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ABSTRACT 

UNDERSTANDING THE ROLE OF PROTEIN KINASES KIN1 AND 

KIN2 IN PROTEIN FOLDING PATHWAYS IN THE YEAST 

SACCHAROMYCES CEREVISIAE 
 

by 

Chandrima Ghosh 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Dr. Madhusudan Dey 

 

Eukaryotic protein kinases catalyze the transfer of the -phosphate of an ATP to a 

serine/threonine/tyrosine residue present in a protein substrate. The phosphorylation of proteins 

has profound effects on their activity and protein-protein interactions, thus regulating a plethora of 

cellular processes, including cell growth, differentiation and protein homeostasis (or proteostasis). 

Our lab is the first to demonstrate that protein kinases Kin1 and its paralog Kin2 in the budding 

yeast Saccharomyces cerevisiae, orthologs of human microtubule affinity-regulating kinase 

(MARK), contribute to protein-folding homeostasis inside the endoplasmic reticulum (ER), in 

addition to their canonical roles in cellular exocytosis. The main aim of my studies is to fully 

understand the Kin kinase signaling pathway and how it contributes to the ER protein-folding 

homeostasis in the yeast Saccharomyces cerevisiae. Specifically, I study how Kin kinases are 

activated and what their upstream and downstream effectors are.  

My studies have revealed that the N-terminal half of Kin1 or Kin2 protein containing the 

kinase domain (KD) with a short kinase extension region (KER) was sufficient to complement the 

function of full-length Kin1 or Kin2. I have also found that phosphorylation of a single residue in 

Kin1 (Thr-302) or Kin2 (Thr-281) was important for their kinase domain function. Furthermore, I 

have found that phosphorylation of Thr-302 or Thr-281 occurred in trans by an upstream kinase. 
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These results are published in Molecular and Cellular Biology.  Further studies are directed 

towards identifying the Thr-302 or Thr-281 upstream kinase. 

One third of total cellular proteins fold and mature inside the ER. Due to abiotic or biotic 

stresses, unfolded proteins may accumulate inside the ER lumen, causing ER stress. During ER 

stress, a dual kinase RNase Ire1 is activated and it restores the ER protein-folding homeostasis in 

Saccharomyces cerevisiae as follows. The active Ire1 initiates a signaling pathway by removing 

an intervening sequence from the HAC1 mRNA by an unconventional splicing mechanism. 

Matured HAC1 mRNA then translates an active transcription factor Hac1, which enhances the 

expression of protein folding enzymes and chaperones that help mitigate ER stress. We and others 

have shown that HAC1 splicing requires co-localization of the HAC1 mRNA with the Ire1 protein, 

which is mediated by a bipartite element (BE) present in the 3’-UTR of the HAC1 mRNA. I have 

shown that the Kin kinases and a BE-RNA-protein complex (RNP) significantly contribute to 

HAC1 mRNA splicing. Here I have characterized and determined the role of a component of the 

proposed RNP, an uncharacterized protein Pal2. 

Our collaborator Dr. Benjamin Turk at Yale University identified a list of putative 

substrates of Kin kinases, using a phospho-proteomics based approach1. We have shown that Kin2 

specifically phosphorylates the Ser-222 residue of Pal2. Further, molecular genetic studies showed 

that the yeast strain lacking Pal2 and its paralog Pal1 was deficient in maintaining ER protein 

homeostasis, which could be restored by expressing a wild-type Pal2 protein, but not by its 

unphosphorylated form. These data suggest that both Kin kinases and its substrate Pal2 

significantly contribute to ER protein homeostasis. Overall, my finding of Pal2 phosphorylation 

by Kin kinases provides a novel mechanistic insight into the physiological signaling pathways 

mediated by the Kin kinases.  
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1. Chapter 1: Literature Review 
 

Protein Kinases 

 Protein phosphorylation is a post-translational modification and a critical event in cells of 

eukaryotic organisms2,3. The process of phosphorylation is coordinated by enzymes called protein 

kinases which catalyze the transfer of a terminal phosphoryl group of an ATP molecule to a serine 

(Ser), threonine (Thr) or tyrosine (Tyr) residue on a substrate protein4,5. By doing so, kinases 

orchestrate several signal transduction pathways and complex functions in the cell6. Kinase activity 

was first observed by Eugene Kennedy who saw phosphorylation of casein by a liver enzyme way 

back in the 1950s7. Since then, extensive progress has been made in the field of kinases. 

Researchers have been able to determine the structure and mode of activation of kinases. The 

pursuit to gain mechanistic insights into the functioning of kinases eventually led to the discovery 

of many kinase signaling cascades. 

 This large superfamily of eukaryotic protein kinases account for nearly 2.5% of the 

proteome8,9. Most of these kinases are related to one another through homology of their kinase 

domain (catalytic cores)10. Most protein kinases remain in a basal inactive state and are activated 

in the presence of regulatory stimuli by intricate mechanisms like dimerization and 

autophosphorylation11,12. The human kinome is comprised of 568 kinases6 whereas the yeast 

kinome is comprised of 129 kinases13. Based on sequence homology each kinase contains a 

conserved kinase domain (KD).  

Structure of a classical protein kinase:  

The crystal structure of the catalytic domain of cyclic-AMP-dependent protein kinase 
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(PKA) is the first deciphered structure of a protein kinase domain. This kinase has been co-

crystalized with a pseudo-substrate peptide inhibitor (PKI)14,15. The KD of PKA contains two 

lobes: the N-terminal lobe (N-lobe) and the C-terminal lobe (C-lobe) (Fig. 1.1A)15. The two lobes 

are connected by a flexible hinge region. The active site is in the deep cleft between the two lobes. 

ATP binds at this cleft and the -phosphate of ATP is projected out towards the opening of the 

cleft (Fig. 1.1A)14.  

The N-lobe is comprised of 5 anti-parallel -strands (1-5) and one −helix also known 

as the helix C14. The main function of the N-lobe is to bind ATP16. Between strands 1 and 2 

there is a glycine rich motif (GXGXΦG, where X is any amino acid, and Φ is an aromatic amino 

acid) called the P-loop that helps coordinate the phosphates of the ATP. In this motif, Φ is mostly 

a conserved aromatic amino acid (phenylalanine or tyrosine) which helps to cap the region of 

phosphotransfer reaction17. On the strand 3 there is a conserved Lys residue (e.g. Lys72 in PKA), 

that interacts with the  and -phosphates of ATP.   

The C-lobe is comprised of four -strands (6, 7, 8 and 9) and several -helices (Fig. 

1.1A). The major function of the C-lobe is substrate recognition and catalysis of the 

phosphotransfer reaction18.  

In PKA, the catalytic loop is between 6 and 7, and the metal (Mg2+) binding region is 

between 8 and 9. The catalytic loop has a conserved RD-motif that harbors the catalytic base, 

Asp166 which is directly involved in phosphotransfer reaction18. The metal binding loop consists 

of a highly conserved DFG motif (aspartate, phenylalanine, glycine; e.g. Asp184 Phe185 Gly186 

in PKA). It is important to note that there are two Mg2+ ions that coordinate with ATP. The 

aspartate (Asp184 in PKA) and the asparagine (Asn171 in PKA) in this loop interacts with the two 
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Mg2+19.  

The activation loop spans from the DFG motif to the APE motif and contains one/two 

phospho-acceptor residues (e.g. Thr197 in PKA)20. In many kinases, activation loop 

phosphorylation is important to activate the kinase domain17. As mentioned before, 

phosphorylation of the activation loop is a key event to activate the kinase. The activation loop is 

a highly flexible structure that has the capacity to undergo large conformational changes when the 

kinase switches from its inactive to active state. 

Mechanism of kinase activation:  

During kinase activation, there are several important events that prime the kinase: 

conformational change in the activation loop, rotation of the helix C and correct positioning of 

the conserved residues17. 

  When the kinase is inactive, the activation loop collapses into the active site and blocks the 

binding of ATP and substrate21. Once phosphorylated, the activation loop shifts away from the 

active site, allowing binding of ATP and substrate for catalysis. This involves a crankshaft-like 

movement at the N-terminal side of the loop, which correctly orients the DFG motif. In this 

process, the DFG motif flips by 180 degrees and attains a “DFG-in” conformation that initiates 

catalysis. In the “DFG-in” conformation, Asp of DFG is projected towards the active site, whereas, 

Phe of DFG is flipped out of the active site22–25. In PKA, the activation loop Thr197 is 

phosphorylated and it forms ionic interactions with Arg165 (of the RD motif) in the catalytic loop. 

This ion pair is important for flipping the DFG motif in the correct orientation for catalysis17. 
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The rotational movement of the helix C is required to bridge the gap between the N-

terminal region of the helix C and the activation loop17. This bridging favors the closed 

conformation of the kinase. This closed conformation, in turn, favors substrate binding near the 

helix G26 (Fig. 1.2). 

The correct positioning of conserved residues and correct orientation of ATP is essential 

for the phosphotransfer reaction. The adenine ring of the ATP is positioned in a hydrophobic 

pocket and the ribose is stabilized via hydrogen bonding. The phosphates of the ATP remain 

anchored by the main chain nitrogen atoms of the P-loop and by the metal ions (Mg2+). 

A. Classical Kinase Domain B. Schematic representation 

N-lobe 

Hinge 

Active site 

Activation 

loop 

C-lobe 

Figure 1.1 Schematic of the kinase domain structure 

(A) Ribbon representation of the crystal structure of the cyclic AMP-dependent protein kinase domain. 

Some of the secondary structural elements are colored: helix C in orange, helix G in cyan and activation 

loop in purple. The N-lobe, C-lobe, hinge region and activation loop are labeled. The active site is in the 

deep cleft between the two lobes. The ATP (colored red) fits in the hydrophobic core at the active site. 

PDB ID- 1ATP. (B) Cartoon representation of the catalytic core of the PKA kinase domain. The N-lobe 

C-lobe are colored grey, helix C is colored orange, helix G is colored cyan, and the activation loop is 

colored purple. Phosphorylation on activation loop is denoted by a red circle with an inscribed “P”.  
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Predicted mechanism of phosphotransfer reaction:  

Once the kinase is active, it is primed for phosphotransfer which takes place in two steps27: 

Step 1: Binding and orientation of nucleotide and substrate, and conformational changes in the 

kinase. 

The correct positioning of conserved residues is important for the phosphotransfer reaction. 

A proper orientation of ATP is also essential. The adenine ring of the ATP is positioned in a 

hydrophobic pocket and stabilized via hydrogen bonds with the N1, N6 or N7 of the adenine ring28 

(Fig 1.3). The oxygens of the phosphates of the ATP are anchored by the metal ions (Mg2+). The 

Mg2+ neutralizes the electrostatic negative charge of the phosphoryl groups. The Mg2+ also 

activates the ATP for phosphotransfer. The positive charge on the Mg2+ polarizes the P-O bond of 

Figure 1.2 Inactive to active transition for activation of the kinase domain. 

Cartoon representation of the catalytic core of a kinase domain. The N-lobe and C-lobe are colored grey, 

helix C is colored orange, helix G is colored cyan, and the activation loop is colored purple. 

Phosphorylation on activation loop is denoted by a red circle with an inscribed “P”. Schematic 

representation of the orientation of the helix C and the conformation of the activation loop are shown 

in the inactive state (A) and active state (B). 
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the terminal phosphoryl group and thereby makes the terminal phosphorus atom more electrophilic 

and susceptible to a nucleophilic attack29,30. Another structural feature that anchors the ATP is the 

glycine-rich phosphate binding P-loop. The glycines anchor the ATP by making mainchain 

contacts with the phosphoryl groups31. A conserved lysine residue also anchors the - and -

phosphoryl groups of the ATP31,32. The lysine is stabilized by an ionic interaction with a glutamate 

from the helix C17. Rotation of this helix C couples it with the N-terminal region of the 

activation loop and modulates the activity of the kinase. 

The phosphorylated activation loop of the kinase extends out in an open conformation and 

acts as a platform for substrate binding near the -phosphoryl group of the ATP. The conserved 

catalytic residue aspartate projects out from the catalytic loop (Fig 1.3). A conserved asparagine 

makes hydrogen bonds with the catalytic aspartate to orient it17.  

Step 2: Nucleophilic attack by substrate hydroxyl group and acid-base catalysis. 

Following proper positioning of the ATP, and orientation of the substrate the kinase attains 

an active conformation. The catalytic aspartate in the C-lobe acts like a catalytic base and extracts 

a proton from the -OH group of the substrate serine or threonine. This results in the formation of 

an alcoholate ion on the substrate. Next, the lone pair of electrons on the alcoholate ion initiates a 

nucleophilic attack on the phosphorus of the terminal phosphate for an “in-line” phosphotransfer33. 

Consequently, the phospho-anhydrous bond bridging the oxygen and -phosphorus is broken, 

followed by subsequent release of the phosphoryl group27 (Fig 1.3). 
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Figure 1.3 Schematic representation of ATP and important catalytic motifs and residues in 

the active site of PKA  

In the predicted mechanism of phosphotransfer, the catalytic Asp166 attacks the –OH of the substrate Ser. 

This results in an alcoholate ion that attacks the phosphorus of the -phosphate of the ATP. (Adapted from 

Johnson et al, Cell, 1996) 
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In addition to the KD, protein kinases may contain additional regulatory domains, subunits 

or both. Depending on sequence homology and mode of activation of these eukaryotic protein 

kinases, they can be classified into 4 large groups, each of which may comprise kinases of multiple 

related families. These groups are i) AGC group, ii) CaMK group, iii) CMGC group and iv) PTK 

group16. 

i) AGC group kinases 

 This group of protein kinases mainly comprises the cyclic-nucleotide-dependent kinase 

family (PKA and PKG), the protein kinase C (PKC) family, -adrenergic receptor kinase (ARK) 

and ribosomal S6 kinase family amongst others. AGC kinases comprise 12% of the human 

kinome34. These are Ser/Thr kinases, and they tend to phosphorylate substrates on a Ser/Thr which 

is located close to an arginine (Arg) or lysine (Lys) residue within the consensus phosphorylation 

motif R-X-R/K-X-X-S/T35. PKC family kinases prefer to phosphorylate a Ser/Thr which has basic 

residues on both the N- and C-terminal flanks16.  

One of the widely studied AGC kinase is PDK1 in humans. It phosphorylates and activates 

several other AGC kinases and considered as a master regulator36. Like any other kinase, the AGC 

kinases contain an activation loop which requires phosphorylation for kinase activation. AGC 

kinases also contain two unique features: a hydrophobic motif (HM, Φ-X-X-Φ, where Φ is a 

hydrophobic amino acid and X is any amino acid), and a Zipper/turn motif that folds back into the 

catalytic core34. Phosphorylation of both of these motifs is also important for activation37. Another 

regulatory motif on AGC kinases that are substrates of PDK1 is the PDK1 interacting fragment 

(PIF)38. The PIF-pocket on PDK1 which binds the PIF acts as a regulatory feature39. The HM 

phosphorylation initiates the docking of the AGC kinase to the PIF-pocket of PDK1 which 

activates PDK1. PDK1 then phosphorylates the activation loop of the AGC kinase. The 
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phosphorylated HM intramolecularly interacts with the PIF pocket of the AGC kinase and 

stabilizes its active conformation34,40 (Fig 1.4). 

 

 

ii) CaMK group kinases 

 CaMK stands for Ca2+/ Calmodulin-activated protein kinase. These are a large group of 

Ser/Thr kinases that require calcium and calmodulin for activation but become independent of 

Ca2+/ Calmodulin after activation41. CaM-kinases have a bilobal catalytic domain which is 

Figure 1.4 Schematic representation of activation of AGC kinases 

(A) Schematic representation of the AGC kinase. The AGC kinase is colored gray with the PDK1 

interacting fragment (PIF)-pocket and active site indicated. The hydrophobic motif (HM) is indicated 

as a black circle and phosphorylation is indicated in a red circle with a “P” inscribed. (B) PDK1 kinase 

is indicated in blue. The HM phosphorylation initiates the docking of the AGC kinase to the PIF-pocket 

of PDK1 which activates PDK1. PDK1 then phosphorylates the activation loop of the AGC kinase. The 

phosphorylated HM intramolecularly interacts with the PIF pocket of the AGC kinase and stabilizes its 

active conformation. (Adapted from Arencibia et al, Biochimica et Biophysica Acta - Proteins and 

Proteomics, 2013) 
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followed by a regulatory domain that comprises an auto-inhibitory and a calmodulin (CaM) 

binding domain. At low levels of Ca2+, the auto-inhibitory domain keeps the CaM-kinase inactive. 

As the concentration of intracellular Ca2+ increases, CaM becomes saturated with four Ca2+ ions 

and it binds to the CaM-binding domain. This interaction releases the kinase from auto-inhibition 

and the kinase can catalyze a phosphorylation reaction41,42 (Fig 1.5). CaM-kinases can be further 

classified into smaller groups depending on the number of substrates. CaMK-I, CaMK-II and 

CaMK IV, all have multiple downstream effectors, but CaMK-III has only one. Some of these 

Cam-kinases prefer a substrate that has a basic residue in the N-terminal flank of the acceptor 

Ser/Thr. Some CaM-kinases prefer to have the basic residue on both N- and C-terminal flanks of 

the acceptor16.  

 

 

Figure 1.5 Schematic representation of activation of CaM kinases 

The autoinhibited, activated (CaM-bound) and activated forms of the CaM kinase are shown. The 

bilobal kinase domain is colored grey, the regulatory segment is colored light blue, the Calmodulin is 

colored light orange, calcium ions are represented as black dots, substrate binding groove is the light 

grey oval with dotted border and phosphorylated threonine residues are represented as red dots. The 

regulatory segment of the CaMK, which contains three phosphorylatable threonine residues, remains 

bound to the substrate docking groove and keeps the CaMK autoinhibited. Interaction of the regulatory 

segment with Ca2+/CaM initiates threonine phosphorylation and renders the kinase CaMK Ca2+/CaM-

independent. Subsequently the remaining two threonine residues are phosphorylated which inhibits the 

Ca2+/CaM binding and keeps the kinase active. (Adapted from Bhattacharya et al, CSH Perspectives in 

Biology, 2019) 



   11 
 

iii) CMGC group kinases 

 The CMGC group of kinases mostly comprise the cyclin-dependent kinases (CDKs), 

mitogen activated protein kinases (MAPKs), glycogen synthase kinases (GSKs) and CDK-like 

kinases43. Most commonly studied CMGC kinases are CDKs and MAPKs because of their roles 

in human tumor suppression and cell-fate decisions respectively43. CDKs are proline –dependent 

Ser/Thr kinases44. Some CDKs prefer the sