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ABSTRACT 

NON-DISCRIMINATORY SERVICE ROBOT PLACEMENT USING 

GEOMETRIC MEDIAN 

by 

Brian Boyd 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor Amol Mali 

 

Service robots are becoming increasingly common, and businesses are adopting their use 

at an increasingly rapid rate in order to reduce costs and provide efficiencies in performing 

mundane tasks. However, very little research has been performed in order to understand and 

address ethical concerns regarding their deployment and use. 

One such concern is how one can ensure placement of a service robot such that is does 

not discriminate either in favor of or against individuals. This research explores techniques that 

can be used to provide a quantitative methodology to ensure fairness in terms of service robot 

placement such that discrimination does not occur. 

These techniques include the development and further enhancement of a heuristic hill 

climbing algorithm used to approximate the Geometric Median (GM). This algorithm is then 

benchmarked against Weiszfeld’s Algorithm, a well-known algorithm commonly used to solve 

the GM problem. 

These two algorithms are then visualized using Dynamics Explorer, an open source 

software tool, to create 2d maps of the dynamics of their convergence rates along with maps of 
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F(), the “sum of the Euclidean distances” function underlying the calculations used by both GM 

approximation algorithms. 

The heuristic hill climbing algorithm is also extended to handle obstacles being 

introduced into the service robot’s workspace. 

It is further shown that as the size of ξ approaches ∞+, the Geometric Median converges 

to the centroid, given certain assumptions, such as the target points being evenly distributed in 

the plane.  
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1. Introduction 

1.1 Statement of the Problem 

 Robots are becoming increasingly common in our daily lives, largely due to rapidly 

improving technologies like machine learning and artificial intelligence, big data and business 

informatics, and the adoption of cloud platforms. These technologies, coupled with business 

objectives such as the desire for increased productivity and reduction in payroll costs, are driving 

the adoption of robots in novel new ways. 

 Some of these robots are on the front line, servicing humans directly, and they are known 

collectively as service robots. Service robots come in many shapes and forms, some of which 

you may be familiar with, such as robotic vacuum cleaners, or robotic merchandise ordering 

kiosks at some retail or stores or restaurants. 

 From a business perspective, the motivating force behind the deployment of service 

robots has been cost reduction, since it is cheaper to buy a robot than to utilize a human for many 

of these mundane, rote activities. However, it appears that very little consideration is being given 

to the overall impact these robots have on society, and how their very presence or absence can 

impact humans on a psychological level. 

 This paper attempts to address a single aspect of that picture: given a place that people 

use for some purpose, such as a restaurant or shopping center, is there a way that we can deploy 

a service robot to assist those people such that it is placed in a location that quantitatively 

minimizes the perception that it discriminates for or against any of those people by virtue of 

being placed closer or further away from some people rather than others? To put it another way, 

can we mathematically determine a place to put this robot that is “fair”?  
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Non-discriminatory placement describes the desire to place a service robot in a location 

such that the potential customers of the service are unlikely to feel discriminated against. 

Examination of the problem resulted in the understanding that the underlying problem is closely 

related to the problem of facility location in many ways. Thus, the GM was chosen as it 

minimizes the amount of travel required for a set of people to access the services offered by the 

robot, providing an objectively fair way to reduce perceived discrimination. By using the GM, 

one can show that a given service robot is not intentionally placed closer or farther from any 

individuals seeking the services being offered. Techniques for ensuring non-discriminatory 

placement of service robots are developed by employing algorithms used to approximate the 

GM. To this end, a heuristic algorithm was developed which approximates the GM within a 

specified epsilon (ε) bound. This algorithm was analyzed and benchmarked against a well-known 

algorithm commonly used to approximate the GM, known as Weiszfeld’s Algorithm. Both 

algorithms use iterative methods to achieve their goals, however the heuristic algorithm 

described in this thesis is a modified hill-climbing algorithm, while Weiszfeld’s is a type of   

iteratively re-weighted least squares algorithm.  

The first case which was examined is that of an arbitrary number of people occupying 

various locations within a 2d plane representing a place people gather to get access to some 

service. Within this place there is a robot providing a service to the people present, and the goal 

is to find a location for the robot such that the people desiring the service are not likely to feel 

discriminated against.  

The second case which was examined added a constraint in the form of arbitrary 

polygonal shapes being introduced into the place which represent furniture or other obstacles 

which preclude parts of the plane from being used. In this case, the heuristic algorithm was 
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extended to find locations near the GM but located within the free space, clear of any obstacles. 

Other algorithms referenced in this paper do not account for these obstacles. 

The third case which was examined inverted the use of the polygons in the second case 

such that they now represented the free space, and all other space was unavailable for use by the 

robot. In this third case the heuristic algorithm was extended to locate points within each 

polygonal free space close to the GM as potential sites for placement of the robot.  

Lastly, modifications were made to an existing open source software project in order to 

visualize some aspects of this research, including the construction of 2d maps displaying the 

convergence rate for each algorithm on an entire plane, the construction of a 2d heat map 

representing the each point’s average distance to the set of people provided, and interactive real-

time tools to watch the algorithms perform their calculations based on where the user clicks on 

the plane.  

Results show that in general, the heuristic algorithm’s performance is lower than that of 

Weiszfeld’s, however it never fails to converge. Weiszfeld’s required modifications to ensure it 

didn’t get “stuck” when an iterate got too close to one of the target points. Analysis of the data 

output by the algorithms shows that if the target points are randomly scattered throughout the 

plane, as the number of points approaches ∞, the GM converges to the centroid. 
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1.2 Definition of Terms 

Centroid  point in a plane representing the arithmetic mean position of a set of 

points. Formulaically, the centroid = (X1 + … + Xk) / k [17], for k points X1 to Xk in Rn. 

Epsilon (ε)  double value, user configurable, describes the minimum bound at which 

an algorithm terminates because it is approaching a fixed point due to the current iterate being 

less than ε away from the last iterate in Euclidean space 

F() value  the calculation of the sum of the Euclidean distances from a given point to 

all members of ξ 

Geometric Median (GM) given a discrete set of sample points in a Euclidean space, this is 

the point minimizing the sum of the distances to those sample points 

Starting point  the initial starting point for an algorithm, may be arbitrary or user defined 

Target point set (ξ) in terms of the geometric median problem, this is the set of sample points 

being used to calculate the GM 

 

1.3 Description of the Remaining Chapters 

 In Chapter 2, we perform a review of existing literature, describe how the problem is an 

analogous to the facility location problem, and describe the Geometric Median. 

 In Chapter 3, we describe the algorithms we developed and discuss how they work. We 

then describe the extensions made to the heuristic algorithm to account for the additional test 

cases involving polygonal obstacles and free space. We finish the chapter with a discussion of 
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the extensions made to Dynamics Explorer allowing us to visualize the dynamical behavior of 

the two approximation algorithms. 

In Chapter 4, we describe the results of our experiments, including measuring their 

absolute and relative performance. We also discuss factors affecting the convergence rates for 

each algorithm and conclude the chapter by describing the import of the visualizations produced. 

 In Chapter 5, we discuss our conclusions and provide some ideas for further research and 

work in this area. 
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2. Background and Related Work 

2.1 Review of Existing Literature 

 Very little literature exists regarding the intersection of ethical concerns, such as 

discrimination, and robots. However, the paper by Wirtz, et al [1] does touch on many ethical 

concerns from a macro level and points out that there are many valid concerns that leaders and 

researchers should be keeping in mind as the frontier of advancement begins to include more 

service robots in front-line roles interacting with humans. 

 There is a growing library of research in the field of service robots, and much of it is 

relatively recent. Park, Yu, and Cho [4] studied the increased effectiveness of service robots 

offering customized service to customers rather than a generic one. Kobayashi, et al [5] examines 

the development of a service robot designed to serve tea to elderly patients, and feelings of 

dissatisfaction among patients due to the behavior of the robot in failing to provide feedback to 

those waiting for service while it provides service to another individual. Stock and Merkle [6] 

perform a qualitative study of robot – human interactions designed to examine human user’s 

acceptance of robots offering services and how the expectations on robotic servers differs from 

human servers. Samarakoon, et al [7] examine some micro-level parameters used to determine 

how a service robot should approach a potential human user, including examining the human’s 

behavior to determine the appropriate proxemics given the context of their interaction.  

 The geometric median is an old problem which has been studied extensively, and there 

exists a robust library of resources describing methods used to analyze the problem and 

approximate the solution. In the context of computer science, the first real breakthrough came 

with the introduction of an iterative algorithm formulated by E. Weiszfeld in 1937[2]. This 



7 
 

algorithm went largely unnoticed for a number of years but was eventually rediscovered and 

analyzed by Kuhn in 1973[3]. Belas and Yu [8] in turn examined Kuhn’s work and provided an 

alteration to the algorithm which removed the possibility for the algorithm to get “stuck” if an 

iterate got too close to one of the members of ξ. More recently, Aftab, Hartley, and Trumpf [9] 

describe a generalized version of Weiszfeld’s Algorithm which can be used to find the Lq 

solution for 1 ≤ q < 2 in order to solve a wider variety of problems. The Lq solution minimizes 

the sum of the qth power of errors. Weiszfeld’s being the classic example of an algorithm for 

finding the L1 solution. There are also several papers discussing the use of approximations of the 

GM having applications in artificial intelligence and big data: [10], [11], [12], [13], and [14]. 

 

2.2 Facility Location as an Analogue 

 When reduced to a conceptual form, it became apparent that the problem is a direct 

analogue to the facility location problem. That is, consider a plane which contains a set of target 

points. That set of points represents locations that need to be visited, serviced from some single 

focal location. We are searching for the point in the plane that minimizes the sum of the 

distances from the focal location to the set of target points. That minimum point is the GM. 

 

2.3 Overview of the Geometric Median 

 The Geometric Median is the point in some Euclidean space which minimizes the sum of 

the distances to a set of target points. When presented as a problem involving three non-colinear 

points in a plane, it is known as Fermat’s problem, and has a solution which produces an exact 

answer, known as the Fermat point.  
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For the case of 4 co-planar points, there are two cases to consider: 

1. One of the points is inside a triangle formed by the other three points. In this case, 

that interior point is the Geometric Median. 

2. Otherwise, the four points form a convex quadrilateral, and one can simply 

calculate the crossing point of the diagonals to find the Geometric Median. 

The solution to case 2 was first provided by Giovani Fagnano, a theologian and 

mathematician, in the mid 1700’s. Fagnano did not consider case 1, however the solution was 

provided later by Johann Radon in 1921 in a paper titled "Mengen konvexer Körper, die einen 

gemeinsamen Punkt enthalten", in which he developed the Radon theorem on convex sets [15]. 

For 5 or more, non-colinear points, there is no known exact formula to calculate the 

Geometric Median. In fact, Bajaj proved in 1986 that the GM problem in non-solvable [16]. 

Rather, approximation techniques must be used to determine a point within some ε that satisfies 

the needs of the person seeking the solution. 

