
𝛼𝛽(1 − 𝑆𝑟𝑒𝑞)

𝑆𝑟𝑒𝑞
                                                                               Equation 5.3 

Or, 

𝑛𝑐𝑔 = (
𝛼𝛽(1 − 𝑆𝑟𝑒𝑞)

𝑆𝑟𝑒𝑞
)

1
𝛽⁄

                                                                    Equation 5.4 

Substituting for 𝑛𝑐𝑔 =
𝑛𝑐

1000
. 𝑒𝑥𝑝(𝑆𝑟 . 𝜃1 + 𝜃2) in Equation 5.4, the number of cycles associated 

with a specific level of reliability and stress range can be calculated as: 

𝑛𝑐(𝑆𝑟𝑒𝑞, 𝑆𝑟) = 1000 (
𝛼𝛽(1 − 𝑆𝑟𝑒𝑞)

𝑆𝑟𝑒𝑞
)

1
𝛽⁄

𝑒−(𝑆𝑟.𝜃1+𝜃2)                    Equation 5.5 

Similarly, Equation 5.5 can be rewritten to determine 𝑆𝑟 as a function of the probability of survival 

(𝑆𝑟𝑒𝑞) and number of cycles (𝑛𝑐) in the following form: 
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𝑆𝑟(𝑆𝑟𝑒𝑞 , 𝑛𝑐) =

[
 
 
 
 
 

ln

(

  
 (

𝛼𝛽(1 − 𝑆𝑟𝑒𝑞)
𝑆𝑟𝑒𝑞

)

1
𝛽⁄

0.001𝑛𝑐

)

  
 

− 𝜃2

]
 
 
 
 
 

/𝜃1                              Equation 5.6              

The 𝑆𝑟𝑒𝑞 is a chosen probability of survival. The parameters α, β, 𝜃1, and 𝜃2 were calculated using 

maximum log-likelihood estimation, as discussed in previous chapters and summarized in Table 

4.11. Eqs. 5.5 and 5.6 can be developed for different categories using their corresponding 

parameters.  

5.2. Reliability Assessment for AASHTO Fatigue Equations 

The governing structural design codes for both buildings and bridges in the U.S. have incorporated 

reliability-based design approaches to ensure consistent and quantifiable levels of reliability within 

the structures. As discussed in Chapter 2, most of these reliability approaches use the concept of 

reliability index by assessing a limit state function that incorporates the estimated variabilities on 

both the load and resistance sides of the limit state function to assess the overall reliability. The 

current AASHTO specifications do not explicitly associate the fatigue design curves (for the 

various categories) with any particular level of reliability. However, the early literature that 

presented the fatigue data (and curves) indicate that the intended level of reliability for the design 

curves was 97.5% (or 2.5% probability of failure).    

Albrecht (1983) investigated reliability of AASHTO fatigue design curves using the reliability 

index approach. The linear (log-log) form of the S-N fatigue equation was used for reliability index 

calculations. Then, the reliability index, as a measure of probability of failure, was estimated for 

different fatigue details. Albrecht (1983) reported that the probability of failure could vary widely 

from 9.2x10-2 to 2.1x10-22 across different categories.  
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In this chapter, the probability of survival associated with the various points on the AASHTO 

fatigue curves are assessed using the proposed log-logistic AFT survival model. Using this 

approach, the probability of survival is calculated considering number of stress cycles and stress 

range as independent variables affecting the probability of survival. These calculations address the 

fatigue resistance side only and are calculated for each 𝑛𝑐 and 𝑆𝑟 pairs for the applicable fatigue 

detail category. These calculations do not consider the variability of load (variations in stress 

range).  

Reliability contours for AASHTO fatigue design curves are calculated using the proposed log-

logistic AFT model and plotted in Figures 5.1 through 5.6. The parameters used for survival 

calculations are those calculated in section 4.4 and summarized in Table 4.11 of this study.   

Figures 5.1 shows the reliability contour for fatigue category A. As shown in the figure, reliabilities 

associated with points on the AASHTO fatigue design curve for category A vary between 0.70 to 

0.95 (or probability of failure of 0.30 to 0.05) along the sloped line in the AASHTO fatigue curve. 

Since the available fatigue test data had very limited number of points below the threshold levels 

(infinite life zone), the estimates are not extended into that zone, and are only applicable to the 

finite life area (sloped line). The ranges of reliabilities (or probability of failures) are different for 

different detail categories. The variation in the reliabilities for categories A, B, C, D, E, and E′ are 

shown in Table 5.1.  
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Table 5.1. Range of reliability for different categories of AASHTO fatigue curves based on the log-

logistic AFT survival model 

Category Range of reliability 

A 0.7 to 0.95 

B 0.4 to 0.9 

C 0.6 to 0.96 

D 0.2 to 0.94 

E 0.1 to 0.99 

E′ 0.1 to 0.99 
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(a) 

 
(b) 

Figure 5.1. (a) Reliability contours - AASHTO fatigue category A, (b) close look at the reliability 

contours-AASHTO fatigue category A  
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(a) 

 
(b) 

Figure 5.2. (a) Reliability contours - AASHTO fatigue category B, (b) close look at the reliability 

contours-AASHTO fatigue category B  
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(a) 

 
(b) 

Figure 5.3. (a) Reliability contours - AASHTO fatigue category C, (b) close look at the reliability 

contours-AASHTO fatigue category C 
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(a) 

 
(b) 

Figure 5.4. (a) Reliability contours - AASHTO fatigue category D, (b) close look at the reliability 

contours-AASHTO fatigue category D 
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(a) 

 
(b) 

Figure 5.5. (a) Reliability contours - AASHTO fatigue category E, (b) close look at the reliability 

contours-AASHTO fatigue category E 
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(a) 

 
(b) 

Figure 5.6. (a) Reliability contours - AASHTO fatigue category E′, (b) close look at the reliability 

contours-AASHTO fatigue category E′ 
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Table 5.2 lists the means and standard deviations for the estimated probabilities of survival and 

failure for AASHTO fatigue categories (finite life zone) using the proposed log-logistic AFT 

survival model. The estimated survival probabilities are calculated for ten points along the finite 

life section of the AASHTO fatigue curve. The mean, standard deviation (St.Dev), and coefficient 

of variation (CV) values reported in Table 5.2 are calculated for those ten selected points. The 

estimated mean survival rate ranges between 0.882 and 0.923 and the standard deviation varies 

between 0.078 and 0.293 across all different categories. The reliability variations within each 

fatigue detail category cover a much wider range.  

Table 5.2. Average probabilities of survival and failure for different AASHTO fatigue categories using 

the log-logistic AFT model 

Category  
Probability 

of survival 

Probability 

of failure 
St.Dev CV (%) 

A 0.923 0.077 0.078 102.06 

B 0.914 0.086 0.218 255.46 

C 0.913 0.087 0.254 291.70 

D 0.915 0.085 0.248 291.70 

E 0.909 0.091 0.246 270.48 

E′ 0.882 0.118 0.293 248.23 

 

Using Equation 5.5, the uniform-reliability survival curves associated with 𝑆𝑟𝑒𝑞= 0.80, 0.85, 0.90, 

and 0.95 for different fatigue categories are shown in Figures 5.7 through 5.10, respectively. In 

these figures, the AASHTO fatigue curves are shown through dotted gray lines on the background.  
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Figure 5.7. Proposed uniform-reliability design curves at 𝑆𝑟𝑒𝑞= 0.80 for fatigue categories A through E′ 

 
Figure 5.8. Uniform proposed reliability curves at 𝑆𝑟𝑒𝑞= 0.85 for fatigue categories A through E′ 
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Figure 5.9. Uniform proposed reliability curves at 𝑆𝑟𝑒𝑞= 0.90 for fatigue categories A through E′ 

 
Figure 5.10. Uniform proposed reliability curves at 𝑆𝑟𝑒𝑞= 0.95 for fatigue categories A through E′ 
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Chapter 6. Summary and Conclusions 

Different parameters can influence fatigue life of engineering systems. The uncertainties inherent 

in these parameters make the nature of fatigue life stochastic. These parameters include materials, 

loading conditions, loading sequence, environmental conditions, and geometry details.    

