
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

May 2020

Essays on Shipment Consolidation Scheduling and Decision Essays on Shipment Consolidation Scheduling and Decision

Making in the Context of Flexible Demand Making in the Context of Flexible Demand

Sepideh Alavi
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Business Administration, Management, and Operations Commons, and the Engineering

Commons

Recommended Citation Recommended Citation
Alavi, Sepideh, "Essays on Shipment Consolidation Scheduling and Decision Making in the Context of
Flexible Demand" (2020). Theses and Dissertations. 2344.
https://dc.uwm.edu/etd/2344

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=dc.uwm.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=dc.uwm.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/217?utm_source=dc.uwm.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2344?utm_source=dc.uwm.edu%2Fetd%2F2344&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

ESSAYS ON SHIPMENT CONSOLIDATION SCHEDULING AND

DECISION MAKING IN THE CONTEXT OF FLEXIBLE DEMAND

by

Sepideh Alavi

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Management Science

at

The University of Wisconsin-Milwaukee

May 2020

ii

ABSTRACT

ESSAYS ON SHIPMENT CONSOLIDATION SCHEDULING AND DECISION MAKING IN
THE CONTEXT OF FLEXIBLE DEMAND

by

Sepideh Alavi

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professors Xiaohang Yue and Matthew Petering

This dissertation contains three essays related to shipment consolidation scheduling and decision

making in the presence of flexible demand. The first essay is presented in Section 1. This essay

introduces a new mathematical model for shipment consolidation scheduling for a two-echelon

supply chain. The problem addresses shipment coordination and consolidation decisions that are

made by a manufacturer who provides inventory replenishments to multiple downstream

distribution centers. Unlike previous studies, the consolidation activities in this problem are not

restricted to specific policies such as aggregation of shipments at regular times or consolidating

when a predetermined quantity has accumulated. Rather, we consider the construction of a

detailed shipment consolidation schedule over a planning horizon. The problem sheds light on

the trade-off between transportation costs, manufacturer inventory holding costs, DC inventory

holding costs, and DC backorder costs. We develop a mixed-integer quadratic optimization

model to identify the shipment consolidation schedule that minimizes total cost. A genetic

algorithm is developed to handle large problem instances.

The other two essays explore the concept of flexible demand. In Section 2, we introduce a new

variant of the vehicle routing problem (VRP): the vehicle routing problem with flexible repeat

visits (VRP-FRV). This problem considers a set of customers at certain locations with certain

maximum inter-visit time requirements. However, they are flexible in their visit times. Unlike

most other VRPs, the same customer may be visited multiple times within one route. The VRP-

FRV has several real-world applications. One scenario is that of caretakers who provide service

to elderly people at home. Each caretaker is assigned a number of elderly people to visit one or

iii

more times per day. Elderly people differ in their requirements and the minimum frequency at

which they need to be visited every day. The VRP-FRV can also be imagined as a police patrol

routing problem where the customers are various locations in the city that require frequent

observations. Such locations could include known high-crime areas, high-profile residences,

and/or safe houses. We develop a math model to minimize the total number of vehicles needed to

cover the customer demands and determine the optimal customer visit schedules and vehicle

routes. A heuristic method is developed to handle large problem instances.

In the third study, presented in Section 3, we consider a single-item cyclic coordinated order

fulfillment problem with batch supplies and flexible demands. The system in this study consists

of multiple suppliers who each deliver a single item to a central node from which multiple

demanders are then replenished. Each supplier is capable of providing no more than a specific

batch size to the central node at a rate that cannot exceed a specified frequency. Moreover, each

demander must be replenished with a specific minimum amount over a regular replenishment

frequency. Importantly, demand is flexible and is a control action that the decision maker applies

to optimize the system. The objective is to minimize total system cost subject to several

operational constraints. The decisions include the timing and sizes of batches delivered by the

suppliers to the central node and the timing and amounts by which demanders are replenished.

We develop an integer programing model, provide several theoretical insights related to the

model, and solve the math model for different problem sizes.

iv

© Copyright by Sepideh Alavi, 2020

All Rights Reserved

v

This dissertation is dedicated to

my beloved parents.

vi

TABLE OF CONTENTS

Essay 1: Shipment Consolidation Scheduling and Inventory Control for a Two-Echelon Supply Chain 1

1.1. Abstract .. 1

1.2. Introduction .. 2

1.3. Related literature .. 3

1.4. Problem description and illustrative example .. 8

1.5. Mathematical formulation ... 14

1.5.1. Input parameters and decision variables .. 16

1.5.2. Objective function and constraints ... 18

1.6. Genetic algorithm ... 22

1.7. Experimental setup, results, and discussion .. 24

1.7.1. Generating problem instances .. 24

1.7.2. GA and CPLEX settings .. 25

1.7.3. Experiment 1 setup and results .. 26

1.7.4. Experiment 1 discussion .. 27

1.7.5. Experiment 2 setup and results .. 28

1.7.6. Experiment 2 discussion .. 32

1.8. Conclusion .. 33

References ... 35

Essay 2: The Vehicle Routing Problem with Flexible Repeat Visits .. 39

2.1. Abstract .. 39

2.2. Introduction .. 40

2.3. Related literature .. 41

2.3.1. Traveling salesman problems .. 42

2.3.2. Vehicle routing problems .. 43

2.3.3. Patrol routing problems ... 45

2.4. Problem description and illustrative example .. 47

2.5. Mathematical formulation .. 53

2.6. Heuristic algorithm .. 54

2.7. Experimental setup, results, and discussion ... 65

2.7.1. Generating problem instances ... 65

2.7.2. Hardware settings, CPLEX settings, heuristic settings, and termination criteria 66

2.7.3. Results and discussion .. 67

2.8. Conclusion ... 72

References ... 73

vii

Essay 3: Coordinated Order Fulfillment Planning for a Three-Echelon Supply Chain with Batch Supplies
and Flexible Demands ... 80

3.1. Abstract .. 80

3.2. Introduction .. 81

3.3. Literature review .. 83

3.4. Problem description ... 88

3.4.1. Problem applicability to industry .. 89

3.4.2. Illustrative example ... 90

3.5. Mathematical formulation .. 91

3.6. Theoretical insights .. 95

3.7. Method for automatically creating a feasible solution ... 105

3.8. Experiment setup, results, and discussion .. 116

3.8.1. Generating problem instances ... 116

3.8.2. Hardware settings, CPLEX settings, and termination criteria .. 117

3.8.3. Results for easy problem instances ... 117

3.8.4. Results for hard problem instances ... 121

3.9. Conclusion ... 123

References ... 124

viii

LIST OF FIGURES

Figure 1. Default solution to illustrative instance ... 11

Figure 2. Alternate solution #1 to illustrative instance ... 12

Figure 3. Alternate solution #2 to illustrative instance ... 13

Figure 4. Vehicle routes and visit times for the illustrative example .. 51

Figure 5. Summary of the procedure for each restart in the heuristic ... 55

Figure 6. Flowchart of the heuristic algorithm ... 59

Figure 7. Supply chain under consideration .. 88

Figure 8. Representation of a replenishment schedule for Theorem 3.. 100

Figure 9. Continuum of total replenishment amounts z .. 102

Figure 10. Method for automatically creating a feasible solution .. 105

Figure 11. Representation of minimal replenishment schedule .. 106

Figure 12. An example of minimal replenishment schedule ... 106

Figure 13. Schematic presentation of sliding a time window of length 𝐷𝑇ௗ in a cyclic manner 111

ix

LIST OF TABLES

Table 1. Indices, parameters, and decision variables in Math Model 1 .. 15
Table 2. Math Model 1 for shipment consolidation problem .. 21
Table 3. Genetic algorithm procedure ... 23
Table 4. Problem instances considered in the experiments ... 25
Table 5. GA settings used in the experiments ... 26
Table 6. Experiment 1 results ... 27
Table 7. Variations considered in experiment 2.. 28
Table 8. Experiment 2 results ... 30
Table 9. Parameters defining the illustrative instance part 1: CTc and (x,y) coordinates for customers 48
Table 10. Parameters defining the illustrative instance part 2: Dcd ... 48
Table 11. Feasible customer visit times .. 49
Table 12. Vehicle visit times in the feasible solution ... 49
Table 13. List of customers visited in the feasible solution .. 49
Table 14. Indices, parameters, and decision variables in Math Model VRP-FRV 53
Table 15. Math Model VRP-FRV ... 54
Table 16. Summary of the different solution improvement phases in the heuristic 60
Table 17. Initial VisitTime matrix ... 61
Table 18. Initial WhoIsVisited matrix ... 61
Table 19. Parameter values used in experiment 1 ... 65
Table 20. Parameter values used in experiment 2 ... 65
Table 21. Parameter values used for the heuristic method .. 66
Table 22. CPLEX results for experiment 1 ... 68
Table 23. Heuristic results for experiment 1 ... 68
Table 24. CPLEX results for experiment 2 ... 70
Table 25. Heuristic results for experiment 2 ... 70
Table 26. Input parameters for the illustrative instance .. 91
Table 27. Feasible solution for the illustrative instance .. 91
Table 28. Indices, parameters, and decision variables in Math Model 3 .. 93
Table 29. Math Model 3 for coordinated order fulfillment planning with FD .. 94
Table 30. Parameter values used in the experiments .. 117
Table 31. CPLEX results for the easy instances with objective A .. 119
Table 32. CPLEX results for the easy instances with objective B .. 120
Table 33. CPLEX results for the easy instances with objective C .. 120
Table 34. CPLEX results for the hard instances with objective A .. 121
Table 35. CPLEX results for the hard instances with objective B .. 122
Table 36. CPLEX results for the hard instances with objective C .. 122

x

ACKNOWLEDGEMENTS

I am using this opportunity to express my gratitude towards everyone who assisted me in

carrying out this dissertation. I would like to express my deepest gratitude to my advisors,

Professor Xiaohang Yue and Professor Matthew Petering for their continuous guidance, care,

patience, support, and providing me with an excellent atmosphere for conducting research. I

believe that I was truly fortunate to have such exceptional professors as my mentors in my life

and advisors in my Ph.D. studies. Their knowledge and high standards on research made it a

privilege to work with them.

I sincerely appreciate my dissertation committee members, Professor Kaan Kuzu, Professor

Samar Mukhopadhyay, and Professor Long Gao for their support, patience, insights and

suggestions. I am also grateful for their time and efforts in evaluating this research work.

Additionally, I also want to express my gratitude towards Professor Ehsan Soofi and Professor

Layth Alwan for all their support in my Ph.D. studies.

Above all, I would like to thank my dear and lovely parents Ahmad Alavi and Soheila

Keshavarzian who always amazingly encouraged me in continuing my education, and supported

me during the whole duration of my studies from far away.

I would also like to thank my lovely sister Zahrasadat who always made all her efforts to support

me in different aspects of my life. She has been my best friend in this long journey far from

home. Additionally, I would like to thank my beloved brother Mehdi and my beloved sister

Mahla. They were always supporting me and encouraging me with their best wishes.

1

Essay 1: Shipment Consolidation Scheduling and Inventory Control
for a Two-Echelon Supply Chain

1.1. Abstract

This essay introduces a new mathematical model for shipment consolidation scheduling in a two-

echelon supply chain. The problem addresses shipment coordination and consolidation decisions

that are made by a manufacturer who provides inventory replenishments to multiple downstream

distribution centers (DCs). Unlike previous studies, the consolidation activities in this problem

are not restricted to specific policies such as aggregation of shipments at regular times or

consolidating when a predetermined quantity has accumulated. Rather, we consider the

construction of a detailed shipment consolidation schedule over a planning horizon. The problem

sheds light on the trade-off between (1) transportation costs, (2) manufacturer inventory holding

costs, (3) DC inventory holding costs, and (4) DC backorder costs. We develop a mixed-integer

quadratic optimization model to identify the shipment consolidation schedule that minimizes

total cost. A genetic algorithm is developed to handle large problem instances. Experimental

results show the effectiveness of the proposed solution method.

2

1.2. Introduction

In nearly all production contexts, manufacturers fabricate products and distribute them to

consumers or to the next customer in the downstream industrial and retail distribution channel.

The business climate in which these manufacturers compete is shaped by (1) the ubiquitous role

of information technologies that are thought to improve the coordination of inventory decisions,

(2) the complexity of the surrounding supply chain, (3) demand volatility, and (4) the need for

strategic responsiveness to a variety of unexpected disruptions. As a result, designing supply

chain strategies and planning supply chain operations remain complex tasks. To ensure reliable

operations whilst preserving efficiency and cost effectiveness, manufacturers and their partners

must continually contend with inventory replenishment, transportation, production lot-sizing,

stockout/backordering, and shipment consolidation decisions (Russell and Krajewski, 1991).

Regarding shipment consolidation, decision makers must consider a number of practical issues

such as when to consolidate product shipments and which customer orders will be consolidated.

In this study, we consider a shipment consolidation problem for a two-echelon supply chain in

which a manufacturer replenishes inventory at multiple downstream distribution centers (DCs).

Unlike previous papers, the consolidation activities in this problem are not restricted to specific

policies such as aggregation of shipments at regular times or consolidating when a predetermined

quantity has accumulated. Rather, we consider the problem of constructing a detailed shipment

consolidation schedule that minimizes the sum of transportation, manufacturer inventory

holding, DC inventory holding, and DC backorder costs over a planning horizon. We develop a

mixed-integer quadratic programming model and genetic algorithm to identify the shipment

consolidation schedule (i.e. the DC inventory replenishment times and amounts) that minimizes

total cost.

The remainder of this study is organized as follows. Section 1.3 reviews the relevant literature on

coordinated replenishment and shipment consolidation. A formal description of the problem is

provided in Section 1.4. Section 1.5 presents a mathematical formulation of the problem. A

genetic algorithm is described in Section 1.6. In Section 1.7, we describe the experimental setup

and discuss the experimental results. We conclude in Section 1.8.

3

1.3. Related literature

In this study, we focus on coordinating shipments from a manufacturer to multiple downstream

distribution centers when there is transportation, inventory holding, and backorder costs. Two

main streams of literature relate to our work. The first stream considers joint production-

inventory replenishment decisions. The second stream of literature considers shipment

consolidation decisions. We now discuss these two streams in detail.

Joint production-inventory replenishment problems have been studied broadly in the literature

for two-echelon supply chains. These include studies which develop deterministic and stochastic

models. Stochastic integrated production-inventory models with random production yield have

been studied by Huang (2004), Papachristos and Konstantaras (2006), Maddah and Jaber (2008),

Kelle et al. (2009), Chen and Kang (2010), and Liu and Çetinkaya (2011). Our work assumes a

deterministic setting. Therefore, we focus our attention on the deterministic models described

below.

The theme of deterministic, integrated production-inventory replenishment studies is that a

coordinated production and replenishment policy minimizing the joint total cost incurred by both

parties is more desirable than the individual optimal policies (Banerjee and Burton 1994). The

assumption is that the product is manufactured continuously or in batches at a finite rate and is

depleted by the buyer’s replenishment orders. The buyer’s inventory is then consumed by market

demand at a fixed rate. These problems aim to jointly derive the manufacturer’s production lot-

size and the buyer’s replenishment order quantity in order to minimize total costs incurred by

both vendor and buyer. The total cost usually includes the inventory holding costs at the vendor

and the buyer, vendor’s setup cost, vendor’s unit production cost, and buyer’s ordering cost. The

papers in this stream build on each other in terms of policies to determine replenishment sizes.

The buyer’s replenishments may be equally sized (Lu 1995) or have different sizes as in Hill

(1997).

Joint production-inventory replenishment has been studied for a vendor supplying product(s) to a

single or multiple buyers. For a single-vendor, single-buyer system, Goyal (1988) requires the

supplier’s production batch to be an integer multiple of the buyer’s shipment size and assumes a

shipment is sent to the buyer only after the batch production is completed. Goyal (1995)

generalized the results of this model by considering the sizes of successive shipments in each

4

production cycle to increase by a rate equal to the ratio of production and demand rate. A more

generalized policy for the size of shipments was developed by Hill (1997). Also, Viswanathan

(1998) compared the performance of different policies studied in the aforementioned papers.

Following up on the previous studies, Hill (1999) obtained the integrated optimal production and

shipment policy which includes successive shipments with increasing sizes followed by a

sequence of equal-sized shipments. Goyal and Nebbebe (2000) provided a note on Hill’s study

and consider one small-sized shipment followed by equal-sized shipments to ensure quick

delivery of the first shipment. Toptal and Çetinkaya (2008) obtain analytical results for

replenishment order quantities for the vendor and the buyer under different replenishment cost

structures.

Several studies consider single-vendor, multiple-buyer settings. For example, Banerjee and

Burton (1994) show that classical lot sizing models do not adequately describe a situation where

a single vendor produces and supplies a product to multiple customers who buy in discrete lots.

They suggest a common replenishment cycle-based inventory model. Lu (1995) extends the

results of Goyal (1988) to release shipments before the complete batch is produced. He develops

a model to solve for the buyer’s optimal economic order quantity for one-vendor, one-buyer and

one-vendor, multiple-buyer cases. These studies provide a foundation for joint replenishment

decisions. However, they do not focus on order consolidation where the vendor can take

advantage of economies of scale and reduce transportation costs. All of the above studies assume

that a common order frequency must be adopted by the buyers. In this research, we loosen this

assumption.

Vendor Managed Inventory (VMI) is an important concept within the integrated production-

inventory replenishment literature that continues to receive the attention of researchers and

practitioners. Under this strategy, the vendor assumes responsibility for managing inventories at

retailers—choosing a shipment time and replenishment quantity—using advanced or online

tracking systems (Çetinkaya and Lee 2000, 2002; Taleizadeh et al. 2015). The VMI arrangement

allows a vendor to determine the optimal timing and quantity of replenishment to retailers

without shipment constraints. Most such studies do not consider shipment consolidation as an

explicit decision, so the vendor is unable to take advantage of economies of scale. Cheung and

Lee (2002), however, incorporate shipment consolidation decisions into a VMI context. They

5

study utilizing information on the retailers' inventory positions to coordinate shipments from the

supplier to enjoy economies of scale in shipments, such as shipping full truckloads, but they do

not consider the backorder costs of delaying shipments for retailers that are considered in the

current study. Çetinkaya et al. (2006) and Mutlu and Çetinkaya (2010) develop models in a VMI

context under specific consolidation policies which include a customer waiting time penalty. The

above studies only incorporate inventory costs at the vendor and do not consider inventory

holding costs at the buyers. The current research, on the other hand, considers a different

situation in which buyers hold inventory but do so at a generally lower holding cost than the

vendor.

The shipment consolidation literature is another stream of literature relevant to this study. The

main motivation of shipment consolidation is to take advantage of the decreased per unit

dispatch costs due to transportation economies of scale. However, shipment consolidation is

usually performed at the expense of prolonged order holding at the vendor and therefore

customer waiting due to delayed delivery. Thus, inventory replenishment and shipment

consolidation must be optimized jointly.

The literature on shipment consolidation focuses on three types of consolidation policies: time-

based policies, quantity-based policies, and time-and-quantity (TQ)-based policies as well as

same-day delivery problems. We first discuss three shipment consolidation policies. A time-

based policy dispatches accumulated orders every T periods whereas a quantity-based policy

dispatches accumulated orders when a predetermined economic dispatch quantity has been

reached. Under a TQ-based policy, a consolidated shipment is released either when the target

load is accumulated or when the waiting time of an order exceeds a certain limit.

Time-based consolidation policies have been the focus of several studies over the last twenty

years. A time-based policy was first studied by Çetinkaya and Lee (2000). They develop a

renewal theoretical model in a VMI setting for the case of Poisson demands and compute the

optimal replenishment quantity and dispatch frequency simultaneously. An approximate solution

is derived in their study. Axsäter (2001) later provides an exact solution. Çetinkaya and Lee

(2002) revisit the problem in Çetinkaya and Lee (2000). They assume a deterministic constant

demand and examine a non-stationary consolidation policy under step-wise cargo costs. Later, a

review on coordination of inventory and shipment consolidation decisions was studied in

6

Çetinkaya (2005). Moon et al. (2011) extend the results of Çetinkaya and Lee (2002) to consider

multiple items and develop two joint replenishment and consolidated freight delivery policies for

a third party warehouses. Howard and Marklund (2011) study a one-warehouse, multiple-retailer

system with time-based shipment consolidation at the warehouse. They evaluate cost benefits of

using state-dependent myopic allocation policies instead of a first-come first-serve (FCFS)

policy to allocate shipments to retailers. Stenius et al. (2016) propose a model for time-based

consolidation with backorder costs at retailers where allocation of orders is based on FCFS.

Shipment consolidation and pricing decisions have been jointly investigated in Ülkü and

Bookbinder (2012) as well as Hong and Lee (2013). Ülkü and Bookbinder (2012) propose four

temporal pricing schemes and derive the corresponding optimal length of shipment consolidation

cycles and the prices. Hong and Lee (2013) show that jointly deciding consolidation timing and

price significantly improves the total profit compared to a time-based policy without pricing.

Çetinkaya et al. (2006, 2008) consider general bulk demand processes under quantity-based

policies.

TQ policies have also attracted significant research attention from researchers. Mutlu et al.

(2010) is the first study to provide an exact analytical model for computing optimal parameters

for the TQ-based policy (the target load q and maximum waiting time) in a pure consolidation

setting without inventory costs. Multiple other studies investigate both time-based and quantity-

based policies or compare the performance of all three policies. Çetinkaya and Bookbinder

(2003) apply renewal theory to two quantity-based and time-based shipment consolidation

policies. Chen et al. (2005) and Çetinkaya et al. (2006) present two models based on quantity-

based and time-based policies for joint stock replenishment and shipment consolidation in the

context of VMI. Çetinkaya et al. (2006) show that quantity-based models result in substantial

cost savings compared to time-based models. They also show that TQ policies lead to better

service for the retailer when service is measured by the long-run average cumulative waiting

time. All of these integrated models consider private carriage which is used when shipment sizes

are large enough to justify full truckloads.

Extending the previous works, Mutlu and Çetinkaya (2010) develop a model within a VMI

context to find the integrated policy for inventory replenishment and outbound shipment

scheduling for both time-based and quantity-based consolidation policies. They consider

7

common carriage in which the transportation cost structure has a more complex form and

charges reflect the economies of scale. Swenseth and Godfrey (2002) specifically address the

practical complexities of incorporating transportation costs into inventory replenishment

decisions from the carrier perspective. They motivate and show the relevance of shipping costs

in the form of inverse freight rate functions. Hong and Lee (2013) show that the quantity-based

policy outperforms their proposed integrated pricing and time-based policy in terms of total

profit. They also show that their proposed TQ policy does not reduce service quality. Çetinkaya

et al. (2014) study the performance of alternative consolidation policies based on service–based

criteria and study the trade-off between expected consolidation cycle length and the average

order delay. They numerically demonstrate that the TQ-based policies improve on the quantity-

based policies in terms of the expected maximum waiting time. Bookbinder et al. (2011) and Cai

et al. (2014) are other studies which also show that TQ-based policies improve on the quantity-

based policies.

We now discuss the problem of same-day deliveries. In the same-day delivery problems, the

decision maker dynamically receives order requests during the day and must decide when to

dispatch a vehicle that delivers (a subset of) the accumulated orders. If a request is not fulfilled

during the day, a penalty is incurred. Voccia et al. (2019) define a corresponding Markov

decision model and propose a solution method that takes into account information about future

requests. Arslan et al. (2016) solve a ride-sharing variant of the problem using a rolling horizon

approach. Klapp et al. (2018) study a single-vehicle variant of this problem in which the

customers are located on a line and route duration depends only on the customer located farthest

away from the depot. These papers focus on same-day delivery and as a result, the penalty is

incurred only if the order is not satisfied during the day. Our study considers penalty for

backorders caused by delayed shipments at any time throughout the day. Van Heeswijk et al.

(2019) study the delivery dispatching problem with time windows. This paper addresses the

dispatching problem with dispatch time windows faced by an urban consolidation center. The

center receives orders according to a stochastic arrival process and dispatches them in batches for

the last-mile distribution. In their study, every order must be shipped within its dispatch window.

Our problem considers order schedules for each distribution center characterized by the default

order quantity and timing. Unlike their study, our work explores accumulating orders which will

make changes to the default order schedules.

8

This study builds on the shipment consolidation ideas that have been explored in the literature

and proposes a model which is novel in at least two ways. First, we consider the impact of

consolidation on the inventory levels at both the manufacturer and downstream distribution

centers. Second, we do not assume a particular kind of shipment consolidation policy. Rather, we

consider the problem of constructing a detailed consolidation schedule over a (cyclic) planning

horizon. To our knowledge, this is the first study to propose a scheduling approach for shipment

consolidation decisions in a two-echelon supply chain.

1.4. Problem description and illustrative example

Consider a single-item two-echelon supply chain consisting of a manufacturer and D

downstream distribution centers (DCs). The item (i.e. product) is infinitely divisible, and time is

discretized into periods. Each DC demands from the manufacturer a fixed quantity of the item at

a specific frequency. In particular, DC d demands exactly Qd units of the product (Qd is a real

number > 0) every Fd periods (Fd is an integer ≥ 2). The item is continuously consumed at each

DC at a constant, deterministic rate that equals the long-run rate at which the DC demands items

from the manufacturer. In other words, the item is consumed at DC d at the constant rate of

Qd/Fd units per period. Items that have been received by a DC but not consumed are held as

inventory at the DC, and the default inventory diagram for each DC—if there is no consolidation

of shipments and each DC is replenished individually according to its preferred timing and

quantity—is a perfect sawtooth curve whose repeating pattern consists of a vertical rise followed

by negative sloping line segment down to zero.

The manufacturer continuously produces the item at a constant, deterministic rate that is just

enough to keep pace with the combined consumption at the DCs. This production rate cannot be

increased or decreased. Items are transported from the manufacturer to the DCs via trucks whose

travel times are negligible compared to the duration of a period. The trucks are assumed to be

large enough (or the items small enough) so that there is no limit on the number of items that can

be transported in, or the number of DCs that can be served by, one truck. Items that have been

produced but not yet sent to a DC are held as inventory at the manufacturer, and the

manufacturer’s default inventory diagram—if there is no consolidation of shipments from the

manufacturer to the DCs—is an irregular sawtooth curve containing two types of line segments:

positive sloping line segments of equal slope (corresponding to production) and vertical drops

9

(corresponding to truck departures from the manufacturer). The operations repeat every T

periods where T = LCM(F1, F2,…, FD). Hence, the inventory status at the manufacturer and each

DC repeats every T periods.

Four types of cost are considered: (1) transportation costs, (2) manufacturer inventory holding

costs, (3) DC inventory holding costs, and (4) DC backorder costs. Regarding category 1, CT is

the fixed cost in dollars of one truck departure from the manufacturer (to one or more DCs).

Regarding categories 2 and 3, CHM (CHd) is the manufacturer’s (DC d’s) cost in dollars of

holding one unit of inventory per period. Regarding category 4, CBd is DC d’s cost in dollars of

backordering one unit of inventory per period, i.e. the cost per unit of negative inventory held at

DC d per period.

We make two additional assumptions. First, DC inventory cannot be replenished earlier than

demanded, but it can be replenished later than demanded. This assumption is appropriate in cases

of limited DC personnel and/or high transportation costs which make it logistically or

economically impossible to replenish DCs more frequently (on average) than indicated by the Fd

parameters. Second, the inventory at all DCs is fully replenished—to a level equivalent to that in

each DC’s default inventory diagram—whenever a truck departs from the manufacturer. In other

words, the inventory status at every DC and the manufacturer reverts to the default scenario

whenever a truck departs from the manufacturer; partial restoration of inventory stocks at one or

more DCs is not allowed. For reasonable cost structures, this assumption logically follows from

the (a) infinite truck capacity and (b) fixed truck cost assumptions above which make it

economically foolish to partially restore inventory stocks at one or more DCs when a truck

departs from the manufacturer. The second assumption above means that DC d is always

resupplied in amounts that are integer multiples of Qd. This could be an appropriate

assumption—independent of (a) and (b) above—if DC d only receives items in containers of size

Qd.

The objective is to identify a shipment consolidation schedule for the T-period cycle—that is, to

decide the real-valued times when trucks should depart from the manufacturer—so the total cost

incurred by all parties during a cycle is minimized.

Figure 1 illustrates an instance of this problem in which D = 2, Q1 = 7, F1 = 5, Q2 = 9, and F2 =

3. In this scenario, DC 1 demands a replenishment of size 7 every five periods, and DC 2

10

demands a replenishment of size 9 every three periods. Also, CT = 200, CHM = 10, CH1 = 9,

CH2 = 10, CB1 = 20, and CB2 = 30. Note that T = LCM(F1, F2) = LCM(5, 3) = 15 in this

instance. We use the term replenishment to refer to a unique instance during the cycle in which

the inventory at a particular DC is re-stocked in the default scenario (in which there is no

consolidation of shipments). For example, there are eight replenishments in the instance shown

in Figure 1—three to DC 1 (at default times 5, 10, and 15) and five to DC 2 (at default times 3, 6,

9, 12, and 15).

Figure 1 shows inventory plots for the two DCs and the manufacturer in the default scenario in

which the manufacturer replenishes the DCs exactly as demanded with no shipment

consolidation. In other words, the manufacturer sends a shipment of size 7 to DC 1 every five

periods and a shipment of size 9 to DC 2 every three periods. Figures 1a and 1b show the

resulting inventory diagrams for the DCs which are perfect sawtooth curves. Note that DC 1 (2)

consumes a total of 21 (45) units of the product during the 15-period cycle. Figure 1c shows the

inventory curve for the manufacturer who produces the item at the rate of 66 units every 15

periods which is just enough to keep pace with the consumption at the DCs. In other words, the

manufacturer produces the item at the constant rate of 66/15 units per period which is the slope

of every positive sloping line segment in its inventory diagram.

11

Figure 1. Default solution to illustrative instance

 (x-axis measures time; y-axis measures inventory quantity)

Figure 1a: DC 1 Inventory Status

Figure 1b: DC 2 Inventory Status

Figure 1c: Manufacturer Inventory Status

The total cost of the operation shown in Figure 1 is $3747.5 per cycle. This consists of $472.5 in

inventory holding costs at DC 1; $0 in backorder costs at DC 1; $675 in inventory holding costs

at DC 2; $0 in backorder costs at DC 2; $1200 in inventory holding costs at the manufacturer;

and $1400 in transportation costs per cycle. The $472.5 equals $9 times the area under DC 1’s

inventory diagram; $675 equals $10 times the area under DC 2’s inventory diagram; $1200

equals $10 times the area under the manufacturer’s inventory diagram; and $1400 equals the cost

per truck (= $200) times the number of truck departures from the manufacturer—i.e. the number

of vertical drops in the manufacturer’s inventory diagram—during the cycle (= 7).

Figure 2 shows inventory plots for the two DCs and the manufacturer in an alternate scenario in

which there is some shipment consolidation. Here, DC 1’s first replenishment—originally

scheduled at time 5—is delayed by one period so it can be consolidated with (i.e. sent in the

same truck as) DC 2’s second replenishment at time 6. Also, DC 2’s third replenishment—

originally scheduled at time 9—is delayed by one period so it can be consolidated with DC 1’s

second replenishment at time 10. The consolidation reduces transportation and DC inventory

0

7

0 5 10 15

0

9

0 3 6 9 12 15

0
4
8

12
16

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

12

holding costs but increases manufacturer inventory holding and DC backorder costs. In

particular, transportation costs decrease compared to Figure 1 because two fewer trucks depart

the manufacturer per cycle. Also, DC inventory holding costs (i.e. the area above the x-axis and

below the solid DC inventory curves) decrease compared to Figure 1. However, the

manufacturer’s inventory holding cost increases, and DC backorder costs (i.e. the area below the

x-axis and above the solid DC inventory curves) increase. The total cost of the operation shown

in Figure 2 is $3434.8 per cycle. In Figure 2, dashed lines indicate the default solution from

Figure 1, and shaded regions indicate DC backorder costs.

Figure 2. Alternate solution #1 to illustrative instance

Dashed lines indicate default solution (Figure 1) and shaded regions indicate DC backorders.

Figure 2a: DC 1 Inventory Status

Figure 2b: DC 2 Inventory Status

Figure 2c: Manufacturer Inventory Status

Figure 3 shows a second alternative in which there is even more shipment consolidation. Here,

DC 1’s first, DC 2’s second, and DC 2’s third replenishment—originally scheduled at time 5, 6,

and 9 respectively—are delayed and consolidated with DC 1’s second replenishment at time 10.

Also, DC 2’s fourth replenishment—originally scheduled at time 12—is delayed by three periods

to be consolidated with DC 2’s final replenishment at time 15. In this scenario, only three trucks

depart the manufacturer per cycle. Also, DC inventory holding costs are much lower than in

-2

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

-3

9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
5

10
15
20

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13

Figures 1-2. However, the manufacturer’s inventory holding cost and DC backorder costs are

much higher than in Figures 1-2. The total cost of the operation in Figure 3 is $4990 per cycle.

Overall, the scenario depicted in Figure 2—with a modest amount but not too much shipment

consolidation—achieves the lowest total cost per cycle among the three alternatives. The

preceding discussion indicates that the problem under investigation is not trivial and requires a

sophisticated solution approach.

Figure 3. Alternate solution #2 to illustrative instance

Dashed lines indicate default solution (Figure 1) and shaded regions indicate DC backorders.

Figure 3a: DC 1 Inventory Status

Figure 3b: DC 2 Inventory Status

Figure 3c: Manufacturer Inventory Status

-7

0

7

0 5 10 15

-12
-9
-6
-3
0
3
6
9

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
5

10
15
20
25
30
35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14

1.5. Mathematical formulation

A mixed-integer quadratic programming (MIQP) formulation of the problem (Math Model 1) is

shown in Tables 1-2. The primary input parameters shown at the top of Table 1 are used to

derive the values of the secondary input parameters listed in the middle of Table 1. Decision

variables are shown at the bottom of Table 1. The model makes three important assumptions.

First, the manufacturer’s production rate is fixed and cannot be changed. Second, DC inventory

cannot be replenished earlier than demanded, but it can be replenished later than demanded.

Third, the inventory at all DCs is fully replenished whenever a truck departs from the

manufacturer. In other words, the inventory status at every DC and the manufacturer reverts to

the default scenario (see Section 1.4) whenever a truck departs from the manufacturer. For

example, at time 10 in Figure 3, the inventory status at the manufacturer and all DCs is restored

to the default scenario shown in Figure 1; partial restoration of inventory stocks at one or more

DCs is not allowed.

15

Table 1. Indices, parameters, and decision variables in Math Model 1

Indices
d Distribution center (DC) (d = 1 to D)
r Replenishment (r = 1 to R)
c Consolidation opportunity (c = 1 to R)
Primary Input Parameters
D Number of DCs (integer, ≥ 2)
Fd Default frequency at which DC d is restocked (integer, ≥ 2)
Qd Default quantity sent to DC d when it is restocked (real, > 0)
CT Cost in dollars of sending one truck from the manufacturer to restock one or more DCs (real, ≥ 0)
CHM Cost in dollars of holding one unit of inventory per period at manufacturer (real, ≥ 0)

CHd Cost in dollars of holding one unit of inventory per period at DC d (real, ≥ 0)

CBd Cost in dollars of backordering one unit of inventory per period at DC d (real, ≥ 0)

Secondary Input Parameters
T Cycle length for the entire operation, (T=LCM(F1, F2, …, FD)) (integer, > 0)

Rd Number of DC d replenishments in each cycle ቀ𝑅ௗ =
்

ி೏
ቁ (integer, > 0)

R Total number of individual replenishments made per cycle. Replenishments are ordered according

to DC then according to time from 0 to T (𝑅 = ∑ 𝑅𝑑𝑑) (integer, > 0)
DTr Default time when replenishment r occurs if there is no consolidation (integer, > 0)
Ird = 1 if replenishment r is for DC d; = 0 otherwise (binary)

Sizer Size of (i.e. quantity associated with) replenishment r ൫𝑆𝑖𝑧𝑒𝑟 = ∑ 𝐼𝑟𝑑𝑄
𝑑𝑑 ൯ (real, > 0)

TotalQ Total quantity produced in one cycle (𝑇𝑜𝑡𝑎𝑙𝑄 = ∑ 𝑅ௗௗ 𝑄ௗ) (real, > 0)
P Production rate (per period) at manufacturer (P = TotalQ/T) (real, > 0)
Decision Variables
Wc End of time window for consolidation opportunity (CO) c (real, ≥ 0, ≤ T)

 Timec Departure time of (real or fictitious) truck for CO c (real, ≥ 0, ≤ T)






0

1
rcY

If replenishment r is assigned to CO c

Otherwise (binary)
 Tr Time when replenishment r occurs (real, ≥ 0, ≤ T)
Lr Lateness of replenishment r (due to consolidation with other replenishments) (real, ≥ 0)






0

1
cZ

If at least one replenishment is assigned to CO c (i.e. if CO c is real and requires a truck departure)

Otherwise (binary)

 Gdc Greatest delay of a DC d replenishment that is assigned to CO c. This equals zero if no DC d
replenishment is assigned to CO c (real, ≥ 0)

 DelayFulldc Maximum number of full DC d inventory cycles worth of delay for a DC d replenishment that is
assigned to CO c. This equals zero if no DC d replenishment is assigned to CO c (integer, ≥ 0)

 DelayFracdc Smallest lateness among all DC d replenishments that are assigned to CO c. This equals zero if no
DC d replenishment is assigned to CO c (real, ≥ 0)






0

1
rdcX If replenishment r is the most delayed DC d replenishment that is assigned to CO c

If replenishment r is not for DC d, r is not assigned to CO c, or r is not the most delayed DC d
replenishment that is assigned to CO c (binary)

16

1.5.1. Input parameters and decision variables

Three primary input parameters define the system design and operations. Parameter D is the

number of DCs that receive inventory from the manufacturer. Parameters Fd and Qd are the

frequency and quantity associated with DC d’s demand process (Figure 1). They are also the

frequency and quantity with which DC d is restocked in the default scenario (in which there is

no shipment consolidation). Four primary input parameters are cost related. Parameter CT is the

cost per truck that departs from the manufacturer. Parameter CHM (CHd) is the manufacturer’s

(DC d’s) cost of holding one unit of inventory per period. Parameter CBd is DC d’s cost of

backordering one unit of inventory per period.

The secondary input parameters are as follows. Parameter T is the operational cycle length which

equals LCM(F1, F2,…, FD). Parameter Rd is the number of replenishments made to DC d in each

cycle. For example, (R1, R2) = (3, 5) in Figures 1-3. Parameter R is the total number of unique

replenishments made to all DCs during the cycle. Replenishments are indexed first according to

DC then according to time from 0 to T. Parameter DTr is the default time when replenishment r

occurs (if there is no consolidation). Parameter Ird indicates if replenishment r is for DC d or not.

Parameter Sizer is the size of (i.e. quantity associated with) replenishment r. For example, in

Figures 1-3, R = 8 and replenishments (1, 2, 3, 4, 5, 6, 7, 8) are for DC (1, 1, 1, 2, 2, 2, 2, 2) and

have default times (5, 10, 15, 3, 6, 9, 12, 15) and sizes (7, 7, 7, 9, 9, 9, 9, 9) respectively.

Parameter TotalQ is the total quantity produced by the manufacturer—which equals the total

quantity consumed at all DCs—during one cycle. This equals 66 in Figures 1-3. Finally, P is the

manufacturer’s constant production rate. This equals 66/15 in Figures 1-3. Note that the values of

all secondary input parameters are derived from the primary input parameters.

Ten decision variables give the decision maker flexibility in deciding when the R replenishments

take place. The most fundamental decision variable, Tr, is the time when replenishment r occurs.

This variable is real-valued and ranges from 0 to T. In the model, we exhaustively divide the

[0,T] time horizon into R discrete, non-overlapping time intervals such that at most one truck

departs from the manufacturer during each interval. Real-valued decision variables Wc (c = 1 to

R) determine the upper endpoints of these R intervals; 0 is the lower endpoint of the first interval;

and variables Wc (c = 1 to R-1) determine the lower endpoints of intervals 2 to R. We say there is

one consolidation opportunity (i.e. CO) per interval. In other words, we assume that there is one

17

opportunity for a truck to depart the manufacturer in each interval. Thus, there are R

consolidation opportunities during the cycle.

Attached to each CO is an instant of time—Timec—when zero, one, or several of the

aforementioned replenishments may simultaneously occur (i.e. when a truck may depart from the

manufacturer). No other trucks may depart from the manufacturer during the time window

corresponding to CO c. Binary decision variable Yrc indicates which replenishment r (r = 1 to R)

is assigned to which CO c (c = 1 to R). Binary variable Zc tracks whether at least one

replenishment is assigned to CO c. If this equals 1, an extra truck is dispatched at a cost of CT;

otherwise no extra truck is dispatched. Variable Lr is the lateness of replenishment r. This

variable equals zero if replenishment r is made at its default time DTr.

As mentioned above, the model assumes that the inventory status at every DC and the

manufacturer reverts to the default scenario whenever a truck departs from the manufacturer, i.e.

whenever a CO is utilized and variable Zc = 1. The four decision variables Gdc, DelayFulldc,

DelayFracdc, and Xrdc keep track of the DCs and replenishments involved in each CO; they help

to evaluate the cost of consolidation in the model’s objective function. Variable Gdc is the

greatest delay of a DC d replenishment that is assigned to CO c. This equals Fd*DelayFulldc +

DelayFracdc, where DelayFulldc (“full” meaning “full DC inventory cycle”) is the integer portion

of Gdc/Fd and DelayFracdc (“frac” meaning “fraction of a DC inventory cycle”) is the remainder

when Gdc is divided by Fd. Variables Gdc, DelayFulldc, and DelayFracdc equal zero if no DC d

replenishment is assigned to CO c. Binary variable Xrdc equals 1 if replenishment r is the most

delayed DC d replenishment that is assigned to CO c.

Consider the solution shown in Figure 3. The values of the decision variables for this solution are

as follows. The value of Tr is (10, 10, 15, 3, 10, 10, 15, 15) and Lr is (5, 0, 0, 0, 4, 1, 3, 0) for r =

(1, 2, 3, 4, 5, 6, 7, 8) respectively. There are eight Timec variables and three of them—say Time1,

Time5, and Time8—equal 3, 10, and 15. The other five may take any values as long as Timec-1 <

Timec for all c from 2 to R (see constraints 2-4 in the math model). Eight of the 64 Yrc

variables—namely Y15, Y25, Y38, Y41, Y55, Y65, Y78, Y88—equal 1; the others equal zero. Three Zc

variables—namely Z1, Z5, Z8—equal 1; the others equal zero. Three of the 16 Gdc variables—

namely G15, G25, G28—equal 5, 4, and 3 respectively and the others equal zero; these variables

assist in computing backorder costs. Variables (DelayFull15, DelayFull25, DelayFull28) = (1, 1, 1)

18

respectively; they are the integer portion of (5, 4, 3) divided by (5, 3, 3) respectively. In other

words, the three backordering situations in Figure 3 exist for at least one but less than two full

DC inventory cycles. Variables (DelayFrac15, DelayFrac25, DelayFrac28) = (0, 1, 0)

respectively; they are the remainder when (5, 4, 3) is divided by (5, 3, 3) respectively. Variables

DelayFulldc and DelayFracdc are used to compute the reduction in DC inventory holding costs

compared to the default scenario shown in Figure 1. Five of the 128 Xrdc variables—namely X115,

X318, X421, X525, X728—equal 1; the others equal zero.

1.5.2. Objective function and constraints

The mathematical model is shown in Table 2. The five parts of the objective function consider

(1) transportation, (2) DC backorder, (3) manufacturer inventory holding, and (4-5) DC

inventory holding costs respectively. Part 1 is a basic multiplication of CT times the number of

Zc variables that equal 1. In part 2, variable Gdc—the greatest delay of a DC d replenishment

that’s assigned to CO c—is used to compute the backorder cost for each possible combination of

d and c. Note that Gdc equals zero if no DC d replenishment is assigned to CO c. Note in Figures

2-3 that backorder cost equals CBd times the area of a triangle that exists below the x-axis in DC

d’s inventory diagram. The base of the triangle is Gdc; its height is (Gdc)[(Qd)/(Fd)]; and division

by two gives the area of the triangle.

Part 3 equals CHM multiplied by the area under the manufacturer’s inventory diagram. This

latter quantity equals (A) the area under the inventory diagram in the default scenario (Figure 1)

plus (B) any additional area that exists due to delayed replenishments. For example, in Figure 3c,

this equals (A) the area below the dashed curve plus (B) the area above the dashed curve and

below the solid curve. Item A equals the sum of Qd*T/2 over all d, and item B equals the sum of

Ird*Lr*Qd over all r and d which is the total area of all parallelograms into which the region

above the dashed curve and below the solid curve can be divided. The formula for item A is

obtained by recognizing that the area under the manufacturer’s inventory diagram in the default

scenario (Figure 1) equals the total area under all DC inventory diagrams in this scenario.

Part 4 computes total DC inventory holding cost in the default scenario; this equals CHd times

the duration of the cycle T times the average height of DC d’s inventory diagram during the

cycle—Qd/2—summed over all d. Part 5 is the reduction in DC inventory holding costs due to

19

consolidation. Note that the quantity in large square brackets is zero if DelayFulldc =

DelayFracdc = 0. Otherwise, it should equal the total area below the dashed curve and above the

x-axis in DC d’s inventory diagram. For example, in Figure 3b, this equals the area of three

triangles with base 3 and height 9 minus the area of one triangle with base 2 and height 6.

Roughly speaking, the first term in square brackets is the total area of the larger (3 by 9)

triangles, and the second term is the total area of the smaller (2 by 6) triangles. Note that parts 2

and 5 of the objective function are quadratic.

Constraint (2) establishes the Wc variables as markers for the ends of the R time intervals into

which the T-period cycle is divided. Constraints (3-4) ensure there is exactly one CO during

each time interval, i.e. exactly one time Timec during each time interval when a truck is allowed

to depart from the manufacturer. Constraint (5) ensures that each replenishment is assigned to

exactly one of the aforementioned time intervals (i.e. COs). If replenishment r is assigned to CO

c (i.e. if Yrc = 1), constraints (6-7) ensure that the time Tr when replenishment r occurs equals the

time Timec when the truck connected to CO c departs the manufacturer; otherwise these

constraints have no effect. Constraint (8) ensures that replenishments take place no earlier than

their default times. Constraint (9) enforces the proper relationship among variables Lr and Tr.

Constraint (10) requires that Zc = 1 if Yrc equals 1. In other words, a real truck departure is

connected to CO c if at least one replenishment is assigned to CO c.

Constraints (11-16) ensure that Gdc is properly computed. Constraint (11) ensures that Gdc is at

least Lr if replenishment r is for DC d and replenishment r is assigned to CO c. Constraint (12)

forces at least one variable Xr’dc (r’ = 1 to R) to equal one if both Ird and Yrc are one. Note that,

when both Ird and Yrc are one, at least one replenishment—namely r—is for DC d and is assigned

to CO c. In this case the constraint guarantees that at least one replenishment r’ is identified as

the most delayed DC d replenishment that is assigned to CO c. Constraints (13-14) force variable

Xrdc to be zero if either Ird or Yrc is zero. Constraint (15) ensures that Gdc = 0 if all variables Xrdc

(r = 1 to R) are zero, i.e. if there is no DC d replenishment that is assigned to CO c. Constraint

(16) states that Gdc is at most Lr if variable Xrdc is one, i.e. if replenishment r is identified as the

most delayed DC d replenishment that is assigned to CO c. Constraints (16) and (11) together

ensure that (a) Gdc equals Lr when r is the most delayed DC d replenishment that is assigned to

CO c and (b) Xrdc = 1 correctly identifies the most delayed DC d replenishment assigned to CO c.

20

Constraints (17-19) break the delay term Gdc into two portions: DelayFulldc and DelayFracdc.

The former is the integral number of full “default DC d inventory replenishment cycles” worth of

delay that exist in resupplying DC d via CO c. The latter is the additional delay, beyond that

embodied in DelayFulldc, that exists in resupplying DC d via CO c. Constraints (17-18) use Gdc

to compute DelayFulldc, and constraint (19) computes DelayFracdc using the formula Gdc =

Fd*DelayFulldc + DelayFracdc.

21

 Table 2. Math Model 1 for shipment consolidation problem

Objective Function

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐶𝑇 ൭෍ 𝑍௖

ோ

௖ୀଵ

൱ + ෍ ෍ 𝐶𝐵ௗ

ோ

௖ୀଵ

஽

ௗୀଵ

ቆ
(𝐺ௗ௖)ଶ

2
ቇ

𝑄ௗ

𝐹ௗ

+ 𝐶𝐻𝑀 ൥෍
𝑄ௗ

2

஽

ௗୀଵ

𝑇 + ෍ ෍ 𝐼௥ௗ

ோ

௥ୀଵ

𝐿௥𝑄ௗ

஽

ௗୀଵ

൩ + ෍ 𝐶𝐻ௗ

஽

ௗୀଵ

𝑄ௗ

2
𝑇

− ෍ 𝐶𝐻ௗ

஽

ௗୀଵ

൥෍ ൭(𝐷𝑒𝑙𝑎𝑦𝐹𝑢𝑙𝑙ௗ௖ + 1)
𝑄ௗ𝐹ௗ

2
− ቆ

(𝐹ௗ − 𝐷𝑒𝑙𝑎𝑦𝐹𝑟𝑎𝑐ௗ௖)ଶ

2
ቇ

𝑄ௗ

𝐹ௗ

൱

ோ

௖ୀଵ

൩ (1)

Constraints

 𝑊௖ିଵ + 0.001 ≤ 𝑊௖ ∀𝑐: 2 ≤ 𝑐 ≤ 𝑅 (2)

 𝑊௖ିଵ ≤ 𝑇𝑖𝑚𝑒௖ ≤ 𝑊௖ ∀𝑐: 2 ≤ 𝑐 ≤ 𝑅 (3)

 𝑇𝑖𝑚𝑒ଵ ≤ 𝑊ଵ (4)

෍ 𝑌௥௖

ோ

௖ୀଵ

= 1 ∀𝑟 (5)

 𝑇௥ ≤ 𝑇𝑖𝑚𝑒௖ + 𝑇(1 − 𝑌௥௖) ∀𝑟 ∀𝑐 (6)

 𝑇௥ ≥ 𝑇𝑖𝑚𝑒௖ − 𝑇(1 − 𝑌௥௖) ∀𝑟 ∀𝑐 (7)

 𝑇௥ ≥ 𝐷𝑇௥ ∀𝑟 (8)

 𝐿௥ = 𝑇௥ − 𝐷𝑇௥ ∀𝑟 (9)

 𝑍௖ ≥ 𝑌௥௖ ∀𝑟 ∀𝑐 (10)

 𝐺ௗ௖ ≥ 𝐿௥ − 𝑇(2 − 𝐼௥ௗ − 𝑌௥௖) ∀𝑟 ∀𝑐 ∀𝑑 (11)

 ෍ 𝑋௥ᇲௗ௖

ோ

௥ᇲୀଵ

≥ 𝐼௥ௗ + 𝑌௥௖ − 1 ∀𝑟 ∀𝑐 ∀𝑑 (12)

 𝑋௥ௗ௖ ≤ 𝐼௥ௗ ∀𝑟 ∀𝑐 ∀𝑑 (13)

 𝑋௥ௗ௖ ≤ 𝑌௥௖ ∀𝑟 ∀𝑐 ∀𝑑 (14)

 𝐺ௗ௖ ≤ 𝑇 ∗ ෍ 𝑋௥ௗ௖

ோ

௥ୀଵ

 ∀𝑐 ∀𝑑 (15)

 𝐺ௗ௖ ≤ 𝐿௥ + 𝑇(1 − 𝑋௥ௗ௖) ∀𝑟 ∀𝑐 ∀𝑑 (16)

 𝐷𝑒𝑙𝑎𝑦𝐹𝑢𝑙𝑙ௗ௖ ≥
ீ೏೎

ி೏
− 1 + 0.001 ∀𝑐 ∀𝑑 (17)

 𝐷𝑒𝑙𝑎𝑦𝐹𝑢𝑙𝑙ௗ௖ ≤
ீ೏೎

ி೏
 ∀𝑐 ∀𝑑 (18)

 𝐷𝑒𝑙𝑎𝑦𝐹𝑟𝑎𝑐ௗ௖ = 𝐺ௗ௖ − 𝐹ௗ(𝐷𝑒𝑙𝑎𝑦𝐹𝑢𝑙𝑙ௗ௖) ∀𝑐 ∀𝑑 (19)

22

1.6. Genetic algorithm

The problem at hand—modeled as a mixed integer quadratic program—appears to be very

difficult, so we expect it is necessary to develop efficient heuristic algorithms for solving large

instances. Our efforts in this area led to the development of a genetic algorithm (GA). A GA is a

mathematical search technique based on the principles of natural selection and genetic

recombination (Goldberg and Holland, 1988; Holland, 1992). For reasons that will become clear

in Section 1.7.4, our GA only searches for feasible solutions in which trucks depart the

manufacturer at the default replenishment times DTr (Table 1). The main question to be decided

by the GA is whether or not a truck departs from the manufacturer at each default replenishment

time DTr. Whenever a truck departs, we assume that the inventory level at every DC and the

manufacturer reverts to the default scenario, i.e. that the consolidated shipment on the truck

includes all shipments which have been delayed up to that point (Section 1.5). We now describe

the GA in detail.

Consider the list of default replenishment times DTr ordered from least to greatest in which

duplicate values have been deleted. Let U be the number of values in this list; this is the number

of unique replenishment times DTr in the default scenario. For example, in the instance depicted

in Figures 1-3, U is 7 and the list is (3, 5, 6, 9, 10, 12, 15). In our GA, each feasible solution is

represented by a chromosome consisting of a sequence of U genes—(g1, g2, g3, …, gU)—where

U < R and gu is the gene for the uth unique replenishment time in the default scenario, i.e. the uth

value in the above list. Each gene takes a binary value. A gene value of zero means that no truck

departs from the manufacturer at that time. A gene value of 1 indicates that a truck departs from

the manufacturer at that time. For example, the solutions shown in Figures 1, 2, and 3 are

represented by the chromosomes (1, 1, 1, 1, 1, 1, 1), (1, 0, 1, 0, 1, 1, 1), and (1, 0, 0, 0, 1, 0, 1)

respectively.

The GA procedure is shown in Table 3. The initial generation consists of N unique chromosomes

(i.e. solutions). Each chromosome is constructed by randomly assigning 0 or 1 (with 50%/50%

chance) to each of the first U-1 genes. The value 1 is always assigned to the Uth gene

(corresponding to a truck departure at time T). The fitness (i.e. objective value) of each solution

is then evaluated by (a) computing Timec, Yrc, Tr, Lr, and Zc for the solution; (b) using constraints

23

(11-19) in the math model to quickly compute Gdc, DelayFulldc, and DelayFracdc for the

solution; and (c) plugging these values into the math model’s objective function (Tables 1-2).

Table 3. Genetic algorithm procedure

Let U = number of unique replenishment times DTr in the default scenario. These are the possible truck departure
times considered in the GA.

Each chromosome is a sequence of U binary values (i.e. genes). A value of 1 (0) for gene g means that a truck
departs (does not depart) from the manufacturer (for one or more DCs) at the gth unique DTr value.

Decide value for N, 𝑁଴, 𝑁ଵ, and 𝑁ଶ (N = 𝑁଴+𝑁ଵ+𝑁ଶ).
N = Number of chromosomes per generation.
N0 = Number of chromosomes created by copying.
N1 = Number of chromosomes created by mutation.
N2 = Number of chromosomes created by crossover.
Initial generation consists of N unique chromosomes. Each chromosome is constructed by randomly assigning 0 or

1 (with 50%/50% chance) to each of the first U-1 genes. The value 1 is always assigned to the Uth gene
(corresponding to a truck departure at time T).

While time elapsed < TimeLimit
Rank the N chromosomes in the current generation according to total cost from best to worst.
Copy the 𝑁଴ best chromosomes into the next generation.
For i = 1, …, N1

Let Unique = False.
While Unique = False

Randomly select a chromosome in the current generation.
For g = 1, …, U-1

If U(0,1) random variable ≤ MProb Then
Change value of gene g to the opposite binary value.

End If
End For
If new chromosome is not identical to any chromosome in the next generation Then

Unique = True.
Add new chromosome to next generation.

End If
End While

End For
For i = 1, …, N2/2

Let Unique = False.
While Unique = False

Select two unique parents to participate in a crossover that will generate two children.
Parent selection probability is proportional to parent’s objective value ranking in
current generation (N is best chromosome).

Randomly select one of the U-2 possible crossover points which exist between the first
U-1 genes.

Generate two children by swapping the genes of the two parents after the crossover
point.

If two children are not identical to any chromosome in the next generation Then
Unique = True.
Add two children chromosomes to next generation.

End If
End While

End For
Copy all chromosomes in next generation into the current generation.

End While
Report the chromosome with the minimum cost among all chromosomes that were generated.

24

The next generation of N chromosomes is formed as follows. First, the N0 best chromosomes in

the current generation are copied into the next generation. Next, N1 mutated chromosomes are

added to the next generation. Each mutated chromosome is formed by selecting a random

solution in the current generation and then, for each g from 1 to U-1, setting the value of gene g

to the opposite binary value with probability MProb. Then, parent chromosomes from the current

generation are mated, and a total of N2 (= N – N0 – N1) children are added to the next generation

(N2 must be even). In each crossover operation, two parent chromosomes (g11, g12, g13, …, g1U)

and (g21, g22, g23, …, g2U) are mated—forming two children—by performing a crossover

operation at a random position p (1 ≤ p ≤ U-2) in the parent chromosomes. Random variable p

follows a discrete uniform distribution with minimum 1 and maximum U-2. The resulting

children are (g11, …, g1p, g2p+1, …, g2U) and (g21, …, g2p, g1p+1, …, g1U). Each parent’s

selection probability is proportional to its fitness ranking in current generation where the

chromosome in the current generation with the lowest (highest) cost has ranking N (1). Ties are

broken randomly. Unless it is impossible to do so (i.e. unless fewer than N unique chromosomes

exist), we require that every chromosome in a given generation be unique. When a predefined

time limit is reached, the GA procedure terminates and the best chromosome that was

encountered is displayed.

1.7. Experimental setup, results, and discussion

The math model from Section 1.5 and GA from Section 1.6 were coded into MS Visual C++

2017 Professional. IBM ILOG Concert Technology was used to code the math model in C++ and

call the MIQP solver IBM ILOG CPLEX 12.9 to solve instances defined in text files. All results

are obtained using a desktop computer with 16 gigabytes of RAM, the Windows 10 Education

64-bit operating system, and an Intel Core i7-8700 processor with twelve, 3.2 gigahertz logical

processors.

1.7.1. Generating problem instances

Table 4 shows the parameter values that define the problem instances considered in our

experiments. Four problem sizes are considered: small, medium, large, and very large. The size

of an instance is defined by U = the number of unique default replenishment times DTr. Note that

U-1 is the number of yes/no decisions made regarding truck departures in the GA (Section 1.6).

25

Thus, U is a good measure of problem instance difficulty. As shown in Table 4, the number of

DCs ranges from two to five. The values of the primary input parameters fall within the ranges

shown. The parameter values satisfy CHM ≥ CHd for all d in all instances considered in

experiment 2 (see below). Text files defining all problem instances can be found in the

supplementary material accompanying this paper. Parameter (D, CT, CHd, CHM, CBd, Fd, Qd, T)

is shown in row (1, 2, 3, 4, 5, 6, 7, 8) of each file.

Table 4. Problem instances considered in the experiments

Instance Size

Small (S) Medium (M) Large (L) Very Large (V)
U = Number of unique

default replenishment times
DTr

4 - 7 8 - 25 26 - 59 60 - 150

D = Number of DCs 2 2 - 3 3 - 4 3 - 5

CT 100 - 500

CHd 1 - 9

CHM 10 - 20

CBd 10 - 30

Fd 2 - 9

Qd 2 - 9

Qd 2 - 32

1.7.2. GA and CPLEX settings

Table 5 shows the GA parameter settings used in the experiments. These settings were chosen

based on preliminary experiments whose results are not shown here. Note that more computation

time is allocated for attacking larger problems. Each generation has 100 chromosomes: 10 copied

from the previous generation, 40 formed by mutation, and 50 formed by the crossover operation.

The gene mutation probability, MProb, is 0.6. The CPLEX computation time limit is one hour

for all instances.

26

Table 5. GA settings used in the experiments

GA Parameter Description Value Used

N Number of chromosomes per generation 100

N0
Number of chromosomes copied from current generation into next
generation

10

N1 Number of chromosomes in each generation formed by mutation 40

N2 Number of chromosomes in each generation formed by crossover 50

MProb Mutation probability for each gene 0.6

TimeLimit Computation time limit (in seconds)

010 for small
060 for medium

600 for large

600 for very larger
instances

1.7.3. Experiment 1 setup and results

In this experiment we consider three base instances and two variations of each base instance:

one in which the manufacturer’s inventory holding cost is greater than or equal to the inventory

holding cost at each DC (CHM ≥ CHd for all d) and one in which the manufacturer’s inventory

holding cost is less than the inventory holding cost at one or more DCs (CHM < CHd for some

d). The second variation has the same input parameter values as the first variation except that the

inventory holding cost at each DC is multiplied by 2.

Table 6 shows the instances considered and results for Experiment 1. Column 1 shows the

instance number. Columns 2-3 show the main parameters defining each instance. Column 4

shows how instance X.2 is obtained from instance X.1. Column 5 shows whether CHM ≥ CHd

for all d; this inequality holds for the first variation of each base instance (“Y” = Yes) but not the

second variation of each base instance (“N” = No). Columns 6-10 show the results for CPLEX

including the objective value of the best solution identified within the time limit (“Total CPLEX

cost”); whether the best solution was proven to be optimal or not; number of trucks departing the

manufacturer per cycle in the best solution; whether one or more truck departures occur at

fractional (i.e. non-integral) times in the best solution; and the total computation time. Columns

27

11-12 show results for the GA including the objective value of the best solution identified within

the time limit (“Total GA cost”) and total computation time. It is important to note that Figures

1-3 are based on instance S2.1, and Figure 2 shows an optimal solution for instance S2.1.

Table 6. Experiment 1 results

Instance # DCs

Number of
unique default
replenishment

times (DTr)

Change
CHM ≥ CHd
for all d?

Total
CPLEX
cost

Optimal?

Trucks

Trucks
depart at
fractional

times?

Time
(sec)

Total
GA

cost

Time
(sec)

S1.1
2 6

- Y 3019.8 Y 3 N 1 3019.8 10

S1.2
CHd

doubled
N 3524.64 Y 3 Y 2 3529.2 10

S2.1
2 7

- Y 3434.8 Y 5 N 8 3434.8 10

S2.2
CHd

doubled
N 4375.41 Y 5 Y 18 4450.6 10

S3.1
3 6

- Y 6152 Y 5 N 6 6152 10

S3.2
CHd

doubled
N 8009.48 Y 5 Y 13 8057 10

1.7.4. Experiment 1 discussion

As the results demonstrate, CPLEX solves all instances to optimality within 20 seconds. Column

9 shows that the optimal replenishment times (i.e. truck departure times) are always integral

when CHM ≥ CHd for all d. This is reasonable. Indeed, slightly postponing a shipment (e.g. by a

fraction of a period) is not beneficial in this case because the increase in the manufacturer’s

inventory holding cost outweighs the reduction in the DCs’ inventory holding costs. On the other

hand, at least one of the optimal truck departure times is fractional in instances S1.2, S2.2, and

S3.2 (i.e. when CHM < CHd for some d). This result is also reasonable. Here, it is cheaper to

store inventory at the manufacturer than at DC d for at least one d, so there may be a financial

incentive to slightly delay a replenishment to DC d in order to reduce overall inventory holding

costs for as long as possible until the DC d backorder cost—visualized as a triangle that grows

over time and initially has negligible area—becomes prohibitively large. For example, trucks

depart at integer times 3, 6, 10, 12, and 15 in the optimal solution to instance S2.1 (Figure 2), but

they depart at fractional times 3.6, 6.457, 10, 12.6, and 15 in the optimal solution to instance

S2.2.

28

Note that the best GA solution is identical to (different than) the optimal solution obtained by

CPLEX when CHM ≥ CHd for all d (CHM < CHd for some d). This is reasonable given that the

GA only searches among solutions with replenishment times equal to DTr for some r (Section

1.6). Given these findings, we shall require that CHM ≥ CHd for all d in the next experiment in

order to eliminate the advantage of, and therefore any possibility of, fractional replenishment

times.

1.7.5. Experiment 2 setup and results

In this experiment we consider a total of 84 problem instances—twelve base instances and seven

variations of each base instance. Three base instances are considered for each problem size

shown in Table 4. Each base instance has a main variation and six other variations. Table 7

shows how the six other variations relate to the main variation. In general, the values of the

primary input parameters in each of the six other variations are identical to those in the main

variation except that one kind of cost parameter is modified. This experimental design helps us

identify the impact of individual cost coefficients on the optimal consolidation schedule, which

in turn helps to verify the correctness of the math model and reasonableness of the results. In all

instances CHM ≥ CHd for all d. Also, CHM ≤ CBd for all d in all instances except those

associated with variations X.4 and X.7.

Table 7. Variations considered in experiment 2

Variation Change compared to variation X.1

X.1 None

X.2 CT is multiplied by 2

X.3 CT is divided by 2

X.4 CHM and CHd (for all d) are multiplied by 2

X.5 CHM and CHd (for all d) are divided by 2

X.6 CBd is multiplied by 2 for all d

X.7 CBd is divided by 2 for all d

29

Table 8 shows the instances considered and results for Experiment 2. Columns 4-6 show the

CPLEX results. The value “nf” in columns 4-5 means that no feasible solution was found prior to

termination, and “?” in column 5 means that CPLEX was unable to prove the optimality of the

best solution found prior to termination. Columns 7-14 show the GA results. Column 7 shows

the total cost of the best solution identified by the GA. The CPLEX and GA costs in columns 4

and 7 are rounded to the nearest integer. Columns 9-14 show how this cost is divided into

categories. Columns (9, 10-11, 12-13, 14) show the transportation, manufacturer inventory

holding, DC inventory holding, and DC backorder costs respectively. Column 10 shows the

manufacturer’s baseline (i.e. default) inventory holding cost (in the case of no consolidation);

this is part 3A of the objective function. Column 11 shows the increase in the manufacturer’s

inventory holding cost due to consolidation; this is part 3B of the objective function (Table 2,

Section 1.5). Column 12 shows the total baseline inventory holding cost at all DCs combined;

this is part 4 of the objective function. Column 13 shows the reduction in total DC inventory

holding cost due to consolidation; this is part 5 of the objective function. Column 8 shows the

number of trucks departing in each cycle.

