
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

May 2020

Non-Discriminatory Service Robot Placement Using Geometric Non-Discriminatory Service Robot Placement Using Geometric

Median Median

Brian Boyd
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Boyd, Brian, "Non-Discriminatory Service Robot Placement Using Geometric Median" (2020). Theses and
Dissertations. 2356.
https://dc.uwm.edu/etd/2356

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2356?utm_source=dc.uwm.edu%2Fetd%2F2356&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

NON-DISCRIMINATORY SERVICE ROBOT PLACEMENT USING

GEOMETRIC MEDIAN

by

Brian Boyd

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

May 2020

ii

ABSTRACT

NON-DISCRIMINATORY SERVICE ROBOT PLACEMENT USING

GEOMETRIC MEDIAN

by

Brian Boyd

The University of Wisconsin-Milwaukee, 2020

Under the Supervision of Professor Amol Mali

Service robots are becoming increasingly common, and businesses are adopting their use

at an increasingly rapid rate in order to reduce costs and provide efficiencies in performing

mundane tasks. However, very little research has been performed in order to understand and

address ethical concerns regarding their deployment and use.

One such concern is how one can ensure placement of a service robot such that is does

not discriminate either in favor of or against individuals. This research explores techniques that

can be used to provide a quantitative methodology to ensure fairness in terms of service robot

placement such that discrimination does not occur.

These techniques include the development and further enhancement of a heuristic hill

climbing algorithm used to approximate the Geometric Median (GM). This algorithm is then

benchmarked against Weiszfeld’s Algorithm, a well-known algorithm commonly used to solve

the GM problem.

These two algorithms are then visualized using Dynamics Explorer, an open source

software tool, to create 2d maps of the dynamics of their convergence rates along with maps of

iii

F(), the “sum of the Euclidean distances” function underlying the calculations used by both GM

approximation algorithms.

The heuristic hill climbing algorithm is also extended to handle obstacles being

introduced into the service robot’s workspace.

It is further shown that as the size of ξ approaches ∞+, the Geometric Median converges

to the centroid, given certain assumptions, such as the target points being evenly distributed in

the plane.

iv

© Copyright by Brian Boyd, 2020

All Rights Reserved

v

To

my wife,

my children,

and all of mankind.

vi

TABLE OF CONTENTS

List of Figures………………………………………………………………….……….viii

List of Tables…………………………………………………………………………….ix

1. Introduction……………………………………………………………………………1

 1.1 Statement of the Problem…………………………………………………….1

 1.2 Definition of Terms…………………………………………………………..4

 1.3 Description of the Remaining Chapters……………………………………...4

2. Background and Related Work………………………………………………………..6

 2.1 Review of Existing Literature………………………………………………..6

 2.2 Facility Location as an Analogue…………………………………………….7

 2.3 The Geometric Median……………………………………………………….7

3. Methods Used………………………………………………………………………….9

 3.1: Overview of Algorithms Developed…………………………………………9

 3.2: Weiszfeld’s Algorithm – the control…………………………………………9

 3.3: Heuristic Algorithm – the experiment………………………………………11

 3.4: Heuristic Algorithm Extension – Polygonal Obstacles……………………..13

 3.5: Heuristic Algorithm Extension – Polygonal Free Space……………………15

 3.6: Alternative Measurement Function Using the Heuristic Algorithm………..16

 3.7: Dynamics Explorer Extensions – Behavior Visualization…………………..16

4. Results…………………………………………………………………………………18

 4.1: Underlying Parameters of the Algorithms…………………………………..18

 4.2: Algorithmic performance – Relative and Absolute Measurements…………19

 4.3: Algorithm Convergence Rates – Dependent Factors………………………..20

 4.4: Visualization of the F() Function……………………………………………21

 4.5: Visualization of the Polygonal Obstacles Problem………………………….22

 4.6: Visualization of the Polygonal Free Space Problem………………………...23

 4.6: Visualization of the Alternative Measurement Function…………………….23

vii

5. Conclusion Future Work……………………………………………….……………......25

 5.1: Conclusion……………………………………………..……..………………..25

5.2: Heuristic Algorithm……………………………………………………………25

 5.3: Weiszfeld’s Algorithm…………………………………………………………25

 5.4: Polygonal Obstacle and Free Space Extensions.………………………………26

 5.5: Degenerate Cases………………………………………………………………26

5.6: Ethical Considerations…………………………………………………………27

6. References………………………………………………………………………………..40

7. Appendices……………………………………………………………………………….43

Appendix A: Pseudo-Code, Weiszfeld’s Algorithm………………………………..43

Appendix B: Pseudo-Code, Heuristic Algorithm…………………………………..44

Appendix C: Pseudo-Code, GetNextPoint()………………………………………..46

Appendix D: Pseudo-Code, F()…………………………………………………….47

Appendix E: Pseudo-Code, dist()…………………………………………………..48

Appendix F: Pseudo-Code, FindTargetPoints1()...………………………………...49

Appendix G: Pseudo-Code, CheckIfOccluded()……...……………………………51

Appendix H: Pseudo-Code, isInShape()…………...………………………………52

Appendix I: Pseudo-Code, FindTargetPoints2()………...…………………………53

Appendix J: Pseudo-Code, Belas and Yu modifications for Weiszfeld’s.…………54

viii

LIST OF FIGURES

Figure 1: Convergence rate map for Heuristic Algorithm, 5 target points.

Figure 2: Convergence rate map for Heuristic Algorithm, 5 target points, zoomed out to

show increase in convergence rate due to distance from GM.

Figure 3: Convergence rate map for Weiszfeld’s Algorithm, 5 target points.

Figure 4: Convergence rate map for Weiszfeld’s Algorithm, 50 target points.

Figure 5: Convergence rate map for Weiszfeld’s Algorithm, 50 target points, zoomed out.

Figure 6: Each pixel is colored based on the value of the F() function for that particular

point.

Figure 7: Each pixel is colored based on the value of the F2() function for that particular

point.

Figure 8: The relationship between the size of the target point set on the x-axis, and the

distance between the calculated centroid and the approximated GM, represented

on the y-axis by the ratio of the distance between them as a proportion of that

distance to the hypotenuse of the plane the tests were generated within.

Figure 9: Visualization of the solution to the “polygonal obstacles” problem.

Figure 10: Visualization of the “polygonal free space” problem.

ix

LIST OF TABLES

Table 1: Subset of data captured during computation of approximation algorithms.

1

1. Introduction

1.1 Statement of the Problem

 Robots are becoming increasingly common in our daily lives, largely due to rapidly

improving technologies like machine learning and artificial intelligence, big data and business

informatics, and the adoption of cloud platforms. These technologies, coupled with business

objectives such as the desire for increased productivity and reduction in payroll costs, are driving

the adoption of robots in novel new ways.

 Some of these robots are on the front line, servicing humans directly, and they are known

collectively as service robots. Service robots come in many shapes and forms, some of which

you may be familiar with, such as robotic vacuum cleaners, or robotic merchandise ordering

kiosks at some retail or stores or restaurants.

 From a business perspective, the motivating force behind the deployment of service

robots has been cost reduction, since it is cheaper to buy a robot than to utilize a human for many

of these mundane, rote activities. However, it appears that very little consideration is being given

to the overall impact these robots have on society, and how their very presence or absence can

impact humans on a psychological level.

 This paper attempts to address a single aspect of that picture: given a place that people

use for some purpose, such as a restaurant or shopping center, is there a way that we can deploy

a service robot to assist those people such that it is placed in a location that quantitatively

minimizes the perception that it discriminates for or against any of those people by virtue of

being placed closer or further away from some people rather than others? To put it another way,

can we mathematically determine a place to put this robot that is “fair”?

2

Non-discriminatory placement describes the desire to place a service robot in a location

such that the potential customers of the service are unlikely to feel discriminated against.

Examination of the problem resulted in the understanding that the underlying problem is closely

related to the problem of facility location in many ways. Thus, the GM was chosen as it

minimizes the amount of travel required for a set of people to access the services offered by the

robot, providing an objectively fair way to reduce perceived discrimination. By using the GM,

one can show that a given service robot is not intentionally placed closer or farther from any

individuals seeking the services being offered. Techniques for ensuring non-discriminatory

placement of service robots are developed by employing algorithms used to approximate the

GM. To this end, a heuristic algorithm was developed which approximates the GM within a

specified epsilon (ε) bound. This algorithm was analyzed and benchmarked against a well-known

algorithm commonly used to approximate the GM, known as Weiszfeld’s Algorithm. Both

algorithms use iterative methods to achieve their goals, however the heuristic algorithm

described in this thesis is a modified hill-climbing algorithm, while Weiszfeld’s is a type of

iteratively re-weighted least squares algorithm.

The first case which was examined is that of an arbitrary number of people occupying

various locations within a 2d plane representing a place people gather to get access to some

service. Within this place there is a robot providing a service to the people present, and the goal

is to find a location for the robot such that the people desiring the service are not likely to feel

discriminated against.

The second case which was examined added a constraint in the form of arbitrary

polygonal shapes being introduced into the place which represent furniture or other obstacles

which preclude parts of the plane from being used. In this case, the heuristic algorithm was

3

extended to find locations near the GM but located within the free space, clear of any obstacles.

Other algorithms referenced in this paper do not account for these obstacles.

The third case which was examined inverted the use of the polygons in the second case

such that they now represented the free space, and all other space was unavailable for use by the

robot. In this third case the heuristic algorithm was extended to locate points within each

polygonal free space close to the GM as potential sites for placement of the robot.

Lastly, modifications were made to an existing open source software project in order to

visualize some aspects of this research, including the construction of 2d maps displaying the

convergence rate for each algorithm on an entire plane, the construction of a 2d heat map

representing the each point’s average distance to the set of people provided, and interactive real-

time tools to watch the algorithms perform their calculations based on where the user clicks on

the plane.

Results show that in general, the heuristic algorithm’s performance is lower than that of

Weiszfeld’s, however it never fails to converge. Weiszfeld’s required modifications to ensure it

didn’t get “stuck” when an iterate got too close to one of the target points. Analysis of the data

output by the algorithms shows that if the target points are randomly scattered throughout the

plane, as the number of points approaches ∞, the GM converges to the centroid.

4

1.2 Definition of Terms

Centroid point in a plane representing the arithmetic mean position of a set of

points. Formulaically, the centroid = (X1 + … + Xk) / k [17], for k points X1 to Xk in Rn.

Epsilon (ε) double value, user configurable, describes the minimum bound at which

an algorithm terminates because it is approaching a fixed point due to the current iterate being

less than ε away from the last iterate in Euclidean space

F() value the calculation of the sum of the Euclidean distances from a given point to

all members of ξ

Geometric Median (GM) given a discrete set of sample points in a Euclidean space, this is

the point minimizing the sum of the distances to those sample points

Starting point the initial starting point for an algorithm, may be arbitrary or user defined

Target point set (ξ) in terms of the geometric median problem, this is the set of sample points

being used to calculate the GM

1.3 Description of the Remaining Chapters

 In Chapter 2, we perform a review of existing literature, describe how the problem is an

analogous to the facility location problem, and describe the Geometric Median.

 In Chapter 3, we describe the algorithms we developed and discuss how they work. We

then describe the extensions made to the heuristic algorithm to account for the additional test

cases involving polygonal obstacles and free space. We finish the chapter with a discussion of

5

the extensions made to Dynamics Explorer allowing us to visualize the dynamical behavior of

the two approximation algorithms.

In Chapter 4, we describe the results of our experiments, including measuring their

absolute and relative performance. We also discuss factors affecting the convergence rates for

each algorithm and conclude the chapter by describing the import of the visualizations produced.

 In Chapter 5, we discuss our conclusions and provide some ideas for further research and

work in this area.

6

2. Background and Related Work

2.1 Review of Existing Literature

 Very little literature exists regarding the intersection of ethical concerns, such as

discrimination, and robots. However, the paper by Wirtz, et al [1] does touch on many ethical

concerns from a macro level and points out that there are many valid concerns that leaders and

researchers should be keeping in mind as the frontier of advancement begins to include more

service robots in front-line roles interacting with humans.

 There is a growing library of research in the field of service robots, and much of it is

relatively recent. Park, Yu, and Cho [4] studied the increased effectiveness of service robots

offering customized service to customers rather than a generic one. Kobayashi, et al [5] examines

the development of a service robot designed to serve tea to elderly patients, and feelings of

dissatisfaction among patients due to the behavior of the robot in failing to provide feedback to

those waiting for service while it provides service to another individual. Stock and Merkle [6]

perform a qualitative study of robot – human interactions designed to examine human user’s

acceptance of robots offering services and how the expectations on robotic servers differs from

human servers. Samarakoon, et al [7] examine some micro-level parameters used to determine

how a service robot should approach a potential human user, including examining the human’s

behavior to determine the appropriate proxemics given the context of their interaction.

 The geometric median is an old problem which has been studied extensively, and there

exists a robust library of resources describing methods used to analyze the problem and

approximate the solution. In the context of computer science, the first real breakthrough came

with the introduction of an iterative algorithm formulated by E. Weiszfeld in 1937[2]. This

7

algorithm went largely unnoticed for a number of years but was eventually rediscovered and

analyzed by Kuhn in 1973[3]. Belas and Yu [8] in turn examined Kuhn’s work and provided an

alteration to the algorithm which removed the possibility for the algorithm to get “stuck” if an

iterate got too close to one of the members of ξ. More recently, Aftab, Hartley, and Trumpf [9]

describe a generalized version of Weiszfeld’s Algorithm which can be used to find the Lq

solution for 1 ≤ q < 2 in order to solve a wider variety of problems. The Lq solution minimizes

the sum of the qth power of errors. Weiszfeld’s being the classic example of an algorithm for

finding the L1 solution. There are also several papers discussing the use of approximations of the

GM having applications in artificial intelligence and big data: [10], [11], [12], [13], and [14].

2.2 Facility Location as an Analogue

 When reduced to a conceptual form, it became apparent that the problem is a direct

analogue to the facility location problem. That is, consider a plane which contains a set of target

points. That set of points represents locations that need to be visited, serviced from some single

focal location. We are searching for the point in the plane that minimizes the sum of the

distances from the focal location to the set of target points. That minimum point is the GM.

2.3 Overview of the Geometric Median

 The Geometric Median is the point in some Euclidean space which minimizes the sum of

the distances to a set of target points. When presented as a problem involving three non-colinear

points in a plane, it is known as Fermat’s problem, and has a solution which produces an exact

answer, known as the Fermat point.

8

For the case of 4 co-planar points, there are two cases to consider:

1. One of the points is inside a triangle formed by the other three points. In this case,

that interior point is the Geometric Median.

2. Otherwise, the four points form a convex quadrilateral, and one can simply

calculate the crossing point of the diagonals to find the Geometric Median.

The solution to case 2 was first provided by Giovani Fagnano, a theologian and

mathematician, in the mid 1700’s. Fagnano did not consider case 1, however the solution was

provided later by Johann Radon in 1921 in a paper titled "Mengen konvexer Körper, die einen

gemeinsamen Punkt enthalten", in which he developed the Radon theorem on convex sets [15].

For 5 or more, non-colinear points, there is no known exact formula to calculate the

Geometric Median. In fact, Bajaj proved in 1986 that the GM problem in non-solvable [16].

Rather, approximation techniques must be used to determine a point within some ε that satisfies

the needs of the person seeking the solution.

Kuhn [2] showed that Weiszfeld’s Algorithm converges globally, and under some

conditions, in linear time. Cohen, et al [14] discuss a variety of GM approximation techniques

representing the fastest algorithms, in terms of asymptotic time, with performance envelopes

guaranteed to be at worst polynomial in time. They also present new algorithms which obtain

nearly linear time performance using very advanced interior point methods.

9

3. Methods Used

3.1 Overview of algorithms developed

 Several algorithms were developed and then implemented in the Java programming

language. The implementations were performed by the same author, ensuring that the level of

sophistication employed played no factor in the results. The first algorithm is used as a control,

and is a modified version of Weiszfeld’s algorithm, with additional logic to ensure that if an

iterate gets too close to a target point, the algorithm does not become “stuck”. The second

algorithm is an experimental heuristic algorithm based on a hill climbing methodology. The third

algorithm utilizes the heuristic algorithm, however, rather than finding an approximation for the

geometric median, it attempts to minimize the difference between the average distance from a

given test point to two sets of target points representing people belonging to different

categorizations of a discrimination category (such as male or female.)

3.2 Weiszfeld’s algorithm – the control

 Weiszfeld’s algorithm is a commonly used approach to approximating the GM, and so it

is used as a control. Originally described by Endre Weiszfeld in the Tohoku Mathematical

Journal in 1937, this algorithm went widely unnoticed for many years before being rediscovered

and subsequently analyzed by Harold Kuhn in a paper published in the journal Mathematical

Programming in 1973.

 The algorithm is a type of iteratively re-weighted least squares in which an arbitrary

initial starting point is chosen, and over successive iterations improved approximations are

10

generated based on the results of each previous iterate. One may iterate the algorithm until it

reaches a fixed point given some ε.

The following formula describes an arbitrary iterate in this scheme:

• yi is the current iterate, or “best guess” approximation

• yi+1 is the next iterate for the “best guess” approximation

• xj is one of the ‘m’ sample points in ξ

As Kuhn noted, the algorithm can fail to converge when an iterate gets too close to a

point contained in the set of target points being compared against. In this situation, the algorithm

gets “stuck” and treats the point as a fixed point, even though it is not the global minimum. To

correct for this, our implementation includes additional logic to detect the situation and find a

suitable alternate iterate. This method was described by Belas and Yu (1982) [8].

Pseudo-Code for Weiszfeld’s Algorithm

ε ← <some configured value, very small, positive>

ξ ← target point set

diff ← ∞+

P ← starting point

sum_w ← 0

Qk ← new point, (0, 0)

While diff > ε

for each point in ξ

11

Q ← ‘this’ point in ξ

 if P == Q, execute subroutine to break out of errant minimum

 else, continue

 d ← dist(Q, P) <get Euclidean distance>

 w ← 1/d <calculate this weight>

 sum_w ← sum_w + w <accumulate sum_q>

 Qk ← Qk + (Q * w) <vector addition, multiplication of Q’s values>

Qk ← Qk / sum_w

diff ← dist(Qk, P)

P ← Qk

end While

3.3 Heuristic algorithm – the experiment

 This algorithm is a type of hill climbing algorithm which iterates until it reaches a fixed

point given some ε. From an initial starting point as the current iterate, search in a circle using

polar coordinates to locate a candidate point at STEP_SIZE distance with a lower F() value than

the current iterate. Move in the direction of the vector described by the line segment connecting

the current iterate and the candidate in STEP_SIZE increments, testing the candidate point at

each step, and continuing in that direction as long as the F() value of new candidates is smaller

than the previous candidate. Once we reach a candidate point which no longer has a lower F()

value, we reduce STEP_SIZE and do another circular search.

In this fashion, the algorithm “flows downhill” until it reaches a minimum, given some

configured ε.

12

Pseudo-Code for Heuristic Algorithm

Centroid ← calculate centroid using known formula

ClosestPoint ← Centroid <initial starting point>

ClosestPointF ← F(ClosestPoint)

CheckedPoints ← add ClosestPoint to hashset

STEP_DELTA ← CONFIGURED BY USER <value between 0 and 1>

STEP_SIZE ← CONFIGURED BY USER

OuterLoop:

While STEP_SIZE > ε

 iteration++

 NewClosestPoint ← TRUE

 While NewClosestPoint == TRUE

 NewClosestPoint ← FALSE

 Neighbor ← GetNextPoint()

 NeighborF ← F(Neighbor)

 If NeighborF < ClosestPointF

 NewClosestPoint ← TRUE

 diff = dist(ClosestPoint, Neighbor)

 ClosestPoint ← Neighbor

 ClosestPointF ← NeighborF

CheckedPoints ← add ClosestPoint to hashset

 movecount++

 if diff < ε

 break OuterLoop

 end While

 STEPSIZE ← STEP_SIZE * STEP_DELTA

end While

13

3.4 Heuristic Algorithm Extension – Polygonal Obstacles

 The algorithm from 3.3 is extended to account for the introduction of an arbitrary number

of polygonal obstacles in the plane. Once the algorithm has completed the approximation of the

GM, a call is made to an ancillary function, FindTargetPoints1(), which returns a set of points

near the GM but residing in free, unobstructed space. The function first checks if the

approximated GM lies within an obstacle, and if it does not, it simply returns the GM. If it does

lie inside an obstacle, the function begins an iterative loop where it identifies points in a circle at

STEP distance from the GM and checks if they lie inside an obstacle. It increases STEP with

each iteration, and ultimately builds a set of points which are not inside obstacles. The number of

points to search for is a configurable parameter.

Pseudo-Code for FindTargetPoints1()

testpoint ← approximated geometric median

output ← create new, empty ArrayList

MaxDist ← maximum distance within plane

STEP ← MaxDist * 0.01

STEP_SIZE ← STEP

NumTargetPoints ← user configurable parameter, how many points we want to find

NumSearchPoints ← user configurable parameter, how many points on search circle

NumFoundPoints ← 0

num_occlusions ← FindOcclusions()

if num_occlusions > 0:

 while STEP < MaxDist

build set of points in a circle STEP distance from testpoint

for each point is search set:

num_occlusions ← FindOcclusions()

14

if num_occlusions == 0

 output ← this point

 NumFoundPoints++

 If NumFoundPoints >= NumTargetPoints, break while loop

 end while

 STEP += STEP_SIZE

else:

 output ← testpoint

return output

The function which determines if a given point is inside an obstacle is named

CheckIfOccluded().

Pseudo-Code for CheckIfOccluded()

shape_list ← populate an ArrayList with all the polygonal obstacles

testpoint ← approximated geometric median

for each shape in shape_list:

 if isInShape()

 return true

return false

15

Pseudo-Code for isInShape()

Each shape is a collection of vertices representing the convex hull or a polygon. The vertices are

stored in counterclockwise order starting from some arbitrary vertex.

This function traverses this vertex list and checks whether a given input point is

counterclockwise to the convex hull of the shape.

If it is, then it is inside an obstacle, so return true

Else return false

3.5 Heuristic Algorithm Extension – Polygonal Free Space

 The algorithm from 3.3 is extended to account for the introduction of an arbitrary number

of polygons in the plane which represent free space traversable by people or robot. Once the

algorithm has completed the approximation of the GM, a call is made to an ancillary function,

FindTargetPoints2(), which returns a set of points representing candidates from each free space

polygon. This is accomplished by performing a line search from the center of each shape towards

the GM and stopping when we find the last point on the search line inside the shape.

Pseudo-Code for FindTargetPoints2 ()

Shapes ← populate the list of shapes

output ← create new hashset

testpoint ← approximated geometric median

For each shape in Shapes:

 if isInShape()

 output ← testpoint

16

 else:

 perform line search from center of this shape towards testpoint

 add last point that was inside this shape to output

Return output

3.6 Alternative Measurement Function Utilizing the Heuristic Algorithm

 This algorithm utilizes the framework of the heuristic algorithm, however, it implements

a modified version of the F() function, named F2(). The F2() function attempts to minimize the

difference between two values. First, the set of target points is divided into two disjoint sets, each

set of points being described by one of two descriptors from a discrimination category, for

example, male or female. Then, the average Euclidean distance is measured for each of these

subsets, against an arbitrary point in the plane. The absolute difference between these two values

is then calculated and used as the heuristic for minimization.

3.7 Dynamics Explorer Extensions – Behavior Visualization

 Dynamics Explorer is an open source project originally designed as a tool to assist

researchers in the field of complex dynamics in visualizing their work. For this thesis,

modifications were made to the core functionality of the platform to allow us to visualize the

behavior of both Weiszfeld’s algorithm as well as the new heuristic algorithm that was

developed. The program now generates images in two new classifications:

1. The convergence rate of the GM approximation algorithm for each pixel in the plane.

2. The average distance to all points in ξ for each pixel in the plane.

17

Additionally, the program will execute either of the GM approximation algorithms and

display the results in real-time for any pixel clicked in the image that was generated. It will thus

trace the path from the point clicked to the approximated GM, displaying the path as a sequence

of connected lines representing each step in the algorithm’s process.

18

4. Results

4.1 Underlying Parameters of the Experiments

There were two general datasets used during the execution of the experiments:

1. A set of pre-defined target point sets

2. Randomly generated target point sets

The pre-defined sets consisted of 3 and 4 points chosen in such a way as to allow the use

of closed-form solutions that produce exact results, along with a set of 5 points chosen as a test

bed for the heuristic approximation algorithm to check functionality against a known solution

produced by Weiszfeld’s algorithm.

The randomly generated sets can produce for analysis target point sets of any size, from 2

points to ∞+, limited only by the host computer’s memory and cpu capabilities. These target

points are generated using the java.util.Random class, and specifically the Random.nextDouble()

function after the parent Random object has been initialized. All the points are thus given

random x and y coordinate values within a user-defined 2d plane. For simplicity’s sake, the plane

is assumed to have minimum x and y coordinates of 0.0, and the program user defines maximum

values for the x and y axes. All point computations are performed using the Java double

primitive, which conforms to the 64-bit IEEE 754 floating point number standard.

Because the points are all randomly generated, as the number of points increases, meta

structures or groupings of points become less likely and the points ultimately become evenly

dispersed throughout the plane. The data that was gathered over millions of executions of the

program shows that given these constraints, as the number of points int the target points set

approaches ∞+, the approximated GM converges to the centroid. This is demonstrated by the fact

19

that as the size of ξ grows, the distance between the centroid and approximated GM tends to

zero. The relationship between the size of ξ and the distance between the centroid and

approximated GM is shown in Figure 8 and can be expressed as a power function in the form y

= a * x^b, where a = 0.148217, and b = -0.50193. The predictive power of this model was proven

by using it to estimate the y value when x==25000. The predicted value was 0.091924%, while

the experimentally produced result using 10000 randomly generated test sets was 0.091234%, a

difference of only 0.00069, or 0.75%.

4.2 Algorithmic Performance – Relative and Absolute Measurements

In terms of relative performance, Weiszfeld’s algorithm typically performed better than

the heuristic algorithm. The heuristic algorithm performed approximately 2.5 times slower than

Weiszfeld’s across a test run consisting of the analysis of 10 million randomly generated sets of

5 to 500 target points.

In terms of the absolute number of executions of the F() function required to complete

the approximation, Weiszfeld’s algorithm typically completed with a much lower number of

executions, however, edge cases were observed where Weiszfeld’s algorithm took a very long

time to converge, while the performance of the heuristic algorithm was extremely predictable

across all tests.

For a broad sample of performance metrics for both algorithms across a variety of

randomly generated scenarios, see Table 1. In general, as the size of ξ increases, both algorithms

tended to converge more quickly, but Weiszfeld’s Algorithm continued to improve faster than

20

the heuristic algorithm. It is also clear that the approximated GM is converging to the centroid, as

the distance between them shrinks rapidly.

4.3 Algorithm Convergence Rates – Dependent Factors

 The heuristic algorithm converges at a rate primarily dependent on the distance of a given

test point to the location of the approximated GM. This rate is influenced by several user-

configurable parameters: the number of points to check on the circle during the search phase, the

starting step size, the step size multiplier used during successive iterations to shrink the step size,

and the ε chosen as the stopping distance. Given known values for the size of the plane and the

number of points in the target points set, a savvy user could tune these parameters to produce

more optimal results.

 A typical example of the visualization of the convergence rate for the heuristic algorithm

across an entire sample plane is shown in Figure 1. In this example, red represents the fastest

convergence rates, while green represents slower convergence rates. Figure 2 is the same

underlying data set of target points, but the image is zoomed out to give a larger perspective on

how the convergence rate of the heuristic algorithm is heavily dependent on the distance of any

given point to the approximated GM: the further away it is, the slower it is to converge.

 Weiszfeld’s algorithm, on the other hand, displays complicated behavioral dynamics at a

meta level of analysis. Very interesting and complex patterns were observed which show quite

clearly that the convergence rate is independent of the distance of a sample point from the

approximated GM. Rather, there can be patterns of very rapid convergence resembling “rivers”,

21

“whorls”, or even “islands” surrounded by a “sea” of much more slowly converging points.

Some examples of these exotic behaviors follow.

 Figure 3 shows a convergence rate map the Weiszfeld’s Algorithm which contained a

ring-like structure representing very fast convergence rates, colored in red, embedded in a plane

consisting of points which converged much more slowly, colored in yellow and orange.

 Figure 4 shows a convergence rate map the Weiszfeld’s Algorithm which looks fairly

normal on the micro scale, but when zoomed out into Figure 5, we can see an anomaly to the

southwest of the approximated GM where the convergence rates are exceptionally high,

represented by the small red island inside the orange ‘teardrop’. In this particular example, that

small island converged in literally just a few iterations, while the orange and yellow required

dozens of iterations to converge to the approximated solution.

4.4 Visualization of the F() function

 As shown in Figure 6, Dynamics Explorer can produce images allowing us to visualize

the behavior of the F() function when applied to an entire 2d plane. In this example, the F()

function is called for each pixel in the plane, and the result is stored and used to color that pixel

based on the value that was calculated. The values are mapped to the range [0, ∞+), which are

represented by the various color bands one can see in the image. Visual inspection of the image

appears to show that the F() function exhibits behavior consistent with that of a convex function,

as we see a unique global minimum, and the function values appear to change in a continuous

manner.

22

4.5 Visualization of the Polygonal Obstacles Problem

 The polygonal obstacles problem describes a situation in which we have a configuration

space wherein our service robot must operate, however there exist polygonal obstacles that block

portions of that space and render those portions unable to be used.

 The heuristic algorithm was extended such that after computing the approximation of the

GM, it then performed an analysis of the space to find a new location for the service robot, if

necessary. This determination was made based on whether the GM occupied a point that was

located inside one of the polygonal obstacles that were defined.

If the GM was not inside an obstacle, then the algorithm terminated, having made the

determination that the GM was in unobstructed, free space and was thus available to service

customers.

However, if the GM was found to be inside an obstacle, a search was undertaken to find

suitable locations nearby as an alternative to the location that was inside an obstacle. This search

is performed by radiating outward from the GM as increasing distances until some number of

points are found which are not inside any obstacles.

The results of this computation can be seen in Figure 9. In this example, the black space

is open space that is traversable by people or robots. The grey polygons represent obstacles

blocking the open space in some way. The colored dots represent people scattered throughout the

space. There are a number of white markers representing critical parts of the computation: the

“+” represents the centroid, the hollow “o”s represent the path from the centroid to the original

GM, the “X” is the new, alternative GM found to be in the free space, and the lines represent

paths to other nearly points in the free space that could also be considered as valid alternates.

23

4.6 Visualization of the Polygonal Free Space Problem

 The polygonal free space problem describes a situation in which we have a configuration

space wherein our service robot must operate; however, the free space is broken up into some

number of polygonal areas scattered throughout the space. In this scenario, the robot is restricted

to occupying only these polygonal free space areas.

 The heuristic algorithm was extended such that after computing the approximation of the

GM, it then performed an analysis of the space to find locations within each free space polygon

to serve as potential locations for the service robot to be placed. To do so, a line search was

performed from the center point of each polygon towards the GM, and the program stored the

last point that resided inside each polygon.

 The results of this computation can be seen in Figure 10. In this example, the black space

represents space that is not traversable by the robot for some reason. The grey polygons represent

free space that is traversable by the robot. The colored dots represent people scattered throughout

the space. The white lines represent paths radiating from the GM to alternative locations for the

service robot that are in each of the free space polygons. Each polygon has a single point within

its mass designated as an alternative location.

4.7 Visualization of the Alternative Measurement Function

As shown in Figure 7, Dynamics Explorer can produce images allowing us to visualize the

behavior of the F2() function when applied to an entire 2d plane. In this example, the F2()

24

function is called for each pixel in the plane, and the result is stored and used to color that pixel

based on the value that was calculated. The values are mapped to the range [0, ∞+), which are

represented by the various color bands one can see in the image. Visual inspection of the image

appears to show that the F2() function produces results that have no global minimum, rendering

it ultimately useless for this research.

