
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

December 2019

An Application of Clustering and Cluster Update Methods to Boiler An Application of Clustering and Cluster Update Methods to Boiler

Sensor Prediction and Case-Based-Reasoning to Boiler Repair Sensor Prediction and Case-Based-Reasoning to Boiler Repair

Timothy Edward Rooney
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Mechanical Engineering Commons

Recommended Citation Recommended Citation
Rooney, Timothy Edward, "An Application of Clustering and Cluster Update Methods to Boiler Sensor
Prediction and Case-Based-Reasoning to Boiler Repair" (2019). Theses and Dissertations. 2334.
https://dc.uwm.edu/etd/2334

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=dc.uwm.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2334?utm_source=dc.uwm.edu%2Fetd%2F2334&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

AN APPLICATION OF CLUSTERING AND CLUSTER UPDATE METHODS TO BOILER

SENSOR PREDICTION AND CASE-BASED-REASONING TO BOILER REPAIR

by

Timothy Rooney

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin–Milwaukee

December 2019

ABSTRACT

AN APPLICATION OF CLUSTERING AND CLUSTER UPDATE METHODS TO BOILER SENSOR
PREDICTION AND CASE-BASED-REASONING TO BOILER REPAIR

by

Timothy Rooney

The University of Wisconsin–Milwaukee, 2019
Under the Supervision of Professor Amol Mali

Driven by demand from both consumers and manufacturers alike, Internet of Things (IoT)

capabilities are being built into more products. Consumers want more control and access to their

devices, while manufacturers can find data gathered from IoT-capable products invaluable. In

this thesis, we use data from a growing fleet of IoT-connected boilers in the residential, light-

commercial, and medium-commercial ranges to demonstrate a framework for cluster initialization

and updating. We compare two methods of dynamically updating clusters: a sequential method

inspired by sequential K-means clustering and a cohesion-based method called DYNC. A predictive

artificial neural network system demonstrates the effectiveness of the clustering methods.

In a secondary topic, a multi-tiered case-based reasoning system (CBR) is created based on

boiler problem and repair support cases. Word embeddings are extracted from case comments and

used to predict potential solutions to problems and problem categories using user selection and

input. The primary tier uses information about actions taken involving specific parts, along with

comments fed through the word embedding model, to predict the correct next step. The secondary

tier uses only case comments to provide categories of likely symptoms and solutions. The third tier

is a pure probability fall-back model.

ii

© Copyright by Timothy Rooney, 2019
All Rights Reserved

iii

To my wife.

iv

TABLE OF CONTENTS

LIST OF FIGURES vii

LIST OF TABLES x

LIST OF ABBREVIATIONS xi

I INTRODUCTION 1

1 Boilers . 1

2 Literature Review . 4

2.1 Clustering . 4

2.2 Case-Based Reasoning . 10

II BOILER CLUSTERING METHOD 13

1 Problem . 13

1.1 Boilers . 13

1.2 Data . 17

2 Implementation . 19

2.1 Time Series Analysis . 21

2.2 Clustering . 22

2.3 Prediction . 39

III CASE-BASED REASONING 44

1 Problem . 44

2 Method . 44

2.1 Pure Probability Model . 47

2.2 Comment-Based Model . 49

2.3 Predictive System . 60

IV RESULTS AND DISCUSSION 69

1 Clustering . 69

2 Case-Based Reasoning . 77

v

V CONCLUSION 86

1 Clustering . 86

2 Case-Based Reasoning . 87

REFERENCES 89

APPENDIX A - DATA FORMATS 96

APPENDIX B - CLUSTERING 97

APPENDIX C - CASE-BASED-REASONING 102

vi

LIST OF FIGURES

1 Simple Water Tube Boiler Diagram . 2

2 DC-UW Clustering Results . 6

3 ρ-Double Approximate DBSCAN cell updating mechanism 9

4 The CBR Cycle . 11

5 Crest Piping Diagram with Water Generator [29] . 14

6 Boiler Input Ranges . 16

7 Distribution of unit model types . 18

8 Map of unit locations in North America . 20

9 Total and Allowed Boilers in the System by Date . 21

10 Averaging Method - Boiler Example 1 . 23

11 Averaging Method - Boiler Example 2 . 23

12 ”Unbalance” Clustered by Ward’s Method . 27

13 ”Unbalance” Dendrogram Clustered by Ward’s Method 28

14 ”Unbalance” Rotation Example for Sequential and DYNC Updating 33

15 ”Unbalance” Crossing Example for Sequential and DYNC Updating 34

16 ”Unbalance” Splitting Example for Sequential and DYNC Updating 35

17 Boiler Dendrogram Clustered by the Centroid Method 38

18 Boiler Dendrogram Clustered by Ward’s Method . 38

19 Example of a Perceptron [41] . 39

20 Example of a Simple Neural Network [42] . 40

21 Cluster-Based ANN Modeling System . 42

22 Symptom Groups and Types . 44

vii

23 Case Data Distributions . 46

24 Full Case-Based Reasoning Method . 48

25 Pure Probability Example #1 . 49

26 Pure Probability Example #2 . 49

27 The Skip-Gram Architecture [46] . 53

28 2D SVC Example [36] (https://nlp.stanford.edu/IR-book/html/htmledition/support-

vector-machines-the-linearly-separable-case-1.html) 55

29 2D Multi-Class SVC Example [54] . 57

30 Example Points that cannot be Separated by a Boundary Line [55] (https://www.eric-

kim.net/eric-kim-net/posts/1/kernel trick.html) . 58

31 Example Points with Kernel Method Applied [55] (https://www.eric-kim.net/eric-kim-

net/posts/1/kernel trick.html) . 58

32 Kernel Method Example with Hyperplane [55] (https://www.eric-kim.net/eric-kim-

net/posts/1/kernel trick.html) . 59

33 Input and Output Vector Splitting Example . 64

34 First and Second CBR Methods with Substitution . 66

35 Third CBR Method with Transformation . 67

36 MAE of Base NN and Base Repeat Prediction Models . 70

37 MAE of Base NN and Clustered Repeat Prediction Models 72

38 MAE Improvement of Clustered Repeat Prediction Models over Base Repeat Model . . 73

39 MAE of Clustered NN Models . 75

40 MAE Improvement of Clustered NN Models over Clustered Repeat Models 76

41 Similarity of Clustering Methods on April 01, 2018 . 77

42 Similarity of Clustering Methods on June 30th, 2018 . 78

viii

43 Model scores when predicting symptom types with 64 element vectors 80

44 Model scores when predicting symptom types with 150 element vectors 80

45 Model scores when predicting symptom groups with 64 element vectors 81

46 Model scores when predicting symptom groups with 150 element vectors 81

47 Model scores when predicting symptoms with 64 element vectors 82

48 Model scores when predicting symptoms with 150 element vectors 82

49 Model scores when predicting solutions with 64 element vectors 83

50 Model scores when predicting solutions with 150 element vectors 83

51 Model scores when predicting solutions with 64 element vectors 85

52 Model scores when predicting solutions with 150 element vectors 85

53 RMSE of Base NN and Base Repeat Prediction Models . 97

54 RMSE of Base NN and Clustered Repeat Prediction Models 98

55 RMSE Improvement of Clustered Repeat Prediction Models over Base Repeat Model . . 99

56 RMSE of Clustered NN Models . 100

57 RMSE Improvement of Clustered NN Models over Clustered Repeat Models 101

ix

LIST OF TABLES

1 Summary of Boiler Models . 15

2 Simplified format of raw data from boilers . 17

3 Recommended ROC method kernels . 24

4 Summary of Example Cluster Movements . 32

5 Initialization and Update Methods used for Boiler Parameter Clustering 37

6 Input and Output Prediction Parameters for ANN Model 41

7 Example Technician Case Data . 45

8 Corpa . 54

9 Kernels used in SVC Models . 55

10 Parts considered in the CBR model . 61

11 Actions considered in the CBR model . 61

12 Full format of raw data from boilers . 96

x

LIST OF ABBREVIATIONS

ANN Artificial Neural Network

CBR Case-Based Reasoning

DBSCAN Density-Based Spatial Clustering of Applications with Noise

DHW Domestic Hot Water

EMA Exponential Moving Average

IP Interaction Power

MAE Mean Average Error

MLE Maximum-Likelihood Estimation

MLP Multi-Layer Perceptron

MSRE Mean Squared Ranking Error

NLP Natural Language Processing

NN Neural Network

OTR Outdoor Temperature Reset

RMSE Root Mean Square Error

SVM Support Vector Machine

SVC Support Vector Classifier

UW Unit Weight

xi

ACKNOWLEDGEMENTS

I would like to sincerely thank Professor Amol Mali for advising me throughout the completion of

this work. His guidance and motivation were essential and very much appreciated.

I also owe Aron Mebrahtu at Lochinvar and Yaojun Wang at A.O. Smith a great deal of thanks for

helping me to understand the format, parameter meaning, and encoding methods of the connected

boiler data.

xii

I INTRODUCTION

This thesis is split into five main sections. In 1. Introduction, we provide a brief background

on boiler operation and literature in the areas of clustering and case-based reasoning and its

applications to product repair. In 2. Boiler Clustering Method, we fully introduce the boiler data

model, the motivation behind clustering, and the implementation of a clustering and updating

framework that is graded in effectiveness by a neural network predictive model. In 3. Case-Based

Reasoning, we introduce the case comments data surrounding boiler repair and describe the

method behind the multi-tiered CBR approach. In IV. Results and Discussion present the results

of the various clustering and update methods and accuracy metrics of the CBR system. Finally, V.

Conclusion points key findings from this thesis and gives directions for future work.

1 Boilers

There are three main categories of boilers: water tube, fire tube, and electric [1]. In a basic water

tube boiler, hot exhaust gas from natural gas, propane, or another combustible source surrounds

the area a tube or tubes or water. Figure 1 shows a simple example of this. Heat from this hot gas

is transferred to the water, especially on the lower part of the tube(s), through a combination of

conductive and convective heat transfer. As the water near the bottom of the tube(s) increases in

temperature, it becomes less dense a steam bubbles are created. Cooler, more dense water travels

down the downcomers the hotter, less dense steam and water mixture rises on the other side. It is

this circulation that keeps the boiler operating as steam leaves through a screen at the top of the

drum and feedwater enters the drum to be eventually sent through the water tube.

Fire tube boilers operate by sending hot combustion gases through tubes that are surrounded

by water. As the inverse of water tube boilers, heat transfers from the hot gas inside of the tube

1

Figure 1: Simple Water Tube Boiler Diagram [1]

2

to the cooler water outside of the tube. Bubbles of steam break off of the tubes and rise to the

surface of the water. Water flows around from the outer walls of the chamber to replace the volume

occupied by the bubbles, and thus natural convection occurs. Relative to water tube boilers, fire

tube boilers are typically cheaper to manufacture, have a larger footprint, and take longer to reach

a useful state. Once they are fully started, they are better able to respond to changing demand than

water tube boilers. They also have bigger turndown ratios, which is the ratio between its maximum

allowed input and lowest allowed input.

None of the boilers in the connected boiler system and ticket datasets contain them, but they

are mentioned here for completeness. In summary, there are two main types of electric boilers.

The simpler, less common type uses electric resistance elements to boil the water, much like an

electric water heater but with a higher setpoint. The more common type conducts electricity directly

through the water using electrodes with voltages of up to 16,000V [1].

Outside of heating methods, another distinction between types of boilers is whether they are

non-condensing or condensing. When the burner of a non-condensing water tube or fire tube boiler

is on, all of the combustion products are released from the system through the exhaust in the form

of gas. One component of these exhaust gases is water in the form of water vapor. There is latent

heat stored in this water vapor that can be extracted by condensing it back into its liquid form. By

using additional tubes between the burner and exhaust flue, condensing boilers extract this latent

heat, discharge the resulting liquid water, and transfer this heat to the drum using a secondary heat

exchanger.

3

2 Literature Review

2.1 Clustering

There are two main categories of clustering algorithms: partitioning and hierarchical. In their

most basic forms, partitioning methods are based on the concept of first assigning the set of points

to be clustered arbitrarily into a pre-determined number of clusters and then iteratively moving

points between clusters to either maximize some measure of accuracy or minimize some measure

of error [2]. They generally have an advantage over hierarchical clustering algorithms in time and

resource usage. However, they are best applied to situations where the clusters are hyperspherical

[3]. This means that the data falls into a shape approximating a sphere (or hypersphere) across its

dimensions. A 2D example would be data in an approximately circular shape around a point, and

a 3D example would be data arranged approximately spherically around a point.

Hierarchical methods, instead, are based on the concept of building-up or dividing-down

to create a hierarchy of clusters. In agglomerative clustering methods, all data points begin as

members of their own cluster. Two clusters are combined by some metric. Next, another two

clusters - that may or may not contain the newly-formed cluster from before - are joined by the same

metric. This process continues until all clusters are members of one large cluster with a hierarchy

defined by the used metric. Divisive clustering works in the opposite direction. All points start as a

member of a single cluster, and some metric is used to recursively divide the cluster until all points

are a member of their own cluster.

A common and popular method of partitioning clustering is known as K-means clustering [4].

It is shown in Algorithm 1.

If n is the number of points in M, members of M are in Rd, and k is the number of clusters in

K, then the K-means algorithm has a runtime complexity of O(ndk+1) [5]. K-means struggles in

4

Input: M: set of points
Input: K: arbitrarily-initialized cluster locations

1 foreach point m ∈ M do
2 Find the closest cluster, K1(m) to m
3 Assign point m to cluster K1(m)

4 end
5 for each cluster k in K do
6 Update the cluster center of K to be the average of the points assigned to it
7 end
8 Go back to step 1 until the cluster members no longer change.

Algorithm 1: K-means algorithm

areas where the true clusters vary greatly in size. Modified versions have been made to address

this issue at the expense of complexity exist [3, 6], but such algorithms are still ideally applied to

hyperspherical data.

Literally named, Dynamic Clustering (DC) is a family of algorithms based on the concept

of gravity [7]. In it, points are initialized in space according to their assigned values, where, as

this is an agglomerative clustering algorithm, each represents their own, one-member cluster.

Through each timestep (∆T) of predefined length, the accelerations and velocities of each point are

determined through a gravitational model based on Newton’s law of gravity (Equation 1, where m

is the mass of a cluster, x is the location of a cluster, G is a pre-determined gravitational constant,

and F is the simulated force applied to a cluster.). When the Euclidean distance between two points

is lower than a predefined threshold (∆x), the points are merged into a cluster and then considered

to be one point. The process continues until In one member of the DC family, called interaction

power (IP), gravitational pull is heavier from clusters with more points. In the alternative, called

unit weight (UW), the gravitational pull from each cluster is the same, regardless of the number of

points it contains.

Fij = G
mimj(xj − xi)

||xj − xi||3
, (1)

5

Figure 2: DC-UW Clustering Results

These algorithms (DC-IP and DC-UW) perform strongly in situations where clusters surround

other clusters [7]. For example, it successfully clusters the three apparent groups of points in Figure

2, compared to the standard Ward’s agglomerative clustering method [8], which mis-classified 29%

of the points. However, while it is strong in successfully clustering groups of abnormal shapes,

there is a large computational cost. This is effectively an application of the N-body problem, which

is calculated in O(n) for 2D problems, O(n2) for 3D problems, and O(nm−1) for m-dimensional

problems [9].

An alternative clustering method is known as density-based clustering algorithms. A popular

algorithm is this family is density-based spatial clustering of applications with noise (DBSCAN)

[10]. Where n is the number of points in Rd in a database, the runtime complexity of DBSCAN is

Θ(n2d) [11]. Algorithm 2 shows its standard sequential implementation.

6

Input: DB: Database
Input: epsilon: Radius
Input: minPts: Density threshold
Input: dist: Distance function
Data: label: Point labels, initially unde f ined

1 foreach point p ∈ DB do
2 if label(p) 6= unde f ined then continue;
3 Neighbors N ← RANGEQUERY(DB, dist, p, ε)
4 if |N| < minPts then
5 label(p)← Noise
6 continue
7 end
8 c← next cluster label
9 label(p)← c

10 Seed set S← N \ p
11 foreach q ∈ S do
12 if label(q) = Noise then label(q)← c;
13 if label(q) 6= unde f ined then continue;
14 N ← RANGEQUERY(DB, dist, q, ε)
15 label(q)← c
16 if |N| < minPts then continue;
17 S← S ∪ N
18 end
19 end

Algorithm 2: DBSCAN algorithm [11]

7

It has two hyperparameters: ε defines the maximum radius that a point can exist within from

another point to be considered one of its neighbors, while minPts defines the minimum number of

neighbors that a point must have to be considered a core point. A distance function, dist, is used to

determine the distance between two points. An abstract function, RANGEQUERY, takes a selected

point, p, compares its distances as calculated by dist between all of points in the database, and

returns those points that have distances less than ε as neighbors. Any point that has at least as

many neighbors as minPts is labeled as a core point, while those that do not are labeled as noise.

When a core point is found, its neighbors are recursively expanded and labeled as members of the

same cluster as part of a graph. In future passes of the algorithm, all points that have already been

assigned to a cluster are ignored. In the end, all points either belong to a cluster or are labeled as

noise.

A version of DBSCAN, called ρ-Double-Approximate DBSCAN, has been developed with the

goal of creating a clustering algorithm that maintains clusters when a dataset has points that can

be removed, added, or updated [12]. It makes two changes, both of which are based on a new

clustering-precision hyperparameter, ρ. If a point p has at least minPts neighbors with distances

less than ε, then it is definitely a core point. If has less than minPts neighbors with distances less

than (1 + ρ)ε, then it is not a core point. Otherwise, it can be considered as either. Secondly, it

creates a d-dimensional grid with side-length ε√
d

over the data space Rd. It uses the concept of cell

denseness, where cells with at least minPts are considered dense, to minimize runtime complexity.

Because of the side-length definition, all points in a dense cell are known to be core points without

using distance calculations. Graph edges are determined between cells, not points, further reducing

runtime complexity. Thus, when points removed, added, or moved, the cost of iteratively updating

all affected points in the graph is minimized. Figure 3 demonstrates this concept.

8

Figure 3: ρ-Double Approximate DBSCAN cell updating mechanism [12]

9

2.2 Case-Based Reasoning

At its core, Case-Based Reasoning (CBR) is the using known solutions to previous problems

to identify or create a solution to a new problem [13]. In this defining work, CBR is defined to be

based off of the way that expert humans integrate old experiences to solve new problems. Experts:

• depend on previous experiences when solving new problems.

• evaluate new problems in relation to these previous experiences.

– recall old experiences that are related to a new problem.

– interpret a new problem in relation to previous experiences.

• synthesize new solutions through adaptation.

• evaluate the effectiveness of new solutions.

– repair their knowledge base after determining a new solution’s effectiveness.

The interaction between these items are modeled in Figure 4 in a process known as the Case-

Based Reasoning cycle [13]. Alternative definitions have been proposed [14, 15], but they all in some

way define the steps of retrieving similar cases, reusing knowledge from similar cases to create a new

solution, revising the new solution when needed, and retaining and evaluating the new solution and

its results. It is important to keep in mind that CBR is an abstract methodology and framework

for problem solving, not as discrete algorithm, and thus the technology used in each of these main

steps can vary significantly. The retrievals steps can range from simple methods such as SQL

queries and hard rules to complex statistical techniques and neural networks while the revision

steps can likewise vary considerably in complexity [14].

CBR has been successfully adapted to many physical and language problem domains. In the

physical domain, it has been used to identify sensor readings that indicate potential failures in an oil

10

Figure 4: The CBR Cycle [15]

drilling application [16], office object placement [17], and fall detection using in-home IoT devices

[18]. In the language domain, it has been used for sentiment analysis and recommendation [19, 20,

21], with artificial neural networks (ANNs) for internet domain name value and price estimation

[22], and automated story generation [23]. Additionally, the topics of CBR and clustering have

been used together, where hierarchical clustering algorithms can be used to improve information

retrieval for CBR [24]

There are three main categories of CBR:

Substitution/Null

These seek to find an exact case match if possible, otherwise they find the closest previously-

used solution [25] using a nearest-neighbor lookup. Then, try the solution and rely on the execu-

tor/human to make any adaptations as needed. This is useful in cases problem x is always solved

11

by solution y and most problems are stored in the case-base. If a new problem is observed, the

executor simply fixes the (probably) incorrect proposed solution and the next time the problem is

seen the previous solution is re-applied. A classic example is IT help, where the vast majority of

problems have an already-known, singular solution.

Transformation

These use previously-used solutions to generate the best guess at a new solution [25]. They

are applicable to scenarios where there are broad categories of solutions but each case has unique

details in a combination that may not have been observed before. They can be used in mechanical

maintenance and repair [26, 27], medicine, and other applications where the the probability of

solutiony given problemx is not always 1.

Generative

Generative CBR systems create completely new multi-step solutions for given cases [25]. These

are very academic - they are often mentioned in literature as an option but then a transformation or

substitution system is used instead because of their practicality.

12

II BOILER CLUSTERING METHOD

1 Problem

1.1 Boilers

There are several boiler models connected to a cloud-based data collection system. These are:

• Crest

– Single burner

– Double burner

• Power Fin

• FTXL

• Knight

• Shield

These are described in detail below.

Crest boilers are a series of fire tube condensing boilers targeted at the commercial segment.

They have input ratings between 750kBTU/hour and 6MBTU/hour, and their condensing nature

helps them to get a thermal efficiency of up to 99%. Common installation locations include schools,

hospitals, and hotels. They can be used to supply hydronic heating for a building. In addition,

as shown in Figure 5, they can also be used to provide domestic hot water (DHW) for a building

through the use of a hot water generator. Such hot water generators transfer heat from the non-

potable boiled water to potable supply water through a heat exchanger. Typically, these heat

exchangers use either coil-type or shell-and-tube heat exchangers [28, 29].

13

Figure 5: Crest Piping Diagram with Water Generator [29]

14

Table 1: Summary of Boiler Models
Series Segment Family Models Input Rating Max Eff. Turndown
Crest Com Fire Tube 12 750-6000kBTU 99% 25:1
Power Fin Com Water Tube 7 500-2000kBTU 85% 5:1
FTXL Com and Res Fire Tube 5 400-850kBTU 98% 10:1
Knight Com Fire Tube 5 80-285kBTU 99% 5:1
Shield Com Water Heater 8 125-500kBTU 96% 5:1

The Power Fin series of boilers are water tube non-condensing boilers that, like the Crest line,

are targeted at commercial users. They range from inputs of 500kBTU/hour to 5MBTU/hour.

Being non-condensing, they have a smaller footprint than Crest boilers with similar input ratings.

In exchange, their thermal efficiencies are up to 87%. As a commercial boiler, major applications

include hydronic heating and providing DHW through a hot water generator.

The FTXL series is made up of fire tube condensing boilers for residential and light commercial

uses. With input ratings between 400kBTU and 850kBTU, they are used for hydronic heating and

DHW supply in apartments, houses, and light-duty commercial locations like offices. As they are

condensing, like the Crest, they achieve thermal efficiencies of up to 98%.

Smaller still, the Knight boilers have water tube input ratings between 80kBTU and 285kBTU.

Because of their lower input ratings, they are typically used in residential settings for hydronic

heating and indirect DHW supply through the use of water generators.

Although they are commercial water heaters, the Shield units are still part of the CON·X·US

system. They have maximum input ratings between 125kBTU and 500kBTU. Like the boilers, they

have modulating burners. As water heaters, their use is limited to DHW applications and their

installation is simpler.

A summary of these model specs is shown in Table 1. Figure 6 shows a comparison of the

available input ranges for models of each of the main boiler types described above..

15

Figure 6: Boiler Input Ranges

16

Table 2: Simplified format of raw data from boilers
Item Description
oem model The board model – either Herald or Page
dsn The boiler serial number
property name The name of the property
base type The type of the property
created at The time that the property is uploaded by the boiler
discarded Whether a property recording is considered discarded
val int An integer value
val decimal A decimal value
val float A floating point value
val boolean A boolean value
val string A string value

1.2 Data

Each day, the connected boilers send one of 271 possible parameters at irregular intervals for a

total of around 500MB of data per day. Some of these parameters may be sent every few seconds,

while others might only be sent once per week. These parameters vary from performance and

sensor data - such as fan speed, outlet temperature, and flue temperature, to user-configurable

parameters like outdoor reset temperatures. These parameters are received at uneven time intervals

in a key-value paradigm. A simplified summary of the format of the data as it arrives is shown in

Table 2. This is a subset of the full data format shown in Table 12 in APPENDIX A.

Of the 271 possible parameters, 239 of them can be handled numerically. Integers, decimals,

and floating point numbers are easily handled numerically, and boolean values can be changed

from TRUE/FALSE to 1 and 0. The remaining string values are made up of boiler model names,

contact information, and location information. The model names are matched up with one of the 5

model families described before (the distribution of these is shown in Figure 7), and the location

information is used to find local weather data for each boiler.

The modeling approach is split into two main sections. First, we develop clusters of boilers

based on the full set of numeric data, their model families, and their weather data. Second,

17

Figure 7: Distribution of unit model types

18

we use these clusters to inform models that predict future performance parameters based on

previously-seen data. While the generated clusters could be used for market research or learning

behavior patterns in the way that installers and users configure their boilers, here we demonstrate

the usefulness of various clustering methods through the accuracy of their associated predictive

models. The assumption is that models using well-clustered groups of boilers will be more accurate

at predicting than those with poorly-clustered groups or without clusters entirely.

2 Implementation

One of the pieces of location information is the boiler IP address. In order to get the approximate

location of a boiler, in terms of latitude and longitude, we use an API provided by ipstack [30]

(https://ipstack.com/). This API allows up to 10,000 IP addresses to be converted to latitude and

longitude per month through knowledge of the ISP and their IP designation patterns. With this

information, the location of each boiler is indicated by a dot in Figure 8.

Next, we need a way to access weather data - specifically the minimum and maximum tempera-

ture of each day - for each boiler. For this, a small Python library was developed that interfaces

with the NOAA’s NCDC weather API [31] (https://www.ncdc.noaa.gov/cdo-web). Given a date,

latitude, and longitude, it is able to collect the maximum and minimum temperature seen by the

closest weather station.

One more limitation is needed prior to the clustering and analysis. Not all of the boilers in the

system regularly send data for all parameters. To prevent building a system with artificially-inflated

accuracy from predicting empty or filler values, we only allow boilers that have report unique

values for at least 150 of the 239 numeric parameters. Over a testing period from April 01, 2018 to

December 31, 2018, Figure 9 shows the number of these allowed boilers against the total number of

boilers in the system.

19

Figure 8: Map of unit locations in North America

20

Figure 9: Total and Allowed Boilers in the System by Date

2.1 Time Series Analysis

Different properties can occur at very different frequencies. For example, sensor readings

like flue temperatures, fan speeds, and outlet temperatures are sent very frequently, while other

properties like outdoor reset temperatures are only sent when they are updated by a user or the

building management system (BMS). Because the dataset is very large, a way to simplify it into

per-day statistics is useful.

Andreas Eckner has developed a framework for the statistical analysis of unevenly-spaced

time series [32]. The time-varying exponential moving average (EMA) method developed by him

is shown in Equation 2. A psuedocode implementation of this is shown in Algorithm 3, which

generates an exponentially-weighted moving average for each recorded value. We use this to assist

with the clustering method. For each of the boilers with enough unique values to be considered and

for each day, we calculate the 7-day EMA of the frequently-reported sensor values using Algorithm

21

3. We take the average of this 7-day EMA as the single data point considered for clustering for

that parameter for each boiler. For the slower, non-sensor parameters, we simply consider the

most-recently seen value. These parameters will only be entered into the system when changed, so

even if the last-seen value is from months ago, it is still valid.

EMA(X, τ)t =


Xt1 t = t1(

1− e
−∆tn

τ

)
Xtn−1 + e

−∆tn
τ EMA(X, τ)tn−1 t = tn > t1

(2)

Data: Time[] and Value[] where a Time element corresponds to the Value element of the
same index

Output: EMA[]
EMA[0]← Values[0];
for i← 1 to length(Time)− 1 do

α← exp (−(Time[i]− Time[i− 1])/τ);
EMA[i]← (1− α) ∗Value[i− 1] + α ∗ EMA[i− 1];

end
Algorithm 3: Pseudocode implementation of Equation 2

As an example of this process, let’s use example sensor data from the outlet temperatures of

two boilers during May of 2018. The points in Figure 10 show actual measured values from the

first example boiler. The pink line shows the 7-day EMA calculated with Algorithm 3, while the

blue line shows the daily average of the 7-day EMA that is used for clustering. The same process is

applied to the second boiler in Figure 11, which features a more period usage pattern.

2.2 Clustering

Agglomerative clustering is a clustering method that is part of the hierarchical clustering family,

which is itself a part of the larger clustering algorithm family. Clustering algorithms can be divided

into two main groups: hierarchical methods and partitioning methods. [2] Partitioning methods

are used in situations where intra-cluster relationships are not important.

Most agglomerative clustering methods assume that the data is stationary. Such data is assumed

22

Figure 10: Averaging Method - Boiler Example 1

Figure 11: Averaging Method - Boiler Example 2

23

Table 3: Recommended ROC method kernels
Name Function Robust

Radial basis function (RBF) K(x, y) = e
−∑i |xi−yi |

b

σ2 Yes

Gaussian kernel (GK) K(x, y) = e
−∑i |xi−yi |

2

σ2 Yes
Polynomial kernel (PK) K(x, y) =

(
xTy + 1

)d No

to have a mean, variance, and autocorrelation that does not change over time. [33] It does not show

trends or seasonality. This can present a problem in the case of the boiler data because the boiler

configuration parameters and sensor values certainly can exhibit trends and seasonality. A building

management system (BMS) might change some of the configuration parameters throughout the year,

and installers and contractors can make instantaneous step changes to configuration parameters.

Guedalia et al. proposed a on-line agglomerative clustering method for non-stationary data

called AddC [34]. In the context of clustering methods, on-line refers to its ability to factor in

temporal information. It does not refer to the traditional definition of on-line with respective to

algorithms of a process that is intended to be continually updated over time.

Although AddC successfully manages to cluster non-stationary data, it is not robust to noise.

In response, Zhang et al. proposed a new method, called Robust Online Clustering (ROC) [35].

Where AddC is based on an on-line k-means method, ROC is a kernel method. Zhang et al. propose

replacing the standard agglomerative clustering distance function with a kernel-based function.

This is defined in Equation 3, where K(x, y) is the kernel function. Although the kernel function

can be nearly anything, they suggest using one of the kernel functions shown in Table 3. If the

Gaussian Kernel is used, Equation 3 can be reduced to Equation 4. Once a kernel is selected, the

ROC algorithm is used as is shown in Algorithm 4

24

d(x, y) =
√

K(x, x)− 2K(x, y) + K(y, y) (3)

d(x, y) =
√

2− 2K(x, y) (4)

Input: A threshold ε, an initial N = 0, and Nmax
Data: x[]

1 for i← 0 to length(x)− 1 do
2 winner = min(d(x[i], yj))

3 Update the winner prototype ywinner and its weight cwinner where

cwinner = cwinner + K(x, ywinner)

ywinner = ywinner +
x− ywinner

cwinner

4 if N < Nmax then
5 δ = N
6 else
7 Find the two closest prototypes, γ and δ, through min(d(yγ, yδ)) Merge these

prototypes with

yγ =
yγcγ + yδcδ

cγ + cδ

cγ = cγ + cδ

8 end
9 Create a new prototype yγ with x[i] where yγ = x[i] and cγ = 0

10 end
11 Remove all clusters with a negligible weight as defined by cj < ε where j is from 1 to N

Algorithm 4: ROC agglomerative clustering algorithm from Zhang et al.

As a point of comparison, we also use alternative agglomerative clustering algorithms, the

partitioning K-means method described previously in Algorithm 1, and DBSCAN. For the agglom-

erative clustering algorithms, the general implementation is the same. Given a distance function,

d(x, y), and a group of sets, or clusters, we use a linkage criteria to determine which clusters to

connect next. To start, each point begins as a member of its own cluster. Then, at each step, the two

closest clusters as determined by d and the linkage criteria are linked. This process continues until

25

all of the points and their parent clusters are part of one single supercluster.

One example is the centroid agglomerative clustering method. If C(A) is a function that re-

turns the centroid of set A, then the linkage criteria that returns the next two clusters to join is

argminA,B,A 6=Bd(C(A), C(B)) for each combination of clusters A and B remaining. All members

of B are added to A and the process recurses until only one cluster exists. More formally, an

implementation of the centroid-finding function C is given by Equation 5, and thus d is given by

Equation 6 [36].

C(A) =
1
|A| ∑

p∈A
p (5)

d(A, B) =
1

|A||B| ∑
p∈A

∑
q∈B

p · q (6)

Ward’s method operates similarly, but instead merges clusters in a way that minimizes the

variance of the newly-created cluster. To accomplish this, the distance function in Equation 7 is

used [37].

d(A, B) =
|A||B|
|A|+ |B| ||A− B||2 (7)

The recursive, linking nature of agglomerative clustering lends itself to the creation of dendro-

grams. These are visual representations of the process that an agglomerative clustering algorithm

used. As an example, let us use part of a standard clustering benchmark dataset named ”Unbalance”

[38]. When clustered using Ward’s method, it looks like Figure 12. The process of generating the

clusters creates the dendrogram shown in Figure 13. The y-axis indicates the distance at which

two clusters were joined, while the x-axis represents each individual point in the set of clusters.

This dendrogram can also be used to demonstrate another feature of such agglomerative clustering

26

Figure 12: ”Unbalance” Clustered by Ward’s Method

algorithms. By their nature, agglomerative clustering algorithms do not have a defined number

of output clusters. We can artificially generate these in one of two ways: first, we can define a

cutoff distance below which clusters are considered to be independent. One can imagine horizontal

line at y=200,000 on Figure 13 to demonstrate this. Alternatively, we can demand n independent

clusters, which is the inverse of the first method. One can imagine a horizontal line starting at y=0.

Its position increases along the y-axis until there are n independent clusters below it. In the case

of Figure 13, this occurs at around y=120,000. By moving this line up and down, the number of

clusters used can be changed while using the generated hierarchy.

The ”Unbalance” data example gives the opportunity to describe a second concept in the

clustering. Referring back to Figure 9, there is a continuously-increasing number of boilers to be

clustered. To handle introducing new boilers to clusters and moving old boilers between clusters,

27

Figure 13: ”Unbalance” Dendrogram Clustered by Ward’s Method

we use two methods: a sequential method based off of sequential K-means, and a dynamic cohesion

method named DYNC (or dynamic cohesion). We can also use a common framework, shown in

Algorithm 5 to implement these two update mechanisms with the previously-mentioned clustering

methods.

Φ represents one of the possible clustering methods described before. Θ and ∆ take on one of

two main flavors: the sequential method and DYNC. The sequential method borrows from the

sequential K-means update procedure, shown in Algorithm 6 [39]. Algorithm 7 shows the modified

process for Θ, while ∆ is shown in Algorithm 8. For DYNC, we need a method for calculating the

centroid of a cluster. Even if the original clustering method made use of kernels and non-Euclidean

space, DYNC stays in Euclidean space. Therefore, we simply use centroid = ∑ ci
|c| , where c is a

cluster of points when the centroid is needed. The new point method Θ is given by Algorithm

9 and the update method ∆ is given by Algorithm 10. As part of its cohesion-checking process,

DYNC uses a cohesion limit ε. If a cohesion value µ for a cluster falls below this limit, the cluster is

removed and old members re-assigned new clusters using Algorithm 9.

”Unbalance” can be used to demonstrate how these two methods work within the general

28

Data: Dinitial , the initial dataset
Data: Dstreaming, continuously-streaming data
Input: Φ(Dinitial), a cluster initialization function taking an initial dataset Dinitial as an input

and returning a set of clusters, C, where such clusters contain a list of their elements
Input: Θ(p, C), a point addition function taking a new point, p, and a set of clusters, C and

returning Cnew
Input: ∆(p, C), a point update function a point to be moved, a set of clusters, and returning

Cnew
Initializating the clusters
C = Φ(Dinitial)
Update the clusters while new data is appearing
while p← Dstreaming do

if p ∈ C then
C = ∆(p, C)

else
C = Θ(p, C)

end
end

Algorithm 5: Clustering and Update Framework

Data: C, a set of cluster centroids corresponding to K-means clusters
Data: N, the number of items in each cluster
Data: Dstreaming, continuously-streaming data
while p← Dstreaming do

ci = closest cluster in C to p
Ni = Ni + 1
c = 1

Ni
· (p− ci)

end
Algorithm 6: Sequential K-means Update Method

Input: p, a new data point
Data: C, the clusters in the dataset, containing member points, the number of members, and

its current location
c, n, `← the closest cluster in C to p, its number of members, and its location vector
n = n + 1
` = 1

n · (p− `)
Store the new c, n, and ` in C

Algorithm 7: Sequential Method - New Point

29

Input: p, a data point to be updated
Data: C, the clusters in the dataset, containing member points, the number of members, and

its current location
c, n, `← the closest cluster in C to p, its number of members, and its location vector
if p is already in c then

` = 1
n (p− `)

else
cold, nold ← the cluster that p is currently a member of and its number of members
nold = nold − 1
Remove p from cold n = n + 1
` = 1

n · (p− `)
Store c, n, and ` in C

end
Algorithm 8: Sequential Method - Updated Point

Input: p, a new data point
Input: ε, a threshold cohesion value
Data: C, the clusters in the dataset, containing member points, number of members of each

cluster, and their centroids
c, n, y← the closest cluster in C to p, its number of members, and its centroid
Add p to c
n = n + 1
µ = 1/

(
∑ ||ci−y||

n

)
if µ < ε then

Free the points in c and assign them to new remaining clusters in C following this new
point method

end
Algorithm 9: DYNC - New Point

30

Input: p, a new data point
Input: ε, a threshold cohesion value
Data: C, the clusters in the dataset, containing member points, number of members of each

cluster, and their centroids
c, n, y← the closest cluster in C to p, its number of members, and its centroid
if p is not in c then

cold, nold, yold ← the cluster that p is currently a member of, its number of members, and
its centroid

Remove p from cold
nold = nold − 1
µold = 1/

(
∑ ||cold,i−yold||

nold

)
if µold < ε then

Free the points in cold and assign them to new remaining clusters in C following the
new point method

end
Add p to c
n = n + 1

else
Update p’s location in c

end

µnew = 1/
(

∑ ||ci−y||
n

)
if µnew < ε then

Free the points in c and assign them to new remaining clusters in C following the new
point method

end
Algorithm 10: DYNC - Updated Point

31

Table 4: Summary of Example Cluster Movements
Name Description Figure Video Link
Rotation Demonstrates the four outside clus-

ters rotating about the center cluster
Figure 14 https://youtu.be/gvpAsV2d4Qg

Crossing Demonstrates two cluster collisions Figure 15 https://youtu.be/oQzQSHfqjAk
Splitting Demonstrates splitting the center

cluster
Figure 16 https://youtu.be/ Z-ndzRHcSo

framework of Algorithm 5. Starting with the points clustered as shown in Figure 12, we can use

three examples of points moving. All three examples were initialized with Ward’s method, but

the dataset is simple enough that any non-specialized clustering algorithm should be effective in

identifying the 5 initial groups. To create point movement in these examples, at each timestep, each

point has a 25% chance of moving a semi-random distance along the direction indicated. While this

is certainly very simplified compared to the potential for point and cluster movement in the boiler

data, these examples illustrate a general intuition for the update methods. Table 4 summarizes

these examples. In all of them, the cohesion threshold was ε = 60.

In the Rotation example, there is not much difference seen between the two methods. When

passing the center cluster, a few points flip between the outside and center cluster in the sequential

example. In Crossing, we see large differences. With DYNC, the clusters crossing another cluster

remain together, because at no point does their cohesion fall below the threshold. With the

sequential method, the points travel through each other as before, but the clusters bounce off of

each other. At the end, the points of the crossing clusters have switched the clusters that they are

a part of. If one used some method after clustering that relied on historical information about a

cluster, this could lead to problems. In the Splitting example, we show what happens when the

center cluster splits apart and joins each of the outer clusters. The sequential method eventually

assigns three of the four groups into their correct new cluster. The fourth split forms the basis of a

new cluster that is touching the old cluster in the upper left. This is because the sequential method

32

Figure 14: ”Unbalance” Rotation Example for Sequential and DYNC Updating

33

Figure 15: ”Unbalance” Crossing Example for Sequential and DYNC Updating

34

Figure 16: ”Unbalance” Splitting Example for Sequential and DYNC Updating

35

has no way to remove old clusters when they are not needed.

To handle clustering the boilers, we use the same methods as demonstrated on the ”Unbalance”

dataset. The Kmeans, agglomerative clustering with Ward’s method and the centroid method, and

DBSCAN use implementations provided by Scipy [40]. The inputs for each boiler for each day are

the 239 numeric values, an indicator for which of the model families it belongs to, and the minimum

and maximum outdoor temperatures seen in that day at that boiler from the NCDC weather data.

The output is an integer that represents the cluster that the boiler belongs to on that day. All of

the clustering algorithms are run from April 1st, 2018 to December 31st, 2018. A summary of the

initialization methods, update methods, number of clusters, and other parameters are shown in

Table 5. It also shows the amount of time that each method took to initialize and update for the

9-month period. There is also a modifications to the general Algorithm 9 and Algorithm 10 for the

boiler clustering. The ε values are decreased by 0.01 each time a cluster is removed. This allows the

system to settle into an (at least temporary) equilibrium. Without this, there were cases where the

system was re-initializing several times per simulated day.

Comments on Centroid Clustering and DBSCAN for Boiler Data The centroid clustering method

creates few independent clusters on the boiler data. In other words, when 16 clusters are requested,

15 clusters each with 1 boiler are returned along with a final cluster containing the remaining

boilers. We can explore this by looking at Figure 17. There is a small group of individual boilers on

the left-hand side, while the hierarchy of the remaining boilers is relatively flat. This shows that

the centroid method has a hard time differentiating between the different boilers. Compare this to

Figure 18. Ward’s method generates a clearly-defined hierarchy of boilers and clusters. Because

the centroid method creates such unbalanced clusters, we do not apply the sequential and DYNC

update methods to its results. DYNC immediately removes the large cluster of boilers because

36

Table 5: Initialization and Update Methods used for Boiler Parameter Clustering
Method, Φ Clusters Update Method,

Θ, ∆
Initialization Time (s) Update Time (s)

Kmeans 8 Sequential 0.511 749
Kmeans 16 Sequential 0.721 798
Kmeans 8 DYNC, ε = 0.5 0.511 3989
Kmeans 16 DYNC, ε = 0.5 0.721 2369
Ward 8 Sequential 0.297 476
Ward 16 Sequential 0.297 536
Ward 8 DYNC, ε = 0.5 0.297 3774
Ward 16 DYNC, ε = 0.5 0.297 2309
ROC, RBF kernel,
ε = 100

- Sequential 8.059 823

ROC, RBF kernel,
ε = 100

- DYNC, ε = 0.5 8.059 2197

Centroid 8 - 0.280 -
Centroid 16 - 0.280 -
DBSCAN - Sequential 1.153 3829

its cohesion is very low. The sequential update method only adds new boilers to the large cluster

because the singleton clusters are outliers.

DBSCAN presents some of its own problems. Because it focuses on finding non-hyperspherical

clusters, the Euclidean distance measures used in both the sequential the DYNC methods show

abnormal behavior. At the outset, most points immediately recluster under the sequential method,

very likely to shuffle the non-hyperspherical clusters into approximately hyperspherical ones.

DYNC experiences the same problems that it had with the centroid method, where adding new

points with Euclidean distance measures rapidly decreases the cohesion of each cluster and de-

creases the number of clusters rapidly. A fix was attempted where DBSCAN would be allowed to

recluster from all points again once the number of clusters fell below a certain threshold, but this

simply created a rapid and very computationally-expensive loop of frequent reclustering.

37

Figure 17: Boiler Dendrogram Clustered by the Centroid Method

Figure 18: Boiler Dendrogram Clustered by Ward’s Method

38

Figure 19: Example of a Perceptron [41]

2.3 Prediction

For predicting future values of sensor readings, we use an artificial neural network (ANN)

system. This model (and all ANNs) are made up of layers of perceptrons. These are artificial neurons

that are governed by simple rules. An example of one is shown in Figure 19. Each perceptron has

vector of weights, ~w, and a bias, b. Their output is governed by Equation 8. Multiple neurons, like

these perceptrons, connected together in a network form a neural network (Figure 20) which creates

a multi-layer perceptron (MLP) neural network. Each neural network has at least 3 layers: an input

layer, an output layer, and at least 1 hidden layer.

y =


1 if ~w ·~x + b > 0

0 if ~w ·~x + b <= 0

(8)

In our case, the objective function (alternatively called the loss function) is the log-loss function

shown in Equation 9 from before, In our central model, our output vector elements are binary as an

indicator for each part, so pi,j is either 0 or 1. The Adam authors’ recommended hyperparameter

values of α = 0.001, β1 = 0.9, β2 = 0.999, and ε = 10−8 are used.

log loss = − 1
N

N

∑
i=1

M

∑
j=1

yi,j log(pi,j) (9)

39

Figure 20: Example of a Simple Neural Network [42]

Input: α: The step size
Input: β1, β2 ∈ [0, 1): The exponential decay rates
Input: f (θ): The stochastic objective function
Input: θ0: The initial parameter vector
Output: θt
~m0 ← 0 Initialize the first moment vector
~v0 ← 0 Initialize the second moment vector
t← 0 Initialize the timestep
while θt not converged do

t← t + 1
~gt ← ∆θ f (θt−1)
~mt ← β1 · ~mt−1 + (1− β1) · ~gt
~vt ← β2 · ~vt−1 + (1− β2) · ~gt � ~gt
m̂t ← ~mt/(1− βt

1)
v̂t ← ~vt/(1− βt

2)
θt ← θt−1 − α · m̂t/(

√
v̂t + ε)

end
Algorithm 11: Pseudocode implementation of Adam [43]

40

Table 6: Input and Output Prediction Parameters for ANN Model
Inputs Outputs
Boiler Status Fan Speed
Max Fan Speed Power
Min Fan Speed Pump Input Voltage
Hot Water Generator Max Fan Speed Pump Output Voltage
Power Boiler Pump Status
Pump Input Voltage DHW Pump Status
Pump Output Voltage System Pump Status
Boiler Pump Status Flame Current
DHW Pump Status Flue Temperature
System Pump Status HWG Temperature
Flame Current Inlet Temperature
Flue Temperature Outlet Temperature
HWG Temperature
Inlet Temperature
Outlet Temperature
Setpoint
HWG Setpoint
Minimum Outdoor Temperature
Maximum Outdoor Temperature

The symbol � indicates the Hadarmard product, an operator commonly used in neural network

training algorithms. It simply means elementwise multiplication of vector elements. For example,5

6

�
7

8

 =

35

48

. The Adam algorithm continues until the model reaches convergence. This

occurs when the magnitude in the change in θt−1 to θt falls below a defined threshold.

With this method in place, we need a set of inputs and outputs to train and test against. As

inputs, for each boiler, we look at the previous 7 days of each of the input parameters in Table 6

and calculate their mean. For outputs, we simply use the current day’s average value of the output

parameters. To make use of the clusters, we use the process shown in Figure 21 for each of our

desired outputs. The submodel predictions are graded on mean average error (MAE) and root

mean square error (RMSE).

The ANN model used is a feedforward MLP neural network described above. It has two hidden

41

Figure 21: Cluster-Based ANN Modeling System

42

layers - the first has 80 neurons and the second has 40. When this general model is trained to

convergence, we use a standard threshold of 0.0001. When this general model is copied for each

cluster on each date, the neural network is only trained for another N = 100 times, or epochs,

through the system. Submodels trained in this way dn not reach convergence on their specific

cluster data. This is intentionally done to prevent catastrophic overfitting. Ideally, the submodels

should have some mix of knowledge from both the general, unclustered data and from its specific

cluster. If they are trained to convergence, they forget about patterns they observed in the whole

dataset and then perform very poorly at the grading stage. Ideally, they retain general knowledge

while favoring information that they saw in the cluster-specific data.

43

Figure 22: Symptom Groups and Types

III CASE-BASED REASONING

1 Problem

We have a set of 19,769 customer support cases related to boilers. This set includes boiler serial

numbers, dates, a symptom code, a solution code, and some case comments as shown in Table 7.

From these cases we seek to build a case-based reasoning (CBR) model to assist with solving new

cases. Such a system would allow users to input information about the current case - including

selecting symptom types, groups, or specific symptoms or through entering text comments.

In the data, there are 92 possible symptom codes and 40 possible solution codes. In order to

support grouping of the symptom codes, we further categorize each into one of the 10 possible

symptom groups shown in Figure 22. Each of these symptom groups then is assigned to one of 5

symptom types, also shown in Figure 22. Figure 23 shows the distribution of the cases within the

symptom groups and symptom types.

2 Method

The full CBR system is shown in Figure 24. It is made up of 3 main models or methods: a

predictive CBR system, a comment-based model, and a pure probability model. We will go through

44

Ta
bl

e
7:

Ex
am

pl
e

Te
ch

ni
ci

an
C

as
e

D
at

a
Se

ri
al

N
um

be
r

D
at

e/
Ti

m
e

O
pe

ne
d

Sy
m

pt
om

C
od

e
So

lu
ti

on
C

od
e

C
as

e
C

om
m

en
ts

16
21

10
29

68
78

7
4/

23
/2

01
8

9:
55

A
M

D
is

pl
ay

Bl
an

k
Pa

ra
m

et
er

ex
pl

an
at

io
n

C
yc

le
d

p
ow

er
an

d
d

is
p

la
y

st
ill

d
id

no
t

co
m

e
on

.
E

x-
pl

ai
ne

d
to

te
ch

to
ch

ec
k

ca
bl

es
an

d
if

ne
ce

ss
ar

y
re

p
la

ce
d

is
-

pl
ay

co
m

m
un

ic
at

io
n

bo
ar

d.
17

43
10

79
65

58
7

12
/1

9/
20

17
8:

51
A

M
Fl

am
e

Fa
ilu

re
Ig

ni
ti

on
Pa

rt
in

fo
Pr

ov
id

ed
U

ni
t

is
no

t
lig

ht
in

g,
7”

st
at

ic
,

24
vo

lt
s

to
ga

s
va

lv
e

bu
t

no
dy

na
m

ic
dr

op
.B

as
ed

on
w

ha
t

te
ch

to
ld

m
e

Ia
d

vi
se

d
hi

m
to

re
pl

ac
e

ga
s

va
lv

e
I0

6H
00

19
08

91
7/

25
/2

01
8

11
:0

0
A

M
H

ar
d

St
ar

ts
C

le
an

in
g

or
A

dj
us

tm
en

t
R

ec
om

m
en

d
ed

cl
ea

ni
ng

th
e

bu
rn

er
s

&
H

ex
L1

3C
20

28
74

08
9/

18
/2

01
7

8:
40

A
M

O
ut

do
or

Se
ns

or
Fa

ul
t

Pa
rt

R
ep

la
ce

d
Sa

id
th

e
he

at
er

d
oe

sn
’t

re
se

t
w

he
n

he
pr

es
se

s
th

e
re

se
tb

ut
-

to
n.

To
ld

w
ou

ld
ne

ed
to

ch
ec

k
th

e
re

si
st

an
ce

ac
ro

ss
th

e
se

n-
so

r
an

d
ch

ec
k

co
nn

ec
ti

on
s

to
th

e
se

ns
or

.
W

an
te

d
to

kn
ow

w
hi

ch
se

ns
or

th
is

w
as

re
fe

r-
ri

ng
to

.T
ol

d
th

e
ou

tl
et

se
ns

or
.

C
u

st
om

er
sa

id
w

as
go

in
g

to
p

u
rc

ha
se

on
e

th
ro

u
gh

th
e

lo
-

ca
ld

is
tr

ib
ut

or
.

15
26

10
16

97
89

8
7/

19
/2

01
8

10
:1

1
A

M
Fl

am
e

Fa
il

R
un

ni
ng

C
om

bu
st

io
n

ad
ju

st
m

en
ts

U
ni

t
ha

s
be

en
cl

ea
ne

d
,e

xp
e-

ri
en

ci
ng

lo
w

fl
am

e
si

gn
al

,e
x-

pl
ai

ne
d

ho
w

to
ch

ec
k

an
d

ad
-

ju
st

co
m

bu
st

io
n

45

Figure 23: Case Data Distributions

46

each of these in turn, starting with the pure-probability model.

2.1 Pure Probability Model

The pure probability model is very simple. For each case, it considers only the symptom types,

groups, and codes and the solution codes. Initially, for each of the four categories, it recommends

the most-seen option in the dataset. If a user selects a higher-level category, it recalculates the

probability down-the-line based on previously-seen cases. For example, a user may select that

they have a mechanical type of symptom but not yet be able to narrow it down further. The group,

symptom, and solution probabilities will be redetermined based what was seen from cases that had

mechanical issues. This is shown in steps 1 and 2 in Figure 10. Keep in mind, there are 5 symptom

types, 10 symptom groups, 92 symptom codes, and 40 solution codes. We only show the top 3 most

likely for each category to save space. For step 3, the user might select that the gas pressure switch

is open. The system tells the user that, based on prior probabilities when the gas pressure switch

was open, the most probable cause is an electrical problem. If it isn’t that, then the part may need

to be replaced or there might be a gas supply issue.

Figure 26 shows another example. In this case, the user immediately knows that the pump

is not working. When this is selected, the model back-fills the parent categories of that selection

to 100% probabilities before suggesting fixing an electrical problem, explaining a parameter, or

providing part information are the three most-probable solutions.

It is important to note that this method is not optimized in any way for improved accuracy - it is

purely based on showing the most common categories and solutions in previous cases. The intent

of this model is to have a reasonable fall-back when no other information such as text comments

are provided by a user. Additionally, you may notice the high probability of generic categories

and solutions such as ”product information” and ”customer instruction.” In many cases, the text

47

Figure 24: Full Case-Based Reasoning Method

48

Figure 25: Pure Probability Example #1

Figure 26: Pure Probability Example #2

comments provide additional information - for example, the technician may have entered ”part

info provided” and then comment that part information for a gas valve was entered so that it can be

replaced. Arguably, ”part replaced” would have been a better solution to select, but such problems

are not handled until the predictive model.

2.2 Comment-Based Model

In order to construct a comment-based system around the technician call data, a natural

language processing (NLP) tool is needed. Such a tool needs to be adaptable, where it is able to

update its processing abilities as new information is collected in the CBR adaptation step. It also

needs to be able to handle imperfect spelling, grammar, and sentences, as seen in the example

entries in Table 7.

Another requirement is that the NLP method must be able to be fed into a higher-level machine

learning method so that category predictions can be generated. One way to do this is to provide

49

numeric vectors represent words, groups of words, or sentences. A commonly-used family of

methods is known as n-gram modeling [44]. At its core, it is based on the assumption that the

probability of a given word occurring next in a sequence of English words can be defined as a

sequence of conditional probabilities. Formally, this is defined as Pr(wk|wk−1
1), where wk

1 is defined

with Equation 10 [44].

Pr(wk
1) = Pr(w1) · Pr(w2|w1) · · ·Pr(wk|wk−1

1) (10)

Because developing a system based fully off of Equation 10 would be incredibly computationally

expensive and only provide useful predictions in situations where the model had seen the exact

sentence used as an input before, n-gram modeling introduces a simplification. For the kth word

in a sentence or phrase, Pr(wk|wk−1
k−n+1) ≈ Pr(wk|wk−1

1). With approximation, only n conditional

probabilities need to be calculated to predict a given word. With a given set of training data, these

probabilities are calculated prior to model use using frequency analysis.

As a demonstration, let’s use the final sentence 4th example sentence from Table 7: ”Cus-

tomer said he was going to purchase one through the local distributor.” Without the n-gram

simplification, predicting the final word, ”distributor”, from the sentence would be given by:

Pr(distributor|customer said he was going to purchase one through the local). Unless the exact

sentence has been seen before, a language model would have no way of predicting ”distribu-

tor” at the end of the sentence.

In a bigram (2-gram) model, the probability of the next word in a string of English words

becomes [45]:

Pr(wn|w1, w2, · · ·wn−1) = Pr(w1) · Pr(w2|w1) · · ·Pr(wn|wn−1) (11)

50

In a trigram (3-gram) model, it is [45]:

Pr(wn|w1, w2, w3 · · ·wn−1) = Pr(w1) · Pr(w2|w1) · Pr(w3|w2, w1) · · ·Pr(wn|wn−1, wn−2) (12)

In many cases, calculating these probabilities directly is computationally expensive, and a

further simplification is used, called maximum-likelihood estimation (MLE) [44]. For bigrams, we first

define C(x, y) as number of times the bigram x, y occurs in a corpus. With this, we can determine

the bigram frequency of a word within a corpus:

Pr(wn|wn−1) =
C(wn−1, wn)

∑w C(wn−1, wn)
(13)

For trigrams, we instead use:

Pr(wn|wn−1, wn−2) =
C(wn−1, wn−2, wn)

∑w C(wn−2, wn−1, wn)
(14)

So far, this does not give us vector representations of words and sentences. For this, we use

Word2Vec [46] and Doc2Vec [47], which are two methods built on top of n-gram modeling that

convert word and sentence meaning to numeric vectors.

Instead of working directly with n-gram models, Word2Vec and related models use the skipgram

architecture [46]. Where n-gram models seek to predict the probability of the next word following

a sequence of words, skip-gram models predict the probability words surrounding a given word,

both before and after. The extent to which this prediction is done is called the window, where, if n

is the window size, n−1
2 words are predicted before the given word, and another n−1

2 words are

predicted after. This is represented by Figure 27.

51

The key to extracting vector representations of words takes place in the projection part of the

skip-gram model. While in most machine learning techniques we create and train a model in this

phase to be used for some end, in this case the weights of the generated model is the end itself. The

basic principal behind Word2Vec is, knowing both the input words and their associate skip-gram

output words, training a model that can accurately predict the output word probabilities, extracting

the model weights as a vector representation of the word, and discarding the model. This model

is typically a feedforward neural network [46], which is also the type of model we use within the

CBR system.

To begin the process, input and output vectors are generated for each word. The input vector

has one element for each of the unique words in the corpus. For a given word, it is a one-hot

vector where the element representing the word is 1 and the rest of the elements are 0. The output

vector has the same length as the input vector, but each element holds the probability that its

associated word is seen within the window of the input word. A model (usually a neural network)

is created next. This model takes the input and output vectors for each word and trains on them

using standard or optimized neural network training methods, and the vector representation of the

word is defined as the weights of the hidden layer neurons corresponding to the one-hot vector

element for a word. Therefore, the size of the hidden layer is the length of the vector that will

represent each word. Mikolov, et. al’s original paper does not give a suggested neural network

optimization method and backpropogation algorithm when generating Word2Vec vectors with this

technique. While general optimization methods such as Adam [43] (Algorithm 11) will work, Rong

has developed a computationally-efficient method for Word2Vec neural network optimization [48].

We use a Python implementation of this method from the GENSIM library [49]. Doc2Vec works very

similarly, except when training the input vector is a concatenation of the one-hot word vector and a

one-hot vector of the length of the number of documents indicating the document that the current

52

Figure 27: The Skip-Gram Architecture [46]

word sample comes from. The intent of this is to create a model that is aware of both the likelihood

of occurrence of surrounding words, but also the semantic meaning of the input documents. In the

end, we don’t classify these semantic meanings into human terms, like how we discard the neural

network model when the vectors are extracted.

Now that we have a method of extracting vectors from the case comments, we need a way of

using this to predict four categories of symptom and solution classes: symptom type, symptom

group, symptom code, and solution code. To help with this, various corpa in Table 8 were used

when training the Word2Vec and Doc2Vec models. The intent of training the word vector models

both with the case comments and with general-purpose corpa is to provide more general examples

of English for the model to learn from than are found exclusively in the case comments. The first

step is to create Word2Vec and Doc2Vec models using various combinations of corpa. These models

are generated after the following combinations:

• Comments only

• Comments and Brown

53

Table 8: Corpa
Corpa Description
Case Comments The case comments from the technician support cases
Brown The Brown University Standard Corpus of Present-Day American English
NPS Chat Corpus A collection of 10,567 online chat and forum posts
Yahoo Answers A collection of 60,000 questions and answers

• Comments and NPS

• Comments and Yahoo

Before being fed into the Word2Vec or Doc2Vec model, each sample sentence is preprocessed.

First, all punctuation is removed. Next, the sentence is tokenized, where each word, number, or

abbreviation is separated into its own element of a list. Each tokenized word is tagged with its

part-of-speech (such as nouns, verbs, adverbs, etc.) using NLTK’s tokenizer [50]. Stop words are then

removed, which are common ”connecting” words such as ”you”, ”they”, ”and”, and ”so”. For a full

list of these, see Appendix B 2. A second filter is then used, removing any word that is not a noun,

verb, adjective, or adverb. Finally, lemmatization is completed. This reduces each word to its base,

singular, present-tense form. For example, ”ran” becomes ”run”, and ”racing” becomes ”race”.

The lemmatizer used here is the one built-in to WordNet, an English lexical database published by

Princeton [51]. It was accessed using using NLTK [50].

Now, with the Word2Vec and Doc2Vec models generated, we can extract numeric vector

representations for words and sentences. In this case, we will use one vector that represents each

case comment. For the Doc2Vec model, a vector representation of the case comment, or document,

is calculated. For Word2Vec, a vector representation is generated for each word. These word vectors

are then averaged per element to create a vector for the entire case comment. The vectors are then

used to train support vector classifier (SVC) models using the kernels found in Table 9 and also a

logistic regression model. An explanation of the principles behind SVCs and logistic regression

54

Table 9: Kernels used in SVC Models

Kernel Definition
Linear K(~x,~y) = ~xT~y
Polynomial K(~x,~y) = (σ~xT~y + r)d

RBF K(~x,~y) = exp(− ||x−y||2
2σ2)

Sigmoid K(~x,~y) = tanh(σ~xT~y + r)

Figure 28: 2D SVC Example [36] (https://nlp.stanford.edu/IR-book/html/htmledition/support-
vector-machines-the-linearly-separable-case-1.html)

follows.

Support Vector Classifiers (SVC) To demonstrate how a support vector classifier (SVC) works,

we start with a simple, 2-dimensional case. Say we have two sets of points, such as the white

triangles and black dots from Figure 28. We seek to create a line (or a hyperplane in higher

dimensions) that splits the two sets, or categories. Such a line, or decision boundary, is indicated

by the solid black line in Figure 28. Unlike simpler linear classification methods which simply

try to find any decision boundary that works on the training data, SVCs find the boundary that

maximizes the distance, or margin to the nearest data points [36]. To achieve this, SVCs work to

identify the key data points that will be used to determine the margin while ignoring the rest, and

then they use these selected data points to create support vectors.

55

In SVCs, the decision boundary is defined by its bias or intercept, b, and a vector that is normal

to the hyperplane, ~w. Now, let us assume that we have a series of training data, each with an input

point, ~xi, and a corresponding output value, ~yi. The output value can belong to one of two classes,

represented by −1 and 1.

For any point, we can determine the distance from the boundary, r, using Equation 15 [36].

We can then use the following requirements and constraints: |~w|2 needs to be minimized, and

yi
(
~wT~xi + b

)
≥ 1. The first requirement is based on the idea that minimizing the magnitude of

~w necessarily makes the margin larger. For the second, any value > 0 could be used in place of

1. What is important is that all input-output pairs follow the same constraints. 1 is usually used

because it is easy to remember and can make some calculations in the minimization simpler.

r = y
~wT~x + b
|~w| (15)

With these constraints in place, we can use a quadratic minimization method to solve for the

boundary. In this case, we use an implementation of the popular LIBSVM [52], a specialty quadratic

minimization library designed specifically for SVMs and SVCs. Using the concept of Platt scaling

[53], margin distance is also used to predict the probability of a class being correct. Additionally,

the LIBSVM method can (and must for the tech support comment vectors) be extended to multi-

class outputs by adding more boundary lines or planes. A simple example of this extension with

2-dimensional data is shown in Figure 29.

These simple examples work in the case of clearly-defined groups of points that are easily

separated by linear boundaries, but in reality such situations are rare. The minimization method

in these simple examples determined the closeness of points to each other through the Euclidean

distance (
√

∑n
i=1(xi − yi)2). However, let’s say that we have points illustrated in Figure 30. A

human can easily see the two categories of points, but an SVC using Euclidean distance will not be

56

Figure 29: 2D Multi-Class SVC Example [54]

able to find a line that separates the two groups from each other.

To solve this problem, we use the kernel method (or kernel trick). These are, effectively, alternative

distance measures calculated through a higher dimension. In the case of Figure 30, we can use a new

kernel given by Equation 16. This means that distances between points are not being considered in

R2, but now are in R3 as illustrated by Figure 31. Once the kernel method is applied, an SVM/SVC

minimizer like LIBSVM is able to find a hyperplane that divides the two groups of points, as shown

in Figure 32.

K(~x,~y) = K([x1, x2], [y1, y2]) =
√
(x1 − y1)2, (x2 − y2), ((x2

1 + x2
2)− (y2

1 + y2
2)) (16)

Logistic Regression Logistic regression models are another technique that can be used to generate

class-based probabilities of classes after being given a set of training inputs and classes. It is related

to linear regression, where for a set of input points {~x1,~x2,~x3, · · · } and associated output values

{y1, y2, y3, · · · }, we attempt to find a weight vector, ~w, and bias, b, such that 1
N ∑N

i=1 ŷi − yi is

minimized where ŷi = ~w ·~xi + b.

57

Figure 30: Example Points that cannot be Separated by a Boundary Line [55] (https://www.eric-
kim.net/eric-kim-net/posts/1/kernel trick.html)

Figure 31: Example Points with Kernel Method Applied [55] (https://www.eric-kim.net/eric-kim-
net/posts/1/kernel trick.html)

58

Figure 32: Kernel Method Example with Hyperplane [55] (https://www.eric-kim.net/eric-kim-
net/posts/1/kernel trick.html)

In logistic regression, we keep most things the same, but ŷ is calculated differently, and y now is

a binary value indicating whether or not an event occurred. We now use the sigmoid function given

by Equation 17. Once the weights, ~β are found, the logistic function in Equation 18 can be used to

determine the probability of a new ~x resulting in the selected event. A final rearranging, shown in

Equation 19, directly gives the probability.

ŷ =
1

1 + e−~βT~x
(17)

p
1− p

= ~β ·~x (18)

p =
1

1 + b−~β·~x
(19)

For multi-class scenarios like with the types, groups, symptoms, and solutions of the case data,

a few additional adjustments are needed. The bias, b, is now expanded into a vector,~b, as is ŷ, for

each possible class. Also, the sigmoid function is replaced with the softmax function Equation

20, where M is the number of classes. Finally, instead of using the ŷ− y error as a the value to

59

minimize, the log-loss function of Equation 9 is used instead, where M is the total number of

predicted classes j is a specific class, N is the number of training examples, i is a specific training

example, yi,j is 1 when i is a member of class j, and pi,j is the model’s calculated probability that

i is a member of j. Similar to SVCs where multiple proven minimization methods are available,

with the logistic regression analysis we use the popular L-BFGS [56]. It is a simplified version of its

predecessor BFGS, and is useful in cases where there are a large number of possible classes, such as

with the 92 possible symptom codes and 40 possible solution codes.

ŷ =
e~β·~x+~b

∑M
i=1 e(~β·~x+~b)i

(20)

With the SVC and logistic regression methods outlined above and the kernels in Table 9, we

create several machine-learning models that output class probability. The implementation uses

the Scikit-Learn Python library [57]. For training, these use 80% of the 64 and 150 element word

vectors as inputs, and each word vector’s associated type, group, symptom, and solution as outputs.

After training, the remaining 20% of held-back word vectors are sent through the SVCs, which

calculate probabilities of each of the types, groups, symptoms, and solutions being correct. These

probabilities are scored as described in the Results section. Finally, case adaptation is handled

very easily. When a new successful case is added, the weights of the Word2Vec neural network

is updated to converge against the case base with the new case included. The SVC or logistic

regression model is then retrained using the slightly-updated word vectors.

2.3 Predictive System

Regardless of the type of CBR used, we need a way to represent both inputs and outputs of

such a system. A case is made up of three main types of information: the parts that have already

been investigated, the severity of the action used on the previously-mentioned parts, and a vector

60

Table 10: Parts considered in the CBR model

Air inlet Display board Gas pressure switch Outlet sensor
Air pressure switch Door Gas valve Outlet temperature differential
Aquastat Drain switch Heat exchanger Pump
Baffle Expansion tank Igniter Relief valve
Burner Fan Indirect tank Ribbon cable
Communication board Flame rod Inlet sensor Spark cable
Condensate drain Flame sensor Inlet temperature differential Tank sensor
Condensate trap Flow switch Insulation Transformer
Control board Flue Low voltage board Wiring
Display Flue sensor Manifold Wiring harness

Table 11: Actions considered in the CBR model

Action Severity Multiplier Stems
Check 1 Check, Connect, Inspect, Normal, Expected, Nominal, Fine
Cleaning 2 Clean
Unblock 3 Block
Adjustment 4 Adjust, Increas, Decreas
Service 5 Servic
Repair 6 Repair
Replacement 7 Replac

representation of the case comments. Table 10 contains a list of parts, and Table 11 contains a list of

actions and their associated severity multipliers. We use these in the aim of creating three vectors

to represent each case:

• Parts vector

• Action severity vector

• Comments vector

For each of the known cases, we need a way of extracting parts, actions, and pairing actions

with their associated parts. For this, we use Algorithm 12

61

Input: comment
Input: parts list
Input: actions list
Output: ~parts, a vector of parts identitified in the comment
Output: part action pairs, the list of parts with their associated actions
~parts← []
~actions← []

~part action pairs← []
for each word and word index in comment do

if word ∈ parts list then
~parts← (word, word index)

end
if word ∈ actions list then

~actions← (word, word index)
end

end
for each (part, part index) in parts list do

part action pair← (part, action with closest action index to part index)
part action pairs← part action pair

end
Algorithm 12: Part and Action Pair Extraction Algorithm

After the parts and part-action pairs are extracted, we create two mult-hot vectors based off of

each list. Each element of these 40-element vectors is 0 unless their corresponding part (sorted by

alphabetical order) is observed. For example, a comment with an extracted parts list of [burner, fan,

gas valve] would have its 4th, 14th, and 21st elements set to 1. The part-action multi-hot vector

is created similarly, except the element associated with each seen part is assigned its multiplier

from Table 11. Thus, a comment with extracted part-action pairs of [(burner, clean), (fan, check),

(gas valve, adjust)] would have 2 in its 4th element, 1 in its 14th element, and 4 in its 21st element.

A third vector is created using the previously-trained 64-element Word2Vec model. While the

150-element Word2Vec model shows higher accuracy, it is better to limit the length of the vector in

this case to prevent overfitting of the CBR system to specific words and phrases used in comments.

Ideally, the CBR system will only pick up on the general meaning of comments. Once each of these

three vectors are generated, they are concatenated together into a 144-element case input vector.

We also need case output vectors that represent both solutions and provide a way to train the CBR

62

system through feeding it correct answers. It is essential that the CBR system be able to tell a user

what other steps should be taken given the level of action taken with previous parts, not simply to

learn to pass certain elements of the input vector through. To do this, we create n input vectors

with 144 elements and n output vectors with 40 elements (one for each part) from the original case

input vector, where n is the number of parts in the case. For each new input vector, we mask one of

the parts and its associated action. For each new output vector, we mask every element but the

associated part element to reduce the multi-hot vector into a one-hot vector. This step is illustrated

in Figure 33 for the previous burner, fan, and gas valve example.

With the case input vectors, output vectors, and the previously-mentioned CBR types in mind,

we create three CBR systems. For all three, we generate a case-base (CB) that contains the case

input vectors and case output vectors for each of the selected training comments. The first CBR

system is a substitution system using nearest-neighbor search to find the case in the case-base that

most matches the case to be solved. Let us say that cnearest represents the nearest neighbor’s case,

snearest represents its solution, and case c ∈ CB then cnearest can be found through Equation 21 where

the sim function is the Euclidean similarity from Equation 22. Once the nearest case is known, its

solution can be looked up from the CB. Adaptation new cases is simple: after the revision stage,

finished cases and their comments are sent through the same vectorizing, masking, and splitting

process as before. The new input vector is added as a case and the new output vector is added as

its associated solution.

cnearest = arg max sim(cnew, c) (21)

euclidean similarity =
1√

∑n
i=1(xi − yi)2

(22)

63

Figure 33: Input and Output Vector Splitting Example

64

The second is a substitution system using k-nearest neighbors search. Let us extract all of

the solutions from the case base into a separate solution base (SB). In most cases, |SB| < |CB|,

and it is guaranteed that |SB| ≤ |CB| as there is at most as many solutions as there are cases. In

scenarios such as mechanical boiler repair, |SB| << |CB|, because many problems can be solved

with the same solution. Let si ∈ SB denote the ith possible solution seen in the solution base. If

we have a function I(sj, i) that returns 1 where sj is an example of the ith solution in the SB and

otherwise returns 0, then we can find ni, the count of the i solution seen, using Equation 23. The

set of solutions, {s1, s2, · · · sk} is made up of the solutions of the k closest cases found by using

Equation 21. The nearest solution is then found with Equation 24. For these nearest-neighbor and

k-nearest-neighbor methods, Figure 34 shows the full system diagram. Case adaptation is done in

the same way as the nearest-neighbor CBR system.

n1 =
k

∑
j=1

I(sj, i) (23)

snearest = arg max ni (24)

The third CBR system in Figure 35 uses a feedforward artificial neural network (ANN or NN)

as its retrieval method. Unlike the previous two substitution methods, it does not look up specific

cases in its case base and return the most-matched solution. Instead, it makes inferences for a new

cased based on cases that it has seen before and thus is a type of transformation CBR.

Like with the boiler prediction modeling, we must train the neural network model using an

optimization algorithm. We again use the popular Adam optimization method [43], since it is

known for its effectiveness when training neural networks to operate on sparse data like our

combination of multi-hot and word vectors.

65

Figure 34: First and Second CBR Methods with Substitution

66

Figure 35: Third CBR Method with Transformation

67

Regardless of the specific retrieval and adaptation model used, the CBR system emulates multi-

step solutions by treating each step as a ”new” case. For example, if the gas pressure switch is

tripping and the entered case is that both the air pressure switch and gas pressure switches have

been checked, it might suggest cleaning the gas valve. If this doesn’t fix the problem, a new run

through the CBR system is performed, this time with checked air and gas pressure switches and a

cleaned gas valve, and it may suggest adjusting the gas valve, which might also solve the problem.

From the user’s perspective, the system stepped them through multiple steps in a generative

approach, but in reality a generative approach wasn’t used because the CBR system is not able

to determine which step will be the final one. It keeps suggesting its next-best solution based on

previous cases and uses the other tiers as fall-backs if it cannot provide a solution.

68

IV RESULTS AND DISCUSSION

1 Clustering

In order to put the clustering and prediction results in context, let’s first start with a very simple

prediction model: for each desired output, the predicted output for the next day for every boiler

is the average of that value from the current day. It is not expected to be accurate, but it can be

used as a reference to show the improvements due to clustering. First, Figure 36 shows the MAE

of the neural network model (without training any submodels) and the average repeat method

referred to as ”Base Repeat.” The RMSE, and all of the RMSE plots, are in APPENDIX C. Like all of

the accuracy statistics, these are calculated over the period from April 1st, 2018 to June 30th, 2018.

In general, the NN model performs better than the naive repeating model. However, it does

perform worse in the areas of fan speeds, flue temperatures, inlet temperatures, and outlet tem-

peratures. This indicates that the average fan speeds and temperatures outside of the hot water

generator temperature are stable day-to-day. Let’s keep the accuracy of this naive model in mind

with the next comparison with clusters added.

Next, Figure 37 and Figure 54 show the MAE and RMSE respectively of the repeat model

when using the various clustering methods against the base, unclustered NN model. We see

similar trends from before: the NN model is better at predicting outputs except for fan speeds,

flue temperatures, inlet temperatures, and outlet temperatures. Most clustering methods also

show a small improvement in their MAE and RMSE for most of the clustering methods. Hot

water generator temperature improves noticeably across all clustering methods. Pump output also

improved considerably. In most cases, the system pump information (Pump Input, Pump Output,

and Pump Status) are more accurate with a lower-number of clusters and sequential updating than

methods that create a higher-number of clusters, but all clustering methods were more accurate

69

Figure 36: MAE of Base NN and Base Repeat Prediction Models

70

than the non-clustering repeat method. This shows that, at least for the naive method, moving of

the boilers with the sequential updating method is oftentimes being of pump information, but this

only helps up to a certain point. Also, the temperature predictions are slightly more accurate with

the cohesion method than the sequential method, whereas sequential updating works better for the

pump information. This shows that for the naive repeating method, stable clusters show better

temperature prediction.

Percent improvements of the clustered repeat model is shown in Figure 38. While based on

the same data, this view helps to highlight differences. For no parameters did clustering decrease

accuracy. This indicates that all of the methods create clusters in reasonable ways. It is clearly seen

that ROC and DBSCAN do not perform as well as K-means and Ward across the board. Outside of

some examples in temperature prediction, the improvements when the sequential method are used

are greater than when the cohesion method is used. This demonstrates that, at least for the naive

method, putting a boiler with its closest cluster center is better for grouping boilers.

Let’s now look at the MAE of the clustered models in Figure 39. With clustering and the neural

network submodel method, all methods improve over the general neural network model. Seven of

the parameters - fan speed, flue temperature, hot water generator temperature, inlet temperature,

outlet temperature, pump input voltage, and pump output voltage - all show differing MAEs

depending on the model. Interestingly, DYNC appears to help the predictive ability of most

clustering models when the NN model is used. This is the opposite of the simple repeat prediction,

where sequential updating was usually better. This suggests that there is value to the neural

network model for boilers to remain in their clusters unless the cluster itself is removed. This

would be expected if the submodels were saved between each simulated day since each NN would

become increasingly familiar with its cluster over time (if catastrophic forgetting could also be

prevented). They are not, though, and each submodel is recreated from the base NN for each day.

71

Figure 37: MAE of Base NN and Clustered Repeat Prediction Models

72

Figure 38: MAE Improvement of Clustered Repeat Prediction Models over Base Repeat Model

73

Also, the differences in MAE between clustering methods is larger than the differences in MAE

between update methods using the same clustering method. There is room for further exploration

here, but it is possible that the differences seen are mostly due to chance.

Unlike the base repeat clustered models, where lower-numbers of clusters with K-means and

Ward’s method performed well, Ward with 8 clusters and ROC (outside of pump output) have

the best performance with the NN models. We already showed that Ward’s method produces a

well-distributed hierarchy of boilers in Figure 18, and that ROC, through its RBF kernel, is able

to pick up on closeness of boilers in a higher dimension (R247) than the other methods in R2461.

DBSCAN is used to identify non-hyperspherical clusters, so both of the update methods that use

Euclidean distance measures are not able to effectively keep the clusters updated in a meaningful

way.

The flatness of MAE of the other five parameters - DHW pump status, flame current, power,

pump status, and system pump status is apparent. However, clustering does still help these

compared to the base NN accuracy. This flatness does not exist in the simple repeat method,

although the clustering NN model has a lower MAE in all of these categories than the repeat

method as shown in Figure 37. Because we’re using the same clusters, just different predictive

models, this suggests that we have hit some floor in the accuracy of the NN system as it is

currently designed. If this floor were removed by using a different type or shape of NN, or a

different predictive model entirely, we would expect to see more than slight differences between

the clustering and update methods.

Figure 41 shows a similarity between each combination of clustering method. If (pi, pj) are

points that are in the same cluster as each other in clustering method A and they are also in the

same cluster as each other in clustering method B, then they are considered to be a similar pair.

1239 parameters + 2 weather parameters + 5 cluster identifiers = 246 parameters

74

Figure 39: MAE of Clustered NN Models

75

Figure 40: MAE Improvement of Clustered NN Models over Clustered Repeat Models

76

Figure 41: Similarity of Clustering Methods on April 01, 2018

The similarity is the rate of similar pairs to all possible pairs. At the start, there are no differences

between the clustering methods because they have not been used yet. The cluster differences in

Figure 42 from the end of the testing period does distinguish between the updating methods. The

high similarity between clustering methods provides an alternative explanation for the flatness

of some of the predictions. The clusters are, for the most part, similar between each cluster, and

the differences could be significantly determined by the parameters that show high variability in

prediction MAE. A detractor from this possibility is that such an explanation should also hold for

the MAE of the clustered repeat method.

2 Case-Based Reasoning

For the probability and comment-based model, we compare accuracies of specific implementa-

tions using two metrics. The first is the log-loss metric introduced in Equation 9. Outside of its

usefulness as an objective function in neural network training, it is also a useful metric for scoring

probabilistic models, with a lower score being better. In many cases where log-loss is used, the

exact order, or rank, of the results is not crucial. However, in a system that recommends next steps

to take to solve a problem, the rank does matter. To score a model’s ability to suggest the correct

action as the first suggestion (or at least near the top of the suggestions list), a metric called mean

77

Fi
gu

re
42

:S
im

ila
ri

ty
of

C
lu

st
er

in
g

M
et

ho
ds

on
Ju

ne
30

th
,2

01
8

78

squared ranking error (MSRE) is used. It is defined in Equation 25, where N is the number of cases,

M is the number of possible classes, and rc is the 0-indexed guessed rank of case c.

1
N

N

∑
c

(
1− rc

M

)2
(25)

As a single-case example, let us say that we know that the correct answer to case c is solution s

out of 10 possible solutions. If a model, upon taking c as an input, predicts that s is the most likely

solution and gives it rank 0, its scored MSRE will be 1. If another model, given the same c, predicts

that s is the third most likely solution and gives it a rank of 2, its MSRE is
(
1− 2

10

)2
= 0.64. You

might notice that this disproportionately punishes errors in ranking near the top because it has a

high slope in the area of the top ranks. This is intentional, because such a metric is necessary to

separate good models from great ones.

A useful model will have a low log-loss score and a high MSRE score. A model with poor

log-loss and good squared ranking error might be good for the most common of scenarios, but if

none of the top suggestions lead anywhere then the rest of the probabilities won’t be useful for

determining the next most likely solution. A model with good log-loss and poor squared ranking

error is good at generally guessing the likelihood of a symptom, solution, but is bad when it comes

to exactly ranking them. A comparison across the various corpa, vector sizes, vector extraction

methods, and each prediction category is shown in Figure 43 through Figure 50.

79

Figure 43: Model scores when predicting symptom types with 64 element vectors

Figure 44: Model scores when predicting symptom types with 150 element vectors

80

Figure 45: Model scores when predicting symptom groups with 64 element vectors

Figure 46: Model scores when predicting symptom groups with 150 element vectors

81

Figure 47: Model scores when predicting symptoms with 64 element vectors

Figure 48: Model scores when predicting symptoms with 150 element vectors

82

Figure 49: Model scores when predicting solutions with 64 element vectors

Figure 50: Model scores when predicting solutions with 150 element vectors

83

Scoring of the three CBR models is done a little differently. Instead of relying on the pre-existing

type, group, symptom, and solution categories, it generates part-based suggestions. To get a sense

of its accuracy, we do a 5-fold cross validation. We split each of the cases into one of 5 evenly-split

groups, labeled 1 through 5. We take the first 4 groups, hold back the last, and pre-process the cases

into their case and solution vectors. For the nearest-neighbor and k-nearest-neighbor systems, we

then add these vectors to the case base. For the ANN model, we train the model using the case and

solution vectors. Next, we pre-process the held-out group. The case vector (no solution vector) is

passed through the CBR system. The output vectors from the model are compared against their

associated known solution vectors. We grade the accuracy by calculating the true positive rate, true

negative rate, false positive rate (Type 1 errors) and false negative rate (Type 2 errors). The entire

process is repeated 4 more times so that each of the 5 folds are held out once. The positive, negative,

and error rates are then averaged across the folds to calculate their overall scores. Figure 51 show

the true positive and true negative error rates of each tested system, while Figure 52 shows the

Type I and Type II error rates.

84

Figure 51: Model scores when predicting solutions with 64 element vectors

Figure 52: Model scores when predicting solutions with 150 element vectors

85

V CONCLUSION

1 Clustering

We have created a system for handling many boiler parameters in unevenly-spaced time

series and processing them into a way that is useful for clustering with a reasonable amount of

computational effort. In addition to the direct boiler parameters, we include additional information

about the model family and weather data pulled from the NCDC to add additional clustering

features. A framework for comparing K-means, agglomerative clustering methods, ROC, and

DBSCAN was developed. This included the ability to test multiple cluster update methods as well.

We checked the validity and usefulness of the clusters by predicting next-day sensor readings

through two predictive models: a naive method that simply repeats the average of the previously-

seen parameters in each cluster, and a neural-network based system that is trained on the full

dataset and further enhanced by the specific clusters is used.

In both the naive and NN-based models, each of the clustering methods used creates predictive

models that are more accurate than comparable non-clustered methods. K-means and Ward’s

method generally show the best performance improvements for the naive models, while Ward’s

method and ROC generally show the best improvements when the NN models are used. In all

parameters except flue temperature, the clustered NN model outperforms the clustered naive

model.

When the naive prediction model is used, clusters updated with a modified sequential K-means

algorithm noticeably outperforms the cohesion-based method, DYNC. However, when the NN

model is used, DYNC slightly exceeds the sequential method performance for most parameters.

Further work can be done to understand the accuracy floor that the NN model hit. There is

an opportunity to further revise the DYNC algorithm - in its current implementation, it considers

86

points in Euclidean space, even if the original clusters were not generated in it. A kernel-based

cohesion calculation could potentially be used in place of the current Euclidean distance calculation.

Additionally, it currently has no way of adding new clusters once they have been removed. The

timescale that the tests in this thesis were run on were not long enough to significantly reduce the

number of clusters, but over long enough time scales it could cause problems. Although it was

not seen in 2D tests, there is also a potential for runaway cluster removal when it is applied to the

boiler data. This was alleviated with a slight modification by changing the cohesion threshold, but

in a future revision this cohesion threshold could be adapted automatically.

2 Case-Based Reasoning

A multi-tiered case-based reasoning system was developed to assist with boiler repair and

issues. At the primary level, users enter comments and, if available, tell the system which parts

have already been looked at and what was action was done with them. The model then tells the

user what it believes is the next best step if there is still a problem with the boiler. If it predicts

that no change is necessary based on what was seen in previous cases but there is still a problem,

the secondary system uses the entered case comments to suggest possible symptoms to look for

and which solutions are the most likely. The third tier is a fall-back probability model that simply

states the probability of various solutions being correct given a symptom type, symptom group,

symptom, or a combination of all three.

For the first tier, a one-hidden-layer neural network with 120 neurons in its hidden layer proved

to be the most accurate at case retrieval and adaptation. Somewhat counter-intuitively, outside of

the NN models, nearest-neighbor retrieval was the second best method, with K-nearest neighbor

performing worse than simply taking the most similar case that was previously seen. In the second

tier, we use log-loss and a metric called mean squared ranking error (MSRE) to evaluate accuracy.

87

MSRE is introduced because it is not just important that the approximate probability of a symptom

or solution is correct, but it is also important that the predicted ranks of the classes in the categories

is correct. For the repair scenario, it is more useful that the correct solution is predicted at 30%

probability and be the highest-ranked solution than it be predicted at 35% but have a wrong

solution predicted at 40%. Log-loss would score both scenarios similarly, but MSRE punishes the

second scenario. We show that a logistic regression model based on 150-element Word2Vec vectors

generally produces the most accurate symptom type, symptom group, symptom, and solution

predictions for both metrics.

While the individual components of the multi-tiered CBR system have been evaluated for

accuracy using cross-validation, the system has not been evaluated as a whole set against real

problems. Future work on this topic would involve creating a GUI front-end for accessing the CBR

system and allowing real technicians to use it.

88

REFERENCES

[1] The American Society of Mechanical Engineers. 2010 ASME Boiler and Pressure Vessel Code:

Recommended Guidelines for the Care of Power Boilers. Technical report, The American

Society of Mechanical Engineers, New York, New York, 2011.

[2] Pavel Berkhin. A Survey of Clustering Data Mining Techniques. In Grouping Multidimensional

Data, pages 25–71. Springer, Berlin, 2006.

[3] A.M. Fahim, G. Saake, A.M. Salem, F.A. Torkey, and M.A Ramadan. K-Means for Spheri-

cal Clusters with Large Variance in Sizes. International Journal of Computer and Information

Engineering, 2(9):2923–2928, 2008.

[4] J.A. Hartigan and M.A Wong. Algorithm AS 136: A K-Means Clustering Algorithm. Journal of

the Royal Statistical Society, Series C (Applied Statistics), 28(1):100–108, 1979.

[5] Pratik Worah and Sandeep Sen. A linear time deterministic algorithm to find a small subset

that approximates the centroid. Information Processing Letters, 105(1):17–19, 2007.

[6] Nuwan Ganganath, Chi Tsun Cheng, and Chi K. Tse. Data clustering with cluster size

constraints using a modified k-means algorithm. Proceedings - 2014 International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2014, (1):158–161, 2014.

[7] Yasunori Endo and H. Iwata. On Dynamic Clustering and Two Options. The 14th IEEE

International Conference on Fuzzy Systems, 2005. FUZZ ’05., pages 996–1001, 2005.

[8] Joe H. Ward. Hierarchical Grouping to Optimize and Objective Function. Journal of the

American Statistical Association, (58):236–244, 1963.

89

[9] Wang Qiu-Dong. The global solution of the N-body problem. Celestial Mechanics and Dynamical

Astronomy, 50(1):73–88, mar 1990.

[10] Martin Ester, Hans-Peter Kriegel, Sander Jorg, and Xiaowei Xu. A Density-Based Clustering

Algorithms for Discovering Clusters. KDD-96 Proceedings, 96(34):226–231, 1996.

[11] Erich Schubert, Jörg Sander, Martin Ester, Hans-Peter Kriegel, and Xiaowei Xu. DBSCAN

revisited, revisited: Why and how you should (still) use DBSCAN. ACM Transactions on

Database Systems, 42(3), 2017.

[12] Junhao Gan and Yufei Tao. Dynamic Density Based Clustering. In SIGMOD ’17 Proceedings of

the 2017 ACM International Conference on Management of Data, pages 1493–1507, 2017.

[13] Janet Kolodner. An Introduction to Case-Based Reasoning. Artificial Intelligence Review, (6):3–34,

1992.

[14] Agnar Aamodt and Enric Plaza. Case-Based Reasoning: Foundational Issues, Methodological

Variations, and System Approaches. AI Communications, 7(1):39–59, 1994.

[15] I. Watson. Case-based reasoning is a methodology not a technology. Knowledge-Based Systems,

12(5-6):303–308, 1999.

[16] Kerstin Bach, Odd Erik Gundersen, Christian Knappskog, and Pinar Ozturk. Automatic Case

Capturing for Problematic Drilling Situations. In 22nd International Conference on Case-Based

Reasoning Research and Development, pages 48–62, Cork, Ireland, 2014. Springer.

[17] Kellen Gillespie, Kalyan Moy Gupta, and Michael Drinkwater. Case-Based Object Placement

Planning. In 22nd International Conference on Case-Based Reasoning Research and Development,

pages 170–184, Cork, Ireland, 2014. Springer.

90

[18] Stewart Massie, Glenn Forbes, Susan Craw, Lucy Fraser, and Graeme Hamilton. FITsense: Em-

ploying Multi-modal Sensors in Smart Homes to Predict Falls. In 26th International Conference

on Case-Based Reasoning Research and Development, pages 249–263, Stockholm, Sweden, 2018.

Springer.

[19] Yoke Yie Chen, Xavier Ferrer, Nirmalie Wiratunga, and Enric Plaza. Sentiment and Preference

Guided Social Recommendation. In 22nd International Conference on Case-Based Reasoning

Research and Development, pages 79–94, Cork, Ireland, 2014. Springer.

[20] Yoke Yie Chen, Xavier Ferrer, Nirmalie Wiratunga, and Enric Plaza. Aspect Selection for Social

Recommender Systems. In 23rd International Conference on Case-Based Reasoning Research and

Development, pages 60–72, Frankfurt, Germany, 2015. Springer.

[21] Flávio Ceci, Rosina O. Weber, Alexandre L. Gonçalves, and Roberto C. S. Pacheco. Adapting

Sentiments with Context. In 23rd International Conference on Case-Based Reasoning Research and

Development, pages 44–59, Frankfurt, Germany, 2015. Springer.

[22] Sebastian Dieterle and Ralph Bergmann. A Hybrid CBR-ANN Approach to the Appraisal of

Internet Domain Names. In 22nd International Conference on Case-Based Reasoning Research and

Development, page 95, Cork, Ireland, 2014. Springer.

[23] Santiago Ontañón, Enric Plaza, and Jichen Zhu. Argument-Based Case Revision in CBR

for Story Generation. In 23rd International Conference on Case-Based Reasoning Research and

Development, pages 290–305, Frankfurt, Germany, 2015. Springer.

[24] Antonio Sanchez-Ruiz and Santiago Ontanon. Least Common Subsumer Trees for Plan

Retrieval. In 22nd International Conference on Case-Based Reasoning Research and Development,

pages 405–419, Cork, Ireland, 2014. Springer.

91

[25] Ramon Lopez de Mantaras, David McSherry, Derek Bridge, David Leak, Barry Smyth, Susan

Craw, Boi FAltings, May Lou Maher, Michael T Cox, Kenneth Forbus, Mark Keane, Agnar

Aamodt, and Ian Watson. Retrieval, reuse, revision, and retention, volume 00. 2005.

[26] Zhiqiang Yu, Chun Hua Zhao, Dalin Zhu, and Mingsong Zhang. Research on case repre-

sentation in printing machine fault diagnosis expert system based on case-based reasoning.

Proceedings of International Conference on Computer Science and Software Engineering, CSSE 2008,

1:233–236, 2008.

[27] Ziyan Wen, Jacob Crossman, John Cardillo, and Yi L. Murphey. Case Base Reasoning in

Vehicle Fault Diagnostics. Proceedings of the International Joint Conference on Neural Networks,

4:2679–2684, 2003.

[28] Anudeep Boilers. Anudeep Boilers: Hot Water Generator, 2019.

[29] Lochinvar. Hot Water Generator Systems, 2013.

[30] Ipstack. ipstack. https://ipstack.com/, 2019.

[31] NCDC. NCDC Climate Date Online. https://www.ncdc.noaa.gov/cdo-web/, 2019.

[32] Andreas Eckner. A framework for the analysis of unevenly spaced time series data. 2014.

[33] William Mendenhall and Terry Sincich. A Second Course in Statistics Regression Analysis. Pearson

Education, Inc., Upper Saddle River, New Jersey, 6th edition, 2003.

[34] I.D. Guedalia, M. Londom, and M. Werman. An on-line agglomerative clustering method for

non-stationary data 1 Introduction. Neural Computation, 11(2):521–540, 1998.

92

[35] Daoqiang Zhang, Songcan Chen, and Keren Tan. Improving the robustness of ’online agglom-

erative clustering method’ based on kernel-induce distance measures. Neural Processing Letters,

21(1):45–51, 2005.

[36] Christopher D. Manning, Prabhakar Raghavan, and Henrich Schutze. Introduction to Informa-

tion Retrieval. Cambridge University Press, Cambridge, UK, 2008.

[37] Fionn Murtagh and Pierre Legendre. Ward’s Hierarchical Clustering Method: Clustering

Criterion and Agglomerative Algorithm. (June):1–20, 2011.

[38] Mohammad Rezaei and Pasi Franti. Set matching measures for external cluster validity. IEEE

Transactions on Knowledge and Data Engineering, 28(8):2173–2186, 2016.

[39] Richard O. Duda. Sequential k-Means Clustering. https://www.cs.princeton.edu/courses/

archive/fall08/cos436/Duda/C/sk means.htm, 2007.

[40] Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David

Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J

van der Walt, Matthew Brett, Joshua Wilson, K Jarrod Millman, Nikolay Mayorov, Andrew R.˜J.

Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, \.Ilhan Polat, Yu Feng, Eric W

Moore, Jake Vand erPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E.˜A.

Quintero, Charles R Harris, Anne M Archibald, Antônio H Ribeiro, Fabian Pedregosa, Paul

van Mulbregt, and SciPy 1. 0 Contributors. SciPy 1.0–Fundamental Algorithms for Scientific

Computing in Python. arXiv e-prints, page arXiv:1907.10121, jul 2019.

[41] Akshay L. Chandra. Perceptron: The Artificial Neuron (An Essential Upgrade To The

McCulloch-Pitts Neuron), 2018.

93

[42] Michael A. Neilsen. Neural Networks and Deep Learning. Determination Press, San Francisco,

CA, 2015.

[43] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In 3rd

International Conference on Learning Representations, pages 1–15, San Diego, CA, 2015. ICLR.

[44] Peter F. Brown, Peter V. DeSouza, Robert L. Mercer, Vincent J. Della Pietra, and Jenifer C. Lai.

Class-Based n-gram Models of Natural Language. Computational Linguistics, 18(4):467–479,

1992.

[45] Daniel Jurafsky and James H. Martin. Speech and Language Processing. Prentice Hall, Upper

Saddle River, New Jersey, 2nd edition, 2008.

[46] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Distributed Representations of

Words and Phrases and their Compositionality. NIPS ’13 Proceedings of the 26th International

Conference on Neural Information Processing Systems, 2:111–3119, 2013.

[47] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents. 2014.

[48] Xin Rong. word2vec Parameter Learning Explained. 2014.

[49] Radim Hurek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora.

In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta, Malta,

2010. ELRA.

[50] NLTK Project. Natural Language Toolkit. https://www.nltk.org/, 2019.

[51] Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, Cambridge, MA,

1998.

94

[52] Chih Chung Chang and Chih Jen Lin. LIBSVM: A Library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2(3):1–39, 2011.

[53] John C. Platt. Probabilistic Outputs for SVMs Comaprison to Regularized Likelihood Methods.

1999.

[54] Metin Turkay, Ozlem Yilmaz, and Fadime Uney Yuksektepe. Prediction of secondary structures

of proteins using a two-stage method. Computer Aided Chemical Engineering, 21(C):1679–1685,

2006.

[55] Eric Kim. Everything You Wanted to Know about the Kernel Trick. https://www.eric-

kim.net/eric-kim-net/ posts/1/kernel trick.html, 2017.

[56] Galen Andrew and Jianfeng Gao. Scalable training of L1-regularized log-linear models. ACM

International Conference Proceeding Series, 227:33–40, 2007.

[57] F Pedregosa, G Varoquaux, A Gramfort, V Michel, B Thirion, O Grisel, M Blondel, P Pretten-

hofer, R Weiss, V Dubourg, J Vanderplas, A Passos, D Cournapeau, M Brucher, M Perrot, and

E Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,

12:2825–2830, 2011.

95

APPENDIX A - DATA FORMATS

Table 12: Full format of raw data from boilers
Item Description Used
oem id The OEM ID – all are 132d4043 No
oem model The board model – either Herald or Page Yes
dsn The boiler serial number Yes
property name The name of the property Yes
display name The property display name No
base type The type of the property Yes
time uuid A UUID for the property update time No
created at from device Blank No
updated at Time that the property is updated in the database No
created at The time that the property is uploaded by the boiler Yes
user uuid A UUID for the boiler No
echo False for roHistoryAverage, True for all else No
closed If the property is discontinued No
discarded If a property record is discarded Yes
scope User is currently the only choice No
val int An integer value Yes
val decimal A decimal value Yes
val float A floating point value Yes
val boolean A boolean value Yes
val string A string value Yes
metadata Always e30= No
direction Whether a value is considered input or output No

96

APPENDIX B - CLUSTERING

Figure 53: RMSE of Base NN and Base Repeat Prediction Models

97

Figure 54: RMSE of Base NN and Clustered Repeat Prediction Models

98

Figure 55: RMSE Improvement of Clustered Repeat Prediction Models over Base Repeat Model

99

Figure 56: RMSE of Clustered NN Models

100

Figure 57: RMSE Improvement of Clustered NN Models over Clustered Repeat Models

101

APPENDIX C - CASE-BASED-REASONING

List of Stop Words

up only she’s after hers himself why an that’ll was weren’t each didn themselves too its wouldn’t

with when most a aren’t ve you these are under m them re weren doesn’t those but yours if won

or doesn mustn’t yourselves doing my against am between hasn’t who needn into off than such

haven how any d being very your hasn some once no of by here there where they he be don theirs

further not have haven’t o myself now to you’re ma what ours until because their mustn shan’t

hadn having yourself needn’t above again wasn’t while our his ourselves both it’s all just were can

been through do same ain shouldn shouldn’t about ll won’t has s you’ll few itself didn’t that nor

and other shan mightn don’t isn’t below as y she him for i from down we over you’d which in then

out couldn’t mightn’t whom t you’ve hadn’t will wasn had wouldn aren more does her at before

the own should’ve did should it this on herself is couldn during me so isn

102

	An Application of Clustering and Cluster Update Methods to Boiler Sensor Prediction and Case-Based-Reasoning to Boiler Repair
	Recommended Citation

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Boilers
	Literature Review
	Clustering
	Case-Based Reasoning

	BOILER CLUSTERING METHOD
	Problem
	Boilers
	Data

	Implementation
	Time Series Analysis
	Clustering
	Prediction

	CASE-BASED REASONING
	Problem
	Method
	Pure Probability Model
	Comment-Based Model
	Predictive System

	RESULTS AND DISCUSSION
	Clustering
	Case-Based Reasoning

	CONCLUSION
	Clustering
	Case-Based Reasoning

	REFERENCES
	APPENDIX A - DATA FORMATS
	APPENDIX B - CLUSTERING
	APPENDIX C - CASE-BASED-REASONING