30

Table 8. Experiment 2 results

Instance #
DCs

Number of
unique default
replenishment

times (DTr)

Total
CPLEX cost

Optimal? Time
(sec)

Total GA
cost

Trucks

(No. trucks
departing

manufacturer)

 Truck
cost

Baseline
manuf.

inv.
holding

cost

Manuf. inv.
holding cost
adjustment

Baseline
DC inv.
holding

cost

DC inv.
holding cost
adjustment

DC backorder
costs

S1.1

2 7

2949 Y 4 2949 4 880 1050 330 720 -166.5 135
S1.2 3785 Y 4 3785 3 1320 1050 600 720 -220.5 315
S1.3 2410 Y 3 2410 5 550 1050 180 720 -135 45
S1.4 4775 Y 30 4775 5 1100 2100 360 1440 -270 45
S1.5 1982 Y 4 1982 4 880 525 165 360 -83.25 135
S1.6 3005 Y 3 3005 5 1100 1050 180 720 -135 90
S1.7 2881 Y 13 2881 4 880 1050 330 720 -166.5 67.5
S2.1

2 6

2031 Y 1 2031 3 810 450 300 255 -72 288
S2.2 2841 Y 1 2841 3 1620 450 300 255 -72 288
S2.3 1449 Y 2 1449 5 675 450 60 255 -27 36
S2.4 2862 Y 3 2862 5 1350 900 120 510 -54 36
S2.5 1565 Y 1 1565 3 810 225 150 127.5 -36 288
S2.6 2160 Y 1 2160 5 1350 450 60 255 -27 72
S2.7 1878 Y 2 1878 3 810 450 300 255 -99 162
S3.1

2 4

1300 Y 1 1300 3 570 429 91 201 -26.25 35
S3.2 1768 Y 1 1768 2 760 429 273 201 -35 140
S3.3 1010 Y 1 1010 4 380 429 0 201 0 0
S3.4 1995 Y 1 1995 3 570 858 182 402 -52.5 35
S3.5 952 Y 1 952 3 570 214.5 45.5 100.5 -13.13 35
S3.6 1335 Y 1 1335 3 570 429 91 201 -26.25 70
S3.7 1282 y 1 1282 3 570 429 91 201 -26.25 17.5
M1.1

2 14

6941 ? 3600 6941 8 2480 2464 504 1652 -322 163.30
M1.2 9650 ? 3600 9270 7 4340 2464 784 1652 -362 391.88
M1.3 5701 ? 3600 5701 8 1240 2464 504 1652 -322 163.3
M1.4 11,239 ? 3600 11,239 8 2480 4928 1008 3304 -644 163.3
M1.5 4792 ? 3600 4792 8 2480 1232 252 826 -161 163.30
M1.6 7105 ? 3600 7105 8 2480 2464 504 1652 -322 326.61
M1.7 6860 ? 3600 6860 8 2480 2464 504 1652 -322 81.65
M2.1

3 8

3377 Y 1823 3377 4 1120 1188 418 618 -151 184.33
M2.2 4382 Y 338 4382 3 1680 1188 638 618 -131 389.33
M2.3 2712 Y 2561 2712 5 700 1188 220 618 -107.5 93.33
M2.4 5330 ? 3600 5330 5 1400 2376 440 1236 -215 93.33
M2.5 2341 Y 445 2341 4 1120 594 209 309 -75.5 184.33
M2.6 3505 Y 985 3505 5 1400 1188 220 618 -107.5 186.67
M2.7 3285 ? 3600 3285 4 1120 1188 418 618 -151 92.17
M3.1

3 22

11,068 ? 3600 11,015 11 4070 3600 1272 1875 -304.72 502.8
M3.2 17,513 ? 3600 14,358 7 5180 3600 2724 1875 -485.5 1464
M3.3 8979 ? 3600 8,894 15 2775 3600 648 1875 -209.8 205.3
M3.4 18,014 ? 3600 17,455 11 4070 7200 2544 3750 -646.93 537.8
M3.5 24,938 ? 3600 7631 9 3330 1800 930 937.5 -149.28 782.8
M3.6 11,506 ? 3600 11,506 11 4070 3600 1272 1875 -281.38 970.6
M3.7 10,888 ? 3600 10,679 9 3330 3600 1872 1875 -432.5 434.5

31

Instance #
DCs

Number of
unique default
replenishment

times (DTr)

Total
CPLEX cost

Optimal? Time
(sec)

Total GA
cost

Trucks

(No. trucks
departing

manufacturer)

 Truck
cost

Baseline
manuf.

inv.
holding

cost

Manuf. inv.
holding cost
adjustment

Baseline
DC inv.
holding

cost

DC inv.
holding cost
adjustment

DC
backorder

costs

L1.1

3 30

398,639 ? 3600 9610 15 3750 2646 1057 1869 -390.07 677.8
L1.2 90,171 ? 3600 12,536 10 5000 2646 2002 1869 -555.86 1575.24
L1.3 86,471 ? 3600 7566 18 2250 2646 728 1869 -265.57 339.05
L1.4 35,259 ? 3600 14,699 17 4250 5292 1652 3738 -677.14 443.63
L1.5 385,470 ? 3600 6879 12 3000 1323 798 934.5 -197.89 1021.61
L1.6 39,602 ? 3600 10,108 17 4250 2646 826 1869 -313.57 830.6
L1.7 10,649 ? 3600 9146 13 3250 2646 1428 1869 -532.36 485.33
L2.1

3 57

1,953,850 ? 3600 11,714 32 4480 3780 996 2467.5 -405.36 396.29
L2.2 1,963,790 ? 3600 14,939 21 5880 3780 2022 2467.5 -562.79 1351.83
L2.3 741,619 ? 3600 9307 35 2450 3780 708 2467.5 -330.21 232.17
L2.4 386,844 ? 3600 18,383 35 4900 7560 1416 4935 -660.43 232.17
L2.5 1,664,780 ? 3600 8089 23 3200 1890 888 1233.75 -251.96 1129.14
L2.6 nf n/a 3600 11,990 35 4900 3780 708 2467.5 -330.21 464.34
L2.7 837,386 ? 3600 11,280 23 3200 3780 1776 2467.5 -513.93 569.57
L3.1

4 36

411,440 ? 3600 21,649 20 5800 8700 1690 5850 -911.38 519.88
L3.2 315,441 ? 3600 26,777 16 9280 8700 2750 5850 -1085.71 1282.44
L3.3 691,078 ? 3600 18,563 23 3335 8700 1060 5850 -691.71 309.49
L3.4 568,707 ? 3600 36,764 22 6380 17,400 2400 11,700 -1532.75 416.83
L3.5 1,490,850 ? 3600 13,962 19 5510 4350 1025 2925 -486.85 638.44
L3.6 890,517 ? 3600 22,086 21 6090 8700 1430 5850 -808.58 824.23
L3.7 328,054 ? 3600 21,369 18 5220 8700 2110 5850 -986.04 474.60
V1.1

3 60

1,107,970 ? 3600 30,020 29 7540 12,096 3204 7224 -1005.02 960.64
V1.2 4,269,890 ? 3600 37,336 25 13,000 12,096 4428 7224 -1164.12 1751.57
V1.3 224,287 ? 3600 25,631 39 5070 12,096 1413 7224 -556.13 384.14
V1.4 2,890,450 ? 3600 50,796 36 9360 24,192 3528 14448 -1293.33 561.36
V1.5 2,296,230 ? 3600 19,251 29 7540 6,048 1602 3612 -481.68 930.64
V1.6 2,808,080 ? 3600 30,839 33 8580 12,096 2520 7224 -857.98 1276.71
V1.7 860,196 ? 3600 29,513 29 7540 12,096 3168 7224 -1045.3 530.14
V2.1

4 136

nf n/a 3600 82,654 61 25,620 29,260 9306 19,180 -3375 2662.85
V2.2 nf n/a 3600 104,790 44 36,960 29,260 16,951 19,180 -4273.85 6713.22
V2.3 nf n/a 3600 68,207 74 15,540 29,260 5896 19,180 -2995.14 1326.07
V2.4 nf n/a 3600 135,000 72 30,240 58,520 12,584 38,360 -6187.66 1483.96
V2.5 nf n/a 3600 54,995 52 21,840 14,630 6358 9590 -1853.31 4430.67
V2.6 nf n/a 3600 84,562 69 28,980 29,260 7194 19,180 -3285.25 3233.21
V2.7 nf n/a 3600 81,237 57 23,940 29,260 10,758 19,180 -3818.73 1917.53
V3.1

5 88

nf n/a 3600 38,247 37 12,210 12,480 4176 8160 -1506.59 2727.44
V3.2 nf n/a 3600 48,987 29 19,140 12,480 6400 8160 -1589.26 4395.81
V3.3 nf n/a 3600 31,277 48 7920 12,480 2352 8160 -956.09 1320.94
V3.4 nf n/a 3600 61,145 42 13,860 24,960 6304 16,320 -2482.97 2183.94
V3.5 nf n/a 3600 26,435 33 10,890 6240 2608 4080 -737.23 3353.81
V3.6 nf n/a 3600 40,458 45 14,850 12,480 2832 8160 -1126.09 3261.88
V3.7 nf n/a 3600 36,671 32 10,560 12,480 5072 8160 -1531.59 1930.72

32

1.7.6. Experiment 2 discussion

We first discuss the reasonableness of the results and the performance of the solution methods.

Then we turn to managerial insights. Overall, the results appear reasonable on at least three

counts. First, the total cost of the best solutions identified by the GA for variation X.3, X.5 and

X.7 are always less than or equal to that for variation X.1 (see Table 7 for the variation

definitions). Also, the total cost of the best solutions identified by the GA for variations X.2,

X.4, and X.6 are always greater than or equal to that for variation X.1. The same trends hold for

all but one solution identified by CPLEX for the small and medium-sized instances (but not the

larger instances). Second, in all twelve base instances the number of truck departures in the best

solution found by the GA in variation (X.2, X.3, X.4, X.5, X.6,X.7) is (≤, ≥ , ≥, ≤, ≥, ≤,) the

number of truck departures in variation X.1. These results are reasonable; they reflect the

fundamental economic consequences of changing the cost structure according to Table 7. Third,

the breakdown of the “Total GA cost” into categories is reasonable. In particular, the costs in

columns 11, 13, and 14 are always (never) zero when the total number of truck departures

equals (does not equal) the number of unique default replenishment times DTr. Also, in all

instances, backorder costs are usually not significant, and transportation and inventory holding

costs include the majority of the total GA cost. All of the above observations help to verify the

correctness of the math model and coding of the proposed GA.

We now turn our attention to the performance of the solution methods. For the small problem

instances, CPLEX finds optimal solutions in less than 30 seconds and the GA finds the same

solutions in 10 seconds. On the other hand, the GA outperforms CPLEX on the medium-sized

instances. Indeed, the GA only uses 60 seconds of computation time and finds a better solution

than (the same solution as) CPLEX on 7 (14) of the 21 medium-sized instances. On the large

instances, the GA significantly outperforms CPLEX. Indeed, in 600 seconds the GA usually

finds solutions whose cost is 1-2 orders of magnitude less than the cost identified by CPLEX

within an hour. Note that, for these instances, the costs identified by CPLEX do not agree with

intuition. For example, the total cost of the best solutions identified by CPLEX for variations

X.2, X.4, X.6 are sometimes less than that for variation X.1. This indicates that CPLEX is

overwhelmed by the large instances and does not make meaningful progress toward identifying

an optimal solution prior to termination. Finally, CPLEX either fails to identify feasible

33

solutions or identifies very poor solutions for the very large instances; the GA, however,

identifies reasonable solutions within 600 seconds. These results highlight the effectiveness of

the proposed GA.

The results in Table 8 show that the best shipment consolidation plan is highly sensitive to the

cost structure. For example, the best shipment consolidation schedule identified by the GA has

anywhere from (10-18, 21-35, 16-23) truck departures for instance group (L1, L2, L3)

respectively, and it has anywhere from (25-39, 44-74, 29-48) truck departures for instance

group (V1, V2, V3) respectively. We also note that, in every instance, the best number of truck

departures identified by the GA is neither very high (e.g. approaching the value in column 3)

nor very low (e.g. approaching 1). These results indicate that managers of real-world enterprises

should carefully develop their shipment consolidation plans. Managers may wish to develop

detailed shipment consolidation schedules rather than simply following a consolidation policy.

More generally, the results show the importance of considering a variety of factors—

transportation costs, manufacturer inventory holding costs, DC inventory holding costs, and

backorder costs—in one integrated model. This kind of multi-faceted analysis may assist third

party logistics (3PL) providers in deciding about stocking and shipping options in a distribution

network in which the manufacturer and DCs are active collaborators. In this case, collaboration

is a win-win situation for both the manufacturer and the DCs and has the potential to reduce

total system cost and/or increase the total supply chain profit.

1.8. Conclusion

In this essay, we introduced a novel operational problem and a new model for shipment

consolidation scheduling in a two-echelon supply chain. The problem addresses shipment

consolidation decisions made by a manufacturer who provides inventory replenishments to

multiple downstream distribution centers (DCs). Unlike previous work, the consolidation

activities in this problem are not restricted to specific rules such as aggregation of shipments at

regular times or consolidating when a predetermined quantity has accumulated. The problem

sheds light on the trade-off between transportation costs, manufacturer inventory holding costs,

DC inventory holding costs, and DC backorder costs.

34

We developed a mixed-integer quadratic programming (MIQP) model and genetic algorithm

(GA) to determine the shipment consolidation schedule that minimizes total cost. Two

experiments were conducted. In Experiment 1, we showed that the optimal replenishment times

may be highly irregular—taking seemingly arbitrary, fractional values—if the manufacturer’s

inventory holding cost, CHM, is less than the inventory holding cost CHd at one or more DCs d.

In Experiment 2 the effectiveness of two solution methods—(1) CPLEX’s default MIQP solver

with a one-hour time limit and (2) the GA with a shorter time limit—was evaluated on instances

that avoided the possibility of irregular replenishments. Experimental results showed the

superiority of the GA over CPLEX.

The novelty of the problem under investigation can be viewed as strength or a shortcoming. The

main shortcoming is that the problem is most relevant to cases with (1) limited DC personnel

and/or high transportation costs which make it logistically or economically impossible to

replenish DCs frequently, (2) items that are small compared to the size of a truck, and/or (3)

replenishment of DCs via containers of particular sizes. It could be argued that such cases are

rare in industry. On the other hand, the problem’s novelty may make this study a starting point

for future research that explores whole new approaches to supply chain modeling.

Future research should address some limitations of this work. One major limitation is that the DC

locations and truck routes and capacities are ignored. A future extension of this work might

therefore consider a geographically diverse set of DCs and develop feasible routes for finite-

capacity trucks in which DCs in close proximity are grouped together in order to take advantage

of economies of scale. Future work might also consider more realistic attributes such as

stochastic and/or seasonal demands, a multi-product distribution network, and different types of

carriers. Entirely different approaches may be required for considering these aspects. Moreover,

it is necessary to further evaluate the effectiveness of the heuristic algorithm in solving

large/very large problem sizes in future work. This could be performed by finding bounds for the

objective function for different problem instances. Also, other heuristic procedures such as Ant

Colony and Simulated Annealing will be developed to compare the results with the results of the

GA heuristic in this essay.

35

References

Arslan, A. M., Agatz, N., Kroon, L., Zuidwijk, R. (2019). Crowdsourced delivery-A dynamic
pickup and delivery problem with ad hoc drivers. Transportation Science, 53(1), 222-235.

Axsäter, S., (2001). A note on stock replenishment and shipment scheduling for vendor-managed
inventory systems. Management Science, 47(9), 1306–1310.

Banerjee, A. Burton J. S. (1994). Coordinated vs. independent inventory replenishment policies
for a vendor and multiple buyers. International Journal of Production Economics, 35(1-3), 215-
222.

Bookbinder, J. H., Cai, Q., He, Q. M. (2011). Shipment consolidation by private carrier: The
discrete time and discrete quantity case. Stochastic Models, 27(4), 664–686.

Cai, Q., He, Q. M., Bookbinder, J. H. (2014). A tree-structured Markovian model of the
shipment consolidation process. Stochastic Models, 30(4), 521–553.

Çetinkaya, S., Lee, C. Y. (2000). Stock replenishment and shipment scheduling for vendor-
managed inventory systems. Management Science, 46(2), 217-232.

Çetinkaya, S., Lee, C. Y. (2002). Optimal outbound dispatch policies: Modeling inventory and
cargo capacity. Naval Research Logistics, 49(6), 531-556.

Çetinkaya, S., Bookbinder, J. H. (2003). Stochastic models for the dispatch of consolidated
shipments. Transportation Research Part B: Methodological, 37(8), 747-768.

Çetinkaya, S. (2005). Coordination of inventory and shipment consolidation decisions: A review
of premises, models, and justification. Applications of Supply Chain Management and E-
Commerce Research, 3–51

Çetinkaya, S., Mutlu, F., Lee, C. Y. (2006). A comparison of outbound dispatch policies for
integrated inventory and transportation decisions. European Journal of Operational
Research, 171(3), 1094-1112.

Çetinkaya, S., Tekin, E., Lee, C. Y. (2008). A stochastic model for joint inventory and outbound
shipment decisions. IIE Transactions, 40(3), 324-340.

Çetinkaya, S., Mutlu, F., Wei, B. (2014). On the service performance of alternative shipment
consolidation policies. Operations Research Letters, 42(1), 41-47.

Chen, F. Y., Wang, T., Xu, T. Z. (2005). Integrated inventory replenishment and temporal
shipment consolidation: A comparison of quantity-based and time-based models. Annals of
Operations Research, 135(1), 197-210.

Chen, L. H., Kang, F. S. (2010). Coordination between vendor and buyer considering trade credit
and items of imperfect quality. International Journal of Production Economics, 123(1), 52-61.

36

Cheung, K. L., Lee, H. L. (2002). The inventory benefit of shipment coordination and stock
rebalancing in a supply chain. Management Science, 48(2), 300-306.

Goldberg, D. E., Holland, J. H. (1988). Genetic algorithms and machine learning. Machine
Learning, 3, 95-99.

Goyal, S. K. (1988). A joint economic-lot-size model for purchaser and vendor: A
comment. Decision Sciences, 19(1), 236-241.

Goyal, S. K. (1995). A one-vendor multi-buyer integrated inventory model: A
comment. European Journal of Operational Research, 82(1), 209-210.

Goyal, S. K., Nebebe, F. (2000). Determination of economic production–shipment policy for a
single-vendor–single-buyer system. European Journal of Operational Research, 121(1), 175-
178.

Hill, R. M. (1997). The single-vendor single-buyer integrated production-inventory model with a
generalized policy. European Journal of Operational Research, 97(3), 493-499.

Hill, R.M., (1999). The optimal production and shipment policy for single-vendor single-buyer
integrated production-inventory problem. International Journal of Production Research, 37 (11),
2463–2475

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73.

Hong, K. S., Lee, C. (2013). Optimal time-based consolidation policy with price sensitive
demand. International Journal of Production Economics, 143(2), 275-284.

Howard, C., Marklund, J. (2011). Evaluation of stock allocation policies in a divergent inventory
system with shipment consolidation. European Journal of Operational Research, 211(2), 298-
309.

Huang, C. K. (2004). An optimal policy for a single-vendor single-buyer integrated production–
inventory problem with process unreliability consideration. International Journal of Production
Economics, 91(1), 91-98.

Kelle, P., Transchel, S., Minner, S. (2009). Buyer–supplier cooperation and negotiation support
with random yield consideration. International Journal of Production Economics, 118(1), 152-
159.

Klapp, M. A., Erera, A. L., Toriello, A. (2018). The one-dimensional dynamic dispatch waves
problem. Transportation Science, 52(2), 402-415.

Liu, X., Çetinkaya, S. (2011). The supplier–buyer integrated production-inventory model with
random yield. International Journal of Production Research, 49(13), 4043-4061.

37

Lu, L. (1995). A one-vendor multi-buyer integrated inventory model. European Journal of
Operational Research, 81(2), 312-323.

Maddah, B., Jaber, M. Y. (2008). Economic order quantity for items with imperfect quality:
revisited. International Journal of Production Economics, 112(2), 808-815.

Moon, I. K., Cha, B. C., Lee, C. U. (2011). The joint replenishment and freight consolidation of
a warehouse in a supply chain. International Journal of Production Economics, 133, 344–350.

Mutlu, F., Çetinkaya, S. (2010). An integrated model for stock replenishment and shipment
scheduling under common carrier dispatch costs. Transportation Research Part E: Logistics and
Transportation Review, 46(6), 844-854.

Mutlu, F., Çetinkaya, S. I. L., Bookbinder, J. H. (2010). An analytical model for computing the
optimal time-and-quantity-based policy for consolidated shipments. IIE Transactions, 42(5),
367-377.

Papachristos, S., Konstantaras, I. (2006). Economic ordering quantity models for items with
imperfect quality. International Journal of Production Economics, 100(1), 148-154.

Russell, R. M., Krajewski, L. J. (1991). Optimal purchase and transportation cost lot sizing for a
single item. Decision Sciences, 22(4), 940-952.

Stenius, O., Karaarslan, A. G., Marklund, J., De Kok, A. G. (2016). Exact analysis of divergent
inventory systems with time-based shipment consolidation and compound Poisson
demand. Operations Research, 64(4), 906-921.

Swenseth, S. R., Godfrey, M. R. (2002). Incorporating transportation costs into inventory
replenishment decisions. International Journal of Production Economics, 77(2), 113-130.

Taleizadeh, A. A., Noori-daryan, M., Cárdenas-Barrón, L. E. (2015). Joint optimization of price,
replenishment frequency, replenishment cycle and production rate in vendor managed inventory
system with deteriorating items. International Journal of Production Economics, 159, 285-295.

Toptal, A., Çetinkaya, S. (2008). Quantifying the value of buyer–vendor coordination: Analytical
and numerical results under different replenishment cost structures. European Journal of
Operational Research, 187(3), 785-805.

Ülkü, M. A., Bookbinder, J. H. (2012). Optimal quoting of delivery time by a third party
logistics provider: The impact of shipment consolidation and temporal pricing
schemes. European Journal of Operational Research, 221(1), 110-117.

Viswanathan, S. (1998). Optimal strategy for the integrated vendor-buyer inventory
model. European Journal of Operational Research, 105(1), 38-42.

Van Heeswijk, W. J., Mes, M. R., Schutten, J. M. (2019). The delivery dispatching problem with
time windows for urban consolidation centers. Transportation science, 53(1), 203-221.

38

Voccia, S. A., Campbell, A. M., Thomas, B. W. (2019). The same-day delivery problem for
online purchases. Transportation Science, 53(1), 167–184.

39

Essay 2: The Vehicle Routing Problem with Flexible Repeat Visits

2.1. Abstract

This essay introduces a new variant of the vehicle routing problem called the vehicle routing

problem with flexible repeat visits (VRP-FRV). The problem considers a set of customers with

certain locations and a set of available vehicles for serving customers. Time is discretized into

periods and the planning horizon is cyclic. Each customer must be repeatedly visited under a

maximum inter-visit time requirement but customers are otherwise indifferent to the exact times

when they are visited. In this problem, each vehicle may make repeated visits to the same

customer within the same route. The goal is to identify customer visit times which satisfy their

maximum inter-visit time requirements and create vehicle routes that minimize the number of

vehicles used. This problem is modeled as a binary integer programming (BIP) model which is

solved by IBM ILOG CPLEX. A constructive heuristic with multiple local search improvement

procedures is developed to handle large problem instances. We then compare the performance of

CPLEX and our proposed heuristic on a set of benchmark instances.

40

2.2. Introduction

Logistics service providers have experienced significant changes in recent decades and have

shifted towards being more customer-oriented. Their competition continues to be focused on the

ability to satisfy customer needs with respect to time and cost. Today, with the increasing

demand in the market, there is a lot of pressure on carriers and this requires more cost-effective

operations while still making the infrastructural investments needed to remain competitive

(Soriano et al. 2018). Consequently, transportation companies are continuously seeking ways to

improve the efficiency of their distribution system’s operations. Such efforts include reduction in

the number of vehicles used and designing more efficient vehicle routes which have huge

impacts on reducing the company’s transportation costs. As a result, better customer service can

be achieved through shorter distribution times that can play an important role in the

competitiveness of the company. These benefits are often achievable through the use of

mathematical models of various vehicle routing problems (VRPs). Such models combine the

theoretical realm of mathematics with the practical realities of day-to-day business operations.

Vehicle routing problems mainly focus on the operational planning of vehicle routes. These

problems involve the challenge of optimizing the size and composition of vehicles needed and

designing optimal vehicle routes from a depot to a set of destinations. Nowadays, many

situations can be found where a high volume of flexible requests have to be serviced on a daily

basis between distant areas. In this research, we introduce the vehicle routing problem with

flexible repeat visits (VRP-FRV). The problem considers a set of customers at certain locations

who each want to be visited under a different maximum inter-visit time requirement. However,

they are flexible in their visit times and do not have exact requirements regarding when they are

visited. Time is discretized into periods, and the planning horizon consists of a single T-period

cycle. The goal is to develop cyclic vehicle routs that satisfy the customer inter-visit time

requirement while minimizing the number of vehicles needed to cover customer demand. This

problem applies for cases where the cost of using each vehicle is so high and the travel cost

within a small city is negligible compared with the cost of using vehicles. Thus, we focus on

minimizing the total number of vehicles needed to cover customer demand.

This research contributes to the existing VRP studies in two aspects. First, each vehicle is not

restricted to visit each customer only once within a given route. In fact, the same customer may

41

be visited multiple times within one route. Second, the customer requirements are of different

types compared with the existing VRP studies with time windows for deliveries. In particular,

each customer requires to be visited at least once during every time window of a specified length

that could possibly be formed within the cycle instead of being visited once during one time

window among a given subset of pre-specified time windows.

The VRP-FRV has several real-world applications. One scenario is that of caretakers who

provide service to elderly people at home. Each caretaker is assigned a number of elderly people

to visit one or more times per day. Customers (elderly people) differ in their requirements and

the minimum frequency at which they need to be visited every day. For example, one person

may need to be checked on at least once within every time window of 4 hours while another

person is needier and must be visited at least once every 2 hours. The VRP-FRV can also be

imagined as a police patrol routing problem where the customers are various locations in the city

that require frequent observations. Such locations could include known high-crime areas, high-

profile residences, and/or safe houses. A third application is the routing of preventive

maintenance workers for a major utility company or manufacturer who need to check key system

components on a regular basis.

The remainder of this study is organized as follows. Section 2.3 reviews the related literature. A

formal description of the problem and an illustrative example are provided in Section 2.4.

Section 2.5 presents a mathematical formulation of the problem. A heuristic algorithm is

described in Section 2.6. In Section 2.7, we describe the experimental setup and discuss the

experimental results. We then conclude in Section 2.8.

2.3. Related literature

Several streams of literature relate to our problem. These include the literature on variations of

the traveling salesman problem (TSP), major types of vehicle routing problems, and patrol

operations planning. Different vehicle routing problems considered include the capacitated

vehicle routing problem (CVRP), vehicle routing problem with time windows (VRP-TW), dial-

a-ride problem (DARP), and consistent vehicle routing problem (ConVRP). We now discuss

these streams of literature in detail.

42

2.3.1. Traveling salesman problems

The traveling salesman problem (TSP) is a classic optimization problem whose objective is to

determine the shortest possible route for a salesman who visits each city only once and returns to

the starting city (Fischetti et al. 1997). Some real-world problems including personnel scheduling

(Masmoudi and Mellouli 2014), patrol planning (An et al. 2013), and goods distribution (Liu and

Zhang 2014) need to be modeled with a generalization of the traveling salesman problem. Such

problems use the multiple traveling salesman problem (MTSP) which has been specifically

designed to consider a situation with two or more salesmen. The goal of the MTSP is to

minimize the total distance traveled across a set of cities where two/more than two salesmen

make a route visiting each city only once and finally returning to the origin city. Heuristic

approaches can be utilized to solve the MTSP such as ant colony optimization (ACO) (Singh and

Mehta, 2014), particle swarm optimization (PSO) (Yan et al. 2012), and two-phase heuristics

including the k-means algorithm and genetic algorithm (GA) (Avin et al. 2012, Yuan et al. 2013,

Xu et al. 2018).

One category of the MTSP is the pickup and delivery traveling salesman problem (PDTSP)

where a single vehicle with a certain capacity performs both pick-ups and deliveries at a set of

customer locations. The problem focuses on finding the minimum cost tour (Hamilton cycle)

such that the pickup vertex of a given request is visited before the corresponding delivery vertex

of that request. This problem has been studied widely (Carrabs et al. 2007, Peterson et al. 2009,

Toulouse 2010, Cordeau et al. 2010, Bonomo et al. 2011, Alba Martinez et al. 2013).

Another variant of the MTSP is the multiple traveling salesman problem with time windows

(MTSPTW). This problem considers salesmen who depart from a depot, visit a number of cities

within predetermined time windows, and then return to the depot (Dumas et al. 1995). MTSPTW

has been studied broadly by researchers. They approach the problem in different ways including

using exact algorithms (Dumas et al. 1995, Kara and Derya 2015), discretization methods (Wang

and Regan 2009), branch-and-cut algorithms (Dash et al. 2012), column generation and dynamic

programming algorithms (Baldacci et al. 2012), and greedy methods with variable neighborhood

search (Da Silva et al. 2010, Karabulut and Tasgetiren 2014). A special case of the MTSPTW is

when travel times are considered to be time dependent to deal with traffic issues during rush

hours. This problem has been addressed in several studies including Montero et al. (2017),

43

Arigliano et al. (2019), Vu et al. (2018), Sun et al. (2018), Vu et al. (2019), and Cacchiani et al.

(2020). Multiple traveling salesman problems address major applications; however, they only

assume one visit to each customer during each salesman’s route. In other words, the salesman is

not allowed to visit a customer at multiple times. This essay takes a new perspective into account

for the salesman’s route by including repeat visits to the same customer within the same route.

2.3.2. Vehicle routing problems

The vehicle routing problem (VRP) covers a variety of problems in which a set of routes for a

fleet of vehicles based at one or several depots must be determined for a set of geographically

dispersed cities or customers. The general goal in the VRP is to find minimum-cost routes

through which vehicles visit a set of customers with known demands such that vehicles start at

and return to a depot and each vehicle visits each customer only once. There is a major

difference between the vehicle routing problems and the traveling salesman problems. The

difference is that in the vehicle routing problems, the depot where the vehicles start and end their

route is a separate node other than the customer locations, whereas in the traveling salesman

problems, the salesman’s tour starts from one customer location. Consequently, there is a single

depot for all vehicles in the vehicle routing problem while each salesman has a different starting

point in the multiple traveling salesman problems. The objective in the VRP could be different

depending on the application including minimizing the transportation costs, minimizing number

of vehicles needed, minimizing the vehicle load, etc. One of the most important and well-known

problems in vehicle routing is the capacitated vehicle routing problem (CVRP). The goal of this

problem is to find the lowest cost vehicle routes from an origin to the customers and back to the

origin so that each customer is visited exactly once by exactly one vehicle while respecting each

vehicle’s capacity (Golden et al. 2008). The first mathematical formulation and algorithm for the

solution of the CVRP was proposed by Dantzig and Ramser (1959). Later, Clarke and Wright

(1964) proposed the first heuristic for this problem. To date, many variants and solution

procedures for the CVRP have been published by scores of authors including Toth and Vigo

(2002), Lysgaard et al. (2004), Fukasawa et al. (2006), Lee et al. (2010), Kara (2010), Baldacci

(2010), Jepsen (2013), Laporte et al. (2014), Foulds et al. (2015), Wang et al. (2017), and Zhang

et al. (2017). General surveys can be found in Laporte (2007, 2009), Toth and Vigo (2014) and

Ritzinger et al. (2016).

44

The vehicle routing problem with time windows (VRP-TW) is another VRP variant that has

received a lot of consideration in the literature. The VRP-TW involves finding a set of vehicle

routes starting and ending at a depot to satisfy demands of a set of customers within pre-

determined time windows. In other words, each vehicle must arrive at/depart from a customer

within a specific time window. The solution to the VRP-TW consists of a set of routes that

minimizes the total distance traveled. A large two-part survey of the VRP-TW has been authored

by Bräysy and Gendreau (2005a, 2005b). Different studies analyze various heuristic methods for

the VRP-TW including Ombuki et al. (2006), Alvarenga et al. (2007), Kallehauge (2008),

Kritikos and Ioannou (2010), Yu and Yang (2011), Kumar and Panneerselvam (2012), Banos et

al. (2013), Toth and Vigo (2014), and Koch et al. (2018). The VRP-FRV studied in this essay is

different from the vehicle routing problem with time windows in that the VRP-TW does not

allow repeat visits to the same customer within the same route.

The dial-a-ride problem (DARP) generalizes vehicle routing problems with time windows and

pickup and delivery problems. The DARP models are applicable in demand responsive

transportation service such as patient transportation. It involves providing specific services to

elderly or handicapped people including transportation of patients to medical centers or dropping

them off home. Such transportation requests have to be completed with respect to patients’

convenience considerations within certain time windows. One evident characteristic of the

DARP is that in contrast to other vehicle routing problems, in the DARP humans are transported

rather than goods. Therefore, the overall goal is to make a trade-off between the users’

convenience and operating transportation costs. This is done by introducing additional

constraints that limit the maximum user ride time or by specifying tight time windows. Variants

of the DARP have been considered by Cordeau and Laporte (2003), Ropke et al. (2007), Parragh

et al. (2010), Schilde et al. (2011), Parragh and Schmid (2013), Ritzinger et al. (2016), Detti et

al. (2017), and Riedler (2018). A comprehensive overview of the DARP variants and existing

solution methods can be found in Cordeau and Laporte (2007), Ritzinger et al. (2016), and Ho et

al. (2018).

Another important VRP variant is the consistent vehicle routing Problem (ConVRP) which was

introduced by Groer et al. (2009). Service consistency is applicable to a number of service

industries where there are repeated deliveries to customers throughout a planning horizon.

45

Examples include small package delivery and home health care (Tarantilis et al. 2012, Lian et

al., 2016). A review of the ConVRP is provided in Kovacs et al. (2014). Two main elements of

service consistency are driver consistency and time consistency. Some companies want their

drivers to develop relationships with customers on a route and have the same drivers visit the

same customers at roughly the same time on each day that the customers need service. These

service requirements, together with traditional constraints on vehicle capacity are addressed in

the ConVRP (Kovacs et al. 2015). The ConVRP typically assumes a customer visit frequency of

once a day or once a week with consistencies on visit times. However, if customers must be

visited repeatedly each day and they are flexible regarding their visit times, a new variant of the

problem will emerge. This motivates our introduction of the vehicle routing problem with

flexible repeat visits (VRP-FRV).

2.3.3. Patrol routing problems

We now discuss another set of studies that relate to our problem. The real-world problem of

scheduling and routing a fleet of assets to provide patrol coverage to geographically dispersed

locations has received attentions from researchers. Different contexts include maritime and land

surveillance, security beat planning, motor vehicle accident prevention, crime deterrence, and

infrastructure protection. Considering these specific contexts of the patrol routing problems, it is

evident that frequent observations are required to be made at the same locations during a day in

these problems while this is not the focus in any vehicle routing or traveling salesman problems.

A comprehensive survey on police patrol routing problems has recently been authored by

Dewinter et al. (2020).

One example of a patrol routing problem is the bi-objective grid patrol routing problem

(BGPRP) studied by Hsieh et al. (2015). The problem is defined for residents in certain regions

of Taiwan who travel abroad during Chinese festival celebrations. Those residents may have

already applied for police patrolling service requesting the local police patrol their

neighborhoods repeatedly during their traveling time. The paper provides a modeling approach

for planning patrol routes and assumes a network in the form of a grid structure. The authors

consider two objectives, one is to minimize the total distance travelled and the second is to

maximize the coverage of the patrol lanes.

46

Another related problem is the maximum covering and patrol routing problem (MCPRP) which

was first studied by Keskin et al. (2012). This problem considers finding patrol routes for a set of

police cars to maximize the coverage of all the hotspots during time intervals with high risks of

accidents. Each patrol car begins its route at a station and returns to the same station at the end of

the coverage. The problem is modeled as a mixed integer programming formulation and solved

with heuristic techniques. Çapar et al. (2015) show that the math model of Keskin et al. (2012)

can be improved in terms of reducing the number of variables using the information on the

structure of candidate routes in an optimal solution. The research by Dewil et al. (2015) has

demonstrated that the MCPRP can be modelled as a minimum cost network flow problem

(MCNFP). They provide a time-space network formulation of the problem to ensure that all

accident hotspots are covered. However, each police route does not include repeated visits to the

same location within a shift.

Other emerged problems address applications where randomness in patrol routes and schedules

are evident. Such randomized patrol planning is important in contexts where the planned patrols

could not be successful since an enemy or attacker may be able to predict a defender’s patrol

movements. Combating criminal activities and successful execution of different security

operations are among such applications. Examples of randomized patrol mission planning which

have considered Markov decision process methods include Jain et al. (2010) and Erdogan et al.

(2010). Jain et al. (2010) create randomized schedules of canine patrols, to determine security

checkpoint locations at Los Angeles International Airport (LAX). This work was used to

establish software for daily patrol and security planning at LAX. Erdogan et al. (2010) study the

problem of scheduling paramedic crews and ambulances to stations throughout a shift to

maximize the expected coverage of an area. Other studies in this stream include Shieh et al.

(2013) and Fang et al. (2015).

In another related study, Lau and Gunawan (2016) consider the problem of scheduling security

teams to patrol a mass rapid transit rail network of a large urban city. They model the

deployment of security teams to stations at varying time periods with rostering as well as

security-related constraints. They also discuss different scenarios by varying the number of visits

required for each station according to their reported vulnerability. However, each team can only

visit a particular station at most once per day (i.e. once in each route).

47

Our study has a more delicate look at customer visit requirements based on home healthcare and

police patrol routing applications. In such applications, the customer requires repeated visits at

different times during a day which could be made by the same vehicle/police within the same

route. We introduce the vehicle routing problem with flexible repeat visits (VRP-FRV). The

problem considers a set of customers at certain locations who need to be visited repeatedly with

certain frequencies. Each customer has a maximum inter-visit time requirement but is flexible

regarding exact visit times. In particular, the two unique contributions in this essay relate to the

customer visit requirements. First, this study addresses both temporal and spatial aspects of visits

to customers by the vehicles while allowing each vehicle to make repeated visits to the same

location at different times within the same route. Second, these repeat visits are flexible and our

way of modeling this flexibility is unique. The customer requirements are of different types

compared with the existing VRP studies with time windows for deliveries. In our study, each

customer requires to be visited at least once during every time window of a predetermined length

that could possibly be formed within the cycle instead of being visited once during one time

window among a given subset of pre-specified time windows.

