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ABSTRACT 

CONTROLLING AND MANIPULATING MICROSCOPIC PARTICLES IN SOLUTION BY 
USING VARIOUS ELECTRIC FIELD GEOMETRIES 

 

by 

 

Xavier S. Udad 

 

The University of Wisconsin-Milwaukee 2019 
Under the Supervision of Jörg C. Woehl 

 

Progress in micro- and nanotechnologies depends on our capability of manipulating and 

interacting with microscopic particles and nanosize material. A promising approach 

towards this goal is the use of electric fields, which are the dominant forces at the 

molecular length scale. One technique for trapping nanoparticles in solution uses an 

externally controlled electric field, generated by two electrode pairs, to counteract the 

Brownian motion of a single, selected particle. Unlike other trapping tools, such as optical 

tweezers or magnetic tweezers, this approach scales favorably with particle size, down 

to the level of a single molecule. However, it depends on real-time position information 

from fluorescence imaging and requires a fast, well-calibrated feedback system. The 

approach taken in this thesis does not rely on this kind of external control; rather, we use 

geometric patterns (corral traps) “etched” into an otherwise conductive layer to create 

energy wells that are capable of trapping micro- and nanoscale particles as long as an 

electric voltage is applied to the device. These energy wells create a stable trapping 

potential that can keep a particle confined without the need for a feedback system. The 
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main trapping forces are either electrostatic or dielectrophoretic in nature, depending on 

whether DC or AC voltages are applied to the corral trap electrode. We investigate the 

influence of the geometric shape of the electric field on the electrostatic and dielephoretic 

trapping behavior of charged and uncharged polarizable particles, and compare the 

experimental results to finite-element simulations of the electrostatic and dielectrophoretic 

forces generated by different experimental setups and various symmetric and asymmetric 

metal patterns. Also, the influence of electric field-induced flow patterns in solution, such 

as electro-osmosis, are investigated theoretically. Aside from pure trapping, i.e. 

confinement of particles to the low-energy regions, we find that particles can also be 

manipulated to move in a particular direction, follow pathways or trails, diverge in different 

directions, converge in one direction, make 90o turns, and even perform circular loops by 

utilizing various shapes and patterns on a metal surface.  

 

 
 

 

 

 

 

 

 

  



 

iv 
 

 

 

 

 

 

 

 

 

 

 

© Copyright by Xavier S. Udad 2019 
All Rights Reserved



 

v 
 

TABLE OF CONTENTS 

LIST OF FIGURES          viii 

LIST OF ABBREVIATIONS        xx 

LIST OF SYMBOLS          xxi  

ACKNOWLEDGEMENTS         xxii 

 Chapter 1. Introduction        1 

  1.1 History         2 

  1.2 The ABEL Trap        6 

  1.3 Optical Tweezers       10 

 Chapter 2. Theory of Electrostatic and Dielectrophoretic Trapping 18 

  2.1 Electric Fields        19 

  2.2 Simple Electric Field Systems      21 

  2.3 Finite Element Methods      28 

  2.4 The Corral Trap        33 

  2.5 The Corral Trap in Three Dimensions    40 

  2.6 Dielectrophoresis       46 

  2.7 Optical Trapping of Rayleigh Particles is Similar to   59 
      Dielectrophoresis 

  2.8 Electro-Osmosis       61 

 Chapter 3. An Electrokinetic Survey      69 

  3.1 Infinite Possibilities       70 

  3.2 Electrodeless Dielectrophoresis of Single- and Doubled-  71 
      Stranded DNA 

  3.3 Evaluation of the Potential for Using Dielectrophoresis to  72       
      Separate Minerals 



 

vi 
 

  3.4 Microfluidic System for Dielectrophoretic Separation Based on 73 
      a Trapezoidal Electrode Array 
 

  3.5 Dielectrophoresis: An Assessment of its Potential to aid the 74 
      Research and Practice of Drug Discovery and Delivery 
 

  3.6 Dielectrophoretic Filter for Separation and Recovery of  75 
      Biological Cells in Water 
 

  3.7 Continuous Cell from Cell Separation by Traveling Wave  76 
                 Dielectrophoresis 

  3.8 Dynamic Holographic Optical Tweezers    77 

  3.9 Fabrication of Linear Colloidal Structures for Microfluidic  78 
      Applications 

  3.10 Microfluidic Control Using Colloidal Devices   79 

  3.11 Structure of Optical Vortices      80 

  3.12 Microscopic Particle Manipulation via Optoelectronic Devices 81 

  3.13 Optically-Induced Dielectrophoretic Technology for Particles 82 
        Manipulation and Separaton 

  3.14 Fast AC Electro-Osmotic Micropumps with Nonplanar  83 
        Electrodes 

  3.15 Dielectrophoresis Switching with Vertical Sidewall Electrodes 84 
        For Microfluidic Flow Cytometry 
 

 Chapter 4. Methods        87 

  4.1 Materials         88 

  4.2 Glass Cleaning Process      88 

  4.3 Application of HMDS Primer      91 

  4.4 Application Of Photoresist      92 

  4.5 UV Exposure        96 

  4.6 Metal Deposition       100 



 

vii 
 

  4.7 Putting Spacers On The Bottom Electrode    104 

 Chapter 5. Experimental Results      117 

  5.1 Determination of Image Dimensions at Different Magnifications 118 

  5.2 Corral Trapping with DC Voltages     120 

  5.3 Corral Trapping with AC Voltages     127 

  5.4 Rim Trapping        131 

  5.5 Grid Trapping        135 

  5.6 Pushing Beads in a Particular Direction with a “V” Shape  145 

  5.7 Two Rectangles Side By Side Can Induce A 90o Turn  151 

  5.8 Star Trapping        153 

  5.9 The Inverted Corral Trap      157 

  5.10 Determining The Electrode Separation Distance   160 

 Chapter 6. Future Experiments       164 

  6.1 Use of The Point Spread Function to Extract Vertical Z Axis 165 
      Data 

  6.2 Spiral Patterns        171 

  6.3 Continuous Electrokinetic Cycles     172 

  6.4 Back and Forth Planar Bead Migration    173 

  6.5 Tracks, Rails, Or Pathways For Beads To Follow   175 

  6.6 Linear Control of Beads      178 

 CHAPTER 7. Conclusion        184 

Curriculum Vitae          189 

 

 



 

viii 
 

LIST OF FIGURES 
 
Figure 1.1 Illustration of the microscope used by Robert Hooke and some of 3 

his observations.         
 
Figure 1.2 Image of Clarkia pulchella pollen.      4 
 
Figure 1.3 Particle tracking performed by Jean Baptiste Perrin, painstakingly 5 

done by hand. The dots represent the particle positions at 30 
second intervals. The radius of the particle is 0.52 microns. One 
division is 3.125 microns.        

 
Figure 1.4 A top view schematic of the ABEL trap and its view from the  6 

side.           
 
Figure 1.5 The principle of electrophoresis. First observed in 1930 by Arne 7 

Tiselius.          
 
Figure 1.6 Trapping of a 200 nanometer diameter particle under   9 

fluorescence imaging. 
 
Figure 1.7 Trajectory of a particle manipulated to draw out a smiley face. 9 
 
Figure 1.8 Ray optics for the single-beam gradient force trap (optical  11 

tweezers). Small f is the focus of the laser. Small a and small b 
represent vectors of light that become refracted as they enter the 
particle and leave the particle. Fa and Fb represent the change in 
momentum of the particle. Large F is the resultant upward force 
of both Fa and Fb combined. 

 
Figure 1.9 How momentum is transferred and redirected with billiard balls. 12 

The orange circle represents the original position of one of the 
two billiards. 

 
Figure 1.10 Fluorescence imaging of a trapped 10 micrometer sphere in  13 

solution, showing the path of both incident and scattered light 
rays.  

 
Figure 2.1 Electric field lines of a uniform field that are perpendicular to the 20 

surface area A. The product is the electric flux through the 
surface. 

 
Figure 2.2 Electric field generated by a single point charge. The field lines 22 

represent the force of attraction or repulsion generated by the 
single point charge q in the center. 

 



 

ix 
 

Figure 2.3 A spherical Gaussian surface imposed on an electric field of a 23 
single point charge. The red dot represents the point where the 
electric field is calculated. 

 
Figure 2.4 Electric field lines and equipotential surfaces of two point  25 

charges. 
 
Figure 2.5 The electric field of a parallel plate capacitor with edge effects. 25 
 
Figure 2.6 A parallel plate capacitor with a cylinder as a Gaussian surface. 26 

While the parallel plates are depicted as finite, they actually 
extend to infinity. Only then can edge effects be completely 
ignored. 

 
Figure 2.7 Charge intensity gradient of a point charge. It should be noted 30 

that COMSOL cannot actually handle point charges. The 
simulation was done by defining a small inner circle assigned 
with a potential of 10V and a large outer circle assigned as  
ground. Although the result is given as a potential, the qualitative  
results are exactly the same as a point charge. 

 
Figure 2.8 Left image, the electric field of a single point charge depicted as 31 

normalized arrows. Normalized arrows only indicate the direction 
of the field. Right image, the electric field depicted with logarithmic 
arrows. In addition to indicating the direction of the field, the 
size of the arrows indicate the magnitude of the force the field will 
exert on another charged particle at the location of the base of the 
arrow. 

 
Figure 2.9 Left image, the electric field of a single point charge depicted with 31 

equivalent field lines instead of arrows. Right image, the charge 
intensity and the electric field on the same graph. 

 
Figure 2.10 Charge intensity and electric field of two opposite point charges 32 

expressed as a potential and as lines. 
 
Figure 2.11 The potential and electric field of two finite parallel plates. The 32 

Bottom plate is assigned as 10V and the top plate is assigned as 
ground. 

 
Figure 2.12 Basic schematic of the corral trap. Blue is glass, gray is metal, 33 

and green is a non-conductive layer used to prevent the two 
electrodes from coming into contact and to keep them at a fixed 
known distance. 
 

 



 

x 
 

Figure 2.13 Top image, the exaggerated two dimensional geometry of the 35 
corral trap which conveys the location of the rim. Second 
image: electrostatic potential. Third image: equipotential lines. 
Fourth image: electric field. Fifth image: composite. Bottom image: 
electric field of featureless metal surfaces for comparison. 

 
Figure 2.14 Potential profiles of the corral trap based on the channel height 36 

with an electrode separation distance of 10 μm.  
 
Figure 2.15 Top image: electric field of the corral trap with lines. Second  38 

image: electric field as arrows if the bottom electrode is negative 
and top electrode is positive. Arrows are normalized. Third 
image: logarithmic arrows. Fourth image: electric field if the 
bottom electrode is positive and top electrode is negative. 
Arrows are normalized. Bottom image: logarithmic arrows. 
 

Figure 2.16 Assuming a particle is negatively charged, rim trapping is the  39 
result of setting the bottom electrode to positive. This is the same 
result if a particle is positive and the bottom electrode is set to 
negative. 

 
Figure 2.17 Assuming a particle is negatively charged, corral trapping is the 40 

result of setting the bottom electrode to negative. This is the same 
result if a particle is positive and the bottom electrode is set to 
positive. 

 
Figure 2.18 Exaggerated geometry and scaled geometry of the corral trap in 41 

3D. 
 
Figure 2.19 Potential slices of the three dimensional corral trap.   42 
 
Figure 2.20 Top image, 20 potential profiles. Middle image, a single potential. 43 

Bottom image, that single potential depicted as a three 
dimensional isosurface. 

 
Figure 2.21 Isosurface images of the corral trap shown separately with the 45 

master image at the very top. 
 
Figure 2.22 The axio-symmetric 3D electric field, shown with white lines,  46 

depicted on two perpendicular slices. 
 
Figure 2.23 Red indicates areas of high field density, purple indicates areas of 47 

low field density. 
 
 
 



 

xi 
 

Figure 2.24 Image of dielectrophoretic field lines acting on a particle. The  48 
system consists of a pin electrode in the center and a ring 
electrode as the outer radius with a particle in between the two. 
Field line density is greater in the left area of the particle and  
more spread out in the right area of the particle. 

 
Figure 2.25 Top image, the dielectrophoretic potential depicted as a  52 

logarithmic of the electric field squared. Second image, 
equipotential lines. Third image, negative dielectrophoreis 
shown with logarithmic arrows. Bottom image, composite. 

 
Figure 2.26 The profiles of the dielectrophoretic potential based on channel 54 

height for the case of negative dielectrophoresis with an 
electrode separation distance of 10 μm. The center of the corral 
has the lowest potential. 

 
Figure 2.27 The profiles of the dielectrophoretic potential based on channel 55 

height for the case of positive dielectrophoresis with an electrode 
separation distance of 10 μm. The rim of the corral has the  
lowest potential. 

 
Figure 2.28 Top two images, positive dielectrophoresis. Bead moves to the 56 

rim of the corral. Third image, electric field. Bottom image, 
electric field squared. 

 
Figure 2.29 Top two images, negative dielectrophoresis. Bead moves to the 57 

center of the corral. Third image, electric field. Bottom image, 
electric field squared. 

 
Figure 2.30 The negatve dielectrophoretic field shown with two perpendicular 58 

slices. 
 

Figure 2.31 Optical trapping of Rayleigh particles.     60 
 
Figure 2.32 Top image, velocity gradient due to electro-osmosis of the fluid. 64 

Middle image, electro-osmotic velocity field depicted with 
logarithmic arrows. Bottom image, composite. 

 
Figure 2.33 Summary of all fields that can affect corral trapping. Top image, 65 

electric field. Middle image, dielectrophoretic field. Bottom image, 
electro-osmotic velocity field. All arrows are logarithmic. 

 
Figure 3.1 Top left, the geometry of the electric field as it flows through  71 

a non-conductive physical restriction. Top right, the 
constriction array etched out of quartz. Bottom row, images of 
trapped DNA. They are visualized with epifluorescence. 



 

xii 
 

Figure 3.2 Left image, schematic of system. Right image, dielectrophoretic 72 
force experienced by particle based on the particle’s size. 

 
Figure 3.3 Top left, system schematic. Gray areas are metal. Right image, 73 

electrical schematic indicating trapezoids alternate between 
electrodes. Electrodes are also co-planar. Bottom left, separation 
of beads based on their properties as well as size. 

 
Figure 3.4 Top image, dielectrophoretic effects using a pin and ring electrode 74 

system. Bottom images, yeast cells exhibiting dielectrophoretic 
behavior under a quadrupole electrode system. A quadrupole 
electrode system requires two voltage sources. 

 
Figure 3.5 Top left, voltage is off. Bottom image, voltage is on. Right  75 

images, the trapping of yeast cells. 
 
Figure 3.6 Left image, electrical schematic. Right image, snapshots of the 76 

traveling wave as it goes from electrode to electrode. 
 
Figure 3.7 Left image, schematic for dynamic holographic optical tweezers. 77 

Right images, silica spheres manipulated with dynamic 
holographic optical tweezers. 

 
Figure 3.8 Top image, linear polymerization of silica spheres. Bottom  78 

images, the linear polymerized spheres used a type of valve. 
 
Figure 3.9 Left image, a gear pump. When one gear turns, the other turns 79 

as well. Right image, a peristaltic pump. The single tracer bead 
gradually advances to the left. 

 
Figure 3.10 This experiment shows the result of imposing a phase shift on 80 

an optical tweezer. Instead of being trapped in the center, a 
particle will rotate in a circular pattern. 

 
Figure 3.11 Left image, schematic for optically induced dielectrophoresis.  81 

Right image, a dielectrophoretic light pattern is moved up and 
down and displaces beads. 

 
Figure 3.12 Left image, physical manipulation of a bead using   82 

optically-induced dielectrophoresis. Right image, concentrating 
beads by diminishing the size of the ring. 

 
Figure 3.13 Types of fluid flow created by different electrode configurations. 83 
 
 
 



 

xiii 
 

Figure 3.14 The six dark rectangular shapes are electrodes. Beads flowing in 84 
solution are circled in white. Solution flow direction is left to 
right. Left images, if the bottom three electrodes are set to 10 V 
and the top three electrodes are set to 0 V, the beads will exit out 
of the top channel.  Middle images, bottom three electrodes are  
set to 10 V and the top three electrodes are set to 4 V, the beads 
will exit out of the second channel from the top. Right images, all 
electrodes are set to 10 V, the beads will exit out of the middle 
channel. 

 
Figure 4.1 During sonication, glass slides are oriented to be as vertical as 89 

possible by the use of a mold to ensure maximum surface 
exposure to cleaning solvents. 

 
Figure 4.2 Nitrogen gas, compressed through a filter, is used for many of  90 

the cleaning steps and intermediate steps to remove dust or  
particulate matter. 

 
Figure 4.3 Setup for HMDS exposure to the glass substrates. This is  92 

performed in a chemical hood. 
 
Figure 4.4 Spincoating of photoresist. Blue is glass, green is photoresist. 93 

HMDS layer between the glass and the photoresist is not shown. 
The result is a flat, even layer of photoresist. 

 
Figure 4.5 Manufacturer data relating photoresist thickness to spin speed of 95 

various S1800 series formulations. If S1813 is spincoated at 4,000 
rpm; the resulting photoresist layer will be 13,000 angstroms thick 
(1.3 μm). 

 
Figure 4.6 Manufacturer data relating photoresist thickness to spin speed of 95 

SU8 2000 series. If SU8 2002 is spincoated at 3000 rpm, a 
photoresist layer of 2 μm will be obtained. 

 
Figure 4.7 The main differences between positive and negative photoresist. 97 

Green areas are photoresist and gray areas are glass. HMDS  
layer between glass and photoresist not shown. 

 
Figure 4.8 Photon density of a flat surface based on its location relative to a 99 

normal light source. The result is uneven light exposure. 
 
Figure 4.9 Even light exposure on a flat surface due to a collimated light  99 

source. 
 
Figure 4.10 Schematic for metal deposition. Metal deposition can be done with 100 

a cup or v-shaped filament. 



 

xiv 
 

Figure 4.11 Glass slide submerged in photoresist remover and oriented  102 
horizontally during sonication. 

 
Figure 4.12 Metal deposition process for making corral traps with positive 103 

photoresist or spherical microscopic glass beads. 
 
Figure 4.13 Various stages of lithography. The left image is the mask itself, 104 

namely chromium metal patterned onto soda-lime glass. The 
middle image is the photoresist after it has been baked, masked, 
exposed to UV light, and submerged in developer chemical. The 
right image is the resulting metal pattern after metal 
deposition and photoresist removal; the dark area is the metal 
layer, the light area is glass. 

 
Figure 4.14 A hand-made UV light source. The left middle image are metal 106 

bracers, 2.5 inches high, that keep the UV light source horizontal 
and above the substrates. 

 
Figure 4.15 Three dimensional profile of the SU8 2002 spacer taken with  107 

3D laser confocal microscopy. The area on the left is the  
electrode surface. The area on the right is the spacer. 

 
Figure 4.16 General procedure for putting spacers on the bottom electrode. 108 
 
Figure 5.1 An image of the calibration ruler at 40x magnification. The  118 

calibration ruler has minor divisions of 10 microns and major 
divisions of 100 microns. 

 
Figure 5.2 The pixel coordinates of the two points, circled in red, are  119 

determined with MATLAB commands. Pixel dimensions can be 
easily determined by correlating pixel coordinates to the known 
distance of the 6 divisions. 

 

Figure 5.3 Corral trapping with DC at 40x magnification. Left, voltage is off. 122 
White circle indicates the bead to be trapped. Right, voltage is 
turned on and the bead becomes trapped in the center of the 
corral. 

 
Figure 5.4 Histogram of the radial deviation of the particle from average  123 

location in pixels. Average radial deviation is 14 pixels. Since 
the pixel dimensions are 0.388 microns x 0.388 microns, this 
corresponds to an average displacement of 5.38 microns. 
Standard deviation, σ, is 1.45 microns. 
 
 

 



 

xv 
 

Figure 5.5 The two main types of corral trap behavior. Left image, corral  128 
trapping of a few beads. Right image, rim trapping of numerous 
beads. 

 
Figure 5.6 Left, a single corral trapped bead indicated with an arrow. The 129 

bright spot next to the bead is an illumination artifact. The corral 
trap is 50 microns in diameter. Right, superposition of 300 
location points over a time interval of 43 seconds. 

 
Figure 5.7 Histogram of the radial deviation of the particle from the center of 130 

the corral (average location) in pixels. Average displacement is 
6.0 pixels, this corresponds to 2.33 microns since the 
perceived pixel dimensions are 0.388 microns x 0.388 microns. 

 
Figure 5.8 Top left, beads are rim trapped. Arrow indicates direction of  132 

solution flow. Top right, voltage is turned off and beads travel 
upward since solution flow is in the upward direction. Bottom left, 
voltage is still off and beads continue upward. Bottom right,  
voltage is turned on and beads become rim trapped again. 

 
Figure 5.9 Top left, beads are rim trapped. Top right, AC frequency is  133 

decreased and beads expand outward. Bottom left, frequency is 
decreased further and beads expand outward even more. 
Bottom right, frequency is brought back up to the initial frequency 
and the same beads move inward and become rim trapped again. 

 
Figure 5.10 Rim looping.         134 
 
Figure 5.11 The possible directions of looping behavior. The thickness of  135 

the rim is exaggerated. 
 
Figure 5.12 Grid of corral traps at 10x magnification. Corralling is clearly  136 

visible inside the circles in the bottom left image. The red circle 
indicates another type of trapping that occurs simultaneously. 