Kuhn [2] showed that Weiszfeld’s Algorithm converges globally, and under some 

conditions, in linear time. Cohen, et al [14] discuss a variety of GM approximation techniques 

representing the fastest algorithms, in terms of asymptotic time, with performance envelopes 

guaranteed to be at worst polynomial in time. They also present new algorithms which obtain 

nearly linear time performance using very advanced interior point methods. 
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3. Methods Used 

3.1 Overview of algorithms developed 

 Several algorithms were developed and then implemented in the Java programming 

language. The implementations were performed by the same author, ensuring that the level of 

sophistication employed played no factor in the results. The first algorithm is used as a control, 

and is a modified version of Weiszfeld’s algorithm, with additional logic to ensure that if an 

iterate gets too close to a target point, the algorithm does not become “stuck”. The second 

algorithm is an experimental heuristic algorithm based on a hill climbing methodology. The third 

algorithm utilizes the heuristic algorithm, however, rather than finding an approximation for the 

geometric median, it attempts to minimize the difference between the average distance from a 

given test point to two sets of target points representing people belonging to different 

categorizations of a discrimination category (such as male or female.) 

 

3.2 Weiszfeld’s algorithm – the control 

 Weiszfeld’s algorithm is a commonly used approach to approximating the GM, and so it 

is used as a control. Originally described by Endre Weiszfeld in the Tohoku Mathematical 

Journal in 1937, this algorithm went widely unnoticed for many years before being rediscovered 

and subsequently analyzed by Harold Kuhn in a paper published in the journal Mathematical 

Programming in 1973.  

 The algorithm is a type of iteratively re-weighted least squares in which an arbitrary 

initial starting point is chosen, and over successive iterations improved approximations are 
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generated based on the results of each previous iterate. One may iterate the algorithm until it 

reaches a fixed point given some ε. 

The following formula describes an arbitrary iterate in this scheme: 

 

• yi is the current iterate, or “best guess” approximation 

• yi+1 is the next iterate for the “best guess” approximation 

• xj is one of the ‘m’ sample points in ξ 

As Kuhn noted, the algorithm can fail to converge when an iterate gets too close to a 

point contained in the set of target points being compared against. In this situation, the algorithm 

gets “stuck” and treats the point as a fixed point, even though it is not the global minimum. To 

correct for this, our implementation includes additional logic to detect the situation and find a 

suitable alternate iterate. This method was described by Belas and Yu (1982) [8]. 

 

Pseudo-Code for Weiszfeld’s Algorithm 

ε ← <some configured value, very small, positive> 

ξ ← target point set 

diff ← ∞+ 

P ← starting point 

sum_w ← 0 

Qk ← new point, (0, 0) 

While diff > ε 

for each point in ξ 
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Q ← ‘this’ point in ξ 

  if P == Q, execute subroutine to break out of errant minimum 

  else, continue 

  d ← dist(Q, P)   <get Euclidean distance> 

  w ← 1/d   <calculate this weight> 

  sum_w ← sum_w + w <accumulate sum_q> 

  Qk ← Qk + (Q * w)  <vector addition, multiplication of Q’s values> 

Qk ← Qk / sum_w 

diff ← dist(Qk, P)  

P ← Qk 

end While 

 

3.3 Heuristic algorithm – the experiment 

 This algorithm is a type of hill climbing algorithm which iterates until it reaches a fixed 

point given some ε. From an initial starting point as the current iterate, search in a circle using 

polar coordinates to locate a candidate point at STEP_SIZE distance with a lower F() value than 

the current iterate. Move in the direction of the vector described by the line segment connecting 

the current iterate and the candidate in STEP_SIZE increments, testing the candidate point at 

each step, and continuing in that direction as long as the F() value of new candidates is smaller 

than the previous candidate. Once we reach a candidate point which no longer has a lower F() 

value, we reduce STEP_SIZE and do another circular search. 

In this fashion, the algorithm “flows downhill” until it reaches a minimum, given some 

configured ε. 
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Pseudo-Code for Heuristic Algorithm 

Centroid ← calculate centroid using known formula 

ClosestPoint ← Centroid     <initial starting point> 

ClosestPointF ← F(ClosestPoint)   

CheckedPoints ← add ClosestPoint to hashset 

STEP_DELTA ← CONFIGURED BY USER  <value between 0 and 1> 

STEP_SIZE ← CONFIGURED BY USER 

OuterLoop: 

While STEP_SIZE > ε 

 iteration++ 

 NewClosestPoint ← TRUE 

 While NewClosestPoint == TRUE 

  NewClosestPoint ← FALSE 

  Neighbor ← GetNextPoint() 

  NeighborF ← F(Neighbor) 

  If NeighborF < ClosestPointF 

   NewClosestPoint ← TRUE 

   diff = dist(ClosestPoint, Neighbor) 

   ClosestPoint ← Neighbor 

   ClosestPointF ← NeighborF 

CheckedPoints ← add ClosestPoint to hashset 

   movecount++ 

   if diff < ε 

    break OuterLoop 

 end While 

 STEPSIZE ← STEP_SIZE * STEP_DELTA 

end While 
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3.4 Heuristic Algorithm Extension – Polygonal Obstacles 

 The algorithm from 3.3 is extended to account for the introduction of an arbitrary number 

of polygonal obstacles in the plane. Once the algorithm has completed the approximation of the 

GM, a call is made to an ancillary function, FindTargetPoints1(), which returns a set of points 

near the GM but residing in free, unobstructed space. The function first checks if the 

approximated GM lies within an obstacle, and if it does not, it simply returns the GM. If it does 

lie inside an obstacle, the function begins an iterative loop where it identifies points in a circle at 

STEP distance from the GM and checks if they lie inside an obstacle. It increases STEP with 

each iteration, and ultimately builds a set of points which are not inside obstacles. The number of 

points to search for is a configurable parameter.  

 

Pseudo-Code for FindTargetPoints1() 

testpoint ← approximated geometric median 

output ← create new, empty ArrayList 

MaxDist ← maximum distance within plane 

STEP ← MaxDist * 0.01 

STEP_SIZE ← STEP 

NumTargetPoints ← user configurable parameter, how many points we want to find 

NumSearchPoints ← user configurable parameter, how many points on search circle 

NumFoundPoints ← 0 

num_occlusions ← FindOcclusions() 

if num_occlusions > 0: 

 while STEP < MaxDist 

build set of points in a circle STEP distance from testpoint 

for each point is search set: 

num_occlusions ← FindOcclusions() 
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if num_occlusions == 0 

 output ← this point 

 NumFoundPoints++  

   If NumFoundPoints >= NumTargetPoints, break while loop 

 end while 

 STEP += STEP_SIZE 

else: 

 output ← testpoint 

 

return output 

 

The function which determines if a given point is inside an obstacle is named 

CheckIfOccluded(). 

 

Pseudo-Code for CheckIfOccluded() 

shape_list ← populate an ArrayList with all the polygonal obstacles 

testpoint ← approximated geometric median 

for each shape in shape_list: 

 if isInShape() 

  return true 

 

return false 
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Pseudo-Code for isInShape() 

Each shape is a collection of vertices representing the convex hull or a polygon. The vertices are 

stored in counterclockwise order starting from some arbitrary vertex. 

 

This function traverses this vertex list and checks whether a given input point is 

counterclockwise to the convex hull of the shape.  

 

If it is, then it is inside an obstacle, so return true 

Else return false 

 

3.5 Heuristic Algorithm Extension – Polygonal Free Space 

 The algorithm from 3.3 is extended to account for the introduction of an arbitrary number 

of polygons in the plane which represent free space traversable by people or robot. Once the 

algorithm has completed the approximation of the GM, a call is made to an ancillary function, 

FindTargetPoints2(), which returns a set of points representing candidates from each free space 

polygon. This is accomplished by performing a line search from the center of each shape towards 

the GM and stopping when we find the last point on the search line inside the shape. 

 

Pseudo-Code for FindTargetPoints2 () 

Shapes ← populate the list of shapes 

output ← create new hashset 

testpoint ← approximated geometric median 

For each shape in Shapes: 

 if isInShape() 

  output ← testpoint 
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 else: 

  perform line search from center of this shape towards testpoint 

  add last point that was inside this shape to output 

 

Return output 

 

3.6 Alternative Measurement Function Utilizing the Heuristic Algorithm 

 This algorithm utilizes the framework of the heuristic algorithm, however, it implements 

a modified version of the F() function, named F2(). The F2() function attempts to minimize the 

difference between two values. First, the set of target points is divided into two disjoint sets, each 

set of points being described by one of two descriptors from a discrimination category, for 

example, male or female. Then, the average Euclidean distance is measured for each of these 

subsets, against an arbitrary point in the plane. The absolute difference between these two values 

is then calculated and used as the heuristic for minimization. 

 

3.7 Dynamics Explorer Extensions – Behavior Visualization 

 Dynamics Explorer is an open source project originally designed as a tool to assist 

researchers in the field of complex dynamics in visualizing their work. For this thesis, 

modifications were made to the core functionality of the platform to allow us to visualize the 

behavior of both Weiszfeld’s algorithm as well as the new heuristic algorithm that was 

developed. The program now generates images in two new classifications: 

1. The convergence rate of the GM approximation algorithm for each pixel in the plane. 

2. The average distance to all points in ξ for each pixel in the plane. 
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Additionally, the program will execute either of the GM approximation algorithms and 

display the results in real-time for any pixel clicked in the image that was generated. It will thus 

trace the path from the point clicked to the approximated GM, displaying the path as a sequence 

of connected lines representing each step in the algorithm’s process. 
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4. Results 

4.1 Underlying Parameters of the Experiments 

There were two general datasets used during the execution of the experiments: 

1. A set of pre-defined target point sets 

2. Randomly generated target point sets 

The pre-defined sets consisted of 3 and 4 points chosen in such a way as to allow the use 

of closed-form solutions that produce exact results, along with a set of 5 points chosen as a test 

bed for the heuristic approximation algorithm to check functionality against a known solution 

produced by Weiszfeld’s algorithm. 

The randomly generated sets can produce for analysis target point sets of any size, from 2 

points to ∞+, limited only by the host computer’s memory and cpu capabilities. These target 

points are generated using the java.util.Random class, and specifically the Random.nextDouble() 

function after the parent Random object has been initialized. All the points are thus given 

random x and y coordinate values within a user-defined 2d plane. For simplicity’s sake, the plane 

is assumed to have minimum x and y coordinates of 0.0, and the program user defines maximum 

values for the x and y axes. All point computations are performed using the Java double 

primitive, which conforms to the 64-bit IEEE 754 floating point number standard. 

Because the points are all randomly generated, as the number of points increases, meta 

structures or groupings of points become less likely and the points ultimately become evenly 

dispersed throughout the plane. The data that was gathered over millions of executions of the 

program shows that given these constraints, as the number of points int the target points set 

approaches ∞+, the approximated GM converges to the centroid. This is demonstrated by the fact 
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that as the size of ξ grows, the distance between the centroid and approximated GM tends to 

zero. The relationship between the size of ξ and the distance between the centroid and 

approximated GM is shown in Figure 8 and can be expressed as a power function in the form y 

= a * x^b, where a = 0.148217, and b = -0.50193. The predictive power of this model was proven 

by using it to estimate the y value when x==25000. The predicted value was 0.091924%, while 

the experimentally produced result using 10000 randomly generated test sets was 0.091234%, a 

difference of only 0.00069, or 0.75%. 

 

4.2 Algorithmic Performance – Relative and Absolute Measurements 

In terms of relative performance, Weiszfeld’s algorithm typically performed better than 

the heuristic algorithm. The heuristic algorithm performed approximately 2.5 times slower than 

Weiszfeld’s across a test run consisting of the analysis of 10 million randomly generated sets of 

5 to 500 target points.  

In terms of the absolute number of executions of the F() function required to complete 

the approximation, Weiszfeld’s algorithm typically completed with a much lower number of 

executions, however, edge cases were observed where Weiszfeld’s algorithm took a very long 

time to converge, while the performance of the heuristic algorithm was extremely predictable 

across all tests. 

For a broad sample of performance metrics for both algorithms across a variety of 

randomly generated scenarios, see Table 1. In general, as the size of ξ increases, both algorithms 

tended to converge more quickly, but Weiszfeld’s Algorithm continued to improve faster than 
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the heuristic algorithm. It is also clear that the approximated GM is converging to the centroid, as 

the distance between them shrinks rapidly. 

 

4.3 Algorithm Convergence Rates – Dependent Factors 

 The heuristic algorithm converges at a rate primarily dependent on the distance of a given 

test point to the location of the approximated GM. This rate is influenced by several user-

configurable parameters: the number of points to check on the circle during the search phase, the 

starting step size, the step size multiplier used during successive iterations to shrink the step size, 

and the ε chosen as the stopping distance. Given known values for the size of the plane and the 

number of points in the target points set, a savvy user could tune these parameters to produce 

more optimal results. 

 A typical example of the visualization of the convergence rate for the heuristic algorithm 

across an entire sample plane is shown in Figure 1. In this example, red represents the fastest 

convergence rates, while green represents slower convergence rates. Figure 2 is the same 

underlying data set of target points, but the image is zoomed out to give a larger perspective on 

how the convergence rate of the heuristic algorithm is heavily dependent on the distance of any 

given point to the approximated GM: the further away it is, the slower it is to converge. 

 Weiszfeld’s algorithm, on the other hand, displays complicated behavioral dynamics at a 

meta level of analysis. Very interesting and complex patterns were observed which show quite 

clearly that the convergence rate is independent of the distance of a sample point from the 

approximated GM. Rather, there can be patterns of very rapid convergence resembling “rivers”, 
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“whorls”, or even “islands” surrounded by a “sea” of much more slowly converging points. 

Some examples of these exotic behaviors follow. 

 Figure 3 shows a convergence rate map the Weiszfeld’s Algorithm which contained a 

ring-like structure representing very fast convergence rates, colored in red, embedded in a plane 

consisting of points which converged much more slowly, colored in yellow and orange.  

 Figure 4 shows a convergence rate map the Weiszfeld’s Algorithm which looks fairly 

normal on the micro scale, but when zoomed out into Figure 5, we can see an anomaly to the 

southwest of the approximated GM where the convergence rates are exceptionally high, 

represented by the small red island inside the orange ‘teardrop’. In this particular example, that 

small island converged in literally just a few iterations, while the orange and yellow required 

dozens of iterations to converge to the approximated solution. 

 

4.4 Visualization of the F() function 

 As shown in Figure 6, Dynamics Explorer can produce images allowing us to visualize 

the behavior of the F() function when applied to an entire 2d plane. In this example, the F() 

function is called for each pixel in the plane, and the result is stored and used to color that pixel 

based on the value that was calculated. The values are mapped to the range [0, ∞+), which are 

represented by the various color bands one can see in the image. Visual inspection of the image 

appears to show that the F() function exhibits behavior consistent with that of a convex function, 

as we see a unique global minimum, and the function values appear to change in a continuous 

manner. 
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4.5 Visualization of the Polygonal Obstacles Problem 

 The polygonal obstacles problem describes a situation in which we have a configuration 

space wherein our service robot must operate, however there exist polygonal obstacles that block 

portions of that space and render those portions unable to be used. 

 The heuristic algorithm was extended such that after computing the approximation of the 

GM, it then performed an analysis of the space to find a new location for the service robot, if 

necessary. This determination was made based on whether the GM occupied a point that was 

located inside one of the polygonal obstacles that were defined.  

If the GM was not inside an obstacle, then the algorithm terminated, having made the 

determination that the GM was in unobstructed, free space and was thus available to service 

customers. 

However, if the GM was found to be inside an obstacle, a search was undertaken to find 

suitable locations nearby as an alternative to the location that was inside an obstacle. This search 

is performed by radiating outward from the GM as increasing distances until some number of 

points are found which are not inside any obstacles. 

The results of this computation can be seen in Figure 9. In this example, the black space 

is open space that is traversable by people or robots. The grey polygons represent obstacles 

blocking the open space in some way. The colored dots represent people scattered throughout the 

space. There are a number of white markers representing critical parts of the computation: the 

“+” represents the centroid, the hollow “o”s represent the path from the centroid to the original 

GM, the “X” is the new, alternative GM found to be in the free space, and the lines represent 

paths to other nearly points in the free space that could also be considered as valid alternates. 
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4.6 Visualization of the Polygonal Free Space Problem 

 The polygonal free space problem describes a situation in which we have a configuration 

space wherein our service robot must operate; however, the free space is broken up into some 

number of polygonal areas scattered throughout the space. In this scenario, the robot is restricted 

to occupying only these polygonal free space areas. 

 The heuristic algorithm was extended such that after computing the approximation of the 

GM, it then performed an analysis of the space to find locations within each free space polygon 

to serve as potential locations for the service robot to be placed. To do so, a line search was 

performed from the center point of each polygon towards the GM, and the program stored the 

last point that resided inside each polygon. 

 The results of this computation can be seen in Figure 10. In this example, the black space 

represents space that is not traversable by the robot for some reason. The grey polygons represent 

free space that is traversable by the robot. The colored dots represent people scattered throughout 

the space. The white lines represent paths radiating from the GM to alternative locations for the 

service robot that are in each of the free space polygons. Each polygon has a single point within 

its mass designated as an alternative location. 