2.4. Problem description and illustrative example

We now fully define the VRP-FRV. Consider a setting in which C customers need to be visited

by a set of vehicles. Time is discretized into periods. Customer c needs to be visited at least once

every 𝐶𝑇௖ time periods by a vehicle. We assume that the time spent by a vehicle to visit a

customer is negligible compared to the duration of one period and that all customer visits take

place at the beginning of a time period. The vehicles are identical, and customer c does not have

any preference regarding which vehicle(s) serve(s) it. Furthermore, 𝐷௖ௗ is the travel time

between customers c and d which is integral and ≥ 1. The operations are cyclic, repeating every

T periods where T ≥ max௖{𝐶𝑇௖}. The goal is to feasibly satisfy the customers’ maximum inter-

visit time requirements (𝐶𝑇௖) while minimizing the total number of vehicles used.

Tables 9-13 and Figure 4 illustrate an instance of this problem in which C = 10 and T = 24. The

first row of Table 9 shows the customer numbers (c). The second row shows the 𝐶𝑇௖ values and

the next two rows show imaginary (x,y) coordinates for the locations of the ten customers. Table

10 shows the symmetric travel time matrix (𝐷௖ௗ) which is derived from these (x,y) coordinates.

48

Each value in the matrix (𝐷௖ௗ) equals the straight-line Euclidean distance between customers c

and d rounded up to the nearest integer.

Table 9. Parameters defining the illustrative instance part 1: CTc and (x,y) coordinates for customers

Customer 1 2 3 4 5 6 7 8 9 10

𝐶𝑇௖ 14 10 5 15 8 13 11 14 12 5

x coordinate 2.17 1.86 2.79 2.24 2.98 3.71 4.59 4.45 4.66 0.34

y coordinate 4.98 1.56 1.05 0.37 0.28 0.77 4.55 2.07 1.66 2.88

Table 10. Parameters defining the illustrative instance part 2: Dcd

Customer # 1 2 3 4 5 6 7 8 9 10

1 0 4 4 5 5 5 3 4 5 3
2 4 0 2 2 2 3 5 3 3 3
3 4 2 0 1 1 1 4 2 2 4
4 5 2 1 0 1 2 5 3 3 4
5 5 2 1 1 0 1 5 3 3 4
6 5 3 1 2 1 0 4 2 2 4
7 3 5 4 5 5 4 0 3 3 5
8 4 3 2 3 3 2 3 0 1 5
9 5 3 2 3 3 2 3 1 0 5
10 3 3 4 4 4 4 5 5 5 0

A feasible solution is characterized by (i) a visit schedule for each customer c that specifies when

the customer is visited, and (ii) a set of vehicle routes that visit the customers at the times

specified in (i). Regarding item (i), a feasible visit schedule for each customer c consists of visit

times within the cycle T which satisfy the maximum inter-visit time requirement 𝐶𝑇௖. In other

words, the time interval between each two consecutive visit times for a given customer c must

not be greater than the inter-visit time requirement 𝐶𝑇௖. Table 11 shows a set of feasible visit

times for the ten customers during the 24-period cycle. This is a feasible visit schedule since the

inter-visit time requirement for each customer is satisfied. For example, for customer 1, 𝐶𝑇ଵ =

14 and this customer is visited at times (1, 2, 12, 24). Note that the time that elapses between

consecutive visits is (1, 10, 12 and 1) periods respectively, and all values in this list are less than

49

or equal to 𝐶𝑇ଵ=14. Thus, the visit schedule (1, 2, 12, 24) satisfies customer 1’s visit

requirement.

Table 11. Feasible customer visit times

Customer 1 1 2 12 24

Customer 2 4 11 17 23

Customer 3 1 6 9 12 15 19 23

Customer 4 2 14

Customer 5 8 13 21 22 24

Customer 6 7 20

Customer 7 3 4 15 16

Customer 8 8 10 19

Customer 9 7 9 20

Customer 10 2 3 4 5 6 7 8 9 14 15 20 21

Three vehicles can be used to make the required repeated visits to the ten customers. Tables 12

and 13 show a set of feasible vehicle routes that visit the customers at the times specified in

Table 11. Table 12 shows the time when each vehicle visits a customer, and Table 13 shows

which customer is visited at each time specified in Table 12. For example, vehicle 2 makes visits

at the beginning of periods (1, 2, 4, 6, 7) to customers (3, 4, 2, 3, 6), respectively.

Table 12. Vehicle visit times in the feasible solution

Vehicle 1 2 3 4 5 6 7 8 9 12 15 16 19 20 23

Vehicle 2 1 2 4 6 7 8 9 11 14 15 19 20 21 22 23 24

Vehicle 3 1 2 3 4 7 8 9 10 12 13 14 15 17 20 21 24

Table 13. List of customers visited in the feasible solution

Vehicle 1 10 10 10 10 10 10 10 10 1 7 7 8 9 2

Vehicle 2 3 4 2 3 6 5 3 2 10 10 3 6 5 5 3 5

Vehicle 3 1 1 7 7 9 8 9 8 3 5 4 3 2 10 10 1

Figure 4 illustrates the vehicle routes specified in Tables 12-13. Numbered circles illustrate the

customers. Vehicle 1’s travel path is indicated by dashed arrows, and the times of the visits that

50

are made by this vehicle are shown by underlined values. Vehicle 2’s travel path is represented

by bold arrows, and the times of the visits that are made by this vehicle are shown by bold

values. Vehicle 3’s travel path is indicated by regular arrows, and the times of the visits that are

made by this vehicle are shown in regular font.

51

Figure 4. Vehicle routes and visit times for the illustrative example

5 4

2

1

3

6

9

7

8

10

2, 3, 4, 5, 6, 7, 8, 9, 14, 15, 20, 21

7, 9, 20

8, 10, 19

3, 4, 15, 16

7, 20

8, 13, 21, 22, 24
2, 14

1, 6, 9, 12, 15, 19, 23
4, 11, 17, 23

1, 2, 12, 24

Vehicle 1 route

Vehicle 2 route

Vehicle 3 route

Vehicle 1 visit time

Vehicle 2 visit time

Vehicle 3 visit time

x

y

5 4 3 2 1

1

2

3

4

5

52

If we track the visit times for each vehicle to different customers in the same route, we can

observe that the gap in visit times from one customer to the next customer that are visited by the

same vehicle is not greater than the travel time between the two customers based on the distance

matrix. This makes it a feasible solution. For example, consider vehicle 1’s route. This vehicle is

at customer 10 at time 2 and stays at the same customer for the next 7 periods until time 9 when

it leaves customer 10 to travel to customer 1. Customer 1 must be visited by this vehicle at time

12. This is possible since the travel time between customers 10 and 1 (𝐷ଵ,ଵ଴) is 3 time periods

which is equal to the visit time gap of 12 – 9 = 3. At time 12, vehicle 1 continues its route and

leaves customer 1 to travel to customer 7, arriving at time 15. This journey takes 15 – 12 = 3

periods. The minimum travel time from customer 1 to 7 (𝐷ଵ,଻) is 3 time periods which makes this

visit possible. Vehicle 1 stays at customer 7 for another period until time 16 and must be at

customer 8 at time 19. The vehicle is able to catch up with that visit considering the travel time

of 3 between customers 7 and 8. The next stop for vehicle 1 is customer 9 at time 20. Then,

vehicle 1 leaves customer 9 at time 20 to travel to customer 2 and must arrive at time 23 which is

possible based on the travel time of 3 between these two customers. The next visit for vehicle 1

is customer 10 at time 2 which completes the cycle.

We now turn our attention to vehicle 2’s route. Vehicle 2 starts its route at customer 3 at time 1

and must make a visit to customer 4 at time 2. The travel time of only 1 period between these

two customers makes this visit possible. It will then travel to customer 2 to make a visit at time 4

which is feasible because 𝐷ଵ,ଵ଴ = 2. It then travels to customer 3 to arrive at time 6 and from

there it travels to customer 6 to make a visit at time 7. The feasibility of the rest of vehicle 2’s

route and vehicle 3’s route can be verified in the same manner.

53

2.5. Mathematical formulation

A binary integer program named VRP-FRV was developed to model this problem. Table 14
presents the indices, parameters, and decision variables in Math Model VRP-FRV.

Table 14. Indices, parameters, and decision variables in Math Model VRP-FRV

Indices
 c,d customers (𝑐, 𝑑 = 1 to 𝐶)

𝑡, 𝑢 time period (𝑡, 𝑢 = 1 to 𝑇)
 v vehicles (𝑣 = 1 to 𝑉)

Input parameters
 C Number of customers
 V Number of vehicles

𝑇 Cycle length for the system (integer > 0)
𝐶𝑇௖ Maximum inter-visit time that can be tolerated by customer c (integer, ≥ 2)
𝐷௖ௗ Travel time (in time periods) from customer c to d for each vehicle (integer, ≥ 1)

Decision variables

𝑋௩௖௧ ቄ
1
0

If vehicle v visits customer c at the start of time interval t (𝑣 = 1 to 𝑉, 𝑐 = 1 to 𝐶, 𝑡 = 1 to 𝑇)
Otherwise (binary)

𝑌௩ ቄ
1
0

If vehicle v is used at all (𝑣 = 1 to 𝑉)
Otherwise (binary)

Math model VRP-FRV is shown in Table 15. The objective of the model is to minimize the

number of vehicles that are needed in order to satisfy the maximum customer inter-visit times.

Constraint (21) indicates that in order for a vehicle to visit a customer, it must be selected as one

of the vehicles that are used. Constraint (22) satisfies the inter-visit time requirement for each

customer c. In other words, it ensures that customer c is visited at least once during every time

window of 𝐶𝑇௖ periods. Constraints (23) and (24) indicate that travel times between customers

(𝐷௖ௗ) need to be respected. Constraint (23) specifies that a vehicle can only visit customer c at

time t and customer d at time u (u > t) if u − t is greater than or equal to the travel time from

customer c to customer d (𝐷௖ௗ). Constraint (24) complements constraint (23) and considers the

cyclic aspect of the problem. In particular, constraint (24) specifies that a vehicle can only visit

customer d at time u and customer c at time t (u > t) if (t + T) – u is greater than or equal to the

travel time from customer d to customer c (𝐷ௗ௖). Constraint (25) indicates that each vehicle v can

visit no more than one customer at each time t. Constraint (26) ensures that lower index vehicles

are used. In other words, if vehicle v is not used, vehicle v + 1 is also not used. This eliminates

54

symmetries and redundant solutions, allowing a commercial solver to find optimal solutions

more quickly.

Table 15. Math Model VRP-FRV

𝑀𝑖𝑛 ෍ 𝑌௩

௏

௩ୀଵ

 (20)

Subject to:

𝑋௩௖௧ ≤ 𝑌௩ ∀𝑣, ∀𝑐, ∀𝑡 (21)

෍ ෍ 𝑋௩,௖,൫(௨ିଵ) ௠௢ௗ ்൯ାଵ

௧ା஼ ೎்ିଵ

௨ୀ௧

௏

௩ୀଵ

≥ 1 ∀𝑐, ∀𝑡 (22)

(𝑋௩௖௧ + 𝑋௩ௗ௨ − 1) 𝐷௖ௗ ≤ 𝑢 − 𝑡 ∀𝑣, ∀𝑐, ∀𝑡, ∀𝑑, ∀𝑢 > 𝑡 (23)

(𝑋௩௖௧ + 𝑋௩ௗ௨ − 1) 𝐷ௗ௖ ≤ (𝑡 + 𝑇) − 𝑢 ∀𝑣, ∀𝑐, ∀𝑡, ∀𝑑, ∀𝑢 > 𝑡 (24)

෍ 𝑋௩௖௧

஼

௖ୀଵ

≤ 1 ∀𝑣, ∀𝑡 (25)

𝑌௩ ≥ 𝑌௩ାଵ ∀𝑣 = 1 𝑡𝑜 𝑣 − 1 (26)

2.6. Heuristic algorithm

This problem appears to be NP-hard, so it is necessary to develop an efficient heuristic algorithm

for solving large instances. In this section, we provide a high-level overview, medium-level

summary, and detailed description of the heuristic.

The overall heuristic procedure that we developed begins with a constructive heuristic that

creates an initial feasible solution. This is followed by several local search improvement

procedures. After a termination criterion is met, the process restarts with a new initial feasible

solution. This is repeated for thousands of restarts while time has not expired. Figure 5 shows the

general procedure for each restart.

We now describe each part of the heuristic in a moderate level of detail. The construction of the

initial feasible solution is a two-step process. First, we create a visit schedule for each customer c

55

that satisfies 𝐶𝑇௖. Next, we create naïve vehicle routes in which all vehicles do not move and stay

at the same customer. This is done by assigning each customer’s visits to one separate vehicle.

There are four local search improvement procedures, i.e. improvement phases. All improvement

phases form neighboring solutions by transferring individual customer visits between vehicles.

During improvement phase 1, we transfer visits from vehicles that make fewer visits to vehicles

that make more visits. Once all such possibilities are exhausted, the process moves to phase 2.

During phase 2, in order to diversify the search, we transfer visits between vehicles with the

same number of customer visits. Once all such transfers are made, the process moves to phase 3.

In phase 3, we allow transfers from vehicles with more visits to vehicles which make fewer

visits, with specific conditions. After all possible transfer are made, we move to phase 4 where

transfers are allowed from vehicles which make more visits to vehicles which make fewer visits,

with no restrictions. Once a certain number of attempts have been made, the procedure

terminates and begins with a new initial solution characterized by entirely new customer visit

schedules.

Figure 5. Summary of the procedure for each restart in the heuristic

We now provide all details of each part of the heuristic. To start the heuristic, we create an initial

feasible solution. We now present a method for automatically generating an initial feasible

solution. As described in Section 2.4, a feasible solution is characterized by (i) a visit schedule

for each customer c, and (ii) a set of feasible vehicle routes that visit the customers at the times

Improv.
phase 1

Improv.
phase 2

Improv.
phase 3

Improv.
phase 4

Stop if the
termination
criterion is

met.

Start

Use the
constructive
heuristic to
make initial

feasible
solution.

56

specified in (i). A feasible visit schedule for customer c is specified by two elements: 1) visit

start point, 2) inter-visit times. A visit start point is the first visit time for customer c which is a

random time from 1 to T. Inter-visit times represent the time periods between consecutive visits

for customer c beginning with the visit start point. In what follows, we describe how to create

random inter-visit times for customer c. First, the minimum number of visits that has to be made

to customer c is computed which is MinNumVisitsc = ቒ
்

஼ ೎்
ቓ. Then we set maximum number of

visits that is possible to make for customer c as MaxNumVisitsc = Min {MinNumVisitsc+2, T} in

order to allow flexibility in number of visits to that customer. A random number of visits

(RandNumVisitsc) is then selected randomly in the range [MinNumVisitsc, MaxNumVisitsc]. Next,

RandNumVisitsc inter-visit times are created. This is done by initially setting each inter-visit time

to 𝐶𝑇௖ and then repeatedly reducing by one the value of a randomly selected inter-visit time until

the sum is T. Then, the visit schedule is made using the visit start point and inter-visit times.

Now, we describe phase 1 of the heuristic procedure. In phase 1, we explore all possible transfers

of visits from vehicles which make fewer visits to vehicles which make more visits. To do this,

we first make a sorted list of vehicles according to the increasing number of customer visits that

they make. In such a sorted list, a lower index vehicle makes fewer visits than a higher index

vehicle. Suppose that there are n vehicles. Let us denote the vehicles in the sorted list as (v1, v2,

…,vn). We refer to the vehicle from which we attempt to transfer a visit, as the giving vehicle.

The vehicle to which we try to move a visit is also referred to as the accepting vehicle. The first

giving and accepting vehicles are the first low index vehicle (v1) and the first high index vehicle

(vn) in the sorted list of vehicles, respectively. If no transfer is possible between those two

vehicles, we keep the giving vehicle the same vehicle (v1) and change the accepting vehicle to

the next high index vehicle in the list (vn-1). We keep doing this until a transfer is made or no

transfer is made from v1 to all other higher index vehicles (v2, …,vn). If this happens, we then

consider the second low index vehicle in the list (v2) as the giving vehicle and attempt

transferring a visit from that vehicle to a higher index vehicle starting from vn, in the same

manner that was discussed earlier. In the following paragraph, we describe in details how to

approach transferring a visit from a giving vehicle to an accepting vehicle.

Consider a giving vehicle. Suppose that this vehicle currently makes J visits. Let us denote the jth

visit by cvj. So, the list of customer visits for the giving vehicle is (cv1, cv2 ,…, cvJ). We first

57

attempt to transfer the first customer visit (cv1) from that vehicle to the accepting vehicle. If such

a transfer is not possible, we move to the next customer visit (cv2) for the giving vehicle and

consider transferring that to the accepting vehicle. We try until we can transfer a visit from the

giving vehicle to the accepting vehicle or we have tried all customer visits (cv1, cv2 ,…, cvJ) of

the giving vehicle and no transfer is possible. We now describe how to investigate if a visit

transfer is possible between two vehicles in the next paragraph.

Consider a customer visit time as t which belongs to customer c is to be transferred from vehicle

v1 to vehicle v2. Suppose that vehicle v2 currently makes J visits. Let us denote vehicle v2’s

customer visit times as (t’
1, t

’
2 ,…, t’

J). If t is equal to any of v2’s customer visits, this indicates

that v2 already makes a visit to a customer at that time and it is not able to make a visit to another

customer at that time. Therefore, such a transfer is not possible. Otherwise, we need to evaluate

if this transfer is possible considering the travel time between customers for the accepting vehicle

v2. Suppose that t falls between customer visit times t’
3 and t’

4. Also, suppose that visit time t’
3

relates to customer d and visit time t’
4 relates to customer u. This means that vehicle v2 must be

able to make a visit to customer d at time t’
3, then leaves customer d to customer c to arrive at

time t and then leaves customer c to customer u to arrive at time t’
4. We need to check two

criteria: 1) compute t - t’
3 . If this is greater than or equal to the travel time 𝐷ௗ௖, this ensures that

vehicle v2 is able to leave customer d at time t’
3 and arrive at customer c at time t. 2) compute t’

4 -

t. If this is greater than or equal to the travel time 𝐷௖௨, this ensures that vehicle v2 is able to leave

customer c at time t and arrive at customer u at time t’
4. Both these conditions need to be satisfied

for such a transfer to be possible.

Note that when an attempt to transfer a visit is not successful, we re-evaluate the case to find out

if changing that visit time makes the transfer possible. To do this, (i) we make a list of all

feasible times for that visit, and (ii) try to transfer a particular visit from the giving vehicle v1 to

the accepting vehicle v2 using visit times in the list until we find a possible transfer or we have

tried all visit times in the list and no such transfer is possible. Part (i) is done with respect to

satisfying the inter-visit requirement 𝐶𝑇௖ for customer c for which transferring the visit is being

evaluated.

In phase 2, we explore all possible transfers from higher index vehicles to lower index vehicles

that have the same number of visits to diversify the search. First, we create a sorted list of

58

vehicles in the order of increasing in number of visits made. Suppose that there are n vehicles.

Let us denote the vehicles in the sorted list as (v1, v2, …, vn). We start evaluating from the

beginning of the list to see if each two consecutive vehicles have the same number of visits. In

other words, we first check if v1 and v2 have the same number of visits. If so, we explore

transferring a visit from v2 to v1. If such a transfer is not possible or these two do not make the

same number of visits, we move forward in the list and evaluate if v2 and v3 have the same

number of visits. We continue in the same manner until a transfer is made or we have covered

the entire list and no such transfer is possible. Note that throughout phase 2, we need to re-sort

the list of vehicles after each transfer is made.

Phase 3 is designed to make neutral moves which help to avoid being stuck in local solutions and

add variety to feasible solutions. In other words, in phase 3, there is no progress in reducing

number of vehicles and there is no regression. We explore all possible visit transfers from higher

index vehicles to lower index vehicles only if the higher index vehicle has one more visit than

the lower index vehicle. Note that, we do not re-sort the list of vehicles after each transfer is

made to prevent repeating the opposite transfers and being stuck in a loop. If there is no possible

transfer by the end of phase 3, we certainly move to phase 4. If there has been at least one

successful transfer in phase 3, we perform phase 4 with a pre-determined probability

(LikelihoodOfGoingFromPhase3To4) or repeat phase 1 with the probability of (1-

LikelihoodOfGoingFromPhase3To4).

To start phase 4, we need to re-sort the list of vehicles if any success was made in phase 3. Phase

4 is considered an uphill move to create variety in the solutions. In this phase, we make a certain

number of reverse transfers (NumReverseTransfersInPhase4) from higher index vehicles to

lower index vehicles with no restrictions. We re-sort the list of vehicle once a transfer is made

each time. Once we are done with phase 4, we evaluate how many times this phase has been

done. If Phase 4 has been performed for a certain number of times (#TimesToPerformPhase4),

the best solution so far is stored, the current restart is finished, and a new restarts begins. Each

restart begins with a different initial feasible solution. A flowchart of the proposed heuristic is

also presented in Figure 6. Table 16 provides brief descriptions for each of the four phases.

59

Restart the process. Create the rth initial feasible solution as follows:
1. Let the number of vehicles equal the number of customers.
2. Create a random feasible visit schedule for each customer c.
3. For c = 1 to C, assign all the visits made to customer c to vehicle c.
4. Let #TimesPhase4Done = 0.
5. Let BestNumVeh = ∞.

Is a visit
transferred?

Yes

Perform Phase1:
1. Explore all feasible transfers from lower index vehicles to higher index vehicles in the list. Follow the transfer

procedure to transfer a visit from a giving vehicle to an accepting vehicle.
2. Keep trying until one transfer is made or you have proven that no such feasible transfer exists.

Yes

No

Perform Phase 2:
1. Explore all feasible transfer from higher index vehicles to a lower index vehicles only if the two vehicles make

the same number of visits.
2. Keep trying until all feasible transfers are made.

Perform Phase 3:
1. Explore all feasible transfers from higher index vehicles to lower index vehicles only if higher index vehicle has

one more visit than the lower index vehicle.
2. Keep trying until all feasible transfers are made.

Is a visit
transferred?

Perform Phase 4:
1. Explore feasible reverse transfers from vehicles with higher indices to vehicles with lower indices with

no restrictions.
2. Keep trying until NumReverseTransfersToMake transfers are made.
3. Increase #TimesPhase4Done by 1.

Is a visit
transferred?

Go to Phase 4 with the probability of
LikelihoodOfGoingFromPhase3To4.

Otherwise, go to Phase 1.

Is #TimesPhase4Done =
#TimesToPerformPhase4

If the number of vehicles being used in the current solution < BestNumVeh, remember
the current solution.

No

Yes

No

If time limit is reached, STOP.
Otherwise, begin the next

restart and let r = r+1

Yes No

Figure 6. Flowchart of the heuristic algorithm

Let r = 1

If time limit is reached, STOP.
Otherwise, go to phase 1.

60

Table 16. Summary of the different solution improvement phases in the heuristic

Phase Action
1 Explore all feasible visit transfers from lower index vehicles to higher

index vehicles.
2 Explore all feasible transfers from higher index vehicles to lower index

vehicles that make the same number of visits.
3 Explore all feasible transfers from higher index vehicles to lower index

vehicles only if higher index vehicle has one more visit than the lower
index vehicle.

4 Make no more than NumReverseTransfersToMake transfers from higher
index vehicles to lower index vehicles with no restrictions.

We now explain the heuristic procedure using the instance defined in Tables 9-10 in Section 2.4.

The minimum number of visits to customer 1 is MinNumVisits1=ቒ
ଶସ

ଵସ
ቓ = 2 and the maximum

number of visits is MinNumVisits1 + 2 = 4. Assume that RandNumVisits1 is 3. In this case, the

three inter-visit times would each be initially set to 𝐶𝑇ଵ = 14 and then repeatedly reduced until

they sum to T = 24. For example, the inter-visit times for customer 1 could be: (10, 7, 7). A

random visit start point from 1 to T is then selected. If the visit start point were 7, customer 1

would be visited at times (7, 17, 24). We randomly create visit times for each customer in the

same manner.

Note that ten vehicles are used initially to make the required repeated visits to the ten customers.

An initial feasible set of vehicle routes is then made by assigning all customer 1’s visits to

vehicle 1, customer 2’s visits to vehicle 2 and so on until customer 10’s visits are assigned to

vehicle 10. Tables 17-18 show a set of feasible routes that visit the customers at the times

specified based on the discussion in the previous paragraph. Table 17 shows the initial VisitTime

matrix which represents the time when each vehicle visits a customer. Table 18 shows the initial

WhoIsVisited matrix that represents which customer is visited at each time specified in Table 17.

For example, vehicle 2 visits customer 2 at times (5, 9, 14, 17, 21).

61

Table 17. Initial VisitTime matrix

Vehicle 1 7 17 24

Vehicle 2 5 9 14 17 21

Vehicle 3 5 10 15 19 24

Vehicle 4 3 15

Vehicle 5 7 10 18 24

Vehicle 6 2 14

Vehicle 7 7 13 15 18 22

Vehicle 8 4 16

Vehicle 9 6 18

Vehicle 10 2 7 8 13 15 19 21

Table 18. Initial WhoIsVisited matrix

Vehicle 1 1 1 1

Vehicle 2 2 2 2 2 2

Vehicle 3 3 3 3 3 3

Vehicle 4 4 4

Vehicle 5 5 5 5 5

Vehicle 6 6 6

Vehicle 7 7 7 7 7 7

Vehicle 8 8 8

Vehicle 9 9 9

Vehicle 10 10 10 10 10 10 10 10

The initial feasible solution is stored in the best solution found so far (BestSol) and best number

of vehicles so far, BestNumVeh is 10. Prior to each phase, vehicles are sorted according to the

increasing total number of visits that they make.

To start phase 1 for this instance, the list of number of total visits for each vehicle c =1,…, 10 is

(3, 5, 5, 2, 4, 2, 5, 2, 2, 7). Therefore, the sorted list of vehicles is (4, 6, 8, 9, 1, 5, 2, 3, 7, 10). In

phase 1, we explore a feasible transfer from lower index vehicles to higher index vehicles. The

first giving and accepting vehicles are the first low index vehicle and the first high index vehicle

(4,10). If no transfer is possible from vehicle 4 to vehicle 10, we consider the accepting vehicle

as the second high index vehicle in the list (vehicle 7). Again, if we find no possible transfer, the

62

next high index vehicle in the list will be the candidate for the accepting vehicle (vehicle 3) and

so on. In other words, the order of selected pairs of giving and accepting vehicles based on the

list until we find a successful transfer from vehicle 4 is (4,10), (4,7), (4,3), (4,2), (4,5), (4,1),

(4,9), (4,8), and (4,6). If no transfer is possible from vehicle 4 to other higher index vehicles, we

move to the next low index vehicle as for the giving vehicle (vehicle 6). Again, the order of

selected pairs of giving and accepting vehicles based on the list until we find a successful

transfer from vehicle 6 is (6,10), (6,7), (6,3), (6,2), (6,5), (6,1), (6,9), and (6,8). For each selected

pair, we attempt to move the first visit from the giving vehicle to the accepting vehicle. If that

was not possible, we try to move the second visit from the giving vehicle to the accepting

vehicle. We continue until a transfer is made or we have tried all visit times for the giving

vehicle and none are possible.

The first pair of giving and accepting vehicles based on the sorted list of vehicles is (4, 10). In

other words, we try to make a transfer from vehicle 4 to vehicle 10. The visit times for vehicle 4

in the VisitTime matrix are (3, 15). We then try to transfer the first visit for vehicle 4 which

belongs to customer 4 at time 3. The customers that vehicle 10 currently visits based on the

WhoIsVisited matrix is (10, 10, 10, 10, 10, 10, 10) and the current visit schedule for vehicle 10 is

to visit customer 10 at times (2, 7, 8, 13, 15, 19, 21). If customer 4’s visit at time 3 is transferred

to vehicle 10, customer 4 will be part of the list of customers that vehicle 10 serves in the

WhoIsVisited matrix: (10, 4, 10, 10, 10, 10, 10, 10). We need to check to find out if the visit at

time 3 can fit into vehicle 10’s schedule between time periods 2 and 7. In this case, the potential

visit schedule would be (2, 3, 7, 8, 13, 15, 19, 21). We go through the transfer procedure and

check to see whether (i) there is enough time for vehicle 10 to travel from the customer 10 at

time 2 and arrive at customer 4 at time 3 and (ii) there is enough time for vehicle 10 to travel

from the customer 4 at time 3 and be at customer 10 at time 7. These are evaluated using the

travel time between customers 4 and 10 (𝐷ସ,ଵ଴). Vehicle 10 is visiting customer 10 at time 2 and

it should next arrive at customer 4 at time 3. Therefore the visit gap is 1 time period between the

two customers. This is not possible since 𝐷ସ,ଵ଴ = 4 time periods which is greater than the visit

gap of 1 time period.

We then investigate further if we can change the visit time of 3 for customer 4 to make it

transferable. We find all possible visit times that customer 4 can have instead of time 3.

63

Customer 4’s inter-visit requirement is 15 time periods (𝐶𝑇4 = 15). It is currently visited at times

3 and 15. The resulting inter-visit times are (12, 12). Each of these values is less than 𝐶𝑇ସ = 15.

This means that the visit at time 3 is flexible to move up to 3 periods earlier or be pushed up to 3

periods later. Therefore, the list of all feasible visit times for customer 4 with respect to time 3 is

(24, 1, 2, 4, 5, 6). We then scramble this list and start with the first element in the list to figure

out if that is possible to transfer. If that is possible, a transfer is made and we repeat phase 1

starting with making a sorted list of vehicles in terms of busyness. Otherwise, if a transfer is not

possible, we will test the second value in the list. We will continue to test the visit times in the

list until we find a possible visit transfer or we have tried all visit times in the list and none of

them is possible. For this list, there is no visit time that is possible considering the travel time

between customers 10 and 4.

Since moving the first visit of vehicle 4 at time 3 is not possible, we investigate moving the

second visit time of vehicle 4 which belongs to customer 4 at time 15. The accepting vehicle 10

already has a visit at time 14 to the other customer 10. Therefore, this transfer is not possible. So

far, we evaluated transferring all visit times from the giving vehicle 4 to the accepting vehicle 10

and no transfer is possible. Therefore, we keep the same giving vehicle 4 and change the

accepting vehicle to the next high index vehicle in the list which is vehicle 7 and evaluate the

possibility of transferring a visit in the same way that was explained earlier. In summary, we

keep trying phase 1 until a transfer is made or we have tried all cases but no such possible

transfer exists. If a transfer was successfully made, we repeat phase 1 starting with sorting

vehicles based on their updated number of visits. Otherwise, if no transfer is made, we move to

phase 2.

In phase 2, we explore all possible transfers from higher index vehicles to lower index vehicles

that have the same number of visits. Suppose that for this instance, no transfer was made in

phase 1 and therefore the number of visits for each vehicle (3, 5, 5, 2, 4, 2, 5, 2, 2, 7) and the

sorted list of vehicles (4, 6, 8, 9, 1, 5, 2, 3, 7, 10) are not updated. In this case, the first two

candidates as giving and accepting vehicles are vehicles 6 and 4, respectively, since both serve 2

visits. We attempt to transfer all visits (both visit times 2 and 14) from vehicle 6 to 4. If no

transfer is possible from vehicle 6 to 4, we move through the rest of the sorted list of vehicles

and find that vehicles 6 and 8 also make equal number of visits (2 visits). Therefore, we explore

64

possible transfers from vehicle 8 to vehicle 6 and so on. Note that throughout this process, once a

transfer is made, the sorted list of vehicles needs to be updated. Phase 2 ends when all possible

transfers are made based on the sorted list of vehicles or all transfers have been evaluated and no

such possible transfer exists. If we do not gain any success in phase 2, we start phase 3. In what

follows, we explain phase 3.

In phase 3, we explore all possible visit transfers from higher index vehicles to lower index

vehicles only if the higher index vehicle has one more visit than the lower index vehicle. Phase 3

is started if no transfer is made in phases 1 and 2. Suppose that no success was made in phase 1

and phase 2. In that case, the number of visits for each vehicle (3, 5, 5, 2, 4, 2, 5, 2, 2, 7) and the

sorted list of vehicles (4, 6, 8, 9, 1, 5, 2, 3, 7, 10) are not updated. For this case, we first consider

transferring a visit from vehicle 6 to 4. These two are not eligible since both make same number

of visits. Next, we consider transferring a visit from vehicle 8 to 6. These two are also not

eligible since both make same number of visits. We first two vehicles eligible in phase 3 are

vehicles 1 and 9. Vehicle 1 makes 3 visits and vehicle 9 makes 2 visits. So, we may start

investigating if a transfer can be made from vehicle 1 to vehicle 9. Note that we do not re-sort the

list of vehicles after each transfer is made to prevent repeating the opposite transfers and being

stuck in a loop. We continue in this manner and if there is no possible transfer by the end of

phase 3, we certainly move to phase 4. If there has been at least one successful transfer in phase

3, we perform phase 4 with a probability of LikelihoodOfGoingFromPhase3To4 or repeat phase

1 with the probability of (1- LikelihoodOfGoingFromPhase3To4).

To start phase 4, we need to re-sort the list of vehicles if any success was made in phase 3. In this

phase, we make a certain number of reverse transfers (NumReverseTransfersInPhase4) from

higher index vehicles to lower index vehicles with no restrictions. One possibility of getting to

phase 4 is the case where no transfer was made in phases 1, 2 and 3. So, let us suppose that

number of visits for each vehicle (3, 5, 5, 2, 4, 2, 5, 2, 2, 7) and the sorted list of vehicles (4, 6, 8,

9, 1, 5, 2, 3, 7, 10) are not updated. We first attempt to make a transfer from vehicle 6 to vehicle

4, then from vehicle 8 to vehicle 6, then from vehicle 9 to vehicle 8 and so on until

NumReverseTransfersInPhase4 transfers are made. Note that, we re-sort the list of vehicle once a

transfer is made each time. Once we are done with phase 4, we evaluate how many times this

65

phase has been done. If phase 4 has been performed for #TimesToPerformPhase4 times, the best

solution so far is stored in BestSol and the current restart ends.

2.7. Experimental setup, results, and discussion

We performed two sets of experiments which consider two methods for solving the math model:

(1) integer programming using IBM ILOG CPLEX 12.9; (2) the heuristic algorithm described in

Section 2.6.

2.7.1. Generating problem instances

Tables 19-20 show the parameter values that define the problem instances considered in the

experiments. We use the discrete uniform (DU) distribution to randomly generate the inter-visit

time requirement 𝐶𝑇௖ for each customer. The travel times between customers are computed by a

three-step process. First, we randomly generate imaginary (𝑥, 𝑦) coordinates for each customer.

These either follow the U(0,5) or U(0,10) distribution. Second, we compute the distance between

each pair of customers using the Pythagorean Theorem. Based on this distance formula, the

travel time between two points with coordinates (𝑥ଵ,𝑦ଵ) and (𝑥ଶ,𝑦ଶ) is

ඥ(𝑥ଶ − 𝑥ଵ)ଶ + (𝑦ଶ − 𝑦ଵ)ଶ. Then, the resulting non-integer value is rounded up to the nearest

integer.