This research studied fatigue reliability and remaining number of cycles to failure in bridges 

including affecting parameters. An advanced statistical method called survival analysis has been 

employed and developed for fatigue details tested for AASHTO fatigue curves. The data used for 

the survival analyses were extracted from NCHRP reports (NCHRP Report 102 by Fisher et al., 

1970; NCHRP Report 147 by Fisher et al., 1974; NCHRP Report 226 by Keating and Fisher, 

1986). AASHTO fatigue curves include different categories with different connection and weld 

details. Different fatigue categories and stress range are considered covariates as influencing 

factors in this analysis.  

Parametric survival analysis is the method used for the reliability assessment of fatigue in bridges. 

In parametric survival analysis, a baseline distribution which best fit the data is considered for the 

analysis. Lognormal distribution has been the most commonly used distribution in fatigue 

reliability analyses in the literature. In this study, lognormal, loglogistic, hypertabastic, and 

Weibull distributions were tested to find the best fit distribution for the AASHTO fatigue data. 

Using AIC method, loglogistic was selected as the best fit distribution for the available fatigue 

data. According to intersecting K-M survival curves for different AASHTO fatigue categories, 

AFT model was selected for further analyses.  
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The fatigue data were analyzed in two approaches. First, data of all categories were analyzed 

combined and constant parameters for covariate were calculated. Second, the data of each category 

were analyzed separately, and the corresponding parameters were calculated, consequently.  

The K-M survival curves were plotted versus AFT loglogistic survival curves for comparison in 

both approaches. The results from analyses of separate data showed a better agreement with K-M 

curves. Therefore, the calculated parameters from the latter analyses were considered for the rest 

of the analyses.  

The survival, hazard rate, pdf, and cumulative hazard curves were developed for different 

categories. According to survival curves, as stress ranges increase the probability of survival 

decreases and reversely the probability of failures increases. The results for pdf showed that larger 

probability of failures happen at smaller number of cycles and higher stress ranges, for all detail 

categories. Similarly, larger hazard rates occur at smaller number of cycles and higher stress 

ranges. The loglogistic AFT reliability contours were developed for all categories. According to 

the reliability contour results, the reliability of AASHTO fatigue curves are not consistent and vary 

in different ranges for different categories. The average reliability of ten random points on each 

AASHTO fatigue curve were calculated, showing a range of variation between 0.882 and 0.923 

over all categories.    

Conditional survival analysis was used as mean to account for updated information on survival 

curves. Results for CS showed that probability of survival increases as a fatigue component 

survives a specific number of cycles under a stress range.   
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At the end, a set of equations were proposed for calculating number of cycles corresponding to a 

specific reliability at a certain stress range. Similarly, a set of equations were proposed to calculate 

stress range corresponding to a specific level of reliability at a specific number of cycles.  
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Appendix A 

Table A-1: Fatigue data of category A, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

 Previous data 

 Nc Sr (ksi) Status 

1 101758 51.8 1 

2 118419 67.2 1 

3 192913 66.2 1 

4 163247 52.6 1 

5 334257 53.4 1 

6 433088 56.8 1 

8 474606 55.9 1 

8 727420 55.1 1 

9 728600 33.7 1 

10 1033582 46.5 1 

11 1049943 40.5 1 

12 1319652 41.8 1 

13 1659316 38.1 1 

14 1738396 29.9 1 

15 1874318 39.9 1 

16 2960348 45.1 0 

17 3247266 33.2 1 

18 3398063 37 1 

19 5051971 35.9 1 

20 6740198 55.1 0 

21 6347469 41.2 0 

22 6159303 36.4 0 

23 7284526 35.9 0 

24 750517 43.8 1 
 

 Original data 

 Nc Sr (ksi) Status 

1 553207 44.4 1 

2 579220 41.8 1 

3 685001 41.8 1 

4 695315 45.8 1 

5 750479 44.4 1 

6 835187 41.8 1 

7 848450 35.9 1 

8 988215 35.9 1 

9 1065968 41.8 1 

10 1514545 35.9 1 

11 1790234 41.8 1 

12 1846608 35.9 1 

13 2623957 29.9 1 

14 2702064 42.5 1 

15 4829002 29.9 0 

16 6258066 29.9 1 

17 7742680 35.9 1 

18 9882154 35.9 0 

19 9883656 34.3 0 

20 10351021 29.9 0 

21 10671567 29.9 0 

22 12056141 29.9 0 
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Table A-2: Fatigue data of category B, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

 

Plain Welded Beams 

  NC Sr (ksi) Status 

1 316374 42.2 1 

2 286163 35.2 1 

3 327744 30.7 1 

4 374825 36.0 1 

5 387691 36.0 1 

6 396580 34.8 1 

7 561951 36.5 1 

8 997485 36.1 1 

9 953962 33.3 1 

10 1154643 35.7 1 

11 1181049 34.9 1 

12 1105123 28.1 1 

13 401401 29.4 1 

14 449123 30.4 1 

15 469744 31.1 1 

16 562451 30.4 1 

17 622418 30.1 1 

18 658507 29.4 1 

19 665846 30.4 1 

20 745588 26.8 1 

21 806454 28.4 1 

22 1021090 30.1 1 

23 1414923 30.4 1 

24 1513982 29.4 1 

25 1480791 27.5 1 

26 1294720 23.7 1 

27 1118434 24.2 1 

28 1010733 24.2 1 

29 1057257 24.2 1 

30 1093549 24.2 1 

31 1603101 24.2 1 

32 2220179 27.5 1 

33 761623 34.5 1 

34 814537 36.9 1 

35 688167 35.6 1 
 

Plain Welded Beams (continued) 

 NC Sr (ksi) Status 

36 779517 29.7 1 

37 862531 30.1 1 

38 825493 23.9 1 

39 1548950 27.5 1 

40 2030890 22.9 1 

41 1835324 22.9 1 

42 1897904 24.0 1 

43 2030326 24.3 1 

44 2246795 24.0 1 

45 2457982 24.8 1 

46 2542781 24.0 1 

47 2910965 22.9 1 

48 4722601 22.4 1 

49 4468996 18.1 1 

50 4369563 18.1 1 

51 3224907 18.1 1 

52 2818112 17.5 1 

53 2380107 18.1 1 

54 2199859 18.1 1 

55 2126850 18.1 1 

56 1988022 18.0 1 

57 3697607 12.6 1 

58 6063647 13.6 1 

59 5729107 15.1 1 

60 5792316 16.0 1 

61 6333948 18.1 1 

62 6931231 17.7 1 

63 7756143 17.9 1 

64 9091852 13.5 1 

65 10525486 13.0 1 

66 9934841 17.7 0 

67 11368940 18.3 0 

68 10158657 18.5 1 

69 2516291 20.5 1 

70 2298689 22.4 1 
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Table A-2 (continued). 

Plain Welded Beams (continued) 

 NC Sr (ksi) Status 

71 1532473 24.5 1 

72 1354165 24.2 1 

73 350339 36.4 1 

74 424179 36.4 1 

75 507950 34.8 1 

76 502156 36.4 1 

77 680998 30.4 1 

78 696494 30.4 1 

79 720403 30.4 1 

80 745132 30.4 1 

81 770710 30.4 1 

82 902233 30.1 1 

83 965345 29.4 1 

84 922559 31.5 1 

85 537253 36.0 1 

86 531744 29.7 1 

87 1307769 30.4 1 

88 1236373 29.7 1 

89 10375981 24.3 1 

90 10509125 17.9 0 

91 12163536 18.1 1 

92 2221783 23.7 1 

93 1142805 29.4 1 

94 338881 32.9 1 

95 1196603 24.0 1 

96 1432522 24.2 1 

97 965613 27.8 1 
 

Flange Splices 

  NC Sr (ksi) Status 

1 286115 36.4 1 

2 295937 36.4 1 

3 316603 36.4 1 

4 331176 36.4 1 

5 346420 36.4 1 

6 419434 36.4 1 

7 443704 36.4 1 

8 464127 36.4 1 

9 490984 36.4 1 

10 502603 30.4 1 

11 519856 30.4 1 

12 543784 30.4 1 

13 727947 36.1 1 

14 833119 36.5 1 

15 744677 34.5 1 

16 1031840 35.3 1 

17 806141 30.8 1 

18 1129894 30.1 1 

19 1307769 30.4 1 

20 1279169 28.1 1 

21 1732815 29.4 1 

22 1223765 24.2 1 

23 1814389 24.0 1 

24 1385057 24.0 1 

25 789125 24.2 1 

26 834833 23.9 1 

27 987532 28.1 1 

28 1585166 24.2 1 

29 2630944 22.4 1 

30 3043940 24.6 1 

31 3148429 24.6 1 

32 3770839 22.7 1 

33 3894868 30.1 0 

34 10260472 24.0 0 

35 10854182 24.1 0 
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Table A-2 (continued). 

Flange Splices (continued) 

    

36 3048509 18.1 1 

37 9711638 18.5 0 

38 12164212 17.9 0 

39 614942 35.6 1 

40 420110 26.2 1 

41 273784 30.0 1 
 

A514/517 Straight Taper 

  NC Sr Status 

1 338863 33.3 1 

2 320203 36.0 1 

3 688205 35.2 1 

4 796591 35.3 1 

5 401356 30.0 1 

6 508374 29.4 1 

7 525737 30.4 1 

8 753563 30.4 1 

9 753856 28.1 1 

10 1566823 26.3 1 

11 1157276 22.4 1 

12 826411 19.1 1 

13 651755 24.2 1 

14 563076 24.2 1 

15 965399 29.1 1 
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Table A-3: Fatigue data of category C, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

 

Transverse Web Stiffener 

  NC Sr (ksi) Status 

1 213270 28.92669 1 

2 301665 28.90006 1 

3 355516 28.88746 1 

4 362063 28.88606 1 

5 576631 27.55695 1 

6 679567 27.54493 1 

7 667277 27.54627 1 

8 493773 28.86226 1 

9 521561 27.5643 1 

10 400293 25.86805 1 

11 415174 25.86555 1 

12 450710 25.8599 1 

13 498299 25.85301 1 

14 555963 25.84549 1 

15 561060 25.84487 1 

16 581917 25.84236 1 

17 643361 25.83547 1 

18 321563 24.05159 1 

19 422820 24.03411 1 

20 430608 24.03295 1 

21 493773 24.02421 1 

22 526342 24.02014 1 

23 576631 24.01431 1 

24 587252 24.01315 1 

25 1043504 25.80231 1 

26 869428 27.52691 1 

27 885441 23.76793 1 

28 1024632 23.75872 1 

29 1072465 23.97477 1 

30 1164261 23.96954 1 

31 450710 22.95272 1 

32 480439 22.94882 1 
 

Transverse Web Stiffener (Continued) 

 NC Sr (ksi) Status 

33 498299 22.9466 1 

34 536036 22.94215 1 

35 550913 22.94048 1 

36 561060 22.93937 1 

37 625987 22.9327 1 

38 679567 23.13899 1 

39 692084 23.13787 1 

40 704830 23.13675 1 

41 724392 23.13507 1 

42 737734 23.13395 1 

43 779252 22.91936 1 

44 793604 22.91825 1 

45 808220 22.91714 1 

46 823106 22.91603 1 

47 861531 22.91325 1 

48 952498 22.90714 1 

49 1034025 22.90215 0 

50 1122531 22.89715 1 

51 1153685 22.89549 1 

52 1207542 22.89271 1 

53 779252 20.53023 1 

54 838266 20.52625 1 

55 1207542 20.50636 1 

56 1263913 20.50387 1 

57 1397367 20.49841 1 

58 1410176 20.49791 1 

59 1940791 20.48053 1 

60 2308214 18.16972 0 

61 1820697 18.18118 0 

62 1739493 18.52008 1 

63 1631855 18.52322 1 

64 1476007 18.35896 1 
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Table A-3 (continued). 

Transverse Web Stiffener (Continue) 

 NC Sr (ksi) Status 

65 1559073 18.52546 1 

66 1544911 18.35674 1 

67 808220 19.25144 1 

68 838266 18.38657 1 

69 1092217 19.23605 1 

70 1062723 18.37499 1 

71 1132821 18.37187 1 

72 1164261 18.37054 1 

73 1207542 18.36876 1 

74 1229782 18.36787 1 

75 1263913 18.36653 1 

76 1322916 18.3643 1 

77 1335043 19.22579 1 

78 1372096 18.36252 1 

79 1397367 18.36163 1 

80 1436149 19.22207 1 

81 1692520 19.21368 1 

82 2899689 18.15872 1 

83 3147882 18.15476 1 

84 3176739 17.66151 1 

85 3417320 17.65808 1 

86 4746287 17.64268 1 

87 6184169 17.63029 1 

88 2287247 15.40443 1 

89 3007485 15.39324 1 

90 2598934 14.44142 1 

91 3176739 14.43372 1 

92 3778146 14.42708 1 

93 4493409 14.42043 1 

94 4746287 14.41834 1 

95 4878014 15.37348 1 

96 4412147 15.37757 1 

97 3847731 13.9066 0 

98 4412147 13.7746 0 

99 5247436 13.76826 0 

100 6072330 13.88976 0 

101 6592080 13.88673 0 
 

Transverse Web Stiffener 
(Continued) 

 NC Sr (ksi) Status 

102 7026896 13.75759 0 

103 3176739 13.78663 1 

104 2873349 13.7903 1 

105 2205266 13.67398 1 

106 2012940 13.80334 1 

107 1787770 13.80769 1 

108 9670900 13.746 0 

109 13069000 13.746 0 
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Table A-3 (continued). 

Flange Attachments < 2 in 

 NC Sr (ksi) Status 

1 242333 28.4 1 

2 251342 28.4 1 

3 352286 28.4 1 

4 442559 28.1 1 

5 526342 28.1 1 

6 502867 28.1 1 

7 545909 20.2 1 

8 625987 20.2 1 

9 661216 20.2 1 

10 692084 20.2 1 

11 1102230 20 1 

12 1602344 19.9 1 

13 1820697 20.1 1 

14 1871229 20.1 1 

15 1122531 16 1 

16 1174933 16 1 

17 1252432 16 1 

18 1476007 16.1 1 

19 3090954 16 1 

20 3576849 16.1 1 

21 3709819 16.1 1 

22 2873349 12 1 

23 4372068 12 1 

24 10790091 12 1 

25 15543384 12 1 

26 3812780 12 0 

27 3918599 12 0 
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Table A-4: Fatigue data of category D, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

Flange Attachments L = 4 in 
 NC Sr (ksi) Status 

1 100608 28.0 1 

2 117243 28.0 1 

3 122483 28.0 1 

4 142734 28.0 1 

5 159219 28.0 1 

6 173768 28.0 1 

7 170010 28.0 1 

8 181533 28.0 1 

9 228381 28.0 1 

10 300629 20.0 1 

11 307273 20.0 1 

12 365991 20.0 1 

13 382347 20.0 1 

14 399433 20.0 1 

15 435931 20.0 1 

16 486278 20.0 1 

17 497025 20.0 1 

18 519236 20.0 1 

19 592005 20.0 1 

20 579205 20.0 1 

21 497545 16.0 1 

22 531267 16.0 1 

23 646775 16.0 1 

24 737417 16.0 1 

25 822584 16.0 1 

26 878336 16.0 1 

27 937866 16.0 1 

28 1118609 12.0 1 

29 1194424 12.0 1 

30 1486251 12.0 1 

31 1731992 12.0 1 

32 1849379 12.0 1 

33 2155161 12.0 1 

34 2203020 12.0 1 

35 2404067 12.0 1 

36 4845859 9.0 1 
 

Flange Attachments L = 4 in 
(continued) 

 NC Sr (ksi) Status 

37 5650041 8.0 1 

38 6032978 8.0 1 

39 7182104 9.0 1 

40 8941547 8.0 1 

41 13565096 5.9 0 
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Table A-5: Fatigue data of category E, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

Coverplated Beams 

  NC Sr (ksi) Status 

1 392500 16 1 

2 393300 16 1 

3 336700 16 1 

4 192200 20 1 

5 168100 20 1 

6 288200 20 1 

7 176100 20 1 

8 114400 24 1 

9 93700 24 1 

10 85000 24 1 

11 797700 12 1 

12 654500 12 1 

13 724300 12 1 

14 276900 16 1 

15 316500 16 1 

16 328600 16 1 

17 325000 16 1 

18 197700 20 1 

19 159000 20 1 

20 147800 20 1 

21 2227400 8 1 

22 2693100 8 1 

23 2453200 8 1 

24 675600 12 1 

25 777600 12 1 

26 657800 12 1 

27 738600 12 1 

28 300700 16 1 

29 344100 16 1 

30 297200 16 1 

31 107700 20 1 

32 180300 20 1 

33 172000 20 1 

34 166000 20 1 
 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

35 418100 16 1 

36 356300 16 1 

37 289900 16 1 

38 186600 20 1 

39 154200 20 1 

40 170500 20 1 

41 231400 20 1 

42 108200 24 1 

43 842300 12 1 

44 667100 12 1 

45 708600 12 1 

46 366400 16 1 

47 264100 16 1 

48 317900 16 1 

49 369000 16 1 

50 176700 20 1 

51 172000 20 1 

52 149400 20 1 

53 83100 24 1 

54 6317000 6 1 

55 2443000 8 1 

56 1976500 8 1 

57 2277900 8 1 

58 702200 12 1 

59 757100 12 1 

60 747100 12 1 

61 657700 12 1 

62 272700 16 1 

63 314300 16 1 

64 295400 16 1 

65 178000 20 1 

66 203900 20 1 

67 159900 20 1 

68 199700 20 1 
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Table A-5 (continued). 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

69 394700 16 1 

70 482800 16 1 

71 546600 16 1 

72 242700 20 1 

73 295000 20 1 

74 254300 20 1 

75 282300 20 1 

76 156600 24 1 

77 137400 24 1 

78 170700 24 1 

79 843700 12 1 

80 848300 12 1 

81 1310900 12 1 

82 428500 16 1 

83 382100 16 1 

84 498000 16 1 

85 378200 16 1 

86 192300 20 1 

87 242800 20 1 

88 260000 20 1 

89 154100 24 1 

90 1988900 8 1 

91 3409200 8 1 

92 821700 12 1 

93 1004700 12 1 

94 1220000 12 1 

95 755200 12 1 

96 324800 16 1 

97 378000 16 1 

98 440800 16 1 

99 196400 20 1 

100 245400 20 1 

101 220300 20 1 

102 174000 20 1 
 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

103 555000 16 1 

104 552500 16 1 

105 484200 16 1 

106 192200 20 1 

107 227500 20 1 

108 288200 20 1 

109 242900 20 1 

110 114400 24 1 

111 134900 24 1 

112 209100 24 1 

113 1073800 12 1 

114 1272400 12 1 

115 1392100 12 1 

116 364100 16 1 

117 565600 16 1 

118 647800 16 1 

119 546100 16 1 

120 247700 20 1 

121 245700 20 1 

122 310400 20 1 

123 2227400 8 1 

124 2693100 8 1 

125 3428100 8 1 

126 844500 12 1 

127 945400 12 1 

128 1039300 12 1 

129 811600 12 1 

130 378800 16 1 

131 441400 16 1 

132 409700 16 1 

133 107700 20 1 

134 207400 20 1 

135 195500 20 1 

136 192600 20 1 
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Table A-5 (continued). 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

137 660300 16 1 

138 567700 16 1 

139 529500 16 1 

140 186600 20 0 

141 318100 20 1 

142 319700 20 1 

143 316600 20 1 

144 150500 24 1 

145 1004800 12 1 

146 667100 12 0 

147 1150700 12 1 

148 366400 16 1 

149 475300 16 1 

150 423500 16 1 

151 256800 20 1 

152 249100 20 1 

153 257600 20 1 

154 113600 24 1 

155 5488400 6 1 

156 2713600 8 1 

157 3132200 8 1 

158 2919800 8 1 

159 965900 12 1 

160 1085800 12 1 

161 993900 12 1 

162 930500 12 1 

163 446400 16 1 

164 459200 16 1 

165 450800 16 1 

166 228500 20 1 

167 265700 20 1 

168 217800 20 1 

169 199700 20 1 
 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

170 514800 16 1 

171 1227800 16 1 

172 854900 16 1 

173 341300 20 1 

174 429100 20 1 

175 445900 20 1 

176 282300 20 1 

177 156600 24 1 

178 213800 24 1 

179 285200 24 1 

180 1031100 12 1 

181 848300 12 0 

182 1310900 12 1 

183 428500 16 1 

184 542200 16 1 

185 598500 16 1 

186 492900 16 1 

187 192300 20 1 

188 339500 20 1 

189 260000 20 1 

190 192500 24 1 

191 1988900 8 1 

192 2916200 8 1 

193 3409200 8 1 

194 821700 12 1 

195 1004700 12 1 

196 1220000 12 1 

197 755200 12 1 

198 412500 16 1 

199 589600 16 1 

200 578000 16 1 

201 238800 20 1 

202 374000 20 1 

203 296000 20 1 

204 207000 20 1 
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Table A-5 (continued). 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

205 427400 16 1 

206 411800 16 1 

207 592600 16 1 

208 150000 20 1 

209 190000 20 1 

210 217900 20 1 

211 112300 24 1 

212 80800 24 1 

213 101200 24 1 

214 904300 12 1 

215 1033700 12 1 

216 755100 12 1 

217 373800 16 1 

218 345700 16 1 

219 481100 16 1 

220 166400 20 1 

221 185700 20 1 

222 188400 20 1 

223 84500 24 1 

224 8946200 6 1 

225 3211100 8 1 

226 4979000 8 1 

227 4798200 8 1 

228 778500 12 1 

229 632100 12 1 

230 919200 12 1 

231 423100 16 1 

232 503200 16 1 

233 371400 16 1 

234 189600 20 1 
 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

235 352500 16 1 

236 275700 16 0 

237 291300 16 1 

238 186300 20 1 

239 158200 20 1 

240 204000 20 1 

241 89300 24 1 

242 97000 24 1 

243 70500 24 1 

244 1768900 12 1 

245 1139100 12 1 

246 1109400 12 1 

247 499500 16 1 

248 444200 16 1 

249 410400 16 1 

250 207500 20 1 

251 176300 20 1 

252 155000 20 1 

253 3588700 8 1 

254 3460700 8 1 

255 4706800 8 1 

256 1113300 12 1 

257 878700 12 1 

258 907500 12 1 

259 277600 16 1 

260 472600 16 1 

261 522600 16 1 

262 120000 20 1 

263 147600 20 1 

264 233900 20 1 
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Table A-5 (continued). 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