25

5. Conclusion and Future Work

5.1 Heuristic Algorithm

 The performance of the heuristic algorithm is highly dependent on a small number of user

defined variables. For a given configuration of plane and target points, there may exist optimal

sets of parameters. Further research may provide insight into how to best tune those parameters

for optimal results.

5.2 Weiszfeld’s Algorithm

 As shown in the figures included, Weiszfeld’s Algorithm displays some complex

dynamical behavior. Perhaps that behavior could be analyzed to produce a heuristic or other

mechanism by which the algorithm could be seeded with optimal starting locations in order to

avoid starting from a location which requires a large number of iterations to converge.

 In the figures provided, there is evidence to support the claim that there exist regions of

space in a given plane which will converge extremely rapidly for this algorithm. However, at this

time, the determining factors which may allow one to predict those regions are unknown. Further

research is required to determine if those factors exist, and if they are deterministic in some way.

5.3 Geometric Median

 Given the fact that there exists no explicit formula to calculate the GM, rather, some

approximation technique must be used, this research calls into question whether it should be

abandoned in favor of simply calculating the centroid given the case that the target points are

26

somewhat evenly distributed in the plane and the size of ξ is above some threshold. As shown in

Table 1, the centroid becomes a very good approximator for the GM rather quickly, as the

relative distance between the centroid and GM falls below a proportional difference of 1% once

ξ reaches a size of about 250 points. The centroid can be calculated using a single pass through ξ

using very basic mathematical operations, whereas approximating the GM requires multiple,

generally many, passes through ξ, and requires the use of computationally expensive

mathematical operations and advanced techniques. That is, calculating the centroid requires no

iterative methods, and an exact formula exists to do so.

5.4 Polygonal Obstacle and Free Space Extensions

 For this paper, the algorithmic extensions used to identify alternatives to the GM in the

cases where polygonal obstacles are introduced and where polygonal free spaces are introduced

were only implemented for the heuristic hill climbing algorithm. However, they could be

generalized for use by other algorithms, such as Weiszfeld’s. An example scenario would be to

use any desired algorithm for approximating the GM, and then calling these extensions as helper

functions once the first algorithm completes its calculations.

5.5 Degenerate Cases

 While gathering data during these experiments, it was noted that some random scenarios

that were generated caused both the heuristic hill climbing algorithm and Weiszfeld’s to

converge very slowly. The degenerate cases drop off in frequency with increased ξ size. Further

27

investigation may uncover the factors leading to these degenerate cases and provide insight

beyond the scope of this paper.

5.6 Applications to Machine Learning

 The Geometric Median is used as a subroutine in some machine learning algorithms,

including K-Medians clustering. Problems utilizing these algorithms typically work on large

datasets, and the results of this research indicate that efficiencies could be found by utilizing the

centroid of clusters rather than the Geometric Median, and the resulting additional entropy would

be minimal.

5.7 Ethical Considerations

 Ultimately, the point of this research is to establish a quantitative methodology for

placement of service robots that can be shown to be non-discriminatory using some form of

rigorous analysis, that is, to be ‘fair’ in some way. Certainly, the method described in this paper,

that of using the Geometric Median as an idealized location for a service robot, is not the only

method one could use that is measurably ‘fair’. Other methods could be evaluated, and their

results gauged against these.

One may also consider the idea that a measurably ‘fair’ methodology may not be

preferred by actual customers of such a robot. Social experiments to evaluate people’s perception

could be performed to provide insight into how people perceive fairness and discrimination in

their interactions with service robots.

28

The construction of algorithms specifically to address issues such as the ethics of

discrimination introduce the possibility that these algorithms may be used for purposes

contradictory to their stated intent. Indeed, it would be trivial to use such an algorithm to

purposely place a service robot in such a way as to discriminate in favor of a particular person or

group. Further research could be performed to provide tools for individuals to analyze the

behavior of service robots they interact with in order to determine if they are programmed to act

in ways which may be discriminatory or violate other ethical expectations.

29

Figures

Figure 1: Convergence rate map for Heuristic Algorithm, 5 target points.

Red coloration shows faster convergence, while green coloration is slower.

The octagonal pattern is bias introduced by the algorithm being configured to examine 8 points

in a circle whenever the search subroutine is called.

x = target points + = centroid ♦ = GM

30

Figure 2: Convergence rate map for Heuristic Algorithm, 5 target points, zoomed out to show

increase in convergence rate due to distance from GM.

Red coloration shows faster convergence, while green coloration is slower.

x = target points + = centroid ♦ = GM

31

Figure 3: Convergence rate map for Weiszfeld’s Algorithm, 5 target points.

The dynamics show a ring-like structure of very fast convergence, shown in red, while most of

the plane converges much more slowly, as indicated by yellow and orange hues.

x = target points + = centroid ♦ = GM

32

Figure 4: Convergence rate map for Weiszfeld’s Algorithm, 50 target points.

x = target points + = centroid ♦ = GM

33

Figure 5: Convergence rate map for Weiszfeld’s Algorithm, 50 target points, zoomed out.

At this level of zoom, we can see an anomaly to the southwest of the approximated GM where

convergence rates are exceptionally high, represented by the small island of red inside an orange

‘teardrop’.

x = target points + = centroid ♦ = GM

34

Figure 6: Each pixel is colored based on the value of the F() function for that particular point.

Yellow coloration shows low F() values, increasing in a linear fashion out to the red band

representing the highest F() values.

x = target points + = centroid ♦ = GM

35

Figure 6: Each pixel is colored based on the value of the F2() function for that particular point.

Yellow coloration shows low F2() values, increasing in a linear fashion out to the red band

representing the highest F2() values.

Examination of points within the yellow band shows multiple identical values, demonstrating

that this function did not have a unique global minimum within the visible portion of the plane.

x = target points + = centroid ♦ = GM

36

Figure 8: The relationship between the size of the target point set on the x-axis, and the distance

between the calculated centroid and the approximated GM, represented on the y-axis by the ratio

of the distance between them as a proportion of that distance to the hypotenuse of the plane the

tests were generated within.

For a given plane, as the size of the target point set approaches ∞+, the approximated GM

converges to the location of the centroid.

The shape of the curve is that of a power function, such that the initial convergence is very fast,

and then the rate slowly tapers off.

37

Figure 9: Visualization of the solution to the “polygonal obstacles” problem.

38

Figure 10: Visualization of the “polygonal free space” problem.