Table 19. Parameter values used in experiment 1

Parameter Possible values
C 10, 30, 50
T 24, 50, 100

𝐶𝑇௖ DU(5,15)

x, y coordinates U(0,5)
𝐷௖ௗ Integers from 1 to 8

Table 20. Parameter values used in experiment 2

Parameter Possible values
C 10, 30, 50
T 24, 50, 100

𝐶𝑇௖ DU(5,15)
x, y coordinates U(0,10)

𝐷௖ௗ Integers from 1 to 15

66

We consider nine problem sizes in experiments 1 and 2: small, medium and large. These

problem sizes correspond to all combinations of three possible numbers of customers−10, 30

and 50 − and three values for the cycle time (T) − 24, 50 and 100. Each problem size is

displayed as a seven-digit code “CccTttt”. “cc” represents the number of customers and “ttt”

indicates the cycle length. For each problem size, we consider ten different instances. Therefore,

90 different instances were considered in total for each experiment. Experiment 1 considers the

case where the (𝑥,𝑦) coordinates of each customer’s location are generated using a uniform

distribution from 0 to 5. Experiment 2 considers the case where the (𝑥,𝑦) coordinates of each

customer are generated using a uniform distribution from 0 to 10.

2.7.2. Hardware settings, CPLEX settings, heuristic settings, and termination criteria

The math model from Section 2.5 and the heuristic algorithm from Section 2.6 were coded into

MS Visual C++ 2017 Professional. IBM ILOG Concert Technology was used to code the math

model in C++ and call IBM ILOG CPLEX 12.9 to solve instances defined in text files. All

results are obtained using a desktop computer with 16 gigabytes of RAM, the Windows 10

Education 64-bit operating system, and an Intel Core i7-8700 processor with 3.2 gigahertz

processors. The CPLEX-based method terminates after 3600 seconds has elapsed. To reduce

CPLEX runtime, V is set to a value much less than C when the math model is created and solved

by CPLEX. In particular, V is set to (10, 15, 20) when C equals (10, 30, 50), respectively. All

other CPLEX parameters are set to their default values. The termination criteria and settings for

the heuristic algorithm are reported in Table 21.

Table 21. Parameter values used for the heuristic method

Parameter Value

NumTimesToPerformPhase4 5

NumReverseTransfersInPhase4 3

LikelihoodOfGoingFromPhase3To4 0.5

Run time for small problems with c = 10 120 sec

Run time for medium-sized problems with c = 30 300 sec

Run time for large problems with c = 50 600 sec

67

2.7.3. Results and discussion

Table 22 shows the CPLEX results for experiment 1. For each of the 90 instances considered,

this table shows the number of vehicles used in the best feasible solution found by CPLEX

within the time limit and the time (in seconds) used by CPLEX. The average number of vehicles

used for each problem size is also shown. The bold highlighted values show optimal solutions

identified by CPLEX. The value “N/A” in the table means that CPLEX ran out of memory due to

the complexity of the problem and no feasible solution was found prior to termination.

Therefore, the run time for instances where CPLEX ran out of memory is not reported and is

presented as “*”. Table 23 shows the results for the heuristic method by experiment 1. The

structure of this table is similar to Table 22 except that the runtime information is not provided

because runtimes are predetermined. We next discuss the results for different problem sizes and

the performance of solution methods.

For instances with 10 customers, CPLEX was successful in finding optimal solutions for all 10

instances of problem size C10T024 within less than an hour. For problem size C10T050, CPLEX

was partially successful in solving problems to optimality within an hour. It identified an optimal

solution for 5 out of 10 such instances in less than an hour. This is expected since for the same

number of customers, as the cycle time increases, the problem becomes more complex as it is

more likely to involve more visits to customers. For the C10T100 problem size, CPLEX only

reported one optimal solution for the first instance in 396 seconds, and it was able to find feasible

solutions for other 9 instances as displayed in Table 22. The CPLEX results for small problem

instances indicate that the problem at hand is very complex since CPLEX is not able to find

optimal solutions for many instances. Results also indicate that the average number of required

vehicles increases across the three discussed problems. In particular, that increases from 3

vehicles for problem size C10T024 to 3.3 vehicles for problem size C10T050 and finally to 3.7

vehicles as for problem size C10T100. Either more vehicles are needed to satisfy more repeating

visits during a longer cycle time or the higher complexity of the problem reduces CPLEX’s

effectiveness.

The heuristic results in Table 23 show that the heuristic method finds solutions of the same

quality as CPLEX for all instances of size C10T024 and C10T050. Moreover, the heuristic

method is able to find a lower average number of vehicles (3.4) within 120 seconds for the

68

C10T100 problem size than CPLEX with a 1-hour limit. This indicates that the heuristic method

is outperforming CPLEX for the small problem instances in experiment 1.

Table 22. CPLEX results for experiment 1

Problem Size
Instance

Average

1 2 3 4 5 6 7 8 9 10

C10T024
#vehicles 3 3 3 3 3 3 3 3 3 3 3

run time(s) 15 457 339 13 17 712 9 21 74 57

C10T050
#vehicles 3 3 4 4 3 3 3 3 4 3 3.3

run time(s) 3602 126 3609 3606 156 1632 335 1995 3602 3602

C10T100
#vehicles 3 4 4 3 4 4 3 4 4 4 3.7

run time(s) 396 3608 3607 3608 3608 3609 3608 3608 3609 3609

C30T024
#vehicles 8 9 15 8 7 8 8 8 8 9 8.8

run time(s) 3606 3607 3608 3606 3607 3606 3607 3607 3606 3607

C30T050
#vehicles 9 8 14 8 8 8 9 8 9 9 9

run time(s) 3717 3651 3712 3671 3659 3659 3653 3732 3789 3658

C30T100
#vehicles N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

run time(s) * * * * * * * * * *

C50T024
#vehicles 13 14 12 11 12 12 14 13 11 12 12.4

run time(s) 3621 3616 3618 3618 3620 3625 3618 3619 3626 3618

C50T050
#vehicles N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

run time(s) * * * * * * * * * *

C50T100
#vehicles N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

run time(s) * * * * * * * * * *

Bold: Optimal solution *: Out-of-memory

Table 23. Heuristic results for experiment 1

Problem Size
Instance

Average

1 2 3 4 5 6 7 8 9 10

C10T024 #vehicles 3 3 3 3 3 3 3 3 3 3 3
C10T050 #vehicles 3 3 4 4 3 3 3 3 4 3 3.3
C10T100 #vehicles 3 4 4 3 3 4 3 3 4 3 3.4
C30T024 #vehicles 8 9 9 8 7 9 7 8 8 9 8.2
C30T050 #vehicles 9 8 9 7 8 8 8 8 8 9 8.2
C30T100 #vehicles 9 9 9 8 8 8 9 8 9 8 8.5
C50T024 #vehicles 11 13 13 11 12 13 12 12 11 11 11.9
C50T050 #vehicles 11 13 12 11 14 13 13 12 12 13 12.4
C50T100 #vehicles 12 12 14 12 12 12 13 12 14 14 12.7

69

For instances with 30 customers, CPLEX reported no optimal solutions, and it reported feasible

solutions after an hour only for the instances where T = 24 and T = 50. This agrees with intuition.

As the problem size increases, we expect to see more difficulty for CPLEX in solving the

problem. Also, as we move from C30T024 to C30T050 problem size, the average number of

vehicles found in the best solution increases from 8.8 to 9. When the cycle time T = 100, CPLEX

runs out of memory in all cases and is not able to find any feasible solutions prior to termination.

The heuristic results in Table 23 show that the heuristic method outperforms CPLEX for these

30-customer instances. Indeed, the heuristic finds solutions that use fewer vehicles on average

than CPLEX for each problem size: 8.2, 8.2, and 8.5 vehicles on average for problem sizes

C30T024, C30T050, and C30T100 compared to 8.8, 9, and N/A for CPLEX respectively.

For large problem instances with 50 customers, CPLEX was not able to find optimal solutions

for any instances, it ran out of memory and did not report any feasible solutions for all instances

of size C50T050 and C50T100. The heuristic method significantly outperforms CPLEX for these

instances. The heuristic method finds solutions that use an average of 11.9 vehicles for problem

size C50T024 which is lower than the CPLEX result of 12.4. Also, the heuristic is able to find

solutions that use an average of 12.4 and 12.7 vehicles for problem sizes C50T050 and C50T100

respectively, whereas CPLEX did not find any feasible solutions for these two problem sizes.

In summary, the proposed heuristic outperforms CPLEX in experiment 1. Indeed, the heuristic

reports a lower average number of vehicles used for 7 out of 9 problem sizes, and it finds the

same average number of vehicles as CPLEX for the other two problem sizes C10T024 and

C10T050 within only 120 seconds. This indicates that the heuristic method is efficient in

handling small, medium, and large problem instances within a short amount of time.

Table 24 shows the CPLEX results for experiment 2. This table has the same structure as Table

22. Table 25 shows the results for the heuristic method by experiment 2. The structure of this

table is similar to Table 24 except that the runtime information is not provided because runtimes

are predetermined. We discuss the performance of solution methods across the different problem

sizes.

70

Table 24. CPLEX results for experiment 2

Problem Size
Instance

Average

1 2 3 4 5 6 7 8 9 10

C10T024
#vehicles 4 5 5 6 4 4 5 4 4 4 4.5
run time(s) 3602 3615 3602 3601 760 2001 3602 3631 3192 3601

C10T050
#vehicles 4 6 6 7 4 5 5 4 5 4 5
run time(s) 3602 3602 3602 3602 3602 3602 3602 3602 3602 3602

C10T100
#vehicles 5 6 7 7 5 6 6 9 5 6 6.2
run time(s) 3609 3609 3607 3607 3606 3607 3607 3606 3607 3607

C30T024
#vehicles 13 13 15 12 12 12 14 15 14 15 13.5
run time(s) 3619 3625 3621 3615 3621 3615 3745 3621 3618 3650

C30T050
#vehicles 14 15 15 13 15 13 15 15 14 14 14.3
run time(s) 3645 3750 3392 3650 3760 3791 3364 3733 3818 3693

C30T100
#vehicles N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
run time(s) * * * * * * * * * *

C50T024
#vehicles 17 17 18 17 19 16 17 19 20 18 17.8
run time(s) 3779 3727 3738 3817 3736 3764 3713 3698 3724 3734

C50T050
#vehicles N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
run time(s) * * * * * * * * * *

C50T100
#vehicles N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
run time(s) * * * * * * * * * *

Bold: Optimal solution *: Out-of-memory

Table 25. Heuristic results for experiment 2

Problem Size
Instance

Average

1 2 3 4 5 6 7 8 9 10

C10T024 #vehicles 4 5 5 6 4 5 5 4 4 4 4.6
C10T050 #vehicles 5 6 6 6 4 5 5 4 5 4 5
C10T100 #vehicles 5 5 6 7 4 5 6 5 5 4 5.2
C30T024 #vehicles 12 12 13 12 13 12 12 14 14 15 12.9
C30T050 #vehicles 13 13 12 14 13 13 14 13 13 13 13.1
C30T100 #vehicles 13 14 13 14 13 15 14 14 14 14 13.8
C50T024 #vehicles 16 17 16 18 17 16 16 18 16 17 16.7
C50T050 #vehicles 17 18 18 17 17 18 17 16 17 16 17.1
C50T100 #vehicles 18 17 17 18 18 17 18 18 17 18 17.6

CPLEX was able to solve only three instances of problem size C10T024 to optimality. CPLEX

finds only feasible solutions for 7 instances of problem size C10T024 and all 10 instances for the

other two problem sizes C10T050 and C10T100. As we move across these three problem sizes

with 10 customers; from C10T024 to C10T050 and C10T100, the average numbers of vehicles

increases from 4.5 to 5 and to 6.2.

71

We now explain about the results for instances with 30 customers. For the first two problem

sizes C30T024 and C30T050, CPLEX finds feasible solutions for all 10 instances within an hour.

However, CPLEX runs out of memory for all C30T100 instances and is not able to find any

feasible solutions. The heuristic method outperforms CPLEX for instances with 30 customers. It

reports an average of 12.9 vehicles for problem size C30T024 which is lower than an average of

13.5 vehicles found by CPLEX. Also, the heuristic method finds an average of 13.1 vehicles for

problem size C30T050 which is lower than the average of 14.3 vehicles reported by CPLEX for

the same problem size. The heuristic also significantly outperforms CPLEX for problem size

C30T100 as CPLEX does not find any feasible solution for 10 instances. We observe that the

same pattern holds for instances with 10 customers. As the cycle time increases from 24 to 50

and from 50 to 100, the average number of vehicles needed increases. Either more vehicles are

needed to satisfy more repeating visits during a longer cycle time, or the higher complexity of

the problem reduces the CPLEX/heuristic effectiveness.

For instances with 50 customers, CPLEX was not able to find optimal solutions for any instances

of problem size C50T024. Moreover, for all instances in the other two problem sizes C50T050

and C50T100, CPLEX ran out of memory and did not report any feasible solutions. The heuristic

significantly outperforms CPLEX for instances with 50 customers. The heuristic finds on

average 16.7 vehicles for problem size C50T024 which is lower than the CPLEX result of 17.8

vehicles on average. Also, the heuristic is able to find on average 17.1 and 17.6 vehicles for

problem sizes C50T050 and C50T100 respectively, whereas CPLEX did not find any feasible

solutions for these two problem sizes.

In summary for experiment 2, the proposed heuristic method outperforms CPLEX in 7 out of 9

problem sizes and it performs equally well as CPLEX in one problem size C10T050. This

indicates that the heuristic method proves to be effective in solving all small, medium and large

problem sizes within only a short run time.

72

2.8. Conclusion

We studied a new variant of the vehicle routing problem: the vehicle routing problem with

flexible repeat visits (VRP-FRV). The VRP-FRV has several real-world applications. One

scenario is that of caretakers who provide service to elderly people at home. Each caretaker is

assigned a number of elderly people to visit one or more times per day. Elderly people differ in

their requirements and the minimum frequency at which they need to be visited every day. The

VRP-FRV is also important in the context of a police patrol routing problem where the

customers are various locations in the city that require frequent observations. Such locations

could include known high-crime areas, high-profile residences, and/or safe houses. Moreover,

the VRP-FRV applies to the routing of preventive maintenance workers for a major utility

company or manufacturer who need to check key system components on a regular basis.

The VRP-FRV problem considers a set of customers with certain locations and a set of available

vehicles for serving customers. The novelty of this problem relates to the customer visit

requirements which are of different types compared with the existing VRP studies with time

windows for deliveries. In particular, each customer must be visited at least once during every

time window of a certain length that can be formed during a cycle. Therefore, each vehicle may

make repeated visits to the same customer within the same route. The operations are cyclic,

repeating over a cyclic planning horizon. We developed a binary integer programing model to

find the customer visit schedules and vehicle routes which minimize the total number of vehicles

that are needed to meet the customers’ requirements. We used CPLEX to solve the proposed

math model and developed a heuristic algorithm to handle large problem instances. Two sets of

experiments were performed. Overall, the heuristic outperformed CPLEX in both experiments

which shows the heuristic’s efficiency in solving the VRP-FRV.

Future research will focus on developing a bi-objective model which considers both minimizing

the number of vehicles and minimizing the total distance traveled by these vehicles. Another

possible extension is to include a depot in the model and require each vehicle start and end its

route at the depot. Future work will also include investigating further the

effectiveness/robustness of the heuristic algorithm by finding bounds for the objective function

for different problem instances as well as comparing the results of the developed heuristic with

other heuristic procedures such as Simulated Annealing and Tabu Search.

73

References

Alba Martínez, M. A., Cordeau, J. F., Dell'Amico, M., Iori, M. (2013). A branch-and-cut
algorithm for the double traveling salesman problem with multiple stacks. INFORMS Journal on
Computing, 25(1), 41-55.

Alvarenga, G.B., Mateus, G.R, de Tomi, G. (2007). A Genetic and Set Partitioning Two-phase
Approach for the Vehicle Routing Problem with Time Windows. Computers and Operations
Research, 34, 1561– 1584.

An, B., Ordóñez, F., Tambe, M., Shieh, E., Yang, R., Baldwin, C., DiRenzo III, J., Moretti, K.,
Maule, B., Meyer, G. (2013). A deployed quantal response-based patrol planning system for the
US Coast Guard. Interfaces, 43(5), 400–420.

Arigliano, A., Ghiani, G., Grieco, A., Guerriero, E., Plana, I. (2019). Time-dependent
asymmetric traveling salesman problem with time windows: Properties and an exact
algorithm. Discrete Applied Mathematics, 261, 28-39.

Avin, R., Agin, D., Adnan, M. (2012). Solving TSP using genetic algorithms—case of Kosovo.
Advances in Computer Science, 256–260

Baldacci, R., Toth, P., Vigo, D. (2010). Exact algorithms for routing problems under vehicle
capacity constraints. Annals of Operations Research, 175(1), 213-245.

Baldacci, R., Mingozzi, A., Roberti, R. (2012). New state-space relaxations for solving the
traveling salesman problem with time windows. INFORMS Journal on Computing, 24(3), 356-
371.

BañOs, R., Ortega, J., Gil, C., FernáNdez, A., De Toro, F. (2013). A simulated annealing-based
parallel multi-objective approach to vehicle routing problems with time windows. Expert
Systems with Applications, 40(5), 1696-1707.

Benavent, E., Martínez, A. (2013). Multi-depot multiple TSP: a polyhedral study and
computational results. Annals of Operations Research, 207(1), 7-25.

Bonomo, F., Mattia, S., Oriolo, G. (2011). Bounded coloring of comparability graphs and the
pickup and delivery tour combination problem. Theoretical Computer Science, 412(45), 6216–
6268.

Bräysy, O., Gendreau, M. (2005a). Vehicle routing problem with time windows, part I: route
construction and local search algorithms. Transportation Science 39(1):104–118

Bräysy, O., Gendreau, M. (2005b). Vehicle routing problem with time windows, part II:
metaheuristics. Transportation Science 39(1):119–139

74

Carrabs, F., Cordeau, J. F., Laporte G. (2007). Variable neighbourhood search for the pickup and
delivery traveling salesman problem with LIFO loading. INFORMS Journal on Computing. 19,
618–632.

Cacchiani, V., Contreras-Bolton, C., Toth, P. (2020). Models and algorithms for the Traveling
Salesman Problem with Time-dependent Service times. European Journal of Operational
Research, 283(3), 825-843.

Çapar, İ., Keskin, B. B., Rubin, P. A. (2015). An improved formulation for the maximum
coverage patrol routing problem. Computers and Operations Research, 59, 1-10.

Clarke, G., Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of
delivery points. Operations Research, 12(4), 568581.

Cordeau, J. F., Laporte, G. (2003). A tabu search heuristic for the static multi-vehicle dial-a-ride
problem. Transportation Research Part B: Methodological, 37(6), 579–594.

Cordeau, J. F., Laporte, G. (2007). The dial-a-ride problem: Models and algorithms. Annals of
Operations Research, 153, 29–46.

Cordeau, J. F., Iori, M., Laporte G., Salazar-Gonzalez, J. J. (2010). A branch-and-cut algorithm
for the pickup and delivery traveling salesman problem with LIFO loading. Networks, 55, 46–59.

Dantzig, G. B., Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1),
80-91.

Da Silva, R. F., Urrutia, S. (2010). A General VNS heuristic for the traveling salesman problem
with time windows. Discrete Optimization, 7(4), 203-211.

Dash, S., Günlük, O., Lodi, A., Tramontani, A. (2012). A time bucket formulation for the
traveling salesman problem with time windows. INFORMS Journal on Computing, 24(1), 132-
147.

Detti, P., Papalini, F., de Lara, G. Z. M. (2017). A multi-depot dial-a-ride problem with
heterogeneous vehicles and compatibility constraints in healthcare. Omega, 70, 1–14

Dewinter, M., Vandeviver, C., Beken, T. V., Witlox, F. (2020). Analysing the Police Patrol
Routing Problem: A Review. ISPRS International Journal of Geo-Information, 9(3), 157.

Dewil, R., Vansteenwegen, P., Cattrysse, D., Van Oudheusden, D. (2015). A minimum cost
network flow model for the maximum covering and patrol routing problem. European Journal of
Operational Research, 247(1), 27-36.

Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M. M. (1995). An optimal algorithm for the
traveling salesman problem with time windows. Operations research, 43(2), 367-371.

75

Erdoğan, G., Erkut, E., Ingolfsson, A., Laporte, G. (2010). Scheduling ambulance crews for
maximum coverage. Journal of the Operational Research Society, 61(4), 543-550.

Fang, F., Stone, P., Tambe, M. (2015). When security games go green: Designing defender
strategies to prevent poaching and illegal fishing. Twenty-Fourth International Joint Conference
on Artificial Intelligence.

Fischetti, M., Salazar González, J. J., Toth, P. (1997). A branch-and-cut algorithm for the
symmetric generalized traveling salesman problem. Operations Research, 45(3), 378-394.

Foulds, L., Longo, H., Martins, J. (2015). A compact transformation of arc routing problems into
node routing problems. Annals of Operations Research, 226(1), 177-200.

Fukasawa, R., Longo, H., Lysgaard, J., De Aragão, M. P., Reis, M., Uchoa, E., Werneck, R. F.
(2006). Robust branch-and-cut-and-price for the capacitated vehicle routing
problem. Mathematical programming, 106(3), 491-511.

Golden, B. L., Raghavan, S., Wasil, E. A. (2008). The vehicle routing problem: latest advances
and new challenges. Springer Science and Business Media, 43.

Groër, C., Golden, B., Wasil, E. A. (2009). The consistent vehicle routing
problem. Manufacturing and service operations management, 11(4), 630-643.

Ho, S. C., Szeto, W. Y., Kuo, Y. H., Leung, J. M., Petering, M., Tou, T. W. (2018). A survey of
dial-a-ride problems: Literature review and recent developments. Transportation Research Part
B: Methodological, 111, 395-421.

Hsieh, Y. C., You, P. S., Lee, P. J., Lee, Y. C. (2015). A novel encoding scheme based
evolutionary approach for the bi-objective grid patrol routing problem with multiple
vehicles. Scientia Iranica, 22(4), 1576-1585.

Jain, M., Tsai J., Pita J., Kiekintveld C., Rathi S., Tambe M., Ordóñez F. (2010). Software
assistants for randomized patrol planning for the LAX Airport police and the federal air marshal
service. Interfaces, 40(4): 267–290.

Jepsen, M., Spoorendonk, S., Ropke, S. (2013). A branch-and-cut algorithm for the symmetric
two-echelon capacitated vehicle routing problem. Transportation Science, 47(1), 23-37.

Kallehauge, B. (2008). Formulations and Exact Algorithms For the Vehicle Routing Problem
With Time Windows, Computers and Operations Research 35, 2307 – 2330.

Kara, I. (2010). Tightening Bounding Constraints of the Miller-Tucker-Zemlin Based
Formulation of the Capacitated Vehicle Routing Problems and Some Extensions. Proceeding of
the 2nd International Conference on Manufacturing Engineering, Quality and Production
Systems, 137-142.

76

Kara, I., Derya, T. (2015). Formulations for minimizing tour duration of the traveling salesman
problem with time windows. Procedia Economics and Finance, 26, 1026-1034.

Karabulut, K., Tasgetiren, M. F. (2014). A variable iterated greedy algorithm for the traveling
salesman problem with time windows. Information Sciences, 279, 383-395.

Keskin, B. B., Li, S. R., Steil, D., Spiller, S. (2012). Analysis of an integrated maximum
covering and patrol routing problem. Transportation Research Part E: Logistics and
Transportation Review, 48(1), 215-232.

Koch, H., Bortfeldt, A., Wäscher, G. (2018). A hybrid algorithm for the vehicle routing problem
with backhauls, time windows and three-dimensional loading constraints. OR Spectrum, 40(4),
1029-1075.

Kovacs, A. A., Golden, B. L., Hartl, R. F., Parragh, S. N. (2014). Vehicle routing problems in
which consistency considerations are important: A survey. Networks, 64(3), 192-213.

Kovacs, A. A., Parragh, S. N., Hartl, R. F. (2015). The multi-objective generalized consistent
vehicle routing problem. European Journal of Operational Research, 247(2), 441-458.

Kritikos, M.N., Ioannou, G. (2010). The balanced cargo vehicle routing problem with time
windows, International Journal of Production Economics, 123(1), 42-51.

Kumar, S. N., Panneerselvam, R. (2012). A survey on the vehicle routing problem and its
variants. Scientific Research (online).

Laporte, G., Ropke, S., Vidal, T. (2014). Heuristics for the vehicle routing problem. Vehicle
routing: Problems, Methods and Applications, Second Edition. 87-116.

Laporte, G. (2007). What you should know about the vehicle routing problem. Naval Research
Logistics, 54, 811–819.

Laporte, G. (2009). Fifty Years of Vehicle Routing. Transportation Science, 43(4), 408-416.

Lau, H. C., Yuan, Z., Gunawan, A. (2016). Patrol scheduling in urban rail network. Annals of
Operations Research, 239(1), 317-342.

Lee, C. Y., Lee, Z. J., Lin, S. W., Ying, K. C. (2010). An enhanced ant colony optimization
(EACO) applied to capacitated vehicle routing problem. Applied Intelligence, 32(1), 88-95.

Lian, K., Milburn, A. B., Rardin, R. L. (2016). An improved multi-directional local search
algorithm for the multi-objective consistent vehicle routing problem. IIE Transactions, 48(10),
975-992.

77

Liu M., Zhang P. Y. (2014). New hybrid genetic algorithm for solving the multiple traveling
saleman problem: an example of distribution of emergence materials. Journal of Systems
Management, 23(02), 247–254

Lysgaard, J., Letchford, A. N., Eglese, R. W. (2004). A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical Programming, 100(2), 423-445.

Masmoudi M, Mellouli, R. (2014). MILP for synchronized-MTSPTW: application to home
healthcare scheduling. International Conference on Control, Decision and Information
Technologies, 297-302.

Montero, A., Méndez-Díaz, I., & Miranda-Bront, J. J. (2017). An integer programming approach
for the time-dependent traveling salesman problem with time windows. Computers and
Operations Research, 88, 280-289.

Ombuki, B, Ross, B.J and Hanshar, F. (2006). Multi-Objective Genetic Algorithms for Vehicle
Routing Problem with Time Windows, Applied Intelligence, 24, 17–30.

Parragh, S. N., Doerner, K. F., Hartl, R. F. (2010). Variable neighborhood search for the dial-a-
ride problem. Computers and Operations Research, 37, 1129–1138.

Parragh, S. N., Schmid, V. (2013). Hybrid column generation and large neighborhood search for
the dial-a-ride problem. Computers and Operations Research, 40(1), 490–497.

Petersen, H. L., O. B. G. Madsen (2009). The double travelling salesman problem with multiple
stacks. European Journal of Operational Research. 198, 139–147.

Riedler, M., Raidl, G. (2018). Solving a selective dial-a-ride problem with logic-based Benders
decomposition. Computers and Operations Research, 96, 30-54.

Ritzinger, U., Puchinger, J., Hartl, R. F. (2016). A survey on dynamic and stochastic vehicle
routing problems. International Journal of Production Research, 54(1), 215-231.

Ritzinger, U., Puchinger J., Hartl, R. F. (2016). Dynamic programming based metaheuristics for
the dial-a-ride problem. Annals of Operations Research 236.2, 341-358.

Ropke, S., Cordeau, J. F., Laporte, G. (2007). Models and branch-and-cut algorithms for pickup
and delivery problems with time windows. Networks, 49(4), 258–272.

Schilde, M., Doerner, K. F., Hartl, R. F. (2011). Metaheuristics for the dynamic stochastic dial-a-
ride problem with expected return transports. Computers & Operations Research, 38(12), 1719–
1730.

Shieh, E. A., Jain, M., Jiang, A. X., Tambe, M. (2013). Efficiently solving joint activity based
security games. Twenty-Third International Joint Conference on Artificial Intelligence.

78

Singh, G., Mehta, R. (2014). Implementation of travelling salesman problem using ant colony
optimization. Journal of Engineering Research and Applications, 6(3), 385–389

Soriano, A., Gansterer, M., Hartl, R. F. (2018). The two-region multi-depot pickup and delivery
problem. OR Spectrum 40(4), 1077-1108.

Sun, P., Veelenturf, L. P., Dabia, S., Van Woensel, T. (2018). The time-dependent capacitated
profitable tour problem with time windows and precedence constraints. European Journal of
Operational Research, 264(3), 1058-1073.

Tarantilis, C. D., Stavropoulou, F., Repoussis, P. P. (2012). A template-based tabu search
algorithm for the consistent vehicle routing problem. Expert Systems with Applications, 39(4),
4233-4239.

Toth, P., Vigo, D. (2002). Models, relaxations and exact approaches for capacitated vehicle
routing problem. Discrete Applied Mathematics, 123: 487–512.

Toth, P., Vigo, D. (2014). Vehicle routing: problems, methods, and applications, SIAM ,18.

Toulouse, S. (2010). Approximability of the multiple stack TSP. Electronic Notes Discrete Math.
36, 813–820.

Vu, D. M., Hewitt, M., Boland, N., Savelsbergh, M. (2018). Solving time dependent traveling
salesman problems with time windows. Optimization online, 6640.

Vu, D. M., Hewitt, M., Boland, N., Savelsbergh, M. (2019). Dynamic discretization discovery
for solving the time-dependent traveling salesman problem with time windows. Transportation
Science.

Wang, X., & Regan, A. C. (2009). On the convergence of a new time window discretization
method for the traveling salesman problem with time window constraints. Computers and
Industrial Engineering, 56(1), 161-164.

Wang K., Shulin L., Zhao Y. (2017) A genetic-algorithm-based approach to the two-echelon
capacitated vehicle routing problem with stochastic demands in logistics service. Journal of the
Operational Research Society, 68.11, 1409-1421.

Xu, X., Yuan, H., Liptrott, M., Trovati, M. (2018). Two phase heuristic algorithm for the
multiple-travelling salesman problem. Soft Computing, 22(19), 6567-6581.

Yan, X. S., Zhang, C., Luo, W., (2012) Solve traveling salesman problem using particle swarm
optimization algorithm. International Journal of Computer Science, 9(6), 264–271

Yu. B, Yang, Z. Z. (2011). An Ant Colony Optimization Model: The Period Vehicle Routing
Problem With Time Windows, Transportation Research Part E 47, 166–181.

79

Yuan, S., Skinner, B., Huang, S., Liu, D. (2013). A new crossover approach for solving the
multiple travelling salesmen problem using genetic algorithms. European Journal of Operational
Research, 228(1), 72–82

Zhang, S., Yuvraj, G., Appadoo, S. S. (2017). A meta-heuristic for capacitated green vehicle
routing problem. Annals of Operations Research, 1-19.

80

Essay 3: Coordinated Order Fulfillment Planning for a Three-
Echelon Supply Chain with Batch Supplies and Flexible Demands

3.1. Abstract

We study a single-item cyclic coordinated order fulfillment problem with batch supplies and

flexible demands. This problem relates to both three-echelon supply chains and multi-stage

production systems. The system in this study consists of multiple suppliers who each deliver a

single item to a central node or buffer from which multiple demanders are then replenished. Each

supplier is capable of providing no more than a specific batch size to the central node at a rate

that cannot exceed a specified frequency. Moreover, each demander must be replenished with a

specific minimum amount over a regular replenishment frequency. Importantly, demand is

flexible; it is a control action that the decision maker applies to optimize the system. The

objective is to minimize total cost subject to several operational constraints. The decisions

include the timing and sizes of batches delivered by the suppliers to the central node and the

timing and amounts by which demanders are replenished from the central node. This problem is

modeled as an integer linear program. Results when solving several problem instances using

IBM ILOG CPLEX are presented and discussed.

81

3.2. Introduction

Manufacturing firms are searching for new ways to strengthen their position in the global

marketplace. In an environment characterized by rapidly advancing technology and increasingly

demanding customers, companies within the same supply chain have to cooperate to satisfy

customer requirements better than their competitors. As a result, competition no longer occurs

merely between isolated entities, but rather between groups of interlinked companies or even

whole supply chains.

To fully realize the benefits of cooperation, it is necessary to formulate supply chain strategies

and implement channel-wide coordination mechanisms to guarantee that all members of the

supply chain work towards a common goal (Glock 2012). From a strategic point of view, supply

chain management integrates a variety of interdependent processes and may create a strategic fit

between different value-creating activities in a supply chain, contributing to superior customer

value and sustainable competitive advantage (Porter 1996).

Inventory is an inevitable aspect of supply chain management which is caused by a mismatch

between supply and demand. This mismatch could be in terms of misalignment between the

times that supply occurs and the times that demand is realized. The mismatch could also be due

to different amounts supplied and demanded at one time. Processing or transit times, batch

production, production capacity and uncertainty in demand are reasons for mismatches which

make the process of minimizing inventory complicated. Although substantial synergies may be

realized when coordinating inventories across a supply chain, inventory management has long

been treated as an isolated function solely focused on individual entities. However, the

consequences of coordinated inventory replenishment decisions have been analyzed in inventory

models that focus on the total costs of the system in question, which are referred to as joint

economic lot size (JELS) models.

In this research, we consider a JELS problem where heterogeneous suppliers supply a single

product to multiple independent, heterogeneous demanders. All suppliers deliver the product to,

and all demanders are replenished from, a single node that sits in the middle of the system. This

scenario may be applicable to both macroscopic and microscopic settings. For example, the

central node may be a city, business campus, factory, or storage rack. In the macroscopic case,

82

this problem may apply to supply chain settings where supply and demand processes link a

central storage facility to supplier and buyer facilities. In the microscopic case, the supply and

demand processes would represent stages of manufacturing with parallel machines and the

central node would be a buffer for storing work-in-process (WIP). The goal of this problem is to

find a cyclic schedule for the incoming supplies and outgoing demand replenishments that

minimizes total system-wide cost.

This research contributes to existing JELS models in two respects. First, we focus on the concept

of flexible demand and study a joint supply and replenishment planning problem in the case

where demand is flexible. Flexible demand (FD) is a term used to describe cases when a

demander is generally flexible regarding how often it receives items and how much it receives

when it is replenished. In other words, each demander needs to receive a minimum total quantity

during every time span of a given length. Besides these requirements, the demanders leave it to

the vendor to decide exactly how and when they are replenished while meeting the minimum

requirement that they not be starved. Second, unlike the only other JELS focused article

(Petering et al. 2019) that considers FD, in this study, demanders are capable of storing items on

their premises and do not need to receive their required orders all at once in large batches.

This study is organized as follows. Section 3.3 reviews the relevant literature. Section 3.4

describes the problem and presents an illustrative example of it. In Section 3.5, a mathematical

formulation of the problem is presented. Section 3.6 presents several theoretical insights

regarding this problem. In Section 3.7, we present a method for automatically creating feasible

solutions whenever a problem instance is feasible. Section 3.8 describes the experimental setup,

presents the results, and discusses their significance. Finally, we conclude in Section 3.9.

83

3.3. Literature review

Several streams of literature relate to our problem. These include the literature on the capacitated

lot-sizing problem (CLSP), joint economic lot sizing (JELS), and vendor-managed inventory

(VMI). We now sequentially discuss these streams of literature.

One stream of literature is the capacitated lot-sizing problem (CLSP), which determines the

levels and timing of production along a certain planning horizon. There has been a variety of

studies in CLSP literature which use different CLSP formulations and develop solution

algorithms; Kuhn and Quadt (2008) provides a comprehensive review of literature on CLSP

studies. Other papers in this stream include Eppen and Martin (1987), Trigeiro et al. (1989),

Katok et al. (1998), Karimi et al. (2003), Kuhn and Quadt (2008), Sahling et al. (2009), de

Araujo et al. (2015), Fragkos et al. (2016), Fiorotto et al. 2017, Bayley et. Al (2018) and Taş,

Duygu, et al. (2019). Our problem is different from many CLSP studies in that our model does

not include job scheduling. In fact, our problem can be categorized under CLSP big bucket

models that allow the production of multiple units in one period and do not consider job

scheduling decisions.

The system that we study is related to a three-tier supply chain with coordinated inventory

replenishment decisions. Coordinated inventory replenishment decisions have been analyzed in

inventory models that focus on the total costs of the system in question, which are referred to as

joint economic lot size (JELS) models. JELS models are especially useful as planning tools in

situations where companies have established long-term relationships with their suppliers or

customers, which is common in the automotive industry, for example. In such a case, the

members of the supply chain have an incentive to work together towards a reduction of total

system costs, since cooperation gains that emerge as a result of investments or changes in the

order and production policies of the companies can be distributed among the members of the

supply chain (Glock, 2012). Vendor-managed inventory (VMI), for example, is a common

practice among such implementations.

The literature on JELS two-stage models treats coordinated inventory management between

supplier(s) and buyer(s). One of the first lot-size models dealing with buyer–vendor coordination

was proposed by Goyal (1976), who analyzed a system consisting of a single vendor and a single

84

buyer. He assumed that the vendor provides an infinite replenishment rate, and that the

production lot is transferred to the buyer in equal-sized shipments. An integrated inventory

model which generalizes Goyal (1976) model was proposed by Banerjee (1986), who considered

the same system and assumed that the order quantity of the buyer equals the production quantity

of the vendor. Goyal (1988) later developed a single-vendor, single-buyer model where the lot

size of the vendor equals an integer multiple of the buyer’s order quantity to reduce total costs.

Braglia and Zavanella (2003) extended this model and assumed that buyer and vendor have

implemented a consignment stock (CS) agreement.

Gumus et al. (2008) differentiated between CS and VMI and analyzed their effect on the total

costs of a JELS model. In contrast to Braglia and Zavanella (2003), the authors assumed that in

the case of CS, the customer maintains control on the timing and quantity of replenishments, but

leaves the ownership of the inventory at the vendor until the goods are used. However, if VMI is

implemented, the vendor initiates orders on behalf of the customer as well. The authors showed

that the system can benefit from such agreements, especially if the inventory holding costs at the

buyer exceed those at the vendor, or if the order-processing costs of the vendor are lower than

those at the buyer. Different variants of batch shipments including equal and unequal-sized

shipments are studied by Viswanathan (1998), Hill (1997), Goyal and Nebebe (2000), Hill and

Omar (2006), Hoque (2009) and Sajadieh and Jokar (2009a), Kim and Glock (2013).

The single-vendor, single-buyer integrated inventory model is generally considered as the basic

building block of a JELS model. For more real-world practical relevance of such models,

researchers have extended their analysis to include more aspects in the model and developed

mechanisms to deal with supply chains of greater complexity.

There have been studies in the JELS literature with parallel supplier workstations and/or multiple

buyers. One of the first models to analyze single vendor and multiple identical buyers in an

integrated inventory model is the one of Joglekar and Tharthare (1990). We denote such models

as SVMB models in the following. The authors assumed that orders are evenly distributed

throughout the planning horizon and adopted an integer ratio-policy. A variation of Joglekar and

Tharthare’s model was offered by Banerjee and Burton (1994), who analyzed a SVMB system as

well, but focused on heterogeneous buyers rather than identical buyers. Banerjee and Burton’s

model was extended by Siajadi et al. (2006), who assumed that the order cycle time for each

85

buyer is equal to the production cycle time, and that the vendor can deliver a different number of

equal-sized shipments to each of the buyers.

Zavanella and Zanoni (2009) analyzed a SVMB system where the vendor is responsible for

managing the warehouses at the buyers. Similar to Siajadi et al. (2006), they assumed that the

vendor delivers equal-sized batch shipments to the buyers. Chen et al. (2010) studied a similar

system where a VMI-agreement has been implemented, and assumed that demand at the buyers

is sensitive to price and inventory level. The results of the paper demonstrate that VMI results

into a lower retail price and higher inventory levels. Darwish and Odah (2010) modeled a SVMB

supply chain under a VMI agreement where the retailers do not incur any order costs. Cunha et

al. (2017) considered the multi-item economic lot-sizing problem with remanufacturing and

incapacitated production. Roy et al. (2018) considered a two-level supply chain, including one

manufacturer and two competing retailers with sales price dependent demand and random arrival

of customers. They found the order quantity of a single product for stochastic demand pattern

that minimized the expected cost.

Our problem considers multiple suppliers who provide replenishments to multiple downstream

demanders through a central node. Therefore, it is worth discussing the other stream of literature

on JELS models with multiple vendors and multiple buyers. Ben-Daya et al. (2008) presented a

comprehensive review of such JELS problem and also provided some extensions of this

important problem. Pineyro and Viera (2010) investigated the economic lot-sizing problem with

product returns and one-way substitution. Transchel and Minner (2011) studied a problem of the

dynamic quantity competition and economic lot-sizing with two competing retailers who each

are faced different replenishment cost structures. Feng et al. (2011) addressed a single product

economic lot-sizing problem with constant capacity, non-increasing setup cost and convex

inventory cost function. Das et al. (2011) developed an economic production lot-size (EPLS)

model for an item with imperfect quality by considering random machine failure. Sari et al.

(2012) developed a mathematical model of JELS with temporary price discounts (JELPTPD).

Glock (2012) reviewed joint economic lot-size models which were focused on coordinated

inventory replenishment decisions between buyers. Rezaei and Davoodi (2012) formulated a

case where the buyer’s goal is to achieve the optimal selling price and lot size of multiple

products across different suppliers.

86

Bouslah et al. (2013) solved the problem of joint determination of the optimal lot-sizing and

production-inventory control policy for unreliable and imperfect manufacturing. Archetti et al.

(2014) presented two scenarios of the problems with cost discounts. In the first scenario, the cost

function was a modified function and in the second scenario, the cost function was an

incremental discount function. Piñeyro and Viera (2014) improved Pineyro and Viera (2010)

model. They studied a lot-sizing problem with different demand channels for new and

remanufactured products. Karimi-Nasab et al. (2015) presented the math model of the joint lot-

sizing problem and formulated a realistic production scheduling problem. Sifaleras et al. (2015)

suggested a variable neighborhood search (VNS) metaheuristic algorithm for the economic lot-

sizing problem with product returns and recovery.

This stream extends to other studies. Helmrich et. al. (2015) considered a lot-sizing problem with

a global emission constraint. Önal et al. (2015) introduced the economic lot-sizing problem for

handling perishable items. Sarakhsi et al. (2016) introduced a hybrid algorithm of Nelder–Mead

and scatter search algorithms called SSNM to solve JELS problem with multiple vendors and

multiple buyers. Pishchulov and Richter (2016) studied the classical JELS model as an adverse

selection problem with asymmetric cost information. Marchi et al. (2016) presented a JELS

model with financing the investments cooperatively among the members of the supply chain.

Glock and Kim (2016) developed a supply chain model with returnable transport items (RTIs).

Cunha and Melo (2016) studied the multi-item economic lot-sizing problem with

remanufacturing and incapacitated production. Telha and Van Vyve (2016) considered a

continuous-time variant of the classical economic lot-sizing problem.

Our study considers a three-level supply chain where suppliers supply inventory to a central node

from which multiple demanders are replenished. This brings in inventory considerations at the

central node. JELS models for multi-level supply chains are more complex and involve more

alignment among different stages. We now discuss the papers which study multi-level supply

chains. Abdelsalam and Elassal (2014) considered the JELS for a supply chain with multiple

retailers and multiple manufacturers and a supplier. Modak et al. (2016) analyzed a single-item

model for a supply chain including the manufacturer, distributors, and retailers. They derived the

optimal pricing strategies under a two-stage tariff and bargaining process. Önal (2016)

considered the economic lot-sizing problem for a multi-level supply chain to address the joint

87

procurement and distribution decisions for a perishable item. Ferretti et al. (2017) designed JELS

model in a three-level supply chain. They analyzed different supply chain configurations related

to outsourced manufacturing operations. Sargut and Işık (2017) considered a dynamic economic

lot-sizing problem. Ou (2017) studied a classical single-item economic lot-sizing problem, where

production cost functions were assumed to be piecewise linear. Salas Navarro, Chedid, Caruso,

and Sana (2018) made a comparison between the join economic lot-size model for three-level

and two-level supply chains using two schemes, collaborative and non-collaborative.

Optimization of the integrated lot-sizing decisions in a four-level supply chain is studied in

several papers: Gharaei and Pasandideh (2016), Gharaei et al. (2016), Gharaei and Pasandideh

(2017a, 2017b), Gharaei et al. (2017), Gharaei et al. (2017) and Gharaei et al. (2019).

One of the most relevant papers to this research is Petering et al. (2019) which adopts a JIT-

oriented objective with parallel workstations at two stages of a manufacturing system with batch

supplies and flexible demand processes. The authors integrate the features of parallel

workstations at the suppliers and multiple buyers, and consider batch size constraints for

suppliers. However, the objective in their study is to minimize inventory at the storage facility in

a JIT supply chain which differs from the objectives within most of the JELS literature of

minimizing total system cost.

We study a cyclic coordinated supply and inventory replenishment problem with batch supplies,

flexible demands and a central node that holds inventory received from the suppliers and is used

to satisfy the demanders. Each supplier is capable of providing no more than a specific batch size

to the central node at a rate that cannot exceed a specified frequency. Moreover, each demander

must be replenished with a certain minimum amount during time windows of a given duration

for any possible time window start time. The decisions include the timing and sizes of batches

delivered by the suppliers to the central node and the timing and amounts by which demanders

are replenished.

This study fills the gap in the discussed literature in three major respects. First, this is only the

third study to consider the concept of flexible demand, the other two being Petering et al. (2019)

and Section 2 of this dissertation. Flexible demand (FD) is a term used for when a demander is

flexible in generally how much/ how often they want to receive their minimum requirement over

every certain number of consecutive periods. In other words, the demanders leave it to the

88

vendor to decide exactly how and when they are replenished while meeting the minimum

requirement. Second, unlike the literature’s only other study to consider flexible demand, in this

study, demanders are capable of storing items on their premises and do not need to receive their

items in large batches. Third, the focus of our problem is not only minimizing inventory as in JIT

models. Rather, we seek to minimize the total cost related to production, holding inventory at the

central node, and transportation to deliver items to the demanders.

3.4. Problem description

In this section, we formally explain the problem under study. Consider an infinite-capacity

central node, buffer, or facility that serves as a temporary storage area for a single type of

discrete product (i.e. item, SKU, part). The stock in the central node is consumed by D

demanders and replenished by S suppliers. Time is discretized into periods. Two parameters

define the requirements of each demander d: a demand time requirement 𝐷𝑇ௗ and a (minimum)

accumulated demand quantity 𝐷𝑄ௗ. Demander d is indifferent to when it receives product and

how much it receives at any given time, but it must receive at least 𝐷𝑄ௗ units of the product

during each 𝐷𝑇ௗ-period-long time interval that exists over the planning horizon. Two parameters

define the capabilities of each supplier s: a minimum inter-supply time 𝑆𝑇௦ and a (maximum)

supply quantity 𝑆𝑄௦. Supplier s is capable of delivering a batch of at most 𝑆𝑄௦ units to the central

node every 𝑆𝑇௦ periods or less often. Figure 7 represents this system.

Supplier S

(STS, SQS)

Central node

Supplier 1

(ST1, SQ1)

Supplier 2

(ST2, SQ2)

Demander D

(DTD, DQD)

Demander 1

(DT1, DQ1)

Demander 2

(DT2, DQ2)

 Suppliers Demanders

Figure 7. Supply chain under consideration

89

We assume that supplies are received at the beginning of a period and are followed immediately

by demands. The amount left over after the demand is satisfied is held as inventory for that

period. The operations are cyclic, repeating every T periods where T ≥ 𝑚𝑎𝑥ௗ{𝐷𝑇ௗ} and T

≥ 𝑚𝑎𝑥௦{𝑆𝑇௦}. This means that every supply and demand process repeats after a T-period cycle,

and period 1 immediately follows period T. In other words, the inventory level during period 1

equals the inventory level during period T, plus the total amount supplied to the central node at

the beginning of period 1, minus the total amount demanded from the central node at the

beginning of period 1.

In this problem, the demand timing and amounts for each demander as well as the supply timing

and amounts for each supplier are to be decided with respect to the discussed requirements and

capabilities. The goal is to feasibly satisfy the demands with the available supplies (i.e. to avoid

stock-out in each period at the central node) while minimizing the total cost incurred during the

cycle. Total cost is defined by a per-unit inventory holding cost per time period at the central

node (𝐻ଵ), a per-unit inventory holding cost during the period of maximum inventory at the

central node (𝐻ଶ), a fixed cost of using and contracting with selected suppliers (𝐹𝐶௦), fixed and

variable production costs at suppliers (𝐹𝐶𝑃௦ and 𝑉𝐶௦), and a fixed cost of transporting

replenishments from the central node to demanders (𝐹𝐶𝐷ௗ).

3.4.1. Problem applicability to industry

This problem represents different microscopic or macroscopic industrial activities. From a

microscopic perspective, the problem could relate to a buffer that links two stages of a

manufacturing process in a facility. In this system, there are parallel machines at the first stage

which are characterized by heterogeneous capabilities (processing times and batch sizes). The

first-stage machines produce the same part that feeds the machines at the second stage. Each

second-stage machine uses the part supplied and produces a different product which indicates

that each machine has a different cycle time 𝐷𝑇ௗ and/or minimum quantity requirement 𝐷𝑄ௗ.

On a macroscopic level, the problem could represent a three-stage supply chain with multiple

suppliers supplying a single product to a retailer that has multiple retail stores, each facing a

different demand. The suppliers first deliver their products to a distribution center (i.e. the central

90

node); the products are then distributed to the various retail stores. A single truck with limited

capacity 𝑆𝑄௦ and minimum round-trip travel time 𝑆𝑇௦, transports items from supplier s to the

distribution center for each s.

The requirement that operations repeat every T periods is imposed by managers who are

interested in system reliability and predictability. Without this assumption, the system state could

evolve in a non-repetitive manner from time 0 to infinity. In a manufacturing setting, T could be

measured in hours and a value of T that agrees with the length of one or more work shifts might

be appropriate. On the other hand, in a supply chain setting, T could be measured in days and it

could be a multiple of seven.

3.4.2. Illustrative example

Tables 26-27 illustrate the problem for a case in which D = S = 3. Table 26 shows the input

parameters for this instance. Table 27 shows a feasible solution for this problem instance. In this

solution, demander 1 is given 4, 2, 3, 2, 3, 4 and 1 units at the beginning of each of the periods

T1, T2, T4, T5, T7, T8 and T9; demander 2 is given 1 unit at the beginning of periods T3, T4,

T6, T8, T9 and T10; and demander 3 is given 1, 3, 2 and 2 units at the beginning of periods T2,

T3, T7 and T9. It is important to note that the amounts delivered to each demander accumulate to

a size of greater than or equal to the values of DQ1, DQ2, and DQ3 respectively. For example,

demander 1 is given at least 5 units during every 3-period-long time interval. Also, demander 2 is

provided with at least 2 units during every 4-period-long time interval and demander 3 is given at

least 4 units during every 6-period-long time interval.

In the solution, supplier 1 replenishes the central node with 2, 3, 3, 4 and 1 units at the beginning

of periods T1, T3, T5, T7, and T9; supplier 2 replenishes the central node with 1 and 3 units at

the beginning of periods T2 and T7; and supplier 3 replenishes the central node with 6, 6, and 4

units at the beginning of periods T1, T4, and T7. Note that the amount delivered by the suppliers

never exceeds the values of SQ1, SQ2, and SQ3—4, 3, and 6—for suppliers 1, 2, and 3

respectively. Also, the time that elapses between consecutive supply deliveries is never less than

the values of ST1, ST2, ST3—2, 5, and 3 periods—for suppliers 1, 2, and 3 respectively. A zero in

Table 27 means that no demand is made or nothing is supplied at the beginning of a period.

91

Table 26. Input parameters for the illustrative instance

Number of demanders: 3 Number of suppliers: 3

DT1: 3 DQ1: 5 ST1: 2 SQ1: 4

DT2: 4 DQ2: 2 ST2: 5 SQ2: 3

DT3: 6 DQ3: 4 ST3: 3 SQ3: 6

T = 10

Table 27. Feasible solution for the illustrative instance

 Period

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Demander 1 4 2 0 3 2 0 3 4 1 0
Demander 2 0 0 1 1 0 1 0 1 1 1
Demander 3 0 1 3 0 0 0 2 0 2 0

Sum up (DI) 4 3 4 4 2 1 5 5 4 1

Supplier 1 2 0 3 0 3 0 4 0 1 0
Supplier 2 0 1 0 0 0 0 3 0 0 0
Supplier 3 6 0 0 6 0 0 4 0 0 0

Sum up (SI) 8 1 3 6 3 0 11 0 1 0

SI-DI 4 -2 -1 2 1 -1 6 -5 -3 -1

Inventory held 4 2 1 3 4 3 9 4 1 0

The central node’s inventory level during each period is shown in the row at the bottom of Table

27. The sum of these values—31—is the total inventory held during the cycle and the maximum

inventory held in any period is 9. The displayed solution is not optimal and is only one of

thousands of feasible solutions to this problem instance.

3.5. Mathematical formulation

Table 28 shows the indices, input parameters, and decision variables in our mathematical model

of this problem named Math Model 3. The inputs to the math model include: the cycle length T;

number of demanders D; demand time requirement for demander d (𝐷𝑇ௗ); minimum

accumulated demand quantity for demander d (𝐷𝑄ௗ); number of suppliers S; minimum inter-

supply time for supplier s (𝑆𝑇௦); maximum batch size (i.e. supply quantity) delivered by supplier

s (𝑆𝑄௦); and six cost-related parameters. Parameter 𝐻ଵ is the per-unit inventory holding cost per

92

time period at the central node. Parameter 𝐻ଶ is the per-unit inventory holding cost during the

period of maximum inventory at the central node. Parameter 𝐹𝐶௦ indicates the fixed cost of using

and contracting with selected suppliers. Parameters 𝐹𝐶𝑃௦ and 𝑉𝐶௦ are fixed and variable

production costs at suppliers. Parameter 𝐹𝐶𝐷ௗ indicates the fixed cost of transporting

replenishments from the central node to demanders.

The decision variables are displayed at the bottom of Table 28. Our problem can be modeled as

an integer linear program (ILP) which includes both binary and integer variables. There are three

binary decision variables in the model: variable 𝐷𝑌𝑁ௗ௧ takes a value 1 if demander d receives a

replenishment of any size from the central node at the beginning of period t, variable 𝑆𝑌𝑁௦௧

indicates if supplier s provides a batch to the central node at the beginning of period t or not,

variable 𝑋௦ indicates if supplier s is used or not. Moreover, four integer decision variables

capture the number of units delivered from the central node to demander d at the beginning of

period t (𝐷𝐴𝑚𝑡𝑑𝑡): the number of units transferred to the central node by supplier s at the

beginning of period t (𝑆𝐴𝑚𝑡𝑠𝑡): the inventory level during period t (𝐼𝑡); and finally the maximum

inventory level achieved during the T-period cycle (Imax).

93

Table 28. Indices, parameters, and decision variables in Math Model 3

Indices
𝑑 demander (𝑑 = 1 to 𝐷)
𝑠 supplier (𝑠 = 1 to 𝑆)

𝑡, 𝑢 time period (𝑡, 𝑢 = 1 to 𝑇)
Input parameters

𝑇 Cycle length for the inventory system. (integer, ≥ 2)
𝐷 Number of demanders (integer, ≥ 2)

𝐷𝑇ௗ Demand time requirement for demander 𝑑 (integer, ≥ 2)
𝐷𝑄ௗ Minimum accumulated demand quantity for demander 𝑑 (integer, ≥ 1)

𝑆 Number of suppliers (integer, ≥ 1)
𝑆𝑇௦ Minimum inter-supply time for supplier 𝑠 (integer, ≥ 2)

𝑆𝑄௦ Maximum batch size provided by supplier 𝑠 (integer, ≥ 1)
𝐻ଵ Inventory holding cost at central node per unit per time unit (real, ≥ 0)
𝐻ଶ Cost per unit of maximum inventory held at central node (real, ≥ 0)

𝐹𝐶௦ Fixed cost of using supplier 𝑠 in general (real, ≥ 0)
𝐹𝐶𝑃௦ Fixed cost of production at supplier 𝑠 (real, ≥ 0)
𝑉𝐶௦ Variable production cost per unit at supplier 𝑠 (real, ≥ 0)

𝐹𝐶𝐷ௗ Fixed cost of transportation from the central node to demander 𝑑 (real, ≥ 0)

Decision variables

𝐷𝑌𝑁ௗ௧ ቄ
1
0

If demander 𝑑 is given a replenishment of any size at the beginning of period 𝑡.
Otherwise (binary)

𝐷𝐴𝑚𝑡ௗ௧ Quantity received by demander 𝑑 at the beginning of period 𝑡. (integer, ≥ 0)

𝑆𝑌𝑁௦௧ ቄ
1
0

If supplier 𝑠 supplies a batch of any size at the beginning of period 𝑡.
Otherwise (binary)

𝑆𝐴𝑚𝑡௦௧ Amount supplied by supplier 𝑠 at the beginning of period 𝑡. (integer, ≥ 0)

𝑋௦ ቄ
1
0

If supplier 𝑠 is used at all.
Otherwise (binary)

𝐼௧ Inventory level at the central node during period 𝑡 (integer, ≥ 0)
𝐼ெ௔௫ Maximum inventory observed at the central node during the cycle (integer, ≥ 0)

94

Table 29. Math Model 3 for coordinated order fulfillment planning with FD

Math Model 3

Minimize

(𝐻ଶ)(𝐼ெ௔௫) + ෍(𝐻ଵ)

்

௧ୀଵ

(𝐼௧) + ෍(𝐹𝐶௦)(

ௌ

௦ୀଵ

𝑋௦) + ෍ ෍(𝐹𝐶𝑃௦)

ௌ

௦ୀଵ

்

௧ୀଵ

(𝑆𝑌𝑁௦௧) + ෍ ෍(𝑉𝐶௦)(𝑆𝐴𝑚𝑡௦௧)

ௌ

௦ୀଵ

்

௧ୀଵ

+ ෍ ෍(𝐹𝐶𝐷ௗ)

஽

ௗୀଵ

்

௧ୀଵ

(𝐷𝑌𝑁ௗ௧) (27)

Subject to:

෍ 𝑆𝑌𝑁௦,൫(௨ିଵ) ௠௢ௗ ்൯ାଵ

௧ାௌ ೞ்ିଵ

௨ୀ௧

≤ 1 ∀𝑠, 𝑡 (28)

𝑆𝐴𝑚𝑡௦௧ ≤ 𝑆𝑄௦ ∙ 𝑆𝑌𝑁௦௧ ∀𝑠, 𝑡 (29)

𝑋௦ ≥ 𝑆𝑌𝑁௦௧ ∀𝑠, 𝑡 (30)

෍ 𝐷𝐴𝑚𝑡ௗ,൫(௨ିଵ) ௠௢ௗ ்൯ାଵ

௧ା஽்೏ିଵ

௨ୀ௧

≥ 𝐷𝑄ௗ ∀𝑑, 𝑡 (31)

𝐷𝐴𝑚𝑡ௗ௧ ≤ (𝐷𝑌𝑁ௗ௧)(𝐷𝑄ௗ) ∀𝑑, 𝑡 (32)

𝐼ଵ = 𝐼் + ෍ 𝑆𝐴𝑚𝑡௦ଵ

ௌ

௦ୀଵ

− ෍ 𝐷𝐴𝑚𝑡ௗଵ

஽

ௗୀଵ

 (33)

𝐼௧ = 𝐼௧ିଵ + ෍ 𝑆𝐴𝑚𝑡௦௧

ௌ

௦ୀଵ

− ෍ 𝐷𝐴𝑚𝑡ௗ௧

஽

ௗୀଵ

 ∀𝑡: 2 ≤ 𝑡 ≤ 𝑇 (34)

𝐼௧ ≤ 𝐼ெ௔௫ ∀𝑡 (35)

𝐼் = 0 (36)

Table 29 shows the math model. The objective of the model is to minimize the sum of the (a)

cost incurred for the maximum inventory level observed at the central node during the cycle, (b)

inventory holding cost at the central node, (c) fixed cost of using and contracting with selected

suppliers, (d) fixed, (e) variable production cost at suppliers, and (f) fixed cost of transporting

items to the demanders. Constraint (28) ensures that no more than one batch is supplied by

supplier s during any 𝑆𝑇௦ consecutive time periods. Constraint (29) specifies that the amount

supplied by supplier s does not exceed 𝑆𝑄௦ in any period. Based on this constraint, if 𝑆𝑌𝑁௦௧ = 0,

supplier s does not provide a batch to the central node at the beginning of period t. Constraint

(30) indicates that in order for a supplier to supply a batch, it must be selected as one of the

suppliers that is used. Constraint (31) ensures that the total amount transferred to demander d

95

over any consecutive 𝐷𝑇ௗ periods must add up to at least 𝐷𝑄ௗ. Constraint (32) indicates that the

amount given to demander d does not exceed 𝐷𝑄ௗ when the demander is replenished in that

period (𝐷𝑌𝑁𝑑𝑡 = 1) and it will be 0 if the demander is not replenished in that period (𝐷𝑌𝑁𝑑𝑡 =

0). Constraints (33–34) ensure that the inventory on hand during each period is computed

correctly. Constraint (35) indicates that the inventory level in any period does not exceed the

maximum inventory level. Constraint (36) forces a zero inventory level in the central node in the

final period. This constraint eliminates symmetries and redundant solutions. With non-negativity

restrictions on variable 𝐼௧, the inventory level never falls below zero and stock-out never occurs.

3.6. Theoretical insights

Several theoretical insights can be made regarding the problem at hand. In order to derive these

insights, several terms need to be defined.

Definition 1: A replenishment schedule for demander d is a set of values 𝐷𝐴𝑚𝑡ௗଵ, 𝐷𝐴𝑚𝑡ௗଶ,…,

𝐷𝐴𝑚𝑡ௗ் where 𝐷𝐴𝑚𝑡ௗ௧ ≥ 0 for all t.

Definition 2: A feasible replenishment schedule for demander d is a replenishment schedule

for demander d that also satisfies constraint (31) in the math model.

Definition 3: A reduced replenishment schedule for demander d is a feasible replenishment

schedule for demander d (𝐷𝐴𝑚𝑡ௗଵ, 𝐷𝐴𝑚𝑡ௗଶ , … , 𝐷𝐴𝑚𝑡ௗ்) in which the reduction of 𝐷𝐴𝑚𝑡ௗ௧

for any t violates constraint (31) in the math model.

Discussion: We explain the reduced replenishment schedule using the illustrative instance

shown in Tables 26-27. Consider demander 1 with 𝐷𝑇ଵ = 3 and 𝐷𝑄ଵ = 5. The replenishment

schedule for this demander during the ten-period cycle is: (4, 2, 0, 3, 2, 0, 3, 4, 1, 0). Consider

any time window of length 𝐷𝑇ଵ = 3. The total amount replenished in any time window of length

𝐷𝑇ଵ = 3 sum to at least 𝐷𝑄ଵ = 5. If the amount provided to this demander at the beginning of

period 1 is reduced to 3, the resulting replenishment schedule would violate constraint (31)

because fewer than 5 units would be provided to the demander during periods 9, 10, and 1

combined. Similar observations can be made regarding all other time periods when this

demander receives items. Overall, in this replenishment schedule, we cannot reduce any

replenishment amount for any period t without violating the demander’s requirements of

96

𝐷𝑄ଵ = 5 and 𝐷𝑇ଵ = 3. Therefore, the displayed feasible replenishment schedule for demander 1

is also a reduced replenishment schedule.

Theorem 1: There always exists an optimal solution to the math model in which every demander

is satisfied via a reduced replenishment schedule.

Proof: This is true because the schedule for any demander who is replenished with a feasible

non-reduced replenishment schedule can be changed to a reduced replenishment schedule

without increasing the objective value. Consider any feasible solution Z in which there is a non-

reduced replenishment schedule for at least one demander d*. In other words, there are one or

more “extra units of demand” in this feasible solution Z. We can make changes to this solution

by reducing demand amounts 𝐷𝐴𝑚𝑡ௗ∗,௧ and supply amounts 𝑆𝐴𝑚𝑡௦௧ to generate another feasible

solution Z' which has an objective value which is at least as good or even better than the

objective value for Z. To do this, consider each “extra unit of demand” one at a time in solution

Z. Delete each such extra unit of demand, and then delete one unit of supply for any supplier

occurring in the same period or the latest period that comes before this period in the cyclic sense.

The resulting solution Z' (a) has an objective no higher than that of Z and (b) is feasible owing to

the feasibility of Z and the non-negativity of the inventory values in Z. 

Theorem 2: The minimum total amount that can be demanded by demander d in a reduced

replenishment schedule is

𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ = ඄(𝑇) ൬
𝐷𝑄ௗ

𝐷𝑇ௗ
൰ඈ (37)

Proof: Demander d needs to be replenished with a minimum total of 𝐷𝑄ௗ units every 𝐷𝑇ௗ

periods. This indicates that the replenishment rate per unit time must be at least
஽ொ೏

஽்೏
 rounded up

to the nearest integer. Therefore, the total replenishment units that must be given to demander d

during a cycle T is (𝑇) ቀ
஽ொ೏

஽்೏
ቁ rounded up to the nearest integer which is ቒ(𝑇) ቀ

஽ொ೏

஽்೏
ቁቓ. 

Definition 4: A minimal replenishment schedule for demander d is a reduced replenishment

schedule for demander d in which exactly 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ is provided.

97

Theorem 3: The maximum total amount that can be demanded by demander d in a reduced

replenishment schedule is:

𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ = (𝐷𝑄ௗ)(𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ) (38)

where

𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ =

⎩
⎪⎪
⎨

⎪⎪
⎧

ቨ
𝑇

ቒ
𝐷𝑇ௗ

2
ቓ + ቒ

𝐷𝑇ௗ + 1
2

ቓ
ቩ ∗ 2 𝑖𝑓 𝑇 mod ൬඄

𝐷𝑇ௗ

2
ඈ + ඄

𝐷𝑇ௗ + 1

2
ඈ൰ ≤ 𝐷𝑇ௗ − ඄

𝐷𝑇ௗ

2
ඈ

ቨ
𝑇

ቒ
𝐷𝑇ௗ

2
ቓ + ቒ

𝐷𝑇ௗ + 1
2

ቓ
ቩ ∗ 2 + 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (39)

Proof: One way to achieve the maximum total amount that can be demanded by demander d is

to either provide demander d full batches of size 𝐷𝑄ௗ or nothing during every time period. Let us

call such a replenishment schedule a “full-batch-only replenishment schedule.” An example of a

full-batch-only replenishment schedule for demander 1 in Table 26 would be (5, 0, 0, 5, 0, 0, 5,

0, 0, 5). Our proof focuses on the number of full-batch replenishments provided to demander d

which we call (𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ). Our goal is to provide full-batch replenishments to

demander d as often as possible while still needing each of those replenishments in a way that

none could be removed. For demander 1 in Table 26, this is accomplished in the replenishment

schedule (5, 0, 5, 0, 5, 0, 5, 0, 5, 0). In this replenishment schedule, five full batches are provided

to demander 1, each spread just far enough apart.

We prove this theorem in two steps. We first consider some examples, and then we will

generalize our observations to prove the theorem. Suppose that T = 100, 𝐷𝑇ௗ = 8, and 𝐷𝑄ௗ = 5

for demander d. In order to provide full-batch replenishments to demander d as often as possible

while still needing each of those replenishments, we must alternative between 4 and 5 periods as

inter-replenishment times over the cycle. The only exception is that the final inter-replenishment

time may differ because the inter-replenishment times must sum to 100. This means that in

theory the initial inter-replenishment times are (4, 5, 4, 5, …, 4, 5, 4, 5, 1). However, the last

inter-replenishment time of 1 is not high enough to make a reduced replenishment schedule. This

1 time period needs to be absorbed by other inter-replenishment times and the final inter-

replenishment times would be (4, 5, 4, 5, …, 4, 5, 4, 6). The resulting full-batch-only

98

replenishment schedule is (5, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 5,…, 5, 0, 0, 0, 5, 0, 0, 0,

0, 0). In such a replenishment schedule, none of the replenishments can be removed; if one batch

is removed, there would be an inter-replenishment time of 9 or more which violates the 𝐷𝑇ௗ

requirement of 8. Let us consider two consecutive inter-replenishment times of 4 and 5 or 4 and

6 as one cluster. The number of clusters in a cycle is
ଵ଴଴

ସାହ
 rounded down to the nearest integer

which is 11. This means that we have at least 11*2 = 22 full-batch replenishments. We cannot fit

another replenishment at the end of the cycle. The last period when a full-batch replenishment is

provided is period 95. There are only five time periods − 96, 97, 98, 99, 100 − between this

period and period 1, and providing a full-batch replenishment during any of these periods will

make this full-batch-only replenishment schedule a non-reduced replenishment schedule. Thus,

the “busiest” full-batch-only replenishment schedule has exactly 22 full batch replenishments. In

other words, 𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ = 22 and 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ = (𝐷𝑄ௗ)(𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ)

= 110. This is the top part of equation (39).

Now, let us consider the case where T = 103, 𝐷𝑇ௗ = 8, and 𝐷𝑄ௗ = 5 for demander d. In order to

provide full-batch replenishments to demander d as often as possible while still needing each of

those replenishments, we must alternative between 4 and 5 time periods as inter-replenishment

times over the cycle. In theory, the initial inter-replenishment times are (4, 5, 4, 5, …, 4, 5, 4, 5,

4). However, the last inter-replenishment time of 4 is not high enough to make a reduced

replenishment schedule, so these 4 periods need to be absorbed by other inter-replenishment

times and the final inter-replenishment times would be (4, 5, 4, 5, …, 4, 5, 5, 8). The resulting

full-batch-only replenishment schedule is (5, 0, 0, 0, 5, 0, 0, 0, 0, 5, 0, 0, 0, 5, 0, 0, 0, 0, 5,…, 5,

0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0). In this case, none of the replenishment can be removed; if one

batch is removed, there would be an inter-replenishment time of 9 or more which violates the

𝐷𝑇ௗ requirement of 8. In this replenishment schedule, we have at least 22 (
ଵ଴ଷ

ସାହ
 rounded down to

the nearest integer times 2) full-batch replenishments. The last period when a full-batch

replenishment is provided is period 93. There are seven time periods − 94, 95, 96, 97, 98, 99,

100 – between this period and period 1, and providing another full-batch replenishment during

any of these periods will make this full-batch-only replenishment schedule a non-reduced

replenishment schedule. Thus, in the busiest full-batch-only replenishment schedule,

99

𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ = 22 and 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ = (𝐷𝑄ௗ)(𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ) = 110. This

is the top part of equation (39).