 
Figure 5.13 Close up of a grid of corrals at 40x magnification.   137 
  
Figure 5.14 Top, exaggerated dimensions to indicate where the rims of the 138 

corral traps are. Middle, the electric field of a two dimensional 
slice of two corrals side by side. Bottom, the dielectrophoretic 
potential and the dielectrophoretic field. 

 
Figure 5.15 The negative dielectrophoretic fields of specific slices of a grid of 139 

corrals. 
 
Figure 5.16 The electro-osmotic velocity field for a grid of corrals.   140 



 

xvi 
 

Figure 5.17 The negative dielectrophoretic force vectors of the corral trap  141 
rid viewed from the top, calculated for a horizontal plane that is 
0.75 μm above the surface of the bottom electrode. 

 
Figure 5.18 The negative dielectrophoretic force vectors exactly midway  142 

between the bottom and the top electrodes. It is 5 μm above the 
bottom electrode and 5 μm below the top electrode. 

 
Figure 5.19 The negative dielectrophoretic force vectors 0.75 μm below the 143 

surface of the top electrode. 
 
Figure 5.20 The log of the electric field squared potential relative to the x  144 

coordinate of a corral grid. The potential is calculated at 0.75 μm 
above the surface of the bottom electrode. 

 
Figure 5.21 If a metal pattern is in the shape of a “V”, beads will travel from 145 

The tip of the “V” to the opening of the “V”. Direction of bead 
motion is indicated with white arrows when the voltage is on. 

 
Figure 5.22 The negative dielectrophoretic force vectors 0.75 μm above the 146 

surface of the bottom electrode. Vertical arrows that point upward 
can be seen that bisect the middle of the “V”. The sides of the “V” 
also push the bead towards the bisector. 

 
Figure 5.23 Particle tracking of one bead. This solution has high bead  147 

concentration (1:10 dilution of the vendor stock), therefore it has 
high ion concentration, and therefore it has high conductivity. The 
bead has an average velocity of 105 microns/sec. 

 
Figure 5.24 This bead solution has low bead concentration (1:100 dilution of 149 

the vendor stock), therefore low ion concentration, and 
therefore low conductivity. Particle tracking results in an 
average bead velocity of 2.4 microns/sec. 

 
Figure 5.25 Images of a single 1.5 µm diameter bead as the electric field  150 

pushes it downward, from the surface of the top electrode 
towards the surface of the bottom electrode, along the vertical Z 
axis. 

 
Figure 5.26 Particle tracking of a single bead. The yellow line indicates the 151 

successive motion of the particle. 
 
Figure 5.27 The negative dielectrophoretic field 0.75 µm above the surface of 152 

the bottom electrode. 
 
 



 

xvii 
 

Figure 5.28 Star trapping. Top left, voltage is off. Top right, voltage is  153 
turned on and beads follow the pathway of the spokes of the star 
indicated with white arrows. Bottom left, beads accumulate in the 
center. Bottom right, voltage is still on. Red arrow indicates 
where some beads travelling down the spoke of the star can 
escape prior to reaching the center. 

 
Figure 5.29 The negative dielectrophoretic field 0.75 μm above the surface of 154 

the bottom electrode. 
 
Figure 5.30 The negative dielectrophoretic field exactly midway between the 155 

bottom and top electrodes. It is 5 μm above the bottom electrode 
and 5 μm below the top electrode. 

 
Figure 5.31 The negative dielectrophoretic field 0.75 um below the   156 

surface of top electrode. 
 
Figure 5.32 Trapping and releasing of beads with the inverted corral trap.  158 

Top left, voltage is off. Top right, voltage is on. Bottom left, voltage 
has been on for an extended amount of time. Bottom right, AC 
frequency is lowered and beads escape in the direction of the 
metal bridge. 

 
Figure 5.33 The dielectrophoretic field 0.75 μm above the surface of  159 

the bottom electrode. 
 
Figure 5.34 Three inverted corral traps in sequence. Perhaps this   160 

configuration can be used for filtering, sorting, or separating 
different types of particles by varying the diameters of each 
inverted corral. Beads could potentially be released separately 
as well depending on the AC frequency. 

 
Figure 5.35 Patterns used to determine the separation distance between  161 

the top and bottom electrode. The patterns circled in white are 
used to determine the separation distance. Separation distance 
is 28.5 microns for this particular flowcell. 
 

Figure 6.1 The point spread function of fluorescing beads. The different  165 
diameters indicate the beads are at different z heights. 

 
Figure 6.2 The point spread function of beads under non-fluorescent,  167 

bright-field imaging. Bead circled in red is located near the 
bottom electrode. Bead circled in white is between the top and 
bottom electrode. Bead circled in blue is near the top electrode. 

 
 



 

xviii 
 

Figure 6.3 Simultaneous trapping on both the top and bottom electrodes, 169 
Focus is on top electrode. As evidenced by the image, corral 
trapping is even possible with triangles. 

 
Figure 6.4 Two inverted corral traps. The trap on the bottom electrode has 170 

A smaller inner diameter, and the trap on the top electrode has a 
larger inner diameter. 

 
Figure 6.5 Metal spiral patterns.       171 
 
Figure 6.6 Top images, metal patterns for the bottom and top electrodes. 172 

Bottom image, how the electrodes would line up. Red arrows 
indicate direction of bead flow. 

 
Figure 6.7 Theoretical pattern for back and forth bead migration from one 173 

rounded end to the other rounded end. 
 
Figure 6.8 Negative dielectrophoretic field of the smaller end.   174 
 
Figure 6.9 Negative dielectrophoretic field of the larger end. This image is 174 

not scaled relative to the smaller end. 
 
Figure 6.10 Left images, possible designs for bead trails. Right images, green 175 

circle indicates where beads would start. Red circle indicates 
where beads would end up. 

 
Figure 6.11 Negative dielectrophoretic field of a “U’ pattern 0.75 μm above 176 

the surface of the bottom electrode. 
 
Figure 6.12 Negative dielectrophoretic field of a thermometer pattern exactly 176 

midway between the top and bottom electrodes which are 10 μm 
apart. 

 
Figure 6.13 Negative dielectrophoretic field of a teardrop pattern exactly  177 

midway between the top and bottom electrodes which are 10 μm 
apart. 

 
Figure 6.14 Three dimensional geometry of the system.    178 
 
Figure 6.15 Top view of two parallel metal strips electrically isolated from  179 

each other. The two metal strips are both bottom electrodes. Top 
electrode is not shown. Left, the system before voltage is turned 
on. Right, the system after voltage is turned on.  

 
Figure 6.16 Moving beads back and forth by changing the voltages of the  180 

metal strips. 



 

xix 
 

 
Figure 6.17 Top view of the dielectrophoretic fields of the system with varying 181 

voltages of the metal strips. Field is 0.75 μm above the surface of 
the bottom electrodes. 

 
Figure 6.18 Side view of the dielectrophoretic fields of the system with varying 182 

voltages of the metal strips. 
  



 

xx 
 

LIST OF ABBREVIATIONS 

ABEL        anti-Brownian electrophoretic trap 

AC        alternating current 

DC        direct current 

DNA        deoxyribonucleic acid 

TMV        tobacco mosaic virus 

UV        ultra-violet light 

 

 



 

xxi 
 

LIST OF SYMBOLS 
 
k         Spring constant 

kB         Boltzmann’s constant 

Ɛo         Vacuum permittivity 

Ɛ         Permittivity of substance 

σ         Conductivity 

U         Potential energy 

ω         AC frequency 

E         Electric field 

Φ         Electric flux 

q         Charge 

ρ         Density 

μ         Viscosity 

F         Faraday’s constant 

R         Gas constant 

  



 

xxii 
 

ACKNOWLEDGEMENTS 

 

Thank you so much Professor Woehl for providing me with this opportunity. Thank 

you so much for your patience, for putting up with me, and for being non-judgemental. 

Thank you for, in these past eight years, not once making me feel inadequate. Thank you 

for treating me as a colleague, as an equal, since day one. I greatly admire you and strive 

to be like you. I realize that if I ever become a professor myself, I will have no choice but 

to treat my graduate students the same way you treated me. Thank you Professor Carlson 

for your initial work. Thank you Professor Chang for your knowledge of microfluidics. 

Thank you Professor Owen for your helpfulness. Thank you Professor Aldstadt for all of 

the encouragement and for the inspiration. Thank you Professor Arnold for your 

understanding and for putting this entire journey into the proper perspective. 

Thank you Quint for sharing ideas. Thank you Nazmul for your thoughtfulness.  

 

 

 

 

 

 

 

Xavier S. Udad 

Milwaukee WI 

December 2019 



 

xxiii 
 

 

 

 

 

 

 

 

 

 

 

This thesis is dedicated to my parents, for always believing in me. 

 

 

  



 

1 
 

 

 

 

 

 

 

 

 

 

 

Chapter 1 

Introduction 
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1.1 History 

There is a certain limit to the smallest object the human eye can see unaided, 

which is roughly 100 microns. This can be overcome with the use of microscopes. The 

microscope is an iconic scientific instrument used in making observations of systems that 

are too small for normal observation. While most words in the English language are 

derived from Latin, the word “micro” is actually Greek for “small” and the word “scope”, 

also Greek, means “to look”. For most of his existence, man was unaware of a world that 

existed just beyond the limits of his vision. As with all scientific progress, knowledge and 

insight proceeds in stages that build on each other. Below is a timeline of some key events 

in the development of the microscope. 

 

2nd Century BC - Claudius Ptolemy described a stick appearing to bend in a pool of  

water, and accurately recorded the angles to within half a degree. This marks the  

first recorded study of refraction1. 

1st Century - Romans were experimenting with glass and found objects appeared larger  

when viewed through this new material2. 

12th Century - Salvino D’Armate from Italy made the first eye glass, providing the wearer  

with an element of magnification to one eye. However, whether D’Armate actually  

was the first eye glass maker is under dispute3. 

1590 - Two Dutch spectacle makers, Zacharias Jansen and his father Hans started  

experimenting by mounting two lenses in a tube, the first compound microscope4. 

1665 - Robert Hooke’s book called Micrographia officially documented a wide range of  

observations through the microscope5. 
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With the invention of the microscope, an entirely new level of reality was 

discovered. The first impulses were to simply observe. One such man was Robert Hooke. 

His book, Micrographia, must have seemed like an entirely alien world to the people of 

the time. It was the first significant work on microscopy. 

 

 

 

Figure 1.1 – Illustration of the microscope used by Robert Hooke and some of his 
observations5. 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=2ahUKEwiXy_2K_O7gAhVl94MKHcZTBooQjRx6BAgBEAQ&url=https://www.reading.ac.uk/web/files/special-collections/featuremicrographia.pdf&psig=AOvVaw3JsNHFuBrK33Td-GXHSSDV&ust=1552011572659124
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Figure 1.2 – Image of Clarkia pulchella pollen6, 7. 

  

In 1827, a botanist by the name of Robert Brown observed a species of pollen, 

Clarkia pulchella, under a microscope6. The pollen displayed random erratic movements. 

Brown’s initial thoughts were that it was due to some type of stamina or life force inherent 

to the pollen. Today we know that the erratic movement of microscopic particles in 

solution is due to the constant collisions of water molecules with the particle, which is 

appropriately called Brownian motion. Robert Brown made many important contributions 

to the science of botany. He contributed additional work on pollination and fertilization, 

taxonomy, physiology, and palynology. There was some contention as to whether Robert 

Brown was actually capable of seeing microscopic pollen8. But the contention was 

appropriately refuted with a convincing demonstration of the available optics of the time9. 
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In 1909, Jean Baptiste Perrin mapped out the exact movements of more than 200 

individual particles by hand11. He determined the motion was not due to the mass, density, 

or nature of the particles. He corroborated Albert Einstein’s theoretical explanation of 

Brownian motion10 which helped to solidify the idea of the particle nature of matter. Jean 

Baptiste Perrin won the Nobel Prize in 1926 in physics for his work on the discontinuous 

structure of matter. Now, in the modern age, man attempts to actually control and 

manipulate these microscopic particles. It is a significant leap from trying to control 

microscopic particles to trying to control nanoscopic particles, but it has been done. 

 

 

Figure 1.3 – Particle tracking performed by Jean Baptiste Perrin, painstakingly 
done by hand. The dots represent the particle positions at 30 second intervals. The 

radius of the particle is 0.52 microns. One division is 3.125 microns11. 
 

http://upload.wikimedia.org/wikipedia/en/7/7a/PerrinPlot2.gif
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 There are a few methods that enable interaction with single molecules; among 

them are microneedles, which can be used to measure the tensile strength of protein 

filaments12, and atomic force microscopy, which combines the principles of the scanning 

tunneling microscope and a stylus profilometer13. The following sections will cover two 

methods for trapping particles, the ABEL trap and optical tweezers. The reason these two 

methods are covered is because they are most closely related to the method of 

manipulation used in this thesis. 

 

1.2 The ABEL Trap 
 
 The ABEL trap, or anti-Brownian electrophoretic trap, was developed by Adam E. 

Cohen and W. E. Moerner in 200514. It is composed of two pairs of electrodes, making a 

total of four electrodes, that are oriented in a “+” shape. 

 

 

Figure 1.4 – A top view schematic of the ABEL trap and its view from the side14. 
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The two electrodes of one pair are collinear, while the two pairs are perpendicular 

to each other and are integrated into two separate circuits that are independent of each 

other. Even though they are independent of each other, the two pairs of counter 

electrodes are programmed to work cooperatively. The spacing between one pair of 

counter electrodes can range from 3 to 15 micrometers. This configuration is capable of 

trapping a single charged nanoscale object with nanoscale resolution. 

The general idea of the ABEL trap is electrophoresis which utilizes DC, direct 

current. When a voltage is applied to two electrodes immersed in solution, negatively 

charged particles migrate towards the positive electrode while positively charged particles 

migrate towards the negative electrode. 

 

 

Figure 1.5 – The principle of electrophoresis. First observed in 1930 by Arne Tiselius15. 

 

 When the sign of the voltage is switched, the polarity of the electrodes switch as 

well and a particle can change directions. Another pair of electrodes is implemented to 
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allow control of a particle in two dimensions instead of one. The charged particle is 

localized through its fluorescence signal and its physical location is continuously 

monitored. When a particle deviates from the center of the ABEL trap, an appropriate 

voltage is applied to exactly counteract the displacement of the particle and bring it back 

to the center. There are instances when no voltage is applied to either pair of electrodes 

while the system waits for appropriate information regarding the location of the particle. 

There are also instances when the sign of the voltage to one of the electrode pairs is 

switched. The amount of variables that must be controlled or known are quite extensive. 

Both the mass of the particle and the charge on the particle must be taken into account 

in order to apply the correct voltage. The ionic strength of the solution that the particle is 

in could potentially shield the particle from the effects of the electric fields which the 

electrodes generate. Since the particle is charged, it will primarily be surrounded by ions 

of the opposite charge. This primary shielding layer of ions will then be surrounded by 

another more diffuse layer of oppositely charged ions that are the same charge as the 

original particle. The feedback system has inherent timing, electrical, and circuit delays. 

These are the types of factors that must be taken into account with regards to the 

programming of the system. One of the disadvantages of the ABEL trap is that there is 

no control of the particle on the vertical axis, the particle is free to move up and down. As 

long as a charge can be conferred on a particle, it can be trapped with this method. 
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Figure 1.6 – Trapping of a 200 nanometer diameter particle under fluorescence 
imaging14. 

  

One of the more interesting experiments performed with the ABEL trap involved 

mannipulating the trajectory of a 200 nanometer diameter particle over the course of a 

minute; a total of 1800 positions were recorded as shown in Figure 1.7. Two of the data 

points that joined the eyes and mouth are not plotted. 

 

 

Figure 1.7 – Trajectory of a particle manipulated to draw out a smiley face14. 
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 Despite the casual whimsy of manipulating a nanoparticle to travel the trajectory 

of a smiley face with a complicated programmed system of electrodes, circuits, 

microscopes, camera monitoring, and a continuous feedback loop, the implications of the 

figure are immense. This indicates that, with four electrodes, one can actually move the 

particle to a specific location and keep it there in the general area as long as it is within 

the confines of the four electrode system. It is not necessary to keep the particle in the 

center. If desired, the particle can be continuously confined off center. The particle can 

be kept in one location for a certain amount of time and then moved to another location 

and kept there as well. The velocity of the particle, when it is moved to a new location, 

can also be controlled. The particle can be made to move slowly or quickly to the new 

location depending on the magnitude and duration of the applied voltage. This is a very 

high degree of control and manipulation in the horizontal plane14. The ABEL trap has 

been used to study the photodynamics of fluorophores16, conformational dynamics of 

proteins17, and characteristics such as diffusivity and mobility of molecules18. 

 

1.3 Optical Tweezers 

 Another method for trapping micro or nano-particles is the use of optical 

tweezers19. The name of this method is somewhat misleading. A tweezer is a tool that is 

basically two curved levers connected together at one fixed end. The two ends that are 

not connected can be used to manipulate or pick up small objects. An optical tweezer is 

a single beam of light, not two beams of light as one might suspect, that can only trap one 

very particular type of particle; so this trapping method is highly limited, more so than the 

ABEL trap. This very particular type of particle must have some degree of transparency 
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and must have the ability to scatter light such as a microscopic glass sphere. There are 

also limits to the size of the particle this method can trap. Smaller particles require higher 

laser powers for stable trapping, which often leads to undesired local heating. Silica 

particles as small as 26 nm have been successfully trapped, but required 1.4 W of laser 

power. More typically, optical trapping is performed with microbeads in the micrometer 

range19. Trapping can also be affected by the degree of difference of the index of 

refraction of the particle relative to the index of refraction of the solution. However unlike 

the ABEL trap, the particle is not required to have a charge19. 

  

 

Figure 1.8 – Ray optics for the single-beam gradient force trap (optical tweezers). Small 
f is the focus of the laser. Small a and small b represent vectors of light that become 

refracted as they enter the particle and leave the particle. Fa and Fb represent the 
change in momentum of the particle. Large F is the resultant upward force of both Fa 

and Fb combined23. 
 

A laser beam is aligned through a focusing lens and an optically active particle is 

located at the focal point of the lens. Trapping results from the transfer of momentum of 

light photons as they pass through the particle. The orange billiard in Figure 1.9 
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corresponds to a quantity of photons of light and the billiard they collide with is the trapped 

particle. There are a few minor reflections that diminish the momentum transferred to the 

trapped particle by the light photons and the resultant angles are slightly different from 

the resultant angles of billiard balls colliding. There is also a significant difference in mass 

between the particle and light photons, but the three main vectors should adequately 

convey the idea.  

 

 

Figure 1.9 – How momentum is transferred and redirected with billiard balls. The orange 
circle represents the original position of one of the two billiards. 

 
 

Since the incident beams of light coming from the laser are symmetric in all 

directions from the point of view of the trapped particle along the z axis, the overall force 

vector exerted on the particle is straight up towards the direction of light from the incoming 

laser beam.  
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Figure 1.10 – Fluorescence imaging of a trapped 10 micrometer sphere in solution, 
showing the path of both incident and scattered light rays19. 

 

Some of the crucial factors for successful trapping are the index of refraction of the 

particle, the index of refraction of the medium, the wavelength of the source beam, the 

size of the focal spot of the beam, and the trapping laser’s intensity. Possibly the most 

important factor to consider in the use of optical tweezers is the size of the particle itself. 

There are two particle regimes. A Rayleigh particle is a particle whose diameter is much 

smaller than the wavelength of light being used, while a Mie particle is a particle whose 

diameter is larger than the wavelength of light being used20. Optical trapping has 

advanced significantly and can now be used for nanofabrication21 and simultaneous use 

of multiple optical traps is also being done22. One field that has benefitted from optical 

tweezers is biology. The use of infrared lasers significantly reduces trapping damage to 

biological cells to the point where the cells can even reproduce24. It has been used to 

elucidate the biomechanics of flagellar bacteria25, and even to measure the force-

extension relation of a DNA strand by linking one end of the strand to a glass substrate 

and the other end to a microscopic bead26. 
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Another way to control and manipulate microscopic particles is to use various 

electric field geometries. These electric field geometries can be produced with thin metal 

layer patterns that are created with a technique known as lithography. Since the system 

involves very small solution quantities, microfluidics also play a factor. That is the focus 

of this thesis. 
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Chapter 2 

Theory of Electrostatic and Dielectrophoretic Trapping 
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2.1 Electric Fields 

Electromagnetism is the study of electricity and magnetism. At one point, they were 

thought of as being separate phenomena. In 1873, James Clerk Maxwell showed that 

electricity and magnetism are actually different manifestations of the same phenomenon1. 

He summarized electricity and magnetism in four simple, yet very elegant, equations. 

Maxwell’s four equations unify the behavior of electric and magnetic fields2. For this 

thesis, only one of Mawell’s equations is necessary; that being Gauss’s Law, which 

describes the behavior of electric fields. 

 An electric field exerts a force on any object that has an electrical charge. If an 

object has no charge, it is not affected by an electric field. Electric fields are generated by 

single charges or charged objects or charged surfaces. An electric field exerts a force on 

a charge15. 

 

 𝐹⃗ = q·𝐸⃗⃗ 

 

 q is a test charge placed in a location where the field is 𝐸⃗⃗. The force exerted on 

the charge is the product of the charge and the electric field. This is the electric field’s 

most useful property since forces can be used to push or pull, repulse or attract, an object. 

In this case, an electric field can push or pull an object with a charge. This property can 

also be used to derive Coulomb’s Law. The field manifests itself as a force that pushes 

or pulls an object which has a charge. 
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To calculate an electric field, electric flux has to be defined3. 

 

  

   

 Φ is the electric flux, which can be thought of as the “flow” of the electric field 

through a closed surface S. 𝐸⃗⃗ is the electric field and d𝐴 is an element of the surface S, 

defined as having a magnitude equal to the surface element’s area and having a direction 

pointing outward and perpendicular to the surface element. Note that both 𝐸⃗⃗ and 𝐴 are 

vector quantities. Figure 2.1 shows electric field lines that are perpendicular to a surface. 

 

 

Figure 2.1 – Electric field lines of a uniform field that are perpendicular to the surface 
area A. The product is the electric flux through the surface15. 
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Gauss’s Law is 

  

 Φ = Σq 
         ϵo 

 

 Σq is the sum of all charges enclosed within the surface S and ϵo is the constant 

of vacuum permittivity, which is 8.85 x 10-12 F/m (Farad per meter). The two equations 

can then be set equal to each other. 

 

  

 

2.2 Simple Electric Field Systems 

 The simplest example of an electric field is the field surrounding a single point 

charge. The field has spherical symmetry and only depends on the distance to the point 

charge. 
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Figure 2.2 – Electric field generated by a single point charge. The field lines represent 
the force of attraction or repulsion generated by the single point charge q in the center4. 
  

To calculate the electric field at the location of the red dot in Figure 2.3 requires an 

application of Gauss’s Law. The first step is to decide on an appropriate Gaussian 

surface. In this example, a sphere, with a radius that is equal to the distance of the red 

dot from the center would be appropriate as it allows us to make use of the symmetry of 

the system. 
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Figure 2.3 – A spherical Gaussian surface imposed on an electric field of a single point 
charge. The red dot represents the point where the electric field is calculated. 

 

Even though both 𝐸⃗⃗ and 𝐴 are vector quantities, they both point in the same 

direction, namely outward from the center in all directions. In essence, the vectors are 

parallel and can be treated as scalar quantities since the relative angle between the two 

vectors is zero. 

 

 

 

 For reasons of symmetry, the electric field has the same magnitude at equal 

distances from the center. Therefore E can be treated as a constant and can be taken out 

of the integral. Since there is only one point charge, Σq is equal to q. 
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 This leads to 

 

 E A =  q q 
            ϵo 
 

 Since the Gaussian surface is a sphere, the surface area of a sphere is 4πr2. 

 

 E 4πr2 =  q q  
      ϵo 

 

The equation is then solved for E, the electric field. 

 
 E =       q     q 
         4πϵor2

 

 

 

Coulomb’s Law, which describes the force that repels or attracts two particles that 

have an electrical charge, can then be expressed simply by factoring in the charge of a 

second particle5. 

 
F =     q1q2    2 

                 4πϵor2 
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Figure 2.4 – Electric field lines and equipotential surfaces of two point charges6. 

 

The figure above shows the electric field lines of the simplest Coulombic system, 

two point charges separated by a certain distance. Despite being considered a simple 

system, the field lines and equipotential surfaces have a certain degree of complexity.  

The figure below is the electric field for a parallel plate capacitor. In the center of 

the plates, away from the edges, the field lines are parallel and uniform. There are edge 

effects which distort the field at the edges of the parallel plates, making the field lines non-

parallel and non-uniform7. 

 

 

Figure 2.5 – The electric field of a parallel plate capacitor with edge effects8. 
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 In the figure below, the field lines actually extend to the surface of the opposite 

plate, they are drawn with a shorter length to indicate the direction of the field. An 

appropriate Gaussian surface for this system would be a cylinder, as it allows us again to 

exploit the symmetry of the field for its calculation. 

 

 

Figure 2.6 – A parallel plate capacitor with a cylinder as a Gaussian surface. While the 
parallel plates are depicted as finite, they actually extend to infinity. Only then can edge 

effects be completely ignored. 
 

 The cylinder has three surfaces labelled as S1, S2, and S3. S3 is simply the 

circular face of the cylinder opposite S1. The electric field at surface S3 is zero because 

it’s not between the two plates. The electric field at surface S2 is also zero because any 

element d𝐴 on the surface of S2 is perpendicular to the direction of the electric field. 

Surface S1 is the only part of the cylinder that experiences an electric field. Surface S1 is 

a circular disk with a quantity of charges on it, we can define Σq as σA, where σ is the 
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surface charge density and A is the area of the circular disk. The electric field and the 

surface element vector d𝐴 are in the same direction, vector notation can be dropped. 

 

 

 

Since the electric field is the same at all points on the Gaussian surface and edge 

effects are ignored since the parallel plates extend to infinity, E can be treated as a 

constant and taken out of the integral. 

 

 

 

Integration leads to 

 

  

 

which simplifies to 

 

E =  σ o 
       ϵo 

  

 This result is the electric field of a parallel plate capacitor anywhere between the 

two plates. 
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2.3 Finite Element Methods 

Electric fields can also be calculated by solving Maxwell’s equations numerically 

using the finite element method. One such program that uses the finite element method 

is COMSOL9. It is a physics simulation program capable of modelling numerous physical 

phenomenon such as mechanics, acoustics, fluid flow, heat transfer, etc. It is most widely 

used by engineers as it enables quick prototype simulation. It can be used to predict 

behavior of a theoretical system10 or it can be used to model the behavior of a system 

that has already been observed experimentally. Using COMSOL to predict behavior is 

one of its best uses. This enables scientists and engineers to design systems theoretically 

first. And based on the results, the decision can be made whether or not to proceed with 

actually building the system. COMSOL performs calculations by using “meshes”. Meshes 

are simply the sizes and the shapes that COMSOL overlays on the system’s geometry in 

order to perform its calculations. Mesh size can be very large, these give the quickest 

results but are not always the best in terms of accuracy. The smaller the mesh size, the 

longer the calculations take but results are more accurate. Mesh size can be customized 

by the user. 

All COMSOL simulations, here in Chapter 2 as well as in Chapter 5, were done 

with the following global parameters. 

 

Electrode separation distance: 10 μm 
Voltage assignment of bottom electrode: 10 V 
Voltage assignment of top electrode: Ground 
Modules for electrophoresis and dielectrophoresis: AC/DC (Select Electrostatics) 
Modules for electro-osmosis: Fluid Flow (Select “Single-Phase Flow” then  

“Creeping Flow”) 
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 The following are the COMSOL notations used for the electric field simulations. 

  

Electric potential in 2D or 3D (1 input field): V 
 Electric field in 2D (2 input fields): es.Ex, es.Ey 
 Electric field in 3D (3 input fields): es.Ex, es.Ey, es.Ez 

 

 The following are the notations used for the dielectrophoretic field simulations. 

  

 Dielectrophoretic potential in 2D: log((es.Ex)^2+(es.Ey)^2) 
Dielectrophoretic potential in 3D: log((es.Ex)^2+(es.Ey)^2+(es.Ez)^2) 
Dielectrophoretic field in 2D: d((es.Ex)^2+(es.Ey)^2,x) 

   d((es.Ex)^2+(es.Ey)^2,y) 
Dielectrophoretic field in 3D: d((es.Ex)^2+(es.Ey)^2+(es.Ez)^2,x) 

   d((es.Ex)^2+(es.Ey)^2+(es.Ez)^2,y) 
   d((es.Ex)^2+(es.Ey)^2+(es.Ez)^2,z) 

 

 The following are the notations used for the electro-osmosis simulations. 

 
 

 Electro-osmotic velocity potential in 2D: log(spf.U) 
 Electro-osmotic velocity field in 2D: u, v 

 

 All potentials display as a color gradient. Only one input field is required. All fields 

can either be displayed as arrows or lines. Fields require separate x and y component 

inputs for 2D; and separate x, y, and z component inputs for 3D. Dielectrophoresis and 

electro-osmosis have not yet been discussed. 
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The figures below and in the following pages are COMSOL simulations of the three 

previously discussed electrical field systems; a single point charge, two point charges, 

and two finite parallel plates. 

 
 
 

 
 

Figure 2.7 – Charge intensity gradient of a point charge. It should be noted that 
COMSOL cannot actually handle point charges. The simulation was done by defining a 
small inner circle assigned with a potential of 10V and a large outer circle assigned as 

ground. Although the result is given as a potential, the qualitative results are exactly the 
same as a point charge.  
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Figure 2.8 – Left image, the electric field of a single point charge depicted as normalized 
arrows. Normalized arrows only indicate the direction of the field. Right image, the 

electric field depicted with logarithmic arrows. In addition to indicating the direction of 
the field, the size of the arrows indicate the magnitude of the force the field will exert on 

another charged particle at the location of the base of the arrow. 
 

 

 
 

Figure 2.9 – Left image, the electric field of a single point charge depicted with 
equivalent field lines instead of arrows. Right image, the charge intensity and the 

electric field on the same graph. 
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Figure 2.10 – Charge intensity and electric field of two opposite point charges 
expressed as a potential and as lines. 

 
 
 

 

Figure 2.11 – The potential and electric field of two finite parallel plates. The bottom 
plate is assigned as 10V and the top plate is assigned as ground. 
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2.4 The Corral Trap 

 

 

Figure 2.12 – Basic schematic of the corral trap. Blue is glass, gray is metal, and green 
is a non-conductive layer used to prevent the two electrodes from coming into contact 

and to keep them at a fixed known distance. 
 

 Chapter 1 introduced two ways that particles can be trapped, the ABEL trap and 

optical tweezers. Both have disadvantages. The ABEL trap uses a feedback system to 

monitor the particle’s position, hence there is no stable trapping potential. Optical 

tweezers can only trap transparent particles, and high laser intensities can damage the 

particle. The idea behind the corral trap is to apply a restoring force to a particle, similar 

to the ABEL trap, that is stable and “built into” the setup. Figure 2.12 shows the basic 

schematic of the corral trap16 (the image is not to scale, it is only meant to convey the 

main features of the system). It consists of two electrodes that are two parallel plates with 

a circular area devoid of metal in the middle of one of the bottom plate. The green, non-
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conductive layer has two purposes. It prevents the electrodes from coming into contact 

with each other, thereby preventing an electrical short. It also keeps the electrodes at a 

known, fixed distance. 

Figure 2.13 in the following page shows the geometry of the system used for 

COMSOL simulations. The overall width of the system is 60 microns, the diameter of the 

corral is 40 microns, and the electrode separation distance is 10 microns. The thickness 

of the metal layer of the bottom electrode is 15 nm. The thickness of the metal layer for 

the top electrode is also 15 nm, but this does not need to be taken into account for 

COMSOL simulations. The bottom electrode is assigned a potential of 10V, while the top 

electrode is assigned as ground. As can be seen from the fourth image of Figure 2.13, 

which depicts the electric field created by the corral trap, the field is not uniform across 

the trap. 
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Figure 2.13 – Top image, the exaggerated two dimensional geometry of the corral trap 
which conveys the location of the rim. Second image: electrostatic potential. Third 

image: equipotential lines. Fourth image: electric field. Fifth image: composite. Bottom 
image: electric field of featureless metal surfaces for comparison. 

 

 The COMSOL results shown in Figure 2.13 can be used to predict the behavior of 

charged particles in solution. Consider the potential gradient; if a particle is negatively 

charged and the bottom electrode is negatively charged as well, a particle located within 
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the red regions will experience a strong repulsive force and will move towards the blue 

regions. If a particle is located outside the corral and a voltage is applied, it will simply 

move straight up towards the top electrode. If a particle is located inside the corral and a 

voltage is applied, it will go towards the center and up, the region where a particle will 

experience the least amount of repulsive force. The void of the corral trap thus creates a 

potential well, which is clearly seen in the second image. 

 

 

Figure 2.14 – Potential profiles of the corral trap based on the channel height with an 
electrode separation distance of 10 μm. 

 
 

 Figure 2.14 shows the potential profiles of the corral trap based on the channel 

height with an electrode separation distance of 10 μm. The blue line is the potential at a 

height of 0.75 μm. The reason this height was chosen and not 0.00 μm is because the 
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majority of experimental results were obtained with beads having a radius of 0.75 μm. 

The dark blue line has the most pronounced well. The difference in potential is dramatic 

relative to the rim of the corral and the center of the corral. The graph shows that, 

regardless of height, all potential profiles generally converge to the relatively same low 

value at the center of the corral trap. This indicates the center of the corral has the lowest 

energy relative to other areas of the corral and will therefore be favored by a particle; the 

result is electrostatic trapping. 

 The electric field is an indication of the exact pathway a point charge will actually 

follow once voltage is applied and the electric field is brought into existence. A point 

charge will move along a given field line. Microscopic particles, however, are not zero 

dimensional points. They are finite and have dimension and volume. Therefore they are 

affected by multiple field lines and will not follow the exact pathway of a single field line.  

The images on the following page depict the electric field of the corral trap with 

arrows instead of lines. A charged particle located at the base of any arrow will experience 

a force, attractive or repulsive, based on the charge of the particle and the signs of the 

electrodes, in the direction of the arrow. 
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Figure 2.15 – Top image: electric field of the corral trap with lines. Second image: 
electric field as arrows if the bottom electrode is negative and top electrode is positive. 
Arrows are normalized. Third image: logarithmic arrows. Fourth image: electric field if 
the bottom electrode is positive and top electrode is negative. Arrows are normalized. 

Bottom image: logarithmic arrows. 
 

 By visualizing the electric field, the behavior of charged particles can now be 

theoretically predicted. As can be seen from the images, the field is not as strong in the 

middle of the corral. The strongest force, whether it be attractive or repulsive, is exerted 
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at the rim of the corral; and the field is the weakest inside the corral. If the the bottom 

electrode and the particle are oppositely charged, it is inside the corral where the particle 

would experience the least repulsion and thus move to inside the corral and towards the 

top. 

 

 

Figure 2.16 – Assuming a particle is negatively charged, rim trapping is the result of 
setting the bottom electrode to positive. This is the same result if a particle is positive 

and the bottom electrode is set to negative. 
 

 Figure 2.16 is an illustration of rim trapping. The bead is initially located arbitrarily 

within the corral itself and equidistant from both the top and bottom electrodes. Once the 

voltage is applied the bead is attracted to the rim, where it will finally be trapped. Figure 

2.17 on the following page illustrates corral trapping. Once the voltage is applied, the 

bead ends up at the top electrode and directly above the center of the corral trap. 
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Figure 2.17 – Assuming a particle is negatively charged, corral trapping is the result of 
setting the bottom electrode to negative. This is the same result if a particle is positive 

and the bottom electrode is set to positive. 
 
 

2.5 The Corral Trap In Three Dimensions 

COMSOL is also capable of visualizing results in 3D. The calculations are a bit 

more intensive and require significantly more computational time. Results can appear 

muddled and unclear if too many arrows or lines are used for visualization purposes. 

Deciding on the proper number of arrows or lines so that results are reasonably 

interpretable requires some care. However, 3D does have some advantages over 2D in 

that representations of the system can be completely visualized, but 2D representations 
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are definitely easier to read. While circular corral traps are symmetric, non-symmetric 

metal shapes such as rectangles, squares, or triangles must be modeled in 3D. 

 

Figure 2.18 – Exaggerated geometry and scaled geometry of the corral trap in 3D. 

 

Figure 2.18 shows both the exaggerated and scaled geometry of the corral trap in 

3D. Voltages are assigned to the surfaces that are highlighted in purple in the top image. 

The top surface of the system’s geometry, not visible, is assigned as ground. 
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Figure 2.19 – Potential slices of the three dimensional corral trap. 
 
 
 
 In Figure 2.19, the corral trap is shown with slices at equal and set intervals. The 

middle slice goes through the corral trap where its well size is maximum. The potential 

well can be clearly seen. The two slices on either side of the middle have a smaller well 

size, and the remaining two have no well at all. The figure above shows how the well size 

varies as a function of the distance from the center. Since this is a three dimensional 

representation, the shorter well size of the outer slices also has the effect of pushing 

particles to other parallel slices where the well size is larger, namely towards the middle 

slice. It should be noted that a charged particle located outside the corral cannot be 

trapped; it must already be within the corral when the voltage is applied. 
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Figure 2.20 – Top image, 20 potential profiles. Middle image, a single potential. Bottom 
image, that single potential depicted as a three dimensional isosurface. 
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 In Figure 2.20 on the previous page, a single equipotential line is chosen and fully 

rotated in three dimensions. This is known as an isosurface; the potential is the same 

anywhere on this surface. A particle with energy equivalent to the surface can freely move 

or diffuse anywhere on the surface. If the particle loses or gains energy, it will move up 

or down to a different isosurface. Mentally visualizing an axiosymmetric 2D plot into a 3D 

image may not necessarily be an easy connection to make, which is one of the distinct 

advantages of COMSOL’s 3D visualization capabilities. When a single potential is rotated 

in 3D, the basic geometry is that of a well. It is inside this well that a particle can be 

confined if that particle has less energy than the isosurface. The figure on the following 

page shows a single system depicted with four isosurfaces and how they vary depending 

on the value of the associated electrostatic potential. The diameter of the well is larger 

when the potential is large and gets smaller as the potential decreases. 
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Figure 2.21 – Isosurface images of the corral trap shown separately with the master 
image at the very top. 
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Figure 2.22 – The axio-symmetric 3D electric field, shown with white lines, depicted on 
two perpendicular slices. 

 

If three dimensional force fields are visualized using lines, the results can often be 

confusing. Some aspects of COMSOL’s visualization capabilities do lack some specifics. 

But for now, the best option is to display key individual slices. The understood implication 

when depicting fields as lines is that line density is directly proportional to the force of the 

field. Outside the corral trap, the lines are the most dense, and the field is therefore the 

strongest. Inside the corral trap, the lines are more spread out and less dense and the 

field is weak. Alternatively, arrows can be used to convey information about the strength 

of the electric field. 

 

2.6 Dielectrophoresis 
 
 Dielectrophoresis is an electrokinetic phenomenon that occurs when a charged or 

uncharged polarizable particle, is placed under the influence of a non-uniform electric 



 

47 
 

field11. To which extent a particle can become polarized depends entirely on the material 

the particle is made of, and is described by the material’s dielectric constant Ɛr (relative 

permittivity). Dielectrophoresis leads to a force that pushes the particle in a certain 

direction. A uniform electric field is simply an electric field with perfect symmetry where 

all field vectors are parallel and of the same magnitude, whereas a non-uniform field has 

a distortion. 

 It’s important to make the distinction that while a non-uniform field can have a 

distortion, it can still have a certain degree of symmetry. The corral trap is considered 

non-uniform but it is also axio-symmetric around the center of the corral. Low field density 

occurs in areas where field lines are far apart and high field density occurs in areas where 

the field lines are highly concentrated. In the case of the corral trap, high field density 

occurs at the rim of the corral and low field density occurs in the middle of the corral. 

 

 

Figure 2.23 – Red indicates areas of high field density, purple indicates areas of low 
field density. 

 

Dielectrophoresis was first observed in 1951 by Herbert A. Pohl12, 22. When the 

polarizability of the particle is greater than the solution, the non-uniform field exerts 

greater forces on the particle. When the solution is more polarizable than the particle, the 

non-uniform field exerts greater forces on the solution. Dielectrophoresis is not readily 
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understandable upon first exposure to the topic. The key to the dielectrophoretic effect is 

the gradient of the electric field. In Figure 2.24 below, the electrodes consist of a pin at 

the center and a ring as the outer radius. The field lines are more densely packed and 

closer together the closer a particle is to the center. This field line density concentrates 

polarization charges in the particle to areas of the particle where the field line density is 

greatest, hence the particle becomes polarized and can therefore be affected by the 

electric field. 

 

 

Figure 2.24 – Image of dielectrophoretic field lines acting on a particle. The system 
consists of a pin electrode in the center and a ring electrode as the outer radius with a 
particle in between the two. Field line density is greater in the left area of the particle 

and more spread out in the right area of the particle12. 
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The dielectrophoretic force can actually depend on the shape of the particle. The 

tobacco mosaic virus, also called TMV, is shaped like a rod and not a sphere. If the 

particle is aligned with the field the dielectrophoretic force can be written as20 

 

 

 

a is the radius of the rod and b is the half-length. Ɛp* and Ɛm* are the complex 

permittivities of the particle and the medium. Re is the real part of the ratio of the 

difference of the complex permittivities and the medium complex permittivity. The 

complex permittivities are defined as21 

 

 

 

Ɛ is the permittivity, σ is the conductivity, i is the imaginary unit, and ω is the AC 

frequency. Permittivity itself is defined as24 

 

Ɛ = Ɛr Ɛo 

 

Ɛr is relative permittivity and Ɛo is vacuum permittivity. Ɛr can be thought of as the 

dielectric constant of the substance or medium. 
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All the experiments performed for this thesis were done with spherical particles 

and not rods. The dielectrophoretic force which acts on a spherical and uniformly 

polarizable particle that is exposed to a non-uniform field of certain symmetry is described 

by this equation13. 

 

 

 

 Ɛm is the permittivity of the solution the particle is in, r is the radius of the particle, 

and ∇|Erms|2 is the gradient of the non-uniform electric field squared. If the electric field is 

uniform with no gradient, this factor becomes a zero vector; hence there is no 

dielectrophoresis in a uniform field. Permittivity is the ability of a substance to store 

electrical energy. The higher the permittivity of a substance, the more polarizable it is; 

therefore permittivity and polarizability are directly related. Since dielectrophoresis is 

directly proportional to r3, this implies smaller particles might be harder to trap. 

The factor of “Re[K(ω)]” is the equation below and is known as the real part of the 

Clausius-Mossotti factor14. 

 

 

 

 This factor introduces a few more parameters. Ɛp is the permittivity of the particle, 

σp is the conductivity of the particle, σm is the conductivity of the solution, and ω is the 

frequency of the electrical current. Conductivity is the ability of a substance to facilitate 
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electron flow. The frequency of a current is only relevant with regards to AC, alternating 

current; frequency would be considered zero in the case of DC. 

 The real part of the Clausius-Mossotti factor can be simplified in certain cases14. 

 

  

 

 In cases of low frequency for the current, the conductivities of the particle and 

solution become the predominant factor; while in cases of high frequency, the 

permittivities become more important. There are also more specific sub-cases. When “Ɛp 

is less than  Ɛm” AND “σp  is greater than σm”, Re[K(ω)] is positive at low frequency and 

negative at high frequency. When “Ɛp is greater than  Ɛm” AND “σp  is less than σm”, 

Re[K(ω)] is negative at low frequency and positive at high frequency. The frequency at 

which Re[K(ω)] is zero is known as the crossover frequency, hence the exact same 

particle can display BOTH positive dielectrophoresis and negative dielectrophoresis 

depending on the frequency. The result of positive dielectrophoresis is that the particle 

will move to areas of high field density. For negative dielectrophoresis, the particle will 

move to areas of low field density14. In the case of the corral trap, areas of high field 

density occur at the rim and areas of low field density occur in the middle. 

 Prior to calculating the dielectrophoretic field, the electric field squared must be 

calculated. Since crucial information can also be gleened from the electric field squared, 

the topic merits discussion. The electric field squared is a type of potential that is the 
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source for the dielectrophoretic force, just like the electrostatic potential is the source for 

the electrostatic field. 

The dielectrophoretic force itself is proportional to the gradient of the electric field 

squared. 

 

 

 

Hence the dielectrophoretic field derives from the square of the electric field, which 

can be used to visualize the dielectrophoretic forces and “energies” for the corral trap. 

 

 

Figure 2.25 – Top image, the dielectrophoretic potential depicted as a logarithmic of the 
electric field squared. Second image, equipotential lines. Third image, negative 

dielectrophoreis shown with logarithmic arrows. Bottom image, composite. 
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 Figure 2.25 in the previous page depicts all potentials, lines, and fields associated 

with dielectrophoresis. There are similarities to the potentials, lines, and fields due to 

electrostatics. The dielectrophoretic potential is depicted in the top image. There are 

areas of high potential, shown in red, and areas of low potential, shown in blue. 

Dielectrophoretic particles will move to one of these areas depending on whether the 

particle experiences positive or negative dielectrophoresis. The second image displays 

lines of equipotential. The third image displays the dielectrophoretic field itself, in this 

case, negative dielectrophoresis is shown. The bottom image is a composite and it can 

be seen that the dielectrophoretic field is always perpendicular to the lines of 

equipotential. 

According to these simulations, one of the differences between the electric field 

and the dielectrophoretic field is that a dielectrophoretic particle can also be trapped if it 

is located outside of the corral but within reasonable proximity to the rim. A particle might 

display a type of looping behavior while under dielectrophoresis. Although there is some 

degree of upward or downwar tilt, most of the forces within the corral are directionally 

parallel to both electrodes except at the rim or in the center. Similar to to the electric field 

force, the strongest dielectrophoretic force is experienced at or near the rim. 

In the case of electrostatics, when the electrostatic potential is plotted based on 

channel height, the result is a “U” shape potential. This was previously shown in Figure 

2.14. If the same calculation is done for the dielectrophoretic potential, the well looks 

different. Figure 2.26 on the next page shows this well, it is the logarithm of the electric 

field squared based on the channel height. 
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Figure 2.26 – The profiles of the dielectrophoretic potential based on channel height for 
the case of negative dielectrophoresis with an electrode separation distance of 10 μm. 

The center of the corral has the lowest potential. 
 

 The profile for a channel height of 0.75 μm is the most interesting, there is an 

absolute minimum at the center of the corral and an absolute maximum at both of the 

rims. There are also relative minimums outside of the corral. Outside of the corral or inside 

of the corral would be the preferred areas where a bead would move to in order to 

minimize its energy. The profile at a channel height of 5.00 μm starts to look more similar 

to the electrostatic potential profile, since there is only a minimum and no absolute 

maximums. Figure 2.27 on the next page shows the case for postivie dielectrophoresis. 

The lowest potential occurs at the rim, so this is the most likely location where a particle 
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will be found. For a particle to be located at the center of the corral would require a 

relatively large amount of energy. 

 

 

Figure 2.27 – The profiles of the dielectrophoretic potential based on channel height for 
the case of positive dielectrophoresis with an electrode separation distance of 10 μm. 

The rim of the corral has the lowest potential. 
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Figure 2.28 – Top two images, positive dielectrophoresis. Bead moves to the rim of the 
corral. Third image, electric field. Bottom image, electric field squared. 

  

 An illustration of the phenomenon itself is shown in Figure 2.28, for the case of 

positive dielectrophoresis. A bead arbitrarily located within the diameter of the corral will 

then move towards the rim of the corral when a voltage is applied. With regards to the 

electric field, the particle will move to areas of high field density (areas with compact 

electric field lines). With regards to the electric field squared, the particle will move to 

areas of high potential (orange)23.  
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Negative dielectrophoresis is shown in Figure 2.29 below. A bead will move 

towards the center of the corral. With regards to the electric field, this corresponds to 

areas of low field density (areas with no electric field lines). With regards to the electric 

field squared, this corresponds to areas of low potential (blue)23. 

 

 

 

 

Figure 2.29 – Top two images, negative dielectrophoresis. Bead moves to the center of 
the corral. Third image, electric field. Bottom image, electric field squared. 
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 The dielectrophoretic field can also be depicted in three dimensions, Figure 2.30 

below. Similar to how the electric field was previously displayed, only two key slices are 

shown since the field is axio-symmetric. 

 

 

Figure 2.30 – The negatve dielectrophoretic field shown with two perpendicular slices. 
 
 

 The main advantage of dielectrophoresis is that it does not degrade the electrodes 

to the extent that electrophoresis does. Dielectrophoresis can have manly useful 

applications particularly in the field of microfluidic system. Dielectrophoresis can be used 

for separating and sorting particles25-28. It can also be used for trapping particles29-34, 

nanotube assembly35, purification36, and even characterization37. 
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2.7 Optical Trapping of Rayleigh Particles is Similar to Diectrophoresis 

 In Chapter 1.3, optical tweezers was discussed but it entailed only one type of 

particle, namely Mie particles. Mie particles are much larger than the wavelength of light 

being used, and trapping is mainly due to light refraction within the particle and the 

transfer of momentum from light to the particle. The other regime is known as Rayleigh 

particles, the particles are much smaller than the wavelength of light being used. Because 

the particle size is smaller than the wavelength of light being used, light refraction inside 

the particle is considered negligible. Instead, small objects develop an electric dipole 

moment in response to the light’s electric field. Since a polarized particle will move to 

areas of high electric field density, namely the laser’s focus, the optical trapping of 

Rayleigh particles is similar to positive dielectrophoresis. The force due to the gradient of 

the laser is shown below17. 

 

 

 

Similar to dielectrophoresis, the laser’s gradient force exerted on the particle is 

dependent on the gradient of the electric field squared, ▽𝐸2. In the case of normal 

dielectrophoresis, the force is also  dependent on the permittivities and conductivities of 

the particle and the solution, as well as the AC frequency. In the case of optical trapping, 

it is dependent on the index of refraction of the particle, nb, and the index of refraction of 

the medium, m. It is also dependent on the radius of the particle, r. Smaller particles will 

be harder to trap. In the case of normal dielectrophoresis, both positive and negative 
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dielectrohoresis can be observed simply by changing the AC frequency. With regards to 

optical trapping of Rayleigh particles, the gradient force is always directed towards the 

highest field intensity (laser focus) unless the index of refraction of the particle or the 

medium are adjusted accordingly. The index of refraction of the medium could be 

changed if a solution gradient was introduced. Because different shaped laser profiles 

can have various electric field densities, small particles can be sorted and manipulated 

with lasers using dielectrophoretic principles since different electric field geometries could 

be created with different laser profiles. 

 

 

Figure 2.31 – Optical trapping of Rayleigh particles. 
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2.8 Electro-Osmosis 

 Electrophoresis and dielectrophoresis are two forces which can affect the trapping 

of particles. Another significant force which can affect the trapping of particles is electro-

osmosis. Electro-osmosis is the movement of liquid relative to a stationary charged 

surface induced by an applied electric field18. Since electro-osmosis involves the 

movement of liquid, the equations governing the behavior of liquids must be considered 

first. A fluid is defined as a substance that is a continuum and not made up of discrete 

particles. Both liquids and gases can be treated as fluids. The equations that describe the 

behavior of fluids in Euclidean space are known as the Navier-Stokes equations19. They 

are analogous to Newton’s second law of motion when applied to fluids. The Navier-

Stokes equations can be used to model numerous phenomenon such as weather, ocean 

currents, water flow in a pipe, air flow around a wing, etc., and they are widely used in 

computer animation. The equations take into account velocity, pressure, density, and 

viscosity of the fluid. Calculations for fluid behavior can be simplified if certain 

assumptions are made. If a fluid is treated as incompressible, then density is constant 

and changes in density would be zero. The flow of a non-viscous fluid does not slow down 

due to friction, so the viscosity would be zero. If a fluid is treated as a Newtonian fluid, 

viscosity remains constant. As a general rule to model reality, fluid density and fluid 

viscosity are kept constant. If density and viscosity are constant, the equations can be 

solved for velocity and pressure. 
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Shown below are the Navier-Stokes equations for a fluid with constant density and 

constant viscosity19. 

 

 

  

There are quite a few variables so here is what they all represent. 

 

x, y, z – fluid coordinates along its respective axis in three dimensions 

 u, v, w – velocity of the fluid along its respective axis in three dimensions 

 ρ – density of the fluid 

 p – pressure of the fluid 

 μ – viscosity of the fluid 

 fx, fy, fz – an arbitrary force applied to the fluid along its respective axis 

 

 To make the equations solvable, the following condition must also be met. 
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If the arbitrary force is gravity, the Navier-Stokes equations simplify as folows: 

 

 

 

 In concise vector form, the Navier-Stokes equations can be summarized as such. 

 

  

 

 The Navier-Stokes equations due to electro-osmosis can then be derived, shown 

below18. 

 

 

 

The first term on the right side of the equation is the force due to electro-osmosis, 

everything else is the same as in the general form of the Navier-Stokes equations. There 

are two ρ’s in the equation. The one on the left side is the density of the fluid, the one on 
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the right side is the equilibrium charge density of a charged surface of the system. -▽Φ 

is the electric field. Like electrophoresis and dielectrophoresis, electro-osmosis is also 

dependent on the geometry of the electric field. The electro-osmotic velocity field of the 

fluid in a corral trap system is shown in Figure 2.32. Results were obtained with COMSOL. 

The slight asymmetry of the velocity gradient is due to COMSOL requiring a fluid inlet and 

fluid outlet for its calculations. 

 

 

Figure 2.32 – Top image, velocity gradient due to electro-osmosis of the fluid. Middle 
image, electro-osmotic velocity field depicted with logarithmic arrows. Bottom image, 

composite. 
 
 
 There is a circular looping behavior that occurs at the rims of the corral. With 

regards to the fluid within the corral’s diameter, the general direction of fluid flow is 

upward; with fluid near the bottom electrode flowing inward towards the center and fluid 

near the top electrode flowing outward towards the rims. 
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 In summary there are three main forces that can affect corral trapping to varying 

degrees; electrophoresis, dielectrophoresis, and electro-osmosis. These three forces 

give rise to their appropriate fields; the electric field, the dielectrophoretic field, and the 

electro-osmotic velocity field. The degree to which these forces can affect trapping are 

likely influenced by experimental conditions. All three fields are shown in Figure 2.33 

below. 

 

 

Figure 2.33 – Summary of all fields that can affect corral trapping. Top image, electric 
field. Middle image, dielectrophoretic field. Bottom image, electro-osmotic velocity field. 

All arrows are logarithmic. 
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Chapter 3 

An Electrokinetic Survey 
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3.1 Infinite Possibilities 
  

The following is an overview of methods that have been used to trap or manipulate 

particles by electrokinetic forces, and are therefore relevant for the work presented in this 

thesis. All manner of electrokinetic behavior is possible depending on the electrode 

patterns, electrode shapes, electrode designs, conductive system geometry, non-

conductive system geometry, solution ion concentration, inherent nature of the particle 

itself, solution direction and flow, size and volume of system, implementation of light and 

optics, etc. The research possibilities of field geometries and their interactions with 

various parameters are endless. This chapter is a survey of some methods that have 

been explored through experimentation from other researchers. 

 

 

 

 

 

 

 

 

 

 

 

  



 

71 
 

3.2 Electrodeless Dielectrophoresis of Single- and Double-Stranded DNA1 

 

 

Figure 3.1 – Top left, the geometry of the electric field as it flows through a non-
conductive physical restriction. Top right, the constriction array etched out of quartz. 

Bottom row, images of trapped DNA. They are visualized with epifluorescence1. 
 

The title of the article is somewhat misleading. The mechanism used to trap DNA 

is not an electrode, but rather a non-conductive physical restriction. However, electrodes 

are still required to generate the electric field itself. The physical restrictions distort the 

field and create a gradient. The highest field density occurs at the restriction, therefore 

positive dielectrophoresis could be used to trap particles at the restrictions. The 

constriction array is etched out of quartz. The yellow arrows in the top right image indicate 

the direction of the applied electric field. The advantage of this method is that trapping 

can be achieved at low AC frequencies. If metallic trapping structures were used, which 

would function as electrodes, electrolysis would occur and degrade the electrodes. The 

bottom row of images shows the trapping trend, left to right, of higher frequency to a lower 

frequency and of short DNA strands to longer DNA strands. 
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3.3 Evaluation of the Potential for Using Dielectrophoresis to Separate Minerals2 

 

 

Figure 3.2 – Left image, schematic of system. Right image, dielectrophoretic force 
experienced by particle based on the particle’s size2. 

 

 This is not a separation or a type of trapping, but rather to test if dielectrophoresis 

could be used to potentially separate minerals. Chalcopyrite particles and quartz particles 

were tested. The schematic indicates that one electrode is a flat plate and the other is a 

thin pin. The thin pin would experience the highest field density due to its smaller volume 

relative to the flat plate electrode. A mineral particle is suspended between the two 

electrodes on a flexible glass fiber. A dielectrophoretic particle will move towards one of 

the two electrodes. The dielectrophoretic force experienced by the particle based on the 

size of the particle was measured. The larger the particle size, the greater the 

dielectrophoretic force it experiences. Under identical conditions, chalcopyrite always 

underwent positive dielectrophoresis while quartz always underwent negative 

dielectrophoresis. This indicates dielectrophoretic separation of substances is possible 

based on the nature of the substance itself. 
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3.4 Microfluidic System for Dielectrophoretic Separation Based on a Trapezoidal  

Electrode Array3 

 

 

Figure 3.3 – Top left, system schematic. Gray areas are metal. Right image, electrical 
schematic indicating trapezoids alternate between electrodes. Electrodes are also co-

planar. Bottom left, separation of beads based on their properties as well as size3. 
 

 The metal surfaces of this system are trapezoidal in shape. The electrical 

schematic shows that the trapezoids alternate between electrodes. Since the shape of 

the electrodes are not truly trapezoidal, the shape of the trapezoid is imposed by the use 

of a microfluidic channel. With a trapezoid, one side has shorter length and the opposing 

side has longer length. The system has both metallic trapezoids and non-metallic 

trapezoids. There would be greater field density at the shorter length of the non-metallic 

trapezoid and lower field density at the longer length of the non-metallic trapezoid. 

Particles will either move towards the longer length of the non-metallic trapezoid or the 

shorter length of the non-metallic trapezoid based on their inherent properties. 
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3.5 Dielectrophoresis: An Assessment of its Potential to aid the Research and  

Practice of Drug Discovery and Delivery4 

 

 

Figure 3.4 – Top image, dielectrophoretic effects using a pin and ring electrode system. 
Bottom images, yeast cells exhibiting dielectrophoretic behavior under a quadrupole 

electrode system. A quadrupole electrode system requires two voltage sources4. 
 

 For the top image, both control and test cells are randomly distributed between the 

pin and ring electrodes at time zero. After 20 minutes of incubation with an apoptosis-

inducing drug, all cells move away from the pin and move towards the ring. Apoptosis is 

cell death, so the cell’s normal functions have ceased. The apoptosis-inducing drug is 

capable of altering the dielectrophoretic properties of cells. With an increase in AC 

frequency, only the control cells are attracted to the pin electrode and only the test cells 

become randomly distributed again. 
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3.6 Dielectrophoretic Filter for Separation and Recovery of Biological Cells in  

Water5 

 

 

Figure 3.5 – Top left, voltage is off. Bottom image, voltage is on. Right images, the 
trapping of yeast cells5. 

 

 The principle for a dielectrophoretic filter involves the use of dielectric glass beads 

that are located between the top and bottom electrode. While the voltage is off, biological 

cells are capable of flowing through the gaps of the beads. Once voltage is applied, 

biological cells become attracted to the beads. This principle could be used simply for 

general filtration and purification of water, which is always useful; but the main focus is 

the recovery of biological cells. Biological cells are recovered by allowing the beads to 

flow out of the channel. 
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3.7 Continuous Cell from Cell Separation by Traveling Wave Dielectrophoresis6 
 
 

 
 
 

Figure 3.6 – Left image, electrical schematic. Right image, snapshots of the traveling 
wave as it goes from electrode to electrode6. 

 

 The system is made up of parallel, rectangular strips of metal. The traveling wave 

dielectrophoretic force is perpendicular to solution flow direction. A traveling wave is 

attained by phase shifting the AC frequency. A phase shift describes the degree to which 

two alternating quantities reach their maximum, minimum, or zero values; the schematic 

indicates there are four voltage sources. If two identical AC frequencies reach their 

maximum, minimum, and zero values simultaneously; they are both in phase. A 90o phase 

shift means that one frequency will reach its maximum 90o after the first frequency. The 

traveling wave perpetuates through the electrodes and simultaneously exerts 

dielectrophoretic forces on particles. The left image shows that a gray particle unaffected 

by dielectrophoresis maintains its original trajectory, while a red particle that is affected 

by dielectrophoresis moves toward a different trajectory, thereby enabling separation. 
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3.8 Dynamic Holographic Optical Tweezers7 

 

 

Figure 3.7 – Left image, schematic for dynamic holographic optical tweezers. Right 
images, silica spheres manipulated with dynamic holographic optical tweezers7. 

 

 A dynamic holographic optical tweezer utilizes the same principle as a 

conventional optical tweezer. This system incorporates a computer-designed diffractive 

optical element which splits a single laser beam into several separate beams. Images 

show the beads initially configured in a star pattern, the very same beads are then 

configured into different patterns. Such a system uses custom programming to control the 

way the single laser beam is split. There is likely to be a trade-off with how many separate 

beams the diffractive element can make while still being able to effectively trap particles 

with each beam. The spheres are not simply confined and stationary, they are actually 

moved around. 
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3.9 Fabrication Of Linear Colloidal Structures For Microfluidic Applications8 

 

 

Figure 3.8 – Top image, linear polymerization of silica spheres. Bottom images, the 
linear polymerized spheres used a type of valve8. 

 

 The top image shows how silica spheres are polymerized with an optical trap. The 

mechanism is interesting in that aligning the spheres linearly is done with the optical trap 

and polymerizing the spheres is also done with the same said optical trap. The linear 

chain of polymerized silica spheres is then also maneuvered into a microfluidic channel 

with the optical trap and also held in place with the optical trap. Such a setup requires fine 

computer-controlled motors and mechanisms to maneuver the optical trap around along 

with the linear structures. The bottom images show how the linear structure can be used 

as a type of valve. Opening and closing the valve is done with solution flow. 
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3.10 Microfluidic Control Using Colloidal Devices9 

 

 

Figure 3.9 – Left image, a gear pump. When one gear turns, the other turns as well. 
Right image, a peristaltic pump. The single tracer bead gradually advances to the left9. 

 

 These two designs are pumps that induce the movement of beads. The images on 

the left show a gear pump. The images on the left illustrate lobe movement, the top pair 

of beads rotate clockwise which forces the bottom pair of beads to rotate counter-

clockwise; they essentially function as gears. The motion of the gears results in pushing 

a smaller tracer bead along the channel. The images on the right show the undulating 

snake-like motion of a string of beads. The result is similar to the gear pump, a small 

tracer bead is pushed further along the channel. The system on the left utilizes four optical 

traps to manipulate the beads. The system on the right uses six optical traps. 
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3.11 Structure of Optical Vortices13 

 

 

Figure 3.10 – This experiment shows the result of imposing a phase shift on an optical 
tweezer. Instead of being trapped in the center, a particle will rotate in a circular 

pattern12,13. 
 
 

 In this experiment, an optical trap is modified. Trapping is still the result, but this 

time a beam of light is created that has a helical wavefront. This is achieved by utilizing a 

phase mask. Beams with a helical wavefront focus to rings instead of points. In the left 

image of Figure 3.10 above, the helical mode is achieved with a spatial light modulator 

(SLM). The middle image is the optical vortex. The right image is a time-lapse composite 

of a single colloidal sphere traveling around the optical vortex. 

 The pitch of the helical wavefront is the degree of the helice’s steepness or 

shallowness. The radius of the optical vortex is proportional to its pitch; the greater the 

pitch, the greater the optical radius. Since the laser wavefront is dynamically controlled 

by a spatial light modulator, dynamically changing the wavefront also dynamically 

changes its electric field. This could potentially lead to other types of dielectrophoretic 

manipulation with lasers.  
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3.12 Microscopic Particle Manipulation via Optoelectronic Devices10 

 

 

Figure 3.11 – Left image, schematic for optically induced dielectrophoresis. Right 
image, a dielectrophoretic light pattern is moved up and down and displaces beads10. 

 

 The system consists of two electrodes, one on top of the other. The new element 

is a photoconductive layer that covers the entire surface of the bottom electrode, indicated 

with purple in the left image. It is non-conductive, the layer becomes conductive when 

light is shined upon it. If the entire surface is illuminated, the entire surface becomes 

conductive. But instead of illuminating the entire surface, it can be illuminated with specific 

light patterns such as small circles, which essentially function similar to corral traps. With 

this technique, designing patterns on the metal layer isn’t even necessary since patterns 

could easily be created with light instead. However, this technique could conflict with 

imaging methods that involve fluorescence. Not only can patterns be created with 

programmable convenience, patterns can be changed during the experiment itself. 
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3.13 Optically-Induced Dielectrophoretic Technology for Particles Manipulation 

and Separation11 

 
 

 
Figure 3.12 – Left image, physical manipulation of a bead using optically-induced 
dielectrophoresis. Right image, concentrating beads by diminishing the size of the 

ring11. 
 
 
 The examples above are functionally ring-shaped electrodes, which do not behave 

exactly the same way as a corral. With a corral trap, trapping is attained with negative 

dielectrophoresis due to the metal void of the corral trap. With a ring electrode, trapping 

is done with positive dielectrophoresis. Using an actual metal ring electrode would require 

wiring that would not be exposed to the solution. One advantage of optically-induced 

dielectrophoresis is that this wiring would not be necessary. The left images show a bead 

being moved up and down. It is the light pattern itself that is moved up and down, while 

the bead stays confined inside it. The right images show a concentration technique. The 

diameter of the ring electrode is initially very large and is gradually diminished over time. 

The result is that the beads become more concentrated. 
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3.14 Fast AC Electro-Osmotic Micropumps with Nonplanar Electrodes15 

 

 

Figure 3.13 – Types of fluid flow created by different electrode configurations15. 

 

 While this experiment is not specifically about trapping, it does deal with creating 

solution flow in microfluidic systems. Corral trapping and any other type of bead 

manipulation would be implemented in microfluidic systems and micropumps would 

provide a means to move beads to the desired corral traps. In the top left image of Figure 

3.13, the electrodes are symmetric and does not create an overall unidirectional flow. In 

the top right image with asymmetric electrodes, there are minor vortices but this 

configuration does create unidirectional flow of solution. In the bottom image, a step in 

the electrode is created which results in higher fluid flow velocities. This step could easily 

be created with a two-step metal deposition process and appropriate masking for each 

step. An electrode configuration could potentially be devised to trap particles solely using 

electro-osmosis. The particle would not have to be charged or polarized. 
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3.15 Dielectrophoresis Switching with Vertical Sidewall Electrodes for 

Microfluidic Flow Cytometry16 

 

 

Figure 3.14 – The six dark rectangular shapes are electrodes. Beads flowing in solution 
are circled in white. Solution flow direction is left to right. Left images, if the bottom three 
electrodes are set to 10 V and the top three electrodes are set to 0 V, the beads will exit 
out of the top channel.  Middle images, bottom three electrodes are set to 10 V and the 
top three electrodes are set to 4 V, the beads will exit out of the second channel from 

the top. Right images, all electrodes are set to 10 V, the beads will exit out of the middle 
channel. 

 

 Both the top and bottom sets of electrodes have three more electrodes to the left 

of the visible electrodes, so they are not seen in the images. The top and bottom sets of 

electrodes are on two separate circuits. The top set of electrodes create a 

dielectrophoretic field towards the bottom set of electrodes, similarly the bottom set of 

electrodes create a dielectrophoretic field toward the top set electrodes. By varying the 

voltages the beads can be maintained at a certain equilibrium position along the channel 

pathway. If the top set of electrodes is set at a higher voltage than the bottom set of 

electrodes, the beads will be closer to the bottom set of electrodes. If both sets of 

electrodes have the same voltage magnitude, the bead will be exactly midway between 

the two sets of electrodes. 
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4.1 Materials 

 The main materials used to fabricate the electrodes are standard 1” x 3” 

microscope slides, 1” x 1” microscope coverslips, 10.5 mm x 22 mm microscope 

coverslips, acetone, methanol, isopropanol, ultra-pure water (water that has a resistivity 

of 18.2 MΩ·cm), S1813 (positive photoresist), SU8 2002 (negative photoresist), MF-321 

(positive photoresist developer), SU8 Developer (negative photoresist developer), PG 

Remover (photoresist remover), professional mask (designed with a CAD program), 

tungsten filament, and Nichrome (60% Ni, 16% Cr, 24% Fe alloy) metal wire and Au/Pd 

(60%:40%) metal wire for deposition of the metal layers. All lithography chemicals are 

from Microchem (www.microchem.com). All filaments and metal wires are from Ted Pella 

(www.tedpella.com). The professional mask was first designed with Draftsight 

(www.3ds.com), which is a CAD program that exists in both a free version and a 

professional version; the free version is more than adequate for mask design. The design 

was then fabricated into a mask by Photo Sciences, Inc (www.photo-sciences.com). The 

required instrumentation includes a sonicator, spin-coater, oven, lithography UV aligner, 

ultra-pure water filtration system, and metal deposition system. 

 
 
4.2 Glass Cleaning Process 

 The glass cleaning process involves a series of sonications of the glass in various 

organic solvents1. Sonication is simply the application of sound energy and is achieved 

with a sonicator bath. The slides are placed on a mold, which is then submerged in a 

beaker of organic solvent for sonication. The mold is used to orient the slides vertically 

and ensures that the largest possible surface area of the slide is exposed to solvent. The 
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sonication instrumentation used for these experiments has only one setting, “on”. The 

process involves three solvents. 

 

 1) Acetone for 15 minutes at a temperature of 35oC 

 2) Methanol for 15 minutes at a temperature of 35oC 

 3) Isopropanol for 15 minutes at a temperature of 35oC 

 

 The cleaning process is done to remove any type of residual substances left 

behind by the manufacturing of the glass slides or coverslips, as well as remove incident 

particulate matter or dust. The process ensures a relatively clean glass surface with which 

further lithography and metal deposition can be performed. 

 

 

Figure 4.1 – During sonication, glass slides are oriented to be as vertical as possible by 
the use of a mold to ensure maximum surface exposure to cleaning solvents. 

  

After sonication with isopropanol is finished, the slides are immediately dried with 

compressed and filtered N2 gas. Each slide is kept submerged in the isopropanol until 
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drying is performed. Only the surface where metal is intended to be deposited on is dried 

with N2 gas, this is of course the top surface. The idea is to blast the top surface with 

nitrogen gas and to remove the isopropanol as quickly as possible to prevent the 

isopropanol from drying out on the surface. If the isopropanol is allowed to evaporate, this 

will leave behind residual material. Soluble substances remain dissolved in the solvent 

and gradually become more concentrated as the amount of solvent decreases; this 

results in areas of the glass surface contaminated with accumulated residual material 

when the solvent fully evaporates. The size of this residual material could potentially be 

orders of magnitude larger than the fabrication scale of the electrodes or of a microfluidic 

flowcell. The bottom surface is not directly dried with nitrogen gas. Drying only the top 

surface with nitrogen gas creates enough resulting air currents that incidentally reach the 

bottom surface and are also adequate enough to dry the bottom surface. The purpose of 

keeping the slides submerged in solvent until the last possible moment is to ensure 

minimal exposure to atmosphere and dust particles. 

 

 

Figure 4.2 – Nitrogen gas, compressed through a filter, is used for many of the cleaning 
steps and intermediate steps to remove dust or particulate matter. 
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Nitrogen gas used directly from compressed N2 cylinders often contain small 

amounts of oil or other lubricants; and as a precautionary measure, a filter is attached at 

the end of the nitrogen gas outlet. Since only the top surface of the glass material is dried 

directly, residual material can often be observed to form on the bottom surface of the 

glass substrate as the isopropanol evaporates. This is generally not a concern, since only 

the top surface of the glass substrate is where metal deposition and lithography will be 

performed. 

 

4.3 Application of HMDS Primer 

 After cleaning, the glass is exposed to HMDS (hexamethyldisilazane). HMDS is a 

chemical primer used before spincoating that renders the substrate hydrophobic and 

functions as an adhesion promoter for photoresist2. The glass substrates and an open 

bottle of liquid HMDS are both enclosed within a confined space by using a plastic 

container. The plastic container is simply turned upside down. Liquid HMDS vaporizes 

and bonds to the surface of the glass. This process is done for 20 minutes and performed 

in the hood. This results in a single molecular layer of HMDS that has bonded to the glass, 

which enables the photoresist, applied later, to better adhere to the surface. The priming 

setup is shown in figure 4.3 on the following page. 
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Figure 4.3 – Setup for HMDS exposure to the glass substrates. This is performed in a 
chemical hood. 

 

4.4 Application Of Photoresist 

 The general purpose of photolithography is to create a desired pattern of a thin 

polymer film onto a substrate surface. These organic polymers are known as photoresists 

and can polymerize or break apart when exposed to heat or UV light. The first known 

documented use of photoresist was during the 1820s3. A man by the name of Nicephore 

Niepce invented the first photoresist which utilized a type of asphalt. Interestingly enough, 

he is also credited with being the inventor of photography. The asphalt that Niepce used 

was coated on glass and became less soluble when it was exposed to light. This 

technique enabled its use primarily as a printing plate. The development of modern 

photolithography occurred in the 1950s when Jay W. Lathrop and James R. Nall were 

tasked by the U. S. military to find a way to reduce the size of electronic circuits inside the 

limited space of a proximity fuse4. A proximity fuse is a fuse that denotes an explosive 

when the distance to a target becomes smaller than a predetermined value. Lathrop and 
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Nall were able to fabricate a miniaturized integrated circuit using photolithography. 

Photolithography would then lead to the development of microchips. 

Photoresists are typically spin-coated onto a substrate, such as glass or silicon. 

The faster the photoresist is spin-coated, the thinner the layer it will be. Different 

formulations of photoresist will give different thicknesses depending on its composition 

and the rotational speed of the spin-coater. The desired thickness of the photoresist also 

depends on design goals. Prior to spin-coating, the glass is cleaned with compressed 

nitrogen gas to remove any dust particles that may be on the surface. The glass is held 

in place on the spin-coater by applying a vacuum to the bottom surface. Immediately after 

spin-coating, photoresists are baked at elevated temperatures to remove any undesired 

solvent. 

 

 

Figure 4.4 – Spincoating of photoresist. Blue is glass, green is photoresist. HMDS layer 
between the glass and the photoresist is not shown. The result is a flat, even layer of 

photoresist. 
 

Masks are then used to cover areas of the photoresist to allow patterning. There 

are two types of photoresist, positive and negative. Negative photoresists create patterns 
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that are complementary to the mask pattern used, while positive photoresists yield 

patterns like the mask pattern used. This must obviously be taken into consideration when 

designing a mask. A common negative photoresist is SU8, which is often used to create 

permaent structures, such as the walls of a microfluidic channel. Positive photoresists are 

not intended to be permanent as they are often used for further patterning during 

processes such as metal deposition. It is important to work with photoresist only under 

yellow light conditions to prevent polymerization or to prevent depolymerization. 

The higher the rotational speed, the thinner the photoresist layer will be. Most spin-

coaters can be programmed allowing for different spin speeds and spin duration; varying 

acceleration speeds and deceleration speeds can be programmed and used in multi-step 

processes of acceleration and deceleration. The sequence for spincoating S1813 is the 

following: 

 

1) Duration: 10 seconds, Speed: 500 rpm, Ramp: 500 

2) Duration: 30 seconds, Speed: 4000 rpm, Ramp: 1000 

3) Duration: 0 seconds, Speed: 0 rpm, Ramp: 500 

 

The sequence for spincoating SU8 2002 is the following: 

 

1) Duration: 10 seconds, Speed: 500 rpm, Ramp: 136 

2) Duration: 30 seconds, Speed: 3000 rpm, Ramp: 272 
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The figures below show direct manufacturer data that relate the spin speed to the 

final thickness of the photoresist layer, and again demonstrates that the faster the spin 

speed, the thinner the layer will be and vice-versa. 

 

 

Figure 4.5 – Manufacturer data relating photoresist thickness to spin speed of various 
S1800 series formulations. If S1813 is spincoated at 4,000 rpm; the resulting 

photoresist layer will be 13,000 angstroms thick (1.3 μm)5. 
 
 
 

 

Figure 4.6 – Manufacturer data relating photoresist thickness to spin speed of SU8 2000 
series. If SU8 2002 is spincoated at 3000 rpm, a photoresist layer of 2 μm will be 

obtained6. 
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The main difference between positive and negative photoresist is that positive 

photoresist must be baked at an elevated temperature, 115 oC, for 10 minutes. This is to 

remove any unwanted solvent as well as to actually polymerize the photoresist. Negative 

photoresist is baked at 95 oC for two minutes, in order to remove unwanted solvent but 

not to polymerize the photoresist. 

 

4.5 UV Exposure 

Photoresist is then properly masked for corral traps and exposed to UV light for 5 

seconds using a professional UV aligner. Numerous photoresists were spin-coated on 

glass substrates; the first sample was exposed for 2 seconds, the second sample was 

exposed for 3 seconds, the third sample was exposed for 4 seconds, up to 15 seconds. 

An exposure time of 5 seconds gave the best results as verified by visual inspection under 

a microscope. 

Positive photoresist protected by the mask stays polymerized, while photoresist 

not protected by the mask breaks down. After UV exposure, the glass substrate is then 

submerged in developer chemical, MF-321. The substrates are manually agitated with 

tweezers while they are submerged, which aids in photoresist removal. Once all of the 

de-polymerized photoresist is removed, the substrate is left in the developer for an 

additional 45 seconds. The substrate is then immediately submerged in ultra-pure water 

for two minutes. Ultra-pure water is defined as water having a resistance value of 18.2 

MΩ·cm, and can be obtained from any type of ultra-pure water filtration system. While the 

use of S1813 in this thesis is straightforward, it can also be used as a sacrificial layer to 
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create more complicated structures7. The general process, and differences, between the 

two types of photoresists are illustrated below. 

 
 

 
 

Figure 4.7 – The main differences between positive and negative photoresist. Green 
areas are photoresist and gray areas are glass. HMDS layer between glass and 

photoresist not shown. 
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 Traditional lithography is done with a photomask, which is a thin sheet of lime-

glass that is patterned with chromium metal, which is the method used in this thesis. 

Photomasks have advanced to the point where they are conformable8. There are 

photomasks that actually use fluid, instead of chromium, to absorb light9. Phase-shift 

photomasks utilize constructive and destructive light interference to fabricate structures 

on the nano-scale10. Although significantly advanced, the fabrication of masks is still 

somewhat costly and attempts have been made with using microfiche as a photomask11. 

For micro-scale patterns, a professional UV aligner is required. A normal light 

source will emit photons with uniform density in all directions. When placed next to a flat 

surface, such as a layer of photoresist on a glass substrate, the area directly beneath the 

light source will have the greatest photon density and areas further away will have lesser 

photon density; resulting in uneven UV exposure of the photoresist. The main advantage 

of a professional UV aligner is that it produces straight, collimated light that illuminates an 

area evenly; therefore all areas of the photoresist have equal UV exposure. Non-

collimated light will also result in distorted patterns not intended by the mask. 
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Figure 4.8 – Photon density of a flat surface based on its location relative to a 
normal light source. The result is uneven light exposure. 

 

 

 

Figure 4.9 – Even light exposure on a flat surface due to a collimated light 
source. 
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4.6 Metal Deposition 

After the photoresist has been exposed and developed, the next step is to deposit 

two layers of metal over the photoresist: 7.5 nm of nichrome first which acts as a wetting 

layer to promote adhesion, followed by 7.5 nm of Au/Pd as a cover layer. Metals can be 

purchased as pellets or wires and the deposition can be done with either a cup or filament. 

If a filament is used, the wire can be bent in the shape of a “u” and simply hung on the 

filament. If a cup is used, the common form is a pellet which is placed inside the cup. 

 

 
Figure 4.10 – Schematic for metal deposition. Metal deposition can be done with a cup 

or v-shaped filament. 
 

 If the deposition instrumentation does not provide a way to determine the thickness 

of metal being deposited, a simple mathematical relation can be used to calculate the 

amount of metal needed for evaporation1. 

 

 m = ρ t · (4 π d2) 

  

m = the mass of metal required in grams 

 t = the desired thickness of the metal layer to be deposited in centimeters 
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 ρ = the density of the metal being deposited in grams/centimeters3 

 d = the distance from the metal source to the glass substrate in centimeters 

 

 If the desired thickness of a nichrome metal layer is 7.5 nm (7.5 x 10-7 cm) and the 

distance from the nichrome to the glass substrate is 10 cm, the required amount of 

nichrome metal to be evaporated would be 0.00792 grams using a density of 8.4 g/cm3. 

  

 m = (8.4 g/cm3) (7.5 x 10-7 cm) (4 π (10 cm)2) 

 m = 0.00792 grams 

  

The assumption of this calculation is that a filament is used and not a cup. When 

a filament is used, the metal wire first melts and becomes a roughly spherical drop of 

molten metal that hangs on the bottom of the “V” of the filament. As more voltage is put 

into the filament, the molten metal vaporizes in all directions. When a cup is used, most 

of the vaporization is directed upward; so the equation would have to be altered by a 

certain factor to take this into account. 

If the radius of the wire is known, the wire length to cut can be calculated by using 

dimensional analysis and cancelling out units. 

  

wire length =      m     m 
  ρ π r2 

  

m = mass of metal from previous calculation in grams 

 ρ = density of metal in grams/centimeter3 
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 r = radius of wire in centimeters 

 

 Using the values from the previous example, this would mean that the length of 

wire to cut is 1.9 cm if the radius of the wire is 0.0127 cm. 

 

wire length =                0.00792 g                 g                      
            (8.4 g/cm3) (π) (0.0127 cm)2 

 

 wire length = 1.9 cm 

 

The result of the deposition process is illustrated on the next page in Figure 4.12. 

Although two layers of metal are deposited, only one layer is shown for the sake of 

simplicity. Once the two layers of metal are deposited, the photoresist can be removed 

with PG Remover or acetone. The glass substrate is submerged in PG remover (or 

acetone) and then sonicated for 2 minutes. It is crucial to orient the substrate horizontally, 

not vertically, during this first sonication with the photoresist side facing up and exposed 

to photoresist remover. Visual inspection of sonication results under a microscope 

indicate that a horizontal orientation results in cleaner photoresist removal. This would 

imply that the motion of sonication is horizontal. 

 

 

Figure 4.11 – Glass slide submerged in photoresist remover and oriented 
horizontally during sonication. 
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The substrate is then sonicated in isopropanol for 8 minutes while using the mold 

to orient the substrate vertically. Lastly, the substrates are dried with nitrogen gas. Instead 

of lithography, circular corral traps can also be made using spherical microscopic glass 

beads. The beads are deposited directly on the glass substrate. After metal deposition, 

the beads are removed by sonication. The main disadvantage to using beads is that there 

is no control over where the corral traps will appear, the placing of corral traps will be 

random. 

 

  

Figure 4.12 – Metal deposition process for making corral traps with positive photoresist 
or spherical microscopic glass beads1. 

 

 Throughout the entire process, exposure to dust or other particles in the air are 

kept at a minimum. Ideally, an actual clean room should be used for the entire process. 

A clean room simply reduces the number of ambient particles in the air through the use 

of filters and controlled air flow12. Unfortunately, the main UWM campus does not have 
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such a facility. However, the Water Campus of UWM has clean room facilities where UV 

exposure was performed. 

 

 

Figure 4.13 – Various stages of lithography. The left image is the mask itself, namely 
chromium metal patterned onto soda-lime glass. The middle image is the photoresist 
after it has been baked, masked, exposed to UV light, and submerged in developer 
chemical. The right image is the resulting metal pattern after metal deposition and 

photoresist removal; the dark area is the metal layer, the light area is glass. 
  

Since the top electrode has no metal patterns on it, the fabrication is relatively 

easier; the slides only need to be cleaned and then metal deposition is performed. After 

metal deposition for the top electrode, the electrodes are placed in isopropanol and 

sonicated for 10 minutes. The mold is used to orient the electrodes vertically. After 

sonication the electrodes are dried with nitrogen gas. As a side note, patterns can also 

be made on the top electrode if desired simply by following the same procedure for the 

bottom electrode. 

 

4.7 Putting Spacers On The Bottom Electrode 

 The final step is to create spacers on the bottom electrode which will create a 

consistent, well-defined gap between the bottom and top electrodes. This is done with 
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negative photoresist, SU8 2002. There are many formulations of SU8. For these 

experiments, SU8 is simply employed as a spacer to prevent the electrodes from coming 

into contact with each other; but its use can be highly sophisticated and is capable of 

fabricated multi-layer structures and channels13. The thermal and mechanical properties 

of SU8, such as tensile strength, glass-transition behavior, and stability, have been 

characterized based on the influence of processing conditions14. 

The SU8 2002 is spin-coated on the bottom electrode. Parameters for spin-coating 

SU8 2002 are repeated here: 

 

1) Duration: 10 seconds, Speed: 500 rpm, Ramp: 136 

2) Duration: 30 seconds, Speed: 3000 rpm, Ramp: 272 

 

After spin-coating, the electrode is placed in the oven at 95 oC for 2 minutes. Since 

the spacers are “relatively” large structures, a professional UV aligner is not necessary 

and a crude hand-made UV light source is used instead, Figure 4.14 on the following 

page. Since precision is not crucial for making the spacers, rectangular strips of common 

aluminum foil are used for masking. A professional UV aligner can of course be used if 

desired. The light sources are simple blacklights that can be purchased from Amazon 

(www.amazon.com). Optimal exposure time was determined experimentally by spin-

coating numerous samples of photoresist and exposing them to the blacklights from a 

range of 1 minute to 10 minutes. A 5 minute exposure time gave the best results. 
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Figure 4.14 – A hand-made UV light source. The left middle image are metal bracers, 
2.5 inches high, that keep the UV light source horizontal and above the substrates. 

 

Crude lithography does have advantages and disadvantages. The main advantage 

is speed and convenience. Since the main purpose of the spacers is to keep the 

electrodes from coming into contact and they don’t affect the electric field, they don’t need 

to have very straight edges. There will often be curves along the spacer wall that protrude 

inward toward the channel or outward toward the developed photoresist, Figure 4.15 on 

the following page shows this to be the case. 
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Figure 4.15 – Three dimensional profile of the SU8 2002 spacer taken with 3D laser 
confocal microscopy. The area on the left is the electrode surface. The area on the right 

is the spacer. 
 

 One thing that 3D laser confocal microscopy has revealed is that the SU8 spacer 

layer can generally range from 1 μm to 5 μm thick, consistency is difficult to attain. This 

may actually be due to the fact that crude lithography has always been used for the 

spacers and not a professional UV aligner. This inconsistency could be directly tied to 

crude lithography since the light is not collimated and there is uneven UV exposure of the 

photoresist. Another observation, particularly when electrode patterns are close to the 

spacer wall, is that the non-straight edges of the spacer wall can cause erratic bead flow. 

The non-straight edges of the spacer wall might also affect solution/bead flow in the 

middle of the channel, but probably to a lesser degree. 

After UV exposure, the electrodes are placed in the oven a second time at 95 oC 

for 2 minutes. Since SU8 2002 is a positive photoresist, it polymerizes when it is exposed 

to UV light; therefore areas of the photoresist that are protected by the mask remain non-

polymerized. The final step consists in removing the non-polymerized photoresist by 
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submerging in SU8 developer for 2 minutes. Then the substrates are submerged in 

isopropanol for 4 minutes and then dried with nitrogen gas. The general procedure is 

outlined in Figure 4.16. 

 

 

Figure 4.16 – General procedure for putting spacers on the bottom electrode. 
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Experiments can now be conducted with any type of microscope/camera setup, an 

AC/DC voltage source, and microscopic polystyrene beads. It is generally a good idea to 

dilute the vendor stock solution of beads with de-ionized water or ultra-pure water. 

Recommended dilutions are 1:10, 1:100, 1:1000, etc; by volume. 
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Summary For Bottom Electrode Fabrication: 

1) Sonicate glass substrates in acetone for 15 minutes at 35 oC using the mold 

2) Sonicate in methanol for 15 minutes at 35 oC 

3) Sonicate in isopropanol for 15 minutes at 35 oC 

4) Dry with compressed nitrogen gas 

5) Enclose both glass substrates and an open bottle of HMDS with a plastic container  
     for 20 minutes in the hood 
 
6) Turn off main lights and turn on yellow lights to use the spincoater 

7) Cover entire surface of glass substrate with photoresist S1813 using an eye-dropper 

8) Spincoat with the following parameters: 

a) Duration: 10 seconds, Speed: 500 rpm, Ramp: 500 

b) Duration: 30 seconds, Speed: 4000 rpm, Ramp: 1000 

c) Duration: 0 seconds, Speed: 0 rpm, Ramp: 500 

d) These steps are already programmed in and can be quickly recalled by  
     selecting “Program T” 
 

9) Bake at a temperature of 115 oC for 10 minutes, this corresponds to a dial     
     setting of “9.25” for the oven 
 
10) Place in opaque containers (little black boxes) 

11) Main lights can now be turned on 

12) Mask glass substrates for corral trap placement and expose to UV light for 5  
       seconds with professional aligner; duration is the only parameter that needs to be  
       set 
 
13) Place in opaque containers 

14) Turn off main lights and turn on yellow lights 

15) Submerge in MF-321 developer under the hood 
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16) Agitate the glass substrates with tweezers until all of the non-polymerized  
      photoresist is visibly removed from the surfaces, duration of this step is variable and  
      based on personal judgement 
 
17) Allow the glass substrates to stay submerged in developer for an additional 45  
      seconds 
 
18) Submerge in ultra-pure water for 2 minutes (water with a resistivity value of 
      18.2 MΩ·cm) 
 
19) Dry with compressed nitrogen gas 

20) Main lights can now be turned on 

21) Place in opaque containers 

22) Deposit a 7.5 nanometer layer of Nichrome (60% Ni, 16% Cr, 24% Fe alloy) metal 

23) Deposit a 7.5 nanometer layer of Au/Pd (60%:40%) metal 

24) Sonicate the glass substrates in acetone for 2 minutes; make sure the glass  
       substrates are oriented horizontally, not vertically; do not set a temperature 
 
25) Sonicate in isopropanol for 8 minutes, orient the glass substrates vertically using the  
       mold, do not set a temperature 
 
26) Dry with compressed nitrogen gas 

27) Turn off main lights and turn on yellow lights to use the spincoater 

28) Cover entire surface of glass substrate with photoresist SU8 2002 

29) Spincoat with the following parameters: 

a) Duration: 10 seconds, Speed: 500 rpm, Ramp: 136 

b) Duration: 30 seconds, Speed: 3000 rpm, Ramp: 272 

c) These steps are already programmed in and can be quickly recalled by  
     selecting “Program S” 

 
30) Bake at a temperature of 95 oC for 2 minutes, this corresponds to a dial     
       setting of “7” for the oven 
 
 
 



 

112 
 

31) Mask glass substrates for spacer placement and expose to UV light for 5 minutes  
       with crude lithography using the hand-made UV light source 
 
32) Bake glass substrates again at a temperature of 95 oC for 2 minutes, this  
       corresponds to a dial setting of “7” for the oven 
 
33) Submerge in SU8 Developer for 2 minutes, agitate with tweezers for 5 seconds 
 
34) Submerge in isopropanol for 4 minutes, agitate with tweezers for 5 seconds 
 
35) Dry with compressed nitrogen gas 
 
 
 
Summary For Top Electrode Fabrication: 
 
1) Sonicate glass substrates in acetone for 15 minutes at 35 oC using the mold 

2) Sonicate in methanol for 15 minutes at 35 oC 

3) Sonicate in isopropanol for 15 minutes at 35 oC 

4) Dry with compressed nitrogen gas 

5) Deposit a 7.5 nanometer layer of Nichrome (60% Ni, 16% Cr, 24% Fe alloy) metal  

6) Deposit a 7.5 nanometer layer of Au/Pd (60%:40%) metal 

7) Sonicate in isopropanol for 10 minutes using the mold, do not set a temperature 

8) Dry with compressed nitrogen gas 

9) If patterns on the top electrode are desired as well, ignore this summary and follow  
     the same procedure for bottom electrode fabrication up to step 26 instead 
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List of Instrumentation and Equipment 

 
1) Sonicator 
 
     Bransonic Ultrasonic Cleaner 
     Model 1510R-DTH 
     Branson Ultrasonics Corportation 
 
2) Spin-Coater 
 
     Spin Processor 
     Model WS-400B-GNPP/LITE/10K 
     Laurell Technologies Corporation 
 
3) Oven 
 
     Isotemp Oven 
     Model 506G 
     Fisher Scientific 
 
4) Lithography UV Aligner 
 
     Mask Aligner 
     Model MJB4 
     Suss MicroTec 
 
5) Ultra-Pure Water Filtration System 
 
     Arium 611 
     Model Arium 611VF 
     Sartorius Ag Gottingen 
 
6) Metal Deposition System 
 
     Edwards Coating System 
     Model E306A 
     Edwards Vacuum 
 
7) 3D Laser Confocal Microscope 
 
     Olympus LEXT 
     OLS4100 
     Olympus 
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8) Yellow Lightbulbs (to prevent photoresist polymerization during spin-coating) 
 
     Bug Light 
     Model 98001693 
     PC 97495 
     General Electric 
 
9) Blacklights (UV light source used for crude lithography) 
 
     8 Watt Flourescent T5 Blacklight 12” 
     Model 15516-F8T5/BLB 
     Eiko 
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5.1 Determination of Image Dimensions at Different Magnifications 

 The camera used for these experiments generates images with a size of 512 pixels 

x 512 pixels. The microscope used is capable of 10x, 40x, and 100x magnifications. A 

calibration ruler, with 10 micron divisions, was used to determine the image dimensions 

at each magnification. 

 

 

Figure 5.1 – An image of the calibration ruler at 40x magnification. The calibration ruler 
has minor divisions of 10 microns and major divisions of 100 microns. 

 

 Images were taken and loaded into the MATLAB programming environment6. 

MATLAB is software that has built in tools, applications, and even its own programming 

language for numerical and mathematical analysis. A simple command, “ginput(2)”, will 

return x and y pixel coordinates of two points on an image that are input by the user with 

mouse-clicks. 
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Figure 5.2 – The pixel coordinates of the two points, circled in red, are determined with 
MATLAB commands. Pixel dimensions can be easily determined by correlating pixel 

coordinates to the known distance of the 6 divisions. 
 
 

Using these image manipulation commands and precise pixel locations under the 

MATLAB programming interface, the following image dimensions for the camera were 

determined. 

 
Magnification  Full Image Dimensions Perceived Pixel Dimensions 
10x   795 μm x 795 μm  1.55 μm x 1.55 μm 
40x   199 μm x 199 μm  0.388 μm x 0.388 μm 
100x   79.5 μm x 79.5 μm  0.155 μm x 0.155 μm 
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5.2 Corral Trapping with DC Voltages 

 Trapping with DC has proven difficult to duplicate with reasonable consistency; 

however, there have been isolated instances of success. In these isolated instances, the 

trapping works extremely well and there are never any indications that electrolysis is 

taking place, despite the expectation that electrolysis should occur since the experimental 

set-up involves two electrodes. These isolated successes also indicate that there are 

possibly crucial parameters that have not been taken into consideration, or that the 

parameters already taken into consideration need more refinement. 

 Electrolysis, the decomposition of water into oxygen gas and hydrogen gas due to 

an applied voltage, is expected to occur at around 1.23 V or higher based on the standard 

reduction potential values that can be found in general chemistry textbooks7. The half-

reactions in acid are 

 

 Anode (oxidation)  2 H2O (l) → O2 (g) + 4 H+ (aq) + 4 e- Eo = -1.23 V 

 Cathode (reduction)  2 H+ (aq) + 2 e- → H2 (g)   Eo = 0.00 V 

  

In basic solution, the half-reactions for electrolysis are  

 

Anode (oxidation)  2 OH- (aq) → ½ O2 (g) + H2O (l) + 2 e- Eo = -0.40 V 

Cathode (reduction)  2 H2O (l) + 2 e- → H2 (g) + 2 OH- (aq) Eo = -0.83 V 

 

 The expected potential for electrolysis is also 1.23 V in basic solution. 
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 Water is also capable of autoprotolysis under neutral conditions. 

 

Anode (oxidation)  2 OH- (aq) → ½ O2 (g) + H2O (l) + 2 e- Eo = -0.40 V 

 Cathode (reduction)  2 H+ (aq) + 2 e- → H2 (g)   Eo = 0.00 V 

 

 If the two reactions are combined, the result is 

 

 2 H+ (aq) + 2 OH-(aq) → H2O (l) + ½ O2 (g) + H2 (g)   Eo = -0.40 V 

 

 The Nernst equation is then used to calculate the resulting potential7. 

 

  

 

 The number of transferred electrons is 2, and the concentrations of both H+ and 

OH- are 1 x 10-7 M under neutral conditions. R is the gas constant and the value used is 

8.314 J/(mol K). T is Kelvin room temperature. And F is Faraday’s constant which is 96485 

C/mol. 

 

 Ecell = -0.40 V – (8.314 J/mol K) (298 K)  ln                  1                1== -1.23 V 
             (2) (96485 C/mol)           (1 x 10-7)2 (1 x 10-7)2 

 

 The result is the same even in neutral conditions. 
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In the cases where corral trapping with DC has been successful, the voltage has 

exceeded 1.23 V. It is possible that electrolysis is occurring off-screen and simply not 

occurring in the chosen observed area. 

 

 
 

Figure 5.3 – Corral trapping with DC at 40x magnification. Left, voltage is off. White 
circle indicates the bead to be trapped. Right, voltage is turned on and the bead 

becomes trapped in the center of the corral. 
 

 Figure 5.3 shows the trapping of a 2.0 μm diameter polystyrene bead in a 40 um 

diameter corral trap at an applied voltage of 5 V. The bead is functionalized with COOH 

groups and is negatively charged due to their deprotonated carboxy groups in a pH 8.0 

NaOH buffer. The experimental set-up is basically the same as Figure 2.15. A small 

sample of bead solution, 1 μL, is deposited directly on the bottom electrode with a pipette 

and then the counter electrode is placed on top. In order for trapping to occur, the bead 

must already be within the diameter of the corral. If the bead is initially located outside of 

the corral, trapping is not possible. 



 

123 
 

 

 
 

Figure 5.4 – Histogram of the radial deviation of the particle from average location in 
pixels. Average radial deviation is 14 pixels. Since the pixel dimensions are 0.388 

microns x 0.388 microns, this corresponds to an average displacement of 5.38 microns. 
Standard deviation, σ, is 1.45 microns. 

  

 Figure 5.4 shows the magnitude of the radial deviation of the particle relative to the 

average location. Pixel displacements were determined manually. The x coordinate of the 

center was determined by taking the average of all the x values of the particle’s location. 

The y coordinate of the center was done the same way. The radial deviation, r, was then 

calculated. 

 
       _______________ 

 r = √(x – xo)2 + (y – yo)2 
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 The average radial deviation is 5.38 microns. The standard deviation, σ, is 1.45 

microns. Based on the histogram of Figure 5.4, the particle is mostly found within 11 pixels 

from the center, which is 4.3 μm. 

 A Gaussian curve describes a probability distribution function4 that can be 

expressed as 

 

 

 

Since the average value, μ, is referenced as zero, we can simplify the Gaussian to 

be 

 

 

  

 A Boltzmann distribution describes the probability, pi ,that a system will be in a 

certain state, i, as a function of the state’s energy and temperature5. 

 

 

 

 ε = energy of the system in joules 

 k = Boltzmann’s constant; 1.38 x 10-23 J/K 

 T = temperature in Kelvin 
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Since the potential profiles of Figure 2.18 show parabolic behavior, Hooke’s law 

can be used as a one dimensional model for the corral trap3. Hooke’s law describes the 

behavior of a linear spring. When a spring is stretched outward, the spring itself will exert 

an inward force to restore the spring to its rest length. This is the restoring force of the 

spring and is designated as negative, which is opposite the direction of the force required 

to stretch the spring out. 

 

 F = -kx 

 

k is the spring constant with units of N/m, and x is the displacement of the spring with 

units of meters. Force is the negative gradient of the potential energy U. 

 

F = - dU 
         dx 
 
 
 
These equations are set equal to each other. 
 
 
 
- dU = -kx 
   dx 
 
 
 
Separation of variables and integrating leads to 

 

 U = ½ kx2 

 

 This is the potential energy of a spring. 
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 If the corral trap is modeled with Hooke’s law, both the trap stiffness, k, and the 

restoring force of the trap, F, can be calculated from positional data of the trapped particle 

if the probability of the Boltzmann distribution is equated with the probability of the 

Gaussian curve. 

 

 

  

  

The exponential factors can be equated to each other. The normalization factors 

can be ignored since there is no dependence on x. 

 

 

 

 Applying the natural log to both sides leads to 

 

 

 

The potential energy of a spring is U = ½ kx2. The original k is given a “B” 

subscript to designate it as Boltzmann’s constant and to distinguish it from the new k. 
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Solving for k results in 

 

 

 

 Using kB = 1.38 x 10-23 J/K, T = 298 K for room temperature, and σ = 1.45 x 10-6 

meters, the trap stiffness is 

 

 k = 1.96 nN/m 

 

 Using σ = 1.45 x 10-6 meters for the x displacement and Hooke’s law being  

“F = -kx”, the restoring force of the spring at a deviation of 1σ from its average position is 

 

 F = -2.84 fN 

 

 

5.3 Corral Trapping with AC Voltages 

Figure 5.5 shows that the corral trap displays two main behaviors which 

correspond to negative dielectrophoresis and positive dielectrophoresis if AC voltages 

are applied. Corral trapping, or center trapping, is the result of negative dielectrophoresis 

and rim trapping is the result of positive dielectrophoresis. Under corral trapping, beads 

become confined in the center of the corral. The beads are not completely immobilized; 

however, they are confined in their movement. Under rim trapping, beads become 
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confined on the rim of the corral. Movement is much more restricted as the beads are 

confined directly to the rim, so the beads stay at a constant distance away from the center 

of the corral. The images below were processed with “ImageJ” software1. It is a public 

domain image processing program. 

 

 

Figure 5.5 – The two main types of corral trap behavior. Left image, corral trapping of a 
few beads. Right image, rim trapping of numerous beads. 

 

 The beads that are corral trapped look different from the beads that are rim 

trapped. Since the images are focused on the rim of the corral which is located on the 

bottom electrode, the beads that are rim trapped are in focus and have a smaller diameter 

than the beads which are corral trapped; these beads are located near the bottom 

electrode. The corral trapped beads are out of focus and have larger diameters and are, 

therefore, further away from the bottom electrode. The beads in this instance are non-

functionalized 1.5 micron diameter polystyrene beads that are electrically neutral, 

therefore they should not be affected by Coulombic forces. Polystyrene beads become 



 

129 
 

polarized under a non-uniform field so they are affected by the dielectrophoretic field. The 

observed experimental behavior does directly correlate with theoretical COMSOL 

simulations based on the metal pattern and the resulting fields that are generated. The 

beads end up in the center of the corral if there is negative dielectrophoresis. The center 

of the corral has the least electric field density and also the smallest values of E2. The 

beads end up on the rim if there is positive dielectrophoresis. The rim of the corral has 

the highest electric field density and also the highest values of E2. 

Figure 5.6 below shows the corral trapping of a single bead at 10 V and 1 kHz AC. 

The adjacent image shows 300 location points of the bead over an interval of 43 seconds. 

The tracking was done with an ImageJ plugin called “Manual Tracking”2. The plugin 

assigns the pixel dimensions of the image based on the user input. The images are 

advanced frame by frame after the location of the particle is manually determined by the 

user with a point-and-click interface. 

 

 

 
Figure 5.6 – Left, a single corral trapped bead indicated with an arrow. The bright spot 

next to the bead is an illumination artifact. The corral trap is 50 microns in diameter. 
Right, superposition of 300 location points over a time interval of 43 seconds. 
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 When dielectrophoresis under AC conditions are used, the dielectrophoresis 

potential near the surface of the bottom electrode is clearly non-parabolic (Figure 2.26); 

three sharp points can be observed at the trap center and trap edges. If the 

dielectrophoresis potential at a y value of 5 μm or more is considered, it resembles more 

and more a parabola. Since the beads are not in focus while they are corral trapped under 

dielectrophoresis, they would be above the surface of the bottom electrode and so the 

potential at a y value of 0 μm would not apply. So a Hooke’s law approximation could be 

done, assuming the beads are around 5 μm or more above the surface of the bottom 

electrode. Figure 5.7 below shows the radial displacement of the bead relative to the 

average location. 

 
 

 

Figure 5.7 – Histogram of the radial deviation of the particle from the center of the corral 
(average location) in pixels. Average displacement is 6.0 pixels, this corresponds to 

2.33 microns since the perceived pixel dimensions are 0.388 microns x 0.388 microns. 
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The data is analyzed similarly to the corral trapping done with DC. The results are 

summarized below. 

 

Current    DC   AC 
Voltage    5 V   10 V 
Frequency    N/A   1.0 kHz 
Magnification    40x   40x 
Bead material   polystyrene  polystyrene 
Bead diameter   2.0 microns  1.5 microns 
Functionalization   COOH  None 
Solution    pH 8.0 NaOH 18.2 MΩ·cm resistivity water 
Corral diameter   40 microns  50 microns 
Electrode separation distance unknown  unknown 
Average radial deviation  5.38 microns  2.33 microns 
σ (standard deviation)  1.45 microns  0.95 microns 
k (trap stiffness)   1.96 nN/m  4.56 nN/m 
Restoring force of corral  -2.84 fN  -4.33 fN 
 

 

5.4 Rim Trapping 

 Rim trapping, as previously shown in Figure 5.5, is the result of positive 

dielectrophoresis; beads become trapped in areas of high electric field density, near the 

rim of the corral. Rim trapping greatly restricts the mobility of the bead. Assuming the 

corral is isolated and perfectly circular, the bead is confined to a constant distance away 

from the center. However, the bead is free to move in either direction along the rim, with 

the direction being mostly dictated by the direction of the solution flow. The bead will stop 

moving when the direction of solution flow is perpendicular to the tangent of the circle 

along the rim where the bead is at. Hypothetically, if a single bead is rim-trapped; the 

bead could be made to travel in a complete circle along the rim simply by changing the 
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direction of the solution flow. The solution flow would have to be sufficient enough to move 

the bead, but not too strong so as to dislodge the bead. 

 

 
 
Figure 5.8 – Top left, beads are rim trapped. Arrow indicates direction of solution flow. 

Top right, voltage is turned off and beads travel upward since solution flow is in the 
upward direction. Bottom left, voltage is still off and beads continue upward. Bottom 

right, voltage is turned on and beads become rim trapped again. 
 

Rim trapping has two other observed behaviors that occur as a result of changing 

the frequency: rim expansion/contraction and rim looping. The parameters to replicate 

these behaviors consistently have not been precisely determined, but they do occur with 

reliable frequency. Rim expansion/contraction is first achieved with rim trapping, shown 
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in Figure 5.9. The frequency is then lowered and the diameter of the ring of beads 

expands outward. The beads must therefore experience some type of outward force 

uniformly away from the center that is dependent on the AC frequency. After expanding 

outward to a certain degree, the beads remain stationary. Lowering the frequency again 

results in greater outward expansion. If the frequency is brought back up to the original 

frequency, the beads move inward and become rim trapped again. 

 

 
 
Figure 5.9 – Top left, beads are rim trapped. Top right, AC frequency is decreased and 
beads expand outward. Bottom left, frequency is decreased further and beads expand 
outward even more. Bottom right, frequency is brought back up to the initial frequency 

and the same beads move inward and become rim trapped again. 
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  The other observed behavior is rim looping, shown in Figure 5.10 below. 

The beads are confined to the area around the rim. The beads then move in a circular 

loop that is perpendicular to the tangent of the rim and perpendicular to the plane of the 

corral trap. Looping behavior is not apparent in still images, therefore showing a sequence 

of images would not be helpful. The direction of looping has proven difficult to ascertain, 

so both possible directions are shown in the following figures. The thickness of the rim in 

Figure 5.11 is exaggerated to clarify where the looping occurs. If the center of the corral 

is used as a reference point, a bead directly on the rim would experience an initial force 

directed outward away from the center or an initial force directed inward towards the 

center. The acquisition frame rate of the images is very low, only 7 frames per second. 

This low frame rate is the reason why discerning the direction of looping has been difficult. 

Performing a frame by frame analysis results in the bead either being inside the corral or 

outside the corral. With a faster acquisition frame rate, the direction of looping could more 

easily be determined. 

 

 
 

Figure 5.10 – Rim looping. 
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Figure 5.11 – The possible directions of looping behavior. The thickness of the rim is 
exaggerated. 

  

 This behavior is observed while using AC, which does not correspond to either 

positive dielectrophoresis or negative dielectroporesis. However, it does correspond well 

to the electro-osmotic velocity field, Figure 2.32. The frequency at which this behavior 

occurs would have to be the change-over frequency, the frequency which makes the 

Clausius-Mossatti factor zero. When the Clausius-Mossatti factor is zero, there should be 

neither positive or negative dielectrophoresis. 

 

5.5 Grid Trapping 

The behavior of a single isolated corral is interesting in and of itself; but additional 

behavior is observed if there is a grid of corrals, behavior that would not exist otherwise. 

Figure 5.12 shows subsequent images of corral trapping using a grid. The top left image 

is the system before the application of voltage, beads in random motion can be observed 

throughout. In the top right image, voltage has already been applied; electrokinetic 

behavior is observed and bead patterns start to form. Beads line up in straight lines and 

form a grid of squares. In the bottom left image, the voltage is still on. Since this is a grid 
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of corrals and not a single isolated corral, two types of trapping occur. The first type is 

one that has already been described, namely bead confinement within the corral. The 

second type occurs outside the corral, circled in red.  

 

 
 
Figure 5.12 – Grid of corral traps at 10x magnification. Corralling is clearly visible inside 
the circles in the bottom left image. The red circle indicates another type of trapping that 

occurs simultaneously. 
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Figure 5.13 – Close up of a grid of corrals at 40x magnification. 
 

Another case is shown in Figure 5.13, where the corrals are 70 microns in diameter 

and 40 microns apart from each other both horizontally and vertically; diagonally, they are 

86 microns apart. The same behavior is observed. Initially the voltage is off and beads 

only display Brownian motion. The beads then begin to form straight lines that form a grid 

of squares around each corral. The lines eventually disappear and beads become trapped 

between the corrals. Since the corral creates a potential well capable of trapping particles, 

this would imply there exists another potential well between the corral traps that is also 

capable of trapping particles. 
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Figure 5.14 – Top, exaggerated dimensions to indicate where the rims of the corral 
traps are. Middle, the electric field of a two dimensional slice of two corrals side by side. 

Bottom, the dielectrophoretic potential and the dielectrophoretic field. 
 

In order to investigate this observed behavior, COMSOL simulations of a corral 

trap array were performed. The dielectrophoretic potential, bottom image in Figure 5.14, 

shows there is a well between the two corrals. While the well is not an absolute minimum 

potential, it is a relative minimum potential that exists between the two corrals. The bottom 

row of arrows which are between the two corrals of the bottom image, show that they 

point outward and away from the rims of the corrals and towards the midpoint between 

the rims of the corrals. Since this is only a two dimensional image; trapping would occur 

in three places, inside the corrals and in between the corrals. Figure 5.15 on the next 

page shows how the slices of Figure 5.14 would appear in an actual grid. The figure also 

shows the dielectrophoretic field of the slices that are between the corrals and that also 
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go through the center of the grid. The slices that go through the center of the grid indicate 

the behavior of the beads that form the straight lines. 

 

 
 
Figure 5.15 – The negative dielectrophoretic fields of specific slices of a grid of corrals. 

 
 

There are discrepancies between the simulations and the actual experimental 

results. The experimental results of Figure 5.13 shows that the beads which form straight 
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lines are on the surface of the bottom electrode since they are in focus. The bottom image 

of the dielectrophoretic field of Figure 5.15 indicates the beads would be pushed up 

towards the top electrode and so should appear out of focus. If electro-osmosis is taken 

into consideration, Figure 5.16 shows that the beads which form straight lines between 

the corrals would be pushed downward towards the surface of the bottom electrode. This 

occurs at the 60 μm x coordinate mark, exactly midway between the two corral traps. 

While definite conclusions cannot be made, it is possible that electro-osmosis can be a 

contributing factor to beads located between the corral traps. 

 

 

Figure 5.16 – The electro-osmotic velocity field for a grid of corrals. 
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Figure 5.17 – The negative dielectrophoretic force vectors of the corral trap grid viewed 
from the top, calculated for a horizontal plane that is 0.75 μum above the surface of the 

bottom electrode. 
 

When the dielectrophoretic field is shown as arrows and viewed from the top, the 

arrows do orient themselves at angles that form a square grid and create linear pathways 

for the beads to follow. The field shown in Figure 5.17 is close to the surface of the bottom 

electrode, so the trapping that occurs between the corrals will only happen to beads that 

are at or close to the surface of the bottom electrode. The field explains all of the observed 

behavior for a grid; the trapping inside a corral, the beads forming straight lines, and the 

trapping between the corrals. 
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Figure 5.18 – The negative dielectrophoretic force vectors exactly midway between the 
bottom and the top electrodes. It is 5 μm above the bottom electrode and 5 μm below 

the top electrode. 
 

Figure 5.18 is the dielectrophoretic field midway between the bottom and top 

electrodes. The arrows are given the same scale factor as the arrows in Figure 5.17, so 

direct comparisons can be made. What is most apparent is that the diameter of corralling 

is much larger above the surface of the bottom electrode than it is near the surface of the 

bottom electrode. A particle located outside the corral can become corral trapped as long 

as it is within a reasonable distance away from the rim; this isn’t the case near the surface 

of the bottom electrode where the bead must be inside the corral. Another phenomenon 
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shown by the vector shield is that trapping between the corrals doesn’t occur at the middle 

horizontal plane either. 

 

 

Figure 5.19 – The negative dielectrophoretic force vectors 0.75 μm below the surface of 
the top electrode. 

 

 Figure 5.19 shows the field that beads experience if they are close to the surface 

of the top electrode. The straight lines between the corrals are present but this time they 

point in the opposite direction when compared to the field close to the bottom electrode. 

Again, this is an indication that a bead will behave differently depending on where it is 
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located on the vertical z axis. A bead could potentially go in one direction if it is located 

close to the bottom electrode, and in the opposite direction if it is located close to the top 

electrode. 

 

 

Figure 5.20 – The log of the electric field squared potential relative to the x coordinate of 
a corral grid. The potential is calculated at 0.75 μm above the surface of the bottom 

electrode. 
 
 

 Lastly, Figure 5.20 above shows the log of the dielectrophoretic potential of a corral 

grid. The lowest potentials are the corral trap centers, which occur at 30 μm and 90 μm. 

There is also a relative minimum between the corral traps which occurs at 60 μm. This 

indicates beads will go to these areas of low potential. 
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5.6 Pushing Beads in a Particular Direction with a “V” Shape 

 A bead can be pushed in a particular direction by using a “V” shape. A bead will 

start from the sharp end of the “V” and move towards the wide end of the “V”; all the while, 

staying relatively equidistant from both sides of the “V”. While this is the main behavior, it 

should be noted that the experiments performed do not involve a single isolated “V”. There 

are adjacent “V”s and adjacent “V”s that point in opposite directions. Admittedly, this 

pattern was done out of curiosity; the resulting bead behavior was unexpected. 

  

 
 
Figure 5.21 – If a metal pattern is in the shape of a “V”, beads will travel from the tip of 

the “V” to the opening of the “V”. Direction of bead motion is indicated with white arrows 
when the voltage is on. 
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Figure 5.22 – The negative dielectrophoretic force vectors 0.75 μm above the surface of 
the bottom electrode. Vertical arrows that point upward can be seen that bisect the 

middle of the “V”. The sides of the “V” also push the bead towards the bisector. 
 
 
 While this was not investigated experimentally, it is likely that the degree of 

sharpness of the “V” has an effect on the bead velocity. If all experimental conditions were 

the same, a very wide “V” would likely push the bead slower than a very narrow “V”. A 

series of “V”s in a linear horizontal sequence, with varying degrees of sharpness, could 

potentially be used as a type of separation for particles with different dielectrophoretic 

properties. 
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Figure 5.23 – Particle tracking of one bead. This solution has high bead concentration 
(1:10 dilution of the vendor stock), therefore it has high ion concentration, and therefore 

it has high conductivity. The bead has an average velocity of 105 microns/sec. 
 
 

 One of the parameters appearing in the calculation of the dielectrophoretic force 

is the conductivity of the solution. This means the conductivity can have an effect on the 

magnitude of the dielectrophoretic force. Generally the higher ion concentration a solution 

has, the greater the conductivity. Polystyrene beads were diluted with ultra-pure water 

from the vendor stock solution with ratios of 1:10, 1:100, and 1:1000. 

 All experiments were performed with the same dilutions of the vendor stock bead 

solution. The conductivities of the various dilutions were measured for one experiment. 
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Measurements were also made for ultra-pure water and pH 10 NaOH solution for 

comparison. 

 

 Dilution      Conductivity  Resistivity 

 1:10       10.0 μS/cm 
 1:100       3.1 
 1:1000      2.9 
 ultra-pure water     2.0   18.2 MΩ·cm  
 pH 10 NaOH solution with ultra-pure water 11.2 
 

 

The experiment shown in Figure 5.23 was done with high bead concentration. The 

vendor stock solution contains substances to keep the polystyrene beads stable or extend 

shelf-life, and substances may be present that are involved during the manufacturing 

process of the beads. A solution with high bead concentration would contain a high 

number of ions which would lead to high conductivity. With the use of particle tracking, 

the bead velocity was determined to be 105 microns/sec for the high bead concentration 

solution. Figure 5.24 on the next page shows the particle tracking of a single bead in a 

low bead concentration solution. The average velocity of the bead was found to be 2.4 

microns/sec. 
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Figure 5.24 – This bead solution has low bead concentration (1:100 dilution of the 
vendor stock), therefore low ion concentration, and therefore low conductivity. Particle 

tracking results in an average bead velocity of 2.4 microns/sec. 
 
 

 Figure 5.25 shows the first few frames of the same experiment shown in Figure 

5.24. One of the goals of this research is to obtain adequate Z axis data of the bead’s 

physical location in order to fully understand the effects of the electric field’s geometry as 

it influences particles. While the data at this point is qualitative, the bead’s appearance 

could possibly be correlated to the bead’s height along the Z axis. If it is certain that the 

bead is on the surface of the top electrode and the electrode separation distance is 

known; then the bead’s appearance could be correlated to its height. If the bead is on the 

surface of the bottom electrode, its appearance would also be distinct. The general trend 
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is that the size of the brightness of the inner portion of the bead gradually diminishes as 

the bead comes into focus. It will start off as a bright spot then gradually change into a 

black spot. 

 

 
 

Figure 5.25 – Images of a single 1.5 µm diameter bead as the electric field pushes it 
downward, from the surface of the top electrode towards the surface of the bottom 

electrode, along the vertical Z axis. 
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5.7 Two Rectangles Side By Side Can Induce A 90o Turn 
 
 If two rectangles are parallel along the longer side of each other, a 90o turn is 

observed at the ends of the rectangles. A single rectangle by itself will not display this 

behavior. When the voltage is turned on, a bead will move perpendicular to the longer 

side of each rectangle towards the midpoint between the rectangles. The bead will then 

move parallel to the longer side of each rectangle towards the ends of each rectangle. 

Figure 5.26 below shows the path a bead will take. 

 
 

 
 
Figure 5.26 – Particle tracking of a single bead. The yellow line indicates the successive 

motion of the particle. 
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Figure 5.27 – The negative dielectrophoretic field 0.75 µm above the surface of the 
bottom electrode. 

 
 

 Figure 5.27 shows there are forces which are perpendicular to each other towards 

the ends of the rectangles. The middle row of vectors that are between the two rectangles 

vary in magnitude, they are largest towards the ends and smaller in the middle. The fact 

that they are smaller in the middle indicates the beads in this area will not experience a 

significant force to push them in a perpendicular direction relative to the direction of their 

original motion. Experiments show that beads in the middle will eventually move towards 

the ends, but they do so very slowly. 
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5.8 Star Trapping 

 The star trap has a symmetric void in the middle so trapping in this area is 

expected. The area of the middle void is larger than the area of the spokes of the star, 

therefore the middle void will have the lower electric field density when compared to the 

spokes. What is interesting is that the spokes of the star act as pathways for beads to 

follow. 

 

 
 

Figure 5.28 – Star trapping. Top left, voltage is off. Top right, voltage is turned on and 
beads follow the pathway of the spokes of the star indicated with white arrows. Bottom 

left, beads accumulate in the center. Bottom right, voltage is still on. Red arrow 
indicates where some beads travelling down the spoke of the star can escape prior to 

reaching the center. 
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Figure 5.29 – The negative dielectrophoretic field 0.75 μm above the surface of the 
bottom electrode. 

 

Only particles that are close to the surface of the bottom electrode are capable of 

escaping the star trap. The red arrow in Figure 5.28 indicates where beads can escape. 

The areas of the star trap that are not the spokes or the middle are essentially “V”s, and 

this behavior was discussed previously in Chapter 5. Figure 5.29 shows that the vector 

field of one of these “V”s is similar to the vector field that was shown in Figure 5.22. It is 

possible that the sharpness of the “V”s increases the probability of escape. The beads 

that escape are generally in focus. 
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Figure 5.30 – The negative dielectrophoretic field exactly midway between the bottom 
and top electrodes. It is 5 μm above the bottom electrode and 5 μm below the top 

electrode. 
 
 

 The vector field shown in Figure 5.30 shows that trapping would be the expected 

result. There are also vectors that keep the bead inside the pathway and also push the 

bead along the pathway towards the center. Since this occurs midway between the 

bottom and top electrodes, the beads that are corralled are out of focus. They look 

different from the beads that escape, which are in focus.  A general observation is that 

beads will go from small void areas of metal to larger void areas of metal. In the case of 
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the star trap, the small void areas are the pathways and the large void area is the center 

of the star. Bead pathways can be made in two ways; with voids as shown by the star 

trap and with metal strips as shown by the two adjacent rectangles in Chapter 5.7. 

 

 

Figure 5.31 – The negative dielectrophoretic field 0.75 um below the surface of top 
electrode. 

 

 The dielectrophoretic field close to the surface of the top electrode, shown in Figure 

5.31, is not drastically different from the field midway between the two electrodes. 

Corralling diameter simply extends outward a little more. 
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5.9 The Inverted Corral Trap 

 The inverted corral trap can be described as a concentric circular metal pattern 

within a corral trap that is connected with the metal surface of the electrode via a thin strip 

of metal that functions as an electrical bridge. Since the metal pattern is different from a 

simple corral trap, the dielectrophoretic field will be different. The beads should display 

different behaviors due to the metal bridge and possibly similar behaviors because it is 

circular. Figure 5.32 on the following page shows the trapping of beads. This is different 

from the corral trap in that trapping occurs over the metal surface, whereas trapping with 

a corral occurs over the metal void. A unique behavior of the inverted corral trap is that 

the beads can be released in the direction of the metal bridge by lowering the AC 

frequency. Of course, bead release in the flow direction can also be achieved simply by 

turning off the voltage. 
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Figure 5.32 – Trapping and releasing of beads with the inverted corral trap. Top left, 
voltage is off. Top right, voltage is on. Bottom left, voltage has been on for an extended 

amount of time. Bottom right, AC frequency is lowered and beads escape in the 
direction of the metal bridge. 

 
 

 Beads that are trapped by this particular pattern have a solid dark color and are in 

focus, so this occurs near the surface of the bottom electrode. Figure 5.33 on the following 

page shows the vector field of this pattern. The central metal area, while not the area of 

lowest dielectrophoretic potential, is at a relatively low potential. In actuality, it is similar 

to the trapping that occurs with a grid of corrals. The grid of corrals can be thought of an 

inverted corral trap with four metal bridges instead of one.  
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Figure 5.33 – The dielectrophoretic field 0.75 μm above the surface of the bottom 
electrode. 

 
 

 Figure 5.34 on the following page shows a sequence of corral traps. In the top left 

image, the voltage is off and only Brownian motion is observed. In the top right image, 

the voltage is turned on and beads become trapped. The beads are not trapped perfectly 

in the center of the corral, they appear to be skewed towards the direction of the metal 

bridge. In the bottom left image, the voltage is still on and beads accumulate. In the bottom 

right image, the voltage is turned off and the beads diffuse.  
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Figure 5.34 – Three inverted corral traps in sequence. Perhaps this configuration can be 
used for filtering, sorting, or separating different types of particles by varying the 

diameters of each inverted corral. Beads could potentially be released separately as 
well depending on the AC frequency. 

 
 

5.10 Determining The Electrode Separation Distance 

 Getting consistent electrokinetic behavior has been problematic. Corralling can be 

observed in one set of electrode pairs; and despite using all of the same electrical 

settings, the same behavior isn’t observed when using a different set of electrode pairs. 

One of the reasons for this is not being able to replicate a consistent separation distance 

between the two electrodes each time. However, at the very least, it is possible to know 

the separation distance each time. There are two requirements. The first is to rigidly set 
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the electrode separation distance by gluing the two electrodes together to keep them in 

place. The next requirement is implementing fine mechanical motors into the microscope 

system that can raise or lower the sample stage in discrete known increments, or raise 

and lower the focus if the stage is stationary. 

 
 

 
 
Figure 5.35 – Patterns used to determine the separation distance between the top and 
bottom electrode. The patterns circled in white are used to determine the separation 

distance. Separation distance is 28.5 microns for this particular flowcell. 
  

In Figure 5.35, an area is selected that has patterns on both the top and bottom 

electrodes. The patterns have to be in relatively close proximity to each other. The top 

two images are at 10x and the bottom two images are at 40x. The circles are located on 

the bottom electrode while the rectangular shapes are on the top electrode. The first step 

is to manually focus on the circles. Then move the focus horizontally until the rectangular 

shapes appear in the field of view, they will first appear blurry at this point. The final step 

is to incrementally raise the sample until the rectangular shapes come into focus. If 57 
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increments were used to bring the rectangular shapes into focus, and each increment 

was 0.5 microns; then the distance between the two electrodes is 28.5 microns (57 x 0.5 

= 28.5) since this was performed with a dry flowcell. 

 Flowcells were fabricated that were determined to have electrode separation 

distances of 9.0, 11.0, and 28.5 microns. Circular coralling trapping was not observed for 

the flowcells with 9.0 and 11.0 micron separation distances, while circular corral trapping 

was observed for the 28.5 micron separation distance. In retrospect, it is likely all 

successful corralling in the past was probably at or near this electrode separation 

distance. This does imply that corralling with AC is not possible at really small separation 

distances. But separation distance is not the only factor to consider. Corralling might still 

be possible at small distances if other parameters are changed. It is also possible that the 

flowcells with 9.0 and 11.0 micron separation distances may have inadvertently been 

fabricated with unintentional short circuits.  
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Chapter 6 

 
Future Experiments 
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6.1 Use of The Point Spread Function to Extract Vertical Z Axis Data 

 The point spread function is the image pattern of a microscopic object relative to 

its location above or below the plane of focus1. There are additional factors that determine 

the object’s image pattern, not just the object’s vertical location. One factor is the index 

of refraction of the solvent itself. In the case of polystyrene beads, the solvent is generally 

water. The ion concentration of the solution also plays a factor as this will alter the index 

of refraction of the solution. Since microscopy generally involves the use of glass slides 

or coverslips, the index of refraction and the thickness of the glass coverslip will also alter 

the point spread function. And lastly, there will be a certain immersion medium, such as 

air, between the microscope objective and the glass surface. At minimum, there will be 

three mediums to account for; immersion medium, glass, and solution.  

 

 

Figure 6.1 – The point spread function of 2.0 µm diameter fluorescing beads. The 
different diameters indicate the beads are at different z heights. 
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Figure 6.1 shows polystyrene beads that are functionalized with a fluorescent 

molecule known as Cy3. The beads are excited with a laser tuned to the absorption band 

of the functionalized bead. Since an excited state is higher in energy than a ground state, 

Cy3 will eliminate this excess energy through non-radiative decay channels or by 

fluorescing. The Cy3 will release photons that are longer in wavelength than the 

wavelength of the light of the initial excitation laser. 

The figure shows point spread function slices of beads at various z locations. The 

smallest diameters are beads that are in focus, while the largest diameters are the most 

out of focus and consequently the furthest away from the plane of focus. Therefore the 

point spread function can be used as an indicator of a bead’s height location relative to 

the vertical z axis. By correlating the diameter of the point spread function to a particle’s 

height location on the z axis, three-dimensional data can be obtained from experiments. 

 Under bright-field imaging, three distinct point spread functions have been 

discerned for a particle, shown in Figure 6.2. The plane of focus is the metal pattern which 

corresponds to focusing on the bottom electrode, therefore the focus is manually adjusted 

until lines or edges of the metal patterns become clearly defined and show the strongest 

contrast. Beads that are closest to the bottom electrode appear as solid, non-opaque 

black dots. These generally have the smallest diameters, an example is circled in red. 

Beads that are farthest away appear as two rings, one inside the other. These generally 

have the largest diameters and would be closest to the top electrode, an example is 

circled in blue. A bead that is somewhere in between appears to have an outer ring with 

a certain degree of brightness in the center; an example is circled in white. These of 

course have diameters that are somewhere in between.  
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Figure 6.2 – The point spread function of beads under non-fluorescent, bright-field 
imaging. Bead circled in red is located near the bottom electrode. Bead circled in white 
is between the top and bottom electrode. Bead circled in blue is near the top electrode. 

 
 

 One experimental result of Chapter 5.10 showed that the separation distance 

between the top and bottom electrode could be determined if distinct patterns were placed 

on both electrodes. The idea was to focus on a pattern on the bottom electrode and then 

utilize a fine motor system that will incrementally adjust the height of the objective lens 

until patterns on the top electrode come into focus. Since the incremental height change 

is known, the height change is multiplied with the number of times the height change was 

performed, which gives the electrode separation distance. 
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 The image of a bead with the smallest diameter would correspond to the bead 

being at the surface of the bottom electrode. The image of a bead with the largest 

diameter would correspond to the bead being at the surface of the top electrode. The 

diameters between the smallest diameter and the largest diameter would mean that the 

bead is somewhere in-between the two electrodes. It would be tempting to assume that 

the varying degrees of the bead’s diameter is linearly correlated to its height along the 

vertical Z axis. In reality, the relationship of the diameter of a bead’s point spread function 

relative to its distance away from the plane of focus is not linear. 

 Theoretically, getting x, y, and z coordinates of a bead is possible. The remaining 

problem would be to image a bead that is directly on the surface of the bottom electrode, 

and then image a bead that is directly on the surface of the top electrode. Experimental 

images of the bead located on the bottom electrode, which would have the smaller 

diameter, and images of the bead located on the top electrode, which would have the 

larger diameter, could then be correlated to a theoretical model for the point spread 

function. Z data could then be extrapolated from experiments. Figure 6.3 on the next page 

shows the experimental result of having metal patterns on both the bottom and the top 

electrodes. Circles are on the bottom electrode and triangles are on the top electrode. 

Aside from showing that corralling is possible with a triangle, it also shows that both 

surfaces can affect beads if there are patterns on them. 
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Figure 6.3 – Simultaneous trapping on both the top and bottom electrodes, focus is on 

top electrode. As evidenced by the image, corral trapping is even possible with 
triangles. 

 
 

 Since it is clear that patterns on both electrodes can affect beads, it might be 

possible to move a bead up and down along the vertical z axis. Based on the results in 

Chapter 5.9, if a bead is trapped with an invert corral, it is located on the surface of the 

electrode. Two inverted corrals, one on top of the other and with different diameters, could 

possibly move the bead up and down. The inverted corral with the smaller diameter would 

have a higher electric field density, while the inverted corral with the larger diameter would 

have a lower electric field density. By changing the AC frequency, the bead could 
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hypothetically move up and down. Figure  6.4 below shows the relative diameters of the 

inverted corral and how they would be oriented. 

 

 
 

 
 

 
 

Figure 6.4 – Two inverted corral traps. The trap on the bottom electrode has a smaller 
inner diameter, and the trap on the top electrode has a larger inner diameter. 
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6.2 Spiral Patterns 

 The general trend for negative dielectroporesis is that a bead will go from areas of 

high electric field density to areas of lower electric field density. Theoretically, if a bead is 

located at the tip of a spiral that gradually widens as the pattern spirals out; the bead 

should follow the path of the spiral. While there wouldn’t seem to be any practical uses 

for this at the moment, it could be pursued out of mere scientific curiosity. The left image 

in Figure 6.5 is a smooth spiral, which is basically a very long curved “V” shape. A curved 

“V” could be used to change the direction of a bead. The right image, while not gradual 

and smooth, would theoretically work since the width does increase the further out the 

spiral is. Also theoretically, a bead would move inward towards the tip of the spiral if it 

was under positive dielectrophoresis. 

  

 
 

Figure 6.5 – Metal spiral patterns. 
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6.3 Continuous Electrokinetic Cycles 

 Figure 6.6 below shows the metal patterns that would be on the bottom and top 

electrodes. They would be lined up, one directly on top of the other. The patterns consist 

of four “V”s. Beads would first be pushed from the sharp end of a “V” to the wide end on 

one of the surfaces. The beads would then theoretically move towards the sharp end of 

the next “V” that is on the other electrode surface. The process would continue in a cycle 

as long as the voltage was on. 

 

 
 

Figure 6.6 – Top images, metal patterns for the bottom and top electrodes. Bottom 
image, how the electrodes would line up. Red arrows indicate direction of bead flow. 
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6.4 Back and Forth Planar Bead Migration 
 
 This design is a slight modification to the inverted corral trap. The smaller circle 

would have a larger electric field density while the larger circle would have a smaller 

electric field density. Trapping would initially be achieved on one of the circles, then by 

changing the AC frequency, the beads would theoretically move back and forth between 

these two areas. 

 
 

 
 

Figure 6.7 – Theoretical pattern for back and forth bead migration from one rounded 
end to the other rounded end. 
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Figure 6.8 – Negative dielectrophoretic field of the smaller end. 
 
 

 
 

Figure 6.9 – Negative dielectrophoretic field of the larger end. This image is not scaled 
relative to the smaller end. 
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6.5 Tracks, Rails, Or Pathways For Beads To Follow 

 Tracks could be designed that would either be rectangular metal strips or 

rectangular voids. Figure 6.10 below shows three possible designs. Both would occur 

under negative dielectrophoresis. For the top images, the pathway itself is metal. This 

would only happen if the bead was directly on the surface of the metal. The colored beads 

indicate where beads would start and where they would end. For the bottom images, the 

pathway is a void. This would only happen if the bead was somewhere between the two 

electrodes. 

  

 

 
 

Figure 6.10 – Left images, possible designs for bead trails. Right images, green circle 
indicates where beads would start. Red circle indicates where beads would end up. 
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Figure 6.11 – Negative dielectrophoretic field of a “U’ pattern 0.75 μm above the surface 

of the bottom electrode. 
 
 
 

 

Figure 6.12 – Negative dielectrophoretic field of a thermometer pattern exactly midway 
between the top and bottom electrodes which are 10 μm apart. 
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Figure 6.13 – Negative dielectrophoretic field of a teardrop pattern exactly midway 

between the top and bottom electrodes which are 10 μm apart. 
 
 
 When the dielectrophoretic fields of the three patterns are compared, the teardrop 

pattern clearly shows consistent forces that would push the bead from the smaller end to 

the larger end. The other two patterns could still potentially work due to the results of 

adjacent rectangles and the star trap patterns, but the bead would probably move at a 

slower velocity. 
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6.6 Linear Control of Beads 

 

 

Figure 6.14 – Three dimensional geometry of the system. 

 

 Figure 6.14 above shows the exaggerated geometry of a system that consists of 

two parallel metal strips that are electrically isolated from each other. The top view of the 

system would be just like Figure 6.15 on the following page. The metal strips would not 
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be in electrical contact with each other. If voltage is turned on, beads in solution would 

line up midway between the two metal strips. 

 

 

Figure 6.15 – Top view of two parallel metal strips electrically isolated from each other. 
The two metal strips are both bottom electrodes. Top electrode is not shown. Left, the 

system before voltage is turned on. Right, the system after voltage is turned on.  
 
 

 This should occur if the two metal strips were the exact same voltage. If the voltage 

of the two metal strips are changed, the left strip is changed to 10V while the right strip is 

changed to 0.5V, the beads would stay in a straight line but move closer to the left strip. 

By changing the voltages of the metal strips, the beads could be made to move back and 

forth between the two strips, shown in Figure 6.16 on the next page. 
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Figure 6.16 – Moving beads back and forth by changing the voltages of the metal strips. 
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Figure 6.17 – Top view of the dielectrophoretic fields of the system with varying voltages 
of the metal strips. Field is 0.75 μm above the surface of the bottom electrodes. 
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Figure 6.18 – Side view of the dielectrophoretic fields of the system with varying 
voltages of the metal strips. 

 
 

 

 

 

  



 

183 
 

References for Chapter 6 
 
1. Michael J. Nasse, Jorg C. Woehl, “Realistic modeling of the illumination point 

spread function in confocal scanning optical microscopy”, 2010, Optical Society of 
America, Volume 27, Number 2, Pages 295-302 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

184 
 

 

 

 

 

 

 

 

 

 

 

Chapter 7 

Conclusion 
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 The main principles of this thesis are based on electric fields and how they can 

affect particles. There appear to be three significant forces: electrostatic forces, 

dielectrophoretic forces, and electro-osmotic forces. Electrostatics is the interaction 

between an electric field and charged particles, this leads to the phenomenon of 

electrophoresis. Dielectrophoresis is the interaction between a non-uniform electric field 

and polarizable particles. A non-uniform electric field will create a field gradient, it will 

have areas of high field density and areas of low field density. This field gradient is 

capable of polarizing particles. Electro-osmosis is the flow of solution caused by an 

electric field. Since electro-osmosis is solution flow, it will affect any type of particle. It 

doesn’t matter if the particle is charged or uncharged, or polarizable or non-polarizable. 

 A dielectrophoretic field can only exist if the electric field is non-uniform or non-

homogeneous. If the system consists of featureless flat metal surfaces, this creates a 

uniform electric field which can only affect charged particles. If there are voids in the metal 

surface, this creates a non-uniform electric field, which is then capable of generating a 

dielectrophoretic field. These voids can have different shapes; such as circles, rectangles, 

or stars. Each shape is capable of generating an electric field with its own unique 

geometry. Each electric field geometry can induce specific behaviors in particles. The 

simplest shape is a circle. The circle’s geometry enables the trapping of particles because 

its geometry exerts symmetric and equal forces around the center of the circle. Other 

shapes can induce turns, push beads in a certain direction, or be used as pathways or 

trails. The theoretical simulations done with COMSOL all seem to correlate well with 

experimental observations. This means COMSOL can also be used to predict the 

behavior of untested geometries. The electro-osmotic velocity field, like the 
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dielectrophoretic field, is dependent on the geometry of the electric field. If the bead 

behavior seems to contradict the dielectrophoretic field, the behavior can generally be 

accounted for with electro-osmosis. 

Corral trapping of charged particles with DC has still been inconsistent, however 

there have been isolated instances of success. The main problem has been the 

occurrence of electrolysis at high voltages, which degrades the electrodes. The electric 

field of two parallel plates is1 

 

E = -ΔV/d 

 

ΔV is the potential difference between the two plates and d is the distance between 

the two plates. A strong electric field is possible with a low voltage as long as the 

electrodes are closer together. The key would be to get a strong enough electric field 

without exceeding 1.23 V, the voltage at which electrolysis occurs. This could be achieved 

by getting the electrodes as close as possible while still allowing the beads to be mobile. 

If the potential difference was 10 V and the electrodes were 25 µm apart, an equivalent 

electric field could be obtained with 1.2 V if the electrodes were 3 µm apart. So to corral 

trap a charged 2.0 μm diameter bead, the electrodes should probably be 3.0 μm apart at 

most in order to get the best results. Since the dielectrophoretic force is directly 

proportional to the cube of the radius of the particle, FDEP ∝ r3, it is likely that trapping 

small particles on a molecular scale will be very difficult. On a small scale, electrostatics 

might be more advantageous than dielectrophoresis. So determining the optimal, 

consistent conditions for corral trapping with DC would still be beneficial. 
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Despite all of the interesting things that have already been achieved with 

dielectrophoresis, there doesn’t appear to be an adequate fundamental study. A 

fundamental study would account for all possible physical phenomenon that occur during 

electrokinetic processes. All of the factors that must be considered would be 

electrostatics, dielectrophoresis, electro-osmosis, drag forces on the particle, thermal 

gradients, and fluid pressure gradients. As soon as a particle begins to move, a 

directionally opposing drag force is immediately produced. High potential differences 

between two electrodes would likely cause large temperature differences, so a 

temperature gradient might also be a key factor in observed bead behavior as well as 

fluid pressure gradients in the solution. Lastly, adequate “z” data, the particle’s vertical 

height position, must also be acquired. The precise image of the bead at the surface of 

the bottom electrode and the image of the bead at the surface of the top electrode must 

be determined. The bead’s size and appearance, or point spread function, could then be 

correlated to its height along the z axis. 

The principle of using fields to manipulate and control particles can be done on a 

microscopic level. It is entirely possible these same principles could form the basis for 

nano-scale manipulation, possibly even on the single molecule level. Ultimately, a metal 

pattern that incorporates numerous geometries could potentially be used in a multi-step 

micro-scale manufacturing process. 

 

  



 

188 
 

References For Chapter 7 
 
1. Wayne E. Haven, Robert W. Pidd, Physics, 1965, Addison-Wesley Publishing 

Company, Inc., Reading, Massachusetts 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

  



 

189 
 

Xavier Sacro Udad 
 

University of Wisconsin-Milwaukee 
Department of Chemistry 

3210 N Cramer St 
Milwaukee, WI 53211 

 
 

Education 
 

 
University of Wisconsin-Milwaukee, Milwaukee, WI - Current 
PhD Student in Chemistry - Current 
 

• Areas of Concentration or Major: Chemistry 

• Pending Dissertation/Thesis: 
▪ Controlling and manipulating microscopic particles in 

solution by using various electric field geometries 
 
DePaul University, Chicago, IL - 2011 
MS in Chemistry - 2011 
 

• Areas of Concentration or Major: Chemistry 

• Dissertation/Thesis: 
▪ Investigating the process of fibril formation of the Iowa 

mutant of the Alzheimer’s peptide 
 
University of Illinois, Chicago, IL - 2001 
BS in Chemistry - 2001 
 

• Areas of Concentration/Major: Chemistry 
 
College of Lake County, Grayslake, IL – 1998 
AS – 1998 
 

• Areas of Concentration/Major: Chemistry 
 
 

Professional Skills 
 

 
Fluorescence Microscopy       Photolithography 
 
Confocal Microscopy       Metal Deposition 
 
Scanning Electron Microscopy      Optical Systems 



 

190 
 

Teaching and Research Experience 
 

 

• Fall 2011 – Present 
Research Assistant, UWM 

 

• Fall 2019 
Teaching Assistant, UWM 
Course: CHEM 100 – Chemical Science 
    CHEM 105 – General Chemistry for Engineering 

 

• Spring 2019 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

   CHEM 561 – Physical Chemistry I 
 

• Fall 2018 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

   CHEM 562 – Physical Chemistry II 
 

• Spring 2018 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 
    CHEM 561 – Physical Chemistry I 

 

• Fall 2017 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 
    CHEM 561 – Physical Chemistry II 

 

• Spring 2017 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

 

• Fall 2016 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

   CHEM 105 – General Chemistry for Engineering 
 

• Summer 2016 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

 
 
 



 

191 
 

• Spring 2016 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 
    CHEM 561 – Physical Chemistry I 

 

• Fall 2015 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

 

• Spring 2015 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 
    CHEM 561 – Physical Chemistry I 

 

• Fall 2014 
Teaching Assistant, UWM 
Course: CHEM 104 – General Chemistry II 

 

• Fall 2013 
Teaching Assistant, UWM 
Course: CHEM 101 – Chemical Science for Nurses 
    CHEM 562 – Physical Chemistry II 

 
 

National Conferences 
 

 
Poster Presentations 
 

• “Immobilizing a DNA molecule within an electrostatic corral”, Xavier S. 
Udad, Alaknanda A. Patel, Christine A. Carlson, and Jörg C. Woehl, SciX 
Conferenece, Milwaukee, WI – September 29, 2013 
 

• “Trapping a single DNA molecule within an electrical field”, Xavier S. 
Udad, Alaknanda A. Patel, Christine A. Carlson, and Jörg C. Woehl, SciX 
Conference, Kansas City, MO – September 30, 2012 

 
 

Regional Conferences 
 

 
Oral Presentations 
 

• “Controlling and manipulating microscopic particles in solution by using 
various electric field geometries”, Xavier S. Udad and Jörg C. Woehl, ACS 
Regional Meeting, Lisle, IL – May 2, 2019 



 

192 
 

Poster Presentations 
 

• “Isolating a single DNA molecule inside a corral trap”, Xavier S. Udad, 
Alaknanda A. Patel, Christine A. Carlson, and Jörg C. Woehl, ACS 
Regional Meeting, La Crosse, WI – 2013 

 
 

Departmental Symposiums 
 

 
Poster Presentations 
 

• “Controlling and manipulating microscopic particles in solution by using 
various electric field geometries”, Xavier S. Udad, Quintus S. Owen, Erika 
R. Johansen, Christine A. Carlson, and Jörg C. Woehl, Chemistry 
Department Awards Day, University of Wisconsin-Milwaukee, Milwaukee, 
WI – May 2019 
 

• “Electrokinetic trapping of particles with a corral trap that is implemented 
into a microfluidic system”, Xavier S. Udad, Christine A. Carlson, and Jörg 
C. Woehl, Chemistry Department Awards Day, University of Wisconsin-
Milwaukee, Milwaukee, WI – May 2018 

 

• “Corral trapping of nanoparticles in solution”, Xavier S. Udad, Christine A. 
Carlson, and Jörg C. Woehl, Chemistry Department Awards Day, 
University of Wisconsin-Milwaukee, Milwaukee, WI – May 2017 
 

• “Fabrication of a glass microfluidic flowcell for single particle tracking”, 
Xavier S. Udad, Quintus S. Owen, Richard Kellow, and Jörg C. Woehl, 
Chemistry Department Awards Day, University of Wisconsin-Milwaukee, 
Milwaukee, WI – May 2016 

 

• “Confining charged particles in solution with an electrical field generated 
by a corral trap”, Xavier S. Udad, Quintus S. Owen, Alaknanda A. Patel, 
Christine A. Carlson, and Jörg C. Woehl, Chemistry Department Awards 
Day, University of Wisconsin-Milwaukee, Milwaukee, WI – May 2015 

 

• “Theoretical electrokinetics and possible applications for immobilized 
charged particles”, Xavier S. Udad, Alaknanda A. Patel, Christine A. 
Carlson, and Jörg C. Woehl, Chemistry Department Awards Day, 
University of Wisconsin-Milwaukee, Milwaukee, WI – May 2014 

 
 

 
 
 



 

193 
 

Events 
 

 

• Graduate Student Research Symposium, Organizer, University of 
Wisconsin-Milwaukee, Milwaukee, WI – October 28, 2016 

 
 

Awards 
 

 

• Chemistry Supplemental Instruction Award, Chemistry Department 
Awards Day, University of Wisconsin-Milwaukee, Milwaukee, WI – May 
2018 

 


	Controlling and Manipulating Microscopic Particles in Solution By Using Various Electric Field Geometries
	Recommended Citation

	tmp.1580315763.pdf.R9ZMx