265 6111000 8 1 

266 6317000 8 1 

267 2866000 8 1 

268 7004000 8 1 

269 2960000 9 1 

270 3681000 9 1 

271 808000 12 1 

272 1147000 12 1 

273 1225000 12 1 

274 595000 16 1 

275 714000 16 1 

276 491000 16 1 

277 885000 16 1 

278 518000 16 1 

279 714000 16 1 

280 279000 20 1 

281 279000 20 1 

282 192000 20 1 

283 213000 20 1 

284 786000 15 1 

285 855000 15 1 

286 175000 20 1 

287 190000 20 1 

288 165000 24 1 

289 165000 24 1 

290 167000 24 1 
 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

291 320100 16 1 

292 391900 16 1 

293 265500 16 1 

294 160300 20 1 

295 121200 20 1 

296 122600 20 1 

297 80700 24 1 

298 105000 24 1 

299 83300 24 1 

300 949400 12 1 

301 951100 12 1 

302 976900 12 1 

303 342700 16 1 

304 357800 16 1 

305 472500 16 1 

306 172000 20 1 

307 166800 20 1 

308 226400 20 1 

309 3728600 8 1 

310 3679300 8 1 

311 3217900 8 1 

312 1011000 12 1 

313 855700 12 1 

314 1186400 12 1 

315 334100 16 1 

316 598400 16 1 

317 433400 16 1 

318 184600 20 1 

319 141400 20 1 

320 273900 20 1 
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Table A-5 (continued). 

Coverplated Beams (continued) 

  NC Sr (ksi) Status 

321 135599 24.0 1 

322 151247 24.0 1 

323 155434 24.0 1 

324 171020 24.0 1 

325 193378 24.0 1 

326 207038 24.0 1 

327 215693 24.0 1 

328 107571 20.0 1 

329 287316 24.0 1 

330 5505186 6.0 1 

331 1239579 16.0 1 

332 338638 20.0 1 

333 135599 24.0 1 

334 151247 24.0 1 

335 155434 24.0 1 

336 171020 24.0 1 

337 193378 24.0 1 

338 207038 24.0 1 

339 215693 24.0 1 

 

8 in Flange Attachments 

  NC Sr (ksi) Status 

1 3701033 9.0 1 

2 7032651 8.0 1 

3 717965.8 16.0 1 

4 857564.6 15.0 1 

5 881121.9 16 1 
 

Wide Coverplates without End Welds 

  NC Sr (ksi) Status 

1 308200 16.0 1 

2 156700 16.0 1 

3 198600 16.0 1 

4 186300 20.0 1 

5 158200 20.0 1 

6 122400 20.0 1 

7 77400 24.0 1 

8 47500 24.0 1 

9 53600 24.0 1 

10 557600 12.0 1 

11 432900 12.0 1 

12 440600 12.0 1 

13 232400 16.0 1 

14 178700 16.0 1 

15 197600 16.0 1 

16 99700 20.0 1 

17 103200 20.0 1 

18 142200 20.0 1 

19 1533600 8.0 1 

20 1211800 8.0 1 

21 1374000 8.0 1 

22 385500 12.0 1 

23 313300 12.0 1 

24 551400 12.0 1 

25 149500 16.0 1 

26 208900 16.0 1 

27 220700 16 1 

28 68700 20 1 

29 100500 20 1 

30 136300 20 1 
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Table A-6: Fatigue data of category E′, original database (NCHRP Report 286 by Keating and Fisher, 

1986) 

Coverplated Beams 

  NC Sr (ksi) Status 

1 827065 8.0 1 

2 942955.8 8.0 1 

3 1098841 8.0 1 

4 1397482 8.0 1 

5 1459924 8.0 1 

6 1525156 8.0 1 

7 1664493 8.0 1 

8 1777288 8.0 1 

9 2116866 8.0 1 

10 2026327 8.0 1 

11 2362051 8.0 1 

12 2577847 8.0 1 

13 2939062 8.0 1 

14 3904848 8.0 1 

15 2126184 6.0 1 

16 3514921 6.0 1 

17 5096578 6.0 1 

18 7720148 6.0 1 

19 9398384 6.0 1 

20 11445030 6.0 1 

21 12561375 4.0 1 

22 21571650 6.0 0 

23 24062631 6.0 0 

24 27434357 6.0 0 

25 32861154 4.0 1 

26 41805216 4.0 0 

27 48716277 4.0 0 

28 58024267 4.0 0 

29 66154797 4.0 0 

 

 

 

Data from Figure 14 Report 286 
Penetrating Web Plate 

  NC Sr (ksi) Status 

1 139935 11.6 1 

2 350966 14.3 1 

3 515626 13.5 1 

4 495181 10.5 1 

5 552753 10.1 1 

6 905832 11.7 1 

7 1082976 11.4 1 

8 1068908 9.2 1 

9 1194069 6.9 1 

10 971575 7.4 1 

11 8634881 5.1 1 

 

Data from Figure 14 Report 286 
Greater than 1 in Thickness 

  NC Sr (ksi) Status 

1 679363 9.3 1 

2 778891 11.4 1 

3 944592 9.3 1 

4 1160668 9.3 1 

5 1039906 9.3 1 

6 985293 6.7 1 

7 1177831 6.8 1 

8 1776933 8.8 1 

9 1425292 11.4 1 

10 1505778 11.4 1 

11 957890 8.6 1 

12 3485162 6.9 1 

13 4978483 8.1 1 

14 4914620 6.1 1 

15 4344112 5.7 1 

16 3301997 5.1 1 
 

 



 

146 

 

Appendix B 

This appendix includes the SAS and Mathematica codes used for data analysis in this study. These 

codes were used to find the maximum log-likelihood values and the parameters for Weibull, 

Lognormal, log-logistic, and hypertabastic distributions.  

B.1 SAS Code for Weibull Distribution 

Proc nlp data=Mylib.Fatiguedata tech=quanew cov=2 vardef=n pcov phes 

maxiter=250; 

/*Weibull Accelerated Failure Model*/ 

title1 'Fatigue-Wribull Accelerated Failure Model-Log time';  /*fit model 1*/ 

max logf; 

parms alpha=0.01, beta=0.1, c1=0.01, c2=0, c3=0, c4=0, c5=0, c6=0, c7=0; 

Bounds alpha>0; 

Bounds beta>0; 

t=NC/1000; 

Eg = exp(c1*SR + c2*A + c3*B+c4*C+c5*D+c6*E+c7*EP); 

tg = t*Eg; 

t1 = (tg/alpha)**beta; 

t2 = (tg/alpha)**(beta-1); 

S1 = exp(-t1); 

h = (beta/alpha)*t2; 

survival = log(S1) + Status*log(t*h*Eg); 

logf=survival; 

run; 

ods graphics off; 

B.2 SAS Code for Lognormal Distribution 

Proc nlp data=Mylib.Fatiguedata tech=quanew cov=2 vardef=n pcov phes 

maxiter=15000; 

/*Lognormal Accelerated Failure Model*/ 

title1 'Fatigue-Lognormal Accelerated Failure Model-Log time';  /*fit model 1*/ 

max logf; 

parms alpha=3, beta=.01, c1=0.1, c2=0, c3=0, c4=0, c5=0, c6=0, c7=0; 

Bounds alpha>0; 

Bounds beta>0; 

t=NC/1000; 

Eg = exp(c1*SR + c2*A + c3*B+c4*C+c5*D+c6*E+c7*EP); 

tg = t*Eg; 

pi=constant("pi"); 

St = (1/2)-(1/2)*erf((log(tg)-alpha)/(beta*sqrt(2))); 

h1=(-1)*sqrt(2)*exp((((-1)*(log(tg)-alpha))**2)/(2*beta**2)); 

h2=1/(sqrt(pi)*tg*beta); 

h3=1/(erf((sqrt(2)*(log(tg)-alpha))/(2*beta))-1); 

h=h1*h2*h3; 

survival = log(St) + Status*log(h*t*Eg); 

logf=survival ; 

run; 

ods graphics off; 
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B.3 SAS Code for Log-logistic Distribution 

Proc nlp data=Mylib.Fatiguedata tech=quanew cov=2 vardef=n pcov phes 

maxiter=250; 

/*Loglogistic Accelerated Failure Model*/ 

title1 'Fatigue-Loglogistic Accelerated Failure Model-Log time';  /*fit model 

1*/ 

max logf; 

parms alpha=1, beta=3, c1=0.1, c2=0, c3=0, c4=0, c5=0, c6=0, c7=0; 

Bounds alpha>0; 

Bounds beta>0; 

t=NC/1000; 

Eg = exp(c1*SR + c2*A + c3*B+c4*C+c5*D+c6*E+c7*EP); 

tg = t*Eg; 

t1 = (tg/alpha)**beta; 

t2 = (tg/alpha)**(beta-1); 

S1 = 1/(1+(t1)); 

h = ((beta/alpha)*t2)/(1+t1); 

survival = log(S1) + Status*log(t*h*Eg); 

logf=survival; 

run; 

ods graphics off; 

B.4 SAS Code for Hypertabastic Distribution 

Proc nlp data=Mylib.Fatiguedata tech=quanew cov=2 vardef=n pcov phes 

maxiter=250; 

/*Hypertabastic Accelerated Failure Model*/ 

title1 'Fatigue-Hypertabastic Accelerated Failure Model-Log time';  /*fit model 

1*/ 

max logf; 

parms alpha=0.01, beta=0.1, c1=0.01, c2=0, c3=0, c4=0, c5=0, c6=0, c7=0; 

Bounds alpha>0; 

Bounds beta>0; 

t=NC/1000; 

Eg = exp(c1*SR + c2*A + c3*B+c4*C+c5*D+c6*E+c7*EP); 

tg = t*Eg; 

t1 = tg**beta; 

t2 = tg**(beta-1); 

t3 = tg**(2*beta-1); 

W = alpha*(1-t1*(1/tanh(t1)))/beta; 

S1 = 1/cosh(W); 

h = alpha*(t3*(1/sinh(t1))**2-t2*(1/tanh(t1)))*tanh(W); 

survival = log(S1) + Status*log(t*h*Eg); 

logf=survival; 

run; 

ods graphics off; 

 

 



 

148 

 

B.5 Mathematica Code for Lognormal Distribution 

In[  ]:= n = 780; 

t = N[ 
Rationalize[{1.01758, 1.184185, 1.929133, 1.632468, 3.342573, 4.330875, 4.746055, 7.2742, 
7.286002, 10.335824, 10.499428, 13.196519, 16.593162, 17.383961, 18.74318, 29.60348, 
32.472662, 33.980631, 50.519712, 67.401977, 63.474692, 61.593032, 72.845255, 7.505166, 
5.532074, 5.792199, 6.85001, 6.953151, 7.504785, 8.351873, 8.484503, 9.882154, 
10.65968, 15.145446, 17.902337, 18.466083, 26.239568, 27.020643, 48.290015, 
62.580658, 77.426804, 98.821536, 98.836556, 103.510205, 106.715672, 120.561414, 
3.163742, 2.86163, 3.277438, 3.748247, 3.876913, 3.965796, 5.619509, 9.974846, 
9.539624, 11.54643, 11.810489, 11.051229, 4.014008, 4.491231, 4.697437, 5.624507, 
6.22418, 6.585067, 6.658459, 7.455877, 8.064543, 10.210903, 14.149226, 15.139823, 
14.807906, 12.947201, 11.184336, 10.107334, 10.572567, 10.935492, 16.031005, 
22.201791, 7.616226, 8.145369, 6.88167, 7.795166, 8.625312, 8.254934, 15.489503, 
20.308901, 18.353244, 18.979038, 20.303261, 22.467953, 24.579823, 25.427813, 
29.109649, 47.22601, 44.689955, 43.69563, 32.249074, 28.181115, 23.80107, 21.998588, 
21.268504, 19.880221, 36.976074, 60.636466, 57.291073, 57.923163, 63.33948, 69.312312, 
77.561428, 90.918521, 105.254858, 99.34841, 113.689403, 101.586574, 25.162909, 
22.986888, 15.324729, 13.541645, 3.503389, 4.241794, 5.079504, 5.021562, 6.809977, 
6.964943, 7.204029, 7.451322, 7.707103, 9.022329, 9.653452, 9.225588, 5.372528, 
5.317444, 13.077689, 12.36373, 103.759805, 105.091251, 121.635358, 22.217832, 
11.428045, 3.388813, 11.96603, 14.325217, 9.656134, 2.861153, 2.959368, 3.166028, 
3.311758, 3.464195, 4.19434, 4.43704, 4.641274, 4.909836, 5.026028, 5.198557, 
5.437842, 7.279465, 8.331185, 7.446769, 10.318399, 8.061407, 11.298941, 13.077689, 
12.791692, 17.328152, 12.237645, 18.143889, 13.850565, 7.891247, 8.348329, 9.875317, 
15.851662, 26.309442, 30.439395, 31.484288, 37.708394, 38.948676, 102.604716, 
108.541818, 30.485089, 97.116383, 121.642116, 6.149422, 4.201103, 2.737836, 
3.388625, 3.202026, 6.882052, 7.965909, 4.013562, 5.083739, 5.257372, 7.535625, 
7.538556, 15.66823, 11.572761, 8.264111, 6.517551, 5.63076, 9.653988, 2.13270107, 
3.016646621, 3.55515592, 3.620634425, 5.766313932, 6.795673372, 6.672774875, 
4.937727067, 5.215610511, 4.002928263, 4.151737193, 4.507097589, 4.982990882, 
5.559634422, 5.61059922, 5.819173347, 6.433605475, 3.215625928, 4.228203472, 
4.306078098, 4.937727067, 5.263421666, 5.766313932, 5.872517322, 10.43503849, 
8.694283906, 8.854414354, 10.24632275, 10.72464909, 11.64260593, 4.507097589, 
4.804387683, 4.982990882, 5.360362837, 5.50913257, 5.61059922, 6.259871088, 
6.795673372, 6.920835401, 7.048302652, 7.243918907, 7.377336678, 7.792515504, 
7.936037272, 8.082202408, 8.2310596, 8.615307952, 9.524977021, 10.34025011, 
11.22530502, 11.53684841, 12.07542002, 7.792515504, 8.382658428, 12.07542002, 
12.63913362, 13.97366849, 14.10176418, 19.40791422, 23.08214101, 18.20697436, 
17.39493144, 16.31855269, 14.76007306, 15.5907346, 15.4491136, 8.082202408, 
8.382658428, 10.9221746, 10.62722998, 11.32820664, 11.64260593, 12.07542002, 
12.29782389, 12.63913362, 13.22916291, 13.35043377, 13.72095728, 13.97366849, 
14.36148906, 16.92519518, 28.99688773, 31.47882361, 31.76738789, 34.17319628, 
47.46287364, 61.84169348, 22.8724706, 30.07484755, 25.98933962, 31.76738789, 
37.7814596, 44.93409071, 47.46287364, 48.78014251, 44.12146599, 38.47731472, 
44.12146599, 52.47436114, 60.72329788, 65.92079816, 70.26896233, 31.76738789, 
28.73348974, 22.05266247, 20.12940378, 17.8777046, 96.709, 130.69, 2.423328, 
2.513415, 3.522862, 4.425588, 5.263422, 5.02867, 5.459089, 6.259871, 6.612162, 
6.920835, 11.022297, 16.023435, 18.206974, 18.712285, 11.225305, 11.749333, 
12.524324, 14.760073, 30.909535, 35.768494, 37.098189, 28.73349, 43.720681, 
107.900908, 155.433839, 38.1278, 39.185986, 1.00608466, 1.172433479, 1.224827639, 
1.427344027, 1.592192518, 1.737677239, 1.700104939, 1.815331231, 2.28380551, 

3.006287171, 3.072726083, 3.659914284, 3.823469948, 3.99433465, 4.359312285, 
4.862783097, 4.970250547, 5.192363025, 5.920049649, 5.79204551, 4.975451655, 
5.312667806, 6.467748315, 7.374174525, 8.225841345, 8.783355868, 9.378656488, 
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11.18608703, 11.94423513, 14.86251063, 17.31991921, 18.49379385, 21.55160884, 
22.03020316, 24.04067254, 48.45859322, 56.50041014, 60.32978125, 71.82104227, 
89.41546755, 135.6509554, 3.925, 3.933, 3.367, 1.922, 1.681, 2.882, 1.761, 1.144, 
0.937, 0.85, 7.977, 6.545, 7.243, 2.769, 3.165, 3.286, 3.25, 1.977, 1.59, 1.478, 
22.274, 26.931, 24.532, 6.756, 7.776, 6.578, 7.386, 3.007, 3.441, 2.972, 1.077, 
1.803, 1.72, 1.66, 4.181, 3.563, 2.899, 1.866, 1.542, 1.705, 2.314, 1.082, 8.423, 
6.671, 7.086, 3.664, 2.641, 3.179, 3.69, 1.767, 1.72, 1.494, 0.831, 63.17, 24.43, 
19.765, 22.779, 7.022, 7.571, 7.471, 6.577, 2.727, 3.143, 2.954, 1.78, 2.039, 1.599, 
1.997, 3.947, 4.828, 5.466, 2.427, 2.95, 2.543, 2.823, 1.566, 1.374, 1.707, 8.437, 
8.483, 13.109, 4.285, 3.821, 4.98, 3.782, 1.923, 2.428, 2.6, 1.541, 19.889, 56.986, 
34.092, 8.217, 10.047, 12.2, 7.552, 3.248, 3.78, 4.408, 1.964, 2.454, 2.203, 1.74, 
5.55, 5.525, 4.842, 1.922, 2.275, 2.882, 2.429, 1.144, 1.349, 2.091, 10.738, 12.724, 
13.921, 3.641, 5.656, 6.478, 5.461, 2.477, 2.457, 3.104, 22.274, 26.931, 34.281, 
8.445, 9.454, 10.393, 8.116, 3.788, 4.414, 4.097, 1.077, 2.074, 1.955, 1.926, 6.603, 
5.677, 5.295, 1.866, 3.181, 3.197, 3.166, 1.505, 10.048, 6.671, 11.507, 3.664, 4.753, 
4.235, 2.568, 2.491, 2.576, 1.136, 54.884, 27.136, 31.322, 29.198, 9.659, 10.858, 
9.939, 9.305, 4.464, 4.592, 4.508, 2.285, 2.657, 2.178, 1.997, 5.148, 12.278, 8.549, 
3.413, 4.291, 4.459, 2.823, 1.566, 2.138, 2.852, 10.311, 8.483, 13.109, 4.285, 5.422, 
5.985, 4.929, 1.923, 3.395, 2.6, 1.925, 19.889, 29.162, 34.092, 8.217, 10.047, 
12.2, 7.552, 4.125, 5.896, 5.78, 2.388, 3.74, 2.96, 2.07, 4.274, 4.118, 5.926, 1.5, 
1.9, 2.179, 1.123, 0.808, 1.012, 9.043, 10.337, 7.551, 3.738, 3.457, 4.811, 1.664, 
1.857, 1.884, 0.845, 89.462, 32.111, 49.79, 47.982, 7.785, 6.321, 9.192, 4.231, 
5.032, 3.714, 1.896, 3.525, 2.757, 2.913, 1.863, 1.582, 2.04, 0.893, 0.97, 0.705, 
17.689, 11.391, 11.094, 4.995, 4.442, 4.104, 2.075, 1.763, 1.55, 35.887, 34.607, 
47.068, 11.133, 8.787, 9.075, 2.776, 4.726, 5.226, 1.2, 1.476, 2.339, 3.082, 1.567, 
1.986, 1.863, 1.582, 1.224, 0.774, 0.475, 0.536, 5.576, 4.329, 4.406, 2.324, 1.787, 
1.976, 0.997, 1.032, 1.422, 15.336, 12.118, 13.74, 3.855, 3.133, 5.514, 1.495, 
2.089, 2.207, 0.687, 1.005, 1.363, 61.11, 63.17, 28.66, 70.04, 29.6, 36.81, 8.08, 
11.47, 12.25, 5.95, 7.14, 4.91, 8.85, 5.18, 7.14, 2.79, 2.79, 1.92, 2.13, 7.86, 
8.55, 1.75, 1.9, 1.65, 1.65, 1.67, 3.201, 3.919, 2.655, 1.603, 1.212, 1.226, 0.807, 
1.05, 0.833, 9.494, 9.511, 9.769, 3.427, 3.578, 4.725, 1.72, 1.668, 2.264, 37.286, 
36.793, 32.179, 10.11, 8.557, 11.864, 3.341, 5.984, 4.334, 1.846, 1.414, 2.739, 
1.355991302, 1.512472385, 1.554336664, 1.710199688, 1.933776116, 2.070381059, 
2.156933433, 1.075714587, 2.873158828, 55.05185855, 12.39578922, 3.386378775, 
1.355991302, 1.512472385, 1.554336664, 1.710199688, 1.933776116, 2.070381059, 
2.156933433, 37.0103336, 70.32651004, 7.17965761, 8.575646443, 8.8112194, 
8.270650394, 9.429558098, 10.98841275, 13.97482483, 14.59924058, 15.25155614, 
16.64492883, 17.77287888, 21.1686592, 20.26326661, 23.62051326, 25.77846867, 
29.39062304, 39.04847643, 21.26183892, 35.14921148, 50.9657797, 77.20148442, 
93.983836, 114.4502989, 125.6137499, 215.7165032, 240.6263054, 274.3435665, 
328.611543, 418.0521594, 487.1627739, 580.2426722, 661.5479712}, 0], 25]; 
x1 = 
N[Rationalize[{51.8, 67.2, 66.2, 52.6, 53.4, 56.8, 55.9, 55.1, 33.7, 46.5, 40.5, 41.8, 
38.1, 
29.9, 39.9, 45.1, 33.2, 37.0, 35.9, 55.1, 41.2, 36.4, 35.9, 43.8, 44.4, 41.8, 41.8, 45.8, 
44.4, 41.8, 35.9, 35.9, 41.8, 35.9, 41.8, 35.9, 29.9, 42.5, 29.9, 29.9, 35.9, 35.9, 
34.3, 29.9, 29.9, 29.9, 42.2, 35.2, 30.7, 36.0, 36.0, 34.8, 36.5, 36.1, 33.3, 35.7, 
34.9, 28.1, 29.4, 30.4, 31.1, 30.4, 30.1, 29.4, 30.4, 26.8, 28.4, 30.1, 30.4, 29.4, 27.5, 
23.7, 24.2, 24.2, 24.2, 24.2, 24.2, 27.5, 34.5, 36.9, 35.6, 29.7, 30.1, 23.9, 
27.5, 22.9, 22.9, 24.0, 24.3, 24.0, 24.8, 24.0, 22.9, 22.4, 18.1, 18.1, 18.1, 17.5, 
18.1, 18.1, 18.1, 18.0, 12.6, 13.6, 15.1, 16.0, 18.1, 17.7, 17.9, 13.5, 13.0, 17.7, 
18.3, 18.5, 20.5, 22.4, 24.5, 24.2, 36.4, 36.4, 34.8, 36.4, 30.4, 30.4, 30.4, 30.4, 
30.4, 30.1, 29.4, 31.5, 36.0, 29.7, 30.4, 29.7, 24.3, 17.9, 18.1, 23.7, 29.4, 32.9, 
24.0, 24.2, 27.8, 36.4, 36.4, 36.4, 36.4, 36.4, 36.4, 36.4, 36.4, 36.4, 30.4, 30.4, 
30.4, 36.1, 36.5, 34.5, 35.3, 30.8, 30.1, 30.4, 28.1, 29.4, 24.2, 24.0, 24.0, 24.2, 
23.9, 28.1, 24.2, 22.4, 24.6, 24.6, 22.7, 30.1, 24.0, 24.1, 18.1, 18.5, 17.9, 35.6, 
26.2, 30.0, 33.3, 36.0, 35.2, 35.3, 30.0, 29.4, 30.4, 30.4, 28.1, 26.3, 22.4, 19.1, 
24.2, 24.2, 29.1, 28.9, 28.9, 28.9, 28.9, 27.6, 27.5, 27.5, 28.9, 27.6, 25.9, 25.9, 
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25.9, 25.9, 25.8, 25.8, 25.8, 25.8, 24.1, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 25.8, 
27.5, 23.8, 23.8, 24.0, 24.0, 23.0, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 23.1, 23.1, 
23.1, 23.1, 23.1, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 22.9, 20.5, 
20.5, 20.5, 20.5, 20.5, 20.5, 20.5, 18.2, 18.2, 18.5, 18.5, 18.4, 18.5, 18.4, 19.3, 
18.4, 19.2, 18.4, 18.4, 18.4, 18.4, 18.4, 18.4, 18.4, 19.2, 18.4, 18.4, 19.2, 19.2, 
18.2, 18.2, 17.7, 17.7, 17.6, 17.6, 15.4, 15.4, 14.4, 14.4, 14.4, 14.4, 14.4, 15.4, 
15.4, 13.9, 13.8, 13.8, 13.9, 13.9, 13.8, 13.8, 13.8, 13.7, 13.8, 13.8, 13.7, 13.7, 
28.4, 28.4, 28.4, 28.1, 28.1, 28.1, 20.2, 20.2, 20.2, 20.2, 20.0, 19.9, 20.1, 20.1, 
16.0, 16.0, 16.0, 16.1, 16.0, 16.1, 16.1, 12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 28.0, 
28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 28.0, 20.0, 20.0, 20.0, 20.0, 20.0, 20.0, 
20.0, 20.0, 20.0, 20.0, 20.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 12.0, 12.0, 
12.0, 12.0, 12.0, 12.0, 12.0, 12.0, 9.0, 8.0, 8.0, 9.0, 8.0, 5.9, 16.0, 16.0, 16.0, 
20.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 16.0, 
20.0, 20.0, 20.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 
20.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 24.0, 12.0, 12.0, 12.0, 16.0, 
16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 6.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 12.0, 
16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 
24.0, 24.0, 24.0, 12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 
8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 16.0, 
16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 12.0, 12.0, 12.0, 16.0, 16.0, 
16.0, 16.0, 20.0, 20.0, 20.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 12.0, 16.0, 16.0, 
16.0, 20.0, 20.0, 20.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 24.0, 12.0, 
12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 6.0, 8.0, 8.0, 8.0, 12.0, 12.0, 
12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 
20.0, 20.0, 24.0, 24.0, 24.0, 12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 16.0, 20.0, 20.0, 
20.0, 24.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 
20.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 12.0, 12.0, 12.0, 
16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 6.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 16.0, 
16.0, 16.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 12.0, 12.0, 
12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 16.0, 
16.0, 16.0, 20.0, 20.0, 20.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 
12.0, 12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 8.0, 8.0, 8.0, 12.0, 12.0, 
12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 8.0, 8.0, 8.0, 8.0, 8.9, 9.0, 12.0, 12.0, 
12.0, 16.0, 16.0, 16.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 20.0, 14.9, 15.0, 20.0, 
20.0, 24.0, 24.0, 24.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 12.0, 
12.0, 12.0, 16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 8.0, 8.0, 8.0, 12.0, 12.0, 12.0, 
16.0, 16.0, 16.0, 20.0, 20.0, 20.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 20.0, 
24.0, 6.0, 16.0, 20.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 24.0, 9.0, 8.0, 16.0, 
15.0, 16.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 8.0, 
6.0, 6.0, 6.0, 6.0, 6.0, 6.0, 4.0, 6.0, 6.0, 6.0, 4.0, 4.0, 4.0, 4.0, 4.0}, 0], 25]; 