39

Tables

Points H Checked W Checked H Dist W Dist H F() Diff W F() Diff

5 138.072931 57.605846 193.071743 192.750065 0.032116 0.032517

10 129.175582 45.895784 135.252494 136.225233 0.013958 0.0141

25 120.837968 34.631083 84.740626 84.111517 0.005389 0.005211

50 115.472334 29.162086 59.068263 57.078377 0.002574 0.002406

100 111.280942 26.367312 41.447509 41.246903 0.001266 0.001256

250 107.227232 23.692076 26.088124 26.359305 0.000499 0.000508

500 104.063903 22.318934 18.621822 18.570915 0.000254 0.000252

750 102.106024 21.613461 15.149446 15.021718 0.000167 0.000165

1000 100.728498 21.262479 13.018245 13.045711 0.000124 0.000125

2500 96.271137 20.208025 8.325911 8.241502 0.000051 0.00005

Table 1: Subset of data captured during computation of approximation algorithms. 10,000

randomly generated scenarios for each ξ.

Fields:

Points: the number of points in given ξ

H Checked: average number of points checked using the F() function for the heuristic algorithm

to complete its approximation of the GM

W Checked: average number of points checked using the F() function for Weiszfeld’s Algorithm

to complete its approximation of the GM

H dist: average absolute distance between the centroid and GM using heuristic algorithm

W dist: average absolute distance between the centroid and GM using Weiszfeld’s algorithm

H F() diff: average ratio of the difference between the F() value for the calculated centroid, and

the F() value for the GM using heuristic algorithm

W F() diff: average ratio of the difference between the F() value for the calculated centroid, and

the F() value for the GM using Weiszfeld’s algorithm

40

References

[1] J Wirtz, P Patterson, W. Kunz, T. Gruber, V. Lu, S. Paluch, and A. Martins, “Brave new

world: service robots in the frontline,” Journal of Service Management, Vol. 29, No. 5,

pp 907-931, 2018.

[2] H.W. Kuhn, “A note on Fermat's problem,” Mathematical Programming 4, pp 98–107,

1973.

[3] E. Weiszfeld, “Sur le point par lequel la somme des distances den points donnés est

minimum,” Tohoku Mathematics Journal 43, pp 355–386, 1937.

[4] S. Park, W. Yu, and J. Cho, “A user reactivity research for improving performance of

service robot,”. URAI 2011 - 2011 8th International Conference on Ubiquitous Robots

and Ambient Intelligence, 2011.

[5] Y. Kobayashi, M. Gyoda, T. Tabata, Y. Kuno, K. Yamazaki, M. Shibuya, and Y. Seki,

“Assisted-Care Robot Dealing with Multiple Requests in Multi-party Settings”, 6th

ACM/IEEE International Conference on Human-Robot Interaction (HRI), 2011.

 [6] R. Stock and M. Merkle, “A service Robot Acceptance Model: User acceptance of

humanoid robots during service encounters,” 2017 IEEE International Conference on

Pervasive Computing and Communications Workshops (PerCom Workshops), pp 339-

344, 2017.

[7] S. Samarakoon, H. Sirithunge, M. Muthugala, and A. Jayasekara, ”Proxemics and

Approach Evaluation by Service Robot Based on User Behavior in Domestic

Environment,” IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2018.

41

 [8] E. Belas and C. Yu, “A Note on the Weiszfeld-Kuhn Algorithm for the General Fermat

Problem,” Managemenr Science Research Report No. MSRR 484, Carnegie-Mellon

University, 1982.

 [9] K. Aftab, R. Hartley, J. Trumpf, “Generalized Weiszfeld Algorithms for Lq

Optimization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.

37, Issue 4, 2015.

 [10] C. Kasemtaweechok and W. Suwannik, “Training Set Reduction using Geometric

Median”, 15th International Symposium on Communications and Information

Technologies (ISCIT), 2015.

 [11] A. Kogler, P. Traxler, “Efficient and Robust Median-of-Means Algorithms for Location

and Regression”, 18th International Symposium on Symbolic and Numeric Algorithms for

Scientific Computing (SYNASC), 2016.

 [12] X. Hua, Y. Cheng, H. Wang, Y. Qin, Y. Li, “Geometric means and medians with

applications to target detection”, IET Signal Processing, Vol. 11, Issue 6, 2017.

[13] C. Kasemtaweechok and W. Suwannik. “Prototype Selection for k-Nearest Neighbors

Classification Using Geometric Median,” ICNCC '16, 2016.

[14] M. Cohen, Y. Lee, G. Miller, J. Pachocki, A. Sidford, “Geometric Median in Nearly

Linear Time”, STOC ’16 proceedings of the forty-eight annual ACM symposium on

Theory of Computing, pp 9-21, 2016.

 [15] J. Radon. “Mengen konvexer Körper, die einen gemeinsamen Punkt

enthalten,” Mathematische Annalen, Vol. 83, pp 113-115, 1921.

42

[16] C. Bajaj. "Proving geometric algorithms nonsolvability: An application of factoring

polynomials". Journal of Symbolic Computation. Vol. 2, pp 99–102, 1986.

[17] M. Protter, C. Morrey Jr, College Calculus with Analytic Geometry (2nd ed.), 1970.

43

Appendix A

Pseudo-Code for Weiszfeld’s Algorithm

Complexity: Time is super-linear in the number of elements in ξ. Space is linear in the number of

elements in ξ.

Input: a seed point to serve as the first iterate

Output: a data structure containing the approximated GM point, the count of how many iterates

were produced, and a LinkedList containing all the iterates

ε ← <some configured value, very small and positive>

ξ ← target point set

diff ← ∞+

P ← starting point <usually the centroid, but if null, generate a random starting point>

sum_w ← 0

Qk ← new point, (0,0)

While diff > ε

for each point in ξ:

Q ← ‘this’ point in ξ

 if P == Q, execute subroutine to break out of errant minimum (Appendix J)

 else, continue

 d ← dist(Q, P) <get Euclidean distance>

 w ← 1/d <calculate this weight>

 sum_w ← sum_w + w <accumulate sum_q>

 Qk ← Qk + (Q * w) <vector addition, multiplication of Q’s values>

Qk ← Qk / sum_w

diff ← dist(Qk, P)

P ← Qk

end While

44

Appendix B

Pseudo-Code for Heuristic Algorithm

Complexity: Time is linear in the number of elements in ξ and dominated by a constant factor

which is influenced by the relationship between multiple parameters, including the initial

STEP_SIZE, the STEP_DELTA, and the number of points on the search circle. Space is linear in

the number of elements in ξ.

Input: a seed point to start from, generally the centroid

Output: a data structure containing the approximated GM point, the count of how many iterations

were processed, the count of how many points were examined using the F() function, the count

of how many iterates were produced, and a LinkedList containing all the iterates

Centroid ← calculate centroid using known formula

ClosestPoint ← Centroid <initial starting point>

ClosestPointF ← F(ClosestPoint)

CheckedPoints ← add ClosestPoint to hashset

STEP_DELTA ← CONFIGURED BY USER <value between 0 and 1>

STEP_SIZE ← CONFIGURED BY USER

OuterLoop:

While STEP_SIZE > ε

 iteration++

 NewClosestPoint ← TRUE

 While NewClosestPoint == TRUE

 NewClosestPoint ← FALSE

 Neighbor ← GetNextPoint()

 NeighborF ← F(Neighbor)

 If NeighborF < ClosestPointF

 NewClosestPoint ← TRUE

 diff = dist(ClosestPoint, Neighbor)

 ClosestPoint ← Neighbor

45

 ClosestPointF ← NeighborF

CheckedPoints ← add ClosestPoint to hashset

 movecount++

 if diff < ε

 break OuterLoop

 end While

 STEPSIZE ← STEP_SIZE * STEP_DELTA

end While

46

Appendix C

Pseudo-Code for GetNextPoint()

Complexity: Time is linear in the number of elements in ξ. Space is linear in the number of

elements in ξ.

Input: the current point, a HashSet of points that have already been checked, the STEP_SIZE,

and a path hint

Output: a data structure containing the next point in the iterate sequence, the F() value for that

point, the number of points checked during the search process, and angle from the current point

to the next point representing the path hint

If no existing path hint (move failed during last iteration):

 Search in a circle around current point. Using polar coordinated, divide the circle into

some pre-configured number of arcs and check points at the end of each arc. This gives us some

number of samples in a circular pattern around our current location in a plane.

 Check each of these sample points using the F() function to calculate the sum Euclidean

distance to all points in the target point set.

 If we find a point with a lower F() value than our current point:

Use binary decomposition to search near this new candidate for a better match.

 Return best match found.

 If not find a better point:

 Return null to calling function so iteration can fail and STEP_SIZE can be

reduced for next iteration

If existing path hint (last move was successful):

 Move in the same direction as last iteration to get a new candidate, and examine

clockwise and counterclockwise neighbors of this candidate

 Check F() values of these potential candidates, and return best match, if found, or null if

not found

47

Appendix D

Pseudo-Code for F()

Complexity: Time is linear in the number of elements in ξ. Space is linear in the number of

elements in ξ.

Input: the point to test and ξ (the set of all target points) to test against

Output: double value representing sum of the distance from the test point to each point in the

target point set

Given a candidate point and ξ:

 output ← 0

 For each point in ξ:

 output ← output + dist(candidate, this point)

 return output

48

Appendix E

Pseudo-Code for dist()

Complexity: Time is linear in the number of dimensional components of the points. Space is

linear in the number of dimensional components of the points.

Input: two points

Output: double value representing the Euclidean distance between the two points

Given two points, p and q, return the Euclidean distance between them, using the Pythagorean

Theorem:

49

Appendix F

Pseudo-Code for FindTargetPoints1()

Complexity: Time is linear in NumSearchPoints. Space is linear in NumTargetPoints.

Input: seed point to start searching from, and the number of nearby points to find

Output: ArrayList of suitable points

testpoint ← approximated geometric median

output ← create new, empty ArrayList

MaxDist ← maximum distance within plane

STEP ← MaxDist * 0.01

STEP_SIZE ← STEP

NumTargetPoints ← user configurable parameter, how many points we want to find

NumSearchPoints ← user configurable parameter, how many points on search circle

NumFoundPoints ← 0

num_occlusions ← FindOcclusions()

if num_occlusions > 0:

 while STEP < MaxDist

build set of points in a circle STEP distance from testpoint

for each point is search set:

num_occlusions ← FindOcclusions()

if num_occlusions == 0

 output ← this point

 NumFoundPoints++

 If NumFoundPoints >= NumTargetPoints, break while loop

 end while

 STEP += STEP_SIZE

else:

50

 output ← testpoint

return output

51

Appendix G

Pseudo-Code for CheckIfOccluded()

Complexity: Time is linear in the number of elements in the shape list. Space is linear in the

number of elements in the shape list.

Input: set of polygonal obstacles, and a point to test

Output: Boolean value representing whether the test point is inside an obstacle or not

shape_list ← populate an ArrayList with all the polygonal obstacles

testpoint ← approximated geometric median

for each shape in shape_list:

 if isInShape()

 return true

return false

52

Appendix H

Pseudo-Code for isInShape()

Complexity: Time is linear in the number of vertices in the shape. Space is linear in the number

of vertices in the shape.

Input: a polygonal shape as a set of vertices, and a point to test

Output: Boolean value representing whether the test point is inside the given shape

Each shape is a collection of vertices representing the convex hull of a polygon. The vertices are

stored in counterclockwise order starting from some arbitrary vertex.

This function traverses this vertex list and checks whether a given input point is

counterclockwise to the convex hull of the shape.

If it is, then it is inside an obstacle, so return true

Else return false

53

Appendix I

Pseudo-Code for FindTargetPoints2 ()

Complexity: Time is linear in the number of elements in the shape list. Space is linear in the

number of elements in the shape list.

Input: point representing the approximated GM

Output: HashSet of suitable points

Shapes ← populate the list of shapes

output ← create new hashset

testpoint ← approximated geometric median

For each shape in Shapes:

 if isInShape()

 output ← testpoint

 else:

 perform line search from center of this shape towards testpoint

 add last point that was inside this shape to output

Return output

54

Appendix J

Pseudo-Code for Weiszfeld’s Algorithm: Belas and Yu Modification

Complexity: Time is linear in the number of elements in ξ. Space is linear in the number of

elements in ξ.

Input: ak, member of ξ

Output: Point representing next iterate

Rk = Σ {over i, from 1 to m, i ≠ k} ((wi) / (dist(ξi , ak)) * (ξi - ak))

Normk = norm2(Rk)

wk = 1/ ε

if (wk ≥ Normk)

 return ak

else

 <use bisection method to find next iterate>

 lambda = 1.0

 descent = ak + lambda * Rk

 while lambda ≥ ε and F(descent) ≥ F(ak)

 lambda = lambda / 2

 descent = ak + lambda * Rk

 end while

 if F(descent) < F(ak)

 return descent

	Non-Discriminatory Service Robot Placement Using Geometric Median
	Recommended Citation

	tmp.1595470323.pdf.uyICd