 

4.7 Visualization of the Alternative Measurement Function 

As shown in Figure 7, Dynamics Explorer can produce images allowing us to visualize the 

behavior of the F2() function when applied to an entire 2d plane. In this example, the F2() 
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function is called for each pixel in the plane, and the result is stored and used to color that pixel 

based on the value that was calculated. The values are mapped to the range [0, ∞+), which are 

represented by the various color bands one can see in the image. Visual inspection of the image 

appears to show that the F2() function produces results that have no global minimum, rendering 

it ultimately useless for this research.  
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5. Conclusion and Future Work 

5.1 Heuristic Algorithm 

 The performance of the heuristic algorithm is highly dependent on a small number of user 

defined variables. For a given configuration of plane and target points, there may exist optimal 

sets of parameters. Further research may provide insight into how to best tune those parameters 

for optimal results. 

 

5.2 Weiszfeld’s Algorithm 

 As shown in the figures included, Weiszfeld’s Algorithm displays some complex 

dynamical behavior. Perhaps that behavior could be analyzed to produce a heuristic or other 

mechanism by which the algorithm could be seeded with optimal starting locations in order to 

avoid starting from a location which requires a large number of iterations to converge. 

 In the figures provided, there is evidence to support the claim that there exist regions of 

space in a given plane which will converge extremely rapidly for this algorithm. However, at this 

time, the determining factors which may allow one to predict those regions are unknown. Further 

research is required to determine if those factors exist, and if they are deterministic in some way. 

 

5.3 Geometric Median 

 Given the fact that there exists no explicit formula to calculate the GM, rather, some 

approximation technique must be used, this research calls into question whether it should be 

abandoned in favor of simply calculating the centroid given the case that the target points are 
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somewhat evenly distributed in the plane and the size of ξ is above some threshold. As shown in 

Table 1, the centroid becomes a very good approximator for the GM rather quickly, as the 

relative distance between the centroid and GM falls below a proportional difference of 1% once 

ξ reaches a size of about 250 points. The centroid can be calculated using a single pass through ξ 

using very basic mathematical operations, whereas approximating the GM requires multiple, 

generally many, passes through ξ, and requires the use of computationally expensive 

mathematical operations and advanced techniques. That is, calculating the centroid requires no 

iterative methods, and an exact formula exists to do so. 

 

5.4 Polygonal Obstacle and Free Space Extensions 

 For this paper, the algorithmic extensions used to identify alternatives to the GM in the 

cases where polygonal obstacles are introduced and where polygonal free spaces are introduced 

were only implemented for the heuristic hill climbing algorithm. However, they could be 

generalized for use by other algorithms, such as Weiszfeld’s. An example scenario would be to 

use any desired algorithm for approximating the GM, and then calling these extensions as helper 

functions once the first algorithm completes its calculations. 

 

5.5 Degenerate Cases 

 While gathering data during these experiments, it was noted that some random scenarios 

that were generated caused both the heuristic hill climbing algorithm and Weiszfeld’s to 

converge very slowly. The degenerate cases drop off in frequency with increased ξ size. Further 
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investigation may uncover the factors leading to these degenerate cases and provide insight 

beyond the scope of this paper. 

 

5.6 Applications to Machine Learning 

 The Geometric Median is used as a subroutine in some machine learning algorithms, 

including K-Medians clustering. Problems utilizing these algorithms typically work on large 

datasets, and the results of this research indicate that efficiencies could be found by utilizing the 

centroid of clusters rather than the Geometric Median, and the resulting additional entropy would 

be minimal. 

 

5.7 Ethical Considerations 

 Ultimately, the point of this research is to establish a quantitative methodology for 

placement of service robots that can be shown to be non-discriminatory using some form of 

rigorous analysis, that is, to be ‘fair’ in some way. Certainly, the method described in this paper, 

that of using the Geometric Median as an idealized location for a service robot, is not the only 

method one could use that is measurably ‘fair’. Other methods could be evaluated, and their 

results gauged against these. 

One may also consider the idea that a measurably ‘fair’ methodology may not be 

preferred by actual customers of such a robot. Social experiments to evaluate people’s perception 

could be performed to provide insight into how people perceive fairness and discrimination in 

their interactions with service robots. 
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The construction of algorithms specifically to address issues such as the ethics of 

discrimination introduce the possibility that these algorithms may be used for purposes 

contradictory to their stated intent. Indeed, it would be trivial to use such an algorithm to 

purposely place a service robot in such a way as to discriminate in favor of a particular person or 

group. Further research could be performed to provide tools for individuals to analyze the 

behavior of service robots they interact with in order to determine if they are programmed to act 

in ways which may be discriminatory or violate other ethical expectations.  
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Figures

 

Figure 1: Convergence rate map for Heuristic Algorithm, 5 target points. 

Red coloration shows faster convergence, while green coloration is slower. 

The octagonal pattern is bias introduced by the algorithm being configured to examine 8 points 

in a circle whenever the search subroutine is called. 

x = target points + = centroid ♦ = GM 
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Figure 2: Convergence rate map for Heuristic Algorithm, 5 target points, zoomed out to show 

increase in convergence rate due to distance from GM. 

Red coloration shows faster convergence, while green coloration is slower. 

x = target points + = centroid ♦ = GM 
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Figure 3: Convergence rate map for Weiszfeld’s Algorithm, 5 target points. 

The dynamics show a ring-like structure of very fast convergence, shown in red, while most of 

the plane converges much more slowly, as indicated by yellow and orange hues. 

x = target points + = centroid ♦ = GM 
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Figure 4: Convergence rate map for Weiszfeld’s Algorithm, 50 target points. 

x = target points + = centroid ♦ = GM 
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Figure 5: Convergence rate map for Weiszfeld’s Algorithm, 50 target points, zoomed out. 

At this level of zoom, we can see an anomaly to the southwest of the approximated GM where 

convergence rates are exceptionally high, represented by the small island of red inside an orange 

‘teardrop’. 

x = target points + = centroid ♦ = GM 



34 
 

 

Figure 6: Each pixel is colored based on the value of the F() function for that particular point. 

Yellow coloration shows low F() values, increasing in a linear fashion out to the red band 

representing the highest F() values. 

x = target points + = centroid ♦ = GM 
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Figure 6: Each pixel is colored based on the value of the F2() function for that particular point. 

Yellow coloration shows low F2() values, increasing in a linear fashion out to the red band 

representing the highest F2() values. 

Examination of points within the yellow band shows multiple identical values, demonstrating 

that this function did not have a unique global minimum within the visible portion of the plane. 

x = target points + = centroid ♦ = GM 
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Figure 8: The relationship between the size of the target point set on the x-axis, and the distance 

between the calculated centroid and the approximated GM, represented on the y-axis by the ratio 

of the distance between them as a proportion of that distance to the hypotenuse of the plane the 

tests were generated within. 

For a given plane, as the size of the target point set approaches ∞+, the approximated GM 

converges to the location of the centroid. 

The shape of the curve is that of a power function, such that the initial convergence is very fast, 

and then the rate slowly tapers off. 
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Figure 9: Visualization of the solution to the “polygonal obstacles” problem. 
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Figure 10: Visualization of the “polygonal free space” problem. 
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Tables 

 

# Points H Checked W Checked H Dist W Dist H F() Diff W F() Diff

5 138.072931 57.605846 193.071743 192.750065 0.032116 0.032517

10 129.175582 45.895784 135.252494 136.225233 0.013958 0.0141

25 120.837968 34.631083 84.740626 84.111517 0.005389 0.005211

50 115.472334 29.162086 59.068263 57.078377 0.002574 0.002406

100 111.280942 26.367312 41.447509 41.246903 0.001266 0.001256

250 107.227232 23.692076 26.088124 26.359305 0.000499 0.000508

500 104.063903 22.318934 18.621822 18.570915 0.000254 0.000252

750 102.106024 21.613461 15.149446 15.021718 0.000167 0.000165

1000 100.728498 21.262479 13.018245 13.045711 0.000124 0.000125

2500 96.271137 20.208025 8.325911 8.241502 0.000051 0.00005  
 

Table 1: Subset of data captured during computation of approximation algorithms. 10,000 

randomly generated scenarios for each ξ. 

 

Fields:  

 

# Points: the number of points in given ξ 

 

H Checked: average number of points checked using the F() function for the heuristic algorithm 

to complete its approximation of the GM 

 

W Checked: average number of points checked using the F() function for Weiszfeld’s Algorithm 

to complete its approximation of the GM 

 

H dist: average absolute distance between the centroid and GM using heuristic algorithm 

 

W dist: average absolute distance between the centroid and GM using Weiszfeld’s algorithm 

 

H F() diff: average ratio of the difference between the F() value for the calculated centroid, and 

the F() value for the GM using heuristic algorithm 

 

W F() diff: average ratio of the difference between the F() value for the calculated centroid, and 

the F() value for the GM using Weiszfeld’s algorithm 
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Appendix A 

 

Pseudo-Code for Weiszfeld’s Algorithm 

 

Complexity: Time is super-linear in the number of elements in ξ. Space is linear in the number of 

elements in ξ. 

Input: a seed point to serve as the first iterate 

Output: a data structure containing the approximated GM point, the count of how many iterates 

were produced, and a LinkedList containing all the iterates 

 

ε ← <some configured value, very small and positive> 

ξ ← target point set 

diff ← ∞+ 

P ← starting point <usually the centroid, but if null, generate a random starting point> 

sum_w ← 0 

Qk ← new point, (0,0) 

While diff > ε 

for each point in ξ: 

Q ← ‘this’ point in ξ 

  if P == Q, execute subroutine to break out of errant minimum (Appendix J) 

  else, continue 

  d ← dist(Q, P)   <get Euclidean distance> 

  w ← 1/d   <calculate this weight> 

  sum_w ← sum_w + w <accumulate sum_q> 

  Qk ← Qk + (Q * w)  <vector addition, multiplication of Q’s values> 

Qk ← Qk / sum_w 

diff ← dist(Qk, P)  

P ← Qk 

end While 
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Appendix B 

 

Pseudo-Code for Heuristic Algorithm 

 

Complexity: Time is linear in the number of elements in ξ and dominated by a constant factor 

which is influenced by the relationship between multiple parameters, including the initial 

STEP_SIZE, the STEP_DELTA, and the number of points on the search circle. Space is linear in 

the number of elements in ξ. 

Input: a seed point to start from, generally the centroid 

Output: a data structure containing the approximated GM point, the count of how many iterations 

were processed, the count of how many points were examined using the F() function, the count 

of how many iterates were produced, and a LinkedList containing all the iterates 

 

Centroid ← calculate centroid using known formula 

ClosestPoint ← Centroid     <initial starting point> 

ClosestPointF ← F(ClosestPoint)   

CheckedPoints ← add ClosestPoint to hashset 

STEP_DELTA ← CONFIGURED BY USER  <value between 0 and 1> 

STEP_SIZE ← CONFIGURED BY USER 

OuterLoop: 

While STEP_SIZE > ε 

 iteration++ 

 NewClosestPoint ← TRUE 

 While NewClosestPoint == TRUE 

  NewClosestPoint ← FALSE 

  Neighbor ← GetNextPoint() 

  NeighborF ← F(Neighbor) 

  If NeighborF < ClosestPointF 

   NewClosestPoint ← TRUE 

   diff = dist(ClosestPoint, Neighbor) 

   ClosestPoint ← Neighbor 
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   ClosestPointF ← NeighborF 

CheckedPoints ← add ClosestPoint to hashset 

   movecount++ 

   if diff < ε 

    break OuterLoop 

 end While 

 STEPSIZE ← STEP_SIZE * STEP_DELTA 

end While 
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Appendix C 

 

Pseudo-Code for GetNextPoint() 

 

Complexity: Time is linear in the number of elements in ξ. Space is linear in the number of 

elements in ξ. 

Input: the current point, a HashSet of points that have already been checked, the STEP_SIZE, 

and a path hint 

Output: a data structure containing the next point in the iterate sequence, the F() value for that 

point, the number of points checked during the search process, and angle from the current point 

to the next point representing the path hint 

 

If no existing path hint (move failed during last iteration): 

 Search in a circle around current point. Using polar coordinated, divide the circle into 

some pre-configured number of arcs and check points at the end of each arc. This gives us some 

number of samples in a circular pattern around our current location in a plane. 

 Check each of these sample points using the F() function to calculate the sum Euclidean 

distance to all points in the target point set. 

 If we find a point with a lower F() value than our current point: 

Use binary decomposition to search near this new candidate for a better match. 

  Return best match found. 

 If not find a better point: 

  Return null to calling function so iteration can fail and STEP_SIZE can be 

reduced for next iteration 

 

If existing path hint (last move was successful): 

 Move in the same direction as last iteration to get a new candidate, and examine 

clockwise and counterclockwise neighbors of this candidate 

 Check F() values of these potential candidates, and return best match, if found, or null if 

not found 
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Appendix D 

 

Pseudo-Code for F() 

 

Complexity: Time is linear in the number of elements in ξ. Space is linear in the number of 

elements in ξ. 

Input: the point to test and ξ (the set of all target points) to test against 

Output: double value representing sum of the distance from the test point to each point in the 

target point set 

 

Given a candidate point and ξ: 

 output ← 0 

 For each point in ξ: 

  output ← output + dist(candidate, this point) 

 return output 
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Appendix E 

Pseudo-Code for dist() 

 

Complexity: Time is linear in the number of dimensional components of the points. Space is 

linear in the number of dimensional components of the points.  

Input: two points 

Output: double value representing the Euclidean distance between the two points 

 

Given two points, p and q, return the Euclidean distance between them, using the Pythagorean 

Theorem: 
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Appendix F 

 

Pseudo-Code for FindTargetPoints1() 

 

Complexity: Time is linear in NumSearchPoints. Space is linear in NumTargetPoints. 

Input: seed point to start searching from, and the number of nearby points to find 

Output: ArrayList of suitable points 

 

testpoint ← approximated geometric median 

output ← create new, empty ArrayList 

MaxDist ← maximum distance within plane 

STEP ← MaxDist * 0.01 

STEP_SIZE ← STEP 

NumTargetPoints ← user configurable parameter, how many points we want to find 

NumSearchPoints ← user configurable parameter, how many points on search circle 

NumFoundPoints ← 0 

num_occlusions ← FindOcclusions() 

if num_occlusions > 0: 

 while STEP < MaxDist 

build set of points in a circle STEP distance from testpoint 

for each point is search set: 

num_occlusions ← FindOcclusions() 

if num_occlusions == 0 

 output ← this point 

 NumFoundPoints++  

   If NumFoundPoints >= NumTargetPoints, break while loop 

 end while 

 STEP += STEP_SIZE 

else: 
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 output ← testpoint 

 

return output 
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Appendix G 

 

Pseudo-Code for CheckIfOccluded() 

 

Complexity: Time is linear in the number of elements in the shape list. Space is linear in the 

number of elements in the shape list. 

Input: set of polygonal obstacles, and a point to test 

Output: Boolean value representing whether the test point is inside an obstacle or not 

 

shape_list ← populate an ArrayList with all the polygonal obstacles 

testpoint ← approximated geometric median 

for each shape in shape_list: 

 if isInShape() 

  return true 

 

return false 
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Appendix H 

 

Pseudo-Code for isInShape() 

 

Complexity: Time is linear in the number of vertices in the shape. Space is linear in the number 

of vertices in the shape. 

Input: a polygonal shape as a set of vertices, and a point to test 

Output: Boolean value representing whether the test point is inside the given shape 

 

Each shape is a collection of vertices representing the convex hull of a polygon. The vertices are 

stored in counterclockwise order starting from some arbitrary vertex. 

 

This function traverses this vertex list and checks whether a given input point is 

counterclockwise to the convex hull of the shape.  

 

If it is, then it is inside an obstacle, so return true 

Else return false 
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Appendix I 

 

Pseudo-Code for FindTargetPoints2 () 

 

Complexity: Time is linear in the number of elements in the shape list. Space is linear in the 

number of elements in the shape list. 

Input: point representing the approximated GM 

Output: HashSet of suitable points 

 

Shapes ← populate the list of shapes 

output ← create new hashset 

testpoint ← approximated geometric median 

For each shape in Shapes: 

 if isInShape() 

  output ← testpoint 

 else: 

  perform line search from center of this shape towards testpoint 

  add last point that was inside this shape to output 

 

Return output 
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Appendix J 

 

Pseudo-Code for Weiszfeld’s Algorithm: Belas and Yu Modification 

 

Complexity: Time is linear in the number of elements in ξ. Space is linear in the number of 

elements in ξ. 

Input: ak, member of ξ 

Output: Point representing next iterate 

 

Rk = Σ {over i, from 1 to m, i ≠ k} ((wi) / (dist(ξi , ak)) * (ξi - ak)) 

Normk = norm2(Rk) 

wk = 1/ ε 

 

if (wk ≥ Normk) 

 return ak 

else 

 <use bisection method to find next iterate> 

 lambda = 1.0 

 descent = ak + lambda * Rk 

 while lambda ≥ ε and F(descent) ≥ F(ak) 

  lambda = lambda / 2 

  descent = ak + lambda * Rk 

 end while 

 if F(descent) < F(ak) 

  return descent 
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