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ABSTRACT

HARBINGERS OF EXOTIC TRANSIENTS:
THE ELECTROMAGNETIC FOLLOW-UP OF GRAVITATIONAL-WAVE

TRANSIENTS & TRANSIENT RATES

by

Deep Chatterjee

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Patrick Brady

Gravitational waves (GWs) provide a unique view of the universe. They directly probe

the extreme gravity and extreme matter of compact objects like black holes (BHs) and

neutron stars (NSs) which is not always possible from traditional electromagnetic (EM)

wave astronomy. The cataclysmic coalescence of compact object binaries is one of the

loudest individual sources of GWs that can be detected by the Laser Interferometer Grav-

itational wave Observatory (LIGO) and the Virgo Observatory. If one of the component

is a NS, there is a possibility that the merger is bright in the EM spectrum. The relativis-

tic astrophysics could launch a short gamma-ray burst, the radioactivity in the neutron

rich ejecta could power a rapidly decaying optical transient called a kilonova. Hence, it

is possible to jointly observe the same source via multiple messengers. It is this prospect

of multi-messenger astronomy using GWs that is of great interest due to the rich science

that can be extracted from such joint observations. In this thesis, I present the details

of my work with the LIGO Scientific Collaboration and Virgo Collaboration in the con-

text of multi-messenger astronomy. I also report my work on the time-domain astronomy

front in the development of an observing strategy for the Zwicky Transient Facility (ZTF),

and characterizing the detection efficiency of the intermediate Palomar Transient Factory

(iPTF).
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Chapter 1

The Story So Far

In 1916 Albert Einstein published his relativistic theory of gravity – general relativity (GR)

(Einstein, 1916). That light should bend around massive objects was the first prediction

of GR to be verified by Arthur Eddington and his team (Dyson, Eddington, & Davidson,

1920). In 1916 Einstein also showed that GR allowed wavelike solutions which he called

gravitational waves. He estimated the strength of these waves and noted that there was

no scope to detect them with the available technology at the time. It took about 40 years

for scientists to understand the physical physical nature of gravitational waves. Peters

& Mathews (1963) first calculated the gravitational radiation from a binary star system.

The discovery of the binary pulsar PSR1913+16 by Hulse & Taylor (1975), and continued

observation of its orbital decay by Taylor & Weisberg (1989) provided compelling indirect

evidence damping caused by gravitational-wave emission as predicted by GR for a binary

orbit. The 1993 Nobel Prize in physics was awarded to Hulse and Taylor for this discovery.

Experimental efforts to directly measure gravitational waves were first attempted using

resonant mass bar detectors by Weber (1960). Unfortunately, the sensitivity of these

detectors was far from what would be needed to capture astrophysical sources. The idea

of laser interferometry for this purpose was first reported by Gertsenshteǐn & Pustovoǐt

(1963). In 1972 Rainer Weiss presented an experimental design of an “electromagnetically

1



Chapter 1. The Story So Far

Figure 1.1 Aerial views of the Advanced LIGO and Advanced Virgo detectors. Each of
the LIGO detectors have 4 km long arms. The Virgo detector has 3 km long arms. The
long arms house a modified Michelson interferometer to detect gravitational waves. From
left: LIGO Hanford, LIGO Livingston, and Virgo. Figures credits: www.ligo.org &
www.virgo-gw.eu.

coupled broadband gravitational antenna” 1 that eventually led to the construction of

the Laser Interferometer Gravitational-wave Observatory (LIGO).2 Initial LIGO started

operations in the mid 2000s, with an upgrade to Advanced LIGO commissioned in 2015.

Almost after a century since the initial prediction, gravitational waves from a binary black

hole (BBH) merger were directly observed by the twin LIGO detectors in 2015 (Abbott

et al., 2016c). The 2017 Nobel Prize in Physics was awarded to Rainer Weiss, Kip Thorne,

and Barry Barish for the inception of LIGO and their contribution to the observation of

gravitational waves.

1.1 Advanced LIGO and Advanced Virgo

The U.S. based, 4 km long, initial LIGO detectors were approved in the 1990s and finished

construction over the early years of the turn of the century. The French-Italian, 3 km

long, initial Virgo detector was also approved and constructed in a similar time frame.

The initial LIGO and Virgo detectors jointly analysed data between 2005–2007 in what

is known as the fifth science run (S5) for LIGO, and Virgo Scientific Run (VSR1) for

the Virgo detector (Abadie et al., 2010). 3 The detectors reached GW strain sensitivities

∼ 10−21, with LIGO at a distance sensitivity of ≳ 30 Mpc for a pair of 1.4M⊙ optimally
1https://dcc.ligo.org/LIGO-P720002/public
2https://dcc.ligo.org/LIGO-M890001/public
3Previous observing runs S1–S4 was performed only by the LIGO detectors.

2
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1.1. Advanced LIGO and Advanced Virgo

oriented binary neutron star (BNS) system. The Virgo detector reached a horizon distance

of ≃ 8 Mpc for the same. Expectedly, based on the rate estimates of such binary mergers,

no gravitational waves were detected with the initial observatories. The detectors were

upgraded to Advanced LIGO (aLIGO) (Aasi et al., 2015) and Advanced Virgo (AdV),

(Acernese et al., 2014) with almost an order of magnitude improvement in overall strain

sensitivity, and better sensitivity to lower frequencies of GW inspiral at the start of its

observing runs.

1.1.1 The First & Second Observing Runs

Advanced LIGO began its first observing run (O1) in September 2015. On September 14,

2015 at 09:50:45 UTC, the twin LIGO detectors observed, for the first time, GWs from a

BBH merger at ∼ 400 Mpc (Abbott et al., 2016c). This observing run saw two more stellar-

mass BBH mergers, GW151012 and GW151226. The AdV detector was in commissioning

period during this time.

The second observing run for aLIGO was conducted from November 30, 2016 to Au-

gust 25, 2017. AdV started its observations in August 2017. This observing run saw the

detection of 10 confirmed BBH mergers. This was a sharp increase since O1. It also saw

the first ever gravitational-wave detection from the coalescence of a BNS, GW170817 (Ab-

bott et al., 2018). Electromagnetic (EM) counterparts in the forms of gamma-rays (GRB

170817A), optical and radio/X-ray (AT 2017gfo) afterglows were observed concordantly

from the source in a timeframe of seconds to months, even years after the merger (Abbott

et al., 2017; Mooley et al., 2018; Hajela et al., 2019). The exhaustive observations carried

out across EM and high-energy spectrum were unprecedented. It bore proof to the decade-

long hypothesis that merging compact objects are progenitors of high-energy astrophysical

phenomena like GRBs and kilonovae (Lattimer & Schramm, 1974; Li & Paczyński, 1998).
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Chapter 1. The Story So Far

1.1.2 2017: The Dawn Of Multi-messenger Astronomy

The hypothesis that compact object collisions could create the environment for launching

high-energy astrophysical phenomena is not recent. In 1974, Lattimer & Schramm had

proposed that NS-BH mergers had the potential to tidally break the neutron star, and

create the environment for launching a short GRB. In 1998, Li & Paczyński hypothesized

a rapidly evolving (∼ 1 day) optical transient, a kilonova,4 associated with merging binary

neutron stars (BNS). Almost four decades after the initial hypothesis, the detection of

photons in conjunction with gravitational waves (GWs) from GW170817 gave the first

observational evidence of the hypothesis.

Joint observations in astronomy have been performed before. A notable one being the

observation of neutrinos from the core-collapse supernova, SN 1987A, where the optical

counterpart was observed a hew hours after the detection of neutrinos by the Kamiokande–

II and the Irvine–Michigan–Brookhaven detectors on February 23, 1987. The follow-up op-

erations for GW170817 was, however, unprecedented. It was the first success story of the

long effort to jointly observe both GW and EM emission from astrophysical sources. Dur-

ing O2, LIGO/Virgo had memoranda of understanding with 88 groups across more than 20

countries to follow-up GW candidates. Infrastructure was set up to exchange information

over the Gamma-ray Coordinate Network (GCN) 5 to enable multimessenger observations

of astrophysical events. This included machine readable notices to provide automated

follow-up opportunities to robotic ground and space-based facilities. Basic information

about the discovered GW candidate, like the inferred time of merger, participating instru-

ments, sky localization, probability of having a NS, or some remnant matter post merger

was provided with the notices. The O2 follow-up campaign was a comprehensive effort in

astronomy and astroparticle physics.

The participating facilities employed a variety of observing strategies. All-sky searches
4Originally called a macronova. The more modern term kilonova was coined by Metzger et al. (2010).
5https://gcn.gsfc.nasa.gov/
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1.1. Advanced LIGO and Advanced Virgo

were performed by high-energy instruments, and neutrino detectors. These used spatio-

temporal information about the GW candidate to match internal databases about poten-

tial candidates near the trigger time. Wide field surveys used tiling, and/or galaxy catalog

targeted searches based on the GW sky localization distributed with the notices. Deep

field/spectroscopy instruments pursued medium latency follow-up operations post iden-

tification of candidates. Long term follow-up was done in X-ray and radio. In case of

GW170817, such operations continued for over a year. A complete description of the O2

LIGO/Virgo EM follow-up campaign is given in The LIGO Scientific Collaboration et al.

(2019). The discovery of GW170817 heralded a new era in organized joint observational

efforts in EMGW astronomy. It showcased the rich science that is possible by studying

multiple messengers from the same source (see Sec. 2.3 for a brief summary of the scientific

impact). It gave the impetus to the current efforts in multi-messenger astronomy.

1.1.3 The Third Observing Run

The LIGO/Virgo third observing (O3) run started on April 1, 2019. The observing run

came to an end on March 27, 2020.6 For the first time, the LIGO/Virgo candidate discov-

eries were broadcasted publicly over the GCN.7 Several improvements were made to the

detectors during the break between O2 and O3. The volume averaged BNS inspiral was

∼ 140 Mpc for L1, ∼ 120 Mpc for H1, and ∼ 50 Mpc for V1. A total of 56 GW candidates

have been reported publicly. This is more than a five-fold increase compared to events

from O1 & O2 combined. Also, the duty cycle of the detectors have improved significantly

with at least two detectors being operational for ≳ 80% of this run duration, and three

detectors being so ∼ 50% of the duration (see Fig. 1.2). This produced some extremely

well localized candidates in O3.8 9 Additional data products were provided to aid follow up
6Scheduled to end on April 30, 2020. However, detector operations were suspended on March 27, 2020

due to ongoing COVID-19 pandemic situation.
7https://emfollow.docs.ligo.org/userguide/
8 https://gracedb.ligo.org/superevents/S200311bg/view/
9https://gracedb.ligo.org/superevents/S190814bv/view/
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Chapter 1. The Story So Far

Figure 1.2 Upper panel: This figure shows the angle and volume averaged inspiral range
for binary neutron star (BNS) systems for the first half of the LIGO/Virgo third observing
run (O3). Lower panel: Coincident detector observation durations. Credits: LIGO
detector characterization summary (https://ldas-jobs.ligo.caltech.edu/~detchar/
summary/).
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1.2. The Time-Domain Sky

operations. Also, the distribution of alerts, and their latency improved significantly with

the usage of new tools, and allocation of more resources for this purpose.

1.2 The Time-Domain Sky

10−4 10−3 10−2 10−1 100 101

t− tmerger (days)

GW
Detection

Initial
Circular

Initial
Skymap

Final
SkymapGWs

γ Rays

X rays/UV

Optical/IR/UV

Radio

Figure 1.3 A timeline of GCN notices following the hours after the merger of the binary
neutron star (BNS) system, GW170817, the discovery of concordant gamma-rays, GRB
170817A, and the optical and near infrared counterpart, AT 2017gfo.

Simultaneous with the development of ground based GW detectors, the last two decades

have brought about a revolution in the field of time-domain optical astronomy with ex-

periments like Pan-STARRS, (Kaiser et al., 2010) Sloan Digital Sky Survey, (Sako et al.,

2007) the ATLAS survey, (Shanks et al., 2015) the Catalina survey, (Drake et al., 2009) the

All-Sky Automated Survey for Supernovae, (Holoien et al., 2019) the Palomar and inter-

mediate Transient Factory (PTF), (Law et al., 2009) and Zwicky Transient Facility (ZTF)

(Kulkarni, 2016) performing all sky searches with rolling cadence to locate transients. Next

generation surveys like Vera Rubin Observatory (Ivezić et al., 2008) are expected to make

significant additions to already existing catalogs with wide-deep-fast searches. Current and

upcoming telescope facilities are consistent with the timeline of LIGO/Virgo operations,

7



Chapter 1. The Story So Far

and plan to participate in the follow-up efforts of GW sources (see Graham et al. (2019),

for example).

The impact of such time-domain, robotic surveys have been significant in discovering

transients. Thousands of supernovae, for example, have been added to the catalogs, and

new classes of transients are been discovered. Among the latter are fast radio bursts, fast

X-ray transients, superluminous supernovae, and kilonovae to name a few. Many such

transients have compact object progenitors. GWs can accompany, or be precursors of

their progenitor dynamics. This goes beyond the sources being observed by the ground

based GW network today. Current pulsar timing experiments, like the North American

Nanohertz Observatory for Gravitational Waves (NANOGrav) (Jenet et al., 2009), will

be able to probe the regime of GW emission from supermassive BH inspirals. The Laser

Interferometer Gravitational-wave Antenna (LISA) (Amaro-Seoane et al., 2017) will be able

to probe their mergers. Future ground based detectors will be able to see BNS mergers

out to high redshifts (z ≳ 1). GW parameter estimation along with photometric and

spectroscopic data will be invaluable to infer the high energy astrophysics of the compact

object. High redshift multi-messenger astronomy will be crucial for future cosmological

observations. Therefore, the synergy between EM and GW facilities is an exciting prospect

in the coming decade.

1.3 Organization Of Thesis

We have reached an era when GW detection is routine. It is possible to do astronomy with

them. Joint detections requires robust infrastructure to deliver candidate information and

data products to external partners to carry out follow-up observations. Along with better

detectors, the requirement of computing resources and cyber infrastructure is also increas-

ing. So is the need for new and efficient algorithms to handle this stream of astrophysical

data. Among others, the prospects of using of machine learning is increasingly appar-
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ent to enable future discoveries. In this thesis I present my work with the LIGO/Virgo

collaborations and the ZTF collaboration to allow multi-messenger astronomy.

The organization of the thesis is as follows. In Chapter 2, I discuss sources of GWs, and

the principle of detecting them using laser inteferometry. I briefly review some EM coun-

terparts possible from compact objects – GRBs, supernovae and kilonovae. In Chapter 3,

I give details about the low-latency source property estimation of LIGO/Virgo compact

binary coalescences (CBCs). The source properties provide a realtime inference of the CBC

having a counterpart and is a part of the realtime notices circulated by LIGO/Virgo during

the previous and current operations. In Chapter 4, I give details about a tiling strategy

for the ZTF telescope used in the follow-up operations of the GW sources. In Chapter 5,

I give details about characterizing the detection efficiency of transient surveys consider-

ing the intermediate Palomar Transient Factory (iPTF) as a case study. The detection

efficiency is the missing piece in the determination of transient rates from archival data.

Conclusions and the roadmap ahead is presented in Chapter 6.
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Chapter 2

Multi-messenger Astronomy With

Gravitational Waves

2.1 Compact Binary Coalescences

Compact binary coalescences (CBCs) are one of the loudest sources of GWs that can be

detected by the advanced ground based GW detectors today. The frequency evolution

is between few tens to few hundred Hz. By compact objects, we refer to neutron stars

and black holes. Although white dwarfs are also compact objects, such mergers are not

observable by ground based detectors since their frequency evolution does not lie in the

sensitive frequency band of the ground-based detectors. In this section we give order of

magnitude estimates of quantities like the frequency evolution, time to coalescence, total

flux, frequency evolution and so on. Also, a brief description of the interaction of the

ground based interferometers with incoming GWs is presented. It should be mentioned

that to model the binary inspiral accurately in the strong gravity regime, higher order

post-newtonian corrections have to be taken into account. Finally, black-hole perturbation

theory and numerical relativity simulations are needed to capture the merger and ringdown

phase.
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2.1. Compact Binary Coalescences

2.1.1 GWs in Linear Approximation

The emission of GWs from a system causes a perturbation, hµν , in the spacetime. In

the linear approximation and assuming propagation of waves over a flat spacetime, the

spacetime metric is written as,

gµν = ηµν + hµν , (2.1)

where ηµν = diag(−c2,+1,+1,+1), is the flat spacetime metric. The expression for the

metric perturbation, to first order, is given by (see, for example, Chapter 3 of Creighton &

Anderson, 2011),

hTT
ij (t) =

2G

c4r
ÏTT
ij (t− r/c), (2.2)

where G is the gravitational constant, c is the speed of light, r is the distance to the source

and Iij is the quadrupole moment of the mass distribution, ρ, producing the GWs given

by,

I ij =

∫
x′ix′jρ(t− r/c, x′)d3x′. (2.3)

The superscript “TT” denotes the transverse-traceless gauge where the metric perturbation

can be written in the form of Eq. (2.2). The coordinate freedom of the GR field equations

guarantees that such a gauge exists. The metric perturbation can be transformed into

this gauge after being evaluated in some other coordinate system. In what follows, we will

assume this gauge, i.e., the metric perturbation is transverse to the direction of propagation

and is traceless and avoid the “TT” superscript. This result of Eq. (2.2) is of primary

importance, which says GW radiation in GR is produced by a time varying mass quadrupole

moment of the source, unlike EM radiation where a time varying electric dipole moment

of charge distribution can produce radiation. The retarded time in the right hand side of

Eq. (2.2) is due to the propagation at the speed of light over a distance r. The energy flux
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Chapter 2. Multi-messenger Astronomy With Gravitational Waves

carried by GW is given by (Isaacson, 1968a,b),

dEGW

dtdA
= − c3

32πG

⟨
ḣijḣ

ij
⟩

(2.4)

= − G

8πc5r2

⟨...
I ij

...
I
ij
⟩
, (2.5)

where the ⟨. . . ⟩ denotes integration over several GW wavelengths. The GW luminosity is

given by,

LGW = −dEGW

dt
=

G

5c5

⟨...
I
ij ...
I ij

⟩
. (2.6)

For order of magnitude calculations, we will drop the pre-factors and write Eqs. (2.2, 2.6)

as,

h ∼ G

c4r
Ï, (2.7)

LGW ∼ G

c5
...
I
2. (2.8)

Applying the above expression for, say, a 1.4 − 1.4M⊙ BNS system at 40 Mpc, emitting

GWs at 100 Hz (orbiting each other at ωorb = 50Hz), orbital separation a = 3
√
GM/ω2

orb ∼

150km, we have,

h ∼ G

c4r
Ma2ω2

orb

∼ 10−22 (2.9)

This is an optimistic detection scenario given the ∼ 10−23 strain sensitivity of the current

detectors around ∼100 Hz regime. The luminosity emitted is,

LGW ∼ 1051 erg s−1. (2.10)
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This is an estimate of the luminosity at a fixed frequency. It is insightful to cast the

expression in a slightly different form using,
...
I ∼Mv2orb/T ∼Mv3orb/a in Eq. (2.8),

LGW ∼ G

c5

(
M

a

)2

v6orb (2.11)

∼
(
c5

G

)(
GM

c2a

)2 (vorb

c

)6

(2.12)

=
(
3.6× 1051erg s−1

) ( κ

0.1

)2 ( vorb

0.1c

)6

(2.13)

Here, T ∼ a/vorb is the typical time scale of the dynamics of the quadrupolar component

of motion, and a is the typical length scale of the system. The quantity, κ = (GM/c2a),

is the compactness of the system. The upper limit being, κ ≈ 0.5, corresponding to a

BH. This form shows the two essential ingredients required for efficient GW emission –

compact systems, moving at a fraction of the speed of light. Also note that the pre-factor,

(c5/G) = 3.6 × 1059erg s−1, is a fundamental upper limit of GW luminosity from any

system. In case, the system is in virial equilibrium, like a binary orbit, GM/a = v2, which

changes Eq. (2.12) to,

LGW ∼
(
c5

G

)(vorb

c

)10

. (2.14)

2.1.2 Evolution Of The Orbit

Consider a binary system as shown in Fig. 2.1. The masses are assumed to be point mass

systems. The orbit is assumed to be circular.1 The expression for the instantaneous GW

luminosity is given by (see Section 3.5 of Creighton & Anderson, 2011),

LGW =
32

5
η2

(
c5

G

)(v
c

)10

, (2.15)

1Eccentric orbits increase the emitted GW luminosity but the qualitative features are unchanged.
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y

z

x

a

ϕ m1

m2

Figure 2.1 Figure showing a binary orbit. The primary (secondary) mass labeled as m1

(m2). The orbital separation is denoted by a, with the center of mass at the origin of the
coordinate system. The orbit is assumed to be circular.

where η = m1m2/(m1 + m2)
2, is the symmetric mass ratio of the system, which has a

maximum value of 0.25. The total energy of the system is,

E = −GMµ/2a, (2.16)

= −µv2orb/2, (2.17)

where, M = (m1+m2), µ = m1m2/(m1+m2), and vorb = aωorb, are the total mass, reduced

mass, and orbital velocity respectively. As the binary orbit shrinks, {E, v} → −∞, with

LGW = −dE/dt. This gives the time to coalescence,

tc =
5

32η

GM

c3

∫ ∞

v0/c

d(vorb/c)

(vorb/c)9
(2.18)

=
5

256η

GM

c3

(
πGMf 0

GW
c3

)−8/3

. (2.19)

Here, v0 = πf 0
GWa is an arbitrary starting value of the orbital velocity, corresponding to a

starting GW frequency f 0
GW. The fundamental mode of GW frequency is twice the orbital

frequency, fGW = 2forb. Thus, the 1.4 − 1.4M⊙ BNS system emitting GWs ≃ 100 Hz,
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2.1. Compact Binary Coalescences

considered in the previous section, will coalescence is ≈ 2.16s. However, if the same system

is considered starting at ≃ 30 Hz, the time to coalescence ≈ 1 minute. The frequency

evolution as a function of time can be evaluated using,

dfGW

dt
=

dfGW

dv

dv

dt
(2.20)

=

(
3v

GµMπ

)(
−dE
dt

)
(2.21)

=
96

5
π8/3

(
GMc

c3

)5/3

f
11/3
GW . (2.22)

where the newtonian expression, fGW = 2forb = v3orb/GMπ, and Eq. (2.17) has been used

in the first line. The quantity, Mc = (m1m2)
3/5/(m1 + m2)

1/5, is the chirp mass of the

system, and determines the phase evolution of the orbit. Integrating Eq. (2.22),

fGW(t) =
1

π

(
5

256

)3/8(
c3

GMc

)5/8
1

(tc − t)3/8
. (2.23)

This shows the chirping behavior where the frequency increases rapidly as one approaches

coalescence. The GW phase is,

φGW(t) =

∫ tc

t

2πfGW(t′)dt′ (2.24)

= 2φc −

[
2

(
c3(t− tc)

5GMc

)5/8
]
, (2.25)

where φc is the coalescence phase of the orbit. Laser interferometry is primarily sensitive

to the phase, and the above equation shows that at newtonian order, the chirp mass, Mc,

is the only parameter of the system that be extracted from the phase.

Spectrum of CBCs

The frequency domain evolution of the GW signal from a CBC is important from a data

analysis perspective. Many matched filtering techniques use frequency domain waveform
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families to search for signals. The newtonian chirp waveform, as a function of time is given

by,

h(t) = aGW(t)× cos [φGW(t)] (2.26)

=

[
GMc

c2r

(
5GMc

c3(tc − t)

)1/4
]
×

cos
[
2φc − 2

(
c3(tc − t)

5GMc

)5/8
]
. (2.27)

The frequency domain evolution is obtained via a fourier transform,

h(f) =

∫ +∞

−∞
h(t) exp [2πift] dt (2.28)

=

∫ +∞

−∞
aGW(t) exp[iψ(t)]dt, (2.29)

where, ψ(t) = 2πift ± φGW(t). Consider the quantity, x = GMc/c
3, appearing in

Eq. (2.27). For typical stellar mass binaries, x ∼ 10−6 − 10−5s. This is much smaller

compared to typical (tc − t) values, which are ∼ 10−3 − 10s. The amplitude in Eq. (2.27)

goes as ∼ [(tc − t)/x]−1/4, while the phase goes as ∼ [(tc − t)/x]5/8. Hence, the phase is

a faster oscillating function compared to changes in the amplitude. The integral can then

be evaluated using saddle point approximation as,

h(f) =

∫ +∞

−∞
a(tsp) exp i

[
ψ(tsp) +

1

2
(t− tsp)

2ψ̈(tsp)

]
dt (2.30)

where ψ̇(tsp) = 0 at (tc − tsp) = (4πf/5)−8/3(c3/5GMc)
5/3. This gives,

h(f) =

[
aGW(tsp)

(
2π

φ̈GW(tsp)

)1/2
]

exp
[
−iπ

4
+ iψ(tsp)

]
∝ f−7/6 (2.31)
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y
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x
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Figure 2.2 The figure shows plane GWs propagating along the z-axis, with two test particles,
believed to be test masses along the y-axis. The strain induced in the test masses is given
by Eq.(2.39). A third test mass is also shown along the x-axis in reference to the typical
setup of the Michelson interferometer.

2.1.3 Interaction With Detectors

Gravitational waves have the physical effect of causing strain in materials they pass through.

In case of ground-based detectors like LIGO/Virgo, this is measured by the interference

pattern in a modified Michelson interferometer (see Fig. 2.2 for an illustration). In order

to see the effect, consider a plane GW passing along the z-axis. The metric perturbation,

in terms of the two GW polarizations, h+ and h×, is written as,

hµν =



0 0 0 0

0 h+ h× 0

0 h× −h+ 0

0 0 0 0


. (2.32)

The line element looks like,

ds2 = −c2dt2 + (1 + h+)dx
2 + (1− h+)dy

2 + 2h×dxdy + dz2. (2.33)
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The strain induced by the GW is like a tidal effect i.e., a relative displacement, caused due

to geodesic deviation in the presence of GWs. An observer at the origin of Fig. 2.2 sees

the relative motion between oneself and the nearby geodesics of the other test masses via

equation of geodesic deviation given by,

d2ξi

dt2
= −Ri

0j0ξ
j. (2.34)

The relevant terms in the Riemann curvature tensor are,

R0
101 = −1

2
ḧ+ (2.35)

R0
102 = −1

2
ḧ×. (2.36)

Consider a plane wave incident on a pair of test particles, as shown along the y-axis of

Fig. 2.2. These could be thought of as test masses of ground-based GW detectors with a

displacement vector, ξi = (0, 0, L, 0), between them. The equation of motion due to the

GWs is,

ξ̈y(t) = −R2
010ξ

1 −R2
020ξ

2 (2.37)

= −1

2
ḧ+(t)L (2.38)

⇒ ξy(t) =

(
1− 1

2
h+(t)

)
L, (2.39)

where t is the proper time measured by the observer moving with the test mass. In the

strict sense, the test masses in ground based detectors are not in free fall, since they are

suspended via wires to compensate for earth’s gravity. But considering motion in the

horizontal plane, they are almost in free fall.2

A typical ground-based GW interferometer consists of a Michelson interferometer as
2There are certainly, non stationary noise sources like thermal noise, shot noise, violin modes to name

a few.
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shown in Fig. 2.2. The light propagates along null geodesics along the arms. Considering

only the + polarization and propagation along the y-axis, we have,

dt = ±
(
1

c

)(
1− 1

2
h+

)
dy, (2.40)

where the ± corresponds to the to and from travel from the origin respectively. The cavity

is sensitive in the regime where the time period of the GWs is much smaller than the round

trip light travel time, 2π/ωGW ≪ 2L/c. In other words, the wavelength of the GWs is much

larger than length scale of the detectors. The typical wavelengths of the GW ∼ 100 Hz is

∼ 103 km, which is much larger than the ∼ km long arms of the current detectors. Thus,

the metric perturbation is almost constant during the round trip of the light. Integrating

Eq. (2.40), the light travel time is,

∆t =
2L

c
− L

c
h+. (2.41)

Thus, the path difference attributed due to the GW is,

c∆t = ∆L = −h+L, (2.42)

⇒ ∆L

L
= −h+. (2.43)

The path length 2L/c in Eq. (2.41) is canceled by interference with light from the other

arm of the Michelson interferometer, along the x-axis in Fig. 2.2. Hence, the GW strain is

directly obtained from the phase readout of the cavity. Note that in reality the Michelson

interferometer setup is more complex and Fig. 2.2 is simply an illustration. 3

3See https://www.ligo.caltech.edu/page/ligos-ifo for a more realistic illustration.
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2.2 High Energy Astrophysics From Compact Objects

Several EM transient phenomena, like supernovae, pulsars, gamma-ray bursts, fast radio

bursts, are associated with compact objects. As discussed in the previous chapter, compact

object mergers can be luminous in EM spectrum in the presence of matter post merger.

The dynamics of matter in the violent aftermath of a merger can launch various messengers.

In this section, some of the EM counterparts relevant for this thesis are discussed in brief.

The high-energy astrophysics is complex. Only a brief overview is presented here, with

pointers to review articles in the literature.

2.2.1 Gamma-ray bursts

Gamma-ray Bursts (GRBs) were discovered serendipitously in the 1960s by the Vela satel-

lites that aimed to watch over nuclear tests being performed on a terrestrial site (Klebesadel

et al., 1973). Routine discoveries were made by the Burst and Transient Source Experiment

(BATSE) instrument in the 1990s. As the name suggests, GRBs are bursts of gamma rays

with peak energies in the few hundred keV to ∼ MeV having a duration ∼ 10−2s to ∼ 105s.

Bursts with duration < (>) 2s are categorized as short (long) GRBs. Observed fluences

range between 10−4erg cm−2 to 10−7erg cm−2. The total energy output is comparable to

supernovae, ∼ 1051 erg, but it is emitted in few tens of seconds. The physics of the bursts

are an area of research, but it is widely accepted that such bursts involve highly relativistic

material, with Lorentz factor, Γ = 1/
√

1− v2/c2 ∼ 100. The radiation comes primarily

from synchrotron emission, and from inverse compton scattering of the photons.

Regarding their progenitors, the long GRB population is connected to massive star

origin. They are typically associated with type Ic supernovae, and reside in star forming

host galaxies. On the other hand, the short GRB population is characterized by the

absence of a supernova association. Their host galaxies range from early-type to star-

forming galaxies. Their offset from the galaxy core is much larger compared to long GRBs,
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Figure 2.3 Consider a photon emitted by a source in the proper frame, denoted by S, at an
angle θ. The S ′ observer moves at a constant velocity v along the x. The angle at which
the moving observer sees the photon is θ′. In case of ultra-relativistic velocities, the angle
θ′ ≈ 1/Γ, where Γ =

√
1− v2/c2

−1/2. The frame S could be interpreted as the rest frame
of an electron where is gives off radiation at an angle θ. In the lab frame, the observed
angle of radiation is at θ′. Hence, radiation emitted isotropically in the proper frame, can
be observed as being beamed.

or supernovae. The median redshift of short GRBs is z ∼ 0.48, as compared to the median

redshift of z ∼ 2 for the long GRB population (Berger, 2014). Although hypothesized

decades back (see Sec. 1.1.2), observation of GRB170817A as a counterpart of GW170817

gave the observational evidence that merging NSs are progenitors of at least some short

GRBs. Although other possibilities like NSBH mergers, rotational energy of magnetars,

accretion induced collapse of proto NSs are possible (Narayan et al., 1992; Metzger et al.,

2008; Bernardini, 2015). These facts make the short GRB population an interesting case

to study. Their association with merger of compact binaries make them a MMA candidate

for gamma-ray detectors. The association with afterglows in the X-ray, optical and radio

make them candidates for corresponding telescopes. In this section, a review of the basic

physics of GRBs are presented. Most of the material is adapted from Piran (2005); Longair

(2011); Gehrels & Mészáros (2012).
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Relativistic Beaming

A key ingredient of GRBs is the doppler beaming of the radiation. This is a characteristic

of ultra-relativistic motion, and can be illustrated in a few steps. Consider the situation in

Fig. 2.3. Here, a photon emitted by a source at an angle θ in the proper frame is observed

at an angle θ′ by an observer moving with velocity v towards the source (or source moving

towards observer as a corollary), represented by S ′. For example, S can be considered to

be a frame that is instantaneously at rest with a radiating charge, that is otherwise moving

with respect to the laboratory, a typical situation for a synchrotron radiation. The amount

of beaming is obtained using the velocity addition formula,

u′x =
ux − v

1− uxv/c2
, (2.44)

u′y =
1

Γ

uy
1− uxv/c2

. (2.45)

Using (ux, uy) = −c(sin θ, cos θ) for the photon velocity in S, and (u′x, u
′
y) = −c(sin θ′, cos θ′)

in S ′, we get the angles,

sin θ′ =
1

Γ

sin θ
1 + β cos θ , (2.46)

cos θ′ =
cos θ + β

1 + β cos θ , (2.47)

where β = v/c, and Γ = 1/
√

1− β2. In the limit of Γ ≫ 1, the first equation above gives,

θ′ ∼ 1/Γ. (2.48)

This gives the important result that for a radius R giving off radiation, the observer sees

the radiation from a size ∼ R/Γ.
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Relativistic Jet

In case of BNS or NSBH mergers, the central engine post merger (likely BH) would launch

a burst of intense radiation from energy of the in-falling material left behind from the

aftermath. Part of this material is accreted, while a larger fraction is ejected in a jet

along the rotation axis in ∼ 5 − 10 degree angular extent. The rotating debris could also

extract rotational energy of the BH via the Blandford & Znajek (1977) mechanism. The

interaction of the jet with the external material results in dissipation of the kinetic energy

into a non-thermal spectrum of acceleration changes that emit via synchrotron radiation.

Synchrotron Radiation

Charged particles are accelerated during the dissipation of kinetic energy due to internal

shocks in the expanding material, or external shocks with the circumburst medium. The

prompt GRB comes from the former, while the afterglows are from the latter. Particles

are accelerated as they repeatedly cross a shock. The radiation is emitted primarily via

synchrotron radiation. For a relativistic electron, the spectrum goes as (see Sec. 8.4 of

Longair, 2011),

Fe(ν) ∝


ν1/3 ; ν < νc

exp (−ν/νc) ; ν > νc

, (2.49)

where the critical frequency, νc ≈ Γ2
eνg, is the frequency at which maximum power is

emitted. Here, νg = eB/2πme is the non-relativistic gyro-frequency of the electron. The

complete spectrum depends on how the relativistic electrons are distributed. A power law

distribution of electron energy is generally considered,

N(E)dE ∝ E−pdE. (2.50)
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The spectrum for a single electron, given in Eq. (2.49) along with the distribution of

relativistic electrons, determine the observed spectra. It turns out that the lower energy

part of the spectrum is independent of the distribution of relativistic electrons. Higher

energy electrons deposit most of their energy near the synchrotron frequency, νc ∝ Γ2 ∝ E2.

Hence, the population of electrons at that energy will contribute to the spectrum. We have,

Fsync(ν) ∝


ν1/3 ; ν < νc

ν−p/2 ; ν > νc.

(2.51)

Short Gamma Ray Bursts

The duration of the GRBs detected by the BATSE instrument fell into two distributions –

the fewer short GRBs around ∼ 0.2s and the long GRBs around ∼ 20s, with a boundary at

∼ 2s. The advent of the Swift Observatory (Gehrels & Swift Team, 2005) made significant

addition to the short GRB population, and identifying host galaxies. The discovery of

GW170817 gave the first observational evidence that binary neutron star mergers mergers

are the progenitors of at least some short GRBs. GRB 170817 A was, however, slightly

different from the typical short burst. The spectrum was much softer with Epeak = 185±62

keV, and a best-fit spectral index, α = −0.62±0.40 (Goldstein et al., 2017). Values from the

BATSE short GRB sample are ⟨Epeak⟩ = 355± 30 keV and ⟨α⟩ = −0.58± 0.10 (Ghirlanda

et al., 2004). Afterglows of short GRBs were detected in the X-rays, optical, NIR and

radio bands starting from the Swift era. However, multi-band afterglow observations are

needed to understand the properties, like jet opening angles. The study of short GRBs, its

afterglows, and the possibility of simultaneous GW detection make it an ideal candidate

for multi-messenger astronomy.
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Type Characteristics
Ia absence of hydrogen; presence of silicon lines
Ib absence of hydrogen; presence of helium lines
Ic absence of hydrogen and helium lines; weak silicon lines
IIP has a plateau in light curve
IIL has a linear decrease in light curve
IIn has narrow features compared to usual broad emission features in spectra
IIb has SN II properties at early times, and SN Ib/c properties at late times

Table 2.1 The table lists the subcategories of SNe I/II and the basis of such a classification.
The content is taken from Table 13.1 of Longair (2011).

