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ABSTRACT 

 

TWO ESSAYS ON DISTRIBUTION, FULFILLMENT AND PRICING 

DECISIONS FOR RETAILERS WITH E-COMMERCE CHANNEL 

by 

Khosro Pichka 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Professor Layth Alwan and Professor Xiaohang Yue 

 

E-commerce has grown rapidly in the past decade. In 2015, e-commerce was accounted 

for 7.2 percent of all retail sales in the U.S., which is massively higher than 0.2 percent in 1998 

(U.S. Department of Commerce 2017).  Worldwide e-commerce sales also show the same trend 

and reached $2.356 trillion in 2018 and are expected to grow steadily (Statista 2017). This trend 

has impacted major areas of operations management including supply chain management and 

revenue management. Today, e-commerce companies cannot satisfy their customers’ demand 

using traditional distribution systems. Therefore, retailers with e-commerce channels (e-

tailers), cooperate with third party logistic service providers to perform or improve their logistic 

services and last mile deliveries. In a report on logistics trends, same-day delivery was 

considered “the next evolutionary step in parcel logistics” (McKinsey 2014). Third party 

providers are either individual drivers working through the e-tailer’s mobile platform such as 

Amazon Flex (Amazon.com), or start-ups that provide on-demand urban delivery and 

aggregate demand via their own mobile platforms, such as DoorDash.com. In the first essay, 

we propose three mixed-integer mathematical models and an efficient heuristic algorithm to 

solve routing and location decisions for these distribution systems, which are different from 

traditional delivery services. We model this problem as a two echelon location-routing problem 

with open routes (2E-OLRP) since the third parties have their own fleet of vehicles. Besides a 

fast and low-cost delivery, retailers are trying to improve the whole shopping experience for 
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customers every day. While in-store sales are relatively low, traditional retailers are 

increasingly offering products through both e-commerce and brick-and-mortar channels and 

many online retailers are also opening physical stores. This integration, referred to as omni-

channel retailing, can help retailers to have a more responsive demand fulfillment process and 

provide a satisfactory shopping experience for their customers. In the second essay, we model 

the consumers’ behavior with discrete choice models and examine that how the probability of 

purchasing from each of these channels can change by different price and delivery options. We 

also propose two optimization models that consider pricing, fulfillment and inventory 

decisions. We show that e-tailers can increase their profit if they make these decisions 

simultaneously.       
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ABSTRACT 

 

ESSAY 1: LOCATION AND ROUTING DECISIONS FOR RETAILERS 

WITH E-COMMERCE CHANNEL 

 

by 

Khosro Pichka 

 

The University of Wisconsin-Milwaukee, 2019 

Under the Supervision of Professor Layth Alwan and Professor Xiaohang Yue 

 

In recent years, retailers with e-commerce channel tend to use existing extra capacity 

on the roads and traffic flow to deliver their products. Moreover, the number of shipments from 

suppliers to individual customers, many of whom are located in densely populated urban areas, 

has increased. Therefore, crowdsourced delivery in a multi echelon environments has become 

more common. Contrary to classic location-routing problems (LRPs), where the drivers had 

closed routes and had to return to the depot after delivery, this problem can be addressed as 

two echelon location-routing problem with open routes (2E-OLRP). In this problem, we seek 

to find a minimum-cost set of delivery routes that do not return to the main warehouse (i.e., 

depot) in the first echelon and do not return to intermediary distribution centers (i.e., satellites) 

in the second echelon due to the presence of individual drivers and third party logistics (3PL) 

providers. In spite of the large amount of research on LRPs, 2E-OLRP has received very little 

attention. We propose three mathematical formulations and a hybrid heuristic algorithm to deal 

with medium- and large-sized problem instances. 
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1.1. Introduction 

With the recent growth of e-commerce transactions, retailers with e-commerce channel 

cannot satisfy their customers’ needs by traditional delivery systems and they are replacing that 

with crowdsourced delivery. In a crowdsourced delivery system, retailers benefit from 

individual drivers such as commuters to deliver their packages to customers. Besides faster 

delivery times, this can also provide financial and environmental benefits for both retailers and 

the government. Walmart revealed in 2013 that they were considering offering their in-store 

customers to deliver the products to their online customers when they leave the store (Morphy 

2013). Indeed, hiring of independent contractors and drivers to deliver packages in urban areas 

is becoming more widespread. Amazon Flex (Amazon.com), which allows individual drivers 

to deliver packages from Amazon distribution centers to delivery points, has been launched in 

more than fifty cities across the United States. Uber Rush (uber.com) is another example that 

shows the growing trend of outsourcing in urban transportation services. 

 

1.1.1. Problem description 

The two echelon open LRP (2E-OLRP) is an increasingly important real-world 

problem. Many retailers have switched to crowdsourced delivery to manage their last mile 

deliveries and are using their physical stores as small distribution centers. Customers are 

usually located in very populated urban areas and it’s profitable for the retailers to distribute 

their products via a two-echelon approach.  In the first echelon, product is transported from the 

very large central warehouses (i.e., depot) to urban distribution centers (i.e., satellite), which 

could be physical stores as well. In the second echelon, product is transported from the urban 

distribution centers to customers.   

 2E-OLRP is a variant of the 2E-LRP in which each route in the first (second) echelon 

is a sequence of satellites (customers), that starts at a main depot (satellite) and finishes at one 
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of the satellites (customers) to whom goods are delivered by the available fleet. In contrast, in 

the classical 2E-LRP, all first (second) echelon vehicles return to the main depot (a satellite) 

after serving satellites (customers). In practice, the 2E-OLRP can arise when a supplier or 

producer does not have its own vehicle fleet or its fleet’s capacity is not enough to serve all of 

its customers. Such a company may prefer to employ a third party logistics (3PL) provider to 

transfer goods between the depot, satellites and customers. Indeed, from a supply chain 

management perspective, it may be more economical for such companies to outsource the 

distribution of their products. Thus, in the 2E-OLRP, the contractee does not need to have the 

fleet at its own depot after serving all the satellites or customers in a single planning horizon.  

An example of the 2E-OLRP, in which there is one main depot (triangle), four satellites 

(squares), and ten customers (circles) is illustrated in Figure 1 (Pichka et al. 2018). The dashed 

arrows show the routes of two vehicles in the first echelon while the solid arrows show the 

routes of five vehicles that transport goods from opened satellites to customers in the second 

echelon. As Figure 1.1 shows, in the first echelon, a vehicle starts its route from the main depot 

and serves one or more satellites and finishes its route at a satellite. The demand of an opened 

satellite equals the total demand of customers which we decide to assign to that satellite. If a 

satellite is not opened, no customer is assigned to that satellite. On the other hand, a second 

echelon route starts from an opened satellite and ends at a customer after serving one or more 

customers. One should note that all the customer demands should be satisfied. The demands 

satisfied by a first (second) echelon route cannot exceed the capacity of a first (second) echelon 

vehicle. We assume that the demand of a satellite in the first echelon cannot be satisfied by 

more than one vehicle. In other words, split deliveries are not accepted. Similarly, we assume 

that the demand of a customer cannot be satisfied by more than one second-echelon vehicle. 

Accordingly, a customer is assigned to a satellite and cannot be served by two vehicles from 

the same or different satellites. Moreover, the vehicles in the first and second echelon have 
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different capacities and they can only serve in the echelon they are assigned to. There are an 

unlimited number of vehicles available at the main depot and each opened satellite. However, 

the number of vehicles used in the first and second echelon should be minimized to reduce 

costs.  

 
Figure 1.1.  Example of the 2E-OLRP. 

 

1.1.2. Summary of contributions 

• Three new mixed-integer mathematical models are developed to model retailers’ 

distribution system considering third party logistic service providers. We propose new 

decision variables to handle the open aspect of the routing problem.  

• An efficient hybrid heuristic algorithm as well as a new solution encoding scheme are 

proposed to solve large-size instances more efficiently. The proposed hybrid heuristic 

outperforms mathematical models both in solution quality and solution time across the 

vast majority of instances. 

• The proposed heuristic is compared to other existing algorithms in the literature for the 

classic closed-loop 2E-LRP. The results show that the proposed algorithm obtains 
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competitive results in terms of solution quality and computation time compared to those 

in the literature.  

The rest of this paper is organized as follows. Section 2 reviews the relevant literature 

on the 2E-LRP and open VRP (OVRP). Three mathematical programming formulations of the 

2E-OLRP are developed in Section 3. Section 4 introduces a hybrid heuristic algorithm that we 

developed for solving the 2E-OLRP. Computational results on modified benchmark instances 

are reported in Section 5. Finally, conclusions and future work are discussed in Section 6. 

 

1.2. Literature review 

Cuda et al. (2015) published a survey on two echelon routing problems that included 

location routing, vehicle routing, and truck and trailer problems. Similarly, Prodhon and Prins 

(2014) and Drexl and Schneider (2015) published two recent surveys of the LRP and its 

variants and identified future directions for this area of research.  

The literature on vehicle routing problems (VRPs) can be classified according to at least 

three aspects: (1) the number of echelons in the transportation network, (2) whether a VRP or 

LRP is considered; and (3) whether routes are open or closed.  Below we first discuss papers 

that consider multiple echelon LRPs with closed routes.  Then we review the studies that have 

considered open routes and crowdsourced delivery.    

The location and routing decisions are interrelated and the benefit of considering both 

decisions in designing distribution systems has been shown in the literature (Salhi and Rand 

1989). Contrary to the classical LRP, the 2E-LRP has only been studied by a few researchers. 

Jacobson and Madsen (1980) and Madsen (1983) are the classical papers that first considered 

the existence of multiple echelons in a location routing problem. They proposed heuristics and 

compared their performance for designing a newspaper distribution network. Lin and Lei 

(2009) considered three-echelon distribution systems consisting of distribution centers (DCs), 
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big clients, and small retailers. They proposed a mathematical model and a hybrid genetic 

algorithm embedded with a routing heuristic to find near optimal solutions in terms of the 

location and number of DCs and routing in each echelon. They tested the performance of their 

heuristic method by comparing their results with exact solutions of small problem instances 

which were solved optimally. Finally, they designed a finished goods distribution system for a 

Taiwan label-stock manufacturer. Through the case study, they concluded that the inclusion of 

big clients in the first-level routing in the analysis leads to a better network design in terms of 

total logistics costs.  

Boccia et al. (2010) proposed a tabu search (TS) heuristic which efficiently combines 

the following sub-problems: the location and the number of facilities in each echelon, the size 

of two different vehicle fleets, and the related routes in each echelon. They reported results on 

small, medium, and large problem instances. Crainic et al. (2011) proposed three mixed integer 

programming formulations for the 2E-LRP; three-index, two-index, and single-index 

formulations. They evaluated these mathematical models on a large set of examples derived 

from two-tiered city logistics system settings with various numbers and distributions of 

potential locations for the two types of facilities.   

Nguyen et al. (2012b) proposed four constructive heuristics and a hybrid metaheuristic 

called the greedy randomized adaptive search procedure (GRASP) combined with a learning 

process (LP) and path relinking (PR). Three greedy randomized heuristics were used to 

generate trial solutions for the GRASP and learning process, and two variable neighborhood 

descent (VND) procedures were implemented to improve them. They showed that applying LP 

and PR improves the performance of their metaheuristic on the classical LRP and 2E-LRP 

instances. Nguyen et al. (2012a) proposed a multi-start iterated local search (MS-ILS) for the 

2E-LRP. For generating initial solutions, they used three greedy randomized heuristics based 

on (a) the Clarke and Wright algorithm, (b) the nearest neighbor heuristic for the TSP, and (c) 
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an insertion heuristic that constructs second-level routes one by one. The ILS run changes 

between two solution spaces: (i) 2E-LRP solutions and (ii) traveling salesman (TSP) tours 

covering the main depot and the customers. When a known solution (stored in a tabu list) is 

revisited, the number of iterations in each run is reduced. Also, they strengthened the MS-ILS 

algorithm by a path-relinking procedure (PR) which was used internally for intensification 

and/or post-optimization. On two sets of 2E-LRP instances, they showed that the MS-ILS, on 

average, outperforms two GRASP algorithms. Also, on capacitated location routing problem 

(CLRP) instances, their algorithm is more efficient than all algorithms in the literature except 

the LRGTS algorithm by Prins et al. (2007).   

Schwengerer et al. (2012) presented a variable neighborhood search (VNS) algorithm 

for the 2E-LRP which is an extension of a previous efficient VNS for the LRP. Their algorithm 

uses seven different basic neighborhood structures parameterized with different perturbation 

sizes which leads to a total of 21 specific neighborhood structures. They also incorporated the 

idea of two consecutive local search methods that consider only recently changed solution 

parts. Their algorithm is efficient in terms of time and quality of solutions compared to the 

existing results. In Contardo et al. (2012) two algorithms are proposed to deal with the 2E-

CLRP. The first one uses a branch-and-cut method based on a new two-index vehicle flow 

formulation which is strengthened with several families of valid inequalities. An adaptive 

large-neighborhood search (ALNS) meta-heuristic is also proposed to quickly find solutions. 

They show that ALNS outperforms existing heuristics on sets of instances from the literature. 

Moreover, their branch-and-cut method provides tight lower bounds and solves small- and 

medium-sized instances to optimality within a reasonable amount of time. 

In a recent work, Winkenbach et al. (2015) presented a large-scale static and 

deterministic mixed-integer linear programming (MILP) model with modal choice to develop 

a profitable urban logistics service (ULS) by providing strategic decision making to postal 
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operators. By considering operating data from La Poste, they identified the main elements of 

an optimal infrastructure and fleet design for the centralized consolidation of urban freight 

flows under a global service time constraint. Furthermore, they conducted a sensitivity analysis 

of the optimal design based on the input data. They proposed a routing cost estimation formula 

and an optimization-based heuristic to solve the large-scale MILP within a reasonable time and 

to near-optimality.  

Vidovic et al. (2016) proposed a mathematical formulation for a 2E-LRP that considers 

non-hazardous recyclables collection with a profit and a distance dependent collection rate. 

The proposed model simultaneously decides the location of collection points, the location of 

intermediate consolidation points, and the routing of collection vehicles. They proposed a two-

phase heuristic to solve the problem. In the first phase, sets of opened collection points and 

their locations, end user allocation to collection points, and collection quantity of recyclables 

are determined by applying a greedy heuristic. In the second phase, the proposed algorithm 

determines optimal routes of collection vehicles that visit city blocks and transfer stations 

considering the solution from the previous step.  

Besides the 2E-LRP, the open vehicle routing problem (OVRP) is another variant of 

the VRP which has attracted a lot of attention by researchers in recent years.  In the literature 

on the OVRP, several heuristics and meta-heuristics are proposed. Repoussis et al. (2007) 

developed a mathematical model for an OVRP with time windows and solved the problem 

using a greedy look-ahead route construction heuristic algorithm. Letchford et al. (2007) 

presented the first exact algorithm for the OVRP. The algorithm is based on branch-and-cut. 

They modified the classical integer programming formulation, introduced cutting planes for 

the OVRP, and compared the difficulty of open and closed versions of the problem. 

Russell et al. (2008) employed a tabu search (TS) methodology to integrate the 

production and distribution of newspapers from plants to delivery locations to maximize 
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overall productivity and profitability. Chiang et al. (2009) considered a similar case in a 

stochastic environment in which stochastic phenomena include the delivery start time, 

production rate, loading and unloading times, and travel times. They employed a two-phase 

meta-heuristic method to find an initial solution and an effective way to improve it.  

Norouzi et al. (2012) presented a new multi-objective mathematical model for an OVRP 

with homogeneous vehicles and competitive time windows in order to maximize sales. They 

also proposed a multi-objective PSO algorithm. Fleszar et al. (2009) introduced a VNS method 

based on reversing segments of routes and exchanging segments between routes and compared 

their results to the best performing heuristics.  

Some research studies have developed hybrid algorithms to solve OVRPs. Repoussis 

et al. (2010) proposed a population-based hybrid meta-heuristic algorithm that utilizes the basic 

solution framework of an evolutionary algorithm (EA) combined with a memory-based 

trajectory local search algorithm. Several other studies – including those by Salari et al. (2010), 

Liu and Jiang (2012), and Liu et al. (2014) have investigated OVRPs and presented 

heuristics/meta-heuristics to solve them.  

In some recent studies, Vincent and Lin (2015) proposed a mathematical model and a 

simulated annealing-based heuristic for the open LRP (OLRP). They tested their mathematical 

program and heuristic on modified instances that have been adapted from CLRP benchmark 

instances. Compared to the linear relaxation of the mathematical model, exact solutions, and 

solutions produced by other heuristics in the literature, they showed that their proposed 

heuristic solves the OLRP very efficiently. Also, Vincent et al. (2016) proposed a mixed-

integer linear program and a simulated annealing (SA) algorithm for the open VRP with cross-

docking (OVRPCD) that minimizes the vehicle hiring cost and transportation cost. They first 

tested the SA algorithm by comparing the results with benchmark instances for the vehicle 

routing problem with cross-docking. They then tested the SA algorithm on three sets of 
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OVRPCD benchmark instances and the results were compared with those obtained by the 

mathematical model. They showed that both the mathematical model and SA can obtain 

optimal solutions to all small- and medium-sized instances. However, the computational time 

for SA is less than CPLEX. Furthermore, for large scale problems, SA outperforms CPLEX in 

both solution quality and computational time.  

Arslan et al. 2018 considered the crowdsourced problem as dynamic pick-up and 

delivery problem. They studied a service platform that matches deliveries and ad hoc drivers. 

Their platform also has a dedicated fleet that can be used for the deliveries that cannot be 

outsourced. They proposed an exact approach to solve the matching problem as they update 

their input information. By numerical experiments, they showed that by using individual 

drivers they can benefit from a savings up to 37% compared to a traditional delivery system 

with dedicated vehicles. 

Overall, despite the existence of dozens of outstanding articles on various kinds of 2E-

LRPs, OVRPs, and LRPs, it appears that the problem considered in this study—the 2E-

OLRP—remains unexplored. The 2E-OLRP arises in urban settings, especially in large cities 

where distances between satellites and customers are high and there is high demand density. In 

such contexts, two-echelon systems—in which intermediate distribution centers (satellites) are 

located on the outskirts of the city—may reduce total shipping costs. Furthermore, open routes 

are a possibility when companies do not have their own fleet, or their fleet is not large enough 

to serve all customers. These observations motivate the current study. 

 

1.3. Flow-based mathematical models for the 2E-OLRP 

We now introduce three mathematical formulations, namely P1, P2 and P3 for the 2E-

OLRP.  The input parameters and decision variables used in the models are summarized in 

Table 1.1.   
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Table 1.1 Input parameters and decision variables in the mathematical models 
Input parameters 

sN  Number of satellites 1Q  Capacity of vehicles in the 1st level 

cN  Number of customers 2Q  Capacity of vehicles in the 2nd level 

0V  Depot 
s

iQ  Capacity of satellite i  

sV  Set of potential satellites iD  Demand required by customer i 

cV  Set of customers ijC  Cost for a vehicle to travel along ( , )i j  

1K  
Set of 1st-level vehicles (all of which are 

identical) 1F  
Cost of activating one vehicle in the 1st 

level 

2K  
Set of 2nd-level vehicles (all of which are 

identical) 2F  
Cost of activating one vehicle in the 2nd 

level 

iO  Cost of opening satellite i   

Decision variables for two index mathematical model 

ijX  
1, if a first-level vehicle travels directly from node  to  

0, otherwise (binary) ( , ,  )
0

i j

i j V V i j
s

  
 

ijY  
1, if a second-level vehicle travels directly from node  to  

0, otherwise (binary) ,   ( ),

i j

i j V V i j
s c

  
 

iZ  
1, if satelite  is opened 

0, otherwise (binary) ( )

i

i V
s


 

inV  
1, if satelite  serves customer   

0, otherwise (binary , )) (  i V
s

i

n
c

n

V 
 

ijU  Load carried by the vehicle during its trip from node  to  in the first echelon (r ,  eal, 0
0

) ( ),i j i V V i j
s

j     

ijL  Load carried by the vehicle during its trip from node  to  in the second echelon (real, 0) , )( ,  i j i V V i j
s c

j    

i  
1, if node  is the last satellite that is visited by a first-level vehicle   

0, otherwise (binary)  )(

i

i V
s


 

i  
1, if node  is the last customer that is visited by a second-level vehicle   

0, otherwise (binary)  )( c

i

i V

 

Decision variables for three index mathematical models 

ijkX  
1, if first-level vehicle  travels directly from node  to  

0, otherwise (bina ,  ;  )
0

r (
1

y) , V V i j k K
s

k i j

i j   
 

ijkY  
1, if second-level vehicle  travels directly from node  to  

0, otherwise (binary)  ( , ,  ;  )
2

V V i j k K
s c

k i j

i j   
 

iZ  
1, if satelite  is opened 

0, otherwise (binary) ( )

i

i V
s


 

inV  
1, if satelite  serves customer   

0, otherwise (binary , )) (  i V
s

i

n
c

n

V 
 

ijkU  Load carried by vehicle  during its trip from node  to  in the first echelon (real ,  ;  )
0

, 0) ( ,
1

V V i j k K
s

k i j i j     

ijkL
 

Load carried by vehicle  during its trip from node  to  in the second echelon (real, 0) ( ,  ;  )
2

,k i j V V i ji j k K
s c

   
 

ik  
1, if node  is the last satellite that is visited by first-level vehicle    

0, otherwise (binary) ;  )
1

  ( V k K
s

i k

i 
 

ik  
2

1, if node  is the last customer that is visited by second-level vehicle    

0, otherwise (binary) ; (  )c

i k

V ki K 
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Each customer i has demand iD . In the first echelon, freight should be delivered from 

the depot 0v  to satellite set  
1 2
, ,...,

Ns
s s s sV v v v= . In the second echelon, the freight that has 

accumulated at satellite set  
1 2
, ,...,

Ns
s s s sV v v v=  should be shipped to the customer set 

 
1 2
, ,...,

Nc
c c c cV v v v= . A large number, 1K , of first-echelon vehicles are available at the depot, 

each with capacity 1Q  and fixed cost of 1F . Similarly, a large number, 2K , of second-echelon 

vehicles, each with capacity 2Q  and fixed cost 2F , are available. Each satellite i has capacity 

s

iQ  and opening cost iO . 
ijC  is the travel cost between node i and j. This parameter gives 

travel costs in the first echelon if 0, sVi Vj   and second echelon if , s cVi Vj   and i and j 

are not both in sV . 

The three mathematical models differ as follows.  P1 and P2 forbid direct travel from 

any satellite to the depot in the first echelon and from any customer to a satellite in the second 

echelon. This has been done by defining two sets of variables i  and i  for P1 and, ik  and 

ik  for P2 that are necessary for flow balance constraints for the last satellite or customer 

visited in a first or second echelon route respectively. These sets of variables are specifically 

defined to allow for open routes in the first and second echelon and improve the performance 

of the mathematical models, which will be discussed in detail in Section 5. Moreover, note that 

P1 uses two index decision variables and P3 uses three index decision variables to model 2E-

OLRP.  

In contrast to P1 and P2, in P3, the problem is considered as a closed 2E-LRP except the 

distances (
ijC ) from satellites to the depot in the first echelon and from customers to satellites 

in the second echelon equal zero. This is the classical approach that has also been used in 
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several studies on the OVRP (Letchford et al. 2007, Fung et. al 2013, Liu et al. 2014, Lalla-

Ruiz et al. 2016). 