If we increase the cycle time by 1, we have T = 104, 𝐷𝑇ௗ = 8, and 𝐷𝑄ௗ = 5 for demander d. The

inter-replenishment times are (4, 5, 4, 5, …, 4, 5, 4, 5, 5). The last inter-replenishment time 5

cannot be absorbed by inter-replenishment times by either side of it − left or right by wrapping

around the end of horizon − because by doing so, the inter-replenishment time would become

10 or 9 which exceeds the 𝐷𝑇ௗ requirement of maximum 8. This increases the number of full-

batch replenishments from 22 (
ଵ଴ସ

ସାହ
 rounded down to the nearest integer times 2) to 23. Thus,

𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ = 23 and 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ = (𝐷𝑄ௗ)(𝑁𝑢𝑚𝐹𝑢𝑙𝑙𝐵𝑎𝑡𝑐ℎ𝑒𝑠𝑅𝑒𝑝𝑙ௗ) = 115. This

is the bottom part of equation (39).

To generalize these observations, we can compute the two alternating inter-replenishment times

as
஽்೏

ଶ
 rounded up to the nearest integer (ቒ

஽்೏

ଶ
ቓ) and

஽்೏ାଵ

ଶ
 rounded up to the nearest integer

(ቒ
஽்೏ାଵ

ଶ
ቓ). In theory, the initial inter-replenishment times would be (ቒ

஽்೏

ଶ
ቓ, ቒ

஽்೏ାଵ

ଶ
ቓ, ቒ

஽்೏

ଶ
ቓ,

ቒ
஽்೏ାଵ

ଶ
ቓ, …, ቒ

஽்೏

ଶ
ቓ, ቒ

஽்೏ାଵ

ଶ
ቓ, 𝑇 mod ቀቒ

஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ). Let us consider two consecutive inter-

replenishment times of ቒ
஽்೏

ଶ
ቓ and ቒ

஽்೏ାଵ

ଶ
ቓ as one cluster. We can find out how many clusters we

have in a cycle length. That is
்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
 rounded down to the nearest integer which is

቞
்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
቟. Since we have two full-batch replenishments within each cluster, this indicates

we have at least ቞
்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
቟ ∗ 2 number of full-batch replenishments during the cycle. We

must investigate further if we can fit another replenishment at the end of the cycle any time after

the last full-batch replenishment is provided. For this, we first define the time periods elapsed

between the last full-batch replenishment time and the end of the cycle T as R which is

𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ. The question is that, is R high enough to accommodate one more

batch or not. A schematic representation of a replenishment schedule is illustrated in Figure 8.

100

Figure 8. Representation of a replenishment schedule for Theorem 3

Based on our observations, if R is less than or equal to ቒ
஽்೏

ଶ
ቓ, adding one more full batch

replenishment at any time period within R creates a non-reduced replenishment schedule. Thus,

if R ≤ ቒ
஽்೏

ଶ
ቓ, number of full-batch replenishments is ቞

்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
቟ ∗ 2. However, if R ≥ ቒ

஽்೏

ଶ
ቓ +

1, number of full-batch replenishments is increased to ቞
்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
቟ ∗ 2 + 1 because a full-batch

replenishment must be provided at any time within R to create a reduced full-batch-only

replenishment schedule.

We now evaluate two scenarios where 𝐷𝑇ௗ is even or odd. If this is even, R = 𝑇 mod ቀቒ
஽்೏

ଶ
ቓ +

ቒ
஽்೏ାଵ

ଶ
ቓቁ must be at most

஽்೏

ଶ
 to not allow fitting one more replenishment in a reduced sense at

the end of the cycle. If 𝐷𝑇ௗ is odd, R = 𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ must be at most

஽்೏ିଵ

ଶ
 to not

allow fitting another replenishment in a reduced sense at the end of the cycle. We arrange these

two scenarios below:

For even 𝐷𝑇ௗ:

R ≤
஽்೏

ଶ
, it means that no additional batch can fit. This is equivalent to:

𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ ≤

஽்೏

ଶ
. This is equivalent to:

𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ ≤ 𝐷𝑇ௗ −

஽்೏

ଶ
 , and this can be written as follows:

𝑇 mod ൬඄
𝐷𝑇ௗ

2
ඈ + ඄

𝐷𝑇ௗ + 1

2
ඈ൰ ≤ 𝐷𝑇ௗ − ඄

𝐷𝑇ௗ

2
ඈ.

Second batch Third batch Last guaranteed
batch

T

R ඄
𝐷𝑇ௗ

2
ඈ ඄

𝐷𝑇ௗ + 1

2
ඈ ඄

𝐷𝑇ௗ + 1

2
ඈ

…
First batch

඄
𝐷𝑇ௗ

2
ඈ

Second last guaranteed
batch

101

For odd 𝐷𝑇ௗ:

R ≤
஽்೏ିଵ

ଶ
, it means that no additional batch can fit. This is equivalent to:

𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ ≤

஽்೏ିଵ

ଶ
 . This is equivalent to:

𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ ≤ 𝐷𝑇ௗ − ቀ

஽்೏ାଵ

ଶ
ቁ, and this can be written as below:

𝑇 mod ൬඄
𝐷𝑇ௗ

2
ඈ + ඄

𝐷𝑇ௗ + 1

2
ඈ൰ ≤ 𝐷𝑇ௗ − ඄

𝐷𝑇ௗ

2
ඈ.

So, regardless of whether 𝐷𝑇ௗ is even or odd, we get the same formula above. We conclude that

if 𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ ≤ 𝐷𝑇ௗ − ቒ

஽்೏

ଶ
ቓ, 𝑁𝑢𝑚𝑅𝑒𝑝𝑙ௗ = ቞

்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
቟ ∗ 2. Otherwise, if

𝑇 mod ቀቒ
஽்೏

ଶ
ቓ + ቒ

஽்೏ାଵ

ଶ
ቓቁ ≥ 𝐷𝑇ௗ − ቒ

஽்೏

ଶ
ቓ + 1, 𝑁𝑢𝑚𝑅𝑒𝑝𝑙ௗ = ቞

்

ቒ
ವ೅೏

మ
ቓାቒ

ವ೅೏శభ

మ
ቓ
቟ ∗ 2 + 1. This

proves Theorem 3. 

Definition 5: The minimum and maximum total amounts that can possibly be demanded by all

demanders during a cycle are as follows:

𝑀𝑖𝑛𝑇𝑜𝑡𝑎𝑙𝐷 = ෍ 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ

஽

ௗୀଵ

 (40)

𝑀𝑎𝑥𝑇𝑜𝑡𝑎𝑙𝐷 = ෍ 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ

஽

ௗୀଵ

 (41)

Conjecture 1: For every integer z such that 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ ≤ z ≤ 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ, there exists a

reduced replenishment schedule for demander d in which a total of exactly z units is provided.

Discussion: We experimentally analyzed the continuum of all possible total replenishment

amounts z in the range [𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ , 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ] for every possible scenario in which 𝑇, 𝐷𝑇ௗ,

and 𝐷𝑄ௗ satisfy 10 ≤ 𝑇 ≤ 30, 2 ≤ 𝐷𝑇ௗ ≤ 9, and 1 ≤ 𝐷𝑄ௗ ≤ 9. Using a smaller version of the

math model that has only one demander and no suppliers, it was experimentally verified that a

102

reduced replenishment schedule can be created for demander d in all scenarios. This gives us

confidence that Conjecture 1 is true.

Figure 9 illustrates a continuum of total replenishment amounts z in the range [𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ ,

𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ]. A formal proof of this conjecture would likely follow a line of reasoning related to

an idea called the “trio operation.” The trio operation applies to any reduced replenishment

schedule with the total replenishment amount 𝑧 and 𝑘 ∗ 𝐷𝑄ௗ ≤ 𝑧 ≤ 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ where k is the

smallest integer that 𝑘 ∗ 𝐷𝑄ௗ ≥ 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ . We refer to the reduced replenishment schedule

that has a total replenishment of 𝑘 ∗ 𝐷𝑄ௗ as the minimum full-batch schedule. Therefore, if there

are n full-batch schedules within the range [𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ , 𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ], (𝑘 + 1) ∗ 𝐷𝑄ௗ would be

the total replenishment for the second full-batch schedule and so on until (𝑘 + 𝑛 − 1) ∗ 𝐷𝑄ௗ

which is the total replenishment for the last full-batch schedule, (𝑘 + 𝑛 − 1) ∗ 𝐷𝑄ௗ ≤

𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ .

To elaborate, any total replenishment of 𝑧 ≥ 𝑘 ∗ 𝐷𝑄ௗ falls within a range of total replenishment

of one full-batch schedule and that of the next full-batch schedule. It is found that within the

range of one full-batch schedule to the next full-batch schedule, a new reduced replenishment

schedule can be created by using a trio-operation on the current reduced replenishment schedule

which adds 1 to the total units replenished. Let us refer to the total replenishment for the starting

full-batch schedule of this range as z1 and the total replenishment for the ending full-batch

schedule of this range as z2. Consider any reduced replenishment schedule in this range as R1. A

trio operation can always be performed on R1 to increase the total replenishment by 1 and create

a new reduced replenishment schedule (R2). In other words, in order to create R2 which has in

total n units (n <= z2 − z1) more than z1, we must perform the trio operation on the starting full-

batch schedule of the range, n times.

Figure 9. Continuum of total replenishment amounts z

𝑧 = 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ z = Minimum full-batch z = Second full-batch z = last full-batch z =𝑀𝑎𝑥𝐴𝑚𝑡𝐷ௗ …

103

The trio operation is to select three locations (time periods) for which the replenishment values

are changed in a way that (a) the resulting schedule is still feasible and (b) the reduced nature of

the replenishment schedule is still preserved. The three replenishment values are increased by 1,

decreased by 1 and increased by 1, respectively so that the net amount of increase in the total

replenished units is 1. Suppose that a reduced replenishment schedule for demander d is to be

created using T, 𝐷𝑇ௗ, 𝐷𝑄ௗ, and 𝑧. Step 1 is to have a starting full batch schedule that has the

largest total replenishment less than or equal to 𝑧. In step 1, we create a list of interval lengths

that satisfies (i) the list has v values (# of full batches), (ii) values sum to T, (iii) each value is at

least 1 and less than or equal to T, (iv) each two consecutive values must sum to at least 𝐷𝑇ௗ+1,

and (v) there should be three consecutive values that sum to less than or equal to 2*𝐷𝑇ௗ. These

values identify the trio location. Creating the starting full batch schedule in this way ensures that

the first three time periods which have non-zero replenishment amounts are the appropriate

periods to perform step 2 of trio operation which is to increase by 1, decrease by 1 and increase

by 1 the three replenishment amounts.

Definition 6: A feasible supply schedule for supplier s is a set of values 𝑆𝐴𝑚𝑡௦ଵ , 𝑆𝐴𝑚𝑡௦ଶ , … ,

𝑆𝐴𝑚𝑡௦் satisfying the supplier constraints (28-29) in the math model.

Theorem 4: The maximum total amount that can be provided by supplier s in a feasible supply

schedule is:

𝑀𝑎𝑥𝐴𝑚𝑡𝑆௦ = (𝑀𝑎𝑥𝑁𝑢𝑚𝑆௦)(𝑆𝑄௦) (42)

where 𝑀𝑎𝑥𝑁𝑢𝑚𝑆௦ = ቔ
்

ௌ ೞ்
ቕ (43)

Proof: Supplier s is able to supply one batch every 𝑆𝑇௦ or less often. Therefore, during a cycle

length of T, supplier s can supply at most 𝑀𝑎𝑥𝑁𝑢𝑚𝑆௦ times which is
்

ௌ ೞ்
 rounded down to the

nearest integer. The maximum total amount that supplier s is able to supply results from

providing full batches (𝑆𝑄௦) whenever it delivers products to the central node. This indicates that

the maximum total amount that supplier s is able to supply equals (𝑀𝑎𝑥𝑁𝑢𝑚𝑆௦)(𝑆𝑄௦) where

𝑀𝑎𝑥𝑁𝑢𝑚𝑆௦ = ቔ
்

ௌ ೞ்
ቕ. 

104

Theorem 5: For every integer z such that 0 ≤ z ≤ 𝑀𝑎𝑥𝐴𝑚𝑡𝑆௦, there exists a feasible supply

schedule for supplier s in which a total of exactly z units is supplied.

Proof: As discussed in Theorem 4, the maximum total amount that supplier s is able to supply

can be derived by having a feasible schedule with 𝑀𝑎𝑥𝑁𝑢𝑚𝑆௦ full batches of size 𝑆𝑄௦. Based on

definition 6, since 𝑆𝐴𝑚𝑡௦௧ = 0 or 𝑆𝐴𝑚𝑡௦௧ = 𝑆𝑄௦ for each t satisfy the supplier constraints (28-

29) in the math model, any supply amounts 𝑆𝐴𝑚𝑡௦,௧ (for any t) less than the full batch size 𝑆𝑄௦

also satisfy the supplier constraints (28-29). As part of the problem’s assumptions, supplier s is

able to supply one batch with a size of no more than 𝑆𝑄௦ every 𝑆𝑇௦ or less often. In other words,

it is allowed to reduce the size of the batches. Therefore, there is a feasible schedule for any total

amount z that is less than or equal to the maximum total supply 𝑀𝑎𝑥𝐴𝑚𝑡𝑆௦. 

Definition 7: The maximum total amount that can possibly be supplied by all suppliers during a

cycle is as follows:

𝑀𝑎𝑥𝑇𝑜𝑡𝑎𝑙𝑆 = ෍ 𝑀𝑎𝑥𝐴𝑚𝑡𝑆௦

ௌ

௦ୀଵ

 (44)

Theorem 6: A problem instance is feasible if and only if MaxTotalS ≥ MinTotalD.

Proof: We first show that the problem is infeasible if MaxTotalS < MinTotalD. If we sum up

constraint (33) and all constraints of type (34) in the math model, we obtain the following:

෍ ෍ 𝑆𝐴𝑚𝑡௦௧

ௌ

௦ୀଵ

்

௧ୀଵ

= ෍ ෍ 𝐷𝐴𝑚𝑡ௗ௧

஽

ௗୀଵ

்

௧ୀଵ

 (45)

In other words, the total amount supplied during the entire cycle should equal the total amount

demanded. If MaxTotalS<MinTotalD, the supplies fall short of the demands, the above

requirement cannot be met, and the problem is infeasible. Section 3.7 shows how to construct a

feasible solution whenever MaxTotalS ≥ MinTotalD. ∎

105

3.7. Method for automatically creating a feasible solution

We now present a method for automatically generating a feasible solution whenever MaxTotalS ≥

MinTotalD. We show how to create a feasible solution when MaxTotalS = MinTotalD. An overall

five-step process for creating such an initial feasible solution is shown in Figure 10.

Figure 10. Method for automatically creating a feasible solution

Step 1:
1. Assume TotalS = TotalD = MinTotalD.
2. Create random total supply for each supplier s that adds to TotalS for all suppliers.

Step 2:
1. Create a random supply schedule for each supplier s that agrees with supplier’s total

supply.
2. Create a minimal replenishment schedule for each demander d that agrees with

𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ.

Step 3: Build an initial inventory diagram.
1. Make a table which shows the amounts and times for all supply and demand

occurrences. Compute the net amount supplied during each period.
2. Compute the inventory level during each period in the cycle. The inventory levels

may violate the non-negativity requirement for 𝐼௧.

Step 4:
Subtract the lowest inventory level observed during the cycle from inventory value in
each period. The resulting inventory diagram satisfies constraints (28-35) and the non-
negativity requirement for 𝐼௧ but will likely violate constraint (36).

Step 5:
1. Shift the Y-axis of the inventory diagram until the inventory level during period T is

zero. We do this in order to change the period that comes first and wrap all inventory
values around the diagram in a cyclic manner

106

In the feasible solution that we create, the total amount provided by all suppliers and to all

demanders equals MinTotalD. This requires each demander d to be provided with the bare

minimum − a total of 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − units during the cycle. In other words, each demander is

satisfied via a minimal replenishment schedule.

We show that a minimal replenishment schedule for demander d can be created using two types

of subschedules or strings: (1) a repeating string that repeats at the start of the replenishment

schedule, and (2) a final string that completes the replenishment schedule. The repeating string

has 𝐷𝑇ௗ periods and 𝐷𝑄ௗ units are provided during this string. There are ቔ
்

஽்೏
ቕ such strings. The

final string, if it exists, has 𝐹𝑖𝑛𝑎𝑙𝑇ௗ periods where 𝐹𝑖𝑛𝑎𝑙𝑇ௗ = 𝑇 mod 𝐷𝑇ௗ and the total amount

provided during this string is 𝐹𝑖𝑛𝑎𝑙𝑄ௗ = 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − ቔ
்

஽்೏
ቕ ∗ 𝐷𝑄ௗ. Figure 11 illustrates a

minimal replenishment schedule. R represents a repeating string and F represents a final string.

 Figure 11. Representation of minimal replenishment schedule

Figure 12 shows a minimal replenishment schedule for a demander with 𝑇 = 12, 𝐷𝑇ௗ = 5, and

𝐷𝑄ௗ = 6. In this scenario, 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ = 15. There are ቔ
்

஽்೏
ቕ = ቔ

ଵଶ

ହ
ቕ = 2 repeating schedules,

each repeating schedule has 𝐷𝑇ௗ = 5 periods and within each string, a total of 𝐷𝑄ௗ = 6 is

provided. The repeating string is (2, 1, 1, 1, 1). The final string has 𝑇 mod 𝐷𝑇ௗ = 2 periods and

the total amount provided in this string is 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − ቔ
்

஽்೏
ቕ ∗ 𝐷𝑄ௗ = 15 − ቔ

ଵଶ

ହ
ቕ ∗ 6 = 3. The

final string is (2, 1).

 Figure 12. An example of minimal replenishment schedule

… R F R R R …

F R R R R … …

2, 1, 1, 1, 1 2, 1 2, 1, 1, 1, 1

107

The repeating string is formed to satisfy several conditions as follows:

(1) The string has 𝐷𝑇ௗ values.

(2) The values sum to 𝐷𝑄ௗ.

(3) The average value in the string is
஽ொ೏

஽்೏
.

(4) The amount provided in each period is either ቒ
஽ொ೏

஽்೏
ቓ or ቒ

஽ொ೏

஽்೏
ቓ − 1.

(5) For all p from 1 to 𝐷𝑇ௗ, the average of the first p values in the string should be greater

than or equal to
஽ொ೏

஽்೏
.

(6) For all p from 1 to 𝐷𝑇ௗ, the value in the string’s pth position should be as low as possible

while still keeping the average of the first p values greater than or equal to
஽ொ೏

஽்೏
.

The final string is formed to satisfy the following conditions:

(0) The final string exists if (𝑇 mod 𝐷𝑇ௗ) > 0.

(1) The final string has (𝑇 mod 𝐷𝑇ௗ) values.

(2) The values sum to 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − ቔ
்

஽்೏
ቕ ∗ 𝐷𝑄ௗ .

(3) The average value in the string is
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏

(4) The amount provided in each period is either අ
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
ඉ or

අ
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
ඉ − 1.

(5) For all p from 1 to (𝑇 mod 𝐷𝑇ௗ), the average of the first p values in the string should be

greater than or equal to
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
.

(6) For all p from 1 to (𝑇 mod 𝐷𝑇ௗ), the value in the string’s pth position should be as low as

possible while still keeping the average of the first p values greater than or equal to

ெ௜௡஺௠௧஽೏ ି ඌ
೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
.

108

We first discuss how to create replenishment schedules by following the procedure above using

three examples. We then prove that all replenishment schedules created in the above manner are

feasible and minimal.

Consider 𝑇 = 15, 𝐷𝑇ௗ = 9 and 𝐷𝑄ௗ = 4. In this scenario, 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ = ቒ𝑇
஽ொ೏

஽்೏
ቓ = ቒ(15)

ସ

ଽ
ቓ =

7. The repeating string has length 9 and 4 units must be provided during this string. In other

words, each repeating string has 9 values that sum to 4. The amount provided in each period in

such a string is either ቒ
஽ொ೏

஽்೏
ቓ − 1 = ቒ

ସ

ଽ
ቓ − 1 = 0 or ቒ

஽ொ೏

஽்೏
ቓ = ቒ

ସ

ଽ
ቓ = 1. As we move forward in the

string from period 1 to period 𝐷𝑇ௗ, the amount provided during period p should be as low as

possible while still keeping the average of the string’s first p values greater than or equal to

஽ொ೏

஽்೏
=

ସ

ଽ
 . If we start with a batch of size 0, the average of values passed so far is 0 which is less

than
ସ

ଽ
 and this violates condition (6) in creating the repeating string. So, we must start with an

amount of 1. So far, the list of amounts is (1). For the next batch size, the lowest possible value

to select is 0. If we select 0, the average of the two values passed so far would be
ଵା଴

ଶ
=

ଵ

ଶ
 which

is greater than
ସ

ଽ
 and this satisfies condition (6). The list of batch sizes is updated to (1, 0). For the

next batch, if we select 0, the average of the three values passed so far would be
ଵା଴ା଴

ଷ
=

ଵ

ଷ
 which

is less than
ସ

ଽ
 and this violates condition (6), whereas if we select 1, the average of the three

values passed so far would be
ଵା଴ାଵ

ଷ
=

ଶ

ଷ
 which is greater than

ସ

ଽ
 and this satisfies condition (6).

The list of batch sizes is updated to (1, 0, 1). In the same way, we continue and select the correct

batch sizes (either 0 or 1) that agree with condition (6). The resulting repeating string is (1, 0, 1,

0, 1, 0, 1, 0, 0). This repeating string repeats for only ቔ
்

஽்೏
ቕ = ቔ

ଵହ

ଽ
ቕ = 1 time. We now create the

final string. This string has 𝑇 mod 𝐷𝑇ௗ = 15 mod 9 = 6 values which must sum to

𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − ቔ
்

஽்೏
ቕ ∗ 𝐷𝑄ௗ = 7 − 1 ∗ 4 = 3. Possible batch sizes are අ

ெ௜௡஺௠௧஽೏ ି ඌ
೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
ඉ −

1 = ቜ
଻ ି ቔ

భఱ

వ
ቕ∗ ସ

ଵହ ୫୭ୢ ଽ
ቝ − 1 = 0 and අ

ெ௜௡஺௠௧஽೏ ି ඌ
೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
ඉ = ቜ

଻ ି ቔ
భఱ

వ
ቕ∗ ସ

ଵହ ୫୭ୢ ଽ
ቝ = 1. In order to satisfy

condition (6) for the final string, each batch size is selected as low as possible while still keeping

109

the average of values passed so far is greater than or equal to
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
=

଻ ି ଵ∗ ସ

ଵହ ୫୭ୢ ଽ
=

ଵ

ଶ
. For the first batch size, if we select 0, the average of the only value passed so far is 0 which is

less than
ଵ

ଶ
. So, we must start with a batch size 1. The list of final string so far is (1). For the next

batch size, if we select the lowest possible value 0, the average of the two values passed so far is
ଵା଴

ଶ
=

ଵ

ଶ
 which is equal to

ଵ

ଶ
 and satisfies condition (6) in creating the final string. The updated list

of final string so far is (1, 0). We continue in the same manner and select batch sizes of 1 or 0 to

satisfy condition (6). The resulting final string would be (1, 0, 1, 0, 1, 0). Thus, the entire reduced

replenishment schedule is (1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0).

A second example is the scenario where 𝑇 = 10, 𝐷𝑇ௗ = 3 and 𝐷𝑄ௗ = 8. In this scenario,

𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ = ቒ𝑇
஽ொ೏

஽்೏
ቓ = ቒ(10)

଼

ଷ
ቓ = 27. The repeating string has length 3 and 8 units must be

provided during this string. That means each repeating string has 3 values that sum to 8. The

batch sizes in such a string are ቒ
஽ொ೏

஽்೏
ቓ − 1 = ቒ

଼

ଷ
ቓ − 1 = 2 and ቒ

஽ொ೏

஽்೏
ቓ = ቒ

଼

ଷ
ቓ = 3. As we move

forward in the string, each batch size is selected as low as possible while still keeping the

average of values passed so far as greater than or equal to
஽ொ೏

஽்೏
=

଼

ଷ
 . If we start with a batch of

size 2, the average of values passed so far is 2 which is less than
଼

ଷ
 and this violates condition (6)

in creating the repeating string. So, we must start with a batch of 3. For the next batch size, the

lowest possible value to select is 2. If we select 2, the average of the two values passed so far

would be
ଷାଶ

ଶ
=

ହ

ଶ
 which is less than

଼

ଷ
 and this violates condition (6). However, if we select 3, the

average of the two values passed so far would be
ଷାଷ

ଶ
= 3 which is greater than

଼

ଷ
 and this

satisfies condition (6). For the third and the last batch size, if we start with the lowest possible

value which is 2, the average of the three values passed so far would be
ଷାଷାଶ

ଷ
=

଼

ଷ
 which is equal

to
଼

ଷ
 and this satisfies condition (6). Therefore, the resulting repeating string is (3, 3, 2) which

repeats ቔ
்

஽்೏
ቕ = ቔ

ଵ଴

ଷ
ቕ = 3 times. We now create the final string. This string has 𝑇 − 𝐷𝑇ௗ ∗

ቔ
்

஽்೏
ቕ = 10 − 3 ∗ 3 = 1 value which must sum to 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − ቔ

்

஽்೏
ቕ ∗ 𝐷𝑄ௗ = 27 − 3 ∗ 8 = 3.

110

The two possible batch sizes are අ
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
ඉ − 1 = ቜ

ଶ଻ ି ቔ
భబ

య
ቕ∗ ଼

ଵ଴ ୫୭ୢ ଷ
ቝ − 1 = 2 and

අ
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
ඉ = ቜ

ଶ଻ ି ቔ
భబ

య
ቕ∗ ଼

ଵ଴ ୫୭ୢ ଷ
ቝ = 3. The only way to have 1 batch which sum to 3 is to

have a batch of size 3. Thus, the entire replenishment schedule is (3, 3, 2, 3, 3, 2, 3, 3, 2, 3).

The third example is related to the case where 𝑇 = 12, 𝐷𝑇ௗ = 5 and 𝐷𝑄ௗ = 6. In this scenario,

𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ = ቒ𝑇
஽ொ೏

஽்೏
ቓ = ቒ(12)

଺

ହ
ቓ = 15. Following the procedure for creating the repeating

string, it will be (2, 1, 1, 1, 1). Also, following the procedure for making the final string, this

string would be (2, 1). The overall replenishment schedule made in this manner would be (2, 1,

1, 1, 1, 2, 1, 1, 1, 1, 2, 1).

Theorem 7: A replenishment schedule created in the above fashion is minimal.

Proof: A minimal replenishment schedule has two features:

(1) The minimum total amount provided to each demander d during a cycle is 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ .

(2) It is feasible.

By design, a replenishment schedule made in the above manner provides a total of 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ to

demander d, because the total amount provided to demander d in all repeating strings is 𝐷𝑄ௗ ∗

ቔ
்

஽்೏
ቕ and the total amount provided to demander d in the final string is 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ − 𝐷𝑄ௗ ∗

ቔ
்

஽்೏
ቕ. This shows that (1) is true. We now show that such a replenishment schedule is feasible,

i.e. that it satisfies constraint (31) in the math model. In other words, we show that during every

time window of length 𝐷𝑇ௗ, a minimum amount of 𝐷𝑄ௗ is provided to demander d.

Using the conditions to create the two types of strings, we are confident that replenishment

schedules in each repeating string is feasible. We must investigate if feasibility is maintained as

the time window of length 𝐷𝑇ௗ slides from a particular position to the left/right in a cyclic

manner so that it starts overlapping at least partially with the final string. Let us refer to sliding

111

such a time window as a Sliding Process. We now discuss three existing Sliding Processes based

on Figure 13.

The Sliding Process 1 occurs as we move from interval 1 to interval 3 in Figure 13. In particular,

the Sliding Process 1 starts by sliding a time window of length 𝐷𝑇ௗ to the right from the initial

position where it covers the entire repeating string. This process ends when the right edge of the

time window coincides with the right edge of the final string. The Sliding Process 2 occurs as we

move from interval 3 to 4 in Figure 13. It starts by sliding a time window of length 𝐷𝑇ௗ to the

right from the initial position where the right edge of the time window coincides with the right

edge of the final string and ends when the left edge of the time window coincides with the left

edge of the final string. The Sliding Process 3 occurs as we move from interval 6 to 4 in Figure

13. It starts by sliding a time window of length 𝐷𝑇ௗ to the left from the initial position where it

covers the entire repeating string and ends when the left edge of the time window coincides with

the left edge of the final string.

Figure 13. Schematic presentation of sliding a time window of length 𝑫𝑻𝒅 in a cyclic manner

We have three statements on how the values of repeating and final strings must compare in order

to ensure that feasibility is maintained during each Sliding Process. These three statements are as

follows:

1) For all p from 1 to 𝐹𝑖𝑛𝑎𝑙𝑇ௗ, the average of the first p values in the final string is greater

than or equal to the average of the first p values in the repeating string.

1

2

3

4

5

6

R R F R R … …

112

2) For all p from 1 to 𝐷𝑇ௗ − 𝐹𝑖𝑛𝑎𝑙𝑇ௗ, the average of the first p values in the repeating string

is greater than or equal to the average of the values in positions 𝐹𝑖𝑛𝑎𝑙𝑇ௗ + 1 to

𝐹𝑖𝑛𝑎𝑙𝑇ௗ + 𝑝 inclusive in the repeating string.

3) For all p from 1 to 𝐹𝑖𝑛𝑎𝑙𝑇ௗ, the average of the last p values in the final string is greater

than or equal to the average of the last p values in the repeating string.

If statement 1 is true, it means that at least 𝐷𝑄ௗ units are provided in every time window of

length 𝐷𝑇ௗ encountered during Sliding Process 1. If statement 2 is true, it indicates that at least

𝐷𝑄ௗ items are provided in every time window of length 𝐷𝑇ௗ encountered during Sliding Process

2 and if statement 3 is true, it shows that at least 𝐷𝑄ௗ items are provided in every time window

of length 𝐷𝑇ௗ encountered during Sliding Process 3.

To demonstrate the truth of these statements, we first show that (i) the average value in the final

string is always greater than or equal to that of the repeating string, (ii) the larger possible value

for the final string is greater than or equal to the larger possible value in the repeating string, and

(iii) the smaller possible value for the final string is greater than or equal to the smaller possible

value in the repeating string.

Regarding item (i), if the average value in the final string is always greater than or equal to that

of the repeating string, we have:

ெ௜௡஺௠௧஽೏ ି ඌ
೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
≥

஽ொ೏

஽்೏
 , and this is equivalent to: (46)

ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ି ඌ
೅

ವ೅೏
ඐ∗஽்೏

≥
஽ொ೏

஽்೏

Therefore: ቀ𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ ∗ 𝐷𝑇ௗ − ቔ
்

஽்೏
ቕ ∗ 𝐷𝑄ௗ ∗ 𝐷𝑇ௗቁ ≥ ቀ𝐷𝑄ௗ ∗ 𝑇 − 𝐷𝑄ௗ ∗ 𝐷𝑇ௗ ∗ ቔ

்

஽்೏
ቕቁ and by doing

mathematical manipulations, we get:

𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ ≥ 𝑇
஽ொ೏

஽்೏
 which is true because 𝑀𝑖𝑛𝐴𝑚𝑡𝐷ௗ = ቒ𝑇

஽ொ೏

஽்೏
ቓ and ቒ𝑇

஽ொ೏

஽்೏
ቓ ≥ 𝑇

஽ொ೏

஽்೏
 .

113

From inequality (46), we can also conclude that ൥
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
൩ ≥ ቒ

஽ொ೏

஽்೏
ቓ as well as

൥
ெ௜௡஺௠௧஽೏ ି ඌ

೅

ವ೅೏
ඐ∗ ஽ொ೏

் ୫୭ୢ ஽்೏
൩ − 1 ≥ ቒ

஽ொ೏

஽்೏
ቓ − 1. The former indicates that the larger possible value for

the final string is greater than or equal to the larger possible value in the repeating string which

shows (ii) is true. The latter indicates that the smaller possible value for the final string is greater

than or equal to the smaller possible value in the repeating string showing (iii) is true.

We now argue that statement (1) is true. Consider a time window of length 𝐷𝑇ௗ which only

covers the entire repeating string to the left of the final string and the total amount provided

within this time window is at least 𝐷𝑄ௗ. Now, we slide this time window one period to the right

so that it starts with the second period in the repeating string and ends with the first period of the

final string. In other words, the first value of the repeating string is replaced with the first value

of the final string with this move. This time window has at least 𝐷𝑄ௗ units because both

repeating and final strings are always started with generally the larger possible value to maintain

the minimum average value required and the larger possible value for the final string is always

greater than or equal to the larger possible value in the repeating string (item ii). Therefore, by

moving 1 period to the right, we gain the first value of the final string which is as large as the

first value of the repeating string that we lost and this ensures to maintain a minimum of 𝐷𝑄ௗ

units within this recently formed window of length 𝐷𝑇ௗ.

As we slide the time window of length 𝐷𝑇ௗ one other period to the right, it starts with the third

period in the repeating string and ends with the second period of the final string. In other words,

the first and second values of the repeating string are replaced with the first and second values of

the final string. This time window certainly has at least 𝐷𝑄ௗ units because the average of the first

two values (which we gain by sliding the time window to the right) in the final string is greater

than or equal to the average of the first two values (which we lose by sliding the time window to

the right) in the repeating string. This is true based on our observations. The second value in final

string is generally the smaller possible value for this string that would suffice to maintain the

required average so far. Also, the second value in repeating string is generally the smaller

possible value that would suffice to keep the required average. Considering item (iii), the second

114

value of the final string is always greater than or equal to that of the repeating string. This

together with the first value for the final string being greater than or equal to the first value for

the repeating string indicates that the average of the first two values in the final string is always

greater than or equal to that in the repeating string. The same pattern holds as we slide the time

window for p time periods (𝑝 ≤ 𝐹𝑖𝑛𝑎𝑙𝑇ௗ). We now show that this pattern exists in the first

example that was discussed earlier.

In the first example with the repeating string of (1, 0, 1, 0, 1, 0, 1, 0, 0) and final string (1, 0, 1, 0,

1, 0), we observe that for any p from 1 to 𝐹𝑖𝑛𝑎𝑙𝑇ௗ = 6, the average of the first p values in the

final string is at least the average of the first p values in the repeating string. The average of the

first value in the final string is 1 which is equal to the average of the first value of repeating

string. Therefore, as we slide a time window of length 𝐷𝑇ௗ = 9 one period to the right, the first

period of the repeating string is replaced with the first period of the final string and the total

amount provided sum to at least 𝐷𝑄ௗ = 4. The average of the first two value in the final string is

ଵ

ଶ
 which is equal to the average of the first two value of repeating string (

ଵ

ଶ
). Therefore, as we

slide a time window of length 9 one more period to the right, the first and second periods of the

repeating string are replaced with the first and second periods of the final string and the total

amount provided sum to at least 𝐷𝑄ௗ = 4. For p = 3, the average of the first three values in the

final string is
ଶ

ଷ
 which is equal to the average of the first three values in the repeating string. If we

continue in the same way and slide the time window of length 9 for p times (p ≤ 6), such a shift

always maintains a minimum of 4 units within that time window.