Status = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 
1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 
1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
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1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0}; 
x2 = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 
x3 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0}; 
 
x4 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1,1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0,0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0}; 
 
x5 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 
x6 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; 
x7 = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}; 
 

 

FindMaximum[{f, a > 0, b > 0}, {a, 0.1`25}, {b, 0.9`25}, {c, 0}, {d, 0}, {e, 0}, {g, 0}, {h, 0}, 
{r, 0}, {q, 0}, MaxIterations → 1000] 
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RESEARCH ACTIVITIES 

• Evaluation of Thin Polymer Overlays for Bridge Decks (Project funded by Department of 

Transportation of Wisconsin (WISDOT) and Wisconsin Highway Research Board 

(WHRP). 

An experimental research program was performed to study and compare the performance 

of nine different overlay systems. Reinforced concrete slab specimens were subjected to 

accelerated corrosion, freeze-thaw cycling, heat/ultraviolet/rain cycles, and tire wear tests 

(including “snow plow” application). The overlay system with an epoxy resin and flint 

rock aggregate provided the best overall performance based on performance indices 

determined for friction coefficient, corrosion mass loss, pull-out strength and surface 

deformation (rut) due to tire passage. 

• Survival Analysis of Fatigue in Bridges, Reliability (Survival) of Bridge Decks and 

Superstructures 

In survival analysis, probability of failure of a system are investigated through regression 

analysis, considering affecting covariates. This research develops, applies, and verifies 

long-standing survival analysis techniques widely used in medical research to the fatigue 

problem in various engineering applications, in particular, bridge structures. This approach 

uses conditional survival analysis techniques derived from the conditional probability 

theory to address the cumulative fatigue damage, load sequencing, and irregular loading 

effects in a probabilistic manner. The survival analysis can also be applied for service life 

estimation of bridge decks, superstructures, and other type of structures. 
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• Strength and Serviceability of Damaged Prestressed Bridge Girders (Project funded by 

Department of Transportation of Wisconsin (WISDOT) and Wisconsin Highway 

Research Board (WHRP). 

The research focus is development of inspection guidelines for damaged prestressed 

girders; guidance to support decisions on actions to be taken when girder damage occurs; 

guidelines for methods to be used to accurately analyze damaged prestressed girders 

(including consideration of load re-distribution) and; guidelines on the appropriate repair 

actions to be employed to repair damaged prestressed girders. 

Software Development 

• PreBARS: A primary author of a comprehensive software program (PreBARS) to assess 

service stresses and strength for undamaged, damaged and repaired precast prestressed 

concrete bridge girders. The software can also be used for design of bridges prior to 

damage. The program calculates bridge loads, distribution factors, prestress losses, as 

well as strength and service stresses for prestressed bridge I girders and side-by-side box 

girders. 

ADVANCE LEVEL GRADUATE COURSES 

• Advanced Steel Design • Processing of Plastics 

• Mechanics of Composite Mat'ls • Mech Reliability/Problstc Dsgn 

• Advanced Foundation, and soil 

mechanics 

• Properties of Concrete 

• Analysis and Design of Bridges • Advanced Finite Element Methods 
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