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ABSTRACT
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INHIBITOR TRYPROSTATIN B
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DEACETYLASE INHIBITORS
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Under the Supervision of Professor M. Mahmun Hossain

PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE

INHIBITOR TRYPROSTATIN B

Tryprostatin (TPS) A and B, microtubule inhibitor, are the members of a family of prenylated Trp-
Pro diketopiperzine alkaloids. These two natural products were isolated in 1995 from the
fermentation broth of Aspergillus fumigatus BM939 by Osada and coworkers. TPS and related
diketopiperazine containing compounds such as phenylahistins, spirotryprostatins, and
cyclotryprostatins are inhibitors of the mammalian cell cycle. They prevent cell cycle progression
at the G2/M phase through a unique mechanism consisting of inhibiting the interaction between
microtubule assisted proteins (MAP-2) and the C-terminal end of tubulin. TPS A and B hold great
potential because they were found to have inhibitory activity on the cell cycle progression of mouse
tsFT210 cells with minimum inhibitory concentration (MIC) values of 16.4 uM for TPS A and 4.4

uM for TPS B, respectively. The poor abundance of TPS A and B in nature and long synthetic
ii



procedure have limited their development as viable anti-cancer therapeutics. On the other hand,
their interesting biological activity and simple structure have drawn attention from the synthetic
community, and several total syntheses have been reported. Herein, a concise and efficient total
synthesis of tryprostatin B was described. The key step was the preparation of a diprenylated
gramine salt where the prenyl group was incorporated at the 2-position of the indole moiety by
direct lithiation of the Boc-protected gramine. We also developed and optimized the asymmetric
phase-transfer-catalyzed reaction with diprenylated gramine salt to provide the C2-prenyl
tryptophan intermediate resulting in 93% enantiomeric excess (ee) and 65% vyield. The total

synthesis of tryprostatin B was done in six steps with 35% overall yield.

PART I1: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE

DEACETYLASE INHIBITORS

Histone acetylation and deacetylation in eukaryotic cells is delicately maintained by histone
acetyltransferases (HAT) and histone deacetylases (HDAC). These enzymes are responsible for
the modifications to chromatin structures and regulation of transcription. In general HAT activity
leads to an increase in gene transcription through the opening of the chromatin framework by
adding acetyl groups. In contrast, HDAC catalyze the removal of the acetyl groups on lysine
residues located on the NH. terminal tails of core histones, which leads to gene repression by
chromatin condensation. As a result, inhibition of HDAC activity can result in a general
hyperacetylation of histones, which is followed by the transcriptional activation of certain genes
through relaxation of the DNA conformation. These posttranslational modifications are essential

for the regulation of many cellular processes. Natural product-based HDAC inhibitors such as
iii



vorinostat (SAHA), romidepsin (FK228) are usually very potent, moderately isoform-selective,
but are often associated with poor solubility, ineffective against solid tumors and excessive
cytotoxicity. To overcome these limitations of the market drugs, a group of HDAC inhibitors were
synthesized based on market drug FK228. One of our synthetic compounds was found to be active
against class | HDAC and possibly effective against Alzheimer’s disease. Further investigations,

including microsomal assays and pharmacokinetic studies, are currently underway.

PART I11: ACID CATALYZED REACTIONS OF AROMATIC KETONES

WITH ETHYL DIAZOACETATE

3-Hydroxyacrylates or 3-oxo-esters are useful precursors for synthesizing important biologically
active and pharmaceutically important compounds due to their multiple functionality and
preferable substrate scope. These synthons are also applied for the construction of quaternary
carbon center containing compounds due to the presence of an active prochiral center. In 1998 and
later in 2004, our group reported the unprecedented reactions of aromatic aldehydes with ethyl
diazoacetate (EDA) in the presence of the iron Lewis acid and the Brgnsted type acid, respectively.
This novel reaction formed 3-hydroxyacrylates by an unusual 1, 2-aryl shift. In this project, we
extended this method for less reactive aromatic ketones with EDA using Brensted acid catalyst to
produce the 3-hydroxyacrylates. 3-hydroxyacrylates and 3-oxo-esters were isolated from the
reactions by 1,2-aryl/alkyl shifts. The products from these reactions can be applied to make all-

carbon quaternary center containing natural products.
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PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE
INHIBITOR TRYPROSTATIN B



1.1. INTRODUCTION

1.1.1. Microtubules

Microtubules are ropelike polymers of tubulin proteins, found in all eukaryotic cells and they are
key components of the cytoskeleton (Figure 1.1).! They are formed by the polymerization of a
dimer of two globular proteins, alpha (a)- and beta (5)-tubulin into protofilaments that can then
associate laterally to form a hollow tube, the microtubule.? The most common form of a
microtubule consists of 13 parallel rows and can grow as long as 50 micrometers in the tubular
arrangement.>* The outer diameter of microtubule is about 24 nm and the inner diameter is about
12 nm.*®> Microtubules are long, hollow cylinders made up of polymerized a- and -tubulin dimers
in eukaryotes cells. These two tubulin proteins join back to back and make polymers.®
Microtubules have a distinct polarity that is critical for their biological function. When a-tubulin
exposed it is called negative end and when f-tubulin exposed it is called positive end. While
microtubule elongation can occur at both the positive end and negative ends, it is significantly
more rapid at the positive end.” Microtubule inhibitor binds to g-tubulin to stop polymerization.
Microtubules are important for the function of cellular processes. They are involved in maintaining
the shape and size of the cell, and transport materials in the cell.2 Microtubules are also involved
in cell division system by mitosis and meiosis and are the major constituents of mitotic spindles,

which are used to pull eukaryotic chromosomes apart.®

(L —

Figure 1.1: Structure of Microtubule



1.1.2. Microtubules in Cell Division

The cell cycle is the vital process where a single cell divides into two different cells. It is the series
of events by which a cell duplicates its DNA (DNA replication) and divides of cytoplasm and
organelles to produce two daughter cells.® After formation of daughter cells, each of the daughter
cell begin the process of new cell cycle.!* Actually, the cell cycle is broken down into four phases
(Figure 1.2). In Gap 1 phase, also known as G1 phase, cells increase in size and make sure
everything is ready for DNA replication and go to the synthesis (S) phase. In the S-phase where
DNA replication occurs. In the Gap 2 phase, also known as G2 phase, the cells increase in size
and ensures that cell is ready to enter the Mitosis (M) phase. In the Mitosis (M) phase, cells growth

stops and divide into two daughter cells.*?3

Mitosis
(M-Phase)

S-DNA replication occurs during this phase

G2-Cells continue to grow and make sure
that everything is ready for cell division
Synthesis

(S-Phase)

Gap 2
(G2-Phase)

M-Cell division occurs

Figure 1.2: Schematic Diagram of Cell Division with Four Different Phases



1.1.3. How Microtubule Inhibitors Work

In the cell cycle process, cells are entered the four different phases; G1 phase, S-phase, G2-phase,
and M-phase. There are two different check points in the cell cycle, G1/S check point and G2/M
check point (Figure 1.3). In the mitosis (M) phase, there are four different sub-phases; prophase,
metaphase, anaphase, and telophase (Figure 1.4).1113 The earliest sub-phase in mitosis phase is
prophase, in this phase early stage spindle formation occurs. The condensation of the chromatin
and the disappearance of the nucleolus are the two main function in prophase.** Anti-cancer drugs
are designed based on these two check points, some drugs control the G1/S check point and stop
DNA replication, and other drugs control the G2/M check point and stop cell division. Microtubule
inhibitors bind with beta-tubulin at the G2/M check point and stop the early-stage spindle

formation at metaphase stage.'*

G2/S Checkpoint{ ] > G1/S Checkpoint

DNA
Cell Growth Synthesis [ ]

Microtubule Inhibitor Inhibits the Cell Division by Interfering with
the Spindle Formation at the Early Metaphase Stage of Mitosis

Figure 1.3: Cell cycle with Two Check Points



Mitotic spindles sometimes called the spindle apparatus is used by nearly all eukaryotic cells to
separate their chromosomes during cell division. This includes the microtubule-associated proteins
(MAPs) and the microtubule organization center (MTOC).!® Cytoskeletal drugs are small
molecules that interact with action or tubulin. Some drugs destabilize the microtubules, and others
prevent polymerization. Microtubule inhibitors such as tryprostatins bind to actin monomers and
prevents polymerization of actin filaments and stop pomerization.'® Microtubule inhibitors have
been also able to bind to tubulin protein and change its activation site, for this reason the
microtubule dynamics are manipulated. By the interference of spindle formation, microtubule
inhibitor can prevent a cell from going into a cell cycle and can lead to programmed cell death or
apoptosis.t” Microtubule dynamics can be suppressed by both microtubule stabilizer and
destabilizers. The taxane family, for example, paclitaxel act as stabilizer anti-cancer drug that
stabilize the microtubule, preventing it from disassembling, and on the other hands, vinca
alkaloids, for example, vinblastine-vincristine have the opposite effect, and these destabilize the

microtubule (Figure 1.4).

{ Microtublue Targetiing Drugs}

s :%'Destabilizersl

- Microtubul
(Stabilizers)
a ||zerSQ O o O OO O o a
o on| Q20T o
(00090000 00¢ O
(‘stabilizing MAPs]:>O Q0 QPBATOAKX) | .0 < Destabilizing MAPS]

{Disruption of Microtubule Dynamics}

[Cell Cycle Arrest]

Figure 1.4: Block Diagram of Microtubule Drugs Function




1.1.4. Microtubule Inhibitors

Microtubule inhibitors such as vinca alkaloids (vinblastine, vincristine), taxanes (paclitaxel), and
indole based diketopiperazine (tryprostatins) compounds destabilize microtubules and suppress
microtubule dynamics proper mitotic function, effectively blocking cell cycle progression and
resulting in apoptosis (Figure 1.5).1°?° To elucidate the biological function of a cellular factor,
development of specific inhibitors is a successful approach. There are many examples applying
inhibitors to elucidate the regulatory mechanism of the cell cycle. Specific and effective inhibitors
of the cell cycle should be useful tools for the investigation of the cell cycle mechanism and good

candidates for cancer chemotherapy.?:

Tryprostatins

Paclitaxel

Figure 1.5: Examples of Some Microtubule Inhibitors



1.2. Isolation and Background of Tryprostatin A and B

Tryprostatin (TPS) A and B (Figure 1.6) are members of a family of prenylated Trp-Pro
diketopiperzine alkaloids. These two natural products were isolated in 1995 from the fermentation
broth of Aspergillus fumigatus BM939 by Osada and coworkers.?? These two compounds operate
through a mode of action by inhibiting multiple-drug resistance, which is a major obstacle in
chemotherapy, showing promise as anti-cancer anti-mitotic agents. TPS and related
diketopiperazine ring containing compounds such as phenylahistins, spirotryprostatins, and
cyclotryprostatins are inhibitors of the mammalian cell cycle.?®% It was found that tryprostatins A
1 and B 2 completely inhibited cell cycle progression of tsFT210n cells in the G/2M phase at a
final concentration of 50 pg/ml of 1 and 12.5 pg/ml of 2, respectively.?® They prevent cell cycle
progression at the G2/M phase through a unique mechanism consisting of inhibiting the interaction
between microtubule-assisted proteins (MAP-2) and the C-terminal end of tubulin. TPS A and B
have great potential because they were found to have inhibitory activity on the cell cycle
progression of mouse tsFT210 cells with minimum inhibitory concentration (MIC) values: 16.4
uM for TPS A and 4.4 uM for TPS B, respectively.?>? Multidrug resistance (MDR) in human
cancers is one of the major causes of failure in chemotherapy. Fungal secondary metabolite
Tryprostatin A (TPS-A) was analyzed with regard to its potency to reverse the Breast Cancer
Resistance Protein (BCRP) mediated drug resistance. No cytotoxicity was seen at effective
concentrations, indicating that TPS-A is a novel BCRP inhibitor. The scarcity of TPS A and B in
nature and long, low-yielding synthetic procedures have limited their development as viable

anticancer therapeutics.?’-



TPS A and B contain a 2-prenylindole moiety and diketopiperazine unit.>*

Tryprostatin A Tryprostatin B

Figure 1.6: Structure of Microtubule Inhibitor, Tryprostatin A and B

Like TPS A and B, there are a lot of natural products are reported which contain 2-prenylindole
moiety and diketopiperazine units such as spirotryprostatin A and B (Figure 1.7). These two are
isolated from Aspergillus fumigatus is a species of fungus of sea sediment. Like several other
indolic alkaloids, they have been found to have anti-mitotic properties, and as such they have

become of great interest as anti-cancer drugs.

Spirotryprostatin A Spirotryprostatin B

Figure 1.7: Structure of Spirotryprostatin A and B



Osada et al. isolated TPS A and B, spirotryprostatin A and B, and new compounds called the
cyclotryprostatins A-D which belong to the family of Fumitregorins.®® Cyclotryprostatins A-D also
prevent cell cycle progression at the G2/M phase. They inhibited cell cycle progression of tsFT210
cells in the G2/M phase with 1Cso values of 5.6uM, 19.5uM, 23.4uM, and 25.3uM, respectively
(Figure 1.8).%353" Fumitremorgins A-C, that belong to a class of naturally diketopiperazines, are

tremorogenic metabolites of Aspergillus and Penicillium.®

R=H, Cyclotryprostatin A Cyclotryprostatin C Cyclotryprostatin D
R=CHj,, Cyclotryprostatin B

Fumitremorgin A Fumitremorgin B Fumitremorgin C

Figure 1.8: Example of Trp-Pro Diketopiperzine Alkaloids



Tryprostatins are important compounds for treating cancer, via microtubule inhibition.
Microtubules are promising targets for stopping the cell division of cancer cells.>**0 The
interesting biological activity of these alkaloids has stimulated interest in their total synthesis. The
scarcity of TPS A and B in nature and long, low-yielding synthetic procedures have limited their
development as viable anticancer therapeutics. On the other hand, their interesting biological
activity and simple structure have drawn attention from the synthetic community, and several total
syntheses have been reported.*:>? The first total synthesis of the Tryprostatin B was reported by

Danishefsky et al. via the chloroindolenine/borane approach. Illustrated by the scheme below.*

1.2.1. Danishefsky’s Synthesis of Tryprostatin B in 1996

In the Danishefsky’s synthesis of tryprostatin B in 1996, the N-phthaloyl-L-tryptophan methyl
ester was treated with tert-butyl hypochlorite to generate the chloroindolenine intermediate at 0
°C. This intermediate was then treated with tri-n-butylprenyl stannane and followed by rapid
addition of boron trichloride (two equivalents) to provide the desired 2-prenyl tryptophan
derivative. This is the way to introduce a prenyl function at the 2-position of a 3-substituted indole.
Removal of the N-phthaloyl protecting group generated the required L-2-prenyltryptophan methyl
ester. The coupling reaction between the 2-prenyl tryptophan and the N-Boc-L-proline acid
fluoride to afford dipeptide. The Boc-protecting group was removed on treatment of material with
trimethylsilyl iodide in acetonitrile to afford the free amine. When the free amine was stirred in a
solution of ammonia/methanol for 24 h, the formation of the diketopiperazine unit resulted in

Tryprostatin B identical to the natural material (Scheme 1.1).
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t-BuOCl
EtsN, CH,Cl,, 0°C

] N™ 4
(nBukSn\/A§T/ + BCl 4;\+/ //////’ djéf%y

NPhth

BocN
F ¢
H
NH,;NH, H,0 o _
MeOH/CH,Cl, NaHCO3;. CH)Cl,
24 h, 82% 94%

NHg/MeOH

o TMSI, CH3CN

NBoc °
OVQ 0°C

20 h
67%

Scheme 1.1: Danishefsky’s Synthesis of Tryprostatin B

1.2.2. Synthesis of Tryprostatin A by Cook et al. in 1997

The first total synthesis of tryprostatin A was completed by Cook and his coworkers via a
regiospecific bromination process coupled with the Schollkopf chiral auxiliary.*% The
regiospecific bromination of 3-methylindoles were achieved at the indole 2-position via an
electrophilic process or at the 3-methyl position under free radical conditions, this method

appeared to be useful for the preparation of a 2-prenyltryptophans and later tryprostatins.
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The synthesis began with the Fischer indole cyclization via a Japp-Klingmann azo-ester
intermediate (Scheme 1.2). The azo-ester intermediate was formed when m-anisidine was treated
with sodium nitrite and concentrated aqueous HCI at 0 °C, followed by the addition of ethyl a-
ethylacetoacetate, this intermediate was heated in a solution of 3 N ethanolic HCI, the desired ethyl
6-methoxy-3-methylindole- 2-carboxylate was obtained. Alkaline hydrolysis of the ester under
yielded the corresponding carboxylic acid which was converted into 6-methoxy-3-methyl indole
in excellent yield via the subsequent copper/quinoline-mediated decarboxylation sequence. To
protect indole N(H) moiety, 6-methoxyindole was treated with di-tert-butyl decarbonate in
presence dimethoxyamonopyridine. The protected 3-methylindole was then reacted with N-
bromosuccinamide (NBS) in carbon tetrachloride to provide the 2-bromoindole as illustrated in
Scheme 2. When 2-bromoindole was reacted with NBS under free radical conditions,
azobisisobutyronitrile (AIBN), dibromide indole was obtained in 93% vyield. Dibromide was
coupled with the Schollkopf chiral auxiliary at -78 °C, a pyrazine compound was obtained in 91%
yield. The pyrazine was treated with n-butyllithium at -78 °C, followed by addition of prenyl
bromide, 2-isoprenylpyrazine was isolated in 86% yield. The pyrazine group was removed under
acidic conditions (aqueous HCI, THF) in 94% yield to provide D-valine ethyl ester and the 2-
prenyltryptophan. The 6-methoxy-2-prenyltryptophan was stirred with N-(trichloroethoxy
carbonyl)(Troc)-L-prolyl chloride in the presence of triethylamine in CHCl; at 0 °C, the desired
dipeptide was obtained. The Troc protecting group was removed by heating with Zn (dust) in
refluxing MeOH. Finally, formation of the diketopiperazine unit and removal of Boc-protecting
group from the indole N(H) function were achieved when dipeptide was heated at 160 °C (neat)

to furnish tryprostatin A in 50% overall yield (Scheme 1.2).
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NH, 1.NaNO,, HCI, 0 °C

ethyl-alpha-ethyl CH, CH;3
acetoacetate | NaOH, EtOH | Cu/quinoline
OH =
~o o N O~ heat ~o N heat
2. EtOH, HCI, heat H § H §
(73%) (98%)
CH; Boc,0, DMAP CH,Br
/©|\—/|( _ TEA @\—/( — NBS, AIBN
~ —_—
° N R o o N CCly, A
H 3 CCly, A Boc 4
(99%) (92%) (95%)
OEt
gy S
EtO . Br = EtO
2 ~ (3 eq)
CH,Br N N
—_—
° ~N
~o N~ > Br n-BuLi, THF O bEt | THF.-78°C o -
Boc -78°C
(95%) (86%)
Fmoc
EtO ¢l
o 1. o) o
2N Hel TEA, CHCI3, 4-AMP, rt N
~ ' e
THF, rt M0 H
Boc 2. Xylenes, reflux ~o 0

(92%)

Scheme 1.2. Cook’s Synthesis of Tryprostatin A

(81%)

Later the synthesis of tryprostatin A and B as well as their enantiomers was developed by Cook

(Scheme 1.3).* In order to introduce the prenyl group at the indole C-2 position of and decrease

the number of steps earlier reported by Cook et al. LDA was employed to form the anion at C(2).

The indole was stirred with LDA at -78 °C followed by the addition of dry, pure prenyl bromide

to furnish 2-prenylpyrazine. This was an improvement over the synthesis of 2-prenylpyrazine, and

this procedure was use for tryprostatin B.
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Tryptophan preparation for the synthesis of tryprostatin A and B

~ A

Br EtO
\ (3 eq)
2N aq HCI OEt
\8 _LDA (L5 eq). THE rt
THF -78°C
OEt R 92%
80%
R = OMe
R =H
Tryptophan preparation for the synthesis of 9-epimer tryprostatin A and B
A)\
EtO
(3eq)
../ =N 2N aq HCI
/@\_/( \8\( LDA (1.5 eq) THF rt
TTHF, 78°C 78T N=
OEt 0% R
85%
R = OMe R =
R=H R =H

Scheme 1.3. Synthesis Enantiomers of Tryptophans by Cook et al.

With the key 2-prenyltryptophan derivatives in hand, the diketopiperazine unit was built on as
illustrated, 2-prenyl-tryptophans were stirred with N-Fmoc-L-prolyl chloride in the presence of
triethylamine in chloroform at room temperature. The Fmoc-protecting group was removed by
addition of diethylamine (DEA) in acetonitrile. Formation of the diketopiperazine as well as the
removal of the Boc-protecting group from the indole N(H) were achieved by heating in refluxing
xylenes in high dilution. A stereospecific, enantiospecific total synthesis of tryprostatin A and B
was accomplished via alkylation of the corresponding 2-lithioindole derivatives. This procedure
was also applied to the enantiomers of tryprostatin A and tryprostatin B (Scheme 1.4). The optical
rotations of the natural products and the enantiomers agreed with those reported by Osada et al.
for the natural products. This route was used for the total synthesis of the mismatched pairs of

tryprostatin A and B for biological screening.
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Cl Fmoc
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Oy N
TEA, CHCIj;
DEA, CH;Cl, rt;
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>81% R = OMe Typrostatin A

[]?” p = -65.9° (c = 0.97, in CHCI5)
R =H Tryprostatin B
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/
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xylenes, reflux
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R = OMe enantiomer of Tryprostatin A
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R =H enantiomer of Tryprostatin B
[a]?6 p = 71.9° (c = 1.1, in CHCI,)
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H
O
TEA, CHCI3;
DEA, CH3CI, rt;
xylenes, reflux
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OEt H

Y

TEA, CHCIg;
DEA, CH3Cl, rt;
xylenes, reflux

R = OMe, ds2-try A
R =H, ds2-try B

Scheme 1.4. Synthesis of Enantiomers and Diastereomers of Tryprostatin A and B.
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1.2.3. Fukuyama’s Most Recent Synthesis of Tryprostatin A and B in 2010

Fukuyama and his coworkers synthesized TPS A and B from the Garner aldehyde.>*> The Garner
aldehyde was treated with carbon tetrabromide, triphenyl phosphine in presence of triethyl amine
followed by Grignard reagent ethyl magnesium bromide at 0 °C formed alkyne which was went
to the Sonogashira coupling with 2-iodoformanilide, partial reduction of the triple bond was
examined by the treatment with Zn/LiCuBr: in ethanol gave the desired product along with the
corresponding amine in 2,2,2-trifluoroethanol as the solvent to suppress the undesired solvolysis
with 99% yield. Subsequent dehydration with bis(trichloromethyl) carbonate (triphosgene) gave
the ortho-alkenyl isocyanide and thus set the stage for a radical-mediated cyclization where 2,2’-
azobis(4- methoxy-2,4-dimethylvaleronitrile) (V-70, 20) acts as a radical initiator with a lower
decomposition temperature. Thus, we established reliable conditions for imidoyl-radical-mediated
indole synthesis. When this method was applied to the radical cyclization of the isocyanide,
complete selectivity was observed for the cyclization of the imidoyl radical to give the 2-
stannylindole and by Stille-type coupling reaction. The desired 2-prenyl indole product was
obtained in only 82% vyield with prenyl acetate as the coupling partner in presence of
triphenylarsine, lithium chloride, and [Pd2(dba)s] as the catalyst. The 2-prenyl indole moiety N(H)
was protected with a Boc group, hydrolysis of the acetonide, and oxidation of the resulting alcohol
to the carboxylic acid with 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). Under reflux in N-
methylpyrrolidinone (NMP) conditions, spontaneous cyclization occurred to give tryprostatin B
(2) in 89% vyield. Thus, tryprostatin B was synthesized by Fukuyama and coworkers in 11 steps
from Garner aldehyde in 33% overall yield on a half-gram scale. By following the similar method,

tryprostatin A was synthesized in 30% overall yield (Scheme 1.5).
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Scheme 1.5. Fukuyama’s Synthesis of Tryprostatin A and B
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1.3. Background of Our Synthesis of Tryprostatin B

1.3.1. Synthesis of Tryptophan from Acrylate via Gramine

In 1998, Professor Hossain group discovered an unprecedented reaction for the formation of 3-
hydroxyacrylate from commercially available aldehydes and ethyl diazoacetate (EDA) in presence
of iron Lewis acid catalyst by a unique 1,2-aryl shift (Scheme 1.6).%® Later, in 2004, same group
explored catalyst scopes of the reactions with Brgnsted type acids, specifically HBF4-OEty, for the

formation of 3-hydroxyacrylates from the corresponding aldehydes and EDA (Scheme 1.6).*

(o)

N,CHCO,Et COOEt o
TN[TTH 1 (GsHyFe(CON(THF)IBF, Q)\/OH + ©)J\/000Et
/ >

CH,Cl,, 0 °C /-~ H =
R 2Cl, R R/

Acrylate pP-Ketoester
80% 19%
i N,CHCO,E GOOEt Q
2CHCO-EL OH
Y HBF,-OEt, _ N e COOEt
[ F CH,Cl,, 0 or -78 °C /~ H [ F
i R Acrylate R PKetoester
86% 12%

Scheme 1.6. Synthesis of Acrylates by Hossain et al.

3-Hydroxyacrylates are very important synthon for synthesizing important biologically active and
pharmaceutically important compounds due to the multiple functionality.>>>® Hossain group
reported a lot of synthesis of biological active compounds including active building blocks such
as benzofuran, indole, gramine and so on from the 3-hydroxyacylates.>”%® Synthesis of gramine

from commercially available aldehydes are illustrated below (Scheme 1.7):
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N,CHCO,Et

o)
HBF, .OEt
| (10 :10I %2 Cg/ Pd/C, H, = T OEt PhSO,CI,
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X
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( 86%) (90%)
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AI(N(CH3)y)s 7 (diisobutylaluminum hydride) N~
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1) PhMe, 100 °C 2) H,0* TS
Ph 3 N
soz 2) H,0 SOzPh R SO,Ph
(77%) (91%)

Protected Gramine

Scheme 1.7. Synthesis of Gramine from Acrylates

After synthesis of several substituted gramine, our group wondered if it would be possible to make

enatiopure-pure tryptophan using a chiral phase transfer catalyst (PTC). Our group thought that

this would be interesting chemistry and would be likely to find industrial use of this method as

tryptophans are important building blocks novel indole-based class of compounds.®® Then, the

Hossain group developed the following reaction to make tryptophan (Scheme 1.8).%°

1 Boc
Boc,0,| THF,
DMAP,| 0 °C,

TEA | 1.5h

(99%) (99%)

KOH (50%)
CH2C|2, rt

Scheme 1.8: Synthesis of Chiral Tryptophan from Gramine
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Hossain and coworkers synthesized several substituted chiral tryptophan from substituted gramine

in their laboratory.®° Here are some examples in Figure 1.9.

(75% yield, 91% ee) (65% yield, 95% ee)

Figure 1.9: Examples of Some Protected Chiral Tryptophans

When we had chiral tryptophans in our hand, we designed a retrosynthetic scheme for the synthesis

of tryprostatin B from gramine. The retrosynthetic scheme is illustrated below (Scheme 1.9):

Gramine

Scheme 1.9: Retrosynthetic Scheme of Tryprostatin B
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1.3.2. Phase-Transfer-Catalysis (PTC): General Concepts and Mechanism

In order to endorse the successful alkylation of C2-prenylated protected tryptophan, a basic
understanding of the phase transfer catalyzed (PTC) reaction is required. In 1971, Starks
introduced the term phase transfer catalysis where he described a little organic quaternary salt
dramatically increase the rate of reaction (Scheme 1.10). Reaction between an organic solution of
an alkyl halide and an inorganic solution of sodium cyanide in presence of tetralkylammonium or

tetralkylphosphonium salt produced product faster.®3

i | H
NN Br ¢+ CON organic solvent/ 20= No reaction

P U U organic solvent/H,O
Br + CN- - - N "~"ScN + Br

Scheme 1.10. Phase-Transfer-Catalyzed Reactions Reported by Starks

Cyanide ion is insoluble in organic solvent, so the reaction was unable to continue without the
presence of phase transfer catalyst (PTC). PTC carry the nucleophilic cyanide ion from aqueous
phase to organic phase and exchange the ion with phase transfer catalyst at the interface. The new

ion pair then travel to the organic phase and reacts with nucleophile (Figure 1.10).

Br + QCN CN + QBr (organic phase)
QCN } 1 QBr
NaBr + QCN NaCN * QBr (aqueous phase)

Figure 1.10: Mechanistic Presentation of Phase-Transfer-Catalyzed Reaction
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1.3.3. Prenylation at the C2-Position of Indole Ring in Other Groups

Tryprostatin (TPS) A and B contain a 2-prenylindole moiety and diketopiperazine unit. The
prenylation at the C2 position of the indole ring is a big challenge for synthetic chemists; several
steps have been described in several procedures to introduce the prenyl groups. In these schemes,
prenylation of C2 position at indole ring are discussed by Danishefsky, Cook, and Fukuyama

respectively (Scheme 1.11).4% 42 %1

CO,Me

cl
G@(\gpm CO,Me
—
N

a.BusSn
DCM BCl, NH,NH,.H,0

MeOH:DCM (3:1)

> TPSB

N
H

OEt

H%N
Nﬁ)\ EtO
CH,Br ]/
2 OEt LDA, THF,
bl M = -78°C-0°C
N n-BuLi, THF, Bl Aa NS

Boc -78°C

%N/Boc %N'Boc e LN /M
° ° b W N OMe Boc
|

¢ \
| Trioh CN N
rg)yr?;%i"e nBu;SnH, Toluene, 30°C ‘ W(
—_— - o
DCM, 0°C
\-CHO NC 2 A0~ iy en

H
[Pd,(dba);], AsPh;, DMF, 80°C

Scheme 1.11. Previous Syntheses of C2-Prenyl Indole Moiety
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1.3.4. Prenylation at the C2-Position of Indole Ring in Other Groups

In order to prepare the intermediate prenyl tryptophan, our strategy envisaged the installation of
the prenyl group at the C2 position of the indole ring of chiral tryptophan ! Consequently,
tryptophan was Boc-protected and treated with prenyl bromide in the presence of n-butyllithium

or lithium diisopropylamide (LDA), the attempts of prenylation were unsuccessful (Scheme 1.12).

Boc,0, DMAP, TEA

THF, 0 °C
97%

1. LDﬁ\)\ (Not found in NMR)

2.Br ,x’

% THF, -78°C.-~~

= 3

Ph

NQ(
Ph

1. LDM
2.Br" 7

(Confirmed by NMR)
THF, -78°C

Scheme 1.12: Attempt to Synthesize of C2-Prenyl Tryptophan from Tryptophan

Receiving important data from the reactions, we decided that the prenyl group containing the
indole moiety of the target compound could be constructed before the PTC reaction. To incorporate
the prenyl group at the C2 position, we first reacted the Boc-protected gramine with one equivalent
of prenyl bromide in the presence of n-butyllithium, and the reaction provided exclusively N-

prenylated gramine salt with 88% yield (Scheme 1.13 and 1.14); no C2-prenylation was observed.
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Scheme 1.14: Synthesis of N-Prenylated Tryptophan

N-Prenylated gramine salt was found to undergo a PTC reaction with Schiff base in the presence
of 50% KOH to provide the tryptophan 3 (Scheme 1.15). The formation of compound 4 revealed
that the N-prenylated gramine salt is also viable for a PTC reaction, and later, it gave a comparable

yield (75%) to the previously reported reaction involving N-trifluoromethoxybenzyl gramine salt.

Lk
P

No
] B\ Bu,NI, KOH (aq)
N -
6 Boc DCM, rt,12 h
75% yield

Scheme 1.15: Formation of Tryptophan from N-Prenylated Gramine Salt
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To our surprise, we observed during our investigation that using two equivalents of n-butyllithium
and excess of prenyl bromide (4.5 equiv) led to the formation of the C2, N-diprenylated gramine
salt in 92% vyield. These findings open a new window to synthesize C2 prenylated indole moiety
in only two steps from gramine. To the best of our knowledge, this is the easiest way to incorpo-

rate the prenyl group at the C2 position of the indole moiety (Scheme 1.16).

/ /\)\

N \ @

| \ /\/k n-BuLi (2 equiv) .
N v Br THF,-78°Ctort,12 h

, Boc ( 4-5 equiv)

92% yield

Scheme 1.16: Formation of C2, N-Diprenylated Gramine Salt

To see if the C2 alkylation of indole ring also feasible for other alkyl groups, we reacted Boc-
protected gramine with benzyl bromide. This finding concluded that to synthesize C2 alkylated
indole moiety in only two steps from gramine, any suitable electrophile could be used for further

syntheses. The reaction was done with 73% yield (Scheme 1.17).

N
| \ n-BuLi (2 equiv)
N " -
Br

THF,-78°Ctort,12h
(4-5 equiv) 73% yield

Scheme 1.17: Formation of C2, N-Dibenzylated Gramine Salt

25



The structure of C2, N-diprenylated salt was confirmed by X-ray diffractrometry (Figure 1.11).%2
Blocks grown using slow diffusion method: Ethyl Acetate/Hexane
Analyzed by X-ray diffraction at UCSD with Arnold L. Rheingold
Unit Cell Dimensions: a=8.5784(2) A; b=12.9668(3) A; c=13.5267(3) A
0=109.266(2)°; B=103.084(2)°; y=107.596(2)°

Triclinic lattice, P1 space group, Z = 2 molecules per unit cell. R1 = 4.39%

Figure 1.11. Crystal Structure of C2, N-Diprenylated Gramine Salt
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With the C2 prenyl group containing diprenylated gramine salt, we planned to investigate the PTC
reaction with Schiff base. By performing a racemic PTC reaction of diprenylated, the desired C2-

prenyl tryptophan was isolated in 82% yield (Scheme 1.18).

0
PhYN\/[Lok

Bu,N*I" (0.2 equiv), 50% KOH

1, 4-dioxane, rt
82% yield

Scheme 1.18: Racemic PTC Reaction of C2, N-Diprenylated Gramine Salt

By using a PTC reaction process, it can be easily achieved faster reactions which make fewer
byproducts and eliminate the need for expensive or dangerous solvents and expensive raw
materials. This process needs two solvents to dissolve all the reactants in organic phase and catalyst

and base in aqueous phase. The mechanism of PTC reaction is shown below in Figure 1.12:

o)
g O] gkl L
Ph R

Q* X Asymmetric Induction

p

Organic Phase

Ph R Racemic
Interface

K OH Aqueous Phase

Figure 1.12: Mechanism of Phase-Transfer-Catalyzed Alkylation of Schiff Base.
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1.3.5. Optimization of Phase-Transfer-Catalyzed (PTC) Reaction

Encouraged by the results from a racemic PTC reaction, we then turned our attention to the
asymmetric PTC reaction of the diprenylated gramine salt to prepare chiral C2-prenyl tryptophan.
We did several reactions with different phase transfer catalysts, and we chose Chinchona catalysts
as well as recently developed Maruoka catalyst (Figure 1.13) as the PTC.%° All the time same
amounts of reactants, catalyst, base, and solvent were taken. Reactions were run for the same

reaction time for all the reaction (Scheme 1.19).

(0] R
50% KOH, Chiral PTC
Ph. N k ; .
Ph

1, 4-dioxane, rt

Scheme 1.19: Chiral PTC Reaction of C2, N-Diprenylated Gramine Salt

To optimize the reaction conditions for higher asymmetric induction, we investigated the effects
of catalysts as well as systematic variations in the solvents, mixed solvent systems, temperature,
and time on enantiodiscrimination. In order to find the best catalyst for high enantiomeric excess
(ee), several catalysts were screened as presented in Table 1.1. Chiral stationary HPLC showed
that O-allyl-N-(9-anthracenylmethyl) cinchonidinium bromide (A), which was an effective

catalyst for enantioselectivity, as observed by our previous studies (Figure 1.13).5°
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Table 1.1: Optimization of PTC Reaction by Catalyst Screening

Catalyst Loading
Rxn # Catalyst % Conversion % ee
1 A 100 61
2 B 100 39
3 C 100 39
4 D 100 Rac
5 E 100 ND

We performed several reactions with different phase transfer catalysts, and we chose Chinchona

catalysts as well as recently developed Maruoka catalyst as the PTC (Figure 1.13).

H,C= H,C=

Figure 1.13: Examples of Some Phase-Transfer Catalysts
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In order to find the best solvent for high enantiomeric excess (ee), several solvents were examined
as presented in Table 1.2. Chiral stationary HPLC showed that polar solvents such as
dichloromethane (56% ee), 1,4-dioxane (61% ee), dimethoxyethane (60% ee), and 1,2-

dicholoroethane (50%) worked well at room temperature (Table 1.2, entries 1-3, 10, and 15).

Table 1.2: Optimization of PTC Reaction by Solvent Screening

Solvent Screening

Rxn # Solvent Equiv. cat. % Conversion % ee
1 DCM 0.2 100 56
2 1,4-Dioxane 0.2 100 61
3 THF 0.2 95 52
4 Toluene 0.2 90 38
5 EtOAc 0.2 80 30
6 Xylene 0.2 75 18
7 Chloroform 0.2 NR N/A
8 ACN 0.2 100 5
9 Ether 0.2 80 5
10 DME 0.2 100 60
11 DMF 0.2 85 Rac
12 Methylcyclohexane 0.2 80 Rac
13 Hexane 0.2 75 Rac
14 Mesitylene 0.2 80 Rac
15 1,2-Dichloroethane 0.2 100 50
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Less polar solvents like toluene did not have a satisfactory result due to poor solubility of the Boc
protected diprenylated gramine salt. To improve the asymmetric induction, we investigated mixed
solvent systems in different ratios, but no significant improvement was observed at room
temperature. However, lowering the temperature from 25 °C to 0 °C resulted in an increase of
enantioselectivity (Table 1, entries 5 and 8). Better enantiomeric excess (88% ee) was obtained in

a dioxane-chloroform mixture (10:1 ratio) at 0 °C (Table 1.3, entry 8).

Table 1.3: Optimization of PTC Reaction by Mixture of Solvent Screening

Solvent Screening

Rxn # Solvents Time (hrs) | Temp. (°C) | % Conversion % ee

Dioxane:Chloroform
1 (1:1) 18 rt 35 73

Dioxane:Chloroform
2 (2:1) 18 -10 65 &4

Dioxane:Chloroform
3 (4:1) 18 rt 72 71

Dioxane:Chloroform
4 (5:1) 36 0 70 85

Dioxane:Chloroform
5 (10:1) 18 rt 63 62

Dioxane:Chloroform
6 (10:1) 36 10 100 78

Dioxane:Chloroform
7 (10:1) 18 0 62 87

Dioxane:Chloroform
8 (10:1) 36 0 100 88

Dioxane:Chloroform
9 (10:1) 36 -10 NR NA

Dioxane:Chloroform
10 (20:1) 18 rt 66 63
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We were not able to carry out lower temperature reactions with this mixture because of the
relatively high freezing point of dioxane. Other mixed solvent systems at lower temperature did
not provide promising results compared to the single solvent system at the same temperature. Then
we turn our attention to use single solvent at lower temperature. 1, 4-Dioxane, dimethoxyethane,
dichlomethane, and tetrahydrofuran were selected for lower temperature. By further cooling to -
20 °C, dichloromethane improved the enantioselection up to 93% (Table 1.4, entry 9). During our

study, it was revealed that a longer reaction length gave a higher conversion to product.

Table 1.4: Optimization of PTC Reaction by Temperature Screening

Temperature Screening

Rxn # Solvent Time (hrs) Temperature (OC) % Conversion %oee
1 1,4-Dioxane 18 10 100 81
2 1,4-Dioxane 18 0 NR NA
3 DME 18 10 100 66
4 DME 18 0 95 72
5 DME 18 -10 78 71
6 DME 36 -20 80 85
7 DCM 18 0 96 60
8 DCM 18 -10 90 80
9 DCM 36 -20 85 93
10 THF 18 0 92 65
11 THF 18 -10 95 70
12 THF 36 -20 90 88
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With the optimized reaction conditions (DCM, -20 °C, 72 hrs, 93% ee, and 65 % isolated yield) in
hand, we then focused on the total synthesis of tryprostatin B from protected chiral protected
tryptophan. The diphenylmethylene group was removed from protected tryptophan under acidic
conditions (aqueous HCI, THF) in 97% yield to provide the 2-prenyl tryptophan tert-butyl ester

10 (Scheme 1.20).54

(o)
Ph 1N HCI
Nh( THF, rt
Ph 97% yield

2

Scheme 1.20: Deprotection of C2-Prenylated Protected Tryptophan

Reaction of 10 with the N-Fmoc-L-prolyl chloride in the presence of trimethylamine yielded Fmoc-

protected dipeptide 11 (Scheme 1.21).%?

Fmoc_
HO
(0]
PyBOP, DIPEA,
CH,;CN

Scheme 1.21: Coupling Reaction of C2-Prenylated Tryptophan t-Butyl Ester
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The Fmoc protecting group was deprotected with piperidine in dimethylformamide (DMF)
provided dipeptide in 76% yield (Scheme 1.22).%?

Piperidine
DMF
66% yield

Scheme 1.22: Deprotection of Fmoc-Group from Amide Compound

1.3.6. Cyclization of Amide Compound

Lastly, to synthesize TPS B, we performed the cyclization reaction for the formation of bicyclic
diketopiperazine unit in dipeptide 12. At the outset of the program, we undertook a study to identify
an efficient method for cyclization. Initially, to prepare tryprostatin B, we refluxed compound 12

in xylene/neat heat following a procedure described by Cook et al (Scheme 1.23).4244

Scheme 1.23: Attempt to Cyclize for Making Diketopiperazine by Xylene Reflux and Neat Heat
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We refluxed compound 12 in N-methyl-2-pyrrolidone (NMP) by following a procedure described

by Fukuyama et al (Scheme 1.24).5%%2

Scheme 1.24: Attempt to Cyclize for Making Diketopiperazine by NMP Reflux

Their ethyl ester substrate was easily cyclized in reflux condition, whereas our tert-butyl ester
substrate was difficult to cyclize. We applied an alternative procedure reported by Carvalho and
coworkers by reacting dipeptide with 20% piperidine in DMF followed by the addition of DIPEA

in CH3CN at room temperature (Scheme 1.25). However, no desired product resulted from this

reaction.®

Scheme 1.25: Attempt to Cyclize for Making Diketopiperazine by Piperidine

Later, cyclization as described by Williams using 2-hydroxypyridine in toluene under reflux was

also unsuccessful with dipeptide compound (Scheme 1.26).%
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Scheme 1.26: Attempt to Cyclize for Making Diketopiperazine by 2-Hydroxypyridine Reflux

Later, cyclization as described by Danishefsky using ammonia in methanol under reflux was also

unsuccessful with dipeptide compound 12 (Scheme 1.27).51%2

Scheme 1.27: Attempt to Cyclize for Making Diketopiperazine by Ammonia/Methanol Reflux
1.3.7. Microwave Reaction

In seeking a workable solution to the goal of cyclization involving a tert-butyl ester group, we
applied the microwave method which was developed by Rios et al..®’ First, we developed a model

microwave experiment with a tert-butyl ester group containing compound 14 (Scheme 1.28).

o
1. H,N J<
2 \)J\o H
N PyBop, DIPEA, DCM N
A OH > Y, N o)
H 2. DEA, CH,;CN H W
13 75% yield 14 o 7<

Scheme 1.28: Synthesis of t-Butyl Containing Amide
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Compound 13 was synthesized from Fmoc-proline and glycine tert-butyl ester through a coupling
reaction. The model compound was heated in water for 10 min at 250 C and 150 psi using a CEM
Discover microwave at 250 W. The desired bicyclo[4.3.0]-2,5-diketopiperazine 15 was obtained

in high yield and NMR was matched with the reported values in the literature (Scheme 1.29).58

N7 MW o
, (250 °C, 250 W, 150 psi) N/
//H N/Yo : > 'H
H H,0, 10 min
0 NS0
H
15

14 82% yield

Scheme 1.29: Model Microwave Reaction for Diketopiperazine

Encouraged by this successful reaction involving the tert-butyl ester group, we turned our interest
to the dipeptide 12. Under the above-mentioned microwave conditions, spontaneous cyclization
occurred to give tryprostatin B in 81% yield.%® The proton and carbon NMR spectra of the final

com-pound matched with the published data (Scheme 1.30).!

MW
(250 °C, 250 W, 150 psi)

H,0
81 % yield

Scheme 1.30: Synthesis of Tryprostatin B by Microwave Reaction

From our developed method, TPS B was synthesized from the commercially available gramine in

six steps in 35% overall yield (Scheme 1.31).%°
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1.4. Total Synthesis of Tryprostatin B%

N Br/\)\
/ R
©|\_/|(\ \ Boc,0, DMAP,TEA — N\ n-BulLi
b - (I j THF, -78 °C
N

Y

THF, 0-10 °C
Gramine 99% yield Boc 92% yield
Protected Gramine

(0]
Ph
\ /\/)\ YNVU\O/‘< o
Ph ><
Br 0.2eq PTC

45% KOH

- N Ph ___INHCI
DCM, -20 °C - # THF, Hzo, rt
Prenylated 65% yield Ph 95% yield
Gramine Salt
Fmoc_

PyBOP, DIPEA, CH;CN
2. Piperidine, DMF, rt

76% yield
(0]
Microwave N
(250 °C, 150psi, 250W)
> | || HN
Water, 10 min N
. o
81% yield H
NS

Scheme 1.31: Total Synthesis of Tryprostatin B

By following our developed method, we tried to synthesize the total synthesis of TPS A. We

already synthesize four steps of total synthesis of tryprostatin A which are shown in Scheme 1.32.
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1.5. Partial Synthesis of Tryprostatin A

/\)\

/ / Br
mh{ Boc,0, DMAP, TEA /@I\—/IKN\ n-BuLi

o N THF, 0 °C o N THF, -78 °C to rt

47 H 95% yield s BO° 90% yield
o)
Ph /NvlLok
Ph 9.2¢q PTC
45% KOH
(o) »
| DCM, -20 °C
78% yield
Fmoc_
, HO
>< : 22 o
o o)
PyBOP, DIPEA, o h
AINHCI CH,CN N
THF, H,0, it AL U e e . - [ HN
e o 2. Piperidine, DMF
97% yield | H o
| 23 N
o
Microwave N
250 °C, 150psi, 250W
el TS AT - | || HN
Water, 10 min (o] H o
Y X

Scheme 1.32: Partial Synthesis of Tryprostatin A

By following our developed method, we tried to synthesize the total synthesis of TPS A. These

four steps are already done and next two steps are currently underway.
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1.6. Conclusion

In summary, Tryprostatin (TPS) A and B have great potential because they were found to have
inhibitory activity on the cell cycle progression of mouse tsFT210 cells. Their interesting
biological activity and simple structure have drawn attention from the synthetic community, and
several total syntheses have been reported. We described a concise and efficient asymmetric
synthesis of tryprostatin B. The key steps involved first, the preparation of C2 prenyl gramine salt
by direct lithiation from Boc protected gramine. This is most unique process by which one can
incorporate any electrophile at the C2 position of gramine. This method opens a new window for
the indole based synthetic chemists as well as organic chemists. Second, the asymmetric phase
transfer catalyzed (PTC) reaction of the prenylated gramine salt. By the PTC reaction, our method
was most effective because it produced less waste with minimum number of chemicals. The PTC
reaction was optimized by changing the solvent, temperature, and time. From our developed
method, C2 prenylated indole was synthesized with only on two steps from gramine and TPS B
was synthesized in six steps with 35% overall yield. By changing the substituent, our group have
planned to synthesis of analogs of tryprostatins, and after making the analogs (Figure 1.14) our
group will see the activity of new synthetic compounds against breast cancer.”>’* Further

investigations into the synthesis of TPS A and their analogs are under way.

Figure 1.14: Different Analogs of Tryprostatins
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1.7. General Methods and Experimental
1.7.1. General Consideration

All reactions were performed under a dry nitrogen atmosphere using standard Schlenk techniques
unless otherwise noted. All reaction vessels were flame dried under vacuum and filled with
nitrogen prior to use. Reagents and solvents were purchased from Sigma-Aldrich, Milwaukee. All
'H and $3C NMR spectra were recorded in CDCls (internal standard: 7.26 ppm, H; 77.16 ppm,
13C) at room temperature with a Burker 300 MHz and 500 MHz spectrometers. The chemical shifts
(0) are given in parts per million (ppm) and the coupling constants in Hertz (Hz). The following
abbreviations are used: s-singlet, d-doublet, t-triplet, g-quartet, m-multiplet. Previously reported
compounds were identified by *H NMR. All new compounds were additionally characterized by
'H NMR, 3C NMR and high-resolution mass spectrometry (HRMS). HRMS were obtained using
electrospray ionization (ESI) technique. For column chromatography, silica gel (35-70 microns)
was used. Thin layer chromatography (TLC) was performed on aluminium backed plates pre-
coated (0.25 mm) with Silica Gel 60 F254 with a suitable solvent system and was visualized using
UV fluorescence and/or iodine chamber. Enantioselectivity was obtained via chiral high-
performance liquid chromatography (HPLC) using a Waters setup including an In-Line Degasser
AF, 2998 photodiode array (PDA) detector, and 1525 binary HPLC pump equipped with Breeze
software. This was equipped with a Chiralcel OD (column no. ODOOCE-FF071) column eluting
with iPrOH/hexane with 0.5 mL/min flow rate at ambient temperature. HPLC grade solvents were
used in all HPLC analyses. HPLC retention times (tR) of enantiomers are quoted in minutes and
were determined by comparison to racemic materials. Microwave reaction was done at 250 °C,

250 W, and 150 psi using a CEM Discover Microwave synthesizer.
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1.7.2. Experimental Methods

Tert-butyl 3-((dimethylamino)methyl)-1H-indole-1-carboxylate (2)
v s/

N N
| | \ Boc,0, DMAP, TEA ©|\_/|(\ \
N THF,0°C,1.5h N
H
1

99% yield 2

A solution of Boc anhydride (Boc20) (3.0 g, 13.8 mmol), 4-dimethylaminopyridine (DMAP) (0.14
g, 1.1 mmol), trimethylamine (TEA) (0.122 mL, 0.88 mmol) in THF (50 mL) was maintained at 0
°C for 30 min. A solution of gramine 1 (2.0 g, 11.5 mmol) in THF (15 mL) was added dropwise
through the dropping funnel over a period of 30 min at 0 °C. The reaction mixture was stirred at O
°C for 1.5 hours under nitrogen atmosphere. After consumption of starting material, as judged by
TLC analysis, water (20 mL) was added to the reaction mixture. The aqueous layer was extracted
with ether (3 x 15 mL), washed with brine (1 x 15 mL). The combined organic layer was dried
over anhydrous Na>SOs. The crude product was purified with column chromatography on silica
gel (hexane/EtOAc = 7/3) to give product 2 as a light brown solid (3.1 g, 99%). *H NMR (CDCls,
300 MHz): §8.17 (d, J = 9.0 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.55 (s, 1H), 7.36-7.24 (m, 2H),
3.60 (s, 2H), 2.33 (s, 6H), 1.69 (s, 9H); 13C NMR (CDCls, 75 MHz): & 149.8, 135.6, 130.6, 124.6,
124.4, 122.6, 119.6, 117.8, 115.1, 83.5, 54.5, 45.4, 28.2; HRMS (ESI+): Calculated (m/z) for

Ci16H2sN202 (M+H)" : 275.1754, Found 275.1752.

42



Tert-butyl-3-(3-(tert-butoxy)-2-((diphenylmethylene)amino)-3-oxopropyl)-1H-indole-1-
carboxylate (5)

Boc,0, DMAP, TEA
THF, 0 °C
97% yield

Y

A solution of Boc anhydride (Boc20) (0.62 g, 2.8 mmol), 4-dimethylaminopyridine (DMAP)
(0.029 g, 0.24 mmol), trimethylamine (TEA) (0.039 mL, 0.28 mmol) in THF (15 mL) was
maintained at 0 °C for 30 min. A solution of tryptophan 4 (1.0 g, 2.4 mmol) in THF (25 mL) was
added dropwise through the dropping funnel over a period of 30 min at 0 °C. The reaction mixture
was stirred at 0 °C for 1.5 hours under nitrogen atmosphere. After consumption of starting material,
as judged by TLC analysis, water (15 mL) was added to the reaction mixture. The aqueous layer
was extracted with ether (3 x 15 mL), washed with brine (1 x 10 mL). The combined organic layer
was dried over anhydrous Na>SOa4. The crude product was purified with column chromatography
on silica gel (hexane/EtOAc = 25/1) to give Boc-protected product 5 as a white solid (1.19 g, 97%).
IH NMR (CDCls, 300 MHz): 8 8.16 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 6.0 Hz, 2H), 7.40-7.23 (m,
9H), 7.12 (t, J = 7.5 Hz, 1H), 6.79 (d, J = 6.0 Hz, 2H), 4.32 (dd, J = 9.0, 6.0 Hz, 1H), 3.37 (dd, J
=13.5, 4.5 Hz, 1H), 4.32 (dd, J = 13.5, 7.5 Hz, 1H), 1.64 (s, 9H), 1.49 (s, 9H); 1*C NMR (CDCls,
75 MH2z): 6 170.9, 170.5, 149.7, 139.6, 136.2, 135.4, 130.7, 130.2, 128.8, 128.3, 128.2, 127.9,
127.7,124.2,124.1,122.2,119.2, 117.0, 115.0, 83.2, 81.2, 66.1, 28.9, 28.2, 28.1; HRMS (ESI+):

Calculated (m/z) for C3sH37N204 (M+H)* : 525.2748, Found 525.2740.
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N-((1-(tert-butoxycarbonyl)-1H-indol-3-yl)methyl)-N,N,3-trimethylbut-2-en-1-aminium

bromide (6)
/ BrA)\ /\)\
N (1 equiv) \ 5
©|\—/I(\\ n-BuLi (1 equiv) Cﬁfcﬁ'\gr
N L
N

THF, -78 °C to rt, 12 h
2 91% yield g Boc

A solution of 2 (1.5 g, 5.5 mmol) in THF (15 mL) was taken in three necked round bottomed flask
and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and
n-butyl lithium (2.2 mL, 2.5 M, 5.5 mmol) was added dropwise to the reaction mixture maintaining
a temperature -78 °C over a period of 1 h under nitrogen atmosphere. Prenyl bromide (0.63 mL,
5.5 mmol) was added to the reaction dropwise through the dropping funnel over a period of 30
min. The reaction mixture was allowed to warm to room temperature and was stirred overnight.
After consumption of the starting material, as judged by TLC analysis, water (15 mL) was added
to the reaction mixture and THF was removed under reduced pressure. The mixture was then
extracted with CH2Cl (3 x 15 mL), the combined organic layers were washed with brine solution
(1 x 10 mL) and dried over anhydrous Na,SO4 and evaporated in vacuo to obtain crude product.
The residue was purified with flash column chromatography on silica gel (DCM/MeOH = 20/1)
to afford 6 as off-white solid (2.1 g, 91 %). 'H NMR (CDClz, 300 MHz): § 8.11 (d, J = 9.0 Hz,
2H), 8.02 (d, J = 6.0 Hz, 1H), 7.94 (s, 1H), 7.29-7.16 (m, 2H), 5.32 (t, J = 7.5 Hz, 1H), 5.22 (s,
2H), 4.38 (d, J = 9.0 Hz, 2H), 3.15 (s, 6H), 1.81 (s, 3H), 1.76 (s, 3H), 1.59 (s, 9H); *C NMR
(CDCls, 75 MHz): & 148.9, 148.8, 135.0, 130.5, 129.8, 125.2, 123.8, 120.3, 115.2, 110.9, 107.6,
85.0, 61.5, 58.6, 48.4, 28.1, 26.4, 19.5; HRMS (ESI+): Calculated (m/z) for C21H21N202 [M]*:

343.2380, Found: 343.2363.
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Tert-butyl 2-((diphenylmethylene)amino)-3-(1H-indol-3-yl)propanoate (4)
o]
Ph
YN\/U\Ok
\ ph 8
©|\_/|(\é;‘\§r Bu,NI, 50% KOH
N DCM, rt, 12h

Boc 75% yield

A solution of 7 (1g, 2.4 mmol), N-(diphenylmethylene) glycine tert-butyl ester 6 (0.70 g, 2.4 mmol)
and tetrabutylammonium iodide (0.18 g 0.47 mmol) in dry DCM (20 mL) was maintained at -20
°C for 30 minutes. 50% aqueous KOH (1.3 g, 24 mmol) was added to the reaction. Then the
reaction was stirred overnight. After consumption of the starting material, as judged by TLC, water
was added, and the aqueous layer was extracted with CH2Cl> (3 x 25 mL). The combined organic
layers were dried over anhydrous Na>SOg; the solvent was evaporated in vacuo. The residue was
purified with flash column chromatography on silica gel (hexane/EtOAc = 10/1) to afford 3 as a
light-yellow oil (0.75 mg, 75%). Compound 4 was confirmed® by comparing spectra to known
NMR. IH NMR (CDCls, 500 MHz): § 7.99 (brs, 1H), 7.64 (d, J = 5.0 Hz, 2H), 7.39 (t, J = 7.5
Hz, 1H), 7.33-7.27 (m, 5H), 7.18-7.14 (m, 3H), 7.01-6.96 (m, 2H), 6.44 (d, J = 5.0 Hz, 2H), 4.29
(dd, J = 10.0, 5.0 Hz, 1H), 3.45 (dd, J = 15.0, 5.0 Hz, 1H), 3.27 (dd, J = 15.0, 10.0 Hz, 1H), 1.45
(s, 9H); 13C NMR (CDCls, 125 MHz): § 171.3,170.1, 139.7, 136.2, 136.0, 130.1, 128.8, 128.1,

128.0, 127.9, 127.8, 127.6, 123.0, 121.7, 119.1, 119.0, 112.3, 110.8, 80.9, 66.7, 29.1, 28.1.
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N-((1-(tert-butoxycarbonyl)-2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)methyl)-N,N,3-trimeth
-ylbut-2-en-1-aminium bromide (7)

©\—/(\ /\)\ n-BulLi ( 2 equw)
Boc

THF, -78 °C, 12 h
92% yield

A solution of 2 (1.5 g, 5.5 mmol) in THF (25 mL) was taken in three necked round bottomed flask
and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and
n-butyl lithium (4.4 mL, 25 M, 10.9 mmol) was added dropwise to the reaction mixture
maintaining a temperature -78 °C over a period of 1 h under nitrogen atmosphere. Prenyl bromide
(2.8 mL, 24.4 mmol) was added to the reaction dropwise through the dropping funnel over a period
of 30 min. The reaction mixture was allowed to warm to room temperature and was stirred
overnight. After consumption of the starting material, as judged by TLC analysis, water (20 mL)
was added to the reaction mixture and THF was removed under reduced pressure. The mixture
was then extracted with CH2Cl> (3 x 15 mL), the combined organic layers were washed with brine
solution (1 x 10 mL) and dried over anhydrous Na>SO4 and evaporated in vacuo to obtain crude
product. The residue was purified with flash column chromatography on silica gel (DCM/MeOH
= 20/1) to afford 7 as a brown solid (2.48 g, 92 %). 'H NMR (CDCls, 300 MHz): 8 8.08 (d, J =
9.0 Hz, 2H), 7.32 (dd, J = 9.0 Hz, 6.0 Hz, 2H), 5.38 (t, J = 7.5 Hz, 1H), 5.27 (s, 2H), 5.04 (s, 1H),
4.56 (d, J = 6.0 Hz, 2H), 3.91 (s, 2H), 3.17 (s, 6H), 1.93 (s, 3H), 1.88 (s, 3H), 1.80 (s, 3H), 1.67
(s, 12H); 13C NMR (CDCls, 75 MHz): § 149.6, 148.7, 144.1, 135.8, 134.1, 129.0, 124.4, 123.6,
120.3,119.8,114.9, 111.2, 106.0, 85.0, 61.8, 58.1, 48.4, 27.9, 26.8, 26.4, 25.4, 19.5, 18.7; HRMS

(ESI+): Calculated (m/z) for C2sH3gN202 [M]": 411.3006, Found: 411.2993.
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N-benzyl-1-(2-benzyl-1-(tert-butoxycarbonyl)-1H-indol-3-yl)methyl)-N,N-dimethylmethan-
aminium bromide (8)

7

| | N\ Br n-BuLi (2 equiv)
N " THF, -78 °C, 12 h
, Bec 73% yield

A solution of 2 (1.0 g, 3.6 mmol) in THF (20 mL) was taken in three necked round bottomed flask
and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and
n-butyl lithium (2.9 mL, 2.5 M, 7.3 mmol) was added dropwise to the reaction mixture maintaining
a temperature -78 °C over a period of 1 h under nitrogen atmosphere. Benzyl bromide (2.0 mL,
16.4 mmol) was added to the reaction dropwise through the dropping funnel over a period of 30
min. The reaction mixture was allowed to warm to room temperature and was stirred overnight.
After consumption of the starting material, as judged by TLC analysis, water 15 mL) was added
to the reaction mixture and THF was removed under reduced pressure. The mixture was then
extracted with CH2Cl2 (3 x 15 mL), the combined organic layers were washed with brine solution
(1 x 10 mL) and dried over anhydrous Na,SO4 and evaporated in vacuo to obtain crude product.
The residue was purified with flash column chromatography on silica gel (DCM/MeOH = 20/1)
to afford 8 as a brown solid (1.41g, 73 %). *H NMR (CDCls, 300 MHz): § 8.19 (d, J = 9.0 Hz,
1H), 8.09 (d, J = 9.0 Hz, 1H), 7.63 (d, J = 6.0 Hz, 2H), 7.29-7.21 (m, 5H), 7.07 (t, J = 7.5 Hz, 2H),
7.00-6.92 (m, 3H), 5.39 (s, 2H), 5.32 (s, 2H), 4.78 (s, 2H), 3.02 (s, 6H), 1.31 (s, 9H); *C NMR
(CDCls, 75 MHz): 6 149.4, 142.3, 138.6, 136.2, 133.4, 130.3, 129.1, 128.9, 128.4, 127.9, 127.6,
126.1, 124.8, 123.9, 120.1, 115.2, 107.9, 85.1, 66.9, 58.8, 48.1, 32.8, 27.5.; HRMS (ESI+):

Calculated (m/z) for CsoHssN202 [M]*: 455.2693, Found: 455.2624.
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(S)-tert-butyl-2-((diphenylmethylene)amino)-3-(2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)-
propanoate (9)

de L

PTC, 50% KOH (aq)
DCM,-20°C,72h
65% yield

A solution of 7 (500 mg, 1.01 mmol), N-(diphenylmethylene) glycine tert-butyl ester (300 mg,
1.01 mmol) and O-allyl-N-(9-anthracenylmethyl) cinchonidinium bromide PTC (123 mg 0.203
mmol) in dry DCM (10 mL) was maintained at -20 °C for 30 minutes. 50% aqueous KOH (86 mg,
15 mmol) was added to the reaction by maintaining the temperature -20 °C. Reaction was stirred
vigorously with mechanical stirrer for 72 h. After consumption of the starting material, as judged
by TLC, water was added, and the aqueous layer was extracted with CH2Cl, (3 x 10 mL). The
combined organic layers were dried over anhydrous Na>SOys; the solvent was evaporated in vacuo.
The residue was purified with flash column chromatography on silica gel (hexane/EtOAc = 20/1)
to afford 9 as a light brown solid (326 mg, 65%). *H NMR (CDCls, 300 MHz): 5 7.75 (s, 1H),
7.62 (d, J = 9.0 Hz, 2H), 7.37-7.28 (m, 3H), 7.23-7.20 (m, 3H), 7.06 (g, J = 9.0 Hz, 3H), 6.91 (¢,
J=9.0 Hz, 1H), 6.41 (d, J = 6.0 Hz, 2H), 5.10 (t, J = 6.0 Hz, 1H), 4.26 (dd, J = 10.5 Hz, 4.5 Hz,
1H), 3.39 (dd, J = 19.5 Hz, 4.5 Hz, 1H), 3.28 (dd, J = 15.0 Hz, 9.0 Hz, 1H), 1.68 (s, 3H), 1.65 (s,
3H), 1.48 (s, 9H); 13C NMR (CDCls, 75 MHz): 5 171.5, 169.6, 139.5, 136.0, 135.5, 134.9, 134.3,
129.9,129.2,128.7,127.8,127.7,127.6, 120.8, 120.6, 119.0, 118.4, 110.0, 107.2, 80.8, 66.7, 28.1,
27.9, 25.7, 25.1, 17.7; HRMS (ESI+): Calculated (m/z) for Cs3H37N202 [M+H]*: 493.2850,
Found: 493.2845. HPL.C: 93% ee, Chiralcel OD column (25 cm x 0.46 cm, ID), 2 % i-PrOH in

hexane, 0.5 mL/min, 25.27 min (major), 29.34 min (minor).
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(S)-tert-butyl 2-amino-3-(2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl) propanoate (10)

INHCI
THF,0°C, 2 h
95% yield

A solution of 9 (200 mg, 0.41 mmol) THF (6 mL) and 1N hydrochloric acid (4 mL) was
maintained in cold water bath for 2 h under nitrogen atmosphere. After consumption of the starting
material, as judged by TLC analysis, the mixture was extracted with hexane (3 x 5 mL) then the
aqueous layer was basified using saturated NaHCOs3 and extracted with CH.Cl> (3 x 5 mL), washed
with brine (1 x 5 mL). The combined organic layer was dried over anhydrous MgSO4 and the
solvent was evaporated under in vacuo. The crude product was purified by silica gel column
chromatography (DCM/MeOH = 20:1) to afford 10 as a light yellow solid (126 mg, 95% vyield).
!H NMR (CDCls, 300 MHz): 6 8.52 (brs, 1H), 7.59 (d, J = 9.0 Hz, 1H), 7.26 (d, J = 6.0, 1H),
7.15-7.08 (m, 2H), 5.34 (t, J = 7.5 Hz, 1H), 3.75 (dd, J = 9.0, 3.0 Hz, 1H), 3.49 (d, J = 6.0 Hz,
2H), 3.25 (dd, J = 15.0, 6.0 Hz, 1H), 2.91 (dd, J = 15.0, 9.0 Hz, 1H), 1.96 (brs, 2H), 1.78 (s, 6H),
1.46 (s, 9H),; C NMR (CDCls, 75 MHz): 6 174.6, 136.0, 135.4, 134.1, 128.8, 121.1, 120.7,
119.2, 118.2, 110.6, 106.6, 81.0, 55.9, 30.5, 28.0, 25.8, 25.3, 18.0; HRMS (ESI+): Calculated

(m/z) for C2oH29N20, [M+H]": 329.2224, Found: 329.2220.
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(S)-tert-butyl-3-(2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)-2-((S)-pyrrolidine-2-carboxami-
do)propanoate (12)

IFmoc
N H CI

1. w ,TEA, CHCl,, 0 °C
o

-
Lo

2. DEA, CH;CN
76% yield

N-Fmoc-L-prolyl chloride (101 mg, 0.3 mmol) was dissolved in dry CHCIz (5 mL). This solution
was added dropwise at 0 °C to a solution of 10 (100 mg, 0.2 mmol) and triethylamine (0.106 mL,
0.76 mmol) in dry CHCIs (2 mL). The mixture that resulted was stirred at 0 °C for 0.5 h, and then
at room temperature for overnight. After consumption of the starting material, as judged by TLC
analysis, the reaction was concentrated under reduced pressure. The residue was then dissolved in
CH3CN (5 mL) and stirred via a stir bar until it made a homogeneous solution. To this solution
diethyl amine (10 mL) was added dropwise to the reaction flask using an addition funnel. The
reaction was let stir overnight and progress was monitored by TLC. The solvent was removed
under reduced pressure and the residue was purified with column chromatography on silica gel
(DCM/MeOH = 50/1) to afford the product 12 as a brown solid (94 mg, 76% yield). '"H NMR
(CDCls, 300 MHz): & 8.02 (d, J = 9.0 Hz, 1H), 7.96 (s, 1H), 7.55 (d, J = 9.0 Hz, 1H), 7.28-7.24
(m, 1H), 7.11-7.03 (m, 2H), 5.35 (t, J = 7.5 Hz, 1H), 4.72 (g, J = 7.5 Hz, 1H), 3.71 (q, J = 7.5 Hz,
1H), 3.50 (t, J = 7.5 Hz, 2H), 3.28-3.11 (m, 2H), 3.04-2.87 (m, 2H), 2.09-1.99 (m, 1H), 1.80 (s,
3H), 1.78 (s, 3H), 1.70-1.61 (m, 3H), 1.36 (s, 9H); 13C NMR (CDCls, 75 MHz): 5 173.6, 171.3,
135.7, 135.0, 134.9, 129.1, 121.0, 120.1, 119.1, 118.4, 110.3, 105.9, 81.6, 60.2, 53.5, 47.0, 30.4,
27.9,27.2,25.8, 25.2, 17.9; HRMS (ESI+): Calculated (m/z) for C2sH3sN3O3 [M+H]": 426.2751,

Found: 426.2745.
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Synthesis of Model Compound, (S)-hexahydropyrrolo[1,2-a]pyrazine-1,4-dione (15)

(o)

(0]
0 .
Emoco 1. HZNJLOJ< H Microwave ?—N

(250°C, 150 psi, 250 W)

N
= “OH PyBOP, DIPEA, DCM _ Q)HLH/YO% .
0

H 2. DEA, CH5CN Water, 10 min 5
85% yield

13 80% yield 14 15

PyBOP (1.84 g, 3.55 mmol) and DIPEA (1.55 mL, 8.88 mmol) were added to a solution of Fmoc-
L- proline 13 (1.0 g, 2.96 mmol) and tert-butyl ester glycine (0.414 g, 2.96 mmol) in CH3CN (25
mL). The reaction was stirred overnight, and progress was monitored by TLC. After consumption
of the starting material, as judged by TLC analysis, the reaction was concentrated under reduced
pressure. The residue was then dissolved in CH3CN (10 mL) and stirred via a stir bar until it made
a homogeneous solution. To this solution diethyl amine (10 mL) was added dropwise using an
addition funnel and the reaction was let stir overnight. Next day, the solvent was removed under
reduced pressure and was extracted with hexane (3 x 15 mL). The residue was passed through
flash column chromatography on silica gel (DCM/MeOH = 50/1) to afford the Fmoc removal
dipeptide 14. Then, the dipeptide 14 (100 mg, 0.22 mmol) was suspended in water (1 mL) and
heated during 10 minutes at 250 °C and 150 psi, using a CEM Discover Microwave apparatus at
250 W. The resulting suspension was filtered through a Hirsch funnel and washed with water (5
mL), the solid was dried under high vacuum and the residue was purified with column
chromatography on silica gel (DCM/MeOH = 50/1) to afford the product 15 as a white solid (57
mg, 85% yield). Compound 17 was confirmed®® by comparing spectra to known NMR. 'H NMR
(CDCls, 300 MHz): & 7.10 (s, 1H), 4.10 (d, J = 15.0 Hz, 1H), 3.90 (dd, J = 15.0, 5.0 Hz, 1H),
3.69-3.52 (M, 2H), 2.42-2.34 (m, 1H), 2.14-2.01 (m, 2H), 1.95-1.87 (m, 2H). 3C NMR (CDCls,

75 MHz): 6 170.1, 163.5, 58.5, 46.6, 45.3, 28.5, 22.4.
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Synthesis of Tryprostatin B (16)

Microwave
(250 °C, 150 psi, 250 W)

Water, 10 min
81% yield

The dipeptide product 13 (50 mg, 0.12 mmol) was suspended in water (1 mL) and heated for 10
minutes at 250 °C and 150 psi, using a CEM Discover Microwave apparatus at 250 W. The
resulting suspension was filtered through a Hirsch funnel and washed with water (5 mL). Then,
the solid was dried under high vacuum and the residue was purified with column chromatography
on silica gel (DCM/MeOH = 50/1) to afford the product 1 as yellow solid (33 mg, 81% yield).
Compound 1 was confirmed® by comparing spectra to known NMR. *H NMR (CDCls, 500
MHz): & 8.03 (brs, 1H), 7.50 (d, J = 10.0 Hz, 1H), 7.34 (d, J = 5.0 Hz, 1H), 7.18 (t, J = 7.5 Hz,
1H), 7.12 (t, J = 7.5 Hz, 1H), 5.66 (s, 1H), 5.33 (t, J = 7.5 Hz, 1H), 4.39 (dd, J = 10.0, 5.0 Hz, 1H),
4.08 (t, J = 7.5 Hz, 1H), 3.72-3.67 (m, 2H), 3.63-3.59 (m, 1H), 3.49 (t, J = 7.5 Hz, 2H), 3.00-2.91
(m, 1H), 2.38-2.33 (m, 1H), 2.08-2.02 (m, 2H), 1.96-1.90 (m, 1H), 1.81 (s, 3H), 1.78 (s, 3H); 13C
NMR (CDCls, 125 MHz): 6 169.4, 165.8, 136.4, 135.5, 135.4, 128.0, 121.9,119.9, 119.7, 117.8,
110.8, 104.7, 59.3, 54.6, 45.4, 28.4, 25.8, 25.6, 25.1, 22.7, 18.0; HRMS (ESI+): Calculated (m/z)

for C21H26N302 [M+H]*: 352.2020, Found: 352.2035.
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Tert-butyl 3-((dimethylamino)methyl)-6-methoxy-1H-indole-1-carboxylate (18)
/ /

N N
/©|\_/‘(\ \ Boc,0, DMAP, TEA m \
~o N THF,0°C,1.5h ~o N
H

94% yield Boc
17 18

A solution of Boc anhydride (Boc20) (2.6.0 g, 14.7 mmol), 4-dimethylaminopyridine (DMAP)
(0.12 g, 0.98 mmol), trimethylamine (TEA) (0.120 mL, 1.17 mmol) in THF (50 mL) was
maintained at 0 °C for 30 min. A solution of 6-methoxy gramine (2.0 g, 9.8 mmol) in THF (15
mL) was added dropwise through the dropping funnel over a period of 30 min at 0 °C. The reaction
mixture was stirred at 0 °C for 1.5 hours under nitrogen atmosphere. After consumption of starting
material, as judged by TLC analysis, water (20 mL) was added to the reaction mixture. The
aqueous layer was extracted with ether (3 x 15 mL), washed with brine (1 x 15 mL). The combined
organic layer was dried over anhydrous Na>SO4. The crude product was purified with column
chromatography on silica gel (hexane/EtOAc = 3/2) to give product 18 as a light brown solid (2.8
g, 94%). *H NMR (CDCls, 300 MHz): § 7.76 (s, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.39 (s, 1H), 6.88
(d, J =9.0 Hz, 1H), 3.86 (s, 3H), 3.49 (s, 2H), 2.27 (s, 6H), 1.66 (s, 9H); 13C NMR (CDCls, 75
MHZz): 6 157.9, 149.8, 136.6, 124.3,123.0, 120.2, 118.1, 111.9, 99.3, 83.2, 55.5, 54.7, 45.5, 28.2;

HRMS (ESI+): Calculated (m/z) for C17H25N203 (M+H)* : 305.1860, Found 305.1850.
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N-((1-(tert-butoxycarbonyl)-6-methoxy-2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl)methyl)-

N,N,3-trimeth -ylbut-2-en-1-aminium bromide (19)
\ /\)\
N ©

/ /\)\
n-BuLi, Br™
@\Br

THF, -78 °C, 12 h
1 BO° 85% yield

/
o
Za
_Z
Y
/

A solution of Boc-protected 6-methoxy gramine 18 (2.0 g, 6.6 mmol) in THF (25 mL) was taken
in three necked round bottomed flask and nitrogen was bubbled through the solution for 20 min.
This mixture was cooled to -78 °C and n-butyl lithium (5.3 mL, 2.5 M, 13.2 mmol) was added
dropwise to the reaction mixture maintaining a temperature -78 °C over a period of 1 h under
nitrogen atmosphere. Prenyl bromide (3.0 mL, 26.3 mmol) was added to the reaction dropwise
through the dropping funnel over a period of 30 min. The reaction mixture was allowed to warm
to room temperature and was stirred overnight. After consumption of the starting material, as
judged by TLC analysis, water (20 mL) was added to the reaction mixture and THF was removed
under reduced pressure. The mixture was then extracted with CH2Cl, (3 x 15 mL), the combined
organic layers were washed with brine solution (1 x 10 mL) and dried over anhydrous Na,SO4and
evaporated in vacuo to obtain crude product. The residue was purified with flash column
chromatography on silica gel (DCM/MeOH = 20/1) to afford 19 as a brown solid (2.9 g, 85 %).
IH NMR (CDCls, 300 MHz): § 7.94 (d, J = 9.0 Hz, 1H), 7.57 (s, 1H), 6.82 (t, J = 6.0 Hz, 1H),
5.31 (t, J = 7.5 Hz, 1H), 5.07 (s, 2H), 4.95 (s, 1H), 4.42 (d, J = 6.0 Hz, 1H), 3.75 (s, 6H), 3.05 (s,
6H), 1.80 (s, 3H), 1.76 (s, 3H), 1.67 (s, 3H), 1.57 (s, 12H); 23C NMR (CDCls, 75 MHz): § 157.7,
149.7, 148.7, 142.6, 136.9, 133.9, 122.8, 120.6, 120.4, 112.5, 111.2, 106.0, 99.6, 84.9, 61.8, 58.3,
55.5, 48.3, 27.8, 26.8, 26.4, 25.4, 19.4, 18.6; HRMS (ESI+): Calculated (m/z) for C27H41N203

[M]*: 441.3112, Found: 441.3102.
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Tert-butyl-2-((diphenylmethylene)amino)-3-(6-methoxy)-(2-(3-methylbut-2-en-1-yl)-1H-
indol-3-yl)- 1H-indol-3-propanoate (2)

o)
P N L
N_© Ph
@\Br a-
Bu4N™I;, 50% KOH_
DCM, rt, 12 h

82% yield

A solution of C2, N-diprenylated-6-methoxy gramine salt 19 (1.0 g, 1.9 mmol), N-
(diphenylmethylene) glycine tert-butyl ester (680 mg, 2.3 mmol) and tetrabutylammonium
bromide (232 mg 0.383 mmol) in dry DCM (10 mL) was maintained at -20 °C for 30 minutes.
50% aqueous KOH (1.0 g, 19.0 mmol) was added to the reaction by maintaining at the room
temperature. Reaction was stirred vigorously with mechanical stirrer for 12 h. After consumption
of the starting material, as judged by TLC, water was added, and the aqueous layer was extracted
with CH2Cl> (3 x 10 mL). The combined organic layers were dried over anhydrous Na>SOs; the
solvent was evaporated in vacuo. The residue was purified with flash column chromatography on
silica gel (hexane/EtOAc = 20/1) to afford as a light yellow solid 20 (820 mg, 82%). ‘H NMR
(CDCls, 300 MHz): § 7.75 (d, J = 6.0 Hz, 3H), 7.35-7.31 (m, 2H), 7.26-7.20 (m, 3H), 7.07 (t, J =
7.5Hz, 3H), 6.77 (d, J = 3.0 Hz, 1H), 6.57 (dd, J = 9.0 Hz, 3.0 Hz, 1H), 6.43 (d, J = 9.0 Hz, 2H),
5.06 (t, J = 7.5 Hz, 1H), 4.21 (dd, J = 9.0 Hz, 3.0 Hz, 1H), 3.83 (s, 3H), 3.33 (dd, J = 19.5 Hz, 4.5
Hz, 3H), 3.22 (dd, J = 15.0 Hz, 9.0 Hz, 1H), 1.66 (s, 3H), 1.63 (s, 3H), 1.46 (s, 9H); 3C NMR
(CDCls, 75 MHz): 6 171.4, 169.5, 155.7, 139.5, 136.0, 135.5, 134.2, 134.1, 129.9, 128.7, 127.8,
127.7,127.6,123.7, 120.8, 119.0, 108.4, 107.1, 94.2, 80.8, 66.7, 55.8, 28.1, 27.9, 25.7, 25.1, 17.7,

HRMS (ESI+): Calculated (m/z) for CasHzsN203 [M+H]": 523.2955, Found: 523.3072.
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Tert-butyl-2-amino-3-(6-methoxy)-(2-(3-methylbut-2-en-1-yl)-1H-indol-3-yl) propanoate
(21)

1N HCI -
THF,0°C,2h

95% yield

A solution of 20 (500 mg, 0.96 mmol) THF (10 mL) and 1N hydrochloric acid (5 mL) was
maintained in cold water bath for 2 h under nitrogen atmosphere. After consumption of the starting
material, as judged by TLC analysis, the mixture was extracted with hexane (3 x 10 mL) then the
aqueous layer was basified using saturated NaHCO3 and extracted with CH.Cl, (3 x 10 mL),
washed with brine (1 x 5 mL). The combined organic layer was dried over anhydrous MgSO4 and
the solvent was evaporated under in vacuo. The crude product was purified by silica gel column
chromatography (DCM/MeOH = 20:1) to afford 21 as a light yellow solid (307 mg, 90% vyield).
IH NMR (CDCls, 300 MHz): & 7.87 (brs, 1H), 7.44 (d, J = 5.0 Hz, 1H), 6.82 (s, 'H), 6.77 (d, J =
5.0, 1H), 3.84 (s, 3H), 3.68 (d, J = 10.0 Hz, 1H), 3.47 (d, J = 10.0 Hz, 2H), 3.18 (dd, J = 15.0, 5.0
Hz, 1H), 2.85 (dd, J = 15.0, 10.0 Hz, 1H), 1.79 (s, 3H), 1.77 (s, 1H), 1.44 (s, 9H),; 13C NMR
(CDCls, 75 MHz): 6 174.7, 155.9, 136.0, 134.4, 134.4, 123.3, 120.6, 118.9, 108.7, 106.7, 94.6,
80.9, 55.9, 55.8, 30.6, 28.0, 25.8, 25.2, 17.9; HRMS (ESI+): Calculated (m/z) for C21H31N203

[M+H]*: 359.2329, Found: 359.2404.
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PART I1: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE
DEACETYLASE INHIBITORS
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2.1. Introduction

2.1.1. Histone

Histones are most abundant highly alkaline proteins found in eukaryotic cell nuclei.l? Five major
families of histones are H1/H5, H2A, H2B, H3, and H4. Histones H2A, H2B, H3 and H4 are
known as the core histones, while histones H1/H5 are known as the linker histones.®® Histone
H2A and H2B make a dimer and later dimer of dimer, and H3 and H4 make dimer and later
tetramer, all these core histones then combine and form octamer of histones.5® This histone
octamer rapped by deoxyribonucleic acid (DNA) and makes nucleosome.® They are the chief
protein components of chromatin and playing a role in gene regulation. This interaction is largely

regulated by the modification of lysine residues.®

2.1.2. Histone Deacetylase (HDAC)

Histone deacetylases (HDAC), also called lysine deacetylases (KDAC), are a class
of enzymes which eliminate acetyl groups (O=C-CHz) from an N-acetyl lysine amino acid on
a histone, permitting the histone to wrap the DNA more strongly.*"® Its action is opposite to that
of histone acetyltransferase (HAT) which replace acetyl groups (O=C-CHjs) to the lysine amino
acid on a histone.'®2® Acetyl CoA transfers the acetyl group to the lysine terminal of the histone
(Figure 2.1).212° Acetylation/deacetylation process is important because it regulates many protein
functions in cells.?*° DNA is wrapped around histones, and DNA expression, protein stability,
and protein-protein interactions are regulated by acetylation and de-acetylation.>**®* HAT/HDAC
inhibition and posttranslational modifications are essential for the regulation of many cellular

processes such as transcription, cell division, cell survival and differentiation.36-4°
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Figure 2.1: Mode of Action of HDAC and HAT

HATs and HDACs enzymes are responsible for amendments to chromatin structures that can
regulate gene transcription.**® In general, HAT acetylation activity leads to an increase in gene
transcription by neutralizing the positive charge on lysine residuals of histones, which relaxes their
interactions with the negatively charged DNA backbone, leading to form a more active chromatin
framework.*® 47 In contrast, HDACs catalyze the removal of the acetyl groups on lysine residuals
located on the amino-terminal tails of core histones, which leads to gene repression by chromatin
condensation, leading to form an inactive chromatin framework.*® As a result, inhibition of HATs
leads to a gene that is always deactivated and produced oncogene, while inhibition of HDACs
leads to general hyperacetylation of histones, which is followed by the transcriptional activation
of certain genes through relaxation of the DNA conformations and produced antioncogene.*%->2
Usually, cancer is considered to initiate from a wide variety of genetic and genomic modifications,
such as mutations, deletions, rearrangements, and amplifications, leading to abnormal expression
of tumor suppressor genes and oncogenes. Gathering evidence indicates that cancer is associated
with abnormal cell functions that include apoptosis, autophagy, cell motility, and DNA repair.

These cell functions are controlled at least in part by HDACs.5%5¢
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2.1.3. Classification of HDAC proteins

Based on their size, number of catalytic sites, subcellular localization, and their sequence
homology to yeast counterparts, there are total eighteen known human HDACSs proteins that are
divided into four classes (Figure 2.2).>” HDACs 1, 2, 3 and 8 are classified as Class | which are
found in nucleus, HDACs 4, 5, 7, and 9 are classified as Class Ila and found in nucleus and
cytoplasm. HDACs 6 and 10 are classified as Class Ilb and found in cytoplasm. HDAC 11 is
known as class IV and found in both nucleus and cytoplasm. All these HDACSs are Zn?* dependent
enzymes. Class Il proteins, also known as sirtuins, (SIRTs 1-7) are defined by their dependency
on the coenzyme, electron transporter, nicotinamide adenine dinucleotide (NAD), found in

nucleus and cytoplasm.58-6°

Class Name Location in Cell Location in Body Group
Class | HDAC1 Nucleus Ubiquitous Zn Dependent
HDAC?2
HDAC3
HDACS
Class 1A HDACA4 Nucleus/Cytoplasm Tissue Zn Dependent
HDACS5
HDAC7
HDAC9
Class 11B HDACG6 Cytoplasm Tissue Zn Dependent
HDAC10
Class 111 SIRT (1-7) Nucleus/Cytoplasm Tissue NAD Dependent
Class IV HDAC11  Nucleus/Cytoplasm Zn Dependent

Figure 2.2: Classification of HDAC
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2.1.4. HDAC Involvement with Different Types of Cancers and Memory Loss

Cancer is a group of diseases involving abnormal cell growth which is a complex process that is
influenced by multiple factors and progresses in multiple steps.®® This unwanted cell growth in
one place spreads out to other parts of the body. A typical characteristic of human cancer is the
deregulation of histone acetylation which has the fatal consequence of gene transcription.®? The
decrease of histone acetylation is the reason for cancer, for example gastrointestinal tumors. It is
well established and reported by scientists that the acetylation/deacetylation state of histones has
an important effect on the biological activity of a cell.®® Any imbalance in the levels of
acetylation/deacetylation can encourage abnormal outgrowth and cell death. HDACs are expressed
at much higher rates than normal cells in numerous types of cancers. Due to the overexpression of
HDAC, it creates different types of cancer such as prostate, ovarian (HDAC1, HDAC2, and
HDAC3), colorectal, lung cancers (HDAC1 and HDACS3), gastric pancreatic (HDAC?2) and
hepatocellular carcinomas. The overexpression is only found in cancer cells, but are not found in
normal, resting endothelial cells and normal organs.®* Solid and hematological tumors are the
cause of unusual expression of classical (class I, I, and IVV) HDACs. HDACs has been connected
to a variety of malignancies, including with advanced disease and poor outcomes in patients. It has
been reported that high expression of HDAC1, 2, and 3 are related with poor outcomes in gastric
and ovarian cancers, and high expression of HDACS correlates with advanced-stage disease and
poor survival in neuroblastoma. HDACs have also been found broadly dysregulated in multiple
myeloma (MM) and overexpression of class | HDACs, particularly HDACL, is associated with
inferior patient outcomes.®® HDAC2 and 3 are responsible for blocking neural plasticity and impair
memory, and HDAC inhibitors increase histone acetylation and enhance both memory and

synaptic plasticity.56-68
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2.2. HDAC Inhibitors

Over the last decade, there has been extensive research and devolvement of many HDACI which
has led to very promising results in treating cancer cells and other various diseases.?®% Several
HDACI drugs are in clinical trials for treatment of cancers and diseases (Figure 2.3).84%° The first
HDACI, suberoyl anilide hydroxamic acid (SAHA, Vorinostat) was approved by the Food and
Drug Administration (FDA) for treatment of T-Cell lymphoma (CTCL) in the early 2000s.%%-%3
Then, in 2009 the FDA approved romidepsin/FK-228 also for CTCL.%% SAHA is considered to
be a pan-inhibitor, which means it has no selective to any class or specific HDAC protein and
inhibits the majority of the 11-zinc dependent HDAC isoforms. However, FK-228 is considered a

class | selective inhibitor (inhibiting only HDAC1 and HDAC2). Valoproic acid and trichostatin

A are in preclinical trials.”* %

Class HDAC
Inhibitor

Target HDAC Class

Clinical Status

Hydroxamic  Trichostatin A
Acids
SAHA

Belinostat

Panabiostat

Short Chain  Valproic Acid
Fatty Acids

Benzamide Entinostat
Cyclic Romidepsin
Tetrapeptide

Pan Inhibitor

Pan Inhibitor

Pan Inhibitor

Pan Inhibitor

HDAC1 and
HDACIIA

HDAC1

HDAC1

Preclinical

Approved for Cutaneous T-Cell
Lymphoma

Approved for Cutaneous T-Cell
Lymphoma

Approved for Multiple Myeloma

Approved for Epilepsia, Bipolar
Disorders, and Migrane

Phase Il Clinical Trial

Approved for Cutaneous T-Cell
Lymphoma

Figure 2.3: Overview of Selected HDAC Inhibitors

70



There are many different types of HDAC inhibitors but the four most promising classes of HDACi
are usually classified based on their chemical structure such as 1) hydroxamic acids, 2) cyclic

peptides, 3) short-chain fatty acids, and 4) benzamide/ketone derivatives (Figure 2.4).%%-108
Hydroxamic Acids Alkanoic Acids Benzamides

(0]
lo) N\ NH
N i OH OVO H\/<j)L NH,
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Figure 2.4: Types of HDAC Inhibitors

All the four groups of HDAC inhibitors have similar trends structurally. The structure of HDACi
are characterized by these main features: a coordinating group/zinc binding group (ZBG) (such as
a thiol or hydroxamic acid) to chelate to Zn?* in the active site, a hydrophobic region (capping
group), and a five to seven carbon linker that connects the cap group to ZBG (Figure 2.5). In
HDAC inhibitors, linker connects a cap region and a ZBG.1%%123 The cap is relatively flexible and
mediates surface-to-surface interactions between drug and protein target; the ZBG is critical for

HDAC inhibitory activity by chelating a zinc ion in the catalytic center of HDACs. 24
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2.2.1. Mechanism of HDAC Inhibition

To understand how HDAC inhibitors bind to their enzymes, the first experiments were carried out
to study in 1999.1%2 The structure of the complexes of TSA and SAHA with histone deacetylase-
like protein were clearly measured to 2.0 angstroms (A) resolution. For further development of
more potent and specific HDAC specific inhibitors, analysis of the X-ray crystal revealed that the
region interacting with TSA or SAHA of histone deacetylase-like protein contains three main
features 1) a surface recognition section, 2) a tube-like, 11 A deep channel, and 3) a 14 A long,
tapered pocket which attaches to the channel.'>® Structure-activity relationship showed that
inhibitors such as TSA and SAHA were able to block the HDAC activity through chelation of the
zinc ion using a polar moiety such as hydroxamic acid or benzamide groups and in the similar
way, romidepsin FK228 were able to block the HDAC activity through chelation of zinc ion using
thiol group.® HDAC inhibitors are one of the most promising targets for the development of anti-
cancer drugs. Results from several studies and market demand of drugs have encouraged further
development of more HDAC inhibitors for use in cancer therapy.’®® HDAC inhibitors have been
used in many clinical trials for that can target both hematological and solid malignancies are in
progress. However, the mechanism of action by which they are employed to the HDAC pocket
and mediate corresponding cellular activities is still mysterious. A better understanding of the
nature of the molecular basis of the selectivity of the HDAC inhibitors will enable the development

of more effective and specific agents to treat cancer.!*¢-1>8

Zn Binding Group
—

o) (o]
HO\N w @ Suberoylanilide Hydroxamic Acid (SAHA)
N
| \———\F_J
H H

Linker

Figure 2.5: HDAC Inhibitor with Three Different Parts
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2.2.2. Shortfalls and solution of current drugs

Current HDAC inhibitors used in cancer are toxic with many side effects to patients. They have
lack specificity and affect several types of HDAC, and they have poor solubility.*>® 1% In order to
obtain new compound derivatives or fragments that could reduce cytotoxicity but still retain
adequate HDAC inhibitory activity as well as antitumor activity, we thought we would design
some compounds which would be less toxic, more soluble, and better specificity toward specific
HDAC types. Our goal was to synthesize small molecules which will be easy to synthesize from
inexpensive commercially available starting materials. New analogs would have promising effects
on cervical cancer, breast cancer, colon cancer, prostate cancer, and renal cancer cell lines. To
keep thiol group as binding site, our group designed some amide compounds as HDAC inhibitors

based on the Romidepsin, FK228 (Figure 2.6).

R
~
s 0.0
O OH ) 0 OH T 0
R )J\}\/\/\ (0] : JW\/\ «" "NH OH
o SH = \
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Cpd1 R=H Cpd2 R=H HS
Cpd1" R=t-butyl Cpd2' R=CH,
Cpd3 R=H
Cpd3' R=CH,

H H H
R,0 R’O R/O
Cpd4 R=H Cpd5 R=H Cpdé R=H
Cpd4' R=CH,3 Cpd5' R=CH,3 Cpd6' R=CHj;

Figure 2.6: HDAC Inhibitors Prepared for the SAR Study
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2.3. Cell lines, Reagents, and Animals

A human prostate cancer line (DU145) purchased from ATCC (Manassas, VA) and cultured in
DMEM medium (Life Technologies, Grand Island, NY), supplemented with 10% fetal bovine
serum (Atlanta Biologicals, Flowery Branch, GA), 100 U/ml penicillin, 100 pg/ml streptomycin
and 2mM L-Glutamine (all from ThermoFisher Scientific) in Dr. Douglas Steeber’s laboratory.
Cell counts and viability were determined using a hemocytometer following appropriate dilution
in trypan blue exclusion dye. The 4T1 cells were grown in RPMI 1640 media that was
supplemented as above along with addition of 55 uM 2-mercaptoethanol (Life Technologies,
Grand Island, NY). Cpd1’ and CpdS were synthesized and purified by high performance liquid
chromatography (HPLC) as described. The food and drug administration (FDA)-approved drugs
romidepsin (FK228) were purchased commercially (Selleckchem, Houston, TX) and used as
positive controls for comparison purposes. Dimethyl sulfoxide (DMSO, ThermoFisher) was used
to dissolve the drugs and served as vehicle controls for all experiments. 3-(4,5-Dimethylthiazol-2-
yl)-2,5-diphenyltetrazolium bromide (MTT) was purchased from Sigma Aldrich and was used as
a colorimetric reagent to determine cell proliferation. Live cells actively convert MTT into a purple
insoluble formazan product, while dead cells do not, and this change can be measured
spectrophotometrically after being dissolved in DMSO. Wild type BALB/c mice and C57BL/6J
(B6) mice were originally purchased from the Jackson Laboratories (Bar Harbor, ME) and further
housed and bred in a specific pathogen-free facility at the University of Wisconsin-Milwaukee and
screened regularly for pathogens. Mice behavioral study for Alzheimer’s disease was done in Dr.
Karyn Frick’s laboratory. All procedures were approved by the Animal Care and Use Committee

of the University of Wisconsin-Milwaukee.
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2.3.1. MTT Cellular Assay

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), a yellow tetrazole is
reduced to purple formazan in living cells, shows the color after the assay where increasing
amounts of cells resulted in increased purple coloring (Figure 2.7).1%! For the assay, cells were
allowed to adhere for 24 hours at 37 °C with 5% CO». All of the synthetic compounds, FK228,
and DMSO control concentrations were diluted in series with supplemented Dulbecco’s Modified
Eagle Medium (DMEM) sterilely. The media was aspirated off the 96 well plate and the drug, or
control, concentrations were added to the plate in triplicate. The cells were then incubated with the
drugs or DMSO controls for 48 hours. The drug and control treatments were removed and 200
pg/mL of MTT diluted in supplemented DMEM was added to each well. Cells were incubated
with the MTT for 4 hours at 37 °C with 5% CO». The MTT concentration was aspirated off and
200 uL DMSO was added to each well after 4 hours. The plate was mixed on a rotator for 10
minutes at a moderate pace and then with a pipettor to dissolve all the MTT in each well. The plate
was read at 570 nM with the reference wavelength at 690 nM on a Molecular Devices Versamax
plate reader (San Jose, CA). The reference wavelength absorbance for each well was subtracted.
The average for the triplicate blank wells was calculated and subtracted from each well. The %
viability of each concentration was calculated by dividing the average absorbance for each drug

concentration by the DMSO control for that concentration.
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Figure 2.7: MTT, a Yellow Tetrazole, is Reduced to Purple Formazan in Living Cells
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2.3.2. H3 Acetylation Assay

For H3 acetylation assay, DU145 cells were cultured as above. Cells were counted and
resuspended at 60,000 cells/mL in supplemented DMEM. 1 mL of cells at 60,000 cells/mL were
added to wells of a 24 well plate. The cells were allowed to adhere for 24 hours at 37 °C with 5%
COz. The media was aspirated and Cpd 1’ at 50, 5, or 0.5 uM concentrations, or DMSO controls,
in supplemented DMEM were added to the wells in duplicate. The plate was incubated at 37 °C
with 5% CO- for 24 hours. Cells were fixed with 350-500 pL 4% paraformaldehyde for 10 minutes
at room temperature after the 24-hour incubation. 400-500 uL tris-buffered saline (TBS) with 0.1%
Tween 20 and 1% bovine serum albumin (TBS-T w/ 1% BSA) was added to each well for 1 hour
at 4 °C for permeabilization. TBS-T w/ 1% BSA was removed and 350 to 500 pL rabbit anti-
acetyl-Histone H3 (Lys9/Lys14) antibody (Cell Signaling Technology, Danvers, MA) at a 1:2000
dilution in TBS-T w/1% BSA was added to each well. The primary antibody was incubated with
the cells overnight at 4 °C. The primary antibody was removed and goat anti-rabbit IgG
AlexaFluor™ 488 (Jackson ImmunoResearch, West Grove, PA) at a 1:500 dilution was added to
each well and incubated for 1.5 hours at 4 °C. The Plate was removed from the fridge and 350-500
uL of 4',6-diamidino-2-phenylindole (DAPI) at 0.3 pg/mL was added to each well. DAPI was
incubated in dark at room temperature for 15 minutes, and wells were imaged with the fluorescence

microscope (Figure 2.8).162

Y

Tissue Disaggregation or Cell LysisJ [Histone Extractinn]
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. A

Figure 2.8: Block Diagram of H3-Acetylation Assay
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2.3.3. Memory Enhancement Study

The present study was designed to evaluate the effect of our synthetic compound on memory of
mice for Alzheimer’s disease. Mice were housed in a conventional animal vivarium and were given
free access to food and water. All studies and procedures were approved by the Animal Care and
Use Committee of the University of Wisconsin, Milwaukee. Each animal was initially weighed
using a digital scale and then intraperitoneally (IP) injected with the compounds. The effects on
hippocampal memory in rodents was assessed in spatial tasks such as object location/placement
and in object recognition tasks.'®® Effect of drugs on learning and memory of mice was evaluated
by these behavioral study as well as by IP injection. From the study is has been shown that our
drug has significant effect and drugs found in hippocampus study. Hippocampus is a small portion
on the brain which develop the memory (Figure 2.9). A single mouse was given a single IP dose
of 40 mg/kg, body weight and a second mouse received a dose of 20 mg/kg. Later, brains were
collected, separated the hippocampus, and mass of the compound was investigated by single
quadrupole liquid chromatography-mass spectrometry (LC-MS) and triple quadrupole LC-MS/MS

analysis.

Hippocampus

Figure 2.9: Memory Enhancement Study in the Hippocampus of the Brain of Mice
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2.4. Results and Discussion

2.4.1. Results from MTT Assay

One of our synthetic compounds were found to be active against prostate cancer cell line. We
performed MTT assay, a colorimetric assay for assessing cell metabolic activity, reflects the
number of viable cells present. MTT, a yellow tetrazole, is reduced to purple formazan in living
cells and increasing amounts of cells resulted in increased purple coloring. Cpd 1, Cpd 1°, Cpd 5,
and Cpd 5” were tested for MTT assay with DU-145 prostate cancer line. The result showed that
Cpd 1, Cpd 5 and Cpd 5’ are not active which were shown from the cell viability. The cell viability

was compared with market drug FK228 (Figure 2.10)

FK228 % Viability Cpd 1 % Viability
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Figure 2.10: Activity Measurement by Cell Viability of Cpd 1, Cpd 5, and Cpd 5’
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When our synthetic compounds were not active, we thought this is due to the purity. To make
purer, the mixture was first purified by Hi-Flash Column (ODS-C18, 3.0x16.5 cm, 50 um,
Yamazen A1-580), 0-20min 20-100% ACN/H20 20ml/min and the detection wave length was set
at 210 nm. The peak was collected at 8-12min. Then this peak was injected in HPLC (Varian
ProStar) with the column (Prep-C18, 21.2x250 mm, 10 um) system and 35 % ACN/H20 was used

to elute the column under the flow rate of 8ml/min (Figure 2.11).

Cexpiay

w©
eashold El ° 2

g

TrsDiaw I |

spacing § |

Cogecton (® e Reat

e p5I%L . 4408
APAEATIELE L AN AN LA

Figure 2.11: Purification of Cpd 1’ and Cpd 5 by Yamazen Flash Column and HPLC
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We separated two diestereoisomers of our synthetic compounds by silica gel column
chromatography. After collecting pure product, activity of the compounds were tested, and this

time also two diesteromeres of compound 5 were not active (Figure 2.12);
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Figure 2.12: Activity Measurement by Cell Viability of Diastereomers A and B of Cpd 5
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When Cpd 1, Cpd 5, and Cpd 5’ did not show any activity against, we tested Cpd 1’ for the same
assay with similar line. Surprisingly we found that Cpd 1’ has activity in MTT assay (Figure 2.13).
When 3.1 uM solution of Cpd 1’ was used for the assay, it showed there was no cell death, all cells
are viable. The statement was almost true for 6.2 uM and 12.5 uM solution of Cpd 1°, cells are
viable 90% and 80%, respectively. When 25uM solution was tested it was found that 1lmost 80%

cells are death and 20% cells are viable. So, the Cpd 1’ was active against prostate cancer cell line.
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Figure 2.13: Activity of Cpd 1’ in DU-145 Prostate Cancer Cell Line
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2.4.2. Results from H3 Acetylation Assay

We found that Cpd 1 is active, and more than 80% cell are dead in MTT assay. But we wanted to
make sure the cell death is due to our synthetic compound or other reason. To make sure our
compound is active, and it can acetylase the histones, we performed H3-acetylation assay. From
the H3-acetylation assay, we confirmed that our synthetic compound Cpd 5 and Cpd 5’ are not
active in H3-acetylation assay (Figure 2.14). All results are compared with DMSO control, and

blue colors are shown as non-acetylated histone and green colors are acetylated histones.

DMSO control Cpd 5in 25 uM
Cpd 5’ in 50 pM Cpd 5in 50 uM

Figure 2.14: Activity of Cpd 5 and Cpd 5’ in DU-145 Prostate Cancer Cell Line
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In H3-acetylation assay, Cpd 1 and Cpd 1’ were also tested and found that Cpd 1’ is also active
in this assay (Figure 2.15). All results are compared with DMSO control, and blue colors are

shown as nuclear stain (non-acetylated histone) and green colors are acetylated histones.

Blank DMSO

Cpd 1in50 uM Cpd 1’ in 50 uM

Figure 2.15: Activity of Cpd 1 and Cpd 1’ active in DU-145 Prostate Cancer Cell Line
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When it was shown that Cpd 1’ was active and it acetylated the histone in 50 solution, then it was
also tested with lower concentration of Cpd 1°. All the results are compared with market drug FK
228 (Figure 2.16). It was found that Cpd 1’ had medium acetylation with the concentration 12.5

uM and 25 uM. Deep green color indicated that higher acetylation, and light green indicated

medium acetylation.

FK 228 in 10 nM Cpd 1’ in 12.5 uM

Cpd 1’ in 25 uM Cpd 1’ in 50 uM

Figure 2.16: Activity of Cpd 1’ in Different Concentration in DU-145 Prostate Cancer Cell Line
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2.4.3. Results from In-Vivo Studies

Our synthetic compound 1’ was also tested for memory enhancement study in mice. It is known
that if the compound enters the hippocampus of the brain and inhibit HDAC activity, then memory
enhancement could occur. Because HDAC 2 and HDAC 3 blocks neural plasticity and impair
memory. From the behavioral study of mice and in vivo test, it was shown that our compound can
increase the memory. It was found from the ip injection of mice that; our compound was present
in the hippocampus for 10 min with 40 mg/kg and 20 mg/kg dose respectively (Figure 2.17). Our

synthetic compound was identified with respect to internal standard 4, 5-diphenyl imidazole.
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Figure 2.17: Compound was Found in Hippocampus In Vivo Study with Cpd1’
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It was also found from the ip injection of mice that; our synthetic compound Cpd 1’ was present
in the other parts of the brain for in vivo 10 min with 40 mg/kg and 20 mg/kg dose respectively
(Figure 2.18). Our synthetic compound was identified with respect to internal standard 4, 5-

diphenyl imidazole which are shown on left peak of the figure (Figure 2.18).
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Figure 2.18: Compound was Found in Other Parts of the Brain In Vivo Study with Cpd1’
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Several in vivo studies were done with our synthetic compound, Cpd 1’ was done with the
collaboration of Biology department and Psychology Department. All the in vivo studies are found
to be positive. The compound is detectable in blood, brain, and liver (Figure 2.19). Our synthetic
compound was identified with respect to internal standard 4, 5-diphenyl imidazole which are

shown on the figure using average area ratio of compound and internal standard (Figure 2.19).
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Figure 2.19: Presence of Cpd 1’in Blood, Brain, and Liver
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The plasma stability assay (PSA) is to measure the degradation of compounds in plasma. This is
the in vitro absorption, distribution, metabolism, and elimination (ADME) screening system. It
was also found from PSA study that our synthetic compound Cpd 1’ was present it was found that

our compound is stable with 8.9 hours half-life (Figure 2.20).
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Figure 2.20: Plasma Stability Assay (PSA) with Cpd1’
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2.5. Conclusion

In conclusion, histone deacetylase inhibitors are an exciting new class of medicines with broad
applications. We synthesized a set of compounds based on the scaffold of the FK228 in our lab,
among them Cpd 1’ was found to be active against DU-145 prostate cancer cell line.
Comprehensive pharmacokinetic studies, more behavioral study on mice are currently underway.
Our group has been making different analogs of Cpd 1’as well as the modification of Cpd 1’ to
have a most active compound as anti-cancer agent as well Alzheimer’s disease.

OH O
Xows\swwok
O OH

Cpd1’

Our group has been planning to make a best drug by the following changes in future;

1. By making the monomer of our synthetic compound Cpd 1’

OH O
HS/\/\/g\/U\Ok
2. By the reduction of double for making the longer chain of Cpd 1’
OH O
ws o~ A

3. By making R/S enantiomer by the kinetic resolution of Cpd 1’

OH O J< OH O
Hs/\/\/\/u\o HS/\/WJ\QJ<

R-Cpd1’ S-Cpd1’
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2.6. General Methods and Experimental

2.6.1. General Consideration

All reactions were performed under a dry nitrogen atmosphere using standard Schlenk techniques
unless otherwise noted. All reaction vessels were flame dried under vacuum and filled with
nitrogen prior to use. Reagents and solvents were purchased from Sigma-Aldrich, Milwaukee. All
'H and 3C NMR spectra were recorded in CDCls (internal standard: 7.26 ppm, H; 77.16 ppm,
13C) at room temperature with a Burker 300 MHz and 500 MHz spectrometers. The chemical shifts
(0) are given in parts per million (ppm) and the coupling constants in Hertz (Hz). The following
abbreviations are used: s-singlet, d-doublet, t-triplet, g-quartet, m-multiplet. Previously reported
compounds were identified by *H NMR. All new compounds were additionally characterized by
H NMR, 3C NMR and high-resolution mass spectrometry (HRMS). HRMS were obtained using
electrospray ionization (ESI) technique. For column chromatography, silica gel (35-70 microns)
was used. Thin layer chromatography (TLC) was performed on aluminium backed plates pre-
coated (0.25 mm) with Silica Gel 60 F254 with a suitable solvent system and was visualized using
UV fluorescence and/or iodine chamber. The crude reaction mixture was first purified by Hi-Flash
Column (ODS-C18, 3.0x16.5 cm, 50 um, Yamazen A1-580), 0-20min 20-100% ACN/H.O
20ml/min and the detection wave length was set up at 210 nm. The peak was collected at 8-12min.
Then this peak was injected in the high-performance liquid chromatography (HPLC) (Varian
ProStar) with the column (Prep-C18, 21.2x250 mm, 10 um) system and 40 % ACN/H20 was used

to elute the column under the flow rate of 8 ml/min.
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2.6.2. Experimental:
3-(Tritylthio)propanal, 3:

Et;N, CH,Cl,
TrSH -+ N~o - Trts” "0

1 2 25°C, 2h 3

A round bottom flask was charged with triphenylmethanethiol (5.0 g, 18.1 mmol). The flask was
put under argon and the contents of the flask were dissolved in dichloromethane (50 mL).
Triethylamine (3.0 mL, 21.7 mmol, 1.2 equiv.) was added to the mixture and was stirred for
additional 10 minutes. Acrolein (1.2 mL, 18.1 mmol) was added to the mixture dropwise and was
stirred for 2 hours and was then concentrated in vacuo. The crude product was purified by flash
column chromatography with a 25% ethyl acetate/hexane solution until the product spot eluted.
The product, 3-(tritylthio)propanal was purified by recrystallization with toluene and collected 5.3
g with 88% yield 3. Compound 3 was confirmed®* by comparing spectra to known NMR. H
NMR (CDCls, 500 MHz): & (ppm) 9.59 (s, 1H), 7.47 (d, J = 10.0 Hz, 6H), 7.47 (g, J = 7.5 Hz,
6H), 7.26 (t, J = 5.0 Hz, 3H), 2.51 (t, J = 7.5 Hz, 2H), 2.41 (t, J = 7.5 Hz, 2H); 13C NMR (CDCls,

125 MHz): 6 (ppm) 200.4, 144.5, 129.6, 128.0, 126.8, 67.0, 42.7, 24.4.

(E)-5-(tritylthio)pent-2-enal, 6:

CeHg
TtS” "0 . HCOCH=P(C(Hs); — TrS " N"Xq
4 ; 80 °C, 12h 6

A round bottom flask was charged with 3-(tritylthio)propanal (5.0 g, 15.0 mmol, 1 equiv.) and 2-

(triphenylphosphoranylidene) (5.3 g, 16.6 mmol, 1.1 equiv.). The flask was put under argon and
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the contents of the flask were dissolved in benzene (100 mL). The solution was then refluxed
overnight. When all starting materials were found to be disappeared, the reaction mixture was
allowed to cool to room temperature and was then concentrated in vacuo. The crude product was
separated via column chromatography and the column was run with a 20% ethyl acetate/hexane
solution until the product spot eluted. And then the product was purified by recrystallization with
toluene to give 3.8 g (70%) of pure product 6. Compound 6 was confirmed*®* by comparing spectra
to known NMR. H NMR (CDCls, 500 MHz): & (ppm) 9.46 (g, J = 7.5 Hz, 1H), 7.47 (d, J = 5.0
Hz, 6H), 7.33 (d, J = 5.0 Hz, 6H), 7.26 (d, J = 5.0 Hz, 3H), 6.68-6.63 (m, 1H), 6.02 (dd, J = 15.0,
5.0 Hz, 1H), 2.39-2.33 (m, 4H); 13C NMR (CDCls, 125 MHz): & (ppm) 193.8, 155.8, 144.6, 133.7,

129.6, 128.0, 126.8, 67.0, 31.8, 30.1.

(E)-tert-butyl 3-hydroxy-7-(tritylthio)hept-4-enoate, 9:

o~ )CL /k n-BuLi, DIPEA OH O

TS N e s A K
o o T TrtS N o
7 8

THF, -78 °C, 3h 9

A round bottom flask was charged with THF (50 mL) and cooled to -78 °C under nitrogen. Later,
diisopropylethylamine (DIPEA) (9.4 mL, 53.8 mmol, 5.5 equiv.) and n-butyllithium (21.5 mL,
53.8 mmol, 5.5 equiv.) were added dropwise at -78°C and was stirred for 1 hour. Tert-butyl acetate
(6.6 mL, 48.9 mmol, 5 equiv.) was added at -78°C and was allowed to stir for additional 1 hour.
Lastly, (E)-5-(tritylthio)pent-2-enal (3.5 g, 9.8 mmol, 1 equiv.) was added and the mixture was
stirred for 45 min at -78°C. The reaction was quenched with a saturated solution of NH4CI (25
mL) and then concentrated in vacuo to remove the organic solvent. Then dichloromethane was

added to aqueous mixture and the two phases were separated. After collecting the bottom organic
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layer, the aqueous layer was extracted two more times with dichloromethane and the organic layers
were combined. The organic layer was washed with NaHCO3 solution, brine, then dried over
anhydrous Na»SOs4, and concentrated in vacuo. The residue was purified with flash column
chromatography on silica gel (ethyl acetate/ hexane, 1:9) to afford 3.6 g (78%) of product, (E)-1-
tert-butoxy-4-hydroxy-8-(tritylthio)oct-5-en-2-one as a white solid 9. '"H NMR (CDCls, 500
MHz): § (ppm) 7.46 (d, J = 5.0 Hz, 6H), 7.32 (t, J = 7.5 Hz, 6H), 7.25 (t, J = 7.5 Hz, 3H), 5.64-
5.58 (m, 1H), 5.45 (dd, J = 15.0, 5.0 Hz, 1H), 4.43 (s, 1H), 3.09 (s, 1H), 2.48-2.42 (m, 2H), 2.25
(t, 3 =5.0 Hz, 2H), 2.13 (t, J = 7.0 Hz, 2H), 149 (s, 9H); 3C NMR (CDCls, 125 MHz): 5 (ppm)
171.8, 144.9, 132.1, 129.9, 129.6, 127.9, 126.6, 81.3, 68.7, 66.6, 42.4, 31.5, 31.4, 28.2. HRMS

ESI+): Calculated (m/z) for C3oH3403S (M+Na)*: 497.2121, Found 497.2129.
(

(E)-3-hydroxy-7-(tritylthio)hept-4-enoic acid, 10:

OH O LiOH (20 equiv.) /\/\/({/(i
_ N
TrtS/\/\/g\/U\ok > TrtS OH

9 THF/H,0 (4:1), 50 °C 10

(E)-tert-butyl 3-hydroxy-7-(tritylthio)hept-4-enoate (3.0 g, 6.3 mmol, 1.0 equiv.) was dissolved in
a 4:1 ratio of THF/water (50 mL). Next, lithium hydroxide (3.0 g, 126.5 mmol, 25 equiv.) was
added. The solution was then heated to 50 °C and stirred for 12 hours. The reaction was then diluted
with water (20 mL) and then acidified to a pH of 4-5 with KHSO4. The aqueous layer was extracted
with ethyl acetate (20 mL) four times. The organic layers were combined and washed with water,
brine, dried over anhydrous sodium sulfate, and concentrated in vacuo. The residue was purified
with flash column chromatography on silica gel (ethyl acetate/ hexane, 9:10) and obtained 2.5 g

(95%) of product as a white solid, 10. Compound 10 was confirmed®* by comparing spectra to
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known NMR. *H NMR (CDCls, 300 MHz): & (ppm) 7.43 (d, J = 6.0 Hz, 6H), 7.30 (t, J = 7.5 Hz,
6H), 7.25 (t, J = 6.0 Hz, 3H), 5.66-5.57 (m, 1H), 5.44 (dd, J = 15.0, 6.0 Hz, 1H), 4.48 (q, J = 6.0
Hz, 1H), 2.56 (d, J = 6.0 Hz, 2H), 2.25 (t, J = 7.5 Hz, 2H), 2.11 (g, J = 6.0 Hz, 2H); 3C NMR
(CDCls, 75 MHz): § (ppm) 177.3, 144.9, 131.6, 130.7, 129.6, 127.9, 126.7, 68.5, 66.7, 41.3, 31 4,

31.3.

(4E,4'E)-di-tert-butyl 7,7'-disulfanediylbis(3-hydroxyhept-4-enoate), Cpd 1°:

OH O o OH O
Trtswok g fs o

MeOH/CH,CI, (10:1) ,
10 0°C, 12h Cpd 1

2

lodine (0.27 g, 2.1 mmol, 1.0 equiv.) and sodium acetate (0.17 g, 0.464 mmol, 2.0 equiv.) were
dissolved in a 10:1 solution of CH.Cl,/MeOH (15 mL) at 0 °C. (E)-tert-butyl 3-hydroxy-7-
(tritylthio)hept-4-enoate (1.0 g, 2.1 mmol, 1.0 equiv.) was dissolved in a 10:1 solution of
CHCl>/MeOH (10 mL) and was added dropwise over 20 minutes to the first solution containing
iodine and sodium acetate. This solution was then allowed to stir for additional 2 hour. The reaction
was quenched by adding a saturated sodium thiosulfate (Na2S203) solution until the mixture turned
clear. Then, brine (5 mL) was added and the phases were separated. The aqueous layer was
extracted with dichloromethane (3 x 15 mL) and then with ethyl acetate (3 x 15 mL). The organic
layers were combined, dried over Na>SOa, and concentrated in vacuo. The crude reaction mixture
was first purified by Hi-Flash Column (ODS-C18, 3.0x16.5 cm, 50 um, Yamazen A1-580), O-
20min 20-100% ACN/H.0O 20ml/min and the detection wave length was set up at 210 nm. The

peak was collected at 15-20 min. Then this peak was injected in the HPLC (Varian ProStar) with
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the column (Prep-C18, 21.2x250 mm, 10 um) system and 70 % ACN/H20 was used to elute the
column under the flow rate of 8 ml/min. The wavelength was set at 200 nm to detect the compound
and 0.66 g of the pure compound Cpd 1° was collected at 22-25 min. (68 % yield). The residue
was purified with flash column chromatography on silica gel (hexane/ethyl acetate, 7:3) using
triethyl amine (TEA) with similar yield. *H NMR (CDCls, 300 MHz): & (ppm) 5.70-5.60 (m, 1H),
5.48 (dd, J = 15.0, 6.0 Hz, 1H), 4.38 (g, J = 6.0 Hz, 1H), 3.3 (s, 1H), 2.64 (t, J = 7.5 Hz, 2H), 2.38-
2.31(m, 4H), 1.38 (s, 9H); 13C NMR (CDCls, 125 MHz): § (ppm) 171.6, 132.8, 129.1, 81.2, 68.7,
425, 38.1, 31.8, 28.1. HRMS (ESI+): Calculated (m/z) for C22Has0sS2Na (M+Na)* : 485.2002,

Found 485.1995.

(4E, 4'E)-7,7"-disulfanediylbis(3-hydroxyhept-4-enoic acid), Cpd 1:

OH O

I,, NaOA on 0
2 TaPAC > - /VWL
Trts/\/\/é\/u\orl fs °H>2

MeOH/CH,Cl, (10:1)
10 0°C,12h Cpd 1

lodine (0.30 g, 2.4 mmol, 1 equiv.) and sodium acetate (0.20 g, 2.4 mmol, 1.0 equiv.) were taken
in round bottomed flask and then dissolved in a 10:1 solution of CH2Cl,/MeOH (15 mL) at 0 °C.
(E)-3-hydroxy-7-(tritylthio)hept-4-enoic acid (1.0 g, 2.4 mmol, 1 equiv.) was dissolved in a 10:1
solution of CH2Cl,/MeOH (10 mL) and was added dropwise over 20 minutes to the solution
containing iodine and sodium acetate. This solution was then allowed to stir for additional 2 hour.
The reaction was quenched by adding a saturated sodium thiosulfate (Na.S.03) solution until the
reaction mixture turned clear. Brine (5 mL) was added and the phases were separated. The
aqueous layer was extracted with dichloromethane (3 x 15 mL) and then with ethyl acetate (3 x 15

mL). The organic layers were combined, dried over Na>SOs, and concentrated in vacuo. The
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residue was purified with flash column chromatography on silica gel with 100% ethyl acetate. 0.50
g pure product Cpd 1 was obtained with 70% yield. *H NMR (CD3zOD, 300 MHz): & (ppm) 5.80-
5.71 (m, 1H), 5.62 (dd, J = 15.0, 6.0 Hz, 1H), 4.48 (g, J = 6.0 Hz, 1H), 2.76 (t, J = 7.5 Hz, 2H),
2.49-2.43 (m, 4H); 3C NMR (CDsOD, 75 MHz): & (ppm) 173.7, 133.3, 128.7, 68.6, 42.1, 37.7,

31.6.

(2S)-methyl 2-((E)-3-hydroxy-7-(tritylthio)hept-4-enamido)hexanoate, 11:

OH 0 oymor, PEA, CHicH i
Y , , >z /\/\)\/U\
TrtS/\/WJ\OH - Trts N N SNy
10 25°C, 12h 11 H o

(E)-3-hydroxy-7-(tritylthio)hept-4-enoic acid (2.0 g, 4.8 mmol, 1 equiv.) and D-methionine methyl
ester hydrochloride salt (0.87 g, 4.8 mmol, 1.0 equiv.) were dissolved in anhydrous
dichloromethane (50 mL) under nitrogen. The reaction was cooled to 0 °C and then benzotriazol-
1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (3.0 mg, 5.7 mmol, 1.2 equiv.)
was added. The solution stirred for 20 min and then DIPEA (3.3 mL, 19.0 mmol, 4.0 equiv.) was
added to the solution. The reaction was allowed to warm to 25 °C and stirred for 12 hr. It was then
quenched with a saturated NH4Cl, extracted with dichloromethane (3 x 15 mL), washed with brine,
dried over NaSOg, and then concentrated in vacuo. The residue was purified with flash column
chromatography on silica gel (hexane/ethyl acetate, 3:2) and obtained 2.2 g (81%) of product 11
as a white solid. Compound 11 was confirmed*®* by comparing spectra to known NMR. 'H NMR
(CDCls, 300 MHz): & (ppm) 7.43 (d, J = 10.0 Hz, 6H), 7.30 (t, J = 7.5 Hz, 6H), 7.24 (d, J = 10.0
Hz, 3H), 6.43 (d, J = 5.0 Hz, 1H), 5.62-5.56 (m, 1H), 5.45 (dd, J = 15.0, 5.0 Hz, 1H), 4.64-4.60
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(m, 1H), 4.4 (s, 1H), 3.76 (s, 3H), 3.50 (s, 1H), 2.45 (dd, J = 15.0, 5.0 Hz, 1H), 2.37 (dd, J = 15.0,
10.0 Hz, 1H), 2.24 (t, J = 7.5 Hz, 2H), 2.11 (t, J = 5.0 Hz, 1H), 1.87-1.83 (m, 1H), 1.68 (d, J = 5.0
Hz, 1H), 1.33 (d, J = 5.0 Hz, 4H), 0.92 (t, J = 7.5 Hz, 3H); 3C NMR (CDCls, 75 MHz): & (ppm)
173.1,171.5, 144.9, 132.2, 130.2, 129.6, 127.9, 126.6, 69.1, 66.6, 52.4, 52.1, 42.6, 32.1, 31.5, 31.4,

27.4,22.3,13.9.

(2S)-2-((E)-3-hydroxy-7-(tritylthio)hept-4-enamido)hexanoic acid, 12:

OH O
/\/\)\/U\ o HioH (20 eqUiv.) /\/\/?i/[?\
Trts N ~ - Trts N N OH
1 H 9 THF/H,O (4:1), 50 °C 12 Ho

(2S)-methyl 2-((E)-3-hydroxy-7-(tritylthio)hept-4-enamido)hexanoate (2.0 g, 3.7 mmol, 1.0
equiv.) was dissolved in a 4:1 ratio of THF/water (25 mL). Next was added lithium hydroxide (2.2
mg, 91.7 mmol, 25 equiv.). The solution was then heated to 50°C and stirred for 12 hr. The reaction
was then diluted with 20 mL of water and then acidified to a pH of 4-5 with KHSO4. The aqueous
layer was extracted with ethyl acetate (36 x 15 mL). The organic layers were combined and washed
with water, brine, dried over anhydrous Na>SO4, and concentrated in vacuo. The residue was
purified with flash column chromatography on silica gel (ethyl acetate/hexane, 1:1) and obtained
1.8 g (92%) of product as a white solid 12. Compound 12 was confirmed*®* by comparing spectra
to known NMR. *H NMR (CDCls, 300 MHz): & (ppm) 7.43 (d, J = 10.0 Hz, 6H), 7.30 (t, J=7.5
Hz, 6H), 7.24 (t, J = 7.5 Hz, 3H), 6.68 (d, J = 5.0 Hz, 1H), 6.57 (d, J = 5.0 Hz, 1H), 5.61-5.56 (m,
1H), 5.47-5.41 (m, 1H), 4.57-4.44 (m, 1H), 4.46 (t, J = 10.0 Hz, 1H), 2.46-2.36 (m, 2H), 2.23 (t, J
= 7.5 Hz, 2H), 2.10 (t, J = 10.0 Hz, 1H), 1.91-1.87 (m, 1H), 1.72-1.68 (m, 1H), 1.35 (s, 4H), 1.29
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(s, 1H), 0.92 (t, = 5.0 Hz, 3H); 3C NMR (CDCls, 75 MHz): § (ppm) 175.6, 172.3, 146.9, 144.9,

129.6, 127.9, 127.3, 126.7, 69.2, 66.7, 52.3, 42.7, 31.7, 31.5, 31.4, 27.4, 22.3, 13.9.

(2S,2'S)-dimethyl-2,2'-(((4E,4'E)-7,7'-disulfanediylbis(3-hydroxyhept-4-enoyl))bis

(azanediyl))dihexanoate, Cpd 5’:

OH

OH
/\/\/g\/‘?\ |2, NaOAc - = /\/\/g\/[oj\
TrtS X N SN \<S N O\>
H H o 2

MeOH/CH,CI, (10:1)
11 o 0°C, 12h Cpd 5
lodine (0.70 g, 2.8 mmol, 1 equiv.) and sodium acetate (0.45 g, 5.5 mmol, 2 equiv.) were dissolved
in a 10:1 solution of CH2Cl./MeOH (15 mL) at 0°C. (2S)-methyl 2-((E)-3-hydroxy-7-
(tritylthio)hept-4-enamido)hexanoate (1.5 g, 2.8 mmol, 1 equiv.) was dissolved in a 10:1 solution
of CH.Cl>/MeOH (10 mL) and was added dropwise over 20 minutes to the first solution containing
iodine and sodium acetate. This solution was then allowed to stir for 2 hr. The reaction was
quenched by adding a saturated sodium thiosulfate (Na2S20s) solution until the reaction mixture
turned clear. Then brine (15 mL) was added and the phases were separated. The aqueous layer
was extracted with dichloromethane (3 x 15 mL) and then with ethyl acetate (3 x 15 mL). The
organic layers were combined, dried over Na;SOs, and concentrated in vacuo. The residue was
purified with column chromatography on silica gel (ethyl acetate, 100%) in presence of
triethylamine (TEA) and 1.2 g product was obtained with 75 % yield of Cpd 5°. *H NMR (CDCls,
500 MHz): § (ppm) 6.67 (d, J = 10.0 Hz, 1H), 5.79-5.73 (m, 1H), 5.60 (dd, J = 15.0, 5.0 Hz, 1H),
4.49 (g, J = 5.0 Hz, 1H), 4.51 (s, 1H), 3.90 (brs, 1H), 3.75 (s, 3H), 2.74 (t, J = 7.5 Hz, 2H), 2.51-
2.41 (m, 4H), 1.88-1.81 (m, 1H), 1.71-1.65 (m, 1H), 1.35-1.28 (m, 4H), 0.89 (t, J = 7.5 Hz, 3H);
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13C NMR (CDCl3, 125 MHz): § (ppm) 173.3, 171.8, 132.9, 129.3, 69.2, 52.4, 52.2, 42.9, 38.2,
31.8, 31.7, 275, 22.2, 13.8. HRMS (ESI+): Calculated (m/z) for CasHsiN2OsSy (M+H)* :

605.2925, Found 605.2914.

(25,2'S)-2,2'-(((4E,4'E)-7,7'-disulfanediylbis(3-hydroxyhept-4-enoyl))bis(azanediyl))

dihexanoic acid, Cpd 5:

MeOH/CH,Cl, (10:1)
12 o 0°C, 12h Cpd 5

OH O OH O
|2, NaOAc X /\/WL OH
/\/\/g\/u\ OH > S N
TrtS N H
H (o) 2

lodine (0.24 g, 1.8 mmol, 1 equiv.) and sodium acetate (0.23g, 3.8 mmol, 2 equiv.) were dissolved
in a 10:1 solution of CH2Cl2/MeOH (15 mL) at 0°C. (2S)-2-((E)-3-hydroxy-7-(tritylthio)hept-4-
enamido)hexanoic acid (1.0 g, 1.8 mmol, 1 equiv.) was dissolved in a 10:1 solution of
CH2Cl2/MeOH (10 mL) and was added dropwise over 20 minutes to the first solution containing
iodine and sodium acetate. This solution was then allowed to stir for 2 hr. The reaction was
quenched by adding a saturated sodium thiosulfate (Na2S203) solution until the reaction mixture
turned clear. Then brine (15 mL) was added and the phases were separated. The aqueous layer
was extracted with dichloromethane (3 x 15 mL) and then with ethyl acetate (3 x 15 mL). The
organic layers were combined, dried over Na>SOs, and concentrated in vacuo. The crude reaction
mixture was first purified by Hi-Flash Column (ODS-C18, 3.0x16.5 cm, 50 um, Yamazen Al-
580), 0-20min 20-100% ACN/H20 20ml/min and the detection wave length was set at 210 nm.
The peak was collected at 8-12min. Then this peak was injected in HPLC (Varian ProStar) with

the column (Prep-C18, 21.2x250 mm, 10 um) system and 35 % ACN/H20O was used to elute the
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column under the flow rate of 8ml/min. The wavelength was set at 200 nm to detect the compound
and 0.55 g of the pure compound was collected at 16-20 min. (55 % vyield). The residue was
purified with column chromatography on silica gel (dichloromethane/methanol, 20:1) with 84%
yield of Cpd 5. *H NMR (CDsOD, 500 MHz): & (ppm) 5.80-5.71 (m, 1H), 5.62 (dd, J = 15.0,
5.0 Hz, 1H), 4.45 (g, J = 7.5 Hz, 1H), 4.27 (g, J = 3.0 Hz, 1H), 3.76 (t, J = 7.5 Hz, 2H), 2.45 (t, J
= 7.5 Hz, 4H), 1.85 (t, J = 7.5 Hz, 1H), 1.68 (g, J = 6.0 Hz, 1H), 1.36 (s, 4H), 0.93 (t, J = 3.0 Hz,
3H); 3C NMR (CDsOD, 125 MHz): § (ppm) 177.9, 171.4, 133.6, 128.5, 69.0, 54.9, 43.6, 37.7,
32.4, 31.6, 27.6, 22.3, 13.0. HRMS (ESI+): Calculated (m/z) for CasHaaN20sS2 (M+H)* :

577.2612, Found 577.2610.

(E)-3-hydroxy-N-phenyl-7-(tritylthio)hept-4-enamide, 13:

)
FR EDCI, TEA, DMAP ™a @
TrtS/\/WLOH — - TrtS/\/\/é\/U\N

0 °C-rt, 12h 13 H

10

(E)-3-hydroxy-7-(tritylthio)hept-4-enoic acid (200 mg, 0.48 mmol, 1 equiv.) and aniline (45 uL,
0.48 mmol, 1.0 equiv.) were dissolved in anhydrous dichloromethane (10 mL) under nitrogen. The
reaction was cooled to 0 °C. Then, 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC, EDAC
or EDCI) (82 mg, 53 mmol, 1.2 equiv.) and 4-dimethylaminopyridinewas (DMAP) (86 mg, 0.12
mmol, 0.25 equiv. were added to the solution of carboxylic acid and aniline. The reaction was
allowed to warm to 25°C and stirred for 12 hr. It was then quenched with a saturated NaHCO3 (10
mL), extracted with dichloromethane (3 x 15 mL), washed with brine, dried over Na>SOs, and then

concentrated in vacuo. The residue was purified with column chromatography on silica gel
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(hexane/ethylacetate, 3:2) and obtained 189 mg of pure product 13 with 80% vyield. H NMR
(CDCls, 500 MHz): & (ppm) 7.96 (brs, 1H), 7.50 (d, J = 9.0 Hz, 2H), 7.43 (d, J = 9.0 Hz, 6H),
7.35-7.20 (m, 11H), 7.14 (d, J = 9.0 Hz, 1H), 5.66-5.57 (m, 1H), 6.02 (dd, J = 15.0, 6.0 Hz, 1H),
4.52 (s, 1H), 3.15 (s, 1H), 2.53 (t, J = 4.5 Hz, 2H), , 2.24 (t, J = 6.0 Hz, 2H), 2.11 (t, J = 6.0 Hz,
2H); 13C NMR (CDCls, 125 MHz): & (ppm) 169.9, 144.9, 137.6, 132.2, 130.5, 129.6, 129.0,
127.9, 126.7, 124.5, 120.1, 69.3, 66.7, 43.9, 31.4, 31.3. HRMS (ESI+): Calculated (m/z) for

C32H31N202S (M+H)" : 492.2003, Found 492.1930.

(4E,4'E)-7,7'-disulfanediylbis(3-hydroxy-N-phenylhept-4-enamide), Cpd 7:

OH O
OH O l,, NaOAc *
A~ AN - Ps o
TrtS N H 2

N MeOH/CH,CI, (10:1)
13 0°C, 12h Cpd7

lodine (26 mg, 0.20 mmol, 1.0 equiv.) and sodium acetate (33 mg, 0.40 mmol, 2.0 equiv.) were
dissolved in a 10:1 solution of CH:Cl/MeOH (5 mL) at 0°C. (E)-3-hydroxy-N-phenyl-7-
(tritylthio)hept-4-enamide (100 mg, 0.20 mmol, 1.0 equiv.) was dissolved in a 10:1 solution of
CH2Cl>/MeOH (5 mL) and was added dropwise over 20 minutes to the first solution containing
iodine and sodium acetate. This solution was then allowed to stir for 2 hr. The reaction was
quenched by adding a saturated sodium thiosulfate (Na2S203) solution until the reaction mixture
turned clear. Then, brine (5 mL) was added and the phases were separated. The aqueous layer
was extracted with dichloromethane (3 x 5 mL) and then with ethyl acetate (3 x 5 mL). The organic
layers were combined, dried over Na>SOs, and concentrated in vacuo. The residue was purified
with column chromatography on silica gel (dichloromethane/methanol, 50:1) and obtained 65 mg
white solid with 65.5 % yield of Cpd 7. 'H NMR (CDsOD, 300 MHz): é (ppm) 7.55 (d, J = 6.0
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Hz, 2H), 7.31 (t, J = 7.5 Hz, 2H), 7.10 (t, J = 7.5 Hz, 1H), 5.81-5.71 (m, 1H), 5.64 (dd, J = 15.0,
6.0 Hz, 1H), 4.56 (q, J = 6.0 Hz, 1H), 2.68 (t, J = 7.5 Hz, 2H), 2.56 (t, J = 7.5 Hz, 2H), 2.41 (q, J
= 6.0 Hz, 2H); 13C NMR (CDsOD, 75 MHz): § (ppm) 170.4, 138.3, 133.4, 128.9, 128.4, 123.8,
119.9, 69.2, 44.5, 37.7, 31.5. HRMS (ESI+): Calculated (m/z) for CzsHz2N204S; (M-H) :

499.1731, Found 499.1656.

(E)-N-(tert-butyl)-3-hydroxy-7-(tritylthio)hept-4-enamide, 14:

OH O o CHC OH O
PyBOP, DIPEA, CH,CI /\/\)\/[L J<
Trts/\/\/g\/U\OH + HzN‘é 7% Tris X

N
25°C, 12h 14 H
10 ’

(E)-3-hydroxy-7-(tritylthio)hept-4-enoic acid (500 mg, 1.2 mmol, 1.0 equiv.) and tertiary butyl
amine (125 um, 1.2 mmol, 1.0 equiv.) were dissolved in anhydrous dichloromethane (15 mL)
under nitrogen. The reaction mixture was cooled to 0O °C and then benzotriazol-1-yl-
oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) (746 mg, 1.4 mmol, 1.2 equiv.) was
added. The solution stirred for 20 min and then DIPEA (832 uL, 1.19 mmol, 4 equiv.) was added.
The reaction was allowed to warm to 25°C and stirred for 12 hr. It was then quenched with a
saturated NH4Cl, extracted with dichloromethane (3 x 5 mL), washed with brine, dried over Nao-
S04, and then concentrated in vacuo. The residue was purified with column chromatography on
silica gel (hexane/ethylacetate, 1:1) and obtained 407 mg white solid with 72 % vyield of 14. 'H
NMR (CDCls, 500 MHz): & (ppm) 7.43 (d, J = 10.0 Hz, 6H), 7.30 (t, J = 7.5 Hz, 6H), 7.23 (t, J =
7.5 Hz, 3H), 5.66 (brs, 1H), 5.60-5.54 (m, 1H), 5.42 (dd, J = 15.0, 5.0 Hz, 1H), 4.40 (t, J = 7.5 Hz,
1H), 3.15, 3.92 (s, 1H), 2.31-2.21 (m, 4H), 2.12-2.07 (m, 2H), 1.35 (s, 9H); 3C NMR (CDCls,

125 MHz): & (ppm) 171.3, 144.9, 132.4, 129.7, 129.6, 127.9, 126.6, 69.3, 66.6, 51.4, 43.2, 31.5,
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31.4, 28.8. HRMS (ESI+): Calculated (m/z) for C3oH3sNO2S (M+Na)* : 496.2281, Found

496.2390.

(4E,4'E)-7,7'-disulfanediylbis(N-(tert-butyl)-3-hydroxyhept-4-enamide), Cpd 8:

OH O
/\/\/?:/[?\ J< 'z NaOAc - /\/\)\/lL J<>
Trts X N s N

MeOH/CH,CI, (10:1) H 2
H 2Cl;
14 0°C, 12h Cpd 8

lodine (107 mg, 0.85 mmol, 1.0 equiv.) and sodium acetate (69 mg, 1.7 mmol, 2.0 equiv.) were
dissolved in a 10:1 solution of CH2Cl,/MeOH (15 mL) at 0°C. (E)-N-(tert-butyl)-3-hydroxy-7-
(tritylthio)hept-4-enamide (400 mg, 0.85 mmol, 1.0 equiv.) was dissolved in a 10:1 solution of
CHCI>/MeOH (5 mL) and was added dropwise over 20 minutes to the first solution containing
iodine and sodium acetate. This solution was then allowed to stir for 2 hr. The reaction was
quenched by adding a saturated sodium thiosulfate (Na2S203) solution until the reaction mixture
turned clear. Then, brine (5 mL) was added and the phases were separated. The aqueous layer
was extracted with dichloromethane (3 x 10 mL) and then with ethyl acetate (3 x 10 mL). The
organic layers were combined, dried over Na,SOs, and concentrated in vacuo. The residue was
purified with column chromatography on silica gel (dichloromethane/methanol, 20:1) and
obtained 264 mg white solid with 68 % yield. *H NMR (CDCls, 500 MHz): & (ppm) 5.93 (s, 1H),
5.75-5.70 (m, 1H), 5.56 (dd, J = 15.0, 5.0 Hz, 1H), 4.45 (s, 1H), 4.22 (s, 1H), 2.74 (t, J = 7.5 Hz,
2H), 2.68 (g, J = 10.0 Hz, 2H), 2.33-2.25 (m, 2H), 1.35 (s, 9H); 3C NMR (CDCls, 125 MHz): §

(ppm) 171.4, 133.1, 129.0, 69.3, 51.4, 43.2, 38.3, 31.8, 28.8.
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PART I11: ACID CATALYZED REACTIONS OF AROMATIC KETONES
WITH ETHYL DIAZOACETATE
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3.1. INTRODUCTION
3.1.1. 3-Hydroxyacrylates:

3-Hydroxyacrylates and their related 3-oxo-esters are useful precursor to synthesize important

9,10

biologically active compounds!~, drugs compounds®?®, natural products®'®, quaternary carbon

11-14 15-17 5

center containing compounds "%, and common monomer in polymer >’ industry because of their
multifunctional groups reactivity. In organic syntheses, these monomers can also be utilized in
Michael additions with enolates, amines, and thiols and enantioselective Michael and Mannich
type reaction with S-keto esters.!®?2 Due to the multifunctionality, presence of a prochiral center,
and preferable substrate scope; 3-hydroxyacrylates have tremendous potential for further
downstream synthesis of important biologically active compounds.?* 2* Therefore, increasing
efforts have been devoted to the development of efficient protocols for the synthesis of this

valuable scaffold by using commercially available starting materials in shorter steps.>>*

3.1.2. Lewis Acid Catalyzed Reaction:

Roskamp and his co-worker reacted carbonyl compounds and ethyl diazoacetate (EDA) in
presence of commercial Lewis acids such as BF3, ZnCl,, ZnBr2, AlCl3, SnCly, GeClz, and SnCly,
and they reported f-keto esters only.?” In 1998, our group reported an unprecedented formation of

3-hydroxyacrylates from the reactions of aromatic aldehydes with EDA in the presence of iron

Lewis acid [n’-(CsHs)Fe"(CO)2(THF)]BF4 1 as a catalyst by a unique 1,2-aryl shift (Scheme 3.1).%8

0]

OH
o) | O O
1 o
R—: AN H . Nzyj\o/\ R_l X V‘F | AN O/\
= DCM, 0 °C ~ 0 R
z 3

Scheme 3.1: Iron Lewis Acid Catalyzed Synthesis of 3-Hydroxyacrylates by Hossain et al.
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In the presence of 10 mol% of iron Lewis acid, benzaldehyde was found to consume all the EDA
to provide 58% of 3-hydroxyacrylate 2a and 25% of 3-oxo ester 3a at room temperature. The

mechanism of the reaction is shown in the following figure (Figure 3.1).

H__OH P
| Fo BF4
COOEt AN
“ol O
oC

Fe BF4
oc™” ‘
oC
O
COOEt
3
? Fe\Bf"'_
o Fe\o H C\\ ‘ 0
oc ‘ CHCOOE! oC
N,CHCOOEt

Figure 3.1: Mechanism of Formation of 3-Hydroxyacrylate Using Iron Lewis Acid
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It was found that the yields of enol esters increased at lower temperatures than room temperature.
For example, at 0 °C, the yield of the reaction of EDA and benzaldehyde increased to 70% vyield
of 2a and 19% of 3a. Surprisingly, when the reaction was run at lower temperature such as at -78
°C, the yield of 3-hydroxyacrylates remained the same. When EDA and aldehyde were treated
without catalyst under the same reaction conditions, neither of the products was formed, and only
starting materials were isolated from the reaction mixture. The effects of substituents on
benzaldehyde upon formation of enol esters vs keto esters was determined by the reactions of other
aromatic aldehydes were investigated. It was found that the yields of enol esters were observed to
be dependent on the nature of the substituent on benzaldehyde. With electron- rich aldehydes, the
only product isolated was 3-hydroxyacrylate; no formation of 3-oxo-ester was observed. However,
in the presence of electron-withdrawing groups in the aldehyde the yield of 3-hydroxyacrylates
were low. The reaction mechanism was not been fully investigated at that time.

Kanemasa et al. also described the similar results to ours by utilizing Lewis acid ZnCl» in the

)_29

presence of chlorotrimethylsilane as catalyst (Scheme 3.2).”” They also mentioned that the types

of products depending upon the nature of Lewis acid catalysts employed. Reactions catalyzed by

Lewis acids SnClz and SnCly yielded 3-oxo-ester via nucleophilic 1, 2-hydride migration.
i 9 ZnCl,, (CH;);SiCl | 71
@H v NZ%)LO/\ e, (CHT o\+/ o
CH,Cl,, 0 °C o

Scheme 3.2: Formation of 3-Hydroxyacrylate Using ZnCl, Lewis Acid

Kirchner and his coworkers reported iron(Il) complexes bearing tridentate PNP (diphosphine—
pyridine pincer ligand) type ligands, [Fe(PNP-Ph)(CH3CN)3](BF4)2, as catalysts for the selective

formation of 3-hydroxyacrylates from aromatic aldehydes and EDA (Scheme 3.3).*° They also
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reported that the acrylate reaction is strongly dependent on the nature of the counterion, whereas
with BF4™ the reaction proceeds with conversions up to 90%, in the case of the counterions NOs3™,
CF3;COO0, CF3S0s7, SbFe, and BAr’s™ [Ar’ = 3,5-(CF3)2CsH3] no reaction took place.’!

o

o N, QLO A~ OH

(0] (0]
@ H  [Fe(PNP-Ph)(CH;CN)](BF4), o QMO/\
t o +

CH3NO,, 20 °C

Scheme 3.3: Formation of 3-Hydroxyacrylate Using Fe-PNP Lewis Acid

Further work by Pe’rez and co-workers using gold-based catalysts of general formulae
(NHC)AuCl (NHC = N-heterocyclic carbene ligand) for such transformations (Scheme 3.4).32-
They discovered the gold [I[PrAu(NCMe)]|BF4 and used in aldehyde and EDA reaction as a catalyst

and found that it worked really great for the production of 3-hydroxyacrylates.

OH
o) ‘ O O
PPh,Au(NCMe)]BF o
©)LH . Nzyko/\[ sAu( )IBF, I \+/ ©)UJ\O/\

67%

33%

Scheme 3.4: Formation of 3-Hydroxyacrylate Using Gold Lewis Acid

Crowley et al. reported the click chemistry with azide type compounds where they used
Au(SMe»)Cl by immediately the treating of Ag(I) complex was resulting transmetallation provided
the neutral 1,2,3-triazolylidene gold(I) chloride complex and used as a catalyst to synthesize
acrylate. These gold(I) “click” carbene complexes used for the self-assembly of a

metallomacrocycle and as precatalysts for gold(I)-catalysed reactions (Scheme 3.5).%
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o |
©)LH + NZQ)J\O/\ AgSbFg _ O\/
CDCl, o

Scheme 3.5: Formation of 3-Hydroxyacrylate Using Ag-Lewis Acid

3.1.3. Bronsted Type Acid Catalyzed Reaction

It was found that formation of 3-hydroxyacrlates or related 3-oxo-esters were in presence of
different types of Lewis acids catalysts, all the catalysts investigated gave a mixture of 3-
hydroxyacrylate and 3-oxo-ester in different ratios. Some catalysts gave good overall yields in 3-
hydroxyacrylates and others gave 3-oxo-esters in high yields. The most interesting results with
respect to yield and ratio of products were those reactions catalyzed by SnCl,, HBF4.OEt,, and
[n°-(CsHs)Fe(CO)2(THF)]BFs. For example, the main product observed from SnCl, and
SnCl2.2H,0 is the 3-oxo-ester. In comparison, [n°-(CsHs)Fe(CO)2(THF)]BF4 gave mainly 3-
hydroxyacrylate.* Surprisingly, it was observed that HBFs.OEt; also catalyzes the reaction
between aromatic aldehydes and EDA to provide 3-hydroxyacrylates in good yields versus the
corresponding 3-oxo-esters. The idea of using the HBF4.OEt> acid as a catalyst came from the fact
that HBF4.OEt; is used in the synthesis of [)°-(CsHs)Fe(CO)2(THF)]BF4.* Hossain and co-workers
thought that acid impurities from HBF4.OEt, could be a possible source of catalytic activity. To
establish that [>-(CsHs)Fe(CO)2(THF)]BF4, and not HBF4.OEt, impurities, was truly the catalyst
in the reaction of aromatic aldehydes with EDA, the reaction was performed in the presence of
proton sponge, 1,8-bis(dimethylamino)naphthalene. The activity of [n°-(CsHs)Fe(CO)2(THF)]BF
was not inhibited by the addition of proton sponge. Proton sponge experiment showed that with
HBF4.0Et,, the reaction was almost completely inhibited by the addition of proton sponge and

only the aldehyde starting material was recovered. From the inspiration of the proton sponge
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experiment, in 1998, our group also explored the reactions with the Brensted type, specifically
HBF4.OEt,, to produce 3-hydroxyacrylates and 3-oxo-esters from the same starting materials

(Scheme 3.6).3

(0] OH

o |

A H HBF,.Et,0 X
| 4-El
R—; P . Nz% A - R
DCM =

Scheme 3.6: Synthesis of 3-Hydroxyacrylates by Hossain et al.in 2004

It had been reported that substituents on the aromatic aldehyde play an important role in product
distribution when reactions are catalyzed by iron Lewis acid, [n°-(CsHs)Fe(CO)2(THF)]BF4
catalyst. Electron-donating groups favor the formation of 3-hydroxyacrylates, whereas electron-
withdrawing groups favor the 3-oxo-ester. To prove the statement, several reactions were
performed by using iron Lewis acid as well as Brgnsted type acid, and all reactions were carried
out at room temperature under the same conditions for comparison. Analysis of aromatic ketones
such as acetophenone and trifluoroacetophenone showed that only acetophenone reacted with
HBF4.OEt,, while no reaction was observed in the presence of iron Lewis acid, whereas
trifluoroacetophenone was unreactive regardless of the catalyst used. From the inspiration of
Bransted type acid, HBF4.OEt,, it was investigated with other Brgnsted type acids with varying
acid strengths. It was found that yield was dependent on the following order: BFs~> HSO4 > NOs
> ClOs > CI" and CH3COO". Those Brgnsted acids with nonnucleophilic anions gave the best
results, for example, sulfuric acid and HBF4.OEt>. In each case where a metal-halogen type catalyst
(SnCl2, AICI3) was utilized in the reaction, significantly produced more 3-oxo-esters than 3-
hydroxyacrylate. Kanemasa and coworkers suggested that chelation transition state orients the

migrating hydride (from the aldehyde) and leaving nitrogen (from EDA) anti to one another, and
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this transition state reduces the steric interactions and facilitates 3-oxo-ester formation. The
catalysts, other than those of the metal-halogen type, Bragnsted type acid, HBF4.OEt>, bind to the
aldehyde first and then the nucleophilic methine carbanion of EDA can attack either the re- or si-
face of the aldehyde. In this situation, six Newman projections have been drawn and explained by

Hossain and coworkers®* (Figure 3.2).

.
N+2 N, "Iz
CatO H H @Ar Ar OCat
H COOEt H™>"COOEt H COOEt
Ar OCat H
EtOOC OcCat
H H
+ +
N, N, N,
CatO Ar Ar@H H OCat
H COOEt H COOEt H COOEt G
H OCat Ar
D E F

Figure 3.2: Stable and Unstable Rotamers of Benzaldehyde and EDA Reaction

Among all rotamers (Figure 3.2), ‘A’ and ‘F’ two rotamers have leaving group and aryl migrating
are antiperiplanar but rotamer ‘A’ has less energy than ‘F’ because of less bulky group interaction,
so product of 3-hydroxyacrylates were formed more from the rotamer ‘A’. For 3-oxoesters, in
rotamer ‘C’ and ‘D’, leaving group and hydride migrating group were antiperiplanar, but this
rotamer ‘C’ has little higher energy by the comparison with rotamer ‘D’, for this reason oxo-ester
yielded from rotamer ‘D’. Actually, 3-hydroacrylates were more than 3-oxoesters because between
rotamers ‘A’ and ‘D’, transition state of aryl migration from rotamer ‘A’ (Figure 3.2 “G’) makes a

lower energy stable state, so more acrylates products were formed than oxo-esters.
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3.1.4. Base Catalysed Reaction

Wang et al. reported DBU-catalyzed condensation of ethyl diazoacetate (EDA) with aldehydes in
pure water afforded corresponding B-hydroxy a-diazo carbonyl compounds, the B-hydroxy group
was further converted into B-siloxy group and gave 1,2-aryl shift products predominantly by

Rh(II)-catalyzed reaction (Scheme 3.7).%’

O i OH O
N
N H EES o N o
R— R TMSCI
= DBU, H,0, rt = N, —’Et3N
TMSO O OH
|
R_| AN O/\ 1. Rhy(OAC), . | AN OV
N N R—T
2 2. Silica gel =~ O

Scheme 3.7: Synthesis of 3-Hydroxyacrylates by Wang et al.