We argue that statement 2 is true. This statement ensures that feasibility is maintained in any

window of length 𝐷𝑇ௗ that covers the entire final string. Such a time window also includes part

of the repeating string (at most 𝐷𝑇ௗ − 𝐹𝑖𝑛𝑎𝑙𝑇ௗ periods) to the left of the final string or part of

the repeating string (at most 𝐷𝑇ௗ − 𝐹𝑖𝑛𝑎𝑙𝑇ௗ periods) to the right of the final string considering

the cyclic nature of the problem. Consider the window of length 𝐷𝑇ௗ that includes the entire final

string and 𝐷𝑇ௗ − 𝐹𝑖𝑛𝑎𝑙𝑇ௗ periods of the repeating string to the left of the final string. As we

slide this time window one period to the right, we warp around the cycle and the first period of

the repeating string to the right of final string replaces the period in position 𝐹𝑖𝑛𝑎𝑙𝑇ௗ of the

repeating string to the left of the final string. This time window of length 𝐷𝑇ௗ is ensured to cover

115

a minimum of 𝐷𝑄ௗ units because each repeating string starts with the larger possible value and

by sliding the time window one period to the right, the smaller or larger possible value towards

the end (at position 𝐹𝑖𝑛𝑎𝑙𝑇ௗ) of the repeating string is certainly replaced with the larger possible

value at the start of the repeating string to the right of the final string. This maintains a minimum

of 𝐷𝑄ௗ during such a time window. As we slide the time window one more period forward in a

cyclic way, the same pattern holds because each repeating string includes generally higher values

towards the beginning and lower values towards the end of the string. Therefore, by shifting to

the right for 𝑝 ≤ 𝐷𝑇ௗ − 𝐹𝑖𝑛𝑎𝑙𝑇ௗ periods, lower values towards the end (at positions 𝐹𝑖𝑛𝑎𝑙𝑇ௗ +

1 to 𝐹𝑖𝑛𝑎𝑙𝑇ௗ + 𝑝) of the repeating string to the left of the final string are replaced with equal or

higher p values at the beginning of the repeating string to the right of the final string. We now

show this in the first example.

In the first example, the repeating schedule is (1, 0, 1, 0, 1, 0, 1, 0, 0) and we observe that for all

p from 1 to 9 – 6 = 3 , the average of the first p values in the repeating string is greater than or

equal to the average of the values in positions 7 to 6 + 𝑝 in the repeating string. For p = 1, the

average of first value in the repeating string is 1 which is equal to the average of the value at

position 7. For p = 2, the average of the first two values in the string is
ଵ

ଶ
 which is equal to the

average of the values at positions 7 to 8. For p = 3, the average of the first three values in the

string is
ଶ

ଷ
 which is greater than the average of the values at positions 7 to 9 in the string,

ଵ

ଷ
.

Statement 3 ensures that feasibility is maintained in any time window of length 𝐷𝑇ௗ that can be

formed by wrapping around the cycle and includes at least one time period of the final string and

at least 𝐷𝑇ௗ − 1 periods of the first repeating string. We argue that this is true based on our

observations. The values towards the end of the repeating cycle tend to generally include more of

the smaller possible value for this string. The values towards the end of final string could be

either the larger or the smaller possible value for this string which are both greater than or equal

to the smaller possible value for the final string (items ii and iii). In the first example, the final

string is (1, 0, 1, 0, 1, 0) and the repeating string is (1, 0, 1, 0, 1, 0, 1, 0, 0). all p from 1 to

𝐹𝑖𝑛𝑎𝑙𝑇ௗ = 6, average of last p values in the final string is greater than or equal to average of last

p values in the repeating string. For p = 1, the average of the last value in final string (0) is equal

to the average of the last value in repeating string (0). For p = 2, the average of last two values

116

for final string which is
ଵ

ଶ
 is greater than the average of last two values in repeating string (0). For

p = 3, the average of last three values in final string −
ଵ

ଷ
− is equal to the average of last three

values of repeating string (
ଵ

ଷ
). For p = 4, the average of last four values in final string −

ଶ

ସ
− is

greater than the average of last four values of repeating string (
ଵ

ସ
). For p = 5, the average of last

five values in final string −
ଶ

ହ
− is equal to the average of last five values of repeating string (

ଶ

ହ
).

Finally, the average of the last six values in final string −
ଷ

଺
− is greater than the average of last

six values of repeating string (
ଶ

଺
). This proves Theorem 7. 

3.8. Experiment setup, results, and discussion

In this section, we test the performance of the integer programing Solver IBM ILOG CPLEX

12.9 on a set of benchmark problem instances.

3.8.1. Generating problem instances

Table 30 shows the parameter values that define the problem instances considered in the

experiments. We use the discrete uniform (DU) distribution to randomly generate demand time

requirements (𝐷𝑇ௗ), minimum inter-supply times (𝑆𝑇௦), and quantities (𝐷𝑄ௗ and 𝑆𝑄௦). In each

instance, the cost parameters 𝐻ଵ, 𝐻ଶ, 𝐹𝐶௦, 𝐹𝐶𝑃௦, 𝑉𝐶௦, and 𝐹𝐶𝐷ௗ are also randomly generated

from the DU distribution as displayed in Table 30. We designed two types of instances: easy

instances and hard instances. Easy instances only satisfy the requirement that they be feasible.

For hard instances, the condition MaxTotalS – MinTotalD ≤ 10 must be satisfied in addition to

feasibility. A 10-digit code “dDDsSStTTT” indicates the size of a problem instance. “DD”

represents the number of demanders, and “SS” and “TTT” indicate the number of suppliers and

the cycle length, respectively. As an example, “d02s02t010” is a problem instance with two

demanders, two suppliers, and ten periods. Importantly, the values of the operational parameters

− D, S, T, 𝐷𝑇ௗ, 𝐷𝑄ௗ, 𝑆𝑇௦, 𝑆𝑄௦ − in all instances are identical to those considered by Petering et

al. (2019). This allows us to directly compare our results to those in Petering et al. (2019).

117

Table 30. Parameter values used in the experiments

Parameter Possible values
D, S 2, 6, 20, 60

T 10, 30, 100

𝐷𝑇ௗ DU(2,9)

𝐷𝑄ௗ DU(1,9)
𝑆𝑇௦ DU(2,9)

𝑆𝑄௦ DU(1,9)

𝐻ଵ DU(1,3)

𝐻ଶ DU(1,3)

𝐹𝐶௦ DU(20,50)

𝐹𝐶𝑃௦ DU(4,10)

𝑉𝐶௦ DU(1,3)

𝐹𝐶𝐷ௗ DU(4,10)

3.8.2. Hardware settings, CPLEX settings, and termination criteria

The pure integer programming (IP) model shown in Table 29 was coded in Microsoft Visual

C++ 2017 Professional. IBM ILOG Concert Technology was used within C++ to call IBM ILOG

CPLEX 12.9 to solve instances defined in text files. The experiments were executed on a desktop

computer with 16 gigabytes of RAM, the Windows 10 Education 64-bit operating system, and an

Intel Core i7-8700 processor with 3.2 gigahertz processors. The CPLEX-based method

terminates after 60 seconds has elapsed. The termination criteria and settings for the heuristic

algorithm will be decided at a later time.

3.8.3. Results for easy problem instances

In the first set of experiments, we consider twelve problem sizes corresponding to all possible

combinations of four values for D and S — 2, 6, 20, or 60 — and three cycle lengths — 10, 30,

or 100 periods. Ten instances are considered for each problem size. Each instance is considered

in the context of three objective functions: (A) a complex objective function in which all cost

coefficients listed in Table 30 are non-zero; (B) a simple objective function in which

𝐻ଵ = 1 and all other cost coefficients equal 0; and (C) a simple objective function in which

𝐻ଶ = 1 and all other cost coefficients equal 0. These are referred to as objectives A-C,

118

respectively. The purpose of considering objectives B and C is to allow a comparison with the

results in Petering et al. (2019) which considers similar objectives.

Table 31 shows the detailed results when CPLEX is used to solve each of the 120 easy problem

instances when objective A is considered. For each problem size, we run CPLEX on 10 different

instances as indicated by the numbers # 0-9 which run across the top row of the table. The first

column shows the problem size. The next ten columns show the objective value of the best

solution identified by CPLEX for each instance of that problem size. Highlighted cells show

optimal solutions, whereas unhighlighted ones show only feasible solutions identified within 60

seconds run time.

As expected, Table 31 shows that the instances generally get harder as T increases. CPLEX finds

optimal solutions to all instances with T = 10, regardless of the values of D or S, but finds

progressively fewer optimal solutions as T increases. For problem sizes with T = 30, CPLEX

finds optimal solutions for all instances in problem size d02s02t030. As D and S increase and

instances generally get harder, CPLEX finds fewer optimal solutions. CPLEX finds optimal

solutions for only two instances of problem size d06s06t030 and finds no optimal solution for

problem sizes d20s20t030 and d60s60t030. For problem sizes with T = 100, CPLEX finds

optimal solutions for only two instances of problem size d02s02t100. As D and S increase,

CPLEX has no success in finding any optimal solutions for problem sizes d06s06t100,

d20s20t100, and d60s60t100.

119

Table 31. CPLEX results for the easy instances with objective A

Problem
Size

Instance

0 1 2 3 4 5 6 7 8 9

d02s02t010 149 186 189 246 154 187 219 210 243 115
d02s02t030 299 277 325 647 629 630 354 335 690 448

d02s02t100 1047 648 904 2454 1429 1219 2081 1563 881 1483

d06s06t010 482 483 546 577 571 571 524 700 471 535

d06s06t030 1181 788 1311 1067 1141 1046 1299 1246 1034 1358

d06s06t100 2652 2918 4900 3617 3933 4031 3785 4973 3955 3887

d20s20t010 2144 1787 1887 2151 1533 1994 1767 1546 1767 2012

d20s20t030 5085 4726 4260 4662 4058 4040 3616 3759 3299 5175

d20s20t100 13768 13301 14617 54612 24472 15479 13495 13256 13353 15778

d60s60t010 4830 6365 5902 5475 6415 6144 5692 5625 5794 4933

d60s60t030 14755 14170 13336 15460 11885 13975 12685 13617 13800 12891

d60s60t100 65711 66224 82862 38797 80001 55918 40322 86571 77141 49802

Bold: Optimal solution

Tables 32-33 show the results when objectives B and C are considered. Our problem is a

relaxation of the model considered in Petering et al. (2019). Therefore, by setting all costs in this

model equal to zero except 𝐻ଵ = 1 (Table 32) and 𝐻ଶ = 1 (Table 33), we seek to verify that the

optimal objective values for this relaxed model are lower bounds for the previous model in

Petering et al. (2019). The results in Tables 32-33 verify this.

120

Table 32. CPLEX results for the easy instances with objective B

Problem
Size

Instance

0 1 2 3 4 5 6 7 8 9

d02s02t010 2 0 0 3 0 0 1 0 2 0

d02s02t030 0 0 0 0 30 0 0 0 24 9

d02s02t100 0 0 0 187 0 5 150 132 0 16

d06s06t010 0 0 0 0 0 0 0 0 0 0

d06s06t030 0 0 0 0 0 0 0 0 0 0

d06s06t100 0 0 0 0 0 0 0 0 0 0

d20s20t010 0 0 0 0 0 0 0 0 0 0

d20s20t030 0 0 0 0 0 0 0 0 0 0

d20s20t100 547 0 0 0 0 0 0 0 0 0

d60s60t010 0 0 0 0 0 0 0 0 0 0

d60s60t030 0 0 0 0 0 0 0 0 0 0

d60s60t100 0 0 N/A 0 0 N/A 0 N/A 0 0

N/A: Can't find any feasible solution within 60 seconds.
Bold: Optimal solution

Table 33. CPLEX results for the easy instances with objective C

Problem
Size

Instance

0 1 2 3 4 5 6 7 8 9

d02s02t010 1 0 0 1 0 0 1 0 1 0

d02s02t030 0 0 0 0 2 0 0 0 2 2

d02s02t100 0 0 0 4 0 1 5 3 0 1

d06s06t010 0 0 0 0 0 0 0 0 0 0

d06s06t030 0 0 0 0 0 0 0 0 0 0

d06s06t100 0 0 0 0 0 0 0 0 0 0

d20s20t010 0 0 0 0 0 0 0 0 0 0

d20s20t030 0 0 0 0 0 0 0 0 0 0

d20s20t100 17 0 0 0 0 0 0 0 0 0

d60s60t010 0 0 0 0 0 0 0 0 0 0

d60s60t030 0 0 0 0 0 0 0 0 0 0

d60s60t100 0 0 0 0 0 0 0 0 0 0

Bold: Optimal solution

121

3.8.4. Results for hard problem instances

The results from Section 3.9.3 show that CPLEX performs well on most instances but does not

perform well on the largest instances. In this section, we analyze the performance of the solution

method on more difficult problem instances. In fact, we found that when MaxTotalS is close to

MinTotalD, instances become harder to solve to optimality. Thus, we randomly generated five

new sets of feasible problem instances with MaxTotalS – MinTotalD ≤ 10. The sizes of these

instances are different than the sizes of the easy problem instances. Ten instances are considered

for each set. Thus, a total of 50 hard problem instances are considered.

As before, each instance is considered in the context of three objective functions: (A) a complex

objective function in which all cost coefficients listed in Table 30 are non-zero; (B) a simple

objective function in which 𝐻ଵ = 1 and all other cost coefficients equal 0; and (C) a simple

objective function in which 𝐻ଶ = 1 and all other cost coefficients equal 0.

Table 34 shows the results when CPLEX is used to solve each hard problem instance when

objective A is considered. CPLEX finds optimal solutions in only 5 of the 50 total hard

instances. Therefore, the success rate in finding optimal solutions is much smaller for these hard

instances (10 percent) than the easy instances (45 percent). Moreover, comparing the results for

the easy and hard instances for objective A, it appears that the best objective values obtained for

the hard instances are much higher than for the easy instances. The results in Table 34 also

indicate that the value of T has a greater impact on problem difficulty than the values of D and S.

Table 34. CPLEX results for the hard instances with objective A

Problem
Size

Instance

0 1 2 3 4 5 6 7 8 9

d06s06t030 1765 1527 1523 1103 1405 1234 1553 1762 1667 1490

d06s06t100 6652 4688 4618 3639 4705 5298 4174 4145 4220 4690

d10s10t010 1077 1251 763 833 853 996 740 813 785 811

d10s10t030 2313 2292 2577 1901 2372 1953 2549 2176 2780 3273

d10s10t100 8932 8889 8472 7599 8759 10254 8231 7721 7472 9357
Bold: Optimal solution

122

Tables 35-36 show the results when objectives B and C are considered. Similar to the analysis

for easy instances, by setting all costs in this model equal to zero except 𝐻ଵ = 1 (Table 35) and

 𝐻ଶ = 1 (Table 36), we seek to verify that the optimal objective values for this relaxed model are

lower bounds for the results of the previous model in Petering et al. (2019) for hard instances.

The results in Tables 35 and 36 verify this. Once again, these results show that the value of T

affects problem difficulty more than the values of D and S.

Table 35. CPLEX results for the hard instances with objective B

Problem
Size

Instance

0 1 2 3 4 5 6 7 8 9

d06s06t030 0 1 22 1 0 0 1 35 0 9

d06s06t100 180 83 151 46 70 83 94 26 115 107

d10s10t010 0 0 0 0 0 0 0 0 0 0

d10s10t030 0 0 0 0 0 0 0 0 0 0

d10s10t100 162 235 160 89 94 65 21 61 51 97
Bold: Optimal solution

Table 36. CPLEX results for the hard instances with objective C

Problem
Size

Instance

0 1 2 3 4 5 6 7 8 9

d06s06t030 0 1 3 1 0 0 1 6 0 1

d06s06t100 4 5 5 2 3 4 5 2 6 6

d10s10t010 0 0 0 0 0 0 0 0 0 0

d10s10t030 0 0 0 0 0 0 0 0 0 0

d10s10t100 5 1 5 3 4 4 5 N/A 0 6

N/A: Can't find any feasible solution within 60 seconds.
Bold: Optimal solution

123

3.9. Conclusion

In this essay, we studied a single-item cyclic coordinated supply and inventory replenishment

problem with batch supplies and flexible demands. The system in this study consists of multiple

suppliers who each deliver a single item to a central node from which multiple demanders are

then replenished. Each supplier is capable of providing no more than a specific batch size to the

central node at a rate that cannot exceed a specified frequency. Moreover, each demander must

be replenished with a specific minimum amount over every existing time window of a given

length. The objective is to minimize total system cost subject to several operational constraints.

The decisions include the timing and sizes of batches delivered by the suppliers to the central

node and the timing and amounts by which demanders are replenished. This problem is modeled

as an integer linear program and results show CPLEX is a good method for solving small

problem instances. Future work includes proposing a heuristic algorithm for quickly finding

good solutions to the math model. Such a heuristic algorithm will be composed of a three-tier

hierarchy which draws upon ideas of genetic algorithms, construction heuristics, and

improvement heuristics. The highest level in the hierarchy will be managed by a genetic

algorithm. We will show that the proposed heuristic method outperforms CPLEX on medium-

sized and large problem instances.

124

References

Abdelsalam, H. M., Elassal, M. M. (2014). Joint economic lot sizing problem for a three-layer
supply chain with stochastic demand. International Journal of Production Economics, 155, 272–
283.

Archetti, C., Bertazzi, L., Speranza, M. G. (2014). Polynomial cases of the economic lot-sizing
problemwith cost discounts. European Journal of Operational Research, 237(2), 519–527.

Banerjee, A., (1986). A joint economic-lot-size model for purchaser and vendor. Decision
Sciences, 17, 292–311.

Banerjee, A., Burton, J.S., (1994). A coordinated order-up-to inventory control policy for a
single supplier and multiple buyers using electronic data interchange. International Journal of
Production Economics, 35, 85–91.

Ben-Daya, M., Darwish, M., Ertogral, K. (2008). The joint economic lot-sizing problem: Review
and extensions. European Journal of Operational Research, 185(2), 726–742.

Bouslah, B., Gharbi, A., Pellerin, R. (2013). Joint optimal lot-sizing and production control
policy in an unreliable and imperfect manufacturing system. International Journal of Production
Economics, 144(1), 143–156.

Braglia, M., Zavanella, L., (2003). Modelling an industrial strategy for inventory management in
supply chains: the ‘consignment stock’ case. International Journal of Production Research, 41,
3793–3808.

Chen, J. M., Lin, I. C., Cheng, H. L. (2010). Channel coordination under consignment and
vendor-managed inventory in a distribution system. Transportation Research Part E: Logistics
and Transportation Review, 46(6), 831-843.

Cunha, J. O., Melo, R. A. (2016). A computational comparison of formulations for the economic
lot-sizing with remanufacturing. Computers & Industrial Engineering, 92, 72–81.

Cunha, J. O., Konstantaras, I., Melo, R. A., Sifaleras, A. (2017). On multi-item economic lot-
sizing with remanufacturing and uncapacitated production. Applied Mathematical Modelling, 50,
772–780.

Darwish, M.A., Odah, O.M. (2010). Vendor managed inventory model for single- vendor multi-
retailer supply chains. European Journal of Operational Research, 204, 473–484.

125

Das, D., Roy, A., Kar, S. (2011). A volume flexible economic production lot-sizing problem
with imperfect quality and random machine failure in fuzzy-stochastic environment. Computers
& Mathematics with Applications, 61(9), 2388–2400.

De Araujo, S. A., De Reyck, B., Degraeve, Z., Fragkos, I., Jans, R. (2015). Period
decompositions for the capacitated lot sizing problem with setup times. INFORMS Journal on
Computing, 27(3), 431-448.

Eppen, G., Martin, R. (1987). Solving multi-item capacitated lot-sizing problems using variable
redefinition. Operations Research, 35 (6), 832–848.

Feng, Y., Chen, S., Kumar, A., Lin, B. (2011). Solving single product economic lot-sizing
problem with non-increasing setup cost, constant capacity and convex inventory cost in O
(NlogN) time. Computers & Operations Research, 38(4), 717–722.

Ferretti, I., Mazzoldi, L., Zanoni, S., Zavanella, L. E. (2017). A joint economic lot size model
with third-party processing. Computers & Industrial Engineering, 106, 222–235.

Fiorotto, D. J., Jans, R., De Araujo, S. A. (2017). An analysis of formulations for the capacitated
lot sizing problem with setup crossover. Computers & Industrial Engineering, 106, 338-350.

Bayley, T., Süral, H., Bookbinder, J. H. (2018). A hybrid Benders approach for coordinated
capacitated lot-sizing of multiple product families with set-up times. International Journal of
Production Research, 56(3), 1326-1344.

Fragkos, I., Degraeve, Z., De Reyck, B. (2016). A horizon decomposition approach for the
capacitated lot-sizing problem with setup times. INFORMS Journal on Computing, 28(3), 465-
482.

Gharaei,A., Pasandideh, S. H. R. (2016). Modelling and optimization the four-level integrated
supply chain: Sequential quadratic programming. International Journal of Computer Science and
Information Security, 14, 650–669.

Gharaei,A., Pasandideh, S. H. R. (2017a). Four-Echelon integrated supply chain model with
stochastic constraints under Shortage condition. Industrial Engineering & Management Systems,
16(3), 316–329.

Gharaei, A., Pasandideh, S.H. R. (2017b). Modeling and optimization of four-level integrated
supply chain with the aim of determining the optimum stockpile and period length: Sequential
quadratic programming. Journal of Industrial and Production Engineering, 34(7), 529–541.

126

Gharaei, A., Pasandideh, S. H. R., Akhavan Niaki, S. T. (2017). An optimal integrated lot-sizing
policy of inventory in a bi-objective multi-level supply chain with stochastic constraints and
imperfect products. Journal of Industrial and Production Engineering, 35(1), 6–20.

Gharaei, A., Pasandideh, S. H. R., Arshadi Khamseh, A. (2017). Inventory model in a four-
echelon integrated supply chain: Modeling and optimization. Journal of Modelling in
Management, 12(4), 739–762.

Gharaei, A., Karimi, M., Hoseini Shekarabi, S. A. (2019). Joint economic lot-sizing in multi-
product multi-level integrated supply chains: Generalized benders decomposition. International
Journal of Systems Science: Operations & Logistics, 1-17.

Glock, Christoph H. (2012). The joint economic lot size problem: A review. International
Journal of Production Economics, 135.2: 671-686.

Glock, C. H., Kim, T. (2016). Safety measures in the joint economic lot size model with
returnable transport items. International Journal of Production Economics, 181, 24–33.

Goldberg, D. E., Holland, J. H. (1988). Genetic algorithms and machine learning. Machine
Learning, 3, 95-99.

Goyal, S.K. (1976). An integrated inventory model for a single supplier-single customer
problem. International Journal of Production Research, 14, 107–111.

Goyal, S.K. (1988). A joint economic-lot-size model for purchaser and vendor: a comment.
Decision Sciences, 19, 236–241.

Goyal, S.K., Nebebe, F. (2000). Determination of economic production-shipment policy for a
single-vendor–single-buyer system. European Journal of Operational Research, 121, 175–178.

Gumus, M., Jewkes, E.M., Bookbinder,J.H., (2008). Impact of consignment inventory and
vendor-managed inventory for a two-party supply chain. International Journal of Production
Economics, 113, 502–517.

Helmrich, M. J. R., Jans, R., van den Heuvel,W., Wagelmans, A. P. (2015). The economic lot-
sizing problem with an emission capacity constraint. European Journal of Operational Research,
241(1), 50–62.

Hill, R.M. (1997). The single-vendor single-buyer integrated production-inventory model with a
generalized policy. European Journal of Operational Research, 97, 493–499.

127

Hill, R.M., Omar, M. (2006). Another look at the single-vendor single-buyer integrated
inventory production-inventory problem. International Journal of Production Research, 44,
791–800.

Hoque, M.A., (2009). An alternative optimal solution technique for a single-vendor single-buyer
integrated production inventory model. International Journal of Production Research, 47, 4063–
4076.

Holland, J. H. (1992). Genetic algorithms. Scientific American, 267(1), 66-73.

Joglekar, P.N., Tharthare, S., (1990). The individually responsible and rational decision approach
to economic lot sizes for one vendor and many purchasers. Decision Sciences, 21, 492–506.

Karimi, B., Ghomi, S.M.T.F., Wilson, J.M., (2003). The capacitated lot sizing problem: a review
of models and algorithms. Omega, 31, 365–378.

Karimi-Nasab,M.,Modarres,M., Seyedhoseini, S.M. (2015). A self-adaptive PSO for joint lot-
sizing and job shop scheduling with compressible process times. Applied Soft Computing, 27,
137–147.

Katok, E., Lewis, H., Harrison, T., (1998). Lot sizing in general assembly systems with setup
costs, setup times, and multiple constrained resources. Management Science, 44 (6), 859–877.

Kim, T., Glock, C. H. (2013). A multi-stage joint economic lot size model with lead time penalty
costs. Computers & Industrial Engineering, 66(1), 133-146.

Marchi, B., Ries, J. M., Zanoni, S., Glock, C. H. (2016). A joint economic lot size model with
financial collaboration and uncertain investment opportunity. International Journal of
Production Economics, 176, 170–182.

Modak, N. M., Panda, S., Sana, S. S. (2016). Pricing policy and coordination for a distribution
channel with manufacturer suggested retail price. International Journal of Systems Science:
Operations & Logistics, 3(2), 92–101.

Onal, M., Romeijn, H. E., Sapra, A., Van den Heuvel, W. (2015). The economic lot-sizing
problem with perishable items and consumption order preference. European Journal of
Operational Research, 244(3), 881–891.

Onal, M. (2016). The two-level economic lot-sizing problem with perishable items. Operations
Research Letters, 44(3), 403–408.

Ou, J. (2017). Improved exact algorithms to economic lot-sizing with piecewise linear
production costs. European Journal of Operational Research, 256(3), 777–784.

128

Petering, Matthew EH, Xi Chen, and Wen-Huan Hsieh. (2019). Inventory Control with Flexible
Demands: Cyclic Case with Multiple Batch Supply and Demand Processes. International
Journal of Production Economics, 212, 60-77.

Pineyro, P., Viera, O. (2010). The economic lot-sizing problem with remanufacturing and one
way substitution. International Journal of Production Economics, 124(2), 482–488.

Pineyro, P., Viera, O. (2014). Note on the economic lot sizing problem with remanufacturing and
one-way substitution. International Journal of Production Economics, 156, 167–168.

Pishchulov,G., Richter, K. (2016). Optimal contract design in the joint economic lot size
problem with multi-dimensional asymmetric information. European Journal of Operational
Research, 253(3), 711–733.

Porter, Michael E. (1996). What is strategy? Harvard business review, 74(6), 61-78.

Quadt, D., Kuhn, H. (2008). Capacitated lot-sizing with extensions: a review. 4OR, 6 (1), 61–83.

Sahling, F., Buschkühlb, L., Tempelmeierb, H., Helbera, S., 2009. Solving a multi-level
capacitated lot sizing problem with multi-period setup carry-over via a fix-and-optimize
heuristic. Computers and Operations Research, 36 (9), 2546–2553.

Rezaei, J., Davoodi,M. (2012). A joint pricing, lot-sizing, and supplier selection model.
International Journal of Production Research, 50(16), 4524–4542.

Roy, A., Sana, S. S., Chaudhuri, K. (2018). Optimal pricing of competing retailers under
uncertain demand-a two-layer supply chain model. Annals of Operations Research, 260(1–2),
481–500.

Salas Navarro, K., Chedid, J. A., Caruso, N. M., Sana, S.S. (2018). An inventory model of three-
layer supply chain of wood and furniture industry in the Caribbean region of Colombia.
International Journal of Systems Science: Operations & Logistics, 5(1), 69–86.

Siajadi, H., Ibrahim, R. N., Lochert, P. B. (2006). Joint economic lot size in distribution system
with multiple shipment policy. International Journal of Production Economics, 102(2), 302-316.

Sajadieh, M.S., Jokar, M.R.A. (2009). Optimizing shipment, ordering and pricing policies in a
two-stage supply chain with price-sensitive demand. Transportation Research Part E, 45, 564–
571.

Sarakhsi,M. K., Ghomi, S. F., Karimi, B. (2016). A new hybrid algorithm of scatter search and
Nelder–Mead algorithms to optimize joint economic lot-sizing problem. Journal of
Computational and Applied Mathematics, 292, 387–401.

129

Sari, D. P., Rusdiansyah, A., Huang, L. (2012). Models of joint economic lot-sizing problem
with time-based temporary price discounts. International Journal of Production Economics,
139(1), 145–154.

Sargut, F. Z., Işık, G. (2017). Dynamic economic lot size model with perishable inventory and
capacity constraints. Applied Mathematical Modelling, 48, 806–820.

Siajadi, H., Ibrahim, R.N., Lochert, P.B., 2006. Joint economic lot size in distribution system
with multiple shipment policy. International Journal of Production Economics, 102, 302–316.

Sifaleras, A., Konstantaras, I., Mladenović, N. (2015). Variable neighborhood search for the
economic lot-sizing problem with product returns and recovery. International Journal of
Production Economics, 160, 133–143.

Taş, D., Gendreau, M., Jabali, O., Jans, R. (2019). A capacitated lot sizing problem with
stochastic setup times and overtime. European Journal of Operational Research, 273(1), 146-
159.

Telha, C., Van Vyve, M. (2016). Efficient approximation schemes for economic lot-sizing in
continuous time. Discrete Optimization, 20, 23–39.

Transchel, S., Minner, S. (2011). Economic lot-sizing and dynamic quantity competition.
International Journal of Production Economics, 133(1), 416–422.

Trigeiro, W., Thomas, L., McClain, J. (1989). Capacitated lot sizing with setup times.
Management Science, 35 (3), 353–366.

Viswanathan, S. (1998). Optimal strategy for the integrated vendor–buyer inventory model.
European Journal of Operational Research, 105, 38–42.

Zavanella, L., Zanoni, S. (2009). A one-vendor multi-buyer integrated production- inventory
model: the ‘consignment stock’ case. International Journal of Production Economics, 118, 225–
232.

130

CURRICULUM VITAE

Sepideh Alavi

Education

 PhD in Supply Chain and Operations Management, Lubar School of Business, University
of Wisconsin-Milwaukee (2014-2020)

 PhD Minor in Management Information Systems, Lubar School of Business, University of
Wisconsin-Milwaukee (2014-2016)

 M.Sc. in Industrial Engineering - Logistics and Supply Chain Engineering, Amirkabir

University of Technology (2009- 2011)

 B.Sc. in Industrial Engineering - Systems Planning and Analysis, Alzahra University

(2005-2009)

Publications

 Sepideh Alavi, Nader Azad, Mojtaba Heydar, Hamid Davoudpour "Integrating Production,
Inventory and Location-Allocation Decisions in Designing Supply Chain Networks"
International Journal of Information Systems and Supply Chain Management, 2016, 9 (4), pp
22-42

 Sepideh Alavi, Mostafa Pazoki, Kaveh Fahimi "A New Framework to Incorporate
Competitive Considerations into Supply Chain Network Design" Proceedings of the 41st
International Conference on Computers & Industrial Engineering, 2011, pp. 19-24

Conference Presentations

 Sepideh Alavi, Matthew Petering, Xiaohang Yue “Joint Supply and Order Fulfillment
Planning for a Supply Chain with Flexible Demand” INFORMS Conference, Oct. 2019,
Seattle.

 Sepideh Alavi, Matthew Petering, Xiaohang Yue “Decision Making in the Context of
Flexible Demand” DSI Conference, Nov. 2019, New Orleans.

 Sepideh Alavi, Matthew Petering “An Order Consolidation and Inventory Control Model for
a Two-Echelon Supply Chain" DSI Conference, Nov. 2018, Chicago.

131

 Sepideh Alavi, Matthew Petering "A Novel Mixed-Integer Quadratic Shipment
Consolidation Model for a Two-Echelon Supply Chain" INFORMS Conference, Oct. 2017,
Houston.

 Sepideh Alavi, Anthony D. Ross "A Data-Driven Predictive Model for Inventory Control of

Products with Irregular Demand" INFORMS Annual Conference Oct. 2016, Nashville.

 Sepideh Alavi, Mariam Zahedi "Manufacturer-Salespersons Relationships in Global Markets:
Inventory Policies and Cultural Effects" INFORMS Conference Oct. 2016, Nashville.

Teaching Experience

 Instructor
- Logistics and Transportation Management (undergraduate), Lubar School of

Business (Spring 2020)
- Delivery method: blended

- Supply Chain Analytics (undergraduate), Lubar School of Business (Fall 2018,
Spring 2019)
- Average Evaluation Score: 4.81/5
- Fall 2018 Delivery method: blended
- Spring 2019 Delivery method: face-to-face

- Operations Planning and Control (undergraduate), Lubar School of Business

(Spring 2020, Fall 2019, Spring 2018, Fall 2017, Spring 2017 and Fall 2016)
- Average Evaluation Score: 4.57/5
- Delivery method: face-to-face

- Purchasing and Supply Management (undergraduate), Lubar School of

Business (Summer 2018)
- Evaluation Score: 4.82/5
- Delivery method: face-to-face

- Introduction to Supply Chain Management (undergraduate), Lubar School of

Business (Winterim 2017)
- Evaluation Score: 4.2/5
- Delivery method: face-to-face

132

 Teaching Assistant

- Introduction to Management Statistics (undergraduate), Lubar School of
Business (Fall 2018, Summer 2017, Summer 2016)
- Average Evaluation Score: 4.7/5
- Delivery method: face-to-face

- Predictive Analytics for Managers, MBA and EMBA, Lubar School of
Business (Spring 2018, Fall 2017)
- Evaluations were not conducted for TAs for online courses.
- Delivery method: face-to-face discussion sessions, online lectures

Other Academic Experience

 AACSB Accreditation Project Assistant, Lubar School of Business (June 2015- June
2017)

Honors and Awards

 Outstanding Doctoral Student Teaching Award ($250) (Feb. 2019)

 Roger L. Fitzsimonds Doctoral Scholarship ($5000) (May 2018)

 Sheldon B. Lubar Doctoral Scholarship ($5000) (May 2016, May 2017)

 PhD Chancellors' Award- Lubar School of Business - UWM (August 2014- August
2017)

 Ranked 2nd among 12 graduates of Industrial Engineering Master's program at
Amirkabir University of Technology, 2011

 Ranked 66th among more than 10000 participants in National Matriculation exam for
entering Master's program, 2009

Computer Skills

 Data Analytics: Minitab, R, WinBUGS, JMP, SAS

 Optimization: MATLAB, C++, GAMS

 Project Management: MS-Project, Primavera

 Simulation: Arena, ED

133

PhD Coursework

Statistical Analysis, Multivariate Methods, Applied Stochastic Processes, Advanced
Bayesian Analytics, Advanced Operations Research Models, Doctoral Seminar: Applied
Game Theory in Supply Chain Management, Doctoral Seminar: Logistics Management,
Doctoral Seminar: Purchasing and Sourcing Theory, Process and Flow Management, Data
and Information Management, Doctoral Seminar in Web-based Information Systems.

Service and Affiliations

Session Chair:

 DSI Annual Conference, Chicago (November 2018)
Journal Referee Activities:

 Journal of Computer and Industrial Engineering (CIE)

Memberships

 The Institute of Operations Research and Management Science (INFORMS)

 Decision Sciences Institute (DSI)

 Production and Operations Management Society (POMS)

	Essays on Shipment Consolidation Scheduling and Decision Making in the Context of Flexible Demand
	Recommended Citation

	Microsoft Word - Sepideh Alavi_Final Dissertation Draft 2_Submitted to Graduate School