One should note that all the existing models in the literature for the classic 2E-LRP 

(Crainic et al. 2011, Nguyen et al. 2012a, Nguyen et al. 2012b, Contardo et al. 2012) use 

classical constraints regarding subtour elimination. However, in proposed mathematical 

models in this study, subtour elimination constraints are based on flow-based modeling 

techniques, which are adaptations of those introduced for the two echelon VRP (Perboli et. al 

2011).  

The following assumptions are considered in the proposed mathematical models: 

1. Each customer’s demand should be satisfied by a second-echelon vehicle that starts its 

route at an opened satellite and ends its route at a customer.  

2. The total demand of the customers in the route of a second echelon vehicle must be less 

than the vehicle capacity.  

3. Two or more second-echelon vehicles may begin their routes at the same satellite as 

long as the total demand of the customers they serve does not exceed the satellite’s capacity.  

4. A customer is assigned to at most one satellite and cannot be served by two second-

echelon vehicles originating at the same or different satellites. 

5. Each first-echelon vehicle starts from the main depot and serves one or more satellites 

and finishes its route at a satellite.  

6. If a satellite is not opened, no customer may be served by that satellite. A satellite cannot 

be visited by more than one first-echelon vehicle (i.e. split deliveries are not allowed).  

7. Time windows and satellite synchronization constraints are not considered. 

8. A one-day planning horizon is considered. Locations are chosen and first echelon 

transportation occurs at night. Second echelon transportation takes place during the day. 

9. A single, homogeneous product is being delivered.  
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Eight sets of decision variables have been defined in order to model the 2E-OLRP. 

These variables can be categorized into four main groups. The first group consists of the arc 

usage variables. 
ijX , which is used in two index mathematical model P1, is a binary variable 

that is equal to 1 if a vehicle travels directly from node i to j in the first echelon. Similarly,
ijkX  

that is used in three index models P2 and P3, is a binary variable that is equal to 1 if vehicle k 

travels directly from node i to j in the first echelon. 
ijY  is again a binary variable that is used in 

P1 and is equal to 1 if a second-echelon vehicle travels directly from node i to j while 
ijkY  is a 

three index variable used in models P2 and P3 that is equal to 1 if vehicle k travels directly from 

node i to j in the second echelon. The second group of variables assign customers to satellites 

and activate the satellites. They are used in all three mathematical models. iZ  is a binary 

variable which is equal to 1 if satellite i is opened. inV  is a binary variable that is equal to 1 if 

customer n is assigned to satellite i. The third group of variables are related to the freight flows 

in the first and second echelon. 
ijU  and 

ijL  are the load carried by the vehicle when traveling 

directly from node i to j in the first and the second echelon respectively in two index 

mathematical model P1. Similarly, 
ijkU  and 

ijkL  are the load carried by vehicle k when traveling 

directly from node i to j in the first and the second echelon respectively in three index 

mathematical models P2 and P3. The fourth group of the variables are defined to handle the 

open aspect of the problem. They are only used in mathematical models P1 and P2, but not P3. 

i  is a binary variable which is equal to 1 if satellite i is the last satellite that is visited by a 

first-echelon vehicle and i  is a binary variable which is equal to 1 if customer i is the last 

customer that is visited by a second-echelon vehicle, both in mathematical model P1. Likewise, 

ik  and ik  are used in three index mathematical model P2. ik  is a binary variable which is 
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equal to 1 if satellite i is the last satellite that is visited by a first-echelon vehicle k and ik is a 

binary variable which is equal to 1 if customer i is the last customer that is visited by a second-

echelon vehicle k. We use all groups of variables in mathematical model P1 and P2 but we only 

use the first three groups of variables in mathematical model P3. 

  

1.3.1. Mathematical model #1 (P1)  

The objective of P1 is to minimize overall cost including vehicle traveling costs, vehicle 

hiring costs, and satellite opening costs. The MIP model for P1 is as follows: 

0

1 2
Min

s s s c c s c s

ij ij ij ij i i i

i V V j V i V V j V i V i

i

V i V

X C Y C F F Z O 
        

+ + ++
   
   
   
        (1) 

s.t.   

0

,,
s

ij s

i V V
i j

jZ jX V
 


=  
 

 (2) 

0, ,
s s

j ij

jV Vj

X i V
 

  
 

 (3) 

0

,,
s s

ij ji s

i V V i V
i j i j

jM VjX X 
  
 

 +   
 

 (4) 

0

,  ,
s s

ij ji s

i V V i V
i j i j

jM VjX X 
  
 

 −  
 

 (5) 

0

 ), ,(1
s

ij s

j V V

i

i j

X Vi
 


 − 
 

 (6) 

, ,  i si VZ i   

 

 (7) 

1, ,
s

i

V

j c

i

V j V


= 
 

 (8) 

,
c

j

s

i s

j V

ij iV Z i VD Q


  
 

 (9) 
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,
c

i i s

n V

nZ V i V


  
 

 (10) 

1 0 , , ,,   ij ij s sX V VU Q i j V i j     

 

 (11) 

00,  ,  
si

ij

V

U j V


= 
 

 (12) 

0 ,,  
s c

i

Vj

j n

n V

D VU i


= 
 

 (13) 

0

 , ,
s s c

ji ij s

V V n V
j i j

in n

j V j
i

U VU V D i
   
 

= +    
 

 (14) 

, ,1
s c

ij c

i V V
i j

Y j V
 


=  
 

 (15) 

, ,
c c

j i s

V j

j

Vj

Y i V
 

   
 

 (16) 

, ,
s c c

ij ji c

i V V i V
i j i j

jM VjY Y 
  
 

 +   
 

 (17) 

, ,
s c c

ij ji c

i V V i V
i j i j

jM VjY Y 
  
 

 −   
 

 (18) 

(1 , ,)
s c

iij c

j V V
i j

Y i V
 


 − 
 

 (19) 

0 ,  ,  , ,ij s si jY V V i j=  

 

 (20) 

2 ,  ,  ,  ,ij ij s c cV VL Q Y i j V i j   

 

 (21) 

0  ,,
c

ij s

Vi

L j V


=  
 

 (22) 

 , ,
c c

ij in n

j

s

V n V

V DL Vi
 

=  
 

 (23) 

,  ,
s c c

i

j V j

ji ij c

V V
i j i j

L VL D i

 
  

= +   
 

 (24) 

2 ,  ,  ,( )  ,ij iji c cL Q D Y i jjV Vi   − 

 

 (25) 

,  , ,  ,  ij ij c cj sV VL D Y i j V i j   

 

 (26) 
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Constraints (2) to (14) relate to the first echelon. Constraint (2) ensures that each 

satellite is visited exactly once if it’s opened. Constraint (3) ensures that if a first-echelon 

vehicle is hired, then it must finish its route at a satellite. Constraints (4) and (5) are flow 

balance constraints. They ensure that the number of times the vehicle arrives at the satellite 

equals the number of times the vehicle departs from the satellite unless the satellite is the last 

satellite that is met on a route. If a satellite is the last satellite that is visited on a first-echelon 

route, then constraint (6) ensures that the vehicle does not travel to any other node after serving 

that satellite. Constraint (7) ensures that a satellite that is not opened cannot be considered as a 

final satellite. Constraint (8) ensures that each customer is assigned to exactly one satellite to 

be served. Constraint (9) ensures that the maximum customer demand that is assigned to a 

satellite is less than its capacity, if that satellite is opened. It also ensures that no customer is 

served by that satellite if it is not opened. Constraint (10) ensures that every opened satellite 

must serve at least one customer. Constraint (11) limits the maximum load carried by a vehicle 

while it travels from node i to j. It must be less than the vehicle capacity in the first level, 1Q . 

The load is also equal to zero if no vehicle travels from node i to j. Constraint (12) ensures that 

the load carried by any first-echelon vehicle from any satellite to the depot should be equal to 

zero. Constraint (13) ensures that the total load of all first-echelon vehicles that are starting 

their routes from the depot should be equal to the total demand of all customers. Constraint 

(14) ensures that the proper load is delivered to each satellite in the first echelon. Constraints 

(11) to (14) together eliminate first-echelon subtours. 

Constraints (15) to (26) are related to the second echelon. Constraints (15) to (19) are 

similar to constraints (2) to (6) respectively. Constraint (15) ensures that each customer is 

visited exactly once. Constraint (16) ensures that if a second-echelon vehicle is hired, then it 

must finish its route at a customer. Constraints (17) and (18) are flow balance constraints. 

Constraints (17) and (18) ensure that the number of arriving routes to a customer should be 
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equal to the number of departing routes from that customer, if a given customer is not the last 

customer visited by a given second-echelon vehicle. Constraint (19) ensures that a second-

echelon vehicle does not travel to any other node after serving its last customer. 

Constraint (20) forbids any routes traveling directly from a satellite to another satellite. 

Constraint (21) ensures that the load carried by a second-echelon vehicle is less than the vehicle 

capacity. The load is zero If no vehicle travels along a specific link. Constraint (22) ensures 

that the carried load from any customer to any satellite is zero. Constraint (23) ensures that the 

total load of all second-echelon vehicles that depart satellite i is equal to total demand of 

customers served by that satellite. Constraint (24) ensures that the combined load of all vehicles 

that depart customer i is equal to the combined load of all vehicles entering that node minus 

the demand of that customer. Like constraints (11) to (14), constraints (21) to (24) eliminate 

second-echelon subtours that do not contain a satellite. Constraint (25) ensures that the load 

carried by a second-echelon vehicle when leaving customer i never exceeds 2 iQ D− . Constraint 

(26) ensures that the load carried by a second echelon vehicle just prior to its arrival at customer 

j is at least 
jD . Decision variable domains are shown in Table 1.1. 
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1.3.2. Mathematical model #2 (P2)  

Similar to P1, the objective of P2 is to minimize overall cost which consists of three 

parts: vehicle traveling costs, vehicle hiring costs, and satellite opening costs. Our MIP model 

for P2 is as follows: 

1 0 2 1 2

1 2
Min

s s s c c s c s

ijk ij ijk ij ik ik i

k K i V V j V k K i V V j V k K i V k K i V i V

i
X C Y C F F Z O 

            

    ++ + +
   
   
   
          (27) 

s.t.   

1 0

, ,
s

ijk s

k K i V V
i j

jX Z j V
  



=   
 

 (28) 

0 1,  ,1,
s

ijk s

Vj

X i V V k K


    
 

 (29) 

11, ,
s

ik

Vi

k K


 
 

 (30) 

1

,1,ik s

k K

Vi


  
 

 (31) 

0 1,  ,,
s s

jk i

j j

jk

V V

X i V k K
 

  
 

 (32) 

0

1, ,  ,
s s

ijk jik s

i V V i V
i j i j

jkX X M j V k K
  
 

 +    
 

 (33) 

0

1, ,  ,
s s

ijk jik s

i V V i V
i j i j

jkX X M j V k K
  
 

 −    
 

 (34) 

0

1,  ,(1 ),
s

ijk s

j V V
i j

ikX V k Ki
 


 −  
 

 (35) 

1 , , ,ik i sZ i V k K   

 

 (36) 

1, ,
s

i

V

j c

i

V j V


= 
 

 (37) 

,
c

j

s

ij i i s

Vj

V ZD Q i V


  
 

 (38) 
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,
c

i i s

n V

nZ V i V


  
 

 (39) 

1 0 1,,  , ,  , ijk ijk s sU Q i jX V V V i j k K      

 

 (40) 

0 10  ,  , ,
s

ijk

i V

U j V k K


=  
 

 (41) 

1

0 ,,
s c

ijk n

k K V n Vj

D VU i


=  
 

 (42) 

01 1

 ,,
s s c

jik ijk s

k K V k K V n V
j i j i

in n

j V j

U U V D i V



  




= +    
 

 (43) 

2

, ,1
s c

ijk c

k K i V V
i j

VjY
  



=   
 

 (44) 

2, ,1,  
c

ijk s

V

c

j

iY V k KV


    
 

 (45) 

21, ,
c

ik

Vi

k K


 
 

 (46) 

2

,1,ik c

k K

Vi


  
 

 (47) 

2,  ,,
c c

jk i s

Vj

k

Vj

jY i V k K
 

    
 

 (48) 
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ijk jik c

i V V i V
i j i j

jkY Y M j V k K
  
 
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 (49) 
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ijk jik c

i V V i V
i j i j

jkY Y M j V k K
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ijk c

j V V
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iY V k Ki
 


 −  
 

 (51) 

20 ,  ,  , ,,ijk s si jY V V i j k K   = 
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 (58) 

2,  ,  ,,  ,  ijk ijk s cj cV V VL D Y i j i j k K      

 

 (59) 

 

Constraints (28) to (43) are related to the first echelon. Constraint (28) ensures that 

exactly one (zero) first-echelon vehicle arrives at each opened (closed) satellite. Constraint (29) 

ensures that each first-echelon vehicle travels to at most one location from any given location. 

Constraint (30) ensures that each first-echelon vehicle serves at most one satellite as its final 

satellite. Constraint (31) ensures that each satellite can be the final satellite in at most one 

vehicle’s route. Constraint (32) ensures that if a first-echelon vehicle is hired, then it must finish 

its route at a satellite. Constraints (33) and (34) are flow balance constraints. If a given satellite 

is not the last satellite visited by a given first-echelon vehicle, then constraints (33) and (34) 

ensure that the number of times the vehicle arrives at the satellite equals the number of times 

the vehicle departs from the satellite. Constraint (35) ensures that each first-echelon vehicle 

does not travel to any other node after serving its last satellite. Constraint (36) ensures that a 

satellite is not considered as a final satellite if it is not opened. Constraint (37) ensures that each 

customer is served by exactly one satellite. 

Constraint (38) is the capacity constraint for opened satellites. It states that if a satellite 

is opened, the maximum customer demand that can be served from that satellite is less than the 

satellite’s capacity. It also ensures that if a satellite is not opened, no customer is served by that 

satellite.  Constraint (39) ensures that every opened satellite serves at least one customer. 

Constraint (40) limits the maximum load carried by a vehicle while it travels from node i to j. 

It must be less than the vehicle capacity in the first level, 1Q . Also, if no vehicle travels along 
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a specific link, the load carried on that link is zero. Constraint (41) ensures that the load carried 

by any first-echelon vehicle from any satellite to the depot should be equal to zero. Constraint 

(42) ensures that the combined load of all first-echelon vehicles when starting their routes from 

the depot should be equal to the total demand of all customers. Constraint (43) ensures that the 

proper load is delivered to each satellite in the first echelon. Constraints (40) to (43) together 

eliminate first-echelon subtours not containing the depot. 

Constraints (44) to (59) are related to the second echelon. Constraint (44) ensures that 

exactly one second-echelon vehicle arrives at each customer. Constraint (45) ensures that each 

second-echelon vehicle travels to at most one location from any given location. Constraint (46) 

ensures that each second-echelon vehicle serves at most one customer as its final customer. 

Constraint (47) ensures that each customer is the final customer in at most one vehicle’s route. 

Constraint (48) ensures that if a second-echelon vehicle is hired, then it must finish its route at 

a customer. Constraints (49) and (50) are flow balance constraints. If a given customer is not 

the last customer visited by a given second-echelon vehicle, then constraints (49) and (50) 

ensure that the number of times the vehicle arrives at the customer equals the number of times 

the vehicle departs from the customer. Constraint (51) ensures that each second-echelon vehicle 

does not travel to any other node after serving its last customer. 

Constraint (52) forbids second-echelon vehicles from traveling directly from a satellite 

to another satellite. Constraint (53) ensures that if customer n is not served by satellite i, there 

is no route connecting satellite i to customer n. Constraints (54) to (57) are similar to constraints 

(40) to (43) respectively. Constraint (54) ensures that the load carried by each second-echelon 

vehicle is less than the vehicle capacity. Also, if no vehicle travels along a specific link, the 

load carried on that link is zero. Constraint (55) ensures that the load carried by any second-

echelon vehicle from any customer to any satellite is zero. Constraint (56) ensures that the 

combined load of all second-echelon vehicles that depart satellite i is equal to total demand of 
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customers served by that satellite. Constraint (57) ensures that the proper amount of freight is 

delivered to each customer. In other words, the combined load of all vehicles that depart 

customer i is equal to the combined load of all vehicles arriving at that customer minus the 

demand of that customer. Constraints (54) to (57) eliminate second-echelon subtours that do 

not contain a satellite. Constraint (58) ensures that the load carried by a second-echelon vehicle 

when departing customer i never exceeds 2 iQ D− . Constraint (59) ensures that the load carried 

by a second echelon vehicle just prior to its arrival at customer j is at least 
jD .  

 

  



24 

 

1.3.3. Mathematical model #3 (P3)  

As mentioned before, we consider a closed 2E-LRP for P3 except the distances (
ijC ) 

from satellites to the depot (in the first echelon) and from customers to satellites (in the second 

echelon) equal zero. The MIP model P3 is as follows: 
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The objective function (60) consists of three parts: vehicle traveling costs, vehicle 

hiring costs, and satellite opening costs. Constraint (61) ensures that each first-echelon vehicle 

that enters a node also departs from that node; this flow balance constraint ensures that all first-

echelon vehicle routes are cyclic. Constraint (62) ensures that each second-echelon vehicle that 

enters a node also departs from that node; this flow balance constraint ensures all second 

echelon routes are cyclic.  
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1.4. Hybrid heuristic for the 2E-OLRP 

Since the 2E-OLRP is an NP-hard problem, the proposed mathematical models are not 

able to find optimal solutions for some medium- and large-sized problems. Thus, heuristic 

methods are needed to find good solutions in a reasonable amount of time. A two-phase 

heuristic algorithm is proposed in this study. In the first phase, called the “Satellite location 

and first echelon routing” phase, two major decisions are made: (1) the set of opened satellites 

and the assignments of customers to those opened satellites is decided and (2) the first-echelon 

vehicle routes are constructed. A simulated annealing (SA) algorithm is used as a local search 

engine in this phase to improve solutions. In the second phase of the algorithm, called the 

“second echelon routing” phase, the vehicle routes in the second echelon are decided by 

another SA algorithm based on the solution from the first phase. However, before the SA in 

the second echelon starts, a good initial solution for the second echelon routes is made using a 

modified Clarke and Wright algorithm (CWA). In every iteration of the first phase SA, the 

second phase SA runs for many iterations to find the best possible routing solution for the 

second echelon based on the solution from the first phase of the algorithm. 

Based on Nagy and Salhi (2007), the proposed algorithm in this paper is in the class of 

hierarchal heuristics. Karaoglan et al. (2012) and Wu et al. (2002) are two studies in the LRP 

literature that use this type of heuristic. SA is a stochastic search method, which is adopted 

from the annealing process of materials in physics (Kirkpatrick et al. 1983). SA is a widely-

used method for finding good solutions to NP-hard combinatorial problems (Vincent and Lin 

2015, Vincent et al. 2016). However, as we describe in the following subsections, the proposed 

heuristic in this study differs from the previous ones in both the problem that the heuristic is 

applied to and the type of neighborhood structures used. 

Section 1.4.1 presents the solution representation used in our heuristic method. Section 

1.4.2 presents our procedure for finding an initial feasible solution. Section 1.4.3 describes the 
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first phase of the algorithm, called the satellite location and first echelon routing phase. Section 

1.4.4 describes the second phase, called the second echelon routing phase. The steps of the 

entire heuristic are discussed in detail in Section 1.4.5. 

 

1.4.1. Solution representation  

In our heuristic method, feasible solutions are represented using (a) a matrix defining 

the first-echelon routes, (b) a customer-to-satellite assignment matrix and (c) several matrices 

defining the second-echelon routes. Figure 1.2 displays the solution representation for the 

example presented in Figure 1. Figure 2b shows the customer-to-satellite assignment matrix. 

Here, the first column in each row represents the satellites and the numbers to the right of each 

satellite in each row represent the customers assigned to that satellite. Based on the presented 

example, customers 7, 5, 10, 12 are assigned to satellite 2; customers 11, 8, 6 and 9 are assigned 

to satellite 4; and customers 14 and 13 are assigned to satellite 3. There is no customer assigned 

to satellite 1, which is not opened. Furthermore, Figure 2a indicates the routes, from the main 

depot, which is shown by (0), to the satellites in the first echelon. For instance, the first route 

in the first echelon is (0), (2), (4) and the second route is (0), (3). The routes start at the depot 

and end at a satellite because in the 2E-OLRP the vehicles are not required to return to the 

depot. Also, there is a matrix dedicated to each opened satellite in Figure 2c, which shows the 

second echelon vehicle routes which start at satellites and end at customers. This representation 

is very easy to implement (Ghaffari-Nasab et al. 2013).  
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Route 1: (0) (2) (4) 

Route 2: (0) (3)  

 

 

Satellites Customers 

(2) 7 5 10 12 

(4) 11 8 6 9 

(3) 14 13   

(1)     

 
 

Route 1: (2) 5 7 

Route 2: (2) 10 12 

 

Route 1: (4) 6 11 8 

Route 2: (4) 9   

 

Route 1: (3) 14 13 

 

(a)  (b)  (c) 

Figure 1.2.  Solution representation used in heuristic method. (a) first-echelon vehicle routes, 

(b) customer-to-satellite assignment, (c) second-echelon vehicle routes. 

 

1.4.2. Initial solution  

Starting heuristic algorithms with high quality initial solutions can save computational 

time. In each phase of our algorithm we do not begin with a randomly generated initial solution. 

Rather, we use an intelligent heuristic approach to generate initial solutions. Our method for 

creating an initial feasible solution consists of the same two phases described at the beginning 

of Section 1.4. In the first phase we use a math-based heuristic based on a facility location 

problem and in the second phase we use a modified version of the Clarke and Wright algorithm. 

These approaches are briefly described below.  

Math-based Heuristic (MH): The first phase of the proposed heuristic assigns customers 

to satellites based on the capacity of the satellites and the direct distance between customers 

and satellites and then generates routes for the first echelon based on this assignment. Note that 

if we only consider the assignment of customers to satellites and ignore routing issues, the 2E-

OLRP reduces to a capacitated facility location problem (FLP). After assigning customers 

based on the MH, we create the first echelon routes randomly. The objective of the FLP is to 

minimize the satellite opening costs and the total direct distance from satellites to customers 
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while respecting satellite capacities. Based on the notation and decision variables in Table 1.1, 

the formulation for problem MH is shown below:   
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In the above formulation, the objective function (63) minimizes the total cost which is 

the sum of traveling or customer assignment costs and satellite opening costs. Constraint (64) 

ensures that each customer is assigned to exactly one satellite. Constraint (65) guarantees   that 

the total demand of the customers assigned to a satellite is less than the satellite’s capacity and 

it ensures that customers are only assigned to opened satellites. Constraints (66) and (67) are 

binary constraints on the decision variables. Problem MH —a facility location problem— is 

NP-hard. However, in preliminary experiments we were able to optimally solve instances with 

up to 200 customers quickly using IBM ILOG CPLEX 12.5. Therefore, in phase one of our 

algorithm, we use CPLEX to solve problem MH to optimality and then we generate the first 

echelon routes randomly after that. 

Modified Clarke and Wright Heuristic (MCWH): In order to generate an initial solution 

for the second phase of the algorithm, which is the routing decision for the second echelon, the 

well-known Clarke and Wright heuristic (Clarke and Wright, 1964) is used. This heuristic 

begins with customer-to-satellite assignments that are determined in the first phase of the 

algorithm. The MCWH then gives the number of vehicles needed for each satellite and the 

assignment of customers to the second-echelon vehicles that depart each satellite. Note that, in 
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the 2E-OLRP, the routes are open and vehicles are not required to return to satellites after their 

last delivery. Thus, the classical Clarke and Wright heuristic is modified based on the open 

route assumption. In particular, in our modified Clarke and Wright heuristic, the customers in 

each route are visited in order of increasing distance (
ijC ) from the satellite that serves them. 

Thus, the closest customer to the satellite is served first in that route and the farthest customer 

is served last.   

 

1.4.3. Satellite location and first echelon routing phase 

In this phase, six neighborhood structures are implemented to search a large part of the 

solution space through a SA algorithm. Five of these six structures are related to the satellite 

location and customer assignment decisions, and one is related to the first echelon routing. 

These structures are described below: 

• Closing an opened satellite and opening a closed one: An opened satellite is 

chosen based on a probability. The more customers assigned to a satellite, the greater 

probability it is chosen to be closed. A closed satellite is also chosen randomly, and 

all the customers from the selected opened satellite are transferred to the selected 

closed satellite. This neighborhood structure investigates different combinations of 

opened satellites.    

• Closing an opened satellite: The opened satellite with the minimum number of 

assigned customers is selected and all of its customers are transferred to another 

opened satellite after checking the satellite capacity. The opened satellites are sorted 

according to increasing opening cost and checked one by one to find an opened 

satellite with enough capacity. This neighborhood structure decreases satellite 

opening costs if possible. 
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• Opening a closed satellite:  An opened satellite is chosen based on a probability 

that is proportional to the number of customers assigned to it and a random number 

of its customers are assigned to a randomly selected closed satellite after checking 

the satellite capacity constraint. 

• Changing all customers of two opened satellites: Two opened satellites are 

chosen randomly and their customers are swapped if satellite capacity allows.  

• Changing some customers of two opened satellites: Two opened satellites are 

chosen randomly and a random number of their customers are swapped if the satellite 

capacity constraint allows. Each satellite accepts the same number of new customers 

from the other satellite.  

• Swapping two opened satellites in the first echelon routes: Two opened 

satellites are chosen randomly from the same or different first-echelon routes and are 

swapped between their respective positions in their respective routes. The customer 

assignment is not changed. This neighborhood structure searches for different first-

echelon routing options. 

 

1.4.4. Second echelon routing phase 

In the second phase of the heuristic, we use six major neighborhood structures which 

are well-known in the VRP and LRP literature (Karaoglan et al. 2012). These are listed below. 

Note that several of these neighborhoods - including swap, insert, 2-Opt, move, and merge – 

may change the customer-to-satellite assignments that are initially decided during the first 

phase of the heuristic. As described below, there are three varieties of each of the first three 

neighborhoods and one variety of each of the last three neighborhoods. 
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• Swap: Two customers from (a) the same route, or from different routes which 

originate (b) from the same or (c) different satellites, are swapped between their 

respective routes. 

• Insert: One customer is randomly selected and is inserted into a new random 

position in the (a) same route or in another route which is connected to (b) the same 

satellite or (c) another satellite.  

• 2-Opt: Two customers are selected randomly and the path connecting these two 

customers is reversed if (a) the customers are in the same route. If they are from 

different routes originating from (b) the same or (c) different satellites, the second 

parts of the routes containing these two customers are swapped. That is, the second 

part of the route containing the first customer is linked to the first part of the route 

containing the second customer, and the second part of the route containing the 

second customer is linked to the first part of the route containing the first customer. 

The inter-tour 2-opt neighborhood is commonly known as the 2-opt-star (2-opt*). 

• 3-Opt: Three ordered customers in the same route are selected randomly, and 

the sequence from the second to the third customer is moved to the position that 

immediately follows the first selected customer.   

• Move: A route is randomly selected and its origin is changed to the satellite that 

is closest to the first customer of that route. If the closest satellite to the first customer 

has no capacity, the second closest satellite is chosen, and so on. This will continue 

until a new feasible solution is found (if any).  

• Merge: Two routes originating at the same satellite or different satellites are 

randomly selected and they are merged together; the first route is added to the end 

of the second route or vice versa depending on which option has the minimum cost.  
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1.4.5. General structure of the proposed heuristic 

The complete logic of our proposed heuristic for the 2E-OLRP is shown in Table 1.2. 

The process begins by constructing an initial feasible solution ( CurrentS ) using the MH and 

MCWH.  During each iteration of the main SA algorithm, one of the first phase neighborhood 

structures is chosen randomly with the same probability (1/6) to generate a new customer-to-

satellite assignment and/or new first echelon vehicle routes. Then the MCWH is used to 

generate initial second-echelon vehicle routes. This new solution becomes the initial solution (

2

CurrentS ) for the second phase of the algorithm. In the second phase, a SA subroutine uses the 

six second-phase neighborhood structures to generate second-phase neighbors ( 2

NextS ) and 

thereby improve 2

CurrentS . In particular, during each iteration of the SA subroutine, twelve 

neighbors are generated by applying all twelve varieties of the six, second-phase neighborhood 

structures, and the neighbor with the best (minimum) objective function is chosen as the 

candidate solution ( 2

NextS ) which is compared to 2

CurrentS . 

 The best solution ( 2

BestS ) from the second phase of the algorithm becomes the 

neighboring solution ( NextS ) in the main SA algorithm. This neighbor is then compared to the 

current solution ( CurrentS ) in terms of the objective function. If it is better, it replaces CurrentS . 

If not, it replaces CurrentS  with probability exp( )Next Current
Obj Obj

T

−
− . After each iteration of the 

main SA, the temperature, T is multiplied by a cooling rate called   ( 0 1  ). The SA 

algorithm starts with an initial temperature ( InitialT ) and stops when the temperature is less than

FinalT . 
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Table 1.2.  Pseudocode of proposed heuristic 
Capture input parameter values for 2E-OLRP instance from text file;  

InitialT T ; 

Generate an initial solution (
CurrentS ) and compute initial objective value (

CurrentObj ) using MH and MCWH; 

,  Best Current Best CurrentObj Obj S S  ; 

While ( FinalT T ) do 

Set 0Iter = ; 

While ( Iter NumIter ) do 

Generate a random number from one to six (
1RandNum ); 

Switch (
1RandNum ) 

Case 1: Generate next solution by Closing an opened satellite and opening a closed one 
Case 2: Generate next solution by Closing an opened satellite 
Case 3: Generate next solution by Opening a closed satellite 
Case 4: Generate next solution by Changing all customers of two opened satellites 
Case 5: Generate next solution by Changing some customers of two opened satellites 
Case 6: Generate next solution by Swapping two opened satellites 

Generate a full initial solution (
2

CurrentS ) for second echelon routing using MCWH and compute its objective 

value ( 2

CurrentObj ); 

2 2
InitialT T ; 

2 2 2 2,  Best Current Best CurrentObj Obj S S  ; 

While (
2 2

FinalT T ) do 

2 0Iter  ; 

While ( 2 2Iter NumIter ) do 

Create a pool of twelve neighboring solutions as follows: 
Three neighbors are generated by three types of Swap operator; 
Three neighbors are generated by three types of Insert operator; 
Three neighbors are generated by three types of 2-Opt operator; 
One neighbor is generated by 3-Opt operator; 
One neighbor is generated by Move operator; 
One neighbor is generated by Merge operator; 

Select the best solution (
2

NextS ) in the pool and compute its objective value (
2

Next
Obj );  

If ( 2 2

Next CurrentObj Obj ) Then  

2 2 2 2,  Current Next Current NextS S Obj Obj   

Else  

Generate a random number between 0 and 1 ( 2RandNum ); 

If ( 2 2 2

2 exp( ( ) )Next CurrentRandNum Obj Obj T − − ) Then 

2 2 2 2,  Current Next Current NextS S Obj Obj  ; 

If ( 2 2

Current BestObj Obj ) Then  

2 2 2 2,  Best Current Best CurrentS S Obj Obj  ; 

2 2 1Iter Iter + ; 
2 2 *T T  ; 

2 2 2,  Next Best Next BestS S Obj Obj  ; 

If (
Next CurrentObj Obj ) Then  

,  Current Next Current NextObj Obj S S  ; 

Else  
Generate a random number between 0 and 1 (

3RandNum ); 

If (
3 exp( ( ) )Next CurrentRandNum Obj Obj T − − ) Then 

,  Current Next Current NextObj Obj S S  ; 

If (
Current BestObj Obj ) Then 

,  Best Current Best CurrentObj Obj S S  ; 

1Iter Iter + ; 

*T T  ; 

Return 
BestS  and 

BestObj  
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1.5. Numerical experiments 

The presented mathematical formulations and heuristic method were coded into 

Microsoft Visual C++ 2010 Professional. IBM ILOG Concert Technology was used to define 

the model within C++ and call the mixed integer linear programming solver IBM ILOG 

CPLEX 12.5 to solve instances within the Windows 7 environment on a Dell desktop computer 

with an Intel Core i7, 2.6 GHz processor and 16 GB of RAM. Text files defining all problem 

instances used in this paper are available from the authors upon request. 

 

1.5.1. Test instances* 

The above math model and heuristic method were tested on four data sets (i.e. sets of 

problem instances) from the literature. The first data set, from Nguyen et al. (2012a) includes 

24 2E-LRP instances which can also be used for our problem, the 2E-OLRP, which has open 

routes. In these instances, there are 5 to 10 satellites and 25, 50, 100, or 200 customers. More 

details regarding the generation of these problem instances are provided in Nguyen et al. 

(2012a).  

The second data set is also from Nguyen et al. (2012a). These instances were originally 

created by Prodhon (2006) for the CLRP and were transformed into 2E-LRP instances by 

considering a central depot at coordinates (0,0) and assuming the depots in the original instance 

are satellites in the 2E-LRP. Similarly, they can also be used for the 2E-OLRP. There are 30 

such instances with 20-200 customers and 5-10 satellites. 

The third data set contains 13 2E-OLRP instances, that we adopt from the CLRP 

instances of Barreto (2004). This is done by considering the depots in the original instances as 

satellites; creating a central depot at coordinate (0,0); and assuming that distances in the first 

                                                           
* All the instances were downloaded from http://prodhonc.free.fr 



35 

 

echelon from the central depot to satellites are twice the Euclidian distances, rounded up to the 

nearest integer. Also, the vehicle capacity in the first echelon is 1.5 times the maximum satellite 

capacity. Furthermore, the fixed vehicle cost in the first echelon is five times the vehicle cost 

in the second echelon. The number of satellites ranges from 2 to 14, and the number of 

customers ranges from 8 to 318. All costs including vehicle costs and satellite opening costs 

are considered integer for the sake of simplicity and for comparison with future studies. In case 

any costs are not integral in the original instance, they are rounded up. 

 

1.5.2. Parameter settings 

Parameter calibration is an important issue that can affect the results. Based on a set of 

preliminary experiments, we decided to assign parameter values based on three problem sizes: 

small (less than 50 nodes), medium (50-100 nodes), and large (more than 100 nodes). We 

consider two possible values for each parameter that appears in Table 1.2. In particular, we 

consider the values 1 and 5 for NumIter  and 
2NumIter ; 300 and 400 for InitialT ; 200 and 250 for 

2

InitialT ; 0.98 and 0.99 for  ; and 0.4 and 0.5 for FinalT  and 2

FinalT . Based on a set of preliminary 

experiments,  FinalT  and 2

FinalT  were both fixed to 0.5 since they did not have any effect on the 

quality of the solutions. To find the best parameter values for each problem size, we ran the 

algorithm five times on one benchmark instance for each problem size using each of the 32 

possible combinations of parameter values. The combination of parameter values with the 

minimum objective function was selected as the best setting for each problem size.  Table 1.3 

shows the parameter settings for the three problem sizes.  

  



36 

 

Table 1.3.  Parameter settings for heuristic 

 NumIter  2NumIter  InitialT  2

InitialT    FinalT  2

FinalT  

Small-size 1 1 400 200 0.98 0.5 0.5 

Medium-size 1 5 400 200 0.99 0.5 0.5 

Large-size 5 5 400 250 0.99 0.5 0.5 

 

1.5.3. Computational results 

The efficiency of the proposed heuristic is tested in this section using four different 

predesigned datasets from the literature. Also, the proposed mathematical programs are solved 

using CPLEX with a two-hour time limit. Due to the complexity of the problem, in most cases 

CPLEX is not able to find an optimal solution. Therefore, in order to evaluate the quality of 

solutions obtained by the heuristic approach, the LP relaxations of the 2E-OLRP instances are 

also solved using CPLEX. 

Since the 2E-OLRP is a new problem, there are no results from the literature to which 

we can compare the heuristic’s performance. Thus, the proposed heuristic is also tested on the 

2E-LRP instances in the literature by changing the heuristic algorithm based the assumptions 

in the 2E-LRP. 

Table 1.4 shows the results when the heuristic and CPLEX are tested on the instances 

in Nguyen’s dataset using formulations P1, P2 and P3. In this table, the first column shows the 

name of the problem instance.  Columns 2-5 show the results from CPLEX for P1. Column 

“LB” shows the lower bound on the optimal objective value found by CPLEX at termination. 

Column “UB” shows the objective value of the best feasible solution found by CPLEX within 

the time limit. Column 4 shows the CPU runtime in seconds used by CPLEX. The fifth column 

“Gap (%)” shows the gap, 
UB LB

UB

− 
 
 

, that exists after the time limit is reached. Columns 6-

9 and 10-13 are the same as columns 2-5 but show the results for formulation P2 and P3, 

respectively. Results for the proposed heuristic are shown in the last three columns. Column 
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“Cost” shows the average of the objective values found in five runs of the heuristic. Column 

“Time” shows the average CPU runtime used in five runs of the heuristic. The last column 

“Gap (%)” shows the gap between the results of the hybrid SA heuristic and the highest lower 

bound obtained by CPLEX using P1 or P2 according to the following formula: 

Ave best

Ave

HybridSA LB

HybridSA

 −
 
 

. The first term in the numerator is taken from the “Ave.” column. 

As shown in Table 1.4, only four of 24 instances (shown in bold) are optimally solved 

by CPLEX using P2 or P3 but six are optimally solved using P1. For other sixteen instances 

CPLEX can find a feasible but not provably optimal solution within the predefined time limit 

using P1, P2 or P3. Overall, formulation P1 performs significantly better than P2 and P3 

considering the average “Gap (%)” and final lower bound. P1 also finds optimal solutions for 

two medium-sized problems, 50-5N and 50-5MNb, where P2 and P3 are not able to find such 

solutions. The results also show that the heuristic finds the optimal solution for small-sized 

instances and good solutions for the medium- and large-sized instances in a reasonable amount 

of time. Figure 1.3 provides a visualization of the best solution found by the heuristic for a 

relatively large problem, 50-5MN, with 13.12% gap.  As shown in the figure, the heuristic finds 

a good solution for the problem in a reasonable amount of time.  Moreover, the average amount 

of “Gap (%)” for this dataset is 7.23% which shows the strength of the proposed heuristic.  

Table 1.5 has the same structure as Table 4 for Prodhon’s dataset. Here, once again, 

formulation P1 performs significantly better than P2 and P3 in obtaining better feasible 

solutions, tighter lower bounds and a smaller “Gap%”. CPLEX and the heuristic generally find 

the optimal solution for the small instances using P1, P2 or P3. One should note that the P1 

solved two medium instances optimally where P2 and P3 did not. However, the proposed 

heuristic is much faster than CPLEX. For the medium- and large-sized instances, CPLEX is 

not able to find any feasible solution but the heuristic approach finds good quality solutions 
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compared to the lower bound obtained by CPLEX. The average “Gap (%)” of 5.56% shows 

that the proposed heuristic has good performance in a reasonable amount of time (about a 

minute). Note that for some large-sized instances, even the LP relaxation cannot be solved to 

optimality within the two-hour time limit using CPLEX. 

Table 1.6 shows the results for the mathematical models and heuristic for Barreto’s 

dataset. Here, CPLEX is not able to find feasible solutions for most of the large-sized instances. 

However, both CPLEX and the heuristic find optimal solutions for the small- and medium-

sized instances. The time used by heuristic and 2.82% average “Gap (%)” demonstrate the 

efficiency of the proposed heuristic. Similar to the results from Tables 1.4-1.5, formulation P1 

performs significantly better than P2 and P3 by finding better lower bounds and feasible 

solutions. P1 solves one medium instance optimally and find better feasible solutions than P2 

and P3 for two other medium instances. 

Overall, based on the results from these data sets, we can conclude that P1 and P2, which 

are new proposed methods to model open vehicle routing problems, performs significantly 

better than P3, which is the most common technique in the literature for modeling open 

problems. One should note that P1, which is a two index mathematical model, also outperforms 

P2 which is a three index mathematical model. Contrary to the 2E-LRP, the 2E-OLRP is an 

asymmetric routing problem. Considering this fact, two new sets of decision variables, i  and 

i  and, ik  and ik , are proposed in P1 and P2, respectively,  that are appropriate for handling 

the asymmetric characteristic of the problem. As mentioned in Section 3, these variables are 

used to add new constraints to the 2E-OLRP. These constraints can help mathematical model 

P1 and P2 obtain better results than P3.  

To have a better evaluation of the proposed heuristic, we now compare its performance 

in solving 2E-LRP instances to two of the best algorithms in the 2E-LRP literature. In order to 

do this comparison, the proposed heuristic is changed based on the 2E-LRP objective function 
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and constraints. Since routes are closed in the classical 2E-LRP, our MCWH is changed to the 

classical Clarke and Wright heuristic to find an appropriate initial solution for the second phase 

of the heuristic algorithm. Tables 1.7 and 1.8 show the results of this comparison. The results 

for the proposed heuristic are shown under the heading “Hybrid SA” which includes the 

average and best results out of five runs. Columns 2-5 show the results from two previous 

studies on the 2E-LRP: Nguyen et al. (2012a) and Contardo et al. (2012). The last column, 

“Gap (%)” shows the difference between hybrid SA and best solution found by these previous 

studies; it is computed using the following formula: 
  

 

bestHybrid SA Best Solution

Best Solution

− 
 
 

. 

In Table 1.7 (for Nguyen’s dataset), the proposed heuristic finds the same best solutions 

as the other algorithms for the small-sized instances. For the medium-sized instances, the best 

solutions found by the proposed algorithm are similar to those in the literature in most cases. 

The proposed heuristic competes well against the other algorithms and obtains results very 

close to those in the literature on large-sized instances too. The overall gap of 1.65% shows the 

strength of the proposed hybrid SA. For small-sized instances, all three algorithms solve the 

problems optimally in less than 5 seconds.  For medium-sized instances with 50 customers, 

although the proposed hybrid SA is faster than Nguyen’s algorithm in some cases, Contardo’s 

algorithm generally obtains better solutions in less time. For large-sized instances with 100 and 

200 customers, there is no pattern and each algorithm is the fastest on some instances and none 

of them can be considered as the fastest algorithm. Based on average objective value and 

average runtime, our hybrid SA performs very close to the other algorithms in the literature.  

In Table 1.8, our heuristic is compared to the same algorithms by Nguyen et al. (2012a) 

and Contardo et al. (2012) but this time on Prodhon’s dataset. Our heuristic finds the same best 

solutions as the other algorithms for the small-sized instances with 20 customers. Our heuristic 

also finds the same best solutions as the other algorithms for most of the medium-sized 
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instances with 50 customers. For most large-sized instances with 100 and 200 customers, the 

quality of solutions obtained by proposed hybrid SA is very close to the best solution found by 

the other two heuristics. Note that the hybrid SA finds a better solution for instance (ppw-

100×10-1a). To our knowledge, this is a new best solution for this instance. The overall 1.17% 

gap shows the good performance of our proposed heuristic. Regarding runtime, the other two 

algorithms are generally faster than our hybrid SA on the small- and medium-sized instances; 

however, the difference in speed between the algorithms is less obvious for the large-sized 

instances. 

 

 

Figure 1.3.  Best solution found by the proposed heuristic for instance 50-5MN. 
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Table 1.4.  Comparison of proposed heuristic and CPLEX for Nguyen's dataset. 
Instance CPLEX               Heuristic   

 P1     P2     P3        

 Cost 
 

Time 
Gap 

(%) 

 
Cost  Time 

Gap 

 (%) 

 
Cost  Time 

Gap  

(%) 

 
Cost Time 

Gap 

(%) 

 LB UB    LB UB    LB UB    Ave. Ave.  

25-5N 57,448.00 57,448 22 0.00  57,448.00 57,448 149 0.00  57,448.00 57,448 234 0.00  57,448.00 2.80 0.00 

25-5Nb 48,605.00 48,605 8 0.00  48,605.00 48,605 31 0.00  48,605.00 48,605 36 0.00  48,605.00 2.60 0.00 

25-5MN 54,079.00 54,079 21 0.00  54,079.00 54,079 1012 0.00  54,079.00 54,079 1165 0.00  54,079.00 3.00 0.00 

25-5MNb 47,109.00 47,109 8 0.00  47,109.00 47,109 108 0.00  47,109.00 47,109 85 0.00  47,109.00 2.60 0.00 

50-5N 97,575.00 97575 2030 0.00  88,987.60 105,852 7200 15.93  91,467.40 NA 7200 NA  99,459.60 42.40 1.89 

50-5Nb 74,874.80 78,131 7200 4.17  72,626.70 105,915 7200 31.43  72,645.23 103,859 7200 30.05  79,014.20 36.60 5.24 

50-5MN 84,151.90 88,373 7200 4.78  78,205.40 124,862 7200 37.37  81,096.58 108,503 7200 25.26  93,344.20 41.20 9.85 

50-5MNb 82185.00 82,185 4403 0.00  79,141.10 92,090 7200 14.06  78,317.30 91,197 7200 14.12  82,973.20 33.80 0.95 

50-10N 84,087.50 85,541 7200 1.70  77,640.60 115,190 7200 32.60  77,142.66 128,351 7200 39.90  88,411.20 42.80 4.89 

50-10Nb 69,399.00 69,590 7200 0.27  67,028.20 71,834 7200 6.69  67,198.38 92,778 7200 27.57  71,412.60 35.20 2.82 

50-10MN 100,054.00 107,129 7200 6.60  88,536.03 NA 7200 NA  88,436.04 NA 7200 NA  103,307.40 46.20 3.15 

50-10MNb 84,659.50 85,209 7200 0.64  75,165.00 100,363 7200 25.11  76,299.76 105,344 7200 27.57  86,851.60 27.80 2.52 

100-5N 127,828.00 321,050 7200 60.18  119,521.26 NA 7200 NA  116,242.84 NA 7200 NA  145,141.20 92.60 11.93 

100-5Nb 113,176.00 488,082 7200 76.81  108,607.19 NA 7200 NA  103,359.80 NA 7200 NA  127,503.80 78.20 11.24 

100-5MN 130,785.00 212,032 7200 38.32  121,187.83 NA 7200 NA  119,273.65 NA 7200 NA  154,019.80 87.20 15.09 

100-5MNb 111,940.00 284,336 7200 60.63  108,107.47 NA 7200 NA  102,646.71 NA 7200 NA  131,711.20 71.80 15.01 

100-10N 137,856.00 NA 7200 NA  NA NA 7200 NA  131,459.79 NA 7200 NA  168,829.80 95.80 18.35 

100-10Nb 117,659.00 NA 7200 NA  114,284.91 NA 7200 NA  110,151.19 NA 7200 NA  132,636.40 79.80 11.29 

100-10MN 133,546.00 NA 7200 NA  122,501.00 NA 7200 NA  122,490.80 NA 7200 NA  160,999.20 96.60 17.05 

100-10MNb 115,032.00 NA 7200 NA  112,217.00 NA 7200 NA  104,544.22 NA 7200 NA  132,755.40 76.80 13.35 

200-10N NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  282,161.40 491.20 NA 

200-10Nb NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  221,897.40 433.40 NA 

200-10MN NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  256,618.20 550.60 NA 

200-10MNb NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  239,992.80 420.20 NA 

Average                      7.23 

Bold values are optimal. 

All times in seconds. 
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Table 1.5.  Comparison of proposed heuristic and CPLEX for Prodhon’s dataset. 
Instance CPLEX                         Heuristic    

 P1        P2        P3           

 Cost   Time 
Gap 

(%) 

 
Cost   Time 

Gap 

(%) 

 
Cost   Time 

Gap 

(%) 

 
Cost Time 

Gap 

(%) 

  LB UB      LB UB      LB UB      Ave. Ave.   

ppw-20×5-1a 66,263.00 66,263 37 0.00  65,609.18 66,263 7200 0.99  65,384.67 66,263 7200 1.33  66,263 2.20 0.00 

ppw-20×5-1b 48,013.00 48,013 7 0.00  48,013.00 48,013 65 0.00  48,013.00 48,013 40 0.00  48,013 1.60 0.00 

ppw-20×5-2a 64,049.00 64,049 49 0.00  63,346.97 64,049 7200 1.10  64,049.00 64,049 4941 0.00  64,049 2.00 0.00 

ppw-20×5-2b 46,986.00 46,986 9 0.00  46,986.00 46,986 45 0.00  46,986.00 46,986 38 0.00  46,986 2.20 0.00 

ppw-50×5-1a 89,065.70 93,346 7200 4.59  82,827.48 NA 7200 NA  82,844.24 NA 7200 NA  95,697 48.60 6.93 

ppw-50×5-1b 74,970.60 77,554 7200 3.33  64,993.70 NA 7200 NA  73,148.40 81,823 7200 10.60  77,575 33.00 3.36 

ppw-50×5-2a 96,635.10 99,292 7200 2.68  84,173.74 NA 7200 NA  85,201.49 NA 7200 NA  99,322 48.20 2.71 

ppw-50×5-2b 86,261.00 86,261 2612 0.00  85,516.84 98,081 7200 12.81  85,130.10 109,609 7200 22.33  87,703 35.00 1.64 

ppw-50×5-2BIS 81,552.80 85,572 7200 4.70  75,601.03 NA 7200 NA  75,447.30 NA 7200 NA  84,943 49.40 3.99 

ppw-50×5-2bBIS 75,202.10 77,600 7200 3.09  63,467.10 88,958 7200 28.65  64,233.04 81,917 7200 21.59  77,219 36.20 2.61 

ppw-50×5-3a 87,370.70 88,669 7200 1.46  84,817.70 NA 7200 NA  84,536.97 NA 7200 NA  89,139 32.60 1.98 

ppw-50×5-3b 76,932.00 76,932 2324 0.00  74,804.30 89,787 7200 16.69  74,549.49 93,810 7200 20.53  77,366 33.00 0.56 

ppw-100×5-1a 206,730.00 270,926 7200 23.70  NA NA 7200 NA  NA NA 7200 NA  252,505 110.20 18.13 

ppw-100×5-1b 209,224.00 479,798 7200 56.39  164,719.00 NA 7200 NA  158,055.91 NA 7200 NA  219,945 77.20 4.87 

ppw-100×5-2a 186,146.00 192,330 7200 3.22  169,871.00 NA 7200 NA  NA NA 7200 NA  194,818 111.40 4.45 

ppw-100×5-2b 166,473.00 174,331 7200 4.51  155,516.00 NA 7200 NA  148,883.88 NA 7200 NA  172,303 76.40 3.38 

ppw-100×5-3a 183,321.00 194,929 7200 5.95  162,191.00 NA 7200 NA  NA NA 7200 NA  193,370 72.60 5.18 

ppw-100×5-3b 154,944.00 166,313 7200 6.84  152,155.00 NA 7200 NA  142,457.93 NA 7200 NA  164,925 75.20 6.05 

ppw-100×10-1a 256,582.00 1,019,710 7200 74.84  NA NA 7200 NA  NA NA 7200 NA  296,497 112.40 13.46 

ppw-100×10-1b 231,498.00 NA 7200 NA  229,167.00 NA 7200 NA  226,749.71 NA 7200 NA  258,309 83.20 10.38 

ppw-100×10-2a 228,702.00 NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  255,000 110.80 10.31 

ppw-100×10-2b 208,857.00 NA 7200 NA  204,790.00 NA 7200 NA  202,452.62 NA 7200 NA  230,859 82.00 9.53 

ppw-100×10-3a 228,188.00 NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  262,076 73.40 12.93 

ppw-100×10-3b 206,581.00 NA 7200 NA  202,138.00 NA 7200 NA  199,224.18 NA 7200 NA  232,034 80.00 10.97 

ppw-200×10-1a NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  453,948 517.40 NA 

ppw-200×10-1b NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  398,867 419.40 NA 

ppw-200×10-2a NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  433,233 581.60 NA 

ppw-200×10-2b NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  386,033 416.00 NA 

ppw-200×10-3a NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  431,722 370.00 NA 

ppw-200×10-3b NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  350,890 392.80 NA 

Average                          5.56 
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Table 1.6.  Comparison of proposed heuristic and CPLEX for Barreto's dataset. 
Instance CPLEX                         Heuristic    

 P1        P2        P3           

 Cost   Time 
Gap 

(%) 

 
Cost   Time 

Gap 

(%) 

 
Cost   Time 

Gap 

(%) 

 
Cost Time 

Gap 

(%) 

  LB UB      LB UB      LB UB      Ave. Ave.   

Christofides69-50x5 538.00 538 733 0.00  516.90 548 7200 5.68  515.2051 548 7200 5.98  564.8 42.60 4.75 

Christofides69-75x10 743.23 764 7200 2.72  708.06 NA 7200 NA  633.0747 NA 7200 NA  813 70.20 8.58 

Christofides69-100x10 809.13 858 7200 5.70  778.45 NA 7200 NA  722.6704 NA 7200 NA  872.8 84.60 7.30 

Daskin95-88x8 654.53 NA 7200 NA  486.44 NA 7200 NA  486.2554 NA 7200 NA  697 62.60 6.09 

Daskin95-150x10 NA NA 7200 NA  NA NA 7200 NA  NA NA 7200 NA  65,868.2 112.60 NA 

Gaskell67-21x5 855.00 855 5 0.00  855.00 855 36 0.00  855 855 141 0.00  855 3.20 0.00 

Gaskell67-22x5 1,157.00 1,157 5 0.00  1,157.00 1,157 88 0.00  1,157.00 1,157 7 0.00  1,157.00 3.60 0.00 

Gaskell67-29x5 1,219.00 1,219 22 0.00  1,219.00 1,219 1803 0.00  1,219.00 1,219 1050 0.00  1,219.00 3.20 0.00 

Gaskell67-32x5 1,437.00 1,437 41 0.00  1,422.07 1,437 7200 1.04  1,421.92 1,437 7200 1.05  1,437.00 3.20 0.00 

Gaskell67-32x5b 1,415.00 1,415 20 0.00  1,415.00 1,415 6641 0.00  1,415.00 1,415 397 0.00  1,415.00 3.00 0.00 

Gaskell67-36x5 499.00 499 8 0.00  499.00 499 239 0.00  499 499 69 0.00  499 4.20 0.00 

Min92-27x5 10,449.00 10,449 15 0.00  10,449.00 10,449 1072 0.00  10,449.00 10,449 61 0.00  10,449.00 3.40 0.00 

Min92-134x8 21,154.10 NA 7200 NA  18,459.70 NA NA NA  NA NA 7200 NA  22,784.60 134.00 7.16 

Average                       2.82 
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Table 1.7.  Comparison of proposed heuristic and other heuristics on Nguyen’s 2E-LRP instances 

Instance 
Nguyen et al. 

2012a 

 Contardo et al. 

2012 

 
Hybrid SA   

 Cost Time  Cost Time  Cost  Time  Gap 

(%) 

       Ave. Min. Ave. Min.  

25-5N 80,370 3.1  80,370 0.1  80,370 80,370 2.8 2 0.00% 

25-5Nb 64,562 2.6  64,562 0  64,562 64,562 2.2 2 0.00% 

25-5MN 78,947 3.2  78,947 0.5  78,947 78,947 2.4 2 0.00% 

25-5MNb 64,438 4.1  64,438 0  64,438 64,438 2.6 2 0.00% 

50-5N 138,126 13.7  137,815 33.9  138,468 138,444 44.2 43 0.46% 

50-5Nb 111,062 11.7  110,094 32.3  112,298 111,840 32.6 31 1.59% 

50-5MN 123,484 9.1  123,484 13.1  124,014 123,854 42 41 0.30% 

50-5MNb 105,401 13.6  105,401 23.1  106,416 106,313 32.8 31 0.87% 

50-10N 116,132 46.6  115,725 21.3  116,700 116,132 42.8 42 0.35% 

50-10Nb 87,315 22.4  87,315 20.7  90,085 89,744 32.6 32 2.78% 

50-10MN 135,748 37.5  135,519 39  136,095 135,568 42.8 42 0.04% 

50-10MNb 110,613 42.4  110,613 19.1  110,907 110,703 34.6 33 0.08% 

100-5N 196,910 13.1  193,228 154.3  199,487 198,444 83 81 2.70% 

100-5Nb 159,086 33.1  158,927 133  163,272 162,813 61.4 60 2.45% 

100-5MN 207,119 25.5  204,682 135.7  207,672 205,742 79.6 78 0.52% 

100-5MNb 166,115 41.3  165,744 112.9  170,789 169,151 62.6 60 2.06% 

100-10N 215,792 132.5  212,847 70.8  219,053 217,056 82.4 79 1.98% 

100-10Nb 156,401 76.9  155,489 70.3  160,211 158,269 60 58 1.79% 

100-10MN 205,964 156.1  201,275 104.7  213,790 209,270 98.2 81 3.97% 

100-10MNb 170,706 192.4  170,625 114.2  175,593 173,158 64.8 60 1.48% 

200-10N 353,685 240.8  347,395 237.2  358,961 356,391 490.2 483 2.59% 

200-10Nb 262,072 358.8  256,171 340.8  271,189 269,577 439.2 430 5.23% 

200-10MN 332,345 523.1  326,454 354.7  344,443 339,479 499 486 3.99% 

200-10MNb 292,523 690  289,742 481.7  309,742 302,502 422.2 416 4.40% 

Average 163,954.8 112.2  162,369.2 104.7  167,395.8 165,948.6 114.8 111.4 1.65% 

Bold values indicate best performing algorithm for each instance. 
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Table 1.8. Comparison of proposed heuristic and other heuristics on Prodhon’s 2E-LRP instances  
Instance Nguyen et al. 2012a  Contardo et al. 2012  Hybrid SA   

 Cost Time  Cost Time  Cost Time Gap (%) 

       Ave. Min. Ave. Min.  

ppw-20×5-1a 89,075 2.4  89,075 2.8  89,075 89,075 2.8 2 0.00% 

ppw-20×5-1b 61,863 2.6  61,863 0.2  61,863 61,863 3.4 2 0.00% 

ppw-20×5-2a 85,290 1.6  84,478 2.8  84,478 84,478 2.8 2 0.00% 

ppw-20×5-2b 60,838 1.4  60,838 0  60,838 60,838 3.6 3 0.00% 

ppw-50×5-1a 134,855 9.2  130,843 8.2  135,592 135,008 48.6 47 3.18% 

ppw-50×5-1b 101,530 15.8  101,530 8.7  102,211 101,879 34 32 0.34% 

ppw-50×5-2a 132,159 12.9  131,825 37.2  132,515 132,131 48.6 48 0.23% 

ppw-50×5-2b 110,547 18.6  110,332 21.1  110,684 110,395 34.4 34 0.06% 

ppw-50×5-2BIS 122,654 27.6  122,599 43.2  122,965 122,809 49 48 0.17% 

ppw-50×5-2bBIS 105,776 30  105,696 57.4  106,077 105,835 35 34 0.13% 

ppw-50×5-3a 128,379 16.2  128,379 17.8  128,630 128,379 50 49 0.00% 

ppw-50×5-3b 104,006 17  104,006 14.2  104,088 104,006 33.4 33 0.00% 

ppw-100×5-1a 320,130 37.3  319,137 445  324,359 323,693 158.4 158 1.43% 

ppw-100×5-1b 258,205 32  257,349 607.9  263,623 260,754 109.6 109 1.32% 

ppw-100×5-2a 234,179 29.6  231,305 43.7  236,313 235,752 158.4 157 1.92% 

ppw-100×5-2b 195,426 24.9  194,729 602.4  195,809 195,450 108.8 107 0.37% 

ppw-100×5-3a 245,944 68  244,194 167.9  254,910 250,992 157 156 2.78% 

ppw-100×5-3b 195,254 54.3  194,110 210.9  201,451 198,343 110.2 108 2.18% 

ppw-100×10-1a 358,939 336.4  358,068 65.6  359,389 356,669 161.4 159 -0.39% 

ppw-100×10-1b 302,584 333.5  297,167 118.7  304,761 301,509 116.2 114 1.46% 

ppw-100×10-2a 306,303 362  305,402 163  309,946 308,712 158 157 1.08% 

ppw-100×10-2b 264,389 294.1  265,138 225.9  268,084 266,692 119.2 116 0.87% 

ppw-100×10-3a 313,249 370.8  313,517 106  322,141 322,096 161.4 160 2.82% 

ppw-100×10-3b 266,383 340.4  264,096 181.6  276,589 275,951 116.4 114 4.49% 

ppw-200×10-1a 554,598 700.9  552,816 648.7  563,172 561,835 641.6 613 1.63% 

ppw-200×10-1b 452,286 723.7  448,236 927.6  461,742 460,476 465 448 2.73% 

ppw-200×10-2a 502,173 220.2  498,199 339.3  506,715 506,124 625.4 623 1.59% 

ppw-200×10-2b 425,311 267.3  423,048 1161.5  433,382 429,033 443 424 1.41% 

ppw-200×10-3a 533,732 676.3  534,569 285.2  543,974 543,312 618.6 605 1.79% 

ppw-200×10-3b 418,800 323.6  404,284 439.1  411,150 409,961 419.6 413 1.40% 

Average 246,161.9 178.4   244,560.9 231.8   249,217.6 248,135.0 173.1 169.2 1.17% 
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1.6. Conclusion 

In this paper, we studied crowed sourced delivery problem in a multi echelon 

environment. This problem can be modeled as a two-echelon open location routing problem 

(2E-OLRP). This problem is a new variant of the classical location routing problem (LRP) 

which considers location and routing decisions in two echelon supply chains in which third 

party logistics providers are used. Three new mathematical models and a hybrid simulated 

annealing (SA) heuristic are developed to solve the 2E-OLRP. Subtour elimination constraints 

are also developed in the mathematical models to eliminate routes that are not connected to the 

depot (a satellite) in the first (second) echelon. A new solution encoding scheme is used which 

is easy to implement and simplifies the search for obtaining better solutions. Our methods are 

tested on two sets of problem instances from the 2E-LRP literature and one set of well-known 

LRP benchmark instances that we transform into 2E-OLRP instances. IBM ILOG CPLEX is 

used to search for feasible and optimal solutions and obtain a lower bound on the optimal value 

for these 2E-OLRP instances after a two-hour time limit. The proposed hybrid SA heuristic 

outperforms CPLEX both in solution quality and solution time across the vast majority of 

instances. We also note that CPLEX fails to find feasible solutions to many medium- and large-

sized 2E-OLRP instances, whereas the proposed SA heuristic finds feasible solutions to all of 

them in a reasonable amount of time.  

Future research on this topic might proceed in several directions. More realistic 

constraints such as vehicle synchronization at satellites, or simultaneous pickup and delivery 

might be considered. Moreover, uncertainties in customer demand, travel time, and/or service 

time might be incorporated into the modeling framework. Another main area of future research 

may be developing new exact or heuristic methods for solving the 2E-OLRP that exploit the 

problem characteristics. Finally, as more companies outsource their transportation affairs to 
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third parties, it may be beneficial for future studies to spend more effort analyzing the financial 

savings achieved by companies that have made outsourcing decisions.  
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The rapid growth of online sales has encouraged many traditional brick-and-mortar 

retailers to fulfill their customers’ demand through multiple channels, which is known as omni-

channel retailing. Omni-channel retailers sell their products through e-commerce channels and 

brick-and-mortar stores in different geographical locations. They have specific fulfillment 

centers (e-fulfillment centers) in different geographical locations to fulfill their online orders; 

however, they may also fulfill their online orders using their in-store inventory. Moreover, it 

has recently been more common to offer the in-store customers the option to ship their orders 

if the store is out of inventory.  On the other hand, retailers can benefit from pricing decisions 

to control their customers’ channel preference. Therefore, the omni-channel retailer faces an 

optimization problem to maximize the total profit by considering both revenue and fulfillment 

costs. We model the customers’ demand by a Multinomial Logit (MNL) choice model. Given 

this choice model, in our first proposed optimization model, we assume that in-store demands 

can also be satisfied with e-fulfillment inventory from the same geographical zone. In the 

second optimization model, we also assume multiple shipping options and inventory decisions. 

By numerical experiments, we show that an omni-channel retailer can increase its profit by 

having control over initial inventory assignment and fulfilling the demand of in-store customers 

by e-fulfillment inventory.    
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2.1. Introduction 

Omni-channel retailing is the integration of demand fulfillment process across retailers’ 

multiple channels. The main purpose of this integration is to give consumers a better shopping 

experience whether it’s an online customer picking up the product in the store or a customer at 

a physical store asking for shipping the product to her home. Omni-channel retailing is growing 

fast. Customers expect to have several options for shipping their packages, including store pick-

up when they buy their products online. They also expect to be able to check the retailers in-

store inventory on their mobile app (e.g., Walmart mobile app) and locate the exact aisle for 

the product.  Based on a research study, almost seventy percent of the consumers expect to 

view in-store inventory online and almost forty percent are unlikely to visit the store if they 

cannot see the store inventory online (Forrester Research 2014).  

If the retailers want to compete in today’s market, they should focus on convenience of 

their customers. Omni-channel retailing helps the retailers to achieve this goal. This can help 

customer to compare the online price with the in-store price and to have a package shipped to 

her home if the store is out of inventory or to pick up a package at store without paying the 

shipping cost. Omni-channel have several benefits for retailers as well. They can increase their 

market share by covering both the online sales and sales through traditional channel. They can 

also decrease the lost sales that happens in pure e-commerce companies, such as Amazon, by 

utilizing the in-store inventories for online orders. By utilizing such inventory, retailers can 

improve the performance and the responsiveness of their distribution systems.  

 

2.1.1. Omni-channel retailing vs. multi-channel retailing   

Although there are several similarities, omni-channel retailing is different from multi-

channel retailing. Both multi-channel and omni-channel retailing represent selling products 
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through multiple channels including brick-and-mortar and e-commerce channels, but the key 

difference is how the demand fulfillment process is combined across different channels. A 

traditional multi-channel retailer may have sales from its website and physical stores, but these 

two channels are performing separately and have very little interaction with each other. In fact, 

e-commerce and brick-and mortar channels are two distinct businesses; for example, they have 

their own inventory and never share when they are out of stock.  But in omni-channel retailing, 

these two channels are integrated. For example, in omni-channel retailing, a customer who 

bought the product online can pick it up in-store or when the store is out of inventory, the 

retailer can ship the product to the customer from another warehouse dedicated to online orders.  

 

2.1.2. Problem description  

In this paper, we study both pricing and fulfillment decisions for omni-channel retailers. 

The retailer has specific fulfillment centers (e-fulfillment centers) in different geographical 

zones to primarily satisfy online orders in the same geographical zone. They can fulfill an 

online order in a given zone by the e-fulfillment inventory in the same zone or from an e-

fulfillment center in another zone. They also have physical stores in all the geographical zones 

(i.e., brick-and-mortar channels). The physical store inventory can be used to fulfill the online 

demand in any zone. But the in-store demand can only be fulfilled from the in-store inventory 

or from the e-fulfillment inventory in the same geographical zone, if the store is out of 

inventory. We also assume that, the in-store and online prices are decision variables and the 

retailer can use these decisions to change the demand pattern for each channel. In fact, as it has 

been often assumed in revenue management literature, the retailer can use the price to control 

the demand in each channel. retailers can offer promotions for slow-moving in-store products 

to change their demand patterns for brick-and-mortar channels. One should be noted that the 
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retailer is allowed to decide not to satisfy an order when it has enough inventory, but it will 

lose revenue. However, some portion of the lost revenue can be recovered by selling the 

leftover inventory at a lower price. Indeed, we study cross-channel pricing and fulfillment 

problem in this paper. For two zones, Figure 2.1 illustrates the different ways that an online 

order or a store demand can be fulfilled using available inventory. 

 

Figure 2.1 Omni-channel fulfillment options (two zones)  

 

Although there are several benefits for both retailers and customers in implementing 

omni-channel retailing, new operational difficulties have arisen since it was introduced, but not 

all of them has addressed yet. One challenge is how to balance the inventory for online sales 

and in-store demands and how to use the store and e-fulfillment inventory across channels. The 

other challenge relates to making fulfillment decisions for online orders. Sometimes retailers 

decide to ship the order from the farther location to keep the inventory level in a closer 

fulfillment center prepared for future demand.  Finally, pricing decisions and its impact on each 

channel is another challenge. These decisions were traditionally made separately but pricing 

controls can affect the fulfillment decisions as well. In fact, retailers can move customers 
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between channels and change the customers’ shipping preferences by offering prices for 

different channels while simultaneously making fulfillment decisions to maximize profit. For 

example, if the e-fulfillment center in one zone is out of inventory for online orders, the retailer 

has to ship those orders either form another e-fulfilment center or physical store and incurring 

extra shipping cost. However, if retailers make the pricing decisions with these fulfillment 

decisions simultaneously, then they can offer a proportion of this extra fulfillment cost as a 

promotion on in-store price and increase the probability of customers buying from physical 

stores or increase the probability of customers buying online to then pick up the orders from 

physical stores. For example, if the e-fulfillment center is out of inventory, the retailer might 

pay $10 extra cost to ship an online order from the in-store inventory which is not designed 

primarily for fulfilling online orders. But if the pricing decisions are made simultaneously, then 

the retailer can offer a part of this extra cost, like $3, as a discount to the in-store price to 

increase the probability that customers pick up the product from the store.   

 

2.1.3. Summary of contributions 

• The customer demand is modeled by multinomial logit (MNL) choice model and 

pricing control is used to manage the demand through channels.  

• We propose two new optimization models for omni-channel retailing considering 

proposed pricing controls, and fulfillment decisions simultaneously, whereas the 

second model also includes delivery time and inventory decisions. We also consider the 

assumption that in-store demand can be fulfilled from e-fulfillment centers.  

• Both optimization models are non-linear in constraints and objective function. 

Therefore, both models are linearized using standard techniques that are introduced in 

the literature and the models are solved by CPLEX solver.  
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• We design extensive numerical experiments that provide several insights for omni-

channel retailing. The numerical results provide several key managerial insights.  

The rest of this paper is organized as follows. Section 2.2 reviews the relevant literature 

on the pricing and fulfillment decisions considering e-commerce channel. Problem description 

and mathematical programming formulations of the joint pricing and fulfillment decisions are 

developed in Section 2.3. Computational results are reported in Section 2.4. Several managerial 

insights are provided in Section 2.5 based on computational studies. Finally, conclusions and 

future work are discussed in Section 2.6. 

 

2.2. Literature review 

The first stream of literature that is related to this study is revenue management and 

pricing literature, specifically the studies that consider consumers’ choice. The idea of using 

choice models in revenue management was formally introduced by Talluri and Van Ryzin 

(2004). They modeled a reserve management problem using a Multinomial Logit (MNL) 

choice model. Based on this choice model, they calculated the probability of purchase for each 

product as a function of the set of products offered. Their control problem was to decide which 

subset of products to offer at each point in time.  They also proposed an estimation procedure 

for this setting based on the expectation-maximization (EM) method that jointly estimates 

arrival rates and choice model parameters when no-purchase outcomes are unobservable. 

Talluri and Van Ryzin (2006), Bodea and Ferguson (2014), and Strauss et al. (2018) provide 

comprehensive reviews for pricing and application of choice models in revenue management. 

Akçay et al.  (2010) considered a dynamic pricing problem for substitutable and 

perishable products where the product demands are based on consumer choice model. They 

modeled this problem as a stochastic dynamic program and characterized its optimal prices. 
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They introduced a linear random utility framework that captures the cases of vertical and 

horizontal product differentiation. Kunnumkal and Topaloglu (2010) proposed a new dynamic 

programming decomposition method considering customer choice behavior to allocate the 

revenue associated with an itinerary having different flight legs and to solve a single‐leg 

revenue management problem for each flight leg in the airline network. Their approach finds 

the revenue allocations by solving an auxiliary optimization problem considering the 

probabilistic nature of the customer choices. They compare their approach with two standard 

benchmark methods, one is a deterministic linear programming formulation and the other one 

is a dynamic programming decomposition. By computational experiments, they show that their 

approach outperforms the benchmark methods. 

Vulcano et al. (2010) studied the application of a choice-based revenue management 

system using real data from a U.S. airline company. They first estimated the parameters of the 

choice model then used these estimates in a simulation study to assess the revenue performance 

of the expected marginal seat revenue capacity control policies. Their simulation results show 

one to five percent average revenue improvements using choice models. In another study, 

Vulcano et al. (2012) proposed a method for estimating substitute and lost demand when only 

sales and product availability data are observable, and the seller knows the aggregate market 

share. They combined a MNL choice model with a nonhomogeneous Poisson model of arrivals 

over multiple periods. They applied the expectation-maximization (EM) method to this model 

and treated the observed demand as an incomplete observation of primary demand and were 

able to estimate the parameters efficiently. They showed the effectiveness of their procedure 

on simulated data and with two industry data sets. 

Rusmevichientong and Topaloglu (2012) studied the assortment optimization problem 

under the MNL choice model where the parameters of the logit model are unknown and 

uncertain. They maximized the worst case expected revenue over all parameter values in the 
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uncertainty set. They did not consider inventory constraints in static case but allowed for 

limited initial inventory to be allocated over time in the dynamic setting. They showed the 

robustness of their method by numerical experiments and it’s benefit when there is significant 

uncertainty in the parameter values. They also compared their method with other methods in 

the literature and showed that there can be up to ten percent improvement in the worst-case 

performance. Rusmevichientong et al (2014) also studied the assortment optimization problem 

under the MNL choice model where the parameters of the choice model are random, which is 

also called the mixture-of-logits model. This is because there are multiple customer segments, 

and each segment could have different preferences for the products. Their objective was to 

maximize the expected revenue per customer for all customer segments. They showed that the 

problem is NP-complete and then focused on assortments consisting of products with the 

highest revenues. By numerical experiments, they showed that revenue-ordered assortments 

perform remarkably well in terms of profit. Newman et al. (2014) also developed a parameter 

estimation method for MNL discrete choice models where one of the alternatives is never 

chosen in the sample data set. Their method is based on decomposing the log-likelihood 

function into marginal and conditional components easily enabling efficient incorporation of 

the price and other product attributes efficiently. Their method is computationally efficient and 

provides consistent parameter estimates. They showed the computational performance of their 

method using simulations and with industry data.  

Paul et al. (2018) considered both assortment and pricing problems when customers’ 

behavior follows a nonparametric choice model. In their problem, each customer arrives with 

a preference list and will purchase the highest-ranking offered product in her preference list. It 

is assumed that the set of customer classes is derived from paths in a tree and the order of nodes 

visited along each path gives the corresponding preference list. They first proposed a dynamic 

programming solution for assortment problem to maximize expected revenue by finding which 
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products to offer. Then they studied the joint assortment and pricing problem, where they 

decide both prices and set of offered products simultaneously. They provide optimal solutions 

when customers have some universal ranking of the products, and the tree takes the form of a 

single path. They showed that the tree choice model captures customer purchasing behavior 

more precisely than the MNL choice model in the majority of test cases by running 

computational experiments on both synthetic data and real hotel purchase data.  

The other streams of literature that are related to our study are papers on fulfillment 

decisions with the presence of e-commerce channel and the few papers that consider both 

pricing and e-fulfillment decisions. Agatz et al. (2008) provides a comprehensive review of 

papers in different areas of supply chain optimization considering multi-channel fulfillment. 

 Xu et al. (2009) studies the benefit of reevaluating the delivery decisions for shipment 

of online orders. Online retailers assign orders to one or multiple warehouses to minimize their 

operational costs. However, they consider this assignment a myopic decision because it cannot 

account for any future customer orders or future inventory replenishment. They examined the 

benefits of periodically reevaluating these real-time assignments and proposed efficient 

heuristics for the reassignment for a large set of customer orders to minimize the total number 

of shipments. They showed significant improvement by testing their heuristics on real data 

from a major online retailer. In a similar study, Acimovic and Graves (2014) studied the 

distribution decisions for online retailers and developed a heuristic that makes fulfillment 

decisions by minimizing the immediate outbound shipping cost plus an estimate, which are 

from the dual values of a transportation linear program, of future expected outbound shipping 

costs. They take orders with multiple items into account for opportunities in reducing the 

number of shipments. In fact, when they consider a specific order that includes a particular 

item, they first choose the fulfillment centers that also has on-hand inventory of the other items 

in the customer’s order and try to fulfill this customer’s order from the fulfillment center that 
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has both the particular SKU and the other items. They showed the efficiency of their algorithm 

by running an experiment on real-data and were able to reduce outbound shipping costs by 

about 1% while keeping the same service level for customers.  

A recent study by Lei et al. (2018) considered joint pricing and fulfillment problem for 

e-tailers. They first modeled the exact control problem to maximize the total expected profits 

for the online retailer as the total expected revenues minus total expected shipping costs. Since 

the optimal solution for this problem is difficult to obtain, they proposed two heuristic 

algorithms. The first heuristic algorithm directly uses the solution of a deterministic 

approximation of joint pricing and fulfillment problem. The second heuristic algorithm 

improves the first algorithm by adjusting the original control parameters according to the 

observed demand. They showed that the second heuristic algorithm significantly outperforms 

the first heuristic control and is very close to a benchmark that jointly reoptimizes the full 

deterministic problem at the beginning of every period. As a second study, Harsha et al. (2016) 

considered joint pricing and fulfillment problem for a retailer that sells products through both 

e-commerce and brick-and-mortar channels. They model customer channel preference by MNL 

choice models. They proposed an optimization model for joint pricing controls and fulfillment 

and then solved the model optimally. They also proposed solutions and examples where the e-

commerce warehouse is capacitated. By their experiments, they showed that compared to the 

retailer's actual sales data, the omni-channel model results in an average of seven percent 

increase in sales. However, compared to our study, they do not consider inventory decisions 

and different shipping preferences. Also, they do not allow the e-fulfilment center inventory in 

one zone to be used for physical store demand in that zone or online orders in other zones.  
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2.3. Problem formulation 

 We first provide the problem statement and justification. We then introduce the 

retailer’s demand model and two mixed-integer nonlinear mathematical models that consider 

joint pricing controls and fulfillment decisions, where the second mixed-integer model takes 

more assumptions and constraints into account. We also introduce some additional decision 

variables and apply linearization techniques to transform the nonlinear version of the models 

to mixed-integer linear models to be able to solve the models much more efficiently.  

 

2.3.1. Problem justification 

 Although many retailers have started to integrate their activities across different 

channels, there are still many retailers that make the pricing decisions separately for each 

channel. However, a few studies have recently shown that this is not the optimal approach and 

the retailers can increase their profit when they solve the price optimization problem for both 

channels simultaneously (Cao et. al 2016, Harsha et al. 2019). In fact, the price in one channel 

can affect the demand on the other channels. This assumption has been broadly used in revenue 

management literature where researchers use pricing to control demand for different class of 

products (i.e., price controls). For example, a very low in-store price can motivate a large 

portion of customers to purchase form the brick-and-mortar channel instead of the e-commerce 

channel. This implies that the offered prices for each channel can significantly change the 

probability of customers purchasing from each of those channels. However, there are still 

customers that prefer online shopping due to different reasons such as distance from the store 

or lack of free time.  

One of the main advantages of omni-channel retailing compared to pure e-commerce 

or pure brick-and-mortar environments is sharing inventory between multiple channels and 
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zones. In our proposed optimization models, online orders can be fulfilled from multiple zones, 

either from inventory dedicated to e-commerce orders (e-fulfillment centers) or in-store 

inventory. The omni-channel retailer has physical stores and e-fulfillment centers in different 

geographical zones, therefore, they can fulfill online orders from different zones if the closest 

e-fulfillment center is out of stock. We also allow the retailer to fulfill its in-store demand from 

the nearby e-fulfillment center. Unlike from existing literature, the new approach in our 

proposed models is that we adopt both pricing decisions (price controls) and fulfillment 

decisions across channels simultaneously. Indeed, omni-channel retailers can increase their 

profit if they make their fulfillment decisions (fulfillment costs) while considering pricing 

decisions. For example, the retailer may offer promotions to increase their online sales, but this 

may also cause a significant increase in their distribution costs. However, it could be more 

profitable if they deplete the in-store inventory by offering in-store promotions. This could 

increase the in-store demand and shift customers to the stores to avoid high shipping costs for 

online orders.  Therefore, retailers can benefit from considering fulfillment decisions when 

they make pricing decisions.  

 

2.3.2. Retailer demand model 

 The main purpose of omni-channel is to provide a seamless experience for customers. 

Customers should be able to see prices for different channels and different delivery times. Then 

they can choose the alternative that maximizes their utility. Thus, an omni-channel model 

should take this choice behavior into account. The model should consider the effect of an e-

commerce price on brick-and-mortar demand and the effect of an in-store price on the e-

commerce demand. In order to model this behavior, we consider Z geographical zones in the 

retailer network and assume that the customer choice of a channel in one zone is independent 
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of brick-and-mortar prices in another zone. We also assume that the customer choice is 

independent of competitors’ prices. Therefore, considering only the price, the channel demand 

in one zone is only dependent on the online and in-store prices in the same zone. However, in 

the second optimization model, we also take the delivery times into account and assume that 

this can change the customer’s choice as well.  

We first present an overview of discrete-choice models in general and then discuss the 

parametric choice model that is applied in this study. 

 

 2.3.2.1 General choice models 

  Discrete choice models have been widely used in revenue management. Strauss et al. 

(2018) provides a comprehensive review on choice models and their applications in revenue 

management.  In this paper, the channel choice for customers is modeled by a discrete choice 

model. In general, customers’ choice behavior can be modeled by the fact that the customers 

will maximize their utility by making a choice. In other words, a decision maker is modeled to 

select the alternative with highest utility among available ones when the choice is made. Choice 

models are commonly composed of utility functions with observable features and unknown 

parameters that can be estimated from a sample of observed choices made by decision makers. 

It is impossible to estimate a choice model that will always predict the correct choice for all 

individuals. Therefore, the decision maker utility is considered to be a random function. The 

concept of random utility was first used in Thurstone (1927). The utilities of the alternatives 

are random variables and the probability that an alternative is chosen is defined as the 

probability of that alternative having the greatest utility among the available alternatives (Ben-

Akiva and Lerman 1985). Assume that the set of choices offered to customers equals 
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{0}C c=  , where c is the set of alternatives and 0  is the case when the customer does not 

choose any of the offered alternatives. Then the customer utility equals: 

i i iU u = +  

where iu is the mean utility of customer choosing alternative i C and i is the random 

component. As mentioned above, the mean utility is often modeled as a linear combination of 

observed attributes: 

T

i iu = β x  

where β is an unknown vector of parameters that can be estimated and ix  is a vector of 

attributes for alternative i. Then the probability that a decision maker chooses alternative i is: 

( ),  i i jP P U U j C=     

 

2.3.2.2 The Multinomial Logit (MNL) choice model 

The MNL model is one of the most widely used choice models in revenue management 

(Talluri and Van Ryzin 2004, Vulcano et al. 2010, Vulcano et al. 2012) and also in travel 

demand forecasting, economics, and marketing. It is derived by assuming that random 

components i  are independent and identically distributed (i.i.d.) with Gumbel, also called 

double-exponential distribution, which has the following cumulative distribution (Ben-Akiva 

and Lerman 1985): 

( ) ( )
( )x

e
iF x P x e

 


− −

−=  =  

Where x corresponds to error random variable and   is the location parameter (mode) and the 

 is a positive scale parameter. The mean and the variance of i are: 
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[ ] /

[ ]
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   






= +

=
 

where 3.14  and 0.57  , which is Euler constant. Because the utility is an ordinal measure, 

the assumption of zero mean and a scale parameter of one are without loss of generality (see 

Ben-Akiva and Lerman 1985 for derivations).  

 In an omni-channel environment, the customer can easily see the online price and 

compare it with brick-and-mortar price. Therefore, observing a lower price for the same 

product may change the customer decision. This can actually affect the customer channel 

preferences. Assume that there are total of Z geographical zones (e.g., the U.S. states) in omni-

channel network and customer who purchases from brick-and-mortar channel in zone z has 

utility equal to bzU and by purchasing from online channel, her utility is ezU . Therefore, the 

customer utility by purchasing from each channel in zone z equals: 

bz bz bzU u = +   

ez ez ezU u = +   

where  , ,izu i b e is mean utility of choice i and  , ,iz i b e  is an i.i.d. Gumble random 

variable with mean zero and scale parameter one for all i.  The customer can also decide not to 

buy from either of these channels and receive a mean utility equal to zero. As mentioned before, 

because the utility is ordinal, we can assume its value is zero without loss of generality. Under 

this utility model, it is well-known (Ben-Akiva and Lerman 1985) that the choice probabilities 

equal: 

0

{ , }

{ , },
iz

jz

u

iz u u

j e b

e
P i e b z Z

e e


=    
+
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where izP  is the probability that a customer purchases from channel i in zone z and 0u is the 

mean utility of the non-purchase choice. It is also assumed that the customer in one 

geographical zone z only compares the e-commerce price with the brick-and-mortar price in 

the same zone.   

 As noted before, the mean utility of a choice of a customer can be modeled by a linear 

function of attributes such as price, channel-specific attributes including shipping times, and 

holiday effects. However, in our first mathematical model, we assume that the mean utility of 

choice i,  , , u i b eiz  , is only a linear function of the channel prices (Harsha et al. 2019). 

0 1bz bz bz bzu p = +  (1) 

0 1ez ez ez ezu p = +  (2) 

where 0 , { , }iz i b e   is a constant and 1 , { , }iz i b e  is the coefficient of price in online or brick-

and-mortar channels, , { , }izp i b e  is the price offered to customers in e-commerce and brick-

and-mortar channels in zone z. (Please note that the izP  is used for channel probabilities). Now, 

assume that we have T periods during the planning horizon and the market size at time period 

t in zone z equals t

zn , then the e-commerce and brick-and-mortar channel demand functions at 

time period t in zone z follow the form below, which is a function of the price vector t

zP : 

( )
0 1

0 1 0 1 1

t
bz bz bz

t t
ezbz bz bz ez ez

t t t

bz z z bz

t

z

p

p p

D n P

e
n

e e

 

   

+

+ +

= 

= 
+ +

P

 

(3) 
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( )
0 1

0 1 0 1 1

t
ezez ez

t t
ezbz bz bz ez ez

t t t

ez z z ez

t

z

p

p p

D n P

e
n

e e

 

   

+

+ +

= 

= 
+ +

P

 

(4) 

where bzP  and ezP   are probabilities that customers purchase from brick-and-mortar and e-

commerce, respectively. ( ),t t t

z bz ezp p=P  is the price vector including online and brick-and-

mortar prices offered at time t, in zone z.  

 

2.3.3. Mathematical models for joint pricing and fulfillment problem 

We propose two mathematical models for joint pricing and fulfillment problem in this 

section. The second model has more assumptions than the first model in that it considers initial 

inventory allocation, inventory holding cost, and different types of shipments. Both proposed 

models are nonlinear models, but we show that they can be transformed to linear versions to 

be solved efficiently.  

 

2.3.3.1 Optimization model #1 (M1) 

 Consider an omni-channel retailer that sells its products in Z geographical zones. The 

customer can buy the product from a brick-and-mortar channel or order the product through 

online channel. For both physical stores and fulfillment centers, there is limited amount of 

inventory available. The selling horizon is finite and divided into T periods. At the beginning 

of period t, the retailer reveals the price vector ( ),t t t

z bz ezp p=P in each zone z Z . The resulting 

demand will be estimated in each zone in brick-and-mortar and online channels using choice 

probabilities and market size, ( )t t

bz zD P  and ( )t t

ez zD P , respectively. The retailer then fulfills the 
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demand using the available inventory in its network. Replenishment is not considered in this 

study since the pricing and fulfillment decisions taken together are sufficiently complicated 

operational decisions. This is also common in the literature (Xu et al. 2009, Acimovic and 

Graves 2014, and Lei et al. 2018) because the planning horizon could be considered the time 

between two replenishments. We assume that there is no holding cost in mathematical model 

M1 because of short planning horizon. However, inventory costs could be included in the 

products price set  . As seen later, we include the holding cost and initial inventory 

assignment in mathematical model M2. We also assume that there is no shortage cost because 

of the short planning period. Retailer will not pay any penalty if the demand is higher that its 

fixed initial inventory. But if the retailer has enough inventory and decides not to satisfy the 

order, it will only lose revenue.    

We assume that the retailer has one physical store and one e-fulfillment center in each 

zone. We also assume that the store demand in zone z can be fulfilled either by the in-store 

inventory or the e-fulfillment center inventory in the same zone, z. However, the online demand 

in zone z can be fulfilled by in-store inventory or the e-fulfillment center inventory from the 

same or any other geographical zone. When the e-fulfillment center in zone z is out of inventory 

for an order, then the retailer should decide form which zone, and from which type of inventory 

to fulfill that demand. Shipping an online order from another zone could cause increased 

logistical costs for retailers but by having the pricing controls, the retailers could encourage a 

customer to order that product online and pick it up from a physical store in the same zone. 

This is an example that how the omni-channel retailers could benefit from joint pricing controls 

and fulfillment decisions to maximize their revenue.   

We have used three types of variables to model this problem. The first type includes 

integer variables that are used to show the fulfillment quantities. Specifically 
t

bwzS and 
t

ewzS  are 
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decision variables that are used for the fulfilled brick-and-mortar demand in zone z at time t 

that are satisfied from zone w with in-store and e-fulfillment inventory, respectively. In 

addition, t

bwzO  and t

ewzO  are decision variables that are used for the fulfilled e-commerce 

demand in zone z at time t that are satisfied from zone w with in-store and e-fulfillment 

inventory, respectively.  The second type of the variables are for leftover inventory. We use 

bzL  and ezL  for the leftover inventory at the end of the planning horizon in zone z for in-store 

and e-fulfillment inventory, respectively. The last type of variables are pricing variables. t

bzP

and t

ezP  are used for pricing decisions in zone z at time t for brick-and-mortar and online price 

offered to customer, respectively. The notation and variables are listed in Table 2.1.  
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Table 2.1. Input parameters and decisions variables in mathematical model M1 

Input parameters 

Z Number of geographical zones  

T Number of time periods 

  Set of all feasible prices in each channel in each zone 

bzx  Initial in-store inventory in zone z 

ezx  Initial e-fulfillment inventory in zone z 

o

ewzc  Fulfillment cost of e-commerce demand in zone z from an e-fulfillment center in zone w   

o

bwzc  Fulfillment cost of e-commerce demand in zone z from an in-store inventory in zone w   

s

ewzc  Fulfillment cost of store demand in zone z from an e-fulfillment center in zone w   

s

bwzc  Fulfillment cost of store demand in zone z from an in-store inventory in zone w   

t

zn  Market size in zone z at period t 

v Salvage value for leftover inventory after the planning horizon 

Decision Variables 

t

bzP  Brick-and-mortar price in zone z at period t 

t

ezP  E-commerce price in zone z at period t 

t

bwzS  Fulfilled brick-and-mortar demand in zone z by in-store inventory in zone w at period t 

t

ewzS  Fulfilled brick-and-mortar demand in zone z by e-fulfillment inventory in zone w at period t 

t

bwzO  Fulfilled e-commerce demand in zone z by in-store inventory in zone w at period t 

t

ewzO  Fulfilled e-commerce demand in zone z by e-fulfillment inventory in zone w at period t 

bzL  Leftover e-fulfillment inventory in zone z after the planning horizon 

ezL  Leftover in-store inventory in zone z after the planning horizon 
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The optimization model M1 is as follows: 

 

( ) ( ) ( )

( )

 t t t t t t

bz bwz ewz ez bwz ewz bz ez

t T w Z z Z z Z

s t s t o t o t

bwz bwz ewz ewz bwz bwz ewz ewz

t T w Z z Z

Max P S S P O O v L L

c S c S c O c O

   

  

 
 + + + + +  

 

− + + +

 


 (5) 

s.t.  

( ) ( ) , ,t t t

bwz ewz bz

w Z

S S D z Z t T


+      t

zP  
(6) 

( ) ( ) , ,t t t

bwz ewz ez

w Z

O O D z Z t T


+      t

zP  
(7) 

( )t t

bz bz bzw bzw

t T w Z

L x S O z Z
 

= − +    (8) 

( )t t

ez ez ezw ezw

t T w Z

L x S O z Z
 

= − +    (9) 

( )
,

,t t

bz ez t T z Z
P P

 
= t

zP  (10) 

, , , 0 , ,t t t t

bwz ewz bwz ewzS S O O z Z w Z t T        (11) 

, 0ez bzL L z Z    (12) 

 

The objective function (5) includes three primary terms. The first term considers the 

revenue from the fulfilled demand from brick-and-mortar and e-commerce channel, 

respectively. This is nonlinear since fulfillment decision variables are multiplied against 

pricing variables. The second term considers the revenue from the leftover inventory, both in-

store and e-fulfillment centers. The third term considers the fulfillment cost of online and brick-

and-mortar demand which are fulfilled by either the in-store inventory or e-fulfillment 
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inventory in the same or other geographical zones. As a cost, this part is subtracted from the 

revenue of the first two parts since we are trying to maximize the profit. 

Constraint (6) ensures that the brick-and-mortar sales in zone z at period t is less than 

the brick-and-mortar demand in the same zone and time period. Constraint (7) guarantees that 

the e-commerce sales in zone z, period t is less than the e-commerce demand in zone z and time 

period t. Constraint (8) forces the leftover in-store inventory in zone z to be equal to the initial 

in-store inventory in zone z minus the used inventory for the in-store demand in the same zone 

and e-commerce demand for the same and all the other zones. Constraint (9) ensures that the 

leftover e-fulfillment inventory in zone z to be equal to initial inventory in that zone minus the 

used inventory for the in-store demand in the same zone and e-commerce demand in the same 

and all the other zones. Constraint (10) ensures that the prices are from the price set. Constraint 

(11) and (12) are non-negativity constraints.    

The mathematical model M1 has multiple nonlinear terms, which presents 

computational difficulties. As noted earlier, the first term of the objective function is nonlinear. 

Also, in constraint (6) and (7), the demand function is a nonlinear function including 

exponential terms as seen in (3) and (4). Therefore, we introduce additional variables and 

transform the model to a mixed-integer linear mathematical model that can be solved much 

more efficiently (Harsha et al. 2016, Sherali and Adams 1998).   

We first introduce t

eziY , which is a binary variable. It will be equal to 1 if the i-th price 

in the discrete online price set at zone z, at time t;   t
ez

t t

ez ezi i I
p


 =  is chosen, where t

ezI  is the 

number of discrete prices that are offered in that set. The second variable is t

bziY , which is also 

a binary variable. It will be equal to 1 if the i-th price in the discrete brick-and-mortar price set 
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at zone z, at time t;   t
bz

t t

bz bzi i I
p


 =  is chosen, where t

bzI  is the number of discrete prices that 

are available in that set. We also define the following transformations: 

0 1
t

bz bz bzit

bzi

p
r e

 +
=  (13) 

0 1
t
ezibz bzt

ezi

p
r e

 +
=  (14) 

1

1
t t
bz ez

t

z t t t t

bzi bzi ezi ezi

i I i I

R
Y r Y r

 

=
+ + 

 (15) 

t t t

bzi z bziU R Y=  (16) 

t t t

ezi z eziU R Y=  (17) 

( )t t t t

bzi ewz bwz bzi

w Z

V S S Y


= +  (18) 

( )t t t t

ezi ewz bwz ezi

w Z

V O O Y


= +  (19) 

 

where t

bzir  and t

ezir  are constants.  Now we can reformulate the optimization model M1, as a 

mixed-integer linear program that can be solved efficiently using integer programming 

software packages. The linear version of the M1 is as follows:  
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( )

( )

 
t t
bz ez

t t t t

bzi bzi ezi ezi bz ez

t T z Z z Zi I i I

s t s t o t o t

bwz bwz ewz ewz bwz bwz ewz ewz

t T w Z z Z

Max P V P V v L L

c S c S c O c O

   

  

      
+ + +                

− + + +

   



 (20) 

( ) , ,
t
bz

t t t t t

bwz ewz z bzi bzi

w Z i I

S S n r U z Z t T
 

+        (21) 

( ) , ,
t
ez

t t t t t

bwz ewz z ezi ezi

w Z i I

O O n r U z Z t T
 

+        (22) 

( )t t

bz bz bzw bzw

t T w Z

L x S O z Z
 

= − +    (23) 

( )t t

ez ez ezw ezw

t T w Z

L x S O z Z
 

= − +    (24) 

1 , ,
t
bz

t

bzi

i I

Y t T z Z


=      (25) 

1 , ,
t
ez

t

ezi

i I

Y t T z Z


=      (26) 

( ) , ,
t
bz

t t t

bzi bwz ewz

w Zi I

V S S z Z t T


= +       (27) 

( ) , ,
t
ez

t t t

ezi bwz ewz

w Zi I

V O O z Z t T


= +       (28) 

( ) , , ,t t t t

bzi bwz ewz bz

w Z

V S S i I z Z t T


 +        (29) 

( ) , , ,t t t t

ezi bwz ewz ez

w Z

V O O i I z Z t T


 +        (30) 

, , ,t t t t t

bzi z bzi bzi bzV n r U i I z Z t T        (31) 

, , ,t t t t t

ezi z ezi ezi ezV n r U i I z Z t T        (32) 
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, ,
t
bz

t t

bzi z

i I

U R z Z t T


=      (33) 

, ,
t
ez

t t

ezi z

i I

U R z Z t T


=      (34) 

, , ,t t t

bzi z bzU R i I z Z t T        (35) 

, , ,t t t

ezi z ezU R i I z Z t T        (36) 

, , ,t t t

bzi bzi bzU Y i I z Z t T        (37) 

, , ,t t t

ezi ezi ezU Y i I z Z t T        (38) 

1 , ,
t t
bzi ezi

t t t t t

z bzi bzi ezi ezi

i I i I

R r U r U z Z t T
 

+ + =       
(39) 

{0,1} , , ,t t

bzi bzY z Z w Z t T i I          (40) 

{0,1} , , , ,t t

ezi ezY z Z w Z t T i I          (41) 

, , , 0 , ,t t t t

bwz ewz bwz ewzS S O O z Z w Z t T        (42) 

, 0ez bzL L z Z    (43) 

0, , ,t

zR z Z t T      (44) 

,V 0, , , ,t t t

bzi bzi bzU z Z t T i I        (45) 

,V 0, , , ,t t t

ezi ezi ezU z Z t T i I        (46) 

 

 Objective function (20) includes the same terms as objective function (5), namely 

revenue from selling in both channels and leftover inventory subtracted by fulfillment costs, 

but without any nonlinear terms. Constraints (21) and (22) are ensuring that the sales are less 

than demand in both channels. Constraints (23) and (24) are for leftover inventory balance. 
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Constraints (25) and (26) ensure that exactly one price is chosen in brick-and-mortar and e-

commerce channel in each zone at each time period, respectively. Constraints (27) and (28) 

ensure that variables t

bziV  and t

eziV  are equal to fulfilled demand in brick-and-mortar and online 

channels. Constraints (29) and (30) are tighter bounds on variables t

bziV  and t

eziV . Constraints 

(31) and (32) ensure that variables t

bziV  and t

eziV  are less than demand in each channel. Since 

variable t

bziU  equals t t

z bziR Y  and t

bziY is a binary decision variable, then constraint (33) ensures 

that the sum over index i leads to equality of variables t

bziU and t

zR . Similar to constraint (33), 

constraint (34) ensures the equality of t

eziU and t

zR . Constraints (35) and (36) are tighter bound 

on constraints (33) and (34). Constraints (37) and (38) also ensure that the variables t

bziU and 

t

eziU are less than one. Constraint (39) ensures the transformation introduced in (15). Constraints 

(40)-(46) introduce the non-negativity and binary constraints.  

 

2.3.3.2 Optimization model #2 (M2) 

 Price is not the only factor that can change the customer’s choice. As customer can also 

consider her convenience when purchasing online. Mathematical model M2 considers multiple 

shipping options and their delivery times along with their prices. Based on a research study on 

the omni-channel retailing (Forrester Research 2014), seventy five percent of the customers 

mentioned that a fast and free shipping option can change their decision when they buy online. 

We also consider inventory decisions in mathematical model M2. 

Again, consider an omni-channel retailer that sells its products in Z geographical zones. 

The customer can buy the product from a brick-and-mortar channel or buy the product through 

an online channel, with two shipping options: fast (expedited shipping) and very fast (next day 

delivery). They could also be considered as regular shipping versus fast shipping. Without loss 
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of generality, we assume that the customer’s mean utility for store-pick-up is the same as her 

mean utility for buying the product from the brick-and-mortar channel and we do not include 

both of them in the model to avoid model complexity and computational inefficiencies. 

However, more shipping options could be added as a choice to customers. Therefore, we 

assume three purchasing options in total and define the following customer’s utility function: 

0 1 2 3bz bz bz bz bz bz bz bz bzu p t t p   = + + +  (47) 

0 1 2 3fz fz fz fz fz fz fz fz fzu p t t p   = + + +  (48) 

0 1 2 3sz sz sz sz sz sz sz sz szu p t t p   = + + +  (49) 

where , { , , }izp i b f s  and , { , , }izt i b f s  are the prices and delivery times offered to customers 

for brick-and-mortar channel, expedited shipping and next day delivery in zone z. 

0 , { , , }iz i b f s   is a constant and 1 , { , , }iz i b f s  is the price coefficient for brick-and-mortar 

channel, expedited shipping and next day delivery, respectively. 2 , { , , }iz i b f s  is the delivery 

time coefficient and 3 , { , , }iz i b f s  is the coefficient for interaction of price and delivery time. 

There are T periods and the market size at time period t in zone z equals t

zn , then the e-

commerce and brick-and-mortar channel demand functions with different shipping options at 

time period t in zone z follow the form below, which is a function of the price vector t

zP : 

( )
1

bz

fzbz sz

u
t t t

bz z z uu u

e
D n

e e e
= 

+ + +
P  (50) 

( )
1

fz

fzbz sz

u

t t t

fz z z uu u

e
D n

e e e
= 

+ + +
P  

(51) 

( )
1

sz

fzbz sz

u
t t t

sz z z uu u

e
D n

e e e
= 

+ + +
P  (52) 
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where the ( ), ,t t t t

z bz fz szp p p=P  is the price vector including online and brick-and-mortar prices 

offered at time t, in zone z.  

We also consider inventory decisions along with pricing control and fulfillment 

decisions in mathematical model M2. The initial inventory levels for physical stores and e-

fulfillment centers are not fixed and they are decided at the beginning of the planning horizon. 

Since it’s common for retailers to follow a system wide periodic review policy, more 

specifically a base-stock policy (Acimovic and Graves 2017), the retailers have to decide how 

to allocate their initial inventory throughout their network. At the beginning of period t, the 

retailer sets the price vector ( ), ,t t t t

z bz fz szp p p=P in each zone z Z . After the retailer decides 

the price, the demand will be estimated in each zone in brick-and-mortar and online channels 

for each shipping option, ( )t t

bz zD P , ( )t t

fz zD P  and ( )t t

sz zD P . The retailer then fulfills the demand 

using the available inventory in its network. Here, we assume that the retailer has one physical 

store and one e-fulfillment center in each zone. Similar to model M1, we assume that there is 

no shortage cost because of the short planning horizon. Retailer will not pay any penalty if the 

demand is higher that its total initial inventory (i.e., total system-wide initial inventory is fixed). 

But if the retailer has enough inventory and decides not to satisfy the order, it will lose revenue. 

As noted earlier, in-store inventory can be used to help retailers to fulfill online customers with 

expedited and next day shipping options.   

We have used three type of variables in model M2. The first type are integer variables 

that are used to show the fulfillment quantities. t

bwzS  and t

ewzS  are decision variables that are 

used for the fulfilled brick-and-mortar demand in zone z at time t that are satisfied from zone 

w with in-store and e-fulfillment inventory, respectively.  ft

bwzO  and ft

ewzO  are decision variables 

that are used for the fulfilled e-commerce demand with expedited shipping in zone z at time t, 
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that are satisfied from zone w with in-store and e-fulfillment inventory, respectively.  st

bwzO  and 

st

ewzO  are decision variables that are used for online demand with next day delivery in zone z at 

time t that are satisfied from zone w with in-store and e-fulfillment inventory, respectively. The 

second type of the variables are pricing variables t

bzP , t

fzP  and t

szP . We also have one more set 

of variables, t

ezX  and t

bzX , which are integer variables determining the inventory for physical 

store and e-fulfillment center at time t, in zone z. The notation and variables are listed in Table 

2.2. 
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Table 2.2. Input parameters and decisions variables in mathematical model M2 

Input parameters 

Z Number of geographical zones  

T Number of time periods 

  Set of all feasible prices in each channel in each zone 

x  Total initial inventory before the planning horizon  

f

ewzc  Fulfillment cost of expedited e-commerce demand in zone z from an e-fulfillment center in zone w   

f

bwzc  Fulfillment cost of expedited e-commerce demand in zone z from an in-store inventory in zone w   

s

ewzc  Fulfillment cost of next day e-commerce demand in zone z from an e-fulfillment center in zone w   

s

bwzc  Fulfillment cost of next day e-commerce demand in zone z from an in-store inventory in zone w   

s

ewzc  Fulfillment cost of store demand in zone z from an e-fulfillment center in zone w   

s

bwzc  Fulfillment cost of store demand in zone z from an in-store inventory in zone w   

t

zn  Market size in zone z at period t 

v Salvage value for leftover inventory after the planning horizon 

h Inventory holding cost  

Decision Variables 

t

bzP  Brick-and-mortar price in zone z at period t 

t

fzP  E-commerce price with fast shipping in zone z at period t 

t

szP  E-commerce price with very fast shipping in zone z at period t 

t

bwzS  Fulfilled brick-and-mortar demand in zone z by brick-and-mortar inventory in zone w at period t 

t

ewzS  Fulfilled brick-and-mortar demand in zone z by e-fulfillment inventory in zone w inventory at period t 

ft

bwzO  Fulfilled expedited e-commerce demand in zone z by brick-and-mortar inventory in zone w at period t 

ft

ewzO  Fulfilled expedited e-commerce demand in zone z by e-fulfillment inventory in zone w at period t 

st

bwzO  Fulfilled next day e-commerce demand in zone z by brick-and-mortar inventory in zone w at period t 

st

ewzO  Fulfilled next day e-commerce demand in zone z from e-fulfillment inventory in zone w at period t 

t

bzX  In-store inventory in zone z at the end of period t 

t

ezX  E-fulfillment inventory in zone z at the end of period t 
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The optimization model M2 is as follows: 

 

( ) ( ) ( ) ( )

( ) ( )

 t t t t ft ft t st st T T

bz bwz ewz fz bwz ewz ez bwz ewz bz ez

t T w Z z Z z Z

t t s t s t f ft f ft s st s st

bz ez bwz bwz ewz ewz bwz bwz ewz ewz bwz bwz ewz ewz

t T z Z t T w Z z Z

Max P S S P O O P O O v X X

h X X c S c S c O c O c O c O

   

    

 
 + + + + + + +  

 

 
− + − + + + + + 

 

 

 
 

(53) 

s.t.  

( ) ( ) , ,t t t

bwz ewz bz

w Z

S S D z Z t T


+      t

zP  
(54) 

( ) ( ) , ,ft ft t

bwz ewz fz

w Z

O O D z Z t T


+      t

zP  
(55) 

( ) ( ) , ,st st t

bwz ewz sz

w Z

O O D z Z t T


+      t

zP  
(56) 

( )1 , ,t t t ft st

bz bz bzw bzw bzw

w Z

X X S O O z Z t T−



= − + +      (57) 

( )1 , ,t t t ft st

ez ez ezw ezw ezw

w Z

X X S O O z Z t T−



= − + +      (58) 

0 0

ez bz

z Z z Z

X X x
 

+ =   (59) 

( )
,

, ,t t t

bz fz sz t T z Z
P P P

 
= t

zP  (60) 

, , , , , 0 , ,t t ft ft st st

bwz ewz bwz ewz bwz ewzS S O O O O z Z w Z t T        (61) 

, 0 ,t t

ez bzX X z Z t T      (62) 

Objective function (53) includes revenue from three components, online sales with 

expedited shipping, online sales with next day delivery and sales from brick-and mortar 

channel (or buy online and pick up in store). The second part is for revenue from leftover 

inventory. The third and the fourth parts consider the inventory and fulfillment and costs, 
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respectively. Constraints (54)-(56) ensure that the sales in each channel, under each shipping 

option are less than the demand in those channels. Constraints (57) and (58) ensure inventory 

balance for in-store and e-fulfillment inventory. Constraint (59) ensures that the total inventory 

distributed throughout the system is equal to initial inventory. Constraint (60) ensures that 

prices should be chosen from a price set.  Constraints (61) to (62) are non-negativity 

constraints.  

Similar to M1, mathematical model M2 also has multiple nonlinear terms. Therefore, we 

use the previous technique and introduce variables to transform the model to a mixed-integer 

linear mathematical model that can be solved more efficiently. The first defined variable is t

fziY

. It is equal to 1 if the i-th price in the discrete online price set for fast shipping at zone z, at 

time t;   t
fz

t t

fz fzi i I
p


 =  is chosen, where t

fzI , is the number of discrete prices that are available 

in that set. We similarly define t

sziY  and t

bziY , which are also binary variables. 

We also define the following transformations: 

( )0 1 2 3expt t t

bzi bz bz bzi bz bz bz bz bzir p t t p   = + + +  (64) 

( )0 1 2 3expt t t

fzi fz fz fzi fz fz fz fz fzir p t t p   = + + +  (65) 

( )0 1 2 3expt t t

szi sz fz szi sz sz sz sz szir p t t p   = + + +  (66) 

1

1
t t t
bz ez ez

t

z t t t t t t

bzi bzi fzi fzi szi szi

i I i I i I

R
Y b Y b Y b

  

=
+ + +  

 
(67) 

t t t

bzi z bziU R Y=  (68) 

t t t

fzi z fziU R Y=  (69) 
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t t t

szi z sziU R Y=  (70) 

( )t t t t

bzi ewz bwz bzi

w Z

V S S Y


= +  (71) 

( )t ft ft t

fzi ewz bwz fzi

w Z

V O O Y


= +  (72) 

( )t st st t

szi ewz bwz szi

w Z

V O O Y


= +  (73) 

 

where t

bzir , t

fzir  and t

szir  are constants. Reformulated M2 is as follows: 

( )

( )

 
t t t
bz fz sz

t t t t t t T T

bzi bzi fzi fzi szi szi bz ez

t T z Z z Zi I i I i I

t t s t s t f ft f ft s s

bz ez bwz bwz ewz ewz bwz bwz ewz ewz bwz bwz

t T z Z

Max P V P V P V v X X

h X X c S c S c O c O c O

    

 

       
 + + + +                  

 
− + − + + + + 

 

    

 ( )t s st

ewz ewz

t T w Z z Z

c O
  

+

 (74) 

( ) , ,
t
bz

t t t t t

bwz ewz z bzi bzi

w Z i I

S S n r U z Z t T
 

+        (75) 

( ) , ,
t
fz

ft ft t t t

bwz ewz z fzi fzi

w Z i I

O O n r U z Z t T
 

+        (76) 

( ) , ,
t
sz

st st t t t

bwz ewz z szi szi

w Z i I

O O n r U z Z t T
 

+        (77) 

( )1 , ,t t t ft st

bz bz bzw bzw bzw

w Z

X X S O O z Z t T−



= − + +      (78) 

( )1 , ,t t t ft st

ez ez ezw ezw ezw

w Z

X X S O O z Z t T−



= − + +      (79) 

0 0

ez bz

z Z z Z

X X x
 

+ =   (80) 
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1 , ,
t
bz

t

bzi

i I

Y t T z Z


=      (81) 

1 , ,
t
fz

t

fzi

i I

Y t T z Z


=      (82) 

1 , ,
t
sz

t

szi

i I

Y t T z Z


=      (83) 

( ) , ,
t
bz

t t t

bzi bwz ewz

w Zi I

V S S z Z t T


= +       (84) 

( ) , ,
t
fz

t ft ft

fzi bwz ewz

w Zi I

V O O z Z t T


= +       (85) 

( ) , ,
t
sz

t st st

szi bwz ewz

w Zi I

V O O z Z t T


= +       (86) 

( ) , , ,t t t t

bzi bwz ewz bz

w Z

V S S i I z Z t T


 +        (87) 

( ) , , ,t ft ft t

fzi bwz ewz fz

w Z

V O O i I z Z t T


 +        (88) 

( ) , , ,t st st t

szi bwz ewz sz

w Z

V O O i I z Z t T


 +        (89) 

, , ,t t t t t

bzi z bzi bzi bzV n r U i I z Z t T        (90) 

, , ,t t t t t

fzi z fzi fzi fzV n r U i I z Z t T        (91) 

, , ,t t t t t

szi z szi szi szV n r U i I z Z t T        (92) 

, ,
t
bz

t t

bzi z

i I

U R z Z t T


=      (93) 

, ,
t
fz

t t

fzi z

i I

U R z Z t T


=      (94) 

, ,
t
sz

t t

szi z

i I

U R z Z t T


=      (95) 
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, , ,t t t

bzi z bzU R i I z Z t T        (96) 

, , ,t t t

fzi z fzU R i I z Z t T        (97) 

, , ,t t t

szi z szU R i I z Z t T        (98) 

, , ,t t t

bzi bzi bzU Y i I z Z t T        (99) 

, , ,t t t

fzi fzi fzU Y i I z Z t T        (100) 

, , ,t t t

szi szi szU Y i I z Z t T        (101) 

1 , ,
t t t
bzi fzi szi

t t t t t t t

z bzi bzi fzi fzi szi szi

i I i I i I

R r U r U r U z Z t T
  

+ + + =        (102) 

, , , , , 0 , ,t t ft ft st st

bwz ewz bwz ewz bwz ewzS S O O O O z Z w Z t T        (103) 

, 0t t

ez bzX X z Z    (104) 

{0,1} , , ,t t

bzi bzY z Z w Z t T i I          (105) 

{0,1} , , , ,t t

fzi fzY z Z w Z t T i I          (106) 

{0,1} , , , ,t t

szi szY z Z w Z t T i I          (107) 

0, , ,t

zR z Z t T      (108) 

,V 0, , , ,t t t

bzi bzi bzU z Z t T i I        (109) 

,V 0, , , ,t t t

fzi fzi fzU z Z t T i I        (110) 

,V 0, , , ,t t t

szi szi szU z Z t T i I        (111) 
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 Objective function (74) includes the same parts as objective function (53), revenue from 

selling on both channels and leftover inventory subtracted by the fulfillment and inventory 

costs, but all linear terms. Constraints (75) to (77) are ensuring that the sales are less than 

demand in both channels. Constraints (78) to (80) enforce inventory balance. Constraints (81) 

to (83) ensure that exactly one price is offered in brick-and-mortar and e-commerce channel in 

each zone at each time period under each shipping option. Constraints (84) to (86) ensure that 

variables t

bziV , t

fziV  and t

sziV  are equal to fulfilled demand in brick-and-mortar and online 

channels using fast and very fast shipping. Constraints (87) to (89) are tighter bounds on t

bziV , 

t

fziV  and t

sziV  . Constraints (90) to (92) ensure that variables t

bziV , t

fziV  and t

sziV   are less than the 

estimated demand in each channel for each shipping method. Since variable t

bziU  equals t t

z bziR Y  

and t

bziY is a binary decision variable, then constraint (93) ensures the equality of variables t

bziU

and t

zR for all prices. Constraints (94) and (95) ensures the equality of t

fziU and t

zR , t

sziU and t

zR  

for all prices. Constraints (96) to (98) are tighter bound on constraints (94) to (95). Constraint 

(99) to (101) ensure that the variables t

bziU , t

fziU and t

sziU are less than one. Constraint (102) 

ensures the transformation introduced in (67). Constraints (103)-(111) enforce the non-

negativity and binary constraints. 

 

2.4. Numerical experiments  

 Numerical experiments will be conducted in this section to show the performance of 

the proposed mathematical models M1 and M2 and their dynamics. Two sets of instances are 

used for each mathematical model, one with 15 geographical zones and one with 40 zones. 

Each dataset has 50 instances, including 25 different initial inventories and 2 different market 
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sizes. First, several experiments are performed for sensitivity analysis. Then, all of the instances 

are solved optimally to provide robust results for different operational scenarios.     

 

2.4.1. Computational results for mathematical model #1 (M1)  

In order to illustrate how the optimal solution changes based on different parameter 

settings, we consider an omni-channel retailer with two sets of networks, one with 15 

geographical zones (physical store and e-fulfillment centers in each zone) and one with 40 

zones. First, we consider an omni-channel retailer with 15 geographical zones (Z=15) as 15 

U.S. states and a two-week planning horizon. Figure 2.2 shows the 15 states that are considered 

in this setting. The states with a circle inside are the states that the omni-channel retailer has 

facilities in. The retailer has one physical store and one e-fulfillment center in each zone. The 

U.S. states are assumed to be on a Cartesian plane between (0,0) and (110,110) points. Then 

the coordinates of the physical stores in each state are estimated compared to the (0,0). For 

example, the store location in Maine is assumed to be at (100,100), and California is (10,50). 

The e-fulfillment centers are located close to the physical stores. Then the location of the 

customers in one zone are assumed to be between the physical store and the e-fulfillment center 

in that zone.  
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Figure 2.2. Omni-channel retailer distribution network with 15 zones 

We assume discrete price sets with three prices for each channel at each time period, at 

each geographical zone. Specifically, we assume one product and possible prices of $95, $100 

and $105 for in-store price and prices of $105, $110 and $115 for online price. Based on the 

notation in the mathematical models, we assume the brick-and-mortar price set at zone 1, at 

period 1 equals  1

1 $95, $100, $105  b = . Then the decision variable 
t

bziY  ensures that one of 

the above prices in the price set is chosen for brick-and-mortar channel. Two different market 

sizes equal to 20 and 30 products are also assumed for all zones at every period.  

For each setting (i.e., a network with 15 or 40 zones), 25 instances are generated with 

different initial inventories. Since the initial inventories can be lower or higher than the market 

share, they are simulated from a wide range to illustrate the robustness of the mathematical 

model and also the effect of the initial inventory on revenue, cost, and profit under different 

scenarios. Specifically, for a network with 15 geographical zones, initial inventories are 

generated uniformly that range from 5 to 25 products for each in-store inventory and 5 to 20 

products for each e-fulfillment center’s inventory. The lower number in the interval (e.g., 5 in 
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interval of 5 to 20) is increased gradually in each simulation scenario to increase the whole 

level of inventory in the omni-channel network. In fact, the total inventory in the retailer’s 

network ranges from 294 products to 629 products.  

The salvage price for leftover inventory is also assumed to be $20. The fulfillment costs 

are calculated based on Euclidian distance. The cost of shipping an online order from the in-

store inventory is assumed to be twice as high as the fulfilling that order from the e-fulfillment 

center. Also, the brick-and-mortar demand that is fulfilled by e-fulfillment inventory in the 

same zone will cost twice as much as fulfilling that from in-store inventory.      

In order to estimate the MNL choice model parameters in mathematical model M1, we 

simulate different set of e-commerce and in-store prices in range of $40 to $140. We then 

simulate the choice of customers when they observe two distinct e-commerce and brick-and-

mortar price. We assume that the in-store prices are cheaper since the retailer should pay for 

shipping costs for online orders. Customers are generally assumed to purchase cheaper 

products with higher probability; however, we have some observations that the customer 

chooses the higher price. This is reasonable assumption since the online shopping is more 

convenient for many customers.  

The parameters of the MNL choice model are estimated using Python package, PyLogit. 

In order to reduce the complexity, one set of coefficients are used for modeling the customers’ 

choice behavior in different zones. The estimated coefficients are 0.506 for intercept and -0.006 

for price coefficient for mathematical model M1. The proposed mathematical formulations 

were coded into Microsoft Visual C++ 2010 Professional. ILOG Concert Technology was used 

to define the model within C++ and call the mixed integer linear programming solver IBM 

ILOG CPLEX 12.5 to solve instances within the Windows 10 environment on a Dell desktop 
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computer with an Intel Core i7, 2.6 GHz processor and 16 GB of RAM. Text files defining all 

problem instances used in this paper are available from the author upon request.  

The retailer’s revenue includes revenue from sale and revenue from leftover inventory 

in optimization model M1. The sum of these two revenues is considered total revenue. Figure 

2.3 shows how the total revenue, revenue from sales and fulfillment cost are changing with 

different levels of initial inventories. As mentioned before, we consider 15 zones, two planning 

periods, price sets range from $95 to $115, salvage price of 20 dollars and 25 instances with 

different simulated initial inventories. The left vertical axis (primary) shows the revenue, and 

the right vertical axis (secondary) shows the fulfillment cost. The horizontal axis shows the 

sum of initial inventories in the whole retailer’s network. As it can be seen from the graph, the 

sale’s revenue (dashed grey line) increases gradually as the total initial inventory increases. 

However, it remains constant at around $40,000 when the inventory level passes 400 units of 

products. This clearly is the point that the total initial inventory is higher than the retailer’s 

market share. Also, in all instances, the retailer chooses $105 and $115 for in-store and online 

price, respectively. 
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Figure 2.3. Effect of initial inventory on revenue and fulfillment cost  

(Total revenue and Sale’s revenue should be read on the left vertical axis and Fulfillment 

cost should be read on the right vertical axis) 

 

One should note that there is a probability that the customers do not purchase from any 

channel based on the choice model. Therefore, the total demand for the retailer is less than the 

total available market share. But the total revenue, solid blue line increases as the total 

inventory increases since a part of the revenue is coming from the leftover inventory. Although 

the revenue from sale remains fixed as the total initial inventory increases, the revenue from 

salvaged items increases. Finally, similar to sale’s revenue, the fulfillment cost (dotted red line) 

increases as the inventory level increases, but it becomes stable at 400 since the sales amount 

does not increase. Some variations can also be seen between 400 to 480 inventories that are 

due to different fulfillment decisions considering the fact that the initial inventories are 

simulated randomly.  
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We can also see the same trend for revenue and fulfillment cost with a different salvage 

price. Figure 2.4 shows the revenue and fulfillment cost with a salvage price equal to $40, 

which is as twice as large of the previous salvage price. All the other parameters are the same 

as previous simulation. Again, 25 instances with different initial inventories ranging from 294 

to 629 are solved. Similar to Figure 2.3, the revenue from sale and fulfillment costs are 

increased as the initial inventory increases, but they stay stable after the inventory level reaches 

the captured market share.  Total revenue increases as inventory increases but it reaches a 

higher point, around 50,000, since the revenue from leftover inventory is higher due to higher 

salvage price. Also, under new salvage price, the retailer again chooses $105 and $115 for its 

brick-and-mortar and e-commerce channel prices for all instances, respectively.  

 

Figure 2.4. Effect of salvage price on revenue and fulfillment cost 
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Figure 2.5 illustrates the effect of different fulfillment policies on the revenue and 

fulfillment cost of the retailer. In this graph, we have the same parameters as in Figure 2.3, but 

the retailer is not allowed to ship the in-store orders. Overall, we have the same trends for total 

and sale’s revenue and fulfilment cost, but it takes longer for retailer to achieve the maximum 

market share. In fact, the maximum sale’s revenue appears to happen at around 490 initial 

inventory, but this number was lower and around 400 when we have the possibility of shipping 

the in-store demand as well. This is due to the retailers’ flexibility to fulfill their customer 

demand. Also, similar to sale’s revenue, fulfillment cost is also increasing for inventory less 

than 490. One should note that the optimal retailer’s prices are $105 and $115 for in-store and 

online price in all cases.  

 

Figure 2.5. Effect of “shipping the in-store demand” option on revenue and fulfillment cost 
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To show the effect of price variation on the model, we assume that the retailer offers 

in-store promotions and chooses the in-store price from a set of $40, $45 and $50, instead of 

$95, $100 and $105. All the other parameters are the same as previous examples. As a result 

of the retailer’s demand model, we expect this decision to increase the customers’ purchase 

probabilities from brick-and-mortar channel, and to decrease the leftover inventories at the 

physical stores. As noted earlier, we obtain the optimal solution for 25 instances with 25 

different initial inventories, and the total leftover inventories are compared in Figure 2.6.  

 

Figure 2.6. Effect of in-store promotions on total leftover inventories 

 

As illustrated in Figure 2.6, the total leftover inventory is lower when the retailer offers 

low prices for brick-and-mortar channel. In fact, the retailer can use price controls to increase 

the probability of customers purchasing from physical stores to deplete the in-store inventory. 

Using price controls to move customers to physical stores also help retailers to reduce their 
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fulfillment cost. However, this can eventually increase the fulfillment cost because we assume 

that the stores will need to ship their customers’ demand if they are out of inventory.  This can 

be seen in Figure 2.7, where the total fulfillment costs are higher when the retailer offer lower 

prices for the brick-and-mortar channel. However, offering promotions can in general increase 

the retailers market share and they can sell more. Thus, they have to fulfill higher portion of 

the total market size and have higher fulfillment costs. This is the case in Figure 2.7 when the 

cost under each of these prices becomes constant (for instances with higher than 500 initial 

inventory). However, the total revenue could be higher under the regular prices since the major 

source of revenue is from sale’s revenue. It should be noted that the optimal in-store price for 

retailer is $40 for the instance with 294 initial inventories, which is not the highest price is the 

price set. This shows that the retailers can have lower revenue by offering a lower price but 

having lower fulfillment costs as well, and therefore a higher profit in total.   

 

Figure 2.7. Effect of in-store promotions on fulfillment costs 
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Although the in-store inventory moves faster, and we have lower inventory in total 

under promotions, the fulfillment cost may increase for the retailer. This increase is because 

we assume the retailer can fulfill the in-store demand by e-fulfillment inventory in the same 

zone if the store is out of inventory. However, if we remove this assumption from the model, 

and assume that the in-store demand can only be fulfilled by in-store inventory, we could have 

a different pattern. This has been shown in Figure 2.8.  

 

Figure 2.8. Effect of in-store promotions on fulfillment costs when the in-store demand 

fulfilled only by in-store inventory 

 

Similar to Figure 2.7, Figure 2.8 compares the fulfillment cost under in-store promotion 

and the fulfillment cost with regular prices, but with the assumption that shipment of in-store 

demand is not allowed. It can be seen that when the retailer doesn’t ship in-store demand, the 

fulfillment cost is much lower compared to a situation that allows for shipping of in-store 

demand (Figure 2.7). It is reasonable not to ship the in-store demand when the retailer offers 
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promotions because retailers usually offer promotions to deplete their inventory in one of their 

channels, for example, brick-and-mortar channel. In fact, if they offer in-store promotions, they 

don’t want to fulfill that demand with inventory in e-commerce channel.  

One of the major assumptions in mathematical model M1 is that the retailers are able to 

ship the in-store demand to the customers when the store is out of inventory. In such cases, the 

store can benefit from sharing inventory with e-fulfillment centers. To illustrate how profitable 

this assumption is and how the retailers can increase their profit under this scenario, Tables 2.3 

and 2.4 show the revenue, fulfillment cost, and profit under different scenarios for 

mathematical model M1. 

We consider a network with 15 geographical zones for an omni-channel retailer in 

Table 2.3 and a retailer with 40 zones (see Figure 2.9) in Table 2.4. The online price set that 

the retailer can choose from is $105, $110, and $115. The in-store price is chosen from the set 

of $95, $100, and $105 in both tables. The salvage price is $20, and the 25 instances are solved 

with different initial inventories in both tables. The initial inventories in Table 2.3 are generated 

uniformly from 5 to 25 products, but the lower point in simulation is increased gradually to 

have instances with a wide range of initial inventories. But in Table 2.4, the initial inventories 

are generated from a range of 25 to 50 products for e-fulfillment centers and between 50 to 100 

for store inventories. Again, the minimum inventories are increased throughout the instances 

to have a wider range of initial inventories. We consider market sizes equal to 20 and 30 for 

Table 2.3 and market sizes equal to 90 and 100 for Table 2.4. 



 

99 

 

 

Figure 2.9. Omni-channel retailer distribution network with 40 zones 
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Table 2.3. Analysis of mathematical model M1 under different operational scenarios with 15 zones 
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Total 

Rev. 
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Cost 
Profit 

Total 

Rev. 
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Cost 
Profit 

294 32,670 692 31,978 32,670 692 31,978  33,570 604 32,966 33,570 604 32,966 

316 35,505 790 34,715 35,505 790 34,715  36,405 677 35,728 36,405 677 35,728 

321 34,980 788 34,192 34,980 788 34,192  35,880 672 35,208 35,880 672 35,208 

334 38,130 874 37,256 38,130 874 37,256  39,030 760 38,270 39,030 760 38,270 

346 37,395 843 36,552 37,310 837 36,473  38,295 737 37,558 38,295 737 37,558 

379 39,980 944 39,036 39,130 869 38,261  42,495 852 41,643 42,495 852 41,643 

448 41,360 917 40,443 40,850 877 39,973  49,740 1,074 48,666 49,740 1,074 48,666 

448 42,040 909 41,131 41,445 867 40,578  53,310 1,174 52,136 53,310 1,174 52,136 

465 41,360 896 40,464 41,190 884 40,306  49,740 1,064 48,676 49,740 1,064 48,676 

472 41,700 891 40,809 41,615 885 40,730  51,525 1,107 50,418 51,525 1,107 50,418 

475 41,840 897 40,943 41,585 879 40,706  52,260 1,128 51,132 52,260 1,128 51,132 

478 41,960 898 41,062 41,790 886 40,904  52,890 1,158 51,732 52,890 1,158 51,732 

482 42,140 890 41,250 42,140 890 41,250  53,835 1,179 52,656 53,835 1,179 52,656 

487 41,900 888 41,012 41,900 888 41,012  52,575 1,148 51,427 52,575 1,148 51,427 

491 42,220 888 41,332 42,220 888 41,332  54,255 1,201 53,054 54,255 1,201 53,054 

518 42,760 888 41,872 42,760 888 41,872  57,090 1,301 55,789 57,090 1,301 55,789 

523 42,860 888 41,972 42,860 888 41,972  57,615 1,306 56,309 57,615 1,306 56,309 

546 43,320 888 42,432 43,320 888 42,432  59,520 1,361 58,159 59,265 1,339 57,926 

557 43,540 888 42,652 43,540 888 42,652  59,740 1,348 58,392 59,740 1,348 58,392 

563 44,040 888 43,152 44,040 888 43,152  60,240 1,335 58,905 60,240 1,335 58,905 

582 43,660 888 42,772 43,660 888 42,772  59,860 1,338 58,522 59,860 1,338 58,522 

592 44,240 888 43,352 44,240 888 43,352  60,440 1,334 59,106 60,440 1,334 59,106 

598 44,360 888 43,472 44,360 888 43,472  60,560 1,332 59,228 60,560 1,332 59,228 

627 44,940 888 44,052 44,940 888 44,052  61,140 1,332 59,808 61,140 1,332 59,808 

629 44,980 888 44,092 44,980 888 44,092  61,180 1,332 59,848 61,180 1,332 59,848 

Average 41,355 875 40,480 41,246 867 40,379  51,728 1,114 50,613 51,717 1,113 50,604 
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Table 2.4. Analysis of mathematical model M1 under different operational scenarios with 40 zones 
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4,499 489,915 10,483 479,432 489,490 10,435 479,055  491,890 10,064 481,826 492,060 10,079 481,981 

4,656 495,520 10,482 485,038 493,055 10,293 482,762  508,545 10,492 498,053 508,715 10,508 498,207 

4,421 481,810 10,050 471,760 481,800 10,062 471,738  483,785 9,784 474,001 483,785 9,789 473,996 

4,507 490,755 10,400 480,355 488,525 10,251 478,274  492,730 10,007 482,723 492,815 10,020 482,795 

4,614 494,585 10,449 484,136 493,405 10,354 483,051  504,050 10,356 493,694 503,880 10,363 493,517 

4,254 464,190 9,539 454,651 464,360 9,558 454,802  466,505 9,289 457,216 466,335 9,294 457,041 

4,646 495,320 10,402 484,918 493,450 10,265 483,185  507,495 10,395 497,100 507,240 10,399 496,841 

4,634 494,985 10,471 484,514 492,435 10,262 482,173  506,150 10,369 495,781 506,065 10,374 495,691 

4,795 498,300 10,396 487,904 496,760 10,279 486,481  522,885 10,819 512,066 523,225 10,845 512,380 

4,670 495,800 10,447 485,353 492,645 10,193 482,452  509,930 10,466 499,464 510,015 10,482 499,533 

4,706 496,520 10,495 486,025 493,960 10,283 483,677  513,540 10,562 502,978 513,710 10,576 503,134 

4,738 497,160 10,402 486,758 495,885 10,298 485,587  516,900 10,633 506,267 517,155 10,653 506,502 

4,618 494,760 10,478 484,282 490,765 10,167 480,598  504,555 10,280 494,275 504,470 10,287 494,183 

4,843 499,165 10,269 488,896 498,835 10,242 488,593  528,265 10,920 517,345 527,915 10,919 516,996 

4,730 497,000 10,354 486,646 494,025 10,132 483,893  516,230 10,577 505,653 516,315 10,588 505,727 

4,960 501,410 10,287 491,123 500,325 10,189 490,136  540,295 11,326 528,969 540,465 11,350 529,115 

4,739 497,180 10,326 486,854 494,545 10,123 484,422  517,175 10,599 506,576 517,175 10,607 506,568 

4,819 498,780 10,328 488,452 496,230 10,118 486,112  525,575 10,787 514,788 525,660 10,800 514,860 

4,930 500,905 10,205 490,700 500,395 10,164 490,231  537,230 11,124 526,106 537,315 11,139 526,176 

4,888 500,160 10,236 489,924 498,885 10,137 488,748  532,735 10,980 521,755 532,990 10,992 521,998 

4,831 499,020 10,265 488,755 496,130 10,046 486,084  527,005 10,822 516,183 526,835 10,819 516,016 

4,857 499,540 10,233 489,307 497,235 10,071 487,164  529,565 10,899 518,666 529,650 10,912 518,738 

4,958 501,560 10,207 491,353 500,285 10,103 490,182  540,085 11,220 528,865 540,000 11,216 528,784 

5,040 503,200 10,175 493,025 502,095 10,087 492,008  546,400 11,610 534,790 541,640 11,216 530,424 

5,190 506,200 10,164 496,036 504,840 10,061 494,779  549,400 11,481 537,919 545,660 11,184 534,476 

Average 495,750 10,302 485,448 494,014 10,167 483,847  516,757 10,634 506,122 516,444 10,616 505,827 
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 In Table 2.3, the columns two to seven are the results with market size equal to 20 

products at each zone, and columns eight to thirteen show the results when the market size 

equals 30 products. The first column in Table 2.3, “Total Initial Inv.” shows the total initial 

inventory for each instance. The next three columns of Table 2.3 show the total revenue, 

fulfillment cost, and profit for omni-channel retailers that consider the shipment of in-store 

demand to customers. But the next three columns, five to seven, show the results without this 

assumption. As it can be seen above, considering the assumption of fulfilling the demand of 

the in-store customers with e-fulfillment centers will increase the average profit of the retailer 

under both 20 and 30 market size. This assumption may also increase the average fulfillment 

costs, but this is due to the higher number of shipments of in-store demands. Also, it can be 

seen that increasing the market size can increase the retailers profit with the same initial 

inventory. Furthermore, from instance with lower inventories to instance with higher 

inventories, the retailer’s profit is increasing. In all instances, the retailer chooses the highest 

price for e-commerce ($115) and highest price for brick-and-mortar channel ($105). Table 2.4 

has exactly the same columns as Table 2.3, which show the results for a retailer with 40 zones 

and higher initial inventories and larger market share, 90 and 100 units of products. Similar to 

Table 2.3, in Table 2.4, the average fulfillment cost increases when we allow for shipment of 

in-store demands. However, retailer covers more demand and has a higher average revenue and 

a higher average profit under both market shares. Again, in all instances, the retailer’s optimal 

prices are $115 and $105 for online and in-store products.  
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2.4.2. Computational results for mathematical model #2 (M2)  

We performed similar experiments for mathematical model M2. We first simulate price 

and shipping time for different products in range of $90 to $160. We then simulate the choice 

of customers when they observe different prices and shipping options for e-commerce and 

brick-and-mortar channel. The delivery times for very fast, fast, and store pick-up (i.e., in-store 

purchase) are taken to e 1, 3 and 7 days. It is assumed that the customers do not always choose 

the cheapest price or the fastest shipping method. Then the Python PyLogit package is used to 

estimate the model’s coefficients. The estimated intercept, price, time and interaction 

coefficients are -0.01031, 0.00018, -0.07217, and 0.00129, respectively.  

We used the same instances we used before for mathematical model M1. In fact, we 

used two problem sets, one with a network of 15 geographical zones and one with a network 

of 40 zones and a two-week planning horizon. Each zone has one physical store and one e-

fulfillment center.  The initial inventories, price sets, and the salvage value are the same as for 

model M1. The only difference is that we are considering initial inventory assignments and 

inventory holding cost. We assume that the holding cost is also $20 per item per period. Before 

providing tables of our results, we perform some sensitivity analysis.  

Figure 2.10 shows the effect of holding cost on the optimal solution on instances with 

15 geographical zones and market size equal to 20 products, at each time at each zone. As it 

can be seen, the retailer has higher profit with lower holding cost. However, the profit increases 

as the initial inventory increases up to 450 units of product, but it stays non-increasing or even 

drops for instances with inventory higher than 450. This is because that the retailers cannot 

increase the revenue due to market share limitation, but still need to pay higher holding cost 

for larger initial inventory.  
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Figure 2.10. Effect of holding cost on retailer’s profit (market share=20) 

 

We have a similar graph when the market share is equal to 30 units of products. Figure 

2.11 similarly shows the retailers obtain a higher profit when they have lower holding cost. 

However, we don’t see any kink on the graph like Figure 2.10. This can be because the retailer 

has the ability to increase the revenue since there is a higher market size in this setting and the 

revenue increases as the initial inventory increases.    

 

Figure 2.11. Effect of holding cost on retailer’s profit with a different market share (30) 
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In order to show how retailers can benefit from considering initial inventory 

considerations in mathematical model M2, we compare the results with scenarios that the initial 

inventories are assumed to be fixed. Tables 2.5 and 2.6 are using the same instances as Tables 

2.3 and 2.4, respectively. We assume the same online and brick-and-mortar price sets and the 

same salvage price. The only difference is that Tables 2.5 and 2.6 are also considering holding 

costs and initial inventory assignments.  

Again, a network with 15 geographical zones is considered in Table 2.5 and a retailer 

with 40 zones in Table 2.6. The online price set for fast delivery is $105, $110, and $115, the 

online price set for very fast delivery is $115, $120, and $125, and the in-store price is chosen 

among $95, $100, and $105 in both tables. The salvage price and holding cost are both $20. 

The initial inventories are the same as Table 2.3 and Table 2.4. Market sizes are equal to 20 

and 30 for Table 2.5 and market sizes equal to 90 and 100 for Table 2.6.  

The first column in Table 2.5 shows the sum of total initial inventory (in-store and e-

fulfillment). Columns two to nine show the results with market share equal to 20 products at 

each zone at each zone, and columns nine to sixteen show the results when the market share 

equals 30 products. The columns two to five, show the total revenue, holding cost, fulfillment 

cost and profit for omni-channel retailers that have the ability to assign the in-store and e-

fulfillment inventory at the beginning of the planning period and fulfills the in-store demand 

by shipments. But the next four columns are for fixed initial inventory and no shipping option 

for in-store customers. However, the sum of total in-store and e-fulfillment centers’ inventory 

are equal in both cases. As it can be seen from the last row of the Table 2.5, the average holding 

cost and average fulfillment cost both increase when the retailer has fixed initial inventories 

and does not allow for shipment of in-store demand. The revenue also decreases with fixed 

inventory. This is because the retailer has less flexibility in inventory and fulfillment decisions. 
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However, the average profit is higher when the retailer has the ability to assign the initial 

inventories and ship the in-store demand under both market sizes. Also, contrary to Tables 2.3 

and 2.4, optimal prices for retailer are not the highest prices available in each channel’s price 

set in Table 2.5. For example, in the instance with initial inventory equal to 379, under variable 

initial inventories, the optimal price for fast delivery is $105 at period two and zone three but 

it’s $115 at period two and zone two. This shows that the retailers can benefit from joint pricing 

and fulfillment decisions to maximize their profit. Although the retailer can use the maximum 

price in each price set to increase the revenue, they choose prices that maximize their profit 

considering their fulfillment costs.  This is the case for some other instances as well. 

Tables 2.6 shows the robustness of the obtained results in Table 2.5. Similar to Table 

2.5, Table 2.6 shows the same pattern for retailer’s holding cost and fulfillment costs, but under 

different initial inventories and market shares. Again, the retailer’s average profit increases 

when initial inventories are decision variables and the in-store orders can be shipped. Also, it 

can be seen that increasing the market size can increase the retailer’s profit with the same initial 

inventory. Moreover, in some instances like the one with 4,499 fixed initial inventory, the 

optimal prices in each channel are not the highest prices and the retailer offers lower prices to 

attract more demand in each channel and have lower fulfillment costs. Furthermore, from 

instance with lower inventories to instance with higher inventories, the retailer’s profit is 

increasing. However, we have some instances that both result in a same profit. 
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Table 2.5. Analysis of mathematical model M2 under different operational scenarios with 15 zones 
 20

t

z
n =          30

t

z
n =         

 
0

 

t

ewz

t

bz

S

Variable X



 
   

0

 

t

ewz

t

bz

S

Fixed X

=

 
   

 

0

 

t

ewz

t

bz

S

Variable X



 
   

0

 

t

ewz

t

bz

S

Fixed X

=

 
   

Total 

Initial 

Inv. 

Total 

Rev. 

Holding 

Cost 

Fulfill. 

Cost 
Profit 

Total 

Rev. 

Holding 

Cost 

Fulfill. 

Cost 
Profit 

 
Total 

Rev. 

Holding 

Cost 
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Profit 

Total 

Rev. 

Holding 

Cost 

Fulfill. 

Cost 
Profit 

294 33,990 1,380 501 32,109 33,930 1,460 514 31,956  33,720 0 489 33,231 33,840 120 497 33,223 

316 36,640 1,820 542 34,278 36,630 1,820 560 34,250  36,030 0 511 35,519 36,450 420 580 35,450 

321 37,215 1,920 552 34,743 37,185 1,940 565 34,680  36,555 0 516 36,039 36,825 280 532 36,013 

334 38,710 2,180 578 35,952 38,740 2,240 588 35,912  38,000 80 533 37,387 38,670 820 570 37,280 

346 40,090 2,420 602 37,068 39,995 2,440 614 36,941  39,500 320 557 38,623 39,920 740 597 38,583 

379 43,355 3,080 651 39,624 43,415 3,120 679 39,616  43,625 980 623 42,022 43,945 1,300 671 41,974 

448 50,940 4,460 718 45,762 50,580 4,540 774 45,266  51,970 2,360 761 48,849 51,905 2,440 837 48,628 

448 50,940 4,460 718 45,762 50,690 4,500 754 45,436  51,750 2,360 760 48,630 51,805 2,380 849 48,576 

465 51,450 5,100 720 45,630 51,345 5,120 735 45,490  53,925 2,700 795 50,430 53,925 2,700 812 50,413 

472 51,590 5,380 720 45,490 51,335 5,440 730 45,165  54,730 2,840 809 51,081 54,730 2,840 822 51,068 

475 51,650 5,500 720 45,430 51,650 5,500 746 45,404  55,075 2,900 815 51,360 55,075 2,900 889 51,286 

478 51,710 5,620 720 45,370 51,540 5,660 719 45,161  55,420 2,960 821 51,639 55,230 3,000 817 51,413 

482 51,790 5,780 720 45,290 51,135 5,920 737 44,478  55,880 3,040 829 52,011 55,795 3,080 901 51,814 

487 51,890 5,980 720 45,190 51,860 5,980 741 45,139  56,455 3,140 855 52,460 56,415 3,140 892 52,383 

491 51,970 6,140 720 45,110 51,970 6,140 731 45,099  56,915 3,220 847 52,848 56,790 3,240 874 52,676 

518 52,510 7,220 720 44,570 52,510 7,220 720 44,570  60,020 3,760 901 55,359 59,840 3,820 962 55,058 

523 52,610 7,420 720 44,470 52,610 7,420 720 44,470  60,595 3,860 911 55,824 60,310 3,920 964 55,426 

546 53,070 8,340 720 44,010 53,070 8,340 722 44,008  63,030 4,320 936 57,774 62,935 4,340 950 57,645 

557 53,290 8,780 720 43,790 53,290 8,780 720 43,790  63,885 4,580 945 58,360 63,920 4,600 994 58,326 

563 53,410 9,020 720 43,670 53,410 9,020 720 43,670  64,585 4,660 953 58,972 64,575 4,700 961 58,914 

582 53,790 9,780 720 43,290 53,790 9,780 720 43,290  66,765 5,040 974 60,751 66,755 5,040 981 60,734 

592 53,990 10,180 720 43,090 53,990 10,180 720 43,090  67,820 5,240 982 61,598 67,530 5,300 1,064 61,166 

598 54,110 10,420 720 42,970 54,110 10,420 720 42,970  68,490 5,360 988 62,142 68,270 5,400 1,058 61,812 

627 54,690 11,580 720 42,390 54,690 11,580 720 42,390  71,535 5,940 1,017 64,578 71,500 5,940 1,035 64,525 

629 54,730 11,660 720 42,350 54,730 11,660 720 42,350  71,570 6,000 1,027 64,543 71,500 6,020 1,026 64,454 

Average 49,205 6,225 684 42,296 49,128 6,249 696 42,184  55,114 3,026 806 51,281 55,138 3,139 845 51,154 
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Table 2.6. Analysis of mathematical model M2 under different operational scenarios with 40 zones 
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4,499 491,495 28,780 8,435 454,280 490,970 28,920 8,793 453,257  494,320 22,720 8,912 462,688 493,180 23,000 9,087 461,093 

4,656 510,740 32,000 8,728 470,012 509,700 32,360 9,080 468,260  513,635 26,060 9,080 478,495 510,910 26,720 9,332 474,858 

4,421 518,575 33,940 8,846 475,789 518,860 33,880 9,350 475,630  519,755 28,260 9,095 482,400 519,380 27,960 9,598 481,822 

4,507 522,820 33,400 9,304 480,116 519,685 34,060 8,866 476,759  523,140 27,800 9,146 486,194 521,985 28,180 9,487 484,318 

4,614 534,600 35,560 9,568 489,472 532,660 36,000 9,128 487,532  535,760 29,920 9,268 496,572 535,925 30,000 9,684 496,241 

4,254 532,985 36,020 9,193 487,772 532,200 36,220 9,469 486,511  536,180 30,000 9,246 496,934 536,105 30,060 9,624 496,421 

4,646 535,440 36,240 9,212 489,988 534,400 36,480 9,556 488,364  538,035 30,340 9,280 498,415 536,585 30,660 9,656 496,269 

4,634 535,585 36,760 9,210 489,615 534,850 36,880 9,478 488,492  539,385 30,620 9,273 499,492 539,510 30,600 9,636 499,274 

4,795 538,570 36,480 9,653 492,437 537,830 36,600 9,290 491,940  540,520 30,800 9,296 500,424 539,235 31,100 9,680 498,455 

4,670 538,470 36,900 9,657 491,913 536,565 36,900 9,329 490,336  541,120 31,300 9,733 500,087 536,565 36,900 9,329 490,336 

4,706 542,840 37,680 9,428 495,732 541,560 38,000 9,788 493,772  543,390 32,480 9,780 501,130 542,840 37,680 9,428 495,732 

4,738 545,785 38,060 9,739 497,986 545,325 38,180 9,497 497,648  546,860 32,680 9,774 504,406 545,325 38,180 9,497 497,648 

4,618 547,575 37,980 9,912 499,683 546,010 38,360 9,518 498,132  548,595 32,740 9,362 506,493 548,045 32,680 10,115 505,250 

4,843 547,485 38,100 9,780 499,605 546,105 38,380 9,521 498,204  550,185 32,420 9,388 508,377 547,250 32,800 9,781 504,669 

4,730 552,940 39,320 9,783 503,837 551,850 39,520 10,002 502,328  555,485 33,880 9,955 511,650 554,590 34,000 9,454 511,136 

4,960 554,695 39,940 9,767 504,988 553,035 40,340 9,964 502,731  558,455 34,260 9,972 514,223 554,695 39,940 9,767 504,988 

4,739 556,565 40,060 9,821 506,684 554,130 40,620 9,893 503,617  560,485 34,340 9,564 516,581 558,865 34,660 9,890 514,315 

4,819 557,725 40,340 10,046 507,339 556,780 40,280 9,870 506,630  561,890 34,560 9,590 517,740 559,565 34,820 9,925 514,820 

4,930 558,940 40,680 9,884 508,376 558,090 40,880 9,995 507,215  560,740 35,220 9,956 515,564 558,940 40,680 9,884 508,376 

4,888 562,085 41,180 9,995 510,910 560,750 41,640 10,095 509,015  565,845 35,700 9,661 520,484 565,060 35,920 9,997 519,143 

4,831 565,645 42,020 10,121 513,504 565,840 42,320 10,257 513,263  571,980 36,320 9,762 525,898 571,520 36,400 10,124 524,996 

4,857 570,990 42,360 10,240 518,390 570,715 42,380 10,379 517,956  575,260 36,840 9,822 528,598 573,775 37,180 10,114 526,481 

4,958 569,970 42,640 10,208 517,122 569,160 42,880 10,380 515,900  575,560 36,880 9,826 528,854 573,520 37,320 10,173 526,027 

5,040 578,615 44,220 10,453 523,942 577,905 44,380 10,549 522,976  583,650 38,600 10,338 534,712 582,920 38,880 9,946 534,094 

5,190 595,095 47,060 10,925 537,110 593,310 47,480 10,931 534,899  599,060 41,600 10,374 547,086 598,630 41,840 10,569 546,221 

Average 546,649 38,309 9,676 498,664 545,531 38,558 9,719 497,255  549,572 32,654 9,578 507,340 548,197 33,926 9,751 504,519 
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2.5. Managerial implications 

 We gained the following insights from the computational experiments. First, retailers 

can use their transactional data to see how their customers behave under different pricing 

scenarios for future purchases. A retailer can use pricing controls to shift their customers 

between channels and move them toward a specific channel. It’s also profitable for retailers to 

consider pricing controls when they make fulfillment decisions. Pricing decisions can change 

their market share and also the proportion of the demand in each channel. Retailers may get 

higher revenue if they increase their prices, but they may decrease their total market share.    

Second, the fulfilled demand is limited by the amount of initial inventory and the 

retailer’s market share, whichever has the minimum quantity. Thus, the retailer cannot increase 

its revenue from sales by increasing its initial inventory if its initial inventory is higher than 

market share. However, they can change their market share by pricing decisions. The retailers 

can use the results of its demand model, specifically the MNL model, and calculate their market 

share based on the probability of selling through any of their channels. In Figure 2.3, the market 

size is equal to 20 products for 15 geographical zones for a two-period planning horizon. 

Therefore, the retailer should be able to sell 600 (i.e., 2 periods × 15 zones × 20 products) units 

of products in total if it has the sufficient initial inventory, however, it cannot increase its sale’s 

revenue when its initial inventory passes 400 units of product. Because there is a probability 

that the retailer does not sell the product through any of the channels. However, the retailer can 

change this probability by different pricing decisions. For example, based on the results for 

Figure 2.3 and also Table 2.3, the probability of selling through both channels equals one 

subtracted by the probability of not selling through any of the channels, which will be 0.64 

using the final in-store price equal to $105 and online price equal to $115. This can be 

calculated using estimated coefficients from choice model: 
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−  + −  +
 

Third, retailers can use pricing decisions to change the demand of each channel and 

move customers between their channels and deplete channel-specific inventories. As was seen 

in Figure 2.6, offering lower prices and promotions for in-store products, increases the 

probability of customers purchasing form brick-and-mortar channel and lower the total leftover 

inventory. This can be the beneficial when retailers have slow-moving in-store inventories and 

using pricing decisions can help these retailers in such scenarios. One should note that this 

strategy can also decrease the fulfillment cost because more customers are purchasing in-store 

and the retailers save on shipments. However, in this study, we assumed that the retailer can 

ship the in-store demand if the store is out of inventory. Thus, the lower in-store prices may 

increase the brick-and-mortar demand more than store inventory leading the stores to ship high 

proportion of their in-store demand, which could cause a higher fulfillment cost compared to 

offering regular prices. In summary, lower prices may help the retailers to increase their 

inventory usage rate, but it may cause higher fulfillment costs if they need to ship the extra 

demand flowing to stores.  

Fourth, the shipment of in-store demand can increase the retailer’s market share and 

fulfillment costs, but on average, it increases the retailer’s profit. On the other hand, since most 

online retailers follow a system-wide periodic review policy, specifically a base-stock policy 

(Acimovic and Graves 2017), they can also increase their profit if they can decide how to 

allocate their initial inventory throughout their network.  

Fifth, higher holding costs can decrease the retailers profit in general. But, with higher 

holding cost, retailers should be more sensitive about their level of initial inventory because it 

may change their profit trend. With lower holding cost, they may have a stable profit with 

initial inventory higher than their market share, but with higher holding cost their profit 
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decreases more sharply since revenue cannot overcome the cost which include holding and 

fulfillment costs (Figure 2.10). 

 

2.6. Conclusion  

 We proposed two optimization models for omni-channel retailing in this study. Both 

models include pricing and fulfillment decisions simultaneously, whereas the second model 

also includes inventory decisions as well. In both models, the omni-channel retailer can benefit 

from sharing inventory for online and in-store demands. One new assumption that is considered 

in these models is that the in-store demand can be shipped to customers from the inventory that 

is dedicated for the e-commerce channel. In the second model, the retailer offers different 

shipping options and it can control the initial inventory allocation for each channel. The 

customer demand is modeled by an MNL choice model. As a result of using this choice model, 

the customers’ choice probabilities and, consequently, the demand functions have nonlinear 

terms. Accordingly, both models are linearized using standard techniques that are introduced 

in the literature and the models are solved by IBM CPLEX solver. We designed several 

numerical experiments that showed the benefits the retailers can obtain from joint pricing 

controls and cross-channel fulfillment. These models can be implemented in practice for real 

world problem as well. 

 One of the areas that can be extended in this study is considering more realistic 

assumption in the optimization model. For example, we might consider multiple products in 

one shipment and the possibility of split deliveries. There are usually multiple products in one 

online order that can be fulfilled from different locations. The other assumption that could be 

included is the last mile delivery decisions. The retailer may hire a fleet of vehicles for delivery 

purposes or use the online shipping platforms as discussed in essay one.  One of the other future 
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research areas could be using modern data analytic techniques for customer choice prediction. 

For example, machine learning algorithms such as Neural Networks (NN) could be used to 

predict the customer behavior.   



 

113 

 

References 

Acimovic, J., & Graves, S. C. (2017). Mitigating spillover in online retailing via replenishment. 

Manufacturing & Service Operations Management, 19(3), 419-436. 

Acimovic, J., & Graves, S. C. (2014). Making better fulfillment decisions on the fly in an online 

retail environment. Manufacturing & Service Operations Management, 17(1), 34-51. 

Agatz, N. A., Fleischmann, M., & Van Nunen, J. A. (2008). E-fulfillment and multi-channel 

distribution–A review. European Journal of Operational Research, 187(2), 339-356. 

Akçay, Y., Natarajan, H. P., & Xu, S. H. (2010). Joint dynamic pricing of multiple perishable 

products under consumer choice. Management Science, 56(8), 1345-1361. 

Ben-Akiva, M. E., & Lerman, S. R., (1985). Discrete choice analysis: theory and application 

to travel demand (Vol. 9). MIT press. 

Bodea, T., & Ferguson, M. (2014). Segmentation, revenue management, and pricing an- 

alytics. Routledge. 

Cao, J., So, K. C., & Yin, S. (2016). Impact of an “online-to-store” channel on demand 

allocation, pricing and profitability. European Journal of Operational Research, 248(1), 

234-245. 

Forrester Research (2015) Forrester research ecommerce forecast, 2014 to 2019 (US). 

Accessed April 21, 2016, 

https://www.forrester.com/report/Forrester+Research+eCommerce+Forecast+2014+To+2019+US/..

/E-RES116713. 

Harsha, P., Subramanian, S., & Uichanco, J. (2019). Dynamic Pricing of Omnichannel 

Inventories: Honorable Mention—2017 M&SOM Practice-Based Research 

Competition. Manufacturing & Service Operations Management, 21(1), 47-65  

Harsha, P., Subramanian, S., & Uichanco, J. (2016). Omni-channel revenue management 

through integrated pricing and fulfillment planning. Ross School of Business, 

University of Michigan.  

Kunnumkal, S., & Topaloglu, H. (2010). A new dynamic programming decomposition method 

for the network revenue management problem with customer choice behavior. 

Production and Operations Management, 19(5), 575-590. 

Lei, Y., Jasin, S., & Sinha, A. (2018). Joint dynamic pricing and order fulfillment for e-

commerce retailers. Manufacturing & Service Operations Management, 20(2), 269-

284.  

Newman, J. P., Ferguson, M. E., Garrow, L. A., & Jacobs, T. L. (2014). Estimation of choice-

based models using sales data from a single firm. Manufacturing & Service Operations 

Management, 16(2), 184–197. 

https://www.forrester.com/report/E-RES116713
https://www.forrester.com/report/E-RES116713


 

114 

 

Paul, A., Feldman, J., & Davis, J. M. (2018). Assortment optimization and pricing under a 

nonparametric tree choice model. Manufacturing & Service Operations Management. 

Rusmevichientong, P., & Topaloglu, H. (2012). Robust assortment optimization in revenue 

management under the multinomial logit choice model. Operations Research, 60(4), 

865-882. 

Rusmevichientong, P., Shmoys, D., Tong, C., & Topaloglu, H. (2014). Assortment 

optimization under the multinomial logit model with random choice parameters. 

Production and Operations Management, 23(11), 2023-2039. 

Sherali, H. D., & Adams, W. P. (1998). Reformulation-linearization techniques for discrete 

optimization problems. In Handbook of combinatorial optimization (pp. 479-532). 

Springer, Boston, MA. 

Strauss, A. K., Klein, R., & Steinhardt, C. (2018). A review of choice-based revenue 

management: Theory and methods. European Journal of Operational Research, 271(2), 

375-387. 

Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete choice 

model of consumer behavior. Management Science, 50 (1), 15–33. 

Talluri, K. T., & Van Ryzin, G. J. (2006). The theory and practice of revenue management 

(Vol. 68). Springer Science & Business Media. 

Thurstone, L. L. (1927). A law of comparative judgment. Psychological Review, 34(4), 273. 

Vulcano, G., Van Ryzin, G., & Chaar, W. (2010). Choice-based revenue management: An 

empirical study of estimation and optimization. Manufacturing & Service Operations 

Management, 12 (3), 371–392.  

Vulcano, G., Van Ryzin, G., & Ratliff, R. (2012). Estimating primary demand for sub- 

stitutable products from sales transaction data. Operations Research, 60 (2), 313–334. 

Xu, P. J., Allgor, R., & Graves, S. C. (2009). Benefits of reevaluating real-time order fulfillment 

decisions. Manufacturing & Service Operations Management, 11(2), 340-355. 

  



 

115 

 

Appendices 

A. Screenshots of a solution of the C++/CPLEX code for optimization model P1 in essay 1 
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B. Screenshots of a solution of the C++/CPLEX code for optimization model M1 in essay 2 
 

 

 



 

120 

 

 

 



 

121 

 

 



 

122 

 

 

  



 

123 

 

CURRICULUM VITAE 

 
 

 
 Sheldon B. Lubar School of Business (2014-2019) 

University of Wisconsin-Milwaukee  

Ph.D. in Management Science-Operations and Supply Chain Management  

 

 University of Tafresh, Tafresh, Iran (2009-2012) 

M.Sc. in Industrial Engineering 

 

 Isfahan University of Technology, Isfahan, Iran (2004-2009)  

B.Sc. in Industrial Engineering 

 

Journal Papers: 

 K. Pichka, A. Bajgiran, X. Yue, J. Jang, M. Petering, “The two echelon open location routing 

problem: Mathematical model and hybrid heuristic”, 121 (2018): 97-112.  

 

 A. Azadeh, A. Ziaeifar, K. Pichka, S. Asadzadeh, “An intelligent algorithm for optimum 

forecasting of manufacturing lead times in fuzzy and crisp environments”, International Journal 

of Logistics Systems and Management, 16.2 (2013) 186-210. 

 

 A. Ziaeifar, R. Tavakkoli-Moghaddam, K. Pichka, “Solving a new mathematical model for a 

hybrid flow shop scheduling problem with a processor assignment by a genetic algorithm”, 

International Journal of Advanced Manufacturing Technology, 61 (2012) 339-349.  

 

 A. Ziaeifar, K. Pichka, H. Rafiei, M. Rabbani, “A genetic algorithm approach towards scheduling 

flexible flow shop consisting of series M/M/n stages”, Bulletin of Calcutta. Mathematic Society, 

103.1 (2011) 47-58.  

 

Conference Proceedings-Presentations: 

 K. Pichka, A. Bajgiran, X. Yue, J. Jang, M. Petering, “Two Echelon Location Routing Problem in 

The Presence of Third Party Logistics”, INFORMS 2016, Nashville, TN. 

 

 K. Pichka, B. Ashjari, A. Ziaeifar, “Distribution network design: a new model for open vehicle 

routing problem with multiple depots”, 10th International Industrial Engineering Conference 

(IIEC) 2014, Tehran, Iran. 

 

 A. Behrouznia, A. Azadeh, K. Pichka, Pazhoheshfar, M. Saberi, “Prediction of manufacturing 

lead-time based on Adaptive Neuro-Fuzzy Inference System (ANFIS)”, International Symposium 

on Innovations in Intelligent Systems and Applications (INISTA) 2011, Istanbul, Turkey.  

http://academic.research.microsoft.com/Author/51779053/a-behrouznia
http://academic.research.microsoft.com/Author/3658132/ali-azadeh
http://academic.research.microsoft.com/Author/52183851/p-pazhoheshfar
http://academic.research.microsoft.com/Author/35057486/morteza-saberi


 

124 

 

 
 Instructor (Fall 2018-Spring 2019) 

“Operations Planning and Control” 

Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee. 

 

 Teaching Assistant (Fall 2016-Spring 2017) 

“Introduction to Management Statistics” course 

Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee. 

 

 Project Assistant (Fall 2015- Spring 2016) 

Sheldon B. Lubar School of Business, University of Wisconsin-Milwaukee.  

 

 Teaching Assistant (Spring 2015) 

“Engineering Drawing and Computer-Aided Design/Drafting” course 

College of Engineering and Applied Sciences, University of Wisconsin-Milwaukee.  

 

 
 Iranian Offshore Engineering and Construction Company, Tehran, Iran 

Scheduling and planning engineer (July 2011-July 2013) 

 

 
 UWM Distinguished Graduate Student Fellowship (DGSF) (Fall 2017-Spring 2018) 

 UWM Sheldon B. and Marianne Lubar Scholarship (Summer 2017) 

 UWM Chancellor's Graduate Student Award (Fall 2015-Present) 

 

 
 Statistical Analysis 

 Bayesian Data Analysis 

 Probability Models for Operations Decisions 

 Advanced Computational Methods in Operation Research 

 
 Practical experience with softwares such as:  

C++ (Proficient), R, SAS, Win-Bugs, MINITAB, MATLAB, CPLEX, LINGO, MSP, 

PRIMAVERA. 

 

 


	Two Essays on Distribution, Fulfillment and Pricing Decisions for Retailers with E-Commerce Channel
	Recommended Citation

	tmp.1580315763.pdf.SPb7U