3.2. Application of 3-hydroxyacrylates

In 1998, Schmittel and his coworker reported a short and efficient preparation of 3,8-dialkylated
or 3,8-diarylated 1,10-phenanthrolines-4,7-diones (Scheme 3.8). They used hydroxy acrylate as a
one of the important starting materials. 1,10-Phenanthrolines have been used as important ligands

for a vast amount of metal complexes.*¢

OH O
“ DCM
N (0] (0]
(o] + _— o
R reflux, 2 h PN )H/\ /\/U\ -
HzN — NH; I o N2, 240°C, 30 min

o o)
z\ </ \> /§ X X
< < POX3, N2
\ // >~ R R
NH HN
\ NH HN /

80C,7h

Scheme 3.8: Synthesis of Phenanthrolines from 3-Hydroxyacrylates
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Naproxen, 2-(6-methoxy-2-naphthyl)propenoic acid was synthesized in good vyield from
commercially available 6-methoxy-2-naphthaldehyde in three steps. The synthesis includes an
unprecedented one-step reduction of acrylic acid ethyl ester to propenoic acid ethyl ester in high
yield (Scheme 3.9).” a-arylpropanoic acids is of great commercial interest as they are widely used

as non-steroidal anti-inflammatory agents.

OH
- 1. KOH, H,0 OH
OO " BH,.THF, 0°C o OO
~ o) 20 mol% piperidine OO 2.H;0* o ©
O \O O

Scheme 3.9: Synthesis of Naproxen from 3-Hydroxyacrylates

Hossain et al. reported the first kinetic resolution of tropic acid ethyl ester (TAEE) with lipase PS
and vinyl acetate as an acylating agent (Scheme 11).!? The resulting (S)-(_)-3-acetoxy tropic acid
ethyl ester and (R)-(+)-tropic acid ethyl ester is produced in high yields and in excellent ee (87—
94%). The method has been extended to resolve a variety of tropic acid ester derivatives. In
addition, an improved method for the preparation of racemic mixtures of tropic acid ethyl ester
and its derivatives from 3-hydroxy-2-phenylacrylic acid ethyl ester using NaBH4 in methanol is
reported. This procedure is better than the previous ones because it is cleaner, safer and can be
worked up easily. An improved method of deacylating the chiral 3-acetoxy tropic acid ethyl ester
without any loss of stereochemical integrity using HCI/CH30H is also reported. (S)-(-)-Tropic acid
is an important building block for bio-logically active tropane alkaloids, such as hyoscyamine and
scopolamine. The dynamic kinetic resolution of racemic mixtures of tropic acid ethyl ester under
substrate racemizing conditions was studied using lipase PS with a ruthenium catalyst by Hossain

et al. (Scheme 3.10).
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1. NaBH,, CH;OH o~

o__0O
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Scheme 3.10: Kinetic Resolution of Tropic Acid Ethyl Ester (TAEE)

Hossain group developed a convenient one-pot procedure for the synthesis of 3-
ethoxycarbonylbenzofurans from commercially available salicylaldehydes and ethyl diazoacetate
(Scheme 3.11).2* The method is high-yielding, efficient, simple and selective. Benzofuran is a very

pivotal precursor for the synthesis of many pharmaceutical and biologically active compounds.

0._0 %o ° o
\\/ \/
OH H,S0, -H,0
X > OH —2> A\
Hzo, rt o o

OH

¢

y

Scheme 3.11: Synthesis of 3-Ethoxycarbonylindole
A convenient one-step synthesis of 5-aryl uracils has been developed. The procedure involves
heating ethyl 3-hydroxy-2-arylpropenate with urea followed by base-catalyzed cyclization. The

method is simple and high yielding (Scheme 3.12).%
N_o
OH 0 Y

| )L 130-150 °C NH
o~ * HNTONH, —————= g

Scheme 3.12: Synthesis of 5-Aryl Uracils from 3-Hydroxyacrylate
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A large number of biologically active compounds consist of an indole scaffolding. Because of this,
chemists are continually searching for more efficient means through which to successfully

synthesize the required alkaloids (Scheme 3.13).23

N—" Al,(CH),Z
« _OH PdrC, H2 : j 2(CH3)aZ2 n-BuLi \
CH3OH DIBAL H N

OH 1. PhCHj, 100 °C
2.H,0

Scheme 3.13: Synthesis of Gramine from 3-Hydroxyacrylate

The formation of a-aryl quaternary carbon centers, pre-sent in a growing number of biologically
active natural products and pharmaceutical agents, poses a unique challenge due to the steric
congestion encountered during the C—C bond formation process. Generally, a quaternary aryl
carbon center is formed using strongly basic lithium arenes. In 2010, Hossain at el. described a
Claisen rearrangement process for generating a-aryl quaternary car-bon centers from 3-allyloxy-
2-arylacrylates, made from arylhydroxyacrylates (Scheme 3.14). Although Claisen

rearrangements have been used previously for making quaternary carbon centers.*

| OH Al O
X o~ BuyNI (10 mol%) N | O~ DMF
il 5 I
KOH ~ O reflux, 6-24 h
CH,Cl,/H,0

Scheme 3.14: Synthesis of a-Aryl Quaternary Carbon Centers

Later, Hossain and coworkers described a set of acyclic all-carbon a-aryl quaternary aldehydes by
intermolecular palladium-catalyzed asymmetric allylic alkylation (Pd-AAA) in 2014 (Scheme
3.15). Hydroxyacrylates were used as unprecedented nucleophilic counterparts instead of widely

used ketone substrates. This produced a very rare all- carbon quaternary aldehyde. Chiral ligand
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(R,R)-L3 was found to be optimal in this Pd-AAA reaction and pro-vided good to excellent yields

(75-99%) and enantioselectivities (75-94%) with a range of analogs.*?

___________________________

o Q o} :
| O PPh,Ph,P O !
' |

(R,R)-Ligand

solvent, temp, 12 h
Scheme 3.15: Synthesis of Asymmetric a-Aryl Quaternary Carbon Centers by AAA Reaction

In 2015, Hossain at el. Reported a stereoselective synthesis of carbonates derived from 3-hydroxy-
2-aryl acrylates that can form the Z- or E-stereoisomer in very high Z/E ratios (50:1 and 1:99,
respectively) (Scheme 3.16). The stereochemical outcome depends on the choice of base, addition
of TMEDA and reaction temperature. The Z- and E-stereoisomers have different reactivities
towards the decarboxylative asymmetric allylic alkylation (DAAA) reaction, with the E-
stereoisomer displaying both greater reactivity and enantiodifferentiation with chiral ligands. The
DAAA of E-stereoisomer analogues takes place in excellent yields ranging from 96-99% and

enantioselectivities ranging from 42-78% ee.'?

NH HN
/\/0\(0 PPh,Ph,P

OH o ! (R R)- ngand
| 0. MHMDS (M= Li, Na) | o
RE X TMEDA (0-1 eq) Rl AN Pd,(dba);.CHCl;
= O o__cl = O
P \ﬂ/ solvent, 24 h
o

Scheme 3.16: Synthesis of Asymmetric a-Aryl quaternary Carbon Centers by DAAA Reaction
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Later, in 2018, Hossain and coworkers reported the first palladium(0)-catalyzed asymmetric allylic
alkylation (AAA) of allyl enol ether via p-allylpalladium intermediate using Trost chiral
diphosphine (Scheme 3.17).!7 This unprecedented reaction produced very rare a-aryl quaternary
aldehydes with multi-functional groups. The main novelty in the chemistry demonstrates that enol
ethers can be used as precursors for p-allylpalladium intermediates, an observation that is certainly
rare and to the best of our knowledge, perhaps without prior precedent. Chiral ligand (R, R)-L3
was found to be optimal in this Pd-AAA reaction and provided good to excellent yield (80-95%)

and enantioselectivity (70-90%) with a range of analogs.'*

1 1
o ) 0 |
Q=<
1 1
' O PPh,Ph,P O ,
' '
1 1
1

OH _A~_Br O

| S — RRML3Ligand
N O._~ BusNI (20 mol%) N o~ P (dba)s. CHC4
o KOH " o
CH,Cly/H,0 Toluene:MeOH (20:1)

-200C, 72hrs

Scheme 3.17: Synthesis of Asymmetric Quaternary Carbon Centers from O-Allylated Enol-Ether

Hossain and coworkers developed a concise method of synthesizing racemic arylpropanoic acids,
which have been widely used as nonsteroidal anti-inflammatory drugs (NSAIDs) (Scheme 3.18).
The synthesis involves only four steps from commercially available benzaldehyde. The synthesis
incorporates an unprecedented reduction reaction, conversion of 3-hydroxy-2-arylpropenoic acid
ethyl ester to 2-arylpropenoic acid ethyl ester by BH3 - THF. The reduction reaction has been

investigated and optimized.?
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Scheme 3.18: Synthesis of Arylpropanoic Acids
Telvekar and coworkers synthesized N’-benzylidene ben-zofuran-3-carbohydrazides from 3-
ethoxycarbonyl benzo-furans (Scheme 3.19).2° All these compounds were found to be active

against tuberculosis and showed antifungal activity against Candida albicans.®’

1. N,CHCOOEt,
HHBF4.OEt,, CH,CI ,rt
2. H2S04 1t C2HsOH, reflux
5-7 h
1_ 2 _

o Ar R1=H,R?°=H
Rl=cCl, R?=Cl

C,Hs0H, reflux R = Ar

5-7 h

Scheme 3.19: Synthesis of N’-Benzylidene Benzofuran-3-Carbohydrazide

Eccles and coworkers synthesized several leukotriene A4 hydrolase (LTA4H) inhibitors from 3-
ethoxycarbonyl benzofuran (Scheme 3.20).>! LTA4H inhibitors are used in inflammatory diseases,

such as bowel disease, theumatoid arthritis, chronic obstructive pulmonary disease, and asthma.8



o 0
1. N,CHCOOE, OMe
dH HBF4.0(Me),, CH,Cl, BBrs, CHyCl> A\
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\>—CI OMe OH
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C52C03 A\
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K,COg, DMF J\ D 1-(piperidin-4-yl)pyrrolidin-2-one,
SENG o 1-(2,5-diazabicyclo[2.2.1]heptan-2-yl)ethanone

Scheme 3.20: Synthesis of Leukotriene A4 Hydrolase (LTA4H) Inhibitor

Morrow et al. synthesized pterocarpenes and coumestans type heterocycles by the Mitsunobu
coupling of 3-hydroxymethylbenzofurans with ortho-iodophenols (Scheme 3.21). Pterocarpans
group have been shown to exhibit broad spectrum activity against Gram-positive bacteria and
vancomycin-resistant strains of enterococci. Coumestans such as coumestrol and flemmichapparin

C have also been shown to display antibacterial, antifungal, and antimyotoxic effects.>

o /
1. N;,CHCOOETL, HBF, OH HO‘Q
| AN H CHZCIZ, rt AN \ DIBAL_H @\/\g
=
v ToH 2. H,S0y, 1t / Z=0 120 DIAD, PhsP, THF

R CHCl, o
O
Pd(OAc ,KOAc
—" 2
R/1/ oI R Bu,NBr, DMF // o = Cl"2C3|2 // o —'R2
Pterocarpenes Coumestans

Scheme 3.21: Synthesis of Pterocarpenes and Coumestans
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Tolstikov et al. reported several regioselective Diels—Alder reactions of Danishefsky’s diene with
3-ethoxycarbonyl benzofurans (Scheme 3.22).%° These reactions provided effective method for the
construction  of  heterocyclic skeleton of  hexahydrodibenzofuran-7-one and
tetrahydrodibenzofuran-7-one. These tricyclic fragments are the structural motifs of many
pharmacologically vital substances, such as plant alkaloids morphine, galanthamine, lycoramine,

and lunarine, linderol A, and several selective estrogen receptor B agonists.

EtO OMe

O 1. N,CHCOOEt, OEt MeO._~ osn\/|e3
| N 1 HBF4.0Et,, CHZCIZ OSiMes
Z Y 2. H,SOy, 1t PhMe, 170 °C, 48 52 h // AT

R or, PhMe, microwave

EtO OMe

EtO OMe EtO
1. H4NF, MeOH, -15 °C o
2. TSOH, MeOH, rt 0 N 0o
3. CF3COOH, CH,Cls, 1t +
“F 0 H // T R~F 0 H

4. TsOH, PhMe, 110 °C R

Scheme 3.22: Diels—Alder Reactions of 3-Ethoxycarbonyl Benzofuran

Elofssan and coworkers constructed a library based on 3-carboxy 2-aryl benzofuran scaffold from
the 3-ethoxycarbonyl benzofuran (Scheme 3.23).*! These two scaffolds are core components in
many biologically active natural and synthetic compounds of which many display a wide range of
activities including antiviral, antibacterial, anti-inflammatory, antiangiogenic, and antimitotic

activities.
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Scheme 3.23: Synthesis of 2-Arylbenzofuran-3-Carboxamide Derivatives

Zhao et al. reported a total synthesis of paeoveitol, the norditerpene natural product which has

antidepressant ability, from 3-ethoxycarbonyl benzofuran (Scheme 3.24).** Our published

procedure was employed to synthesize 3-ethoxycarbonyl benzofuran, which was reduced to

Paeoveitol D. Paeoveitol was synthesize by an unusual intermolecular ortho-quinone methide

cycloaddition with Paeoveitol D with excellent regio- and diastereoselectivity of the product.

@)

0 1. N,CHCOOEt, HBF,.OEt OFt
HO F 2 : 4+~=2 Ho DIBAL-H
H CH2C|2, rt
CH,CI
Me OH 2. HySOy, tt Me © 212
Me
HO Me
OH OH
HO HO OH HO
N Me "M
e
Me © ZnCl,, CH,Cl, Me O H
Paeoveitol D Paeoveitol

Scheme 3.24: Total Synthesis of Paeoveitol via Paeoveitol D
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Chen and coworkers reported the first catalytic asymmetric total synthesis of (+)-paeoveitol and (-
)-paeoveitol from 3-ethoxycarbonyl benzofuran via a biomimetic hetero-Diels-Alder reaction in

the presence of chiral phosphoric acids as catalysts (Scheme 3.25).%

O NBrEno oE:
4-=%2 MeO BB
O
Me OH 2. H,50,r1t Me
HO Me
OH
H
HO © OH HO
A\
o
Me O chiral Me
Paeoveitol D phosphoric acid cat.
CH,Cly, 1t (+)-Paeoveitol (-)-Paeoveitol

Scheme 3.25: Asymmetric Synthesis of (+)-Paeoveitol and (-)-Paeoveitol

Bongen et al. reported an efficient asymmetric synthesis of 7-benzoyl-2,3-dihydro-1-benzofuran-
3-carboxylic acid, BRL-37959 (Scheme 3.26).* 3-Ethoxycarbonyl benzofuran was reduced by
magnesium turnings to form 2,3-dihydrobenzofuran-3-carboxylic acid ethyl ester and resolved by
dynamic kinetic resolution. Friedel-Crafts acylation of the enantiopure product followed by acidic

hydrolysis produced (R)-BRL-37959 which acts as analgesic agents with low gas irritancy.

)
0 OEt
1 NZCHCOOEt I CAL_B 36 OC
Cl\dLH HBF,.Et,0, CHZCIZ 1. Mg/MeOH KPi butfer
o]
OH 2. HySOy, 1t 2. EtOH, HSO4 (100 mm, pH 8.5)
@)
OE
Cl HZO H,SO,4
o CS,, AICI3
40°C,72h

Scheme 3.26: Synthesis of Enantiopure (R)-BRL-37959
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Recently, in 2018, our group reported the synthesis of 7-benzoyl-2,3-dihydro-1-benzofuran-3-
carboxylic acid, BRL-37959 and its analogs from 3-ethoxycarbonyl benzofuran (Scheme 3.27).4°
To synthesize BRL-37959, incorporation of benzoyl group at the C-6 position of benzofuran ring
by the Friedel-Crafts acylation reaction was main challenge. Our recent method demonstrates that
bismuth (III) trifluoromethanesulfonate can be used as a catalyst for the Friedel-Crafts acylation
reaction with good yield. It is reported in the synthetic procedure, 3-ethoxycarbonyl benzofuran
was synthesized by our previous established method and reduced by a Mg/MeOH mixture
followed by using as a catalyst to produce 7-benzoyl-2,3-dihydro-1-benzofuran-3-carboxylate.
Basic hydrolysis of this carboxylate was converted to carboxylic acid and formed the desired

product of BRL-37959. This efficient method allowed us for the production in high yields as well

as the production of many possible analogs of BRL-37959.

O 1. N,CHCOOEt, . OEt
RWH HBF4.Et,0, CH,Cly, it R N Mg, I,
OH 2. Hp,SOy, 1t O MeOH, 72 h

NaOH

Bi(OTf)3

. MeOH, 12 h
nitrobenzene, 90 °C

R2 OMe

Scheme 3.27: Synthesis of BRL-37959 and Its Analogs

All the important medicinal syntheses of acrylates are discussed in our recent published discussion

addendum.*®
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3.3. Present Synthesis of 3-Hydroxyacrylates

In our previous work, we studied the reaction of acetophenone with EDA, which yielded
exclusively 3-hydroxyacrylate product (Scheme 3.28).1% To expand the scope of this reaction,
phenyl-alkyl ketones were employed as substrates in this transformation, and the results are

summarized in Table 3.1.

0] Ph O
Bransted Acid
Ph)LR + Nz\)J\ AN ——— T Ji( + R:/g(o\/
it ©

, H
b )\‘) Ur O Den
) Ph + - 07 R
N (N
Scheme 3.28: Synthesis of 3-Hydroxyacrylates from Ketones

From the perceptive nature of phenyl and methyl groups of acetophenone, the reactions were
extended to other aromatic ketones beyond acetophenone to examine the substrate scope for
aromatic ketones with different alkyl groups. The results of these reactions are summarized in
Table 3.1. When propiophenone was employed as a substrate for this transformation, the desired
phenyl group migrated product, 3-hydroxyacrylate 3b along with ethyl group migrated product, 3-
oxo-ester 3b’ was obtained in 62% yield. The oxo-ester 3b’ was isolated, and the structure was
characterized by NMR and confirmed by comparison with the authentic compounds. This
migratory tendency of different phenyl and alkyl groups from isolated yield of our synthetic
products in this cate-gory were almost similar, (3-hydroxyacrylates/oxo-esters > 1.2:1) (3b-f).
However, when the reaction was carried out with octanophenone as a substrate, the corresponding

product 3g was obtained in lower yield (37% yield) with lower alkyl-migrated product.
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Table 3.1. Migratory Aptitude of Alkyl-Phenyl Groups

0) R__O
0
0
@R N J HBF,.Et,0 o~
+ 2 E— (@)
0™ T oom O TR ~
3| O

1 2 5
0 0 0 0
O\/ O\/ O\/ O\/
0 O o) o)
Sa, 64% 3b/3b' = 121, 62% 3¢/3¢c' = 141, 60% 3d/3d' = 171, 45%
0
0 O
o)
O\/ O\/ ~
o)
o) (@]
3f/3f' = 1.8:1, 48% 39/3g' = 2:1, 37%

3e/3e'=1.7:1, 55%

where, R = CH3s, C2Hs, C3H7, C4Hg, CsHi1, CsHas, and C7Hs.

To understand longer chain effects of phenyl-alkyl ketones, we next examined the substrate scope
for aromatic ketones with different alkyl groups with EDA employed as the reaction partner. The
results of these reactions are summarized in Table 3.1. From these reactions we found two types
of products from two different migrations. From general studies on the relative migration aptitude,
the following order has been found: tertiary alkyl > cyclo-hexyl > secondary alkyl > benzyl >

phenyl > primary alkyl > cyclo-pentyl, cyclopropyl > methyl.
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3.4. Conclusion and Future Works

Aldehydes and ethyl diazoacetate produced 3-hydroxy acrylates in presence of Lewis or Brensted
acid catalyst. Less reactive aromatic/aliphatic ketones and aldehydes also yielded the 3-hydroxy
acrylates and 3-oxo-esters. A bunch of 3-hydroxy acrylates and related 3-oxo-esters are
synthesized from different kinds carbonyl substrates. A large number of biological active
compounds as well as quaternary carbon center containing compounds could be synthesized by

using these two kinds of products (Figure 3.3).

[ _ o
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A
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HO/©;N € e e e ] X ~ 2 R'
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R =4-OH = o ”

3-Hydroxyacrylate

R=2-OH

—

(o)

‘ (+)-Elacomine ’

O=-----

A\ R’
(o)

Benzofuran

Figure 3.3: Probable Natural Products and Biological Active Compounds
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3.5. General Consideration

All reactions were performed under a dry nitrogen atmosphere using standard Schlenk techniques
unless otherwise noted. All reaction vessels were flame dried under vacuum and filled with
nitrogen prior to use. Reagents and solvents were purchased from Sigma-Aldrich, Milwaukee. All
'H and 3C NMR spectra were recorded in CDCls (internal standard: 7.26 ppm, 'H; 77.16 ppm,
13C) at room temperature with a Burker 300 MHz and 500 MHz spectrometers. The chemical shifts
(0) are given in parts per million (ppm) and the coupling constants in Hertz (Hz). All new
compounds were additionally characterized by *H NMR, ¥C NMR and high-resolution mass
spectrometry (HRMS). HRMS were obtained using electrospray ionization (ESI) technique. For
column chromatography, silica gel (35-70 microns) was used. Thin layer chromatography (TLC)
was performed on aluminum backed plates pre-coated (0.25 mm) with Silica Gel 60 F254 with a

suitable solvent system and was visualized using UV fluorescence and/or iodine chamber.

3.5.1. General Procedure and Experimental

For each experiment, 1.5-5.0 mmol of the carbonyl compounds was dissolved in 15-25 mL of
freshly distilled dichloromethane under nitrogen. A Brensted acid, HBF4-OEt; catalyst (0.1-0.2
equiv) of was added, and the reaction mixture was stirred for 1 hour. Ethyl diazoacetate (EDA)
(1.2-2.0 equiv) was diluted in 5 mL of freshly distilled dichloromethane and added to the aldehyde
over a period of 6-7 h. The reaction mixture was allowed to stir for an additional 36 h, and each
reaction was quenched by adding THF. The reaction mixture was filtered through a silica plug and
the solvent removed by rotary evaporation. Crude products were isolated by silica column

chromatography with 0-10% ethyl acetate in hexane.
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Ethyl 3-oxo-2-phenylbutanoate (keto-enol tautomer) as a colorless liquid (3a)

O The title compound was prepared according to the general procedure and
o~
O

purified by silica gel column chromatography (hexane/ethyl acetate =
100:1) to afford 3a as a colorless oil with 60% yield. Compound 3a was

confirmed by comparing to known NMR.

IH NMR (CDCl3, 300 MHz): § 13.15 (s, 1H), 7.40-7.29 (m, 8H), 7.19-7.16 (m, 2H), 4.71 (s, 1H),
4.26-4.16 (m, 4H), 2.21 (s, 3H), 1.87 (s, 3H), 1.30 (t, J = 7.5 Hz, 3H), 1.21 (t, J = 7.5 Hz, 3H). 3C
NMR (CDCls, 125 MHz): § 201.6, 173.9, 172.6, 168.5, 135.3, 132.7, 131.2, 129.3, 128.9, 128.3,
128.0, 126.9, 104.4, 65.8, 61.6, 60.6, 28.8, 19.9, 14.2, 14.1. HRMS (ESI+): Calculated (m/z) for

C12H1503 (M+H)* : 207.1016, Found 207.0987.
Ethyl 3-oxo-2-phenylpentanoate (keto-enol tautomer) as a colorless liquid (3b)
O The title compound was prepared according to the general procedure and

o~
(@]

purified by silica gel column chromatography (hexane/ethyl acetate =

100:1) to afford 3b and 3b’ as a colorless oil with 62% yield.

IH NMR (CDCls, 300 MHz): § 13.23 (s, 1H), 7.37-28 (m, 8H), 7.18 (t, J = 4.5 Hz, 2H), 4.76 (s,
1H), 4.26-4.14 (m, 4H), 2.53 (g, J = 6.0 Hz, 2H), 2.15 (g, J = 6.0 Hz, 2H), 1.28 (t, J = 7.5 Hz, 3H),
1.18 (t, J = 7.5 Hz, 3H), 1.12-1.01 (m, 6H). $*C NMR (CDCls, 75 MHz): § 204.2, 178.1, 172.8,
168.7, 135.2, 133.0, 131.2, 129.4, 128.8, 128.1, 128.0, 126.9, 103.6, 64.8, 61.5, 60.5, 34.9, 26.3,
14.2,14.0, 11.1, 7.8. HRMS (ESI+): Calculated (m/z) for C13H170s (M+H)" : 221.1172, Found

221.1164.
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Ethyl 2-benzoylbutanoate (B-keto ester) as a colorless liquid (3b’)

The compound was prepared according to the general procedure and

o
o purified by silica gel column chromatography (hexane/ethyl acetate =
~
0 100:1) to afford 3b and 3b’ as a colorless oil with 62% yield. Compound

5a’ was confirmed by comparing to known NMR.

IH NMR (CDCls, 300 MHz): § 7.98 (d, J = 9.0 Hz, 2H), 7.55 (t, J = 6.0 Hz, 1H), 7.48 (t, J = 6.0
Hz, 2H), 4.21 (t, J = 6.0 Hz, 1H), 4.12 (g, J = 9.0 Hz, 2H), 2.07-1.98 (m, 2H), 1.14 (t, J = 6.0 Hz,
3H), 0.98 (t, J = 7.5 Hz, 3H). 3C NMR (CDCls, 75 MHz): § 195.2, 169.9, 136.4, 133.4, 128.7,

128.5, 61.2, 55.8, 22.4, 14.0, 12.1.

Ethyl 3-oxo-2-phenylhexanoate (keto-enol tautomer) as a colorless liquid (3c)

o The compound was prepared according to the general procedure and

O._~ purified by silica gel column chromatography (hexane/ethyl acetate =

© 100:1) to afford 3¢ and 3¢’ as a colorless oil with 60% yield.

IH NMR (CDCls, 300 MHz): § 13.20 (s, 1H), 7.40-7.30 (m, 8H), 7.18 (d, J = 5.0 Hz, 2H), 4.74
(s, 1H), 4.27-4.17 (m, 4H), 2.48 (t, J = 7.5 Hz, 2H), 2.11 (t, J = 8.0 Hz, 2H), 1.63-1.55 (m, 4H),
1.29 (t, J = 6.0 HZ, 3H), 1.19 (t, J = 6.0 Hz, 3H), 0.89-0.83 (m, 6H). 3C NMR (CDCls, 75 MHz2):
§203.7, 176.9, 172.9, 168.6, 135.2, 132.8, 131.4, 129.5, 128.8, 128.2, 128.0, 126.9, 104.3, 65.0,
61.6, 60.6, 43.5, 34.7, 20.1, 17.1, 14.2, 14.1, 13.8, 13.4. HRMS (ESI+): Calculated (m/z) for

C14H1903 (M+H)" : 235.1329, Found 235.1312.
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Ethyl 2-benzoylpentanoate (B-keto ester) as a colorless liquid (3¢”)

The compound was prepared according to the general procedure and

o
o purified by silica gel column chromatography (hexane/ethyl acetate =
~
0 100:1) to afford 3¢ and 3¢’ as a colorless oil with 60% yield. Compound

3¢’ was confirmed by comparing to known NMR.

IH NMR (CDCls, 300 MHz): § 7.98 (t, J = 4.5 Hz, 2H), 7.55 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5
Hz, 2H), 4.31 (t, J = 7.5 Hz, 1H), 4.15 (q, J = 6.0 Hz, 2H), 2.04-1.95 (m, 2H), 1.43-1.33 (m, 2H),

1.17 (t, J = 7.5 Hz, 3H), 0.95 (t, J = 7.5 Hz, 3H).

Ethyl 3-oxo-2-phenylheptanoate (keto-enol tautomer) as a colorless liquid (3d)

o The compound was prepared according to the general procedure and
o~ . -
purified by silica gel column chromatography (hexane/ethyl acetate =
e}
100:1) to afford 3d and 3d’ as a colorless oil with 45% yield.

IH NMR (CDCls, 300 MHz): & 13.20 (s, 0.4H), 8.15 (d, J = 5.0 Hz, 1H), 7.51 (t, J = 5.0 Hz, 1H),
7.51-7.35 (m, 7H), 7.17 (d, t, J = 5.0 Hz, 1H), 4.73 (s, 1.3H), 4.30-4.16 (m, 4H), 2.49 (t, J = 7.5
Hz, 2H), 2.12 (t, = 7.5 Hz, 2H), 1.56-1.53 (m, 4H), 1.30-1.24 (m, 7H), 1.22 (t, J = 4.5 Hz, 3H),
0.93-0.80 (m, 6H). 3C NMR (CDCls, 75 MHz): § 203.6, 176.8, 172.8, 168.5, 135.1, 132.7, 131.3,
129.4, 128.8, 128.1, 127.9, 126.8, 104.2, 65.0, 61.5, 60.5, 43.4, 34.6, 20.0, 17.0, 14.2, 14.0, 13.7,

13.4. HRMS (ESI+): Calculated (m/z) for C1sH2103 (M+H)* : 249.1485; Found 249.1458.
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Ethyl 2-benzoylhexanoate (B-keto ester) as a colorless liquid (3d”)

The compound was prepared according to the general procedure and

o purified by silica gel column chromatography (hexane/ethyl acetate =
~

o) 100:1) to afford 3e and 3e’ as a colorless oil with 45% yield. Compound

3e’ was confirmed by comparing to known NMR.

IH NMR (CDCls, 300 MHz): & 8.01 (d, J = 9.0 Hz, 2H), 7.55 (d, J = 6.0 Hz, 1H), 7.48 (t, J = 7.5
Hz, 2H), 4.30 (t, J = 7.5 Hz, 1H), 4.12 (g, J = 15.9, 9.0 Hz, 2H), 2.03 (q, J = 12.0, 6.0 Hz, 2H),
1.36-1.28 (M, 4H), 1.19 (t, J = 7.5 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H). 13C NMR (CDCls, 75 MHz):

0 195.3,170.1, 136.4, 133.4, 128.7, 128.6, 61.3, 54.4, 29.8, 28.7, 22.5, 14.0, 13.8.

Ethyl 3-oxo-2-phenyloctanoate (keto-enol tautomer) as a colorless liquid (3e)

o The compound was prepared according to the general procedure and
o~
@)

purified by silica gel column chromatography (hexane/ethyl acetate

=100:1) to afford 3e and 3e’ as a colorless oil with 55% yield.

IH NMR (CDCls, 300 MHz): § 13.26 (s, 1H), 7.41-28 (m, 8H), 7.19 (t, J = 6.0 Hz,2H), 4.7 (s,
1H), 4.26-4.14 (m, 4H), 2.51 (t, J = 7.5 Hz, 2H), 2.14 (t, J = 7.5 Hz, 2H), 1.63-1.54 (M, 4H), 1.43-
1.32 (m, 14H), 0.89-0.83 (m, 6H). 3C NMR (CDCls, 75 MHz): & 203.6, 177.2, 172.8, 168.5,
135.2,132.9, 131.3, 129.5, 128.7, 127.9, 126.9, 104.1, 65.0, 61.4, 60.5, 41.5, 32.7, 31.3, 31.1, 26.4,
23.3, 22.3, 22.3, 22.2, 14.1, 14.0. HRMS (ESI+): Calculated (m/z) for CigHz303 (M+H)* :

263.1642; Found 263.1642.
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Ethyl 2-benzoylheptanoate (B-keto ester) as a colorless liquid (3¢”)

The compound was prepared according to the general procedure and
@)

o purified by silica gel column chromatography (hexane/ethyl acetate

0 =100:1) to afford 3e and 3e’ as a colorless oil with 55% yield.
IH NMR (CDCls, 300 MHz): & 8.01 (d, J = 9.0 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.46 (t, J= 7.5
Hz, 2H), 4.30 (t, J = 7.5 Hz, 1H), 4.16 (q, J = 7.5 Hz, 2H), 2.05-1.98 (m, 2H), 1.39-1.27 (m, 6H),
1.18 (t, J = 7.5 Hz, 3H). 0.88 (t, J = 7.5 Hz, 3H). 13C NMR (CDCls, 75 MHz): § 195.3, 170.1,
136.4, 133.4, 128.7, 128.7, 128.6, 128.5, 61.3, 54.4, 31.6, 28.9, 27.3, 22.4, 13.9. HRMS (ESI+):

Calculated (m/z) for C16H2303 (M+H)™ : 263.1642; Found 263.1649.

Ethyl 3-oxo-2-phenylnonanoate (keto-enol tautomer) as a colorless liquid (3f)

o The compound was prepared according to the general procedure and

o)
~ purified by silica gel column chromatography (hexane/ethyl acetate

O
=100:1) to afford 3f and 3f” as a colorless oil with 48% yield.

IH NMR (CDCls, 300 MHz): & 13.20 (s, 1H), 7.39-7.29 (m, 9H), 7.18-7.15 (m, 1H), 4.74 (s, 1H),
4.26-4.17 (m, 4H), 2.50 (t, J = 7.5 Hz, 3H), 2.12 (t, J = 7.5 Hz, 2H), 1.58-1.54 (m, 4H), 1.31-1.18
(m, 18H), 0.89-0.84 (m, 6H). 13C NMR (CDCls, 75 MHz): § 203.7, 177.2, 172.9, 168.6, 135.2,
132.8, 131.3, 129.6, 129.4, 129.0, 128.8, 128.1, 128.0, 126.9, 104.1, 65.0, 61.5, 60.5, 41.9, 32.7,
315, 28.8, 28.5, 26.6, 23.6, 22.4, 14.2, 14.1, 14.0. HRMS (ESI+): Calculated (m/z) for C17Hz503

(M+H)" : 277.1798; Found 277.1783.
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Ethyl 2-benzoyloctanoate (B-keto ester) as a colorless liquid (3f)

The compound was prepared according to the general procedure and
@)

o purified by silica gel column chromatography (hexane/ethyl acetate

0 =100:1) to afford 3f and 31 as a colorless oil with 48% yield.
IH NMR (CDCls, 300 MHz): & 8.01 (d, J = 9.0 Hz, 2H), 7.60 (t, J = 6.0 Hz, 1H), 7.49 (t, J= 7.5
Hz, 2H), 4.30 (t, J = 7.5 Hz, 1H), 4.16 (q, J = 7.5 Hz, 2H), 2.03 (d, J = 3.0 Hz, 2H), 1.36-1.27 (m,
8H), 1.19 (t, J = 6.0 Hz, 3H), 0.88 (t, J = 6.0 Hz, 3H). 13C NMR (CDCls, 75 MHz): 5 195.3, 170.1,
136.4, 133.4, 128.7, 128.6, 61.3, 54.4, 31.5, 29.7, 29.1, 29.0, 27.6, 22.5, 14.0. HRMS (ESI+):

Calculated (m/z) for C17H2503 (M+H)" : 277.1798; Found 277.1860.

Ethyl 3-oxo-2-phenyldecanoate (keto-enol tautomer) as a colorless (3g)

o The compound was prepared according to the general procedure and
o)
~ purified by silica gel column chromatography (hexane/ethyl acetate

=100:1) to afford 3g and 3g’ as a colorless oil with 37% yield.

IH NMR (CDCl3, 300 MHz): § 13.18 (s, 1H), 7.37-28 (m, 8H), 7.16 (d, J = 6.0 Hz, 2H), 4.73 (s,
1H), 4.27-4.15 (m, 4H), 2.49 (t, J = 7.5 Hz, 2H), 2.11 (t, J = 7.5 Hz, 2H), 1.62-1.55 (M, 4H), 1.31-
1.17 (m, 22H), 0.89-0.85 (m, 6H). 3C NMR (CDCls, 75 MHz): & 203.8, 177.2, 172.9, 168.6,
135.2, 132.8, 131.3, 129.4, 128.8, 128.1, 127.9, 126.9, 104.1, 65.0, 61.5, 60.6, 41.6, 32.7, 31.6,
29.1, 28.9, 28.8, 26.7, 23.6, 22.6, 22.6, 14.2. HRMS (ESI+): Calculated (m/z) for CisHz7O3

(M+H)+ : 291.1955, Found 291.1945.

151



Ethyl 2-benzoylnonanoate (B-keto ester) as a colorless liquid (3g’)

The compound was prepared according to the general procedure and
o purified by silica gel column chromatography (hexane/ethyl acetate

0 =100:1) to afford 3g and 3g’ as a colorless oil with 37% yield.
IH NMR (CDCls, 300 MHz): & 8.01 (d, J = 9.0 Hz, 2H), 7.59 (t, J = 7.5 Hz, 1H), 7.49 (t, J= 7.5
Hz, 2H), 4.29 (t, J=7.5Hz, 1H), 4.15(q, J = 7.5 Hz, 2H), 2.03-1.98 (m, 2H), 1.34-1.27 (m, 10H),
1.18 (t, J = 7.5 Hz, 3H). 0.88 (t, J = 6.0 Hz, 3H). 3C NMR (CDCls, 75 MHz): & 195.3, 170.1,

136.4,133.4,128.7,128.5,61.3,54.4,31.7, 29.4, 29.0, 29.0, 27.6, 22.6, 14.0, 14.0. HRMS (ESI+):

Calculated (m/z) for C1gH2703 (M+H)+ : 291.1955, Found 291.1988.
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APPENDIX A

PART I: A CONCISE ASYMMETRIC SYNTHESIS OF MICROTUBULE
INHIBITOR TRYPROSTATIN B

Copies of tH NMR, C NMR, HRMS, and HPLC Spectral Data
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HRMS of Compound 2
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HRMS of Compound 4
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HRMS of Compound 6
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HRMS of Compound 7
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Crystal Structure Data of Compound 7

CCDC 922382 DOI: 10.5517/ccdc.csd.cczyt8z
Blocks grown using slow diffusion method: Ethyl Acetate/Hexane
Analyzed by X-ray diffraction at UCSD with Arnold L. Rheingold

Unit Cell Dimensions: a=8.5784(2) A; b=12.9668(3) A; c=13.5267(3) A
0=109.266(2)°; f=103.084(2)°; y=107.596(2)°

Triclinic lattice, P1 space group, Z = 2 molecules per unit cell. R1 = 4.39%
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HRMS of Compound 8

Event#: 1 MS(E+) Ret. Time:0.773->0.853-1.173 -> 1.217 Scan#: 117 ->129- 177 -> 183
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HRMS of Compound 9
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HPLC Data of Compound 9 (Racemic)
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HPLC Data of Compound 9 (Chiral)
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HRMS of Compound 10
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'H NMR Spectrum of Compound 12 in CDCls

186

2
=3

S

00’k

o
@
o

Ppm



Fe

e
6L
aT”

53~

[

66"

=R

&T

[=

¥O

S’
S¥°
89’

o

¥e
8Z°
¥
FT
9T”
oo-

=k
0O -
99 °

8Z°
09~

LT —_

g
szk
LT —
s
LT

OE/

9% —
£S5 —
09—
S L

"9\
“LL \*\

13C NMR Spectrum of Compound 12 in CDCls

LL—
L4 .-"’-.-"_
LSS
‘T8 -/

TSO0T—

OTT—

"BTT
TETT —Xx

0ET—
TZT

68T —

FET
SET —
SET

TLT —
ELT—

187

|

PPm

110 100 90 80 70 60 50 40 30 20

170 160 150 140 130 120



HRMS of Compound 12

Event¥: 1 MS{E-) Ret Time - 0.133 = 0.333- 0013 > 0046 Scan#: 21-=251-37
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'H NMR Spectrum of Tryprostatin B 16 in CDCls
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HRMS of Tryprostatin B 16

Eventi: 1 MS(E+) Ret Time:0.380->0.780-0.153 -> 0.316 Scan#:115->235-47 > 05
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Event#: 1 MS(E+) Ret. Time : 0.380-> 0.433 - 0.147 -> 0.221

HRMS of Compound 17

Scan#f: 115 -> 131-45 = 67
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HRMS of Compound 18

Eventf: 1 MS(E+) Ret. Time: 0.613-> 0.987 Scan#: 93 -> 149
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HRMS of Compound 19

Event#: 1 MS(E+) Ret. Time : 0.693-> 0.867 - 0.440 > 0.539 Scan#:105-> 131-67 > &1
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HRMS of Compound 20

Event#: 1 MS(E+) Ret Time:0.613-> 1.027-0.347 -= 0.537 Scan#:93-> 155-53 -> 81
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APPENDIX B

PART I1: SYNTHESIS AND BIOLOGICAL ASSESSMENT OF HISTONE
DEACETYLASE INHIBITORS

Copies of 'H NMR, ¥C NMR, and HRMS Spectral Data
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HRMS of Cpd 9

Eventd#f: 1 MS(E+) Ret. Time : 0.400 -> 0.507 - 0.040 -> 0.099 Scan#:61->77-7->15
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'H NMR Spectrum of Cpd 1’ in CDCls
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HRMS of Cpd 1’

Event#: 1 MS(E+] Ret. Time : 0.533 -> 1.280 - 0.333 -> 0.452 Scan#:81->193-51->69
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'H NMR Spectrum of Compound 11 in CDCls
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'H NMR Spectrum of Cpd 5’ in CDCls
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HRMS of Cpd 5°

Event#: 1 MS(E+) Ret. Time : 0.573 -> 1.040 - 0.293 -» 0.494 Scan#:87-»157-45->75
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C28 H48 N2 08 52 [M+H]+ : Predicted region for 6052925 miz
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n

605.0 60

T
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606.0

606.5 607.0 6075
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" 5000 6095

Rank__ Score

Formula (M)

3 94.300 C28 H48 N2 08 §2

len Meas. miz

[M+H]+
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___ Pred. m/z__ Df. (mDa)__Df. (ppm)__
605.2914,  605.2925

-1.1

Iso_ DBE
-1.82) 96.27 6.0
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HRMS of Cpd 5

Event#: 1 M3(E*) Ret. Time :0.347 -> 0.467 - 0.027 -> 0.196 Scan#:53->71-5->31
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8.000e5 288
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5 0005 289.1287 355.r368 | 601.2452
ol : . | -~ : i i : : :
100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0
Measured region for 577 2610 m/z
577.2610
100.0q
50.04 || |
|
(1 578.2652
|
|| | ,' | 579.2609
\ I /
T d <17 = = : T T T T l T
577.0 57715 578.0 578.5 579.0 579.5 580.0 580.5
26 H44 N2 08 52 [M+H]+ : Predicted region for 577.2612 miz
5772612
100.0+
I
Il
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50.0H I
|
| 578.2642
| |
(1 i 579.2610
| | |I II II'.
T ' I T T III Il T T T T /1\ T
577.0 5775 578.0 578.5 579.0 579.5 580.0 580.5
Rank__Score_Formula (M) lon Meas. miz_ Pred. m/z_ Df (mDa) Df (ppm)__ Iso| DBE
1 98.50 C26 H44 N2 08 52 [M+H]+ 577.26100  577.2612 0.2 -0.35 98.50 6.0
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HRMS of Compound 13

Event#f: 2 MS(E-) Ret. Time : 0.600 -> 1.187 - 0.200 -> 0.427 Scan# :92 -> 180-32 -> 66
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5.000e5
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1.000=5 2269743 \ l
ol S PO . a2 : : : : :
100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0
Measured region for 4921930 m/z
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50.04 |
| | 4931957
|
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Y I\ i\
T : T T Ll T — . T T T T T
4920 4925 493.0 4935 494.0 4945 4850 495.5 496.0 496.5
C32 H31 N 02 5 [M-H]- : Predicted region for 492 2003 m/z
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100.0+
[
|
|
50.01 |
| 4932035
|
| 'II
| ! 4942024
| | Il l".
0 —Lh T — ! T T ub T T s T T T
4820 492.5 493.0 483.5 494.0 4945 485.0 495.5 496.0 486.5
Rank__ Score_Formula (M) lon Meas. miz_ Pred. m/z_ Df (mDa) Df (ppm)__ Iso_ DBE
10 1251 C32HITNO2S [M-HJ- 492.1930) 4922003 -1.3 -14.83  46.14 18.0
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HRMS of Cpd 7

Eventff: 2 M3(E-) Ret Time : 0.600 -> 0.680 -0.400-> 0.498 Scan#:92->104-62->76
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Meazured region for 4991656 m/z
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C26 H32 N2 04 52 [M-H]- : Predicted region for 499.1731 miz

4991731
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I ,I | |
T : T T an T T iK T T JT. T T T T T
4930 499.5 500.0 500.5 501.0 501.5 502.0 502.5 503.0 503.5 504.0 504.5
Rank__ Score_Formula (M) lon Meas. miz__ Pred. m/z_ Df. (mDa)_ Df (ppm)__  Iso_ DBE
100 15.86 C26 H32 N2 04 52 [M-HJ- 4991656 4991731 -7.5 -15.03 5966 120
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HRMS of Compound 14

Eventi#: 1 MS(E+) Ret Time:0.613->1.080-0.227->0.380 Scan#:93-> 163-35->59

1.600e7H
1.400e7
1.200e7
1.000e7
2.000e6] 24310210
5.000e6
4.000e6 244 1242
2.000e6] 165_[]?4-0 Wl 496.2390
O . ik | T T l| T T T T T
100.0 200.0 300.0 400.0 500.0 500.0 700.0 800.0 900.0 1000.0
Measured region for 496.2390 miz
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R i
| ',I II | 498.?411
Y R i
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C30 H35 N 02 5 [M+Na]+ : Predicted region for 496 2281 miz
4962281
100.0H
|
|
Nl
50.04 ||
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[ .
I ,I I.
| " 498 2299
1 i T‘I
" agen 4965 ‘4970 'ao75  aoB0 4985 4990 4905
Rank__ Score_Formula (M) lon Meas. miz__ Pred. m/z_ Df. (mDa) Df (ppm)__  Iso_ DBE
5 6.19 C3IDH35NO2S [M+Na]+ 4962390  496.2281 109 2197 7666 140
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APPENDIX C

PART I11: ACID CATALYZED REACTIONS OF AROMATIC KETONES
WITH ETHYL DIAZOACETATE

Copies of 'H NMR, ¥C NMR, and HRMS Spectral Data
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H NMR Spectrum of Compound 3a (Keto-Enol Tautomer) in CDCl3
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13C NMR Spectrum of Compound 3a (Keto-Enol Tautomer) in CDCls
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HRMS of Compound 3a

Event#: 1 MS{(E+) Ret Time:0.627->1.053-0.147 > 0446 Scan#:95->159-23->§7
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C12 H14 O3 [M+H]+ : Predicted region for 207.1016 mfz

100.0+
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086 208.8
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200.2

2094

Rank

1 2306 C12H14 03

Score Formula (M)

Meas. miz
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. Pred. miz
207.0987,  207.1016

Df. (mDa)__ Df. (ppm)

-2.9

Iso DBE

-14.00 7861 6.0



'H NMR Spectrum of Compound 3b (Keto-Enol Tautomer) in CDCls
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13C NMR Spectrum of Compound 3b (Keto-Enol Tautomer) in CDCls
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HRMS of Compound 3b

Event#: 1 MS(E+) Ret Time:0.573->1.147-0.347 > 0.534 Scan# :87->173-53->81

1.200e7
1.000e7
8.000e6]
221.1164
6.00026]
4.000e6] 243.0972
222.1198

2.000e6] 175.0754

| P - L l.
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0 t T T T t T T T T T T T T T T
1000 150.0 2000 2500 300.0 3500 4000 450.0 5000 550.0 6000 6500 7000 7500 8000 8500

Measured region for 221.1164 miz
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4 i R == A

O+ T T T i T T e T T T T P T
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C13 H16 O3 [M+H]+ : Predicted region for 221.1172 m/z

2211172
100.01
|
50.01 |
|
|
| 222.1206
|
! il
CIIII ——T ————— ——————T—TT ——T |||I| ——T ——————T—TT ——T —— T ———
2206 2208 2210 2212 2214 2216 2218 2220 2222 2304 2226 2228 2230 2232 2234
Rank _ Score Fi la (M) len Meas. mfz__ Pred. m/z_ Df. (mDa) _ Df (ppm)__ Iso DBE
2 69.55 C13 H16 03 [M+H]+ 211164 2211172 0.8 2362 7442 6.0
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13C NMR Spectrum of Compound 3b’ (Beta Keto Ester) in CDCl3
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'H NMR Spectrum of Compound 3c (Keto-Enol Tautomer) in CDCl3
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13C NMR Spectrum of Compound 3c (Keto-Enol Tautomer) in CDCls
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'H NMR Spectrum of Compound 3¢’ (Beta-Keto Ester) in CDCl3

I

]

—

ppm

8’
IF"
£
S96°
296"
L6
66"
66"
10"
AV
¥O°
T°
£ET”
ER
8T"
6"
Te”
FE”

Sv”
8%-
0s”
99
89 ”
I=h
86"
86"
66"
To-

4T AT A AT A A A A A OO

=

s
L

™

L

A

U R U U

L

[==]
-—

SN\

ol o ol e Ll el el o




HRMS of Compound 3¢’

Eventff: 1 MS(E+) Ret. Time:0.587 > 1.027 -0.347 > 0.515 Scan#:89->155-53 ->79

4 500e6]
40006
3.500e8]
3.000e6 235131
2 5008
2.000e6]
1.500e6] 236.1340

1000e6] 1610957 o5g 1165 3711670
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| I 1, I 1
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I " i L
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Measured region for 235.1312 m/z
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| i
|| \ I
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C14 H18 O3 [M+H]+ : Predicted region for 235.1329 m/z
2351329
100.04
|
50.0q
|
|
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|
| il
I, T — — T T —T o T T T T T  — T T T T L T T T T
235.0 2355 236.0 236.5 237.0 2375 238.0 2385
Rank__ Score_Formula (M) lon Meas. mlz__ Pred. miz_ Df. (mDa) Df. (ppm)__ Iso DBE
3 59.72 C14H1803 [M+H]+ 2351312 2351329 -1.7 -7.23 8822 6.0
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'H NMR Spectrum of Compound 3d (Keto-Enol Tautomer) in CDCls
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13C NMR Spectrum of Compound 3d (Keto-Enol Tautomer) in CDCls
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HRMS of Compound 3d

EventZ: 1 MS(E+) Ret Teme : 0.880 -> 0.913 - 0.207 ->» 0.288 Scan& : 265 -» 275 - 63 -» 91
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13C NMR Spectrum of Compound 3e (Keto-Enol Tautomer) in CDCls
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HRMS of Compound 3e

Event#: 1 MS(E+) Ret. Time - 0.407 -> 0.727 - 0.107 -> 0.333 Scan# : 123 -> 219-33 -> 101
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HRMS of Compound 3e’

Event#: 1 MS(E+) Ret. Time : 0.393 -> 0.720 - 0.193 -> 0.362 Scan#: 119 -> 217 - 59 -> 109
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13C NMR Spectrum of Compound 3f (Keto-Enol Tautomer) in CDClz
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HRMS of Compound 3f

Eventif: 1 MS(E+) Ret Time: 0.627-> 0.973 Scan#:95-> 147
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13C NMR Spectrum of Compound 3f’ (Beta-Keto Ester) in CDCls
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HRMS of Compound 3f

Event#: 1 MS(E+) Ret. Time : 0.573 -> 1.160 - 0.347 -> 0.485 Scan#:87->175-53->73
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13C NMR Spectrum of Compound 3g (Keto-Enol Tautomer) in CDCls
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13C NMR Spectrum of Compound 3g (Keto-Enol Tautomer) in CDCls
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HRMS of Compound 3g

Event#f: 1 MS(E+) Ret. Time : 0.600 -> 1.240 - 0.160 -> 0.452 Scan#:91-> 187 - 25 -> 69
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HRMS of Compound 3g’

Event#f: 1 MS(E+) Ret Time:0.920->1.133 - 0.200 -> 0.338 Scan#:139->171-31->51
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