2.2.2 Supernovae

Many interesting high energy astrophysics originate from stellar endpoints. The endpoint

of nuclear burning in massive stars ≳ 8M⊙ is associated with stellar collapse to form a

neutron star, or a black hole. The collapse may be associated with release of large bursts of

energy ∼ 1053 erg, known as supernovae (SNe). Their occurrence is more frequent that the

other high-energy astrophysical phenomena mentioned here. Time domain surveys today,

discover thousands of SNe in their typical few years duration. The most recent, closest one

is SN 1987A that exploded in the Large Magellanic Cloud in 1987 (see Sec. 1.1.2).

Supernovae are traditionally classified as Type I (SNe I) or Type II (SNe II). The

SNe II are characterized by the presence of hydrogen Balmer lines in the optical spectrum

at maximum light, while the SNe I do not. Further subdivisions are tabulated in Table 2.1.

Later in the thesis, detection efficiency of supernova lightcurves are computed. In this

section, we highlight the important features of their lightcurves.

Core Collapse Supernovae

The endpoint of stellar burning of a massive star is an iron core ∼ 1.4M⊙ at a temperature

of about ∼ 109K. Photo-disintegration of iron nuclei and inverse beta decay can trigger the

onset of collapse of this iron core. Order of magnitude estimates of the energy release can

be obtained from assuming the initial configuration of the core to have a radius of ∼ 1000
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Figure 2.4 Variation in luminosity with time for the homologous expansion model, uniform
opacity and density of Arnett (1980). The time variation is given by Eq. (2.54). The value
of τm determines the decay of the supernova. Values for this plot are L0 = 1043 erg s−1,
τ0 = 108s, τm = 107s.

km, and the final compact object having a radius of ∼ 10 km. The net energy released is

almost equal to the gravitational binding energy of the final remnant,

Ebind ∼ GM2/R (2.52)

=
(
5× 1053erg

)( M

1.4M⊙

)2(
R

10 km

)−1

. (2.53)

The neutrinos produced by the inverse beta decay escape carrying 99% of the energy of a

supernova resulting in optical energies ∼ 1051 erg. The gravitational collapse of the iron

core is suddenly halted by the formation of a proto-neutron star. The bounce caused due to

this shock expels the outer layers of the star. The end result is a deposition of the ∼ 1051 erg

near the center of the star, followed by a blast wave. The expanding layer can be modeled

as homologous expansion. The evolution is determined from the radiative processes and

thermodynamics of the expanding ejecta. Analytic models for the time evolution exists for

simple model of the opacity. For example assuming a constant density and opacity, the
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time evolution is given by (Arnett, 1980),

LSN(t) = L0 exp
[
−
(
t

τ0

)
−
(
t

τm

)2
]
. (2.54)

where τ0 is the diffusion time, and τm =
√

2τ0R0/vsc, R0 being the initial radius of the

ejecta, and vsc the expansion velocity assumed to be constant. Typical values are L0 ∼

1043erg s−1, τ0 ≃ 108s, vsc = 1000km s−1, giving τm ≃ 107s. An example of the time

evolution with the typical values is shown in Fig. 2.4. There is a lot of variability in the

SNe II lightcurves due to various additional physics. In Chapter 5, SNe IIp lightcurve are

analyzed in more detail with respect to their detection efficiency by time domain surveys.

Type Ia

SNe Ia are produced due to thermonuclear detonation of carbon-oxygen white dwarfs with

masses close to the Chandrasekhar limit of ∼ 1.4M⊙. Fusion reactions of carbon and oxygen

are associated with intermediate elements like silicon, all the way up to 56Ni. Silicon is found

in the spectra near maximum light. The 56Ni is converted into 56Co via electron capture

which eventually decays into 56Fe. The later part of the light curve shows an exponential

decay consistent with the radioactive decay of the 56Ni and 56Co. For SNe Ia the nuclear

burning of carbon is ignited explosively either at the center of the star, or different spots

off-center. Following which, the burning occurs in thin shells and propagates conductively

as subsonic deflagrations, or via shock compression as supersonic detonations (Hillebrandt

& Niemeyer, 2000). Best fit models predict an initial deflagration phase up to a density of

∼ 107g cm−3, after which the detonations become dominant.

Like the case of SNe II, the ejecta can be simply modeled as homologous expansion.

However, the difference from the SNe II case is the presence of a radioactive heating

source which determines the decay of the lightcurve. Arnett (1982) considered a model

predominantly heated by 56Ni decay. The early phase of the luminosity shows a LSN ∝ t2
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Figure 2.5 This figure shows a plot for the time variation of luminosity for a typical Arnett
(1982) model. The 15–17 day region, which is the typical peak time for the SN Ia, is
shaded. Three cases of diffusion times, controlled by the parameter τm (see Eq. (2.54) are
shown. Larger diffusion time increases both the time to maximum light and width of the
lightcurve.

rise. For later times, decay is exponential LSN ∝ exp(−t/τNi), where τNi = 7.605× 105s is

the half life of 56Ni. Examples of luminosity time variation for the Arnett (1982) model is

shown in Fig. 2.5. The maximum light occurs when diffusion losses equal the radioactive

heating. Both width of the lightcurve, and time to maximum light increases with increasing

values of τm, as defined in Eq. (2.54). A typical time variation in the luminosity for the

(Arnett, 1982) model is plotted in Fig. 2.5. SNe Ia are one of the most luminous type

of supernova, with absolute magnitudes ∼ −19.5. Although slight variations exist, the

lightcurves are homogeneous. Hence, SNe Ia are used as distance indicators in cosmology.

The detectability of the SNe Ia lightcurves for transient surveys is considered in Chapter 5.

GWs From Core-Collapse Supernovae

While compact binary mergers are one of the strongest individual sources of GWs in the

universe, asymmetric core-collapse of a massive star could also generate GWs. Hence,

SNe II could potentially be associated with GW emission. The signal strength, however,
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is not as strong as compact object mergers, and current ground based detectors are only

sensitive to such events occurring with our own galaxy. Current estimates of galactic SNe II

rate is ≈ 3.2 per century and the last such event happened ∼ 100 years back (Morozova

et al., 2018). Hence, there are chances of getting another such event in this era of MMA.

Various complex processes, like vibrational modes of the newly formed proto-neutron star

(PNS), neutrino interactions, fluid instabilities, and shocks could drive the GW emission

from a CCSNe. Abdikamalov et al. (2014) have shown that the last phase of collapse,

bounce, and post bounce phase produces GW emission, h ∼ 10−21, for a source at ∼ 30

kpc. This is a very optimistic detection scenarios for future LIGO/Virgo searches for un-

modeled sources, with a prospect of detection of a multimessenger “trifecta” of GWs, EM

and neutrinos (Pajkos et al., 2019).

2.2.3 Kilonovae

Merger of compact objects involving a NS, produces an isotropic EM emission called a

kilonova. The peak luminosity is about ∼ 1041erg s−1, about 1/100th the peak luminosity

of a typical supernova. The absolute magnitudes are ≃ −15 as opposed to ≃ −19.5 of

a typical SN Ia. The lightcurve peaks in a timescale of ∼ day. The merger ejects some

matter with a sub-relativistic velocity. Following the merger there is rapid decompression

of matter at nuclear density. Rapid neutron capture produces neutron rich heavy elements

in the lanthanide family, many of them radioactive. The radioactive decay of such species

is responsible for heating the ejecta. This is similar to the case for SN Ia, with a radioactive

heating source,

ε =
fc2

τrad
exp(−t/τrad), (2.55)

where f is the fraction of unit rest mass equivalent that is converted to energy. In this

case, the solution is identical to the SN I case described above. However, since there

are several species produces, the resultant heating is sum of the individual species. The
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distribution of half lives for heavy elements, τrad is uniform in logarithmic intervals of time

(Li & Paczyński, 1998). Thus, the effective heating source is,

εtot =

∫
ε(τrad)p(τrad)dτrad (2.56)

=
fc2

t
, (2.57)

where ε(τrad) is given by Eq. (2.55), and p(τrad) ∝ 1/τrad, is the distribution of half lives

of different heavy element species. Later work, however, have established the heating rate

to be a steeper power-law, ∝ 1/t−α, where α ≈ 1.1 − 1.4 (Metzger, 2017). The basic

ingredients for the model is similar to the SN Ia calculation above. In case of the heating

term from a single species, like Eq. (2.55), the rise follows a L ∝ t2 dependence, while the

fall follows the exponential decay of radioactive species, L ∝ exp(−t/τrad). 4 In case of

the power-law heat source, the late time luminosity is follows the heat source i.e., L ∝ 1/t

(or L ∝ 1/tα). The diffusion timescale of photons is large due to the presence of heavy

elements which interact strongly with the photons. The timescale is determined by the

condition when the diffusion time decreases and becomes of the order of the expansion

timescale. This occurs at ∼ 1.6 days (Metzger, 2017), which is significantly less than that

of supernovae.

2.3 GW170817

Due to the fast decay and low intrinsic brightness of the kilonova, their existence remained

a mystery until the detection of AT 2017 gfo, which was discovered as an EM counterpart

of the merger of two NSs, GW170817. On August 17, 2017, the advanced LIGO and

advanced Virgo detectors observed GWs from a binary neutron-star (BNS) coalescence.

This was shortly followed by a spatially and temporally coincident short GRB, named
4Note that the treatment by Arnett (1982) & Li & Paczyński (1998) is similar when considering a single

species. In particular, Eq. 21 in Li & Paczyński (1998) is identical to Eq. 44 of Arnett (1982), showing the
t2 rise.
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Figure 2.6 This figure shows the blackbody luminosity evolution of AT 2017gfo using the
best-fit parameters from Kasliwal et al. (2017). The luminosity in three reference wave-
lengths are plotted. The transient evolved rapidly in the blue bands, with a slower evolution
in the red bands.

GRB 170817 A. The association of the two gave the first observational evidence that BNS

systems are progenitors of, at least, some short GRBs. Follow-up operations on this event

were unprecedented across the EM spectrum, and led to the observation of AT 2017gfo.

The multi-messenger operations on this event gave a wealth of knowledge in astrophysics

and cosmology. Below are some of the important results.

• An independent measurement of the Hubble constant using the distance informa-

tion from GW data, host galaxy information from EM data (The LIGO Scientific

Collaboration et al., 2017).

• The off-center location constrained the progenitor of such binary systems (Abbott

et al., 2017).

• Tidal deformability measurement of the neutron-stars, from GWs, was used to con-

straint the NS equation of state (Abbott et al., 2018). used to constraint the NS

equation of state (Abbott et al., 2018).

• The photometry and spectroscopy of the kilonova constrained the jet and ejecta
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properties.

Overall, this event was the first success story of the decade long effort towards joint detec-

tion of electromagnetic and gravitational wave signals. The kilonova AT 2017gfo evolved

from a luminosity of ≃ 1042 erg s−1 at about 0.5 days to ≃ 3 × 1040 erg s−1 in ten days.

Effective blackbody temperature evolved from 1.1 × 104 K to about 1.4 × 103 K in ten

days. The inferred ejected mass ≃ 0.05M⊙ at a expansion velocity ≃ 0.1c. The infrared

spectra shows the presence of lanthanide series elements, like Neodymium, synthesized via

r-process (Kasliwal et al., 2017). The evolution of the luminosity based on a blackbody fit

is shown in Fig. 2.6.
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Chapter 3

Low Latency Inference Of EM

Counterparts From LIGO-Virgo

This chapter is reproduced in part from Chatterjee et al.

(2019a), which has been accepted for publication in The

Astrophysical Journal. An online record can be found at

https://arxiv.org/abs/1911.00116.

3.1 Motivation

The first two observing runs of the LIGO detectors, (Aasi et al., 2015) and the Virgo

detector (Acernese et al., 2014) witnessed remarkable level of participation from the elec-

tromagnetic (EM) astronomy community in search for EM counterparts of gravitational

wave (GW) detections from coalescing binaries (The LIGO Scientific Collaboration et al.,

2019; Abbott et al., 2019). As the detectors become more sensitive, the projected detec-

tion rates of such events will increase (Abbott et al., 2018). Technological improvement is

not just confined to GW detectors alone. Current and upcoming telescope facilities such

as the Zwicky Transient Facility (Kulkarni, 2016) and the Large Synoptic Survey Tele-
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scope, (Ivezić et al., 2008) consistent with the timeline of LIGO/Virgo operations, plan to

participate in the follow-up efforts (see Graham et al. (2019), for example).

Observers are interested to know about the presence of a neutron star (NS) in coalescing

binaries. This is a minimum condition for there to be matter post merger. The dynamics

of matter in the extreme environment of the aftermath of a compact binary merger is

responsible for EM phenomena associated with GWs. Binary black hole (BBH) mergers,

therefore, are not expected to have an associated counterpart, since they are vacuum

solutions to the Einstein’s field equations. Even in the presence of a NS, other effects, like

the equation of state (EoS) of the NS(s), or the mass and spin of the companion BH plays

crucial role in the tidal disruption, and the amount of matter ejected. For a neutron star

black hole (NSBH) system, tidally disrupted material from the NS could form an accretion

disk around the central BH. High temperatures in the disk could lead to annihilation of

neutrinos to pair produce electron-positrons, which further annihilate to power a short

GRB. This could also happen via extraction of rotational energy from the BH due to the

presence of magnetic field lines threading the BH horizon (Blandford & Znajek, 1977). In

the case of unbound ejecta, r-process nucleosynthesis can power a kilonova. (Lattimer &

Schramm, 1974; Li & Paczyński, 1998; Korobkin et al., 2012; Tanaka & Hotokezaka, 2013;

Barnes & Kasen, 2013; Kasen et al., 2015) For a binary neutron star (BNS) system, even if

the tidal interaction is not strong enough, the two bodies will eventually come into physical

contact, resulting in shocks that expel neutron rich material. This will result in a kilonova

as seen in the case of GW170817 (Abbott et al., 2017; Arcavi et al., 2017; Coulter et al.,

2017; Kasliwal et al., 2017; Lipunov et al., 2017; Soares-Santos et al., 2017; Tanvir et al.,

2017). The interaction of the ejecta with the surrounding medium can result in synchrotron

emission, observable in X-rays and radio in weeks to months. There can be relativistic

outflows, which could result in a GRB, as seen for GW170817; although, there could be

cases of prompt collapse where GRB generation could be suppressed (Ruiz & Shapiro,

2017). Nevertheless, the generation of some EM messenger is highly probable. Therefore,
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data products that predict the existence of matter is useful in the EM counterpart follow-up

operations.

An accurate computation of the remnant matter requires general-relativistic numerical

simulations of compact mergers. These are expensive, and only a few (≲ 100) such simula-

tions have been performed to date. Also, such a simulation is not possible in the time scale

of discovery, and generic target of opportunity follow-up of GW candidates. Empirical fits

to the numerical relativity results, however, have been performed, and are a use case for

such realtime inferences. For example, Foucart (2012) and Foucart et al. (2018) devised an

empirical fit to predict the combined mass from the accretion disk, the tidal tail, and the

ejecta remaining outside the final BH in case of a NSBH merger. However, it should be

mentioned that such fits often require more input than what is available from the realtime

GW data. For example, the fits mentioned above require the compactness of the NS, which

is not a parameter inferred by the GW searches. The NS EoS, which is not constrained

strongly, is to be assumed in order to infer the compactness.

The second LIGO/Virgo observing run, O2, saw the first effort to provide realtime

data products to aid EM follow-up operations from ground and space based facilities (The

LIGO Scientific Collaboration et al., 2019). These included sky localization maps, (Singer

& Price, 2016; Singer et al., 2016a) and source classification of the binary which included

1. the probability that there was at least one neutron star in the binary, p(HasNS), and

2. the probability that there was non-zero remnant matter, p(HasRemnant), considering

the mass and spin of the components, based on the Foucart (2012) fit.

For a BNS merger, we expect some matter to be expelled (see Table 1 of Shibata & Ho-

tokezaka (2019) for different scenarios). Therefore, we expect the result, p(HasNS) = 1;

p(HasRemnant) = 1. On the other extreme, BBH coalescences will not lead to remnant

matter, since they are vacuum solutions, i.e., p(HasNS) = 0; p(HasRemnant) = 0. Hence,

p(HasRemnant) is more relevant for NSBH systems. Here, the mass and spin of the BH
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determines the tidal disruption of the NS. Lower mass, and high spin implies a smaller

innermost stable circular orbit which allows the NS to inspiral closer to BH. The tidal

force exerted by the BH, which also increases with spin, then tears the NS apart. This

leaves remnant matter post merger. However, if the NS is compact, or tidal forces are

not sufficient enough, the NS is swallowed whole into the BH, leaving no remnant. The

type and morphology of EM counterparts generated depends on the amount of matter

ejected and its properties. Pannarale & Ohme (2014) considered the conditions for short

GRB production in the context of LIGO/Virgo observations of NSBHs. More recent work

has tried to understand the morphology of kilonovae from NSBH mergers considering the

density structure of the ejected matter, opacity properties, the viewing angle, and other

factors (see Barbieri et al. (2019); Hotokezaka & Nakar (2019), for example). However,

accurate modeling is still at its infancy. Thus, the presence of remnant matter is a con-

servative proxy for the presence of counterparts, still more constraining than the presence

of a NS component alone, albeit the model dependence i.e., the assumption of NS EoS,

and the usage of a particular fit. The rationale behind computing two quantities is to give

flexibility to observing partners in follow-up operations.

The main challenge in this inference, however, is to handle detection uncertainties in

the parameter recovery of the realtime GW template-based searches. This was done in O2

via an effective Fisher formalism using an ambiguity region around the parameters of the

triggered template. The algorithm used for O2 is described in Sec. 3.3.2 of The LIGO

Scientific Collaboration et al. (2019), and briefly summarized in Sec. 3.2 below. While it

accounted for statistical uncertainties, the systematic errors in the low-latency GW tem-

plate based analysis were not considered. Here we consider the problem differently. We

treat the problem as binary classification, and present a new technique that is based on

supervised learning. This not only improves the speed and accuracy, but also removes run-

time dependencies that were required during O2 operations. Also, this technique provides

flexibility to incorporate astrophysical rates of binary populations in the universe.
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In the third LIGO/Virgo observing run, O3, these data products (and a few more)

continue to be part of the public alerts. 1 In this work, we make a slight modification

to the nomenclature. The p(HasRemnant) quantity had been referred to as EM bright

classification probability in The LIGO Scientific Collaboration et al. (2019). Here, we refer

to the both these quantities collectively as source properties, following the O3 LIGO/Virgo

public alert userguide. These values indicate the chances of the matter remaining post

merger, the dynamics of which can launch EM counterparts. For example, the combination

p(HasNS) = 1; p(HasRemnant) = 0, indicates a conservative measure of presence of matter

– just the presence of NS. However, the combination p(HasNS) = 1; p(HasRemnant) = 1, is

a stronger indication of the presence of a counterpart, albeit some model dependence.

The organization of the chapter is as follows. In Sec. 3.2 we provide a brief review of the

ellipsoid-based inference used in O2. In Sec. 3.3, we present the inference using a supervised

learning method called KNeighborClassifier (Pedregosa et al., 2011), which was trained

on injection campaigns from the GstLAL search pipeline (Messick et al., 2017) used by

LIGO/Virgo in routine search sensitivity analyses during O2. We test the performance of

the machine learned inference.

3.2 Ellipsoid Based Inference

3.2.1 Low-latency Searches

LIGO/Virgo searches for transient GW signals fall into two broad categories: modeled

compact binary coalescence (CBC) searches (Adams et al., 2016; Messick et al., 2017; Chu,

2017; Nitz et al., 2018; Abbott et al., 2019) and un-modeled burst searches (Lynch et al.,

2017; Klimenko et al., 2016). In this work, we are concerned with the former. The modeled

searches use a discrete template bank of CBC waveforms to carry out matched filtering

on the data. This is further broken down into realtime online analysis, and calibration
1 https://emfollow.docs.ligo.org/userguide/
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Figure 3.1 In this figure we compare the mass and spin recovery of one of the search
pipelines, GstLAL (Messick et al., 2017), that meet the false alarm rate threshold of
Eq.(3.2). Upper panel: This panel shows the (m1,m2) pairs of a gaussian distributed
BNS population ∼ N [1.33M⊙, 0.09M⊙] (see Table 3.1). The left plot shows the masses
injected following a normal distribution, as mentioned in Table 3.1, colored by the injected
primary aligned spin component, χz

1. The right plot shows the recovered masses colored
by the recovered χz

1. It can be seen that the distribution in the recovered space is signif-
icantly different from the one in the injected space. One may also see that the recovered
spin values may be higher than the injected ones, especially in the case of higher mass
ratio recoveries. Lower panel: This panel shows the injected values of the primary and
secondary masses against their recovered values for low-mass injections. This is an exam-
ple where one can see the systematic effect of the primary mass being recovered at higher
values than the injected values. The secondary follows the opposite trend: the recovered
value is lesser than the injected values. The effect also exists at higher mass ranges. Both
plots are colored by the recovered χz

1 values. Note the recovered mrec
1 > 2M⊙ (both panels)

have higher values of recovered χz
1. This is because the GstLAL search uses templates with

low spins for masses ≤ 2M⊙ and high spins above that (see Fig. 1 & 2 in Mukherjee et al.
(2018) for example). Even values slightly higher than 2M⊙ may result in high spin values
compared to the injections.
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corrected offline analysis. The online low-latency searches report CBC events in sub-minute

latencies. They use waveform templates that are characterized by masses, (m1,m2), and the

dimensionless aligned/anti-aligned spins of the binary elements along the orbital angular

momentum of the binary, (χz
1, χ

z
2). They report a best matching template based on an

appropriate detection statistic. We call the parameters of this template, {m1,m2, χ
z
1, χ

z
2},

the point estimate. This data can be used for low-latency source property inference.

3.2.2 Capturing Detection Uncertainties

Since the source property inference is to be done based on the point estimates, the obvious

pitfall in the inference is: How accurate are the point-estimates compared to the true

parameters of the source? The primary goal of detection pipelines is to maximize detection

efficiency at fixed false alarm probability. While some parameters like the chirp mass,

Mc = (m1m2)
3/5/(m1 +m2)

1/5, (3.1)

on which the signal strongly depends, are measured accurately, 2 others like the individual

mass or spin components are often inconsistent compared to the true parameters. Accurate

parameter recovery is left to Bayesian parameter estimation analysis (Veitch et al., 2015;

Ashton et al., 2019; Biwer et al., 2019).

Consider the case for the GstLAL search (Messick et al., 2017; Mukherjee et al., 2018;

Sachdev et al., 2019) in Fig. 3.1. Here, we compare fake GW signals whose parameters we

know a priori, to the recovered template i.e., point estimate, obtained from injecting the

fake signals in detector noise and running the pipeline. Note that the recovered masses

can sometimes be significantly different from the injected values, leading to an erroneous

classification of the systems based on point-estimates alone. To alleviate this problem

attempts were made to capture the uncertainty in the recovery of the parameters using
2More precisely, this is true for low-mass systems where the waveform is dominated by the inspiral

phase. For heavier BBH systems, the total mass, m1 +m2, is recovered accurately.
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an effective Fisher formalism (Cho et al., 2013). This method allows us to construct

an ellipsoidal region of the parameter space around the point estimate that captures the

uncertainty in the parameters under the Fisher approximation. This was used to create

confidence regions in the parameter estimation code, RapidPE (Pankow et al., 2015) from

which it was implemented in EM-Bright pipeline to construct 90% confidence regions in

three dimensions – chirp mass, symmetric mass ratio and effective spin. This ellipsoidal

region was populated uniformly with one thousand points (besides the original triggered

point). The fraction of these ellipsoid samples which had m2 < mNS
max

3 constituted the

p(HasNS) value, while the fraction that had non-vanishing disk mass, Mdisk > 0 from the

Foucart (2012) fit, constituted p(HasRemnant) value.

3.3 Machine Learning Based Inference

The method of uncertainty ellipsoids handles the statistical uncertainties of the parameters

from the low-latency search pipelines. However, the underlying Fisher approximation is

only suitable in the case of high signal to noise ratio, when the parameter uncertainties are

expected to be Gaussian distributed (see Sec. II of Cutler & Flanagan (1994) for example).

Also, it is not robust in capturing any bias that a search might have. Such trends are seen,

for example, in Fig. 3.1 where the m1 parameter is recovered to be larger than the injected

value, while the m2 parameter is recovered to be smaller.4

3mNS
max = 2.83M⊙ was used during O2 operations. This is the maximum allowed mass of a NS assuming

the 2H EoS.
4In GW parameter estimation, m1 refers to the primary (larger) mass component while m2 refers to

the secondary (smaller) mass component. Likewise, χz
1 (χz

2) refers to the aligned spin component of the
primary (secondary).
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m2

m1

Actual

m2

m1

Observed

×

map

Figure 3.2 This figure is an qualitative illustration of the binary classification treatment of
the problem. The top panel represent the true parameter space of binaries i.e, the injected
parameters in this case, where the two colors represents satisfying either of the conditions
in Eq. (3.3, 3.4). The lower panel is the parameter space of the recovery i.e., what the
search reports. For the training process, the parameters in the recovered space are the
features, while the label is inferred from the actual parameters. A fiducial detection during
the production running is represented by the × mark in this plane. The probability of
this fiducial detection being either of the two binary classes is determined from the nearest
neighbors in the recovered parameter space.
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3.3. Machine Learning Based Inference

Such uncertainties are more often the dominant source of error in this inference. While

they decrease as the significance increases, they may be pronounced otherwise. Capturing

and correcting such selection effects can be done by supervised machine learning algorithms.

By injecting fake signals into real noise, performing the search, and comparing the recovered

parameters with the original parameters of injections, one gets the map between the injected

and recovered parameters. This is qualitatively illustrated in Fig. 3.2. Given a broad

training set, the supervised algorithm learns this map. The training features are recovered

parameters obtained after running the search, however, the labels of having a NS or remnant

are determined from the injected values. It should be highlighted that we are not using

machine learning to predict the recovered parameters from the injected values, or vice versa.

Rather we use it for binary classification, correcting for selection biases that could have,

otherwise, given an erroneous answer from the point estimate. We return the probability

that the binary had a component less that 3M⊙, which we assume to be a conservative

upper limit of the NS mass, and the probability that it had remnant matter based on the

Foucart et al. (2018) (hereafter F18) expression.

3.3.1 Injection Campaign

In this study, we use a broad injection set that well samples the space of compact binaries.

The distribution of the masses and spins is tabulated in Table 3.1. The injections are

simulated waveforms placed in real detector noise at specific times. The BNS injections

use the SpinTaylorT4 approximant (Buonanno et al., 2009), while NSBH and BBH injec-

tions use the SEOBNR approximant (Bohé et al., 2017). We consider the injections made

in two detector operations from O2 (see Table A.1 for times). The population contains

uniform/log-uniform distribution of the masses, and both aligned and isotropic distribu-

tions of spins. It was used for the spacetime volume sensitivity analysis for the GstLAL

search in Abbott et al. (2019). In particular, injection campaigns were conducted for all

astrophysical categories (BNS, NSBH, BBH) to analyze search sensitivity. We use the
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Chapter 3. Low Latency Inference Of EM Counterparts From LIGO-Virgo

results, as a by product, to train our algorithm.5

For an injection campaign, as this one, fake GW signals are put in real detector noise,

followed by which the search is run, just as in the case of analyzing the production data. The

injections maybe recovered based on the noise properties, and the GW intrinsic (masses and

spins) and extrinsic (distance, sky location etc.) parameters. Since we are using real data,

the dynamic variation of the power spectral density is taken into account (see Table A.1 for

the stretch of data used, and the splitting of the data into chunks). Not all injections are

found by the searches, partly because of the signal strength, or from having them at a sky

location where the detectors are not sensitive. The search reports triggers coincident signal

across multiple detectors, simultaneously getting a high detection statistic. The triggers

are assigned a false alarm rate (FAR) based on the frequency of background triggers that

are assigned an equal or more significant value of the detection statistic. If the time of an

injection coincides with the time of recovery of a trigger, the injection is considered found.

For this study, we further subsample to the set where the FAR of the recovered triggers

corresponding to found injections is less than one per month,

FAR ≤ 1/1 month

= 3.85× 10−7Hz. (3.2)

This leaves us with ∼ 2.0×105 injections to train our supervised algorithm. The breakdown

into different populations is shown in Table 3.1. This FAR threshold is reasonable since the

LIGO/Virgo public alerts in the third observing run consider a false alarm rate threshold

of one per two months further modified by a trials factor which consider the number of

independent searches (see https://emfollow.docs.ligo.org/userguide/).
5The other search in Abbott et al. (2019)(see Sec. VII therein), PyCBC, conducted broad campaigns

for BBH population only. The method presented here, however, can be extended to any general CBC
search given suitable training data.
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Figure 3.3 This is the correlation matrix of the recovered parameters that form our training
set. The masses are expected to be correlated since there is a preference towards detecting
heavier masses. The primary spin shows a strong correlation with the primary mass,
however, the secondary spin recovery is not as correlated with the secondary mass. The
signal-to-noise is mildly correlated with the remaining parameters. as expected since it is
a detector frame parameter independent of the source properties.

3.3.2 Training Features and Performance

For the HasNS quantity, to label an injection as having a NS, we use,

minj
2 ≤ 3M⊙. (3.3)

The value ≈ 3M⊙ has been regarded as a traditional and conservative upper limit for

the NS maximum mass. The limit comes from the causality condition of the sound speed

being less than the speed of light. The exact numbers, however, differ based on how

the high core density is matched to the low crustal density, which is of the order of the

nuclear density. If the low density is known to about twice the nuclear density, one obtains

the ≈ 3M⊙ upper limit (see, for example, Rhoades & Ruffini, 1974; Kalogera & Baym,

1996; Lattimer, 2012). Observational evidences of pulsars obey this limit (see Table 1 of
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Figure 3.4 This figure shows the predictions of the trained binary classifier upon performing
a parameter sweep on the (m1,m2) values. Note that each point on the plots is analogous to
a point-estimate. We feed the trained classifier with arbitrary recovered parameter values
and evaluate the predictions. Left panel: p(HasNS) predictions on the parameter space.
We sweep over the masses, keeping the spin and SNR values fixed in each individual plot,
incrementing the former as we move down. The horizontal line corresponds to m2 = 3M⊙
around which we expect a fuzzy region due to the detection uncertainties. Also, it is to
be noted that the performance does not get affected by much upon increasing spin values
since our original classification did not depend on it. Small changes are, however, expected
due to correlation between the parameters during recovery (see Fig. 3.3). Right panel:
p(HasRemnant) predictions on the parameter space. The region denoting non-zero remnant
matter shows a more constrained classification about presence of matter compared to just
having a NS in the binary. Also, note that unlike p(HasNS), p(HasRemnant) is strongly
affected by the primary spin, as expected. The red curve in this panel represents the
contour Mrem(m

rec
1 ,mrec

2 , χz rec
1 ) = 0M⊙, calculated from recovered parameters using Eq.(4)

of Foucart et al. (2018). Note that the Mrem expression applies to NSBH systems and
require a NS EoS which sets a maximum mass for the NS. In this study, we use the 2H
EoS (Kyutoku et al., 2010) which has a maximum mass of 2.83M⊙. Mass components
above this maximum mass are considered BHs which do not leave remnant matter upon
coalescence. This explains the kink in the red curve in the top two panels.
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Lattimer, 2012). The total mass of the GW170817 system, ≈ 2.74M⊙, also provides an

observational upper limit. Although the system could have undergone prompt collapse to

form a BH, ejecting some mass prior to it (see Sec. 2.2 of Friedman (2018), and references

therein for a discussion). Some GW template based searches, also, regard the 3M⊙ to

be the upper boundary for placing BNS templates (Nitz et al., 2018). Thus, Eq. (3.3) is

conservative and fundamental inference about the presence of a NS. However, we should

mention that the presence of compact objects apart from BNS, NSBH, and BBH which

satisfy Eq. (3.3) would be included in this inference. Our inference is only based on the

secondary mass, and we do not prejudge the nature of the object.

For the HasRemnant quantity, to label an injection as having remnant matter, we use

the F18 empirical fit to check for non-vanishing remnant matter (see Eq. (4) therein for

expression),

Mrem(m
inj
1 ,m

inj
2 , χ

z inj
1 ) > 0. (3.4)

The F18 fit requires the compactness of the NS, and hence an EoS model. For this work,

we use the 2H EoS (Kyutoku et al., 2010), which has a maximum NS mass of 2.83M⊙.

Note that this value is not to be confused with the value mentioned in Eq.(3.3), which

is the value considered for the HasNS categorization. The value 2.83M⊙ for HasRemnant

comes from the usage of a particular model EoS. We use the condition in Eq. (3.4) only

for the injections which have primary mass above the 2.83M⊙ and secondary mass below

this value i.e., NSBH systems based on this EoS. The injections having both masses less

than 2.83M⊙ are labeled as having remnant, while those with both masses above this value

are labeled as not having remnant, based on the assumption that BNS mergers will always

produce some remnant matter, while BBH mergers will will never do so. The 2H is an

unusually stiff EoS resulting in NS radii ∼ 15− 16 km, but it errs towards larger values of

the remnant matter, and therefore is a conservative choice in the sense of not misclassifying

a CBC having remnant matter as otherwise, due to uncertainty in the EoS.
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3.3. Machine Learning Based Inference

We can restrict to the part of the parameter space on which the classification strongly

depends on. We choose the following set as training features:

βββ = {m1,m2, χ
z
1, χ

z
2, SNR} . (3.5)

The reason for using more parameters than those which are used to label the injections is

because the recovered parameters have correlations (see Fig. 3.3). For example, the masses

are expected to be positively correlated since the chirp mass is recovered fairly accurately

and is an increasing function of the individual masses. There can also exist biases in the

recovery due to degeneracies in the space of CBC GW signals. For example, high spin

recovery is associated with high mass ratio. Regarding the choice of the feature set to be

used, the masses and primary spins are natural since they are the intrinsic properties of

the binary on which the source properties depend. As for a detection specific property, we

use the signal to noise ratio, SNR, since it captures the general statistical uncertainty in

the recovered parameters.

With this set, we use the machinery of supervised learning provided by the scikit-learn

library (Pedregosa et al., 2011) to train a binary classifier based on the search results.

Once trained, the classifier outputs a probability p(HasNS) or p(HasRemnant) given ar-

bitrary but physical values of βββ. We tested the performance using two non-parametric

algorithms: KNeighborsClassifier and RandomForestClassifier, both provided in the

scikit-learn library. We found that the former outperforms the latter in our case and

is used for this study. 6 We train it using 11 neighbors – twice the number of dimensions

plus one to break ties. The collection of parameters of a point-estimate is a point in this

parameter space. To obtain the probability of this point having a secondary mass ≤ 3M⊙

or having some remnant matter based on F18 expression, we use the nearest neighbors
6The nearest-neighbor algorithm also fits best with the intuition of a map by which the injected pa-

rameters, with the right labels, are carried over to the recovered set rather than a decision tree made by
relational operations (which look like “linear cuts”) in the parameter space at every branch of a decision
tree.
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from the training set, weighting them by the inverse of their distance from the fiducial

point,

p(HasNS/HasRemnant) =
∑

HasNS/HasRemnant wK∑
wK

, (3.6)

where the numerator (denominator) goes over neighbors that satisfy Eq.(3.3, 3.4) (all

neighbors) of the fiducial point, and wK = 1/dK (wK = 1) for the inverse distance (uniform)

weighting. We also used the Mahalanobis metric (Mahalanobis, 1936) in the space of βββ

where distance, and therefore, nearest neighbors are determined via,

dK = (x − x̃)TΣ−1(x − x̃), (3.7)

where x̃ is the mean and Σ is the covariance matrix of the training set. This is done in the

light of handling correlations. We, however, find that the metric or weighting scheme used

does not affect the result significantly (see Table 3.3.2).

3.3.3 ROC Curve

Threshold TP(HasNS) FP(HasNS) TP(HasRemnant) FP(HasRemnant)
0.07 0.999 0.144 0.995 0.106
0.27 0.995 0.096 0.979 0.040
0.51 0.986 0.061 0.949 0.014
0.80 0.959 0.028 0.894 0.003
0.94 0.900 0.010 0.822 0.001

Table 3.3 The table lists some example values of true positive and false positive numbers
for changing values of the threshold used in Fig. 3.5. The column containing threshold
values correspond to the colobar in both panels. The true positive and false positive values
are to be read off based on HasNS/HasRemnant case.

In the case of perfect performance, one expects the trained algorithm to predict p(HasNS) =

1 (p(HasRemnant) = 1) from the recovered parameters of the fake injections which origi-

nally had a NS (had remnant matter). On the other hand, in absence a NS component
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Figure 3.5 This figure shows the receiver operating characteristic curve for the classifier. It
shows the true-positive against the false positive as a function of the threshold to classify
binaries as having an NS or having remnant matter. Top panel: The left figure is a
histogram of the p(HasNS) values for the injections which represented a binary that had
an NS and for those does that did not. In the limit of perfect performance, the values for
the former (latter) should be at p(HasNS) = 1 (p(HasNS) = 0). The true positive and false
negative performance is decided based on the threshold that is applied to make the decision.
For example, using the value of p(HasNS) = 0.5 (dot-dashed vertical line) would imply that
all the values to the right of the line are decided as having a NS. While such a decision
captures most of the true NS bearing binaries, one can notice a small misclassification
fraction. The right figure shows the fractions as a function of this threshold. Bottom
panel: Similar plots as the top panel except that the values correspond to the binary
having remnant matter after merger.
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we also do not expect any remnant matter and hence expect p(HasNS/HasRemnant) = 0.

In order to test the accuracy of the classifier we trained the algorithm on 90% of the

dataset and tested it on the remaining 10%, cycling the training/testing combination on

the full dataset. The results are shown in Fig. 3.5. While most of the binaries are cor-

rectly classified as shown in the histogram plot (left panel) for the two quantities, there is

a small fraction which does not end up getting perfect score (p(HasNS) = 1). The choice

of threshold value to consider a binary suitable for follow-up operations would result in

an impurity fraction. For example, if we use p(HasNS) ≥ 0.5, shown as a dashed vertical

line in the upper left panel of Fig. 3.5, the contribution of the “No NS” histogram to the

right of that line constitutes the false-positive. The variation of the efficiency with the

false-positive as a function of the threshold applied is shown in right panels of Fig. 3.5.

Some example values are listed in Table 3.3. The threshold could be set depending on the

desired efficiency or, alternatively, the false positive to tolerate. We would like to highlight

that the ROC curve depends on the relative rates of the different astrophysical sources.

In this injection campaign each population has been densely sampled, without considering

the relative rates. However, the current methodology works given an injection campaign

curated based on astrophysical rate estimates of mergers as more observations are made.

The predictions of a parameter sweep on the (m1,m2) values is shown in Fig. 3.5.

Considering, the p(HasNS) plot, a perfect performance of the search would have rendered

the region under the vertical line of m2 = 3M⊙ as p(HasNS) = 1. In reality, we expect a

fuzz around the m2 = 3M⊙ line, as shown in the figure. The p(HasRemnant) is behaving

as expected with respect to the increasing spin values, increasing the region having non-

vanishing remnant mass boundary.
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Chapter 4

Sky Tiling For The Zwicky Transient

Facility

This chapter is reproduced in part from Ghosh et al. (2017),

published under the title Hunting Electromagnetic

Counterparts of Gravitational-wave Events Using the Zwicky

Transient Facility in Publications of the Astronomical

Society of the Pacific © 2017 The Astronomical Society of

the Pacific. This is an author-created, un-copyedited version

of an article accepted for publication in Publications of the

Astronomical Society of the Pacific. The publisher is not

responsible for any errors or omissions in this version of the

manuscript or any version derived from it. The Version of

Record is available online at

https://doi.org/10.1088%2F1538-3873%2Faa884f.

Sky-localization of gravitational wave (GW) events detected by LIGO-Virgo interfer-

ometers often cover hundreds of square degrees. The first direct detection of GW from a

coalescing binary black hole (BBH), GW150914, was localized in the sky (90% confidence
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Chapter 4. Sky Tiling For The Zwicky Transient Facility

interval) over an area of 630 square degrees at the time of the alert (Abbott et al., 2016b).

Events with a lower signal to noise such as GW151226, have larger sky-localization area,

in excess of 800 square degrees (Abbott et al., 2016a). The sky-localization for triggers

with lower significance (which could be the case for non-BBH triggers) could potentially

be larger, often spanning over a thousand square degrees. The Zwicky Transient Facility

(ZTF) (Bellm, 2014) with its ∼ 50 square degrees field-of-view (FOV) would need tens

of pointings to get a single observation over the 90% credible region. We expect ZTF to

reach a limiting magnitude of r = 20.5 in 30 seconds. Kilonovae, which are EM emissions

from r-process nucleosynthesis triggered by coalescing binaries of neutron star(s) (Li &

Paczyński, 1998), continue to have light-curve models with a lot of uncertainties. Esti-

mates of the absolute magnitudes of kilonovae range from −12 to −15 (Roberts et al.,

2011; Tanaka & Hotokezaka, 2013). For sources at 200 Mpc this corresponds to apparent

magnitudes of ∼ 21.5 to 24.5 in the R-band. Thus if the desired depth is higher than

the standard depth of r = 20.5 for gravitational-wave events, much larger integration time

could be required. Furthermore, a single observation may not be enough to identify tran-

sients. Observations at two different epochs, preferably with two different filters will most

likely be necessary to get sufficient photometric information necessary to discern the actual

electromagnetic (EM) counterpart of the gravitational wave triggers from a myriad of false

positive (Cowperthwaite & Berger, 2015). The first step towards such observation is an

efficient sky-tiling method that will allow us to set up an observing strategy for any given

event. In this paper, we present a sky-tiling method that is applicable for telescopes with

wide fields of view and fixed tile coordinates, where, the fields at which the telescopes

can point to are predefined. This is helpful for image subtraction required for transient

identification. We used specifications of the ZTF telescope obtained from Bellm (2014) for

this work. Note that this is a sky-tiling strategy study, and therefore we did not take into

account observing conditions such as geographic location of the telescope, the visibility

conditions like phases of the moon and weather. Some of these aspects have been studied
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in the recent past (Rana et al., 2017; Srivastava et al., 2017). A detailed work related to

the intermediate Palomar Transient Factory is presented in chapter 5.

4.1 Tiling Strategies

Sky-localization information of the alerts from LIGO-Virgo comes in the form of HEALPix

(Hierarchical Equal Area isoLatitude Pixelisation) sky-map Singer et al. (2016b). Each

pixel has the probability of the gravitational-wave source being located at the center of the

pixel, computed from the GW strain data of the interferometer. The observation of the

sky-localization regions involves strategically tiling the sky, where each tile corresponds to

the footprint of the field of view of the telescope. The localization probability contained in

a single tile is given by the sum of all the pixels that lie within its boundaries. We describe

two strategies for sky-tiling.

4.1.1 The Contour-covering Strategy

This is the most commonly used strategy when it comes to EM follow-up of GW triggers

Kasliwal et al. (2016); Soares-Santos et al. (2016); Smartt et al. (2016). It is also a sub-

optimal one, especially when the tile coordinates are predefined on a fixed grid in the sky

Ghosh et al. (2016). However, given the simplicity of the concept, we discuss this first.

From the sky-maps one can construct the smallest 90% confidence interval for the source

localization. If we enclose this region(s) 1 by contour(s), we can define a 90% credible

region resembling patch(es) in the sky. Contour-covering tiles (CC-tiles), as the name

suggests, are the smallest number of tiles that are required to enclose this 90% credible

region. For ZTF, the tile coordinates are predefined in the sky, thus, the set of tiles that

cover a given 90% confidence interval is unique. Note that the CC-tiles will always cover

more than 90% localization probability due to finite size of the telescope’s FOV. However,
1Note that the smallest 90% confidence region might be multi-modal over the sky.
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Figure 4.1 Planned tile locations for ZTF: The red points are the tile centers and the blue
squares are the tile boundaries. We do not show the tile boundaries for the tiles at large
declination values (near the poles) as the boundaries (approximated as sides of trapezoids)
get severely distorted near the poles.

any additional localization that the CC-tiles cover is incidental and is most often not the

best use of additional observation time or the ideal way to cover an additional area.

4.1.2 The Ranked Tiling Strategy

There exists a more natural way of tiling the sky that suits any particular telescope whose

observing fields are predetermined. Instead of covering the contour, we can compute the

sky-localization probability enclosed by all the tiles in the sky shown in Fig. 4.1. We then

rank the tiles based on their localization probabilities and then choose from the top of these

ranked tiles the set of tiles whose cumulative probability sum is ≥ 90%. We implemented

two distinct algorithms to do this:

Tagging pixels to tiles

Two observed facts about the ZTF tiles motivated this method. First, the ZTF tiles are

placed in such a way (Fig. 4.1) that there are no gaps in the sky. This means that there are

no orphan pixels, i.e., every HEALPix pixel will be within a tile. Second, ZTF’s rectangular

56



4.1. Tiling Strategies

FOV on a spherical sky-surface means that each tile will always have some overlap with

neighboring tiles, with the overlap getting larger near the celestial poles. Both of these

features of the ZTF tiles help us to adopt an algorithm, where we loop through the pixels,

and for each of them we search for the nearest tile center. We assign each pixel to its

nearest tile center and then compute the accumulated probability for each tile. This leads

to the required ranked tiles, which are the list of tiles in descending order of probability

values contained within the tiles. Looping over the pixels ensures that we are not double

counting pixels in the overlap regions.

Greedy algorithm

This is a modification of the algorithm above:

1. For each tile, integrate the probability over the tile and sort the tiles based on these

values.

2. Beginning with the highest value, include that tile in the list of those to cover and

increment the summed probability.

3. Zero out the probability for that whole tile so that the sky area is not repeated

4. Recompute the integrated probabilities with the updated sky map, resort and repeat

step 2 until the required probability is reached.

Ranked tiling is however computationally slower than the contour-covering method in se-

lecting the tiles required to cover 90% localization. This is because in the contour covering

method we know the location of the pixels of interest as shown in Sec. 4.1 based on the

contour of the confidence interval. If we can label these pixels (using a pixel ID for exam-

ple), then all that is required beyond that is to find the tiles that have these labeled pixels.

However, speed of the ranked tiling can be vastly improved by pre-computing which pixels

belong to each tile. This mapping of the pixels to tiles on the predefined grid needs to be
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done once for a given telescope. For example, the densest (hence most computationally

expensive) sky-maps require close to an hour for the computation of the ranked tiles. How-

ever, we achieve a speed up in the computation by 100 times upon pre-computation, making

the computation time requirement comparable to the contour-covering method. Thus, the

present analysis uses the pre-computation mentioned above. We show in Fig. 4.2 the per-

formance of the CC-tiling and ranked-tiling strategies in generating the ZTF pointings for

a simulated event.

4.2 Contour Covering vs. Ranked Tiling

Having described the two methods of tiling (ranked and contour covering), we present

the result of a study that was conducted over 475 simulated GW events. These events

were obtained from the sky-localization study of binary neutron star coalescences from the

simulation of 2016 LIGO-Virgo noise data Singer et al. (2014), which is a mix of two- and

three-detector networks appropriate for early ZTF operations. In Fig. 4.3, we compare the

area of the 90% credible region covered by the ranked-tiling strategy with that needed to

actually cover the simulated GW event location. If the sky-localizations are consistent, then

∼ 90% of the events, depicted by red stars, should be below the black line. For comparison

we also include the sky-localization searched area vs 90% coverage in blue dots. This reflects

the consistency of the sky-maps themselves. We find that 89.6% of the black crosses, and

88.9% of the red circles fall below the dashed black line. Thus, the localization probability

enclosed in the GW sky-maps is consistent with the actual location of the source, and the

ZTF tiles gives reasonably similar results (slightly worse due to discrete size FOV of the

telescope which is significantly larger than the unit HEALPix pixel size).

We then compared the ranked-tiling and contour-covering algorithms for all the 475

events using expected ZTF tiles. To quantify the comparison, we compute the number of

tiles required by the two methods to cover the 90% localization confidence interval for the
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Figure 4.2 Comparison between ranked tiles (top) and contour-covering tiles(bottom) for
a simulated gravitational-wave sky-localization (event number 632720 from Singer et al.
(2014)). In this case we note that the 15 ranked tiles (blue) required to cover the 90%
confidence interval in sky-localization are a subset of the 26 contour-covering tiles (black).
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Figure 4.3 Comparison of sky area searched to cover 90% of the probability using a ranked-
tiling strategy (horizontal axis) with the area searched to actually cover the simulated
gravitational wave event (vertical axis). This is shown for both the original location. The
blue dots correspond to the original sky-localizations data obtained from the HEALPix
sky-maps (blue dots) and the ZTF tiles (red stars).
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Figure 4.4 Cumulative histogram of the ratio of NX to Nlim for different strategies and
tile sets: contour-covering (solid blue), ranked tiling with one tile set (solid red), ranked
tiling with the smallest of two sets (red dashed) and ranked tiling with a combined set
(red dot-dashed). Ranked tiles with single smallest set shows the case where ranked-tiling
algorithm was implemented for two sets of tiles and the smallest was chosen. Ranked
tiles combined set is the case where we implemented the greedy ranked-tiling algorithm to
obtain the ranked-tile set from the two sets of tiles.
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Figure 4.5 Cumulative histogram of coverage fraction as a function of number of tiles
covered according to various tiling methods. We note that all the ranked-tiling strategies
give consistently better result than the contour-covering technique.

ranked tiles (NRT ) and the 90% credible region for the contour-covering tiles (NCC). For

each event we also define a packing-fraction, which is the limiting number of tiles required

to cover the 90% confidence interval Nlim,

Nlim =
Npix × Apix

Afov
, (4.1)

where Npix is the number of HEALPix pixels in the 90% localization region, Apix is area

of each pixel, together giving the area of the 90% localization region, and Afov is the area

of the field-of-view of the telescope. Dividing NCC and NRT by Nlim provide a metric for

comparison of the tiling methods with the minimal limiting case. This quantity is plotted

on the horizontal axis of Fig. 4.4 where we histogram the result of the tiling by the two

methods. Larger values of NX/Nlim, where X = CC or RT , indicate greater deviation from

the limiting value and hence poorer coverage by the tiles. The median value of NX/Nlim

for the ranked tiles is 1.91, compared to 3.89 for contour-covering tiles. This indicates that

for the binary neutron star sky-localizations obtained from Singer et al. (2014) the ranked-

tiling strategy’s performance is ∼ 2 times better than the CC-tiling. Note that in Kasliwal
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Tiling strategy Median NX/Nlim

Contour cover 3.89
Contour cover (optimized) 2.60
Ranked-tiling 1.91
Ranked-tiling (smallest ) 1.86
Ranked-tiling (combined) 1.79

Table 4.1 The table shows the performance of the different tiling strategies to cover the
gravitational wave localizations.

& Nissanke (2014) the factor NCC/Nlim was computed to be around 2.6, although those

authors used a different set of simulations and optimized set of CC-tiles. The CC-tiles in

our study does not allow for any optimization and are closer to the strategy that will be

adopted by ZTF.

ZTF is expected to include two sets of tiles, with the second set offset from the first

by half a tile in Right Ascension. We conducted the same analysis as above for the two

tile-sets. For each event we conducted the study using the two sets independently and

chose the one that gives the smaller number of tiles, with a median NRT/Nlim of 1.86: just

a 2.6% improvement over the basic ranked-tiles case. If we apply the greedy algorithm

to select tiles from both the sets simultaneously, the value of NRT/Nlim becomes 1.79: a

6.7% improvement over the basic ranked-tiles case. It is clear that there is limited room

for further improvement, as the ratio is already getting close to 1. We also show the

cumulative histogram of the number of tiles required to reach a given coverage fraction for

all the method in Fig. 4.5. We note that the simple ranked-tiling method gives reasonably

similar results using a single set to those incorporating the two tile sets to create the ranked

tiles. In Table 4.1 we summarize the result of this study. The first column shows the tiling

strategy, where ranked-tiling (smallest) is the strategy where we use two sets of tiles and

find the ranked tiles for both the sets independently, then we choose for each event the set

with the minimum number of tiles. Ranked-tiling (combined) is the strategy where the two

sets of tiles were used together to find a single set of non-overlapping ranked tiles for each
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Figure 4.6 Assumed integration time vs. limiting magnitude for ZTF, based on the g- and
R-band PTF data. PTF g-band and R-band are shown by the green and red solid lines
respectively. We converted the R-band limiting magnitude to r-band limiting magnitude
using Lupton (2005). We also show the expected S/N ∼

√
t behavior for comparison.

event. Contour covering (optimized) is the number obtained from Kasliwal & Nissanke

(2014). The second column shows the median of NX/Nlim for each method. Note that this

is a separate simulation of binary neutron star coalescence, conducted with LIGO-Virgo

design sensitivity noise curve. Thus, this number is purely for reference of previous studies

and should not be compared quantitatively with the other numbers in this study.

4.3 Depth vs. Coverage

We have restricted our analysis until now to coverage of sky-localization regions. Given

the large size of the GW sky-localizations, covering the 90% confidence interval in general

could be a challenging task on its own. However, any statement on detectability of EM-

counterpart also needs to incorporate discussion of depth of the observation. For the

present analysis we use the PTF integration time-limiting magnitude data as a proxy for

the ZTF analysis; while ZTF may go somewhat deeper in the same observing time due to

an improved detector, assuming the PTF characteristics will be a conservative assumption.
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Figure 4.7 The detection fraction as a function of the integration time per pointing. The
total observation time is two hours. Based on results obtained from Rosswog et al. (2017)
we chose Mg −Mr = 1.5. We present the results for four model lightcurves, Mr = −12.5
(in magenta), −13.5 (in blue), −14.5 (in green) and −15.5 (in red). The dotted lines
are for corresponding Mg = Mr + 1.5. The vertical black lines denotes the integration
time required to reach maximum detectability. If the maximum is not reached during
the observation then we set the integration time maxima at 20 minutes. If kilonovae are
intrinsically dim, observing deeper improves detection efficiency, while for models that
allows for brighter light-curves, we observe that a detectability-maxima is reached in 100-
300 seconds of observation.

We show in Fig. 4.6 the relationship between these two quantities. Note that PTF uses g-

band and R-band magnitudes. We converted the R-band magnitude to r-band magnitude

by using conversion relation provided by Lupton (2005) 2. If we know the distance of

the injected BNS sources and their (intrinsic) absolute magnitudes, we can compute their

expected apparent magnitude. Sources whose apparent magnitudes are lower than the

limiting magnitude are detectable if the source location is covered by the tiles. In this

work, we used a set of absolute magnitude models for kilonovae from Rosswog et al. (2017).

Specifically, we noted that an absolute magnitude difference of ∼ 1 − 2 between Mg and

Mr is predicted theoretically for early-time kilonovae light-curves. Thus, in our analysis,

we did the following:
2https://www.sdss3.org/dr10/algorithms/sdssUBVRITransform.php
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Figure 4.8 The detection fraction as a function of the integration time per pointing. The
total observation time is four hours. The color and the style of the lines follows the
convention set in Fig. 4.7.

• We consideredMg−Mr = 1.5 and chose four values ofMr : (−15.5,−14.5,−13.5,−12.5)

• Assumed three total observation times of two hours, four hours, and six hours, mo-

tivated by typical observation duration that may be available to observers in a given

night of observation. These correspond to Fig. 4.7, Fig. 4.8 and Fig. 4.9 respectively.

• Scheduled the observation based on the rank, starting with the highest ranked tile

until total observing time is exhausted or the location of the event is found (i.e., the

event location is within the ranked tiles that have been covered).

• The time spent per tile was progressively increased from 30 seconds (the shortest

expected ZTF exposure) to 20 minutes.

The source is considered detected when the source location is covered by and observed

at a depth greater than what is required to reach the source at the injected distance (for

the given model of absolute magnitude). Since, too large of an integration time would

not allow us to cover the localization area efficiently, and too wide an attempted coverage
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Figure 4.9 The detection fraction as a function of the integration time per pointing. The to-
tal observation time is six hours. The color and the style of the lines follows the convention
set in Fig. 4.7.

would prevent us from reaching the required observation depth, there may exist an optimal

integration time for such observation. The goal of this study is to search for this optimal

integration time for observation of GW triggered kilonovae with expected brightness. In

Figs. 4.7, 4.8, and 4.9 we show the results for all the cases

We observe that if kilonovae are intrinsically brighter, we will be able to observe the

sky-localizations with lower integration time (∼ 100 − 300 seconds) to achieve maximum

detection efficiency. With increasing total observation time, we can afford to increase the

integration time to get to higher detection efficiencies that were inaccessible for observation

scheduled for shorter total times. This can be seen in the right-ward progression of the

peak of each curve from Fig 4.7 to Fig. 4.9. If kilonovae are intrinsically weaker, then we

need to invest longer time per pointing, for any given total observation time, to reach a

detectability-maxima. For the dimmest models in our experiment, we did not find a max-

ima within 20 minutes of per-pointing integration time. For such cases, we constrained

the maxima to the detection efficiency value corresponding to integration time of 20 min-
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Figure 4.10 The maximum detectability fraction as a function of the integration time
required to reach this detectability fraction. The red and green lines are for r−band
filters and g−band filters respectively. The solid, dashed and dotted lines show the varia-
tion of the maximum detectability as a function of integration time for two, four and six
hours of observations respectively. The circle marker shows the maximum detectability for
Mr = −15.5, diamond marker shows the same for Mr = −14.5 and the star and triangle
markers shows the maximum detectability for Mr = −13.5 and −12.5 respectively, with
the corresponding values for Mg obtained by setting Mg =Mr + 1.5.

utes. In Fig. 4.10 we summarize the results of this analysis, where we plot the maximum

detectability fraction as a function of the integration time required to reach maximum

detectability for all the cases discussed above. Thus, we note that a minimum of ∼ 100

seconds of integration time is essential for ZTF to achieve maximum detectability of the

counterparts of GW if kilonovae are intrinsically bright. Greater integration times are

required to achieve the detection efficiency maxima if kilonova brightness is more modest.

In this study we have made two very simplifying assumptions (other than the assump-

tions on the absolute brightness of the sources). Firstly, we did not include any light-curve

evolution. This can be easily incorporated. However, given the time-scales (≤ 6 hours) we

are considering in your analysis, including more information about the light-curves which

varies in many hours to days time-scale does not seem very essential. Secondly, once again
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we assumed no constraints based on day-night or part of the sky visible from a given lo-

cation. We also did not consider that the sky-localization itself will be moving across the

sky over the course of the observation. These will be addressed in our future studies.
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Chapter 5

Toward Rate Estimation For

Transient Surveys

This chapter is reproduced in part from Chatterjee et al.

(2019b), which was published under the title Toward Rate

Estimation for Transient Surveys. I. Assessing Transient

Detectability and Volume Sensitivity for iPTF in The

Astrophysical Journal © 2019 The American Astronomical

Society.

5.1 Motivation & Challenges

The last two decades have brought about a revolution in the field of time-domain optical

astronomy with experiments like Sloan Digital Sky Survey, (Sako et al., 2007) the Palomar

and intermediate Transient Factory (PTF), (Law et al., 2009) the Catalina survey, (Drake

et al., 2009) Pan-STARRS, (Kaiser et al., 2010) the ATLAS survey, (Shanks et al., 2015)

Zwicky Transient Facility (ZTF) (Kulkarni, 2016) and the All-Sky Automated Survey for

Supernovae (Holoien et al., 2019) performing all sky searches with rolling cadence to locate
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transients. The timescale of these transients varies from a few minutes, like M dwarf flares,

up to a few weeks or months, like supernovae.

Studying transient rates is essential to understand the progenitor systems and envi-

ronments they occur in. For example, while core-collapse supernovae are associated with

more recent massive stars, type Ia supernovae occur in both younger and older popula-

tions (Maoz & Mannucci, 2012). The distribution of transients in space and time helps us

understand metal enrichment, galaxy formation and the overall evolution of the universe.

The classification and compilation of transients from the surveys provide a rich dataset

which can be used to make statements about their rates and population. Next generation

surveys like the Large Synoptic Survey Telescope (Ivezić et al., 2008) are expected to make

significant additions to already existing catalogs with wide-deep-fast searches.

A quantitative assessment of the transient detectability by the survey is an essential

component required to study transient rates. A survey could miss the observation and

confirmation of transients for reasons of being intrinsically dim, occurring when the in-

strument was not observing, poor weather conditions and so on. Therefore, it is crucial to

understand the circumstances under which the survey is sensitive in recovering transients.

The transient detectability leads to the calculation of a spacetime sensitive volume to par-

ticular to the calculation of a spacetime sensitive volume to particular transient types.

This depends on properties of the source and its environment, like its brightness or its host

galaxy brightness. The instrument cadence and observing schedule are also expected to

contribute significantly. A fast cadence is necessary to capture the evolution of, say, an M

dwarf flare which last a few minutes, as opposed to a supernova, which evolves for a couple

of months.

We consider the intermediate Palomar Transient Factory (iPTF), the successor of PTF

and predecessor of ZTF. As a first step, we assess the efficiency of the real-time image

subtraction pipeline. We insert fake transients with varying properties into the original

iPTF images and then run the pipeline to test recovery. This forms our single-epoch
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detectability. While this step is similar to the work done for the PTF pipeline by Frohmaier

et al. (2017), our analysis differs in final data product for the single-epoch detectability.

We make use of supervised machine learning to train a classifier on missed and found

fake transients reported by the pipeline to make predictions about the detectability of an

arbitrary transient. For completeness, we note that the performance of the survey in the

galactic plane is expected to be different from the high latitude fields and requires a separate

analysis. The analysis presented in this paper could be applied to only galactic fields to

obtain the detection efficiency in the galactic plane. Here, we study the detectability in

the high latitude fields or, alternatively, of transients of extra galactic origin. Under such a

consideration, this step is independent of the transient type. The multi-epoch observation

and detection of a transient can be done using the single-epoch detectability at each epoch.

The use of machine learning in this case has advantages in the areas of computing time,

determination of systematic errors, ease of improving accuracy at the cost of computing

time when required, and handling correlation between training parameters. As a second

step, we consider the transient lightcurve evolution. We simulate transient lightcurves in

spacetime and use the iPTF observing schedule in conjunction with lightcurves in spacetime

and use the iPTF observing schedule in conjunction with this classifier to get the epochs at

which the transient is detected. We restrict to type Ia and type IIp supernova lightcurves

in this work, the former being the primary result. For the type Ia supernovae (SNe Ia), we

impose a minimum number of five epochs of detection brighter than 20th magnitude with at

least two during the rise and at least two during the fall of the lightcurve to be a “confirmed”

SN Ia. The simulated SNe Ia are used to do a Monte-Carlo integral over spacetime to obtain

the space-time SNe Ia are used to do a Monte-Carlo integral over spacetime to obtain the

space-time volume sensitivity. For the type IIp supernovae (SNe IIp) lightcurves, the

procedure is the same, except we consider a IIp lightcurve recovered if there are at least

five epoch observations brighter than 20th magnitude within a span of three weeks during

the “plateau” phase.
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5.2 The intermediate Palomar Transient Factory

The intermediate Palomar Transient Factory (iPTF) was a survey operated at the Palomar

Observatory between late 2012 and early 2017. It had two filters: R (centered at 6581 Å)

and g (centered at 4754 Å). It performed fast-cadence experiments resulting in about

300 − 400 exposures on a good night with a nightly output of about 50 − 70 GB. The

images were processed by the real-time image subtraction pipeline to report transients

within minutes latency. Details are presented in Nugent et al. (2015) and Cao et al.

(2016). Here, we give a brief description.

The iPTF real-time image subtraction pipeline (henceforth ISP) was hosted at the

National Energy Research Scientific Computing Center (NERSC). A complete exposure of

11 working CCDs was transferred to NERSC immediately after data acquisition to search

for new candidates. The pipeline preprocessed the images to remove bias and correct for

flat-fielding. It solved for astrometry and photometry, and performed image subtraction

using the HOTPANTS algorithm (Becker, 2015). New candidates were assigned a real-bogus

classification score between 0 and 1 corresponding to bogus and real respectively (Bloom

et al., 2013). Additionally, candidates would be cross-matched to external catalogs to

remove asteroids, active galactic nuclei (AGNs) and variable stars.

5.3 Single-epoch Efficiency

In order to quantify the performance of the iPTF ISP, we perform an end to end simulation

using fake transients. We inject fake point source transients in the iPTF images, and then

run the pipeline on both the original images and the faked ones. The transients are either

missed or found by the ISP. This forms the detectability. We find the efficiency by binning

up the parameter space and taking ratio of found to total transients in them. Regarding

the mnemonic in subsequent sections, we make a distinction between the terms detectability

and efficiency. Detectability is a decision taken in the sense of a yes/no, while, efficiency
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Figure 5.1 An example of an injected transient and the corresponding difference image
thumbnail obtained after the image subtraction. The leftmost thumbnail (both panels)
is from the original image, the middle thumbnail is a result after a transient is injected,
the right thumbnail shows the difference image. The location of the cross-hair is the
approximate location where the transient was injected.

is the ratio mentioned above. The former is a binary decision, either of {0, 1}, while the

latter is a quantity ∈ [0, 1].

5.3.1 Point Source Transients

We follow the clone stamping technique used by Frohmaier et al. (2017) for PTF to perform

our fake point source injections. The parameters describing these fake transients are single

epoch - they represent the intrinsic properties of the object and observing conditions at a

particular epoch. In other words, here we assess the detectability given the transient was

in the field of view of the instrument.

The computational cost for performing injections into all iPTF images and running ISP

on them is significant. Therefore, we carry out the process in a single iPTF field 100019.
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We choose this field since the distribution of transient population in this field is an accurate

representation of the transient population in the sky observed from Palomar (see Fig. 1 of

Frohmaier et al. (2017)).

The fake injections are bright stars chosen from each original image. These are objects

having the following properties:

m∗ ∈ [13.5, 16] ; CLASS_STAR ∈ [0.5, 1.0]

FWHM ∈ [1.0, 3.0] ; ELLIP ∈ [0.0, 0.3].

(5.1)

Here m∗ is the apparent magnitude, CLASS_STAR is a quantity having a value between 0

(not star-like) and 1 (star like). FWHM is the full width at half maximum, in pixels. ELLIP

is the ellipticity of the object. These quantities are reported after running SExtractor

(Bertin, E. & Arnouts, S., 1996) on the original images. The reason we choose objects in

this range is because we want the point spread function (PSF) to be well estimated, which

is the case for bright stars having a high signal to noise ratio ≳ 100 (m∗ ≤ 16). At the

same time we want to avoid pixel saturation, and therefore select stars with m∗ ≥ 13.5.

Objects falling in a 50 pixel wide edge boundary are left out since they could potentially

be affected by image subtraction artifacts.

A square of side length ∼ 9 arc seconds 1 , centered around the star and local-

background subtracted, constitutes a stamp. A stamp containing any other object apart

from the source star is avoided. The local-background refers to that reported by SExtractor.

The stamp is scaled by an appropriate scaling factor to create a point source transient of

desired magnitude. Each transient is allocated a host galaxy 2. We follow Frohmaier et al.

(2017) regarding the location in the host and place our stamp at a random pixel location

within a elliptical radius 3 of 3 pixels. This value contains sufficient amount of the flux
1More precisely, 9 pixels. 1 pix. ≈ 1.01′′.
2About 50 fake transients were injected in each image; 90% having an associated host galaxy, 10% away

from any host galaxy. In this study we only use the injections in host galaxies.
3KRON_RADIUS in SExtractor
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from the galaxy.

This procedure is performed on all the images in field 100019 of iPTF, ten-fold, with a

total of ≈ 2.24 × 106 injected transients. The transient magnitudes are chosen uniformly

between 15th and 22nd magnitude with the constraint that the stamp is one magnitude

fainter than the original star. We only re-scale to fainter magnitudes because we do not

want artifacts like noise residuals from the average background subtraction to be scaled up

as noise spikes.

Therefore, minj follows:

minj ∼


U(15, 22) ;m∗ ∈ (13.5, 14)

U(m∗ + 1, 22) ; otherwise
. (5.2)

An example of an injected transient in a galaxy and the new object recovered by the ISP

is shown in Fig. 5.1.

5.3.2 Recovery Criteria

The recovery efficiency ε is defined as the ratio of the number of injections recovered in

a part of the parameter space to the total number of injections in that part. Let our

injections be described by parameters λλλ, then:

ε(λλλ) =
Nrec(λλλ)dλλλ
Ntot(λλλ)dλλλ

(5.3)

The quantity in the numerator and denominator is the number of recovered and total

injections respectively ∈ (λλλ,λλλ+ dλλλ). Here λλλ includes both intrinsic source properties of the

transient and its environment along with the observing conditions. Examples of intrinsic

properties include the magnitude of the transient and the surface brightness of the host

galaxy where as those for observing conditions include airmass or sky brightness. While

we control fake transient brightness, the observing conditions are those of the images
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Figure 5.2 The figure shows the cumulative histogram of the quantity ΘIQ, defined as the
ratio between the astronomical seeing of the image to that of the reference image as given
in Eq.(5.4). The threshold value Θ99%

IQ = 0.48 corresponds to the 99% percentile. We place
a constraint of this value when the objects recovered by the pipeline are spatially cross
matched to an injected transient.

themselves. Since images across the full survey time are used, the parameter space of

the observing conditions is automatically spanned. We determine recovery based on the

spatial cross matching of the injections with new objects reported after running the ISP.

To determine the tolerance to be imposed during the cross-matching, we define ΘIQ as

ΘIQ =

√
(xinj − xrec)2 + (yinj − yrec)2

Φ
, (5.4)

where ΘIQ is the distance between the injected and the recovered sources in units of the

seeing, Φ.

We choose the threshold of ΘIQ such that 99% of the found injections lie within this

threshold, which has a value of Θ99%
IQ = 0.48 (see Fig. 5.2). We also impose real-bogus score

threshold, RB2 ≥ 0.1 on the new object. This threshold on RB2 is inspired from survey

operation thresholds. Out of the ≈ 2.24× 106 injections, we recover ≈ 1.62× 106.
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5.3.3 Marginalized Efficiency

In this section we discuss the results of the injection campaign mentioned above. We first

show some of the single parameter efficiencies as a comparison with those obtained for PTF

(see Fig. 5 of Frohmaier et al. (2017)). For the joint multi-dimensional detectability, our

analysis differs from Frohmaier et al. (2017). We treat the problem of detecting a transient

in a single epoch as a binary classification problem and use the machinery of supervised

learning to predict whether a transient is detected in that epoch.

5.3.4 Single Parameter Efficiencies

The single parameter efficiency is the marginalized version of Eq. (5.3). Suppose our

parameter of interest is θ and the other “nuisance” parameters are given by γγγ, such that

in Eq. (5.3), λλλ = {θ,γγγ}. The single parameter efficiency is

ε(θ) =

[∫
γγγ

Nrec(θ,γγγ)dγγγ
]

dθ[∫
γγγ

Ntot(θ,γγγ)dγγγ
]

dθ
. (5.5)

In Fig. 5.3 we show the single parameter efficiencies. The expected trend of missing

faint transients is seen in the plot for minj. We find that the recovery efficiency starts

to drop for transients by the 20th magnitude and sensitivity is almost nil by the 22nd

magnitude.

5.3.5 Multi-dimensional Detectability

In this section, we make a selection of parameters from the full parameter set, λλλ, to

those on which the detectability depends strongly. In other words, the detectability is a

multi-variate function of all the possible parameters which influences the detection of a

transient. We identify the minimal set which captures maximum variability. There can be
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Figure 5.3 The filter specific single parameter efficiencies, defined in Eq. 5.5 are shown
here. The top two panels are the intrinsic properties of the transient while the remaining
are observing conditions.
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Figure 5.4 Comparison between single parameter efficiency of transient brightness as pre-
dicted by trained single-epoch classifier in Eq. (5.7) versus the distribution obtained from
the ISP. The original curve has ∼ 106 points used to train the classifier. The ML curves
are made by binning the predictions made by the single-epoch classifier on a few thousand
random points sampled from the parameter space of the injections (see Eq. (5.6)). Two
cases for 103 and 104 points are shown. We see that the behavior of the classifier con-
verges to that of the ISP within a small sample size (≲ 1% compared to the size of original
distribution; see Appendix B for other parameters)

correlations among a pair of parameters. For example, the sky-brightness, Fsky and the

limiting magnitude, mlim, are correlated - a bright sky hinders the depth and results in a

low value of limiting magnitude. The variation of the marginalized efficiencies shown in

Fig. 5.3 assist us with the choice of such a parameter set. Since the trend in the single

parameter efficiencies are similar to those from PTF, we select the parameters considered

by Frohmaier et al. (2017) with a minor difference in the usage of the galaxy surface

brightness directly, as used in Frohmaier et al. (2018), in place of the Fbox
4 parameter

used in the former. This is justified because our fakes were injected in galaxies.
4Background subtracted flux in a 3x3 box in the location of transient.
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Training % Testing % Avg. mis-classification
75 % 25 % 5.776 %
80 % 20 % 5.760 %
85 % 15 % 5.745 %
90 % 10 % 5.758 %

Table 5.1 The table shows the average misclassification obtained for the KNearestNeighbor
classifier. The complete dataset contains ≈ 2.24×106 fake point source injections of which
≈ 1.62 × 106 (≈ 6.2 × 105) are found (missed) by the ISP. This is split into respective
training and testing fractions. The right-most column shows the fraction of the testing
set for which the predictions made by the classifier, trained on the corresponding training
fraction differed from the actual value. The misclassification does not change significantly
as the size of training data is varied and is attributed mostly to systematics. We quote a
conservative value of 6% as the systematic uncertainty of the classifier.

We choose, the following set to represent the dependence of detectability:

βββ = {m,Sgal, Fsky,ΦIQ,mlim}. (5.6)

Here m is the apparent magnitude of the transient, Sgal is the host galaxy surface bright-

ness, Fsky is the sky brightness, ΦIQ is the ratio of the astronomical seeing to that of the

reference image and mlim is the limiting magnitude. The quantities m and Sgal are natural

in capturing detectability. Sky brightness affects the detectability in a strong way, as is

apparent from Fig. 5.3. The ΦIQ parameter captures the variability of the atmosphere.

Finally, the limiting magnitude, mlim, although correlated with Fsky, captures longer ex-

posure times and status of instrument electronics.

With this set, we use the machinery of supervised learning provided by the scikit-learn

library (Pedregosa et al., 2011) to train a binary classifier based on the results of the ISP.

Once trained, the classifier outputs a probability of detection given arbitrary but physical

values of βββ. We denote this trained classifier by ε̂:

ε̂ = ε̂(m,Sgal, Fsky,ΦIQ,mlim). (5.7)
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The scikit-learn library provides a suite of classifiers. We choose the non-parametric

KNearestNeighbor classifier based on speed and accuracy given our large volume of train-

ing data. Our complete dataset comprises of ∼ 2.24 × 106 fake point source injections of

which ∼ 1.62×106 (∼ 6.2×105) are found (missed) by the ISP. We train the classifier using

11 neighbors - twice the number of dimensions plus one to break ties. The observation of

a fiducial transient is a point in this parameter space. To decide if that point is “missed”

or “found”, we use a majority vote from the nearest 11 neighbors. To cross-validate the

performance, the dataset is split into a training set containing 90% of the full dataset, and

a testing set containing the remaining 10%. We verified that increasing the number of

neighbors does not significantly increase the correctness of predictions made by the classi-

fier. We note that one could use a different threshold for this classification. For example,

a different option could be to use greater than 3 “found” neighbors to call the arbitrary

point as found. However, it comes at a cost of misclassification. From the predictions of the

classifier on the testing set, we find the systematic uncertainty of the classifier to be ≈ 6%

i.e. 6 out of 100 predictions made by the classifier is expected to be either true negative

or false positive cases. The result does not change much if the size of the training and

testing set is varied (see Table 5.1). A comparison between the predictions made by the

trained classifier and the original ISP efficiency with the transient magnitude is presented

in Fig. 5.4. We see that the behavior of the ISP is reproduced by feeding the classifier with

only a few thousand points randomly chosen from the parameter space.

5.4 Type Ia Supernova

Type Ia supernovae are one of the well studies transients in the literature. After the advent

of robotic transient surveys, there have been significant additions to the catalog of SNe Ia.

They are produced due to thermonuclear detonation of carbon-oxygen white dwarfs with

masses close to the Chandrasekhar limit of ∼ 1.4M⊙. A brief description of the generic
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ingredients are given in Sec. 2.2.2. They are remarkably homogeneous in their intrinsic

brightness, time, and color evolution. The lightcurve rises to peak light in ∼ 20 days with

absolute magnitude ∼ −19.3. There are correlations between some of the properties of the

lightcurve. For example, brighter SNe Ia have broader width of the lightcurve (Phillips,

1993). Such relations are used to standardize SNe Ia to be used as distance indicators in

cosmology.

5.4.1 Explosion Models

The progenitors of SNe Ia are degenerate carbon-oxygen white dwarfs in binary systems.

The state of explosion is reached by mass overflow from the companion, known as the

the single degenerate route, or by the merger with another white dwarf companion, the

double-degenerate route. The reasons for considering the merger of white dwarfs is because

they naturally provide an explanation to the absence of hydrogen in the spectra. However,

the apparent homogeneity of the lightcurve is not explained as the binary components

can have varied composition, mass and angular momenta. The single-degenerate route is

favored model which involves an initial low mass accreting white dwarf that eventually

reaches the Chandrasekhar mass at the time of explosion. The compressional heating

increases the temperature of the core until a nuclear runaway reaction. At ∼ 109 K, the

carbon and oxygen burning is initiated resulting in the ignition of the flame. The nuclear

burning occurs in thin shells that propagate via detonations and deflagrations. Several

scenarios of detonation and deflagrations exist in the literature, and are reviewed, for

example, in Hillebrandt & Niemeyer (2000). Subsequent hydrodynamic expansion leads to

the expansion velocities ∼ 2 × 104 km s−1. The star is completely disrupted leaving no

compact object behind.
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5.4.2 The SALT2 Model

The SALT2 model (Guy et al., 2007) is an empirical model of the photometric and spec-

troscopic evolution of SNe Ia. They are calibrated using nearby and distant supernovae

lightcurves and spectra. The flux evolution is modeled empirically as,

FSN(t, λ) = x0 [M0(t, λ) + x1M1(t, λ)]× exp [c CL(λ)] , (5.8)

where x0, x1, and c are the normalization, stretch, and color parameters. The function M0,

M1 and CL are the average spectral sequence, first order deviations and the the color law

obtained from training on known supernovae. The joint lightcurve analysis (Betoule, M.

et al., 2014) using SNe from the Supernova Legacy survey (Sullivan, 2004) and the Sloan

Digital Sky Survey (Sako et al., 2007) was used to place constrains on the parameters of

the above model. This is used to create an ensemble of fake SNe Ia lightcurves to assess

their detectability considering multi-epoch observations and the instrument cadence.

5.4.3 Lightcurve Ensemble

We simulate lightcurves with varying intrinsic properties, sky location and redshift, and use

the single epoch detectability classifier mentioned in Eq. (5.7) together with the observing

schedule of iPTF to determine their sensitivity. The steps are as follows:

1. We simulate lightcurves of varying intrinsic properties over spacetime. spacetime.

2. From the complete iPTF observing schedule, we determine the observations of the

evolving lightcurve. This depends on the duty cycle of the instrument. On extended

periods with no observations, the simulated lightcurves are missed.

3. We associate a host galaxy with the supernova by choosing a surface brightness value

from the distribution of galaxy surface brightness in the survey.
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4. Every time the transient is “seen” by iPTF , we feed the combination of the apparent

magnitude, host galaxy surface brightness along with the observing conditions at that

epoch to the trained single epoch classifier developed in Sec. 5.3. This step, in a

sense, mimics the action of the ISP.

5. We call the lightcurve recovered when we have at least 5 found observations, all

brighter than 20th magnitude, with a minimum of 2 observations on the lightcurve

rise and a minimum of 2 on the fall. This is motivated by survey time discoveries.

We also consider type II supernova lightcurves for comparison. Type II supernovae are

complex and are further categorized into different subtypes. We consider the IIp subtype

because compared to the ∼ weeks long variability of SNe Ia, IIp lightcurves vary ∼ 100

days and hence is a complimentary case to study. The analysis for the IIps, however, is

simpler compared to Ias.

5.4.4 SN Ia Lightcurves

We use SN Ia lightcurves from the SALT2 model (Guy et al., 2007). In particular, we

use the Python implementation of SALT2 provided in sncosmo library (Barbary, 2014).

This model is based on observations of SNe Ia by the SDSS and SNLS surveys. The free

parameters of the model include the stretch (x1) and color (C) parameters of the SN Ia.

Regarding the range of these parameters, we follow same range as Frohmaier et al. (2017)

(see Table 1 and Eq.(4) therein). The ranges cover the possible lightcurve morphologies

of SNe Ia (Betoule, M. et al., 2014). We show an example lightcurve, at a redshift of

z = 0.01 with an instrinsic MB = −19.05 in Fig. 5.5. When propagating the flux, we also

take into account the extinction due to host galaxy dust and the Milky Way (MW) dust.

We use the MW dust map by Fitzpatrick (1999) which is a part of the sncosmo package.

For the host galaxy extinction, we use the distribution of E(B − V ) of SN Ia in their host

galaxies (Hatano et al., 1998). Dust extinction plays a significant role in the detectability

84



5.4. Type Ia Supernova

0 10 20 30 40 50 60 70

18

20

22

24

26

m

R band LC

g band LC

g band obs.
Peak time

0 10 20 30 40 50 60 70
Time (days)

18

20

22

24

26

m

R band LC

g band LC

Found
Missed
Peak time

Figure 5.5 Upper panel: An example of a SALT2 lightcurve, with the apparent mag-
nitude, m on the y-axis and time on the x-axis. The lightcurves in the iPTF R and g
bands are shown. The observations of the telescope are shown as vertical lines. At each
observation, we also have the observing conditions of the telescope from archival data.
Lower panel: The same lightcurve is plotted, however, the vertical lines now represent
the detectability from the single epoch classifier. Based on the criteria of confirming a
lightcurve as SN Ia, this lightcurve was recovered.
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Figure 5.6 An ensemble of SN Ia lightcurves were simulated out to a redshift, zIa
max = 0.28,

uniform in co-moving volume. This figure shows the distribution of the recovered SN Ia in
the sky colored by the redshift. The galactic plane can be seen as the half annulus region
with no detections.

0.00 0.05 0.10 0.15 0.20 0.25
z

10 5

10 4

10 3

10 2

N
re

c
N

to
t

zIa m
ed

ia
n

=
0.

09
9

Figure 5.7 Recovery efficiency of the SN Ia lightcurves as a function of redshift, z. The
median volume weighted redshift is found to be zIa

median = 0.099.
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of lightcurves as the SNe can be dimmed by as much as 1− 1.5 magnitudes.

5.4.5 SN Ia Detecctability

We simulate ≈ 5 × 106 SN Ia lightcurves uniformly in co-moving volume up to redshift,

zIa
max = 0.28 5, uniform in peak time distribution in the observer frame. We assume a flat

ΛCDM cosmology with Hubble constant, H0 = 69.3 kms−1/Mpc and matter to critical

density, Ωm = 0.287 (Hinshaw et al., 2013).6 We associate a host galaxy surface brightness

to each of these SNe using the distribution of surface brightness from iPTF data.

The epochs when the SN Ia is observed come from the iPTF observing schedule. At

each observation, we obtain the transient magnitude at that epoch from the lightcurve and

the observing conditions from the iPTF survey database. The single epoch classifier then

tells us the epochs when the transient was detected. An example is shown in Fig. 5.5 where

the vertical lines in the upper and lower panel respectively represent the observations and

detections at each epoch.

5.4.6 SN Ia Space-time Sensitive Volume

To understand rates, one must have a good estimate of the survey sensitivity to particular

transient types. Let ΛSNe be the expected count of SNe seen during survey time. Then,

with R as the intrinsic rate we have:

ΛSNe =

∫
f(t;MB, z, . . .︸ ︷︷ ︸

κκκ

)

R︷ ︸︸ ︷
dN

dtedVc
1

1 + z

dVc
dz dzdtdκκκ

= R

∫
f(t;MB, z, . . .︸ ︷︷ ︸

κκκ

)
1

1 + z

dVc
dz dzdtdκκκ (5.9)

= R⟨V T ⟩,
5 The zIa

max = 0.28 is high enough to capture the spacetime boundary of iPTF sensitivity. Also, no
simulations are done below a declination, δmin ≈ −31◦ consistent with hardware limitations for iPTF.

6 astropy.cosmology.WMAP9
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where the integral runs over time of observation and co-moving volume up to zIa
max = 0.28.

The selection function, f(. . . ) ∈ {0, 1}, is to be interpreted as the weight assigned to regions

in spacetime. The value of the selection function is a consequence of running a spacetime.

The value of the selection function is a consequence of running a particular instance of

SN Ia through the observing schedule and inferring detectability based on the single-epoch

classifier in Eq. (5.7). Therefore, the selection function depends on the observer time, t,

which captures the duty cycle and cadence. Also, it depends on the intrinsic properties of

the supernova like the absolute intrinsic magnitude, MB, the redshift, z, at which it was

simulated, the sky location and so on. These are collectively represented by κκκ in Eq. (5.9).

Since we have distributed the supernovae uniformly in co-moving volume, the integral is

approximated in the Monte-Carlo sense:

⟨V T ⟩ =

∫
f(t;MB, z, . . .︸ ︷︷ ︸

κκκ

)
1

1 + z

dVc
dz dzdtdκκκ

≈ Nrec

Ntot
T

∫
1

1 + z

dVc
dz dz, (5.10)

where Nrec is the number of SNe recovered from this simulation campaign, Ntot is the total

number simulated and T is the four year period of iPTF over which we performed the

simulations.7 We obtain the result,

⟨V T ⟩Ia = 2.93± 0.21× 10−2 Gpc3 yr, (5.11)

where the error includes the ∼ 1/
√
N statistical error from Monte Carlo integration and the

6% systematic error of the single epoch detectability classifier computed in Sec. 5.3.5, the

latter being the dominant source of error. The distribution of the detected SNe Ia in sky

is shown in Fig. 5.6 colored by redshift. Using the recovered SNe Ia, the median sensitive

co-moving volume is found to be 0.305 Gpc3. We report the redshift corresponding to this
7More specifically, Oct 23, 2012 to Mar 3, 2017 ⇒ 1592 days
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value as the median sensitive redshift to SNe Ia, zIa
median = 0.099, shown in Fig. 5.7.

5.5 Other Transient Lightcurves

5.5.1 Type IIp Supernova Lightcurves

In contrast to the well-defined Ia lightcurves with their typical timescales of several weeks,

we also wanted to explore longer-timescale lightcurves as a limiting case. Therefore, we

consider type IIp supernovae and compute their spacetime sensitive case. Therefore, we

consider type IIp supernovae and compute their spacetime sensitive volume in similar

lines as Sec. 5.4.5. A brief highlight of the general features of core-collapse supernova is

mentioned in Sec. . In general, type II supernovae (SNe II) vary in lightcurve morphology

and are categorized in various subtypes (Li et al., 2011). Specifically, type IIp lightcurves

have a distinct “plateau” feature after the rise lasting for about 100 days after explosion, as

shown in Fig. 5.8. The intrinsic brightness, MB ∼ −16.75, is significantly lower than that

of SNe Ia (Richardson et al., 2014). Among the SNe II, the IIp subclass is the most common

explosion by volume. Their progenitors are thought to be red super giant stars (Smartt,

2009).

Due to their overall low intrinsic luminosity, we expect the spacetime sensitive Due to

their overall low intrinsic luminosity, we expect the spacetime sensitive volume to be lower

than that of the SNe Ia. When considering the Ia lightcurves in Sec. 5.4.4, the SALT2 model

parameters were used to tune possible lightcurve morphologies. Here we take a simpler

approach and consider a time-series model from Gilliland et al. (1999) (named nugent-sn2p

in the sncosmo library) to compute the flux up to 100 days from the explosion time. Thus,

while simulating the SNe IIp in spacetime, the only change to the Thus, while simulating

the SNe IIp in spacetime, the only change to the lightcurve shape is the depending on the

cosmological redshift and host and Milky Way extinction properties.

We simulate ∼ 9.1× 105 SN IIp lightcurves uniform in sky location, observer time and
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Figure 5.8 Upper panel: An example of a SN IIp lightcurve, with the apparent magnitude,
m on the y-axis and time on x-axis. The lightcurve is shown in the iPTF R and g bands.
The observations of the telescope are shown as vertical lines. Lower panel: The same
lightcurve is plotted, however, the vertical lines now represent the recovery by single epoch
classifier. One can identify the only g band observation (around 40 days) being missed due
to fainter magnitude in the g band.
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Figure 5.9 Left panel: This figure shows a simple model for a kilonova lightcurve. It
is based on AT 2017gfo lightcurve evolution based on the best-fit blackbody parameters
from Kasliwal et al. (2017). Right panel: The lightcurve in the iPTF R and g bands.
The vertical lines represent the observations made by iPTF and whether the transient was
detected each epoch of observation.

co-moving volume up to a redshift, z = 0.1. Like the SNe Ia, each SN IIp is assigned a host

galaxy surface brightness from the surface brightness distribution of galaxies in iPTF and a

E(B−V ) extinction value from IIp extinction distribution in Hatano et al. (1998). In this

case, we use the criteria that the lightcurve must be recovered a minimum of five epochs,

brighter than 20th magnitude in a span of 3 weeks within the 100 days post explosion.

The iPTF observing schedule along with the single-epoch classifier is used to compute the

detectability in each epoch. We obtain the result:

⟨V T ⟩IIp = 7.80± 0.76× 10−4 Gpc3 yr, (5.12)

where the error includes the statistical error from the Monte-Carlo integration and the

6% systematic uncertainty from the single-epoch classifier (see Sec. 5.3.5). The median

sensitive redshift is found to be zIIp
median = 0.038.
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Figure 5.10 Left panel: This figure shows the sky location of the found kilonova lightcurves
colored by their cosmological redshift, z. Right panel: The fractional recovery of kilonova
lightcurves as a function of redshift. The volume weighted sensitive median redshift is
zmedian = 0.017 which corresponds to a luminosity distance of ≈ 72 Mpc.

5.5.2 Kilonova Lightcurves

The above procedure is generally applicable given a lightcurve evolution model. While

supernovae have been studied extensively, transient surveys have begun to discover more

interesting fast transients. After the discovery of GW170817 (see Sec. 2.3) there has been

considerable interest in studying the sensitivity of transient surveys to kilonovae from their

nightly operations i.e., a blind search. Given the low intrinsic luminosities and the fast

decay, the spacetime sensitivity is expected to be much lower that of supernovae.

The modeling of kilonovae is at its infancy. Here we consider a simple lightcurve

model based on best-fit blackbody parameters to the temperature evolution of AT 2017gfo

from Kasliwal et al. (2017) shown in Fig. 5.9. Regarding the conditions for detectability,

we demand at least three epoch confirmed detection conistent with fading, and a non-

detection one week before the explosion time. We performed fake simulations of this

model in the same lines as the SNe Ia and SNe IIp simulations. Out of the ∼ 3 × 106

simulations performed, only ≳ 300 instances were recovered. In Fig. 5.10 we show the

recovered lightcurves colored by the redshift. Since the transients are distributed uniform in

comoving volume, this corresponds to a ∝ z2 distribution along the redshift. The decreasing
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efficiency and the increasing population results in a peak in the fractional recovery. The

redshift corresponding to the median sensitive comoving volume gives the median sensitive

redshift, zmedian = 0.017. This gives a luminosity distance ≈ 72 Mpc. Thus a candidate

like AT 2017 gfo at 40 Mpc would have been observed by a survey like iPTF.

5.6 Rates

5.6.1 Likelihood Calculation

In this work, we provide a methodology to assess the transient detectability taking into

account the intrinsic transient properties and the observing conditions of fast cadence

transient surveys. This is done by injecting fake point source transients into the images,

running image subtraction on them and finding out the parameter space where they are

found by the image subtraction pipeline. The joint detectability is evaluated using the

machinery of supervised machine learning trained on the missed and found fake transients.

This step mimics the action of the image subtraction pipeline at every epoch and forms

the single-epoch detectability. Consequently, the lightcurve morphology and the survey

observing schedule is used to compute the spacetime volume sensitivity of particular is

used to compute the spacetime volume sensitivity of particular transients. We consider

the case of the intermediate Palomar Transient Factory (iPTF) and evaluate the single-

epoch detectability and then use its observing schedule to compute the spacetime volume

sensitivity use its observing schedule to compute the spacetime volume sensitivity of type Ia

supernovae (SNe Ia). We also do a preliminary analysis of type IIp supernovae (SNe IIp).

Note that the spacetime volume sensitivity type IIp supernovae (SNe IIp). Note that

the spacetime volume sensitivity could be computed for any general transient, using its

lightcurve morphology; SN Ia or IIp is an example. In the case of SNe Ia, the remaining

piece in the estimation of the volumetric rate is a systematic number count to be obtained

via an archival search into iPTF data. While we defer this to a future work, we outline
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our plan of action here.

5.6.2 Rate Posterior

The computation of the rate posterior assumes the likelihood of observing N candidate

events is an inhomogeneous Poisson process (Loredo & Wasserman, 1995; Farr et al., 2015).

Our search will filter the SN Ia population based on the model SALT2 model used previously

at the expense of some contamination from other transient types, potentially with similar

lightcurve morphologies. If the mean count of these impurities is Λ0, the likelihood function

is:

p (N |Λ0,ΛSNe) ∝ (Λ0p0 + ΛSNepSNe)
N

× exp (−Λ0 − ΛSNe), (5.13)

where pSNe (p0) is the a priori weight that a transient is (isn’t) a SN Ia after the filtering

process. With a suitable choice of prior, we can use Bayes’ theorem to obtain the posterior.

Considering the Jeffreys’ prior:

p (Λ0,ΛSNe) =
1√
Λ0

1√
ΛSNe

, (5.14)

the posterior takes the form:

p (Λ0,ΛSNe|N) ∝ p (N |Λ0,ΛSNe) p (Λ0,ΛSNe)

∝ (Λ0p0 + ΛSNepSNe)
N

√
Λ0ΛSNe

× exp (−Λ0 − ΛSNe). (5.15)
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Integrating out the nuisance parameter, Λ0, we have the marginalized posterior on ΛSNe =

R⟨V T ⟩, or equivalently on R:

p (R|N) =

∫ ∞

0

p (Λ0,ΛSNe|N)dΛ0

∝ e−R⟨V T ⟩√
R⟨V T ⟩

×
[
(R⟨V T ⟩pSNe)

N +

N

2
p0 (R⟨V T ⟩pSNe)

N−1

]
, (5.16)

where we expand Eq. (5.15) and integrate, keeping terms up to linear order in p0 since we

expect that p0 ≪ pSNe.

5.6.3 Approximate SN Ia Count in iPTF

Type Ia supernova rates have been studied earlier in the literature (Dilday et al., 2008;

Gal-Yam et al., 2007; Brown et al., 2019). Deep field instruments have provided estimates

of the Ia rate out to high redshift (Gal-Yam et al., 2007). The intermediate Palomar

Transient Factory, being an all sky survey has a comparatively lower sensitivity to SNe Ia

at zIa
median = 0.099. The SDSS-II supernova survey has estimated the volumetric SN Ia rate

at z ≈ 0.1 to be RSDSS−II
SNIa ∼ 2.9+1.07

−0.75 × 10−5Mpc−3yr−1 (Dilday et al., 2008). Using our

estimate of the spacetime sensitive volume from Eq. (5.11), an estimate of the spacetime

sensitive volume from Eq. (5.11), an estimate of the count of SNe Ia in iPTF is 630−1160.

This is consistent with 1035 objects tagged “SN Ia” during the survey time.

5.6.4 Future Work

While the number of transients tagged as “SN Ia” by human scanners during iPTF sur-

vey time seem consistent with our ballpark above, the systematic uncertainty of such a

classification remains unquantified. The quantities p0, pSNe and N in Eq. (5.16) require a

systematic search into the iPTF archival data to retrieve the candidate count and system-
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atic errors associated with such a classification. We defer this and the computation of SN Ia

volumetric rate to a future work in the series. The methodology developed here facilitates

the computation of spacetime The methodology developed here facilitates the computation

of spacetime volume sensitivities of general transient types. Of particular interest are the

fast transients in iPTF archival data as discussed in Ho et al. (2018). Also, the observation

of the “kilonova” resulting from the binary neutron star merger, GW170817 (Abbott et al.,

2017; Abbott et al., 2017a,b), star merger, GW170817 (Abbott et al., 2017; Abbott et al.,

2017a,b), hints towards the association of transients to binary neutron star mergers. There

is no evidence of detection of such a transient in the iPTF data, in which case rate upper

limits could be placed due to non-detection.
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Conclusion

The direct observation of GW in 2015 was a milestone in the field of gravitation. It

bore truth to the century old prediction made by Einstein, and was another triumph of

general relativity. It opened an entirely new messenger to study the universe, analogous

to Galileo using the telescope to observe celestial bodies in the 1600s, pioneering modern

day astronomy. The field has moved in leaps and bounds over the (barely) five years since

the discovery. It can be said in some sense that we have moved from the era of GW

discovery to GW astronomy at the time of writing. The recently concluded LIGO/Virgo

third observing run reported 56 public candidates. This is more than five-fold increase in

the number of events from the first and second observing runs combined and corresponds

to detection of over 5 candidates per months on average during regular operating cycle.

The detection of GW170817, and the unprecedented follow-up bore the first observational

evidence that merger of compact binaries could have an associated EM counterpart. This

meant that GW astronomy entered the sector of time-domain astronomy. Infrastructure

was developed to enable rapid communication between GW and partner facilities to enable

prompt follow-up of GW transients. This marked yet another milestone of the dawn

of multi-messenger astronomy using GWs. Targeted observations using GWs present a

unique way to hunt the rapidly evolving associated kilonova, GRB afterglows, and other

97



Chapter 6. Conclusion

possible messengers. In this thesis, it is the prospect of multi-messenger astronomy using

GWs that I research on. In particular, I focus on development of tools and infrastructure

that facilitate follow-up operations for GW candidates from LIGO/Virgo. In Chapter 3

the inference of source properties from the realtime GW data is developed to assess the

possibility of EM counterparts of compact object mergers. Such information is crucial for

partner facilities to schedule observations. In Chapter 4, the problem of hunting these

counterparts is considered from the point of view of partner facilities. A tiling strategy is

developed for ZTF in the pursuit of GW events. Also, by performing a set of simulated

signals, it is concluded that longer integration times for the telescope increases chances of

detecting the kilonova. In Chapter 5, we study another piece of the puzzle – the detection

efficiency of a survey. For a time-domain survey this depends on intrinsic properties of the

transient, its photometric and spectral evolution, and also on weather conditions. A robust

understanding of the detection efficiency of fast transients like kilonovae is of paramount

importance to design observing strategies to succeed in hunting EM counterparts of GW

transients. While we are in the era of GW astronomy, we are still not in an era of routine

multi-messenger detections. In going ahead tools and strategies like those developed in

this thesis will be of useful for follow-up operations.

6.1 Future Work

6.1.1 Machine Learning

Over the last decade machine learning has found importance in various avenues of physics

and astronomy. Extracting signal from noise, or dealing with instrument or algorithm

selection biases is common across most experiments today. A robust handle on these

selection effects require large scale expensive computer simulations. Machine learning can

help in this regard. Some of the work in this thesis has made extensive use of traditional

open source machine learning algorithms to achieve good results. However, a natural
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extension of work in Chapter 3 is to use recently popularized deep learning algorithms like

convolutional neural networks to handle selection effects.

6.1.2 EoS Weighted Source Properties

The source properties in Chapter 3 used an assumption about the NS EoS. To be conserva-

tive, a stiff EoS, 2H, was chosen. The 2H is not astrophysically motivated, but was used to

provide a conservative answer to the property of the binary leaving remnant matter post

merger. This is because the detection uncertainty of realtime parameters are much larger

compared to difference caused due to the choice of an EoS. This is to be reanalyzed in the

light of new results from the third observing run. A better approach is to consider several

EoS models, or to marginalize over the EoS by obtaining a weighted average of the results

from using different EoS models.

6.1.3 Supernova Rates

In Chapter 5, we evaluated the spacetime sensitive volume of iPTF to SNe Ia. The rate

estimation was deferred to a future work. An archival search is required to evaluate the

number of candidates in iPTF that fit the SALT2 model. The procedure is laid out in

Sec. 5.6.2. The archival search would give the efficiency and the impurity fraction of the

search to pick out SNe Ia from archival data which is required to obtain the posterior on

the rate.

6.2 Looking Ahead

The next decade promises routine multi-messenger observations using GW observations

of compact binary mergers. Next generation telescope surveys like ZTF and the Rubin

Observatory will be able to make deep and fast routine observations for transients. This

will be complemented by ∼ 160 − 190 Mpc sensitivity of LIGO/Virgo sensitivity in the
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fourth observing run. The science output of GWs and multi-messenger observations is in-

terdisciplinary, touching the avenues of fundamental physics, nuclear physics and gravity,

to astronomy and cosmology. On the fundamental physics and gravity aspect, the joint

detection of EM counterparts and GWs provide constraints on the speed of gravity, the

future four-detector network will make good measurements of the GW polarization to con-

strain alternate gravity models. Tidal deformability measurements of GW will provide a

direct method to measure the NS equation of state. This will also be complemented by EM

studies of the photometric and spectroscopic evolution of the kilonova. Model selection in

this regard would require input from nuclear theory and lattice quantum chromodynamics

models. GWs in combination with counterpart observation will provide an independent

measurement of the Hubble constant, H0. This is of paramount importance at this point in

cosmology given the growing tension in the inferred value of H0 from the cosmic microwave

background and type Ia supernovae. Future GW-GRB coincidences will give more insight

into the short GRB progenitors and the GRB engine. There are also prospects of con-

straining dark matter using EMGW observations, like the observation of primordial black

holes which could produce binaries similar to NS masses but don’t produce EM counter-

parts. The growing number of observations will put tight constraints on the population of

compact binaries and their evolution over cosmic time. Finally, there is always the possi-

bility of detecting the unexpected like an observation of binaries in the putative 3− 5M⊙

mass-gap, objects made out of more exotic matter like quark stars, or a totally unexpected

EM transient.
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Appendix A

Behavior Of Trained Classifier With

SNR

A.1 Parameter Sweep

In this section, we make in extension of the parameter sweep results shown in Fig. 3.4. Here

we sweep over the (m1,m2) values but keep the values of the spins fixed, only varying the

signal-to-noise (SNR). The result is shown in Fig. A.1. It is expected that the uncertainty

in the recovered parameter should decrease with the increase in SNR which manifests as a

decrease in the fuzzy region separating the bright (p(HasNS) = 1/p(HasRemnant) = 1) and

dark (p(HasNS) = 0/p(HasRemnant) = 0) regions.

A.2 GstLAL Injection Sets

In this section, we report the calender dates for the injection sets used in this study. These

are tabulated in Table A.1. The chunks cover most of the duration of the observing run,

although they may not be contiguous corresponding to break in the observing run. Three

detector injections were performed about the last ∼ 1 month of the second observing run.

Thus, their length and hence the missed found injections are smaller in number. As a future

101



Appendix A. Behavior Of Trained Classifier With SNR

10.0 30.0 50.0
1.0
3.0

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 5.0

10.0 30.0 50.0
1.0
3.0

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 7.0

10.0 30.0 50.0
1.0
3.0

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 9.0

10.0 30.0 50.0
1.0
3.0

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 11.0

0.0

0.2

0.4

0.6

0.8

1.0

m1[M ]

m
2[

M
]

p(HasNS)

2.83 10.0 30.0 50.0
1.0

2.83

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 5.0

2.83 10.0 30.0 50.0
1.0

2.83

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 7.0

2.83 10.0 30.0 50.0
1.0

2.83

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 9.0

2.83 10.0 30.0 50.0
1.0

2.83

10.0

z
1 = 0.0; z

2 = 0.0; SNR = 11.0

0.0

0.2

0.4

0.6

0.8

1.0

m1[M ]

m
2[

M
]

p(HasRemnant)

Figure A.1 This figure is an extension of Fig. 3.4. Here we see the behavior of the predictions
from the binary classifiers as the signal to noise (SNR) of recovery increases. Left panel:
Variation in p(HasNS) with SNR. Right panel: Variation in p(HasRemnant) with SNR.
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A.2. GstLAL Injection Sets

GstLAL chunk Start date End date
Chunk 02 Wed Nov 30 16:00:00 GMT 2016 Fri Dec 23 00:00:00 GMT 2016
Chunk 03 Wed Jan 04 00:00:00 GMT 2017 Sun Jan 22 08:00:00 GMT 2017
Chunk 04 Sun Jan 22 08:00:00 GMT 2017 Fri Feb 03 16:20:00 GMT 2017
Chunk 05 Fri Feb 03 16:20:00 GMT 2017 Sun Feb 12 15:30:00 GMT 2017
Chunk 06 Sun Feb 12 15:30:00 GMT 2017 Mon Feb 20 13:30:00 GMT 2017
Chunk 07 Mon Feb 20 13:30:00 GMT 2017 Tue Feb 28 16:30:00 GMT 2017
Chunk 08 Tue Feb 28 16:30:00 GMT 2017 Fri Mar 10 13:35:00 GMT 2017
Chunk 09 Fri Mar 10 13:35:00 GMT 2017 Sat Mar 18 20:00:00 GMT 2017
Chunk 10 Sat Mar 18 20:00:00 GMT 2017 Mon Mar 27 12:00:00 GMT 2017
Chunk 11 Mon Mar 27 12:00:00 GMT 2017 Tue Apr 04 16:00:00 GMT 2017
Chunk 12 Tue Apr 04 16:00:00 GMT 2017 Fri Apr 14 21:25:00 GMT 2017
Chunk 13 Fri Apr 14 21:25:00 GMT 2017 Sun Apr 23 04:00:00 GMT 2017
Chunk 14 Sun Apr 23 04:00:00 GMT 2017 Mon May 08 16:00:00 GMT 2017
Chunk 15 Fri May 26 06:00:00 GMT 2017 Sun Jun 18 18:30:00 GMT 2017
Chunk 16 Sun Jun 18 18:30:00 GMT 2017 Fri Jun 30 02:30:00 GMT 2017
Chunk 17 Fri Jun 30 02:30:00 GMT 2017 Sat Jul 15 00:00:00 GMT 2017
Chunk 18 Sat Jul 15 00:00:00 GMT 2017 Thu Jul 27 19:00:00 GMT 2017

Table A.1 The table contains the calender times for the GstLAL fake injection datasets.

work, we plan to re-analyze the performance of the classifier based on injection campaigns

in the third observing run as they are performed.
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Appendix B

Single Epoch Performance

In Fig. 5.4, we made a comparison between the marginalized single parameter efficiency

for the single-epoch transient brightness from the classifier predictions. Here, we show it

for the remaining parameters. While the final classifier is trained on the full dataset, to

make the comparison, we train it on 90% of the total fake point source simulations we

performed, as mentioned in Sec. 5.3.1. From the remaining 10% sample size, we make a

random selection of points (progressively increasing), feed them to the classifier and bin the

results in the same manner as in Fig. 5.3 to compare marginalized efficiency plots. These

are shown in Fig. B.1 and Fig. 5.4, the latter presented earlier. We see that the behavior

starts to converge to that of the ISP in a few thousand points.
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Figure B.1 This figure is an extension of Fig. 5.4. We compare the performance of the
marginalized single parameter efficiency of the trained classifier compared to that of the
original distributions in Fig. 5.3. We see the behavior of the ISP being reproduced by
feeding the classifier a few thousand points.
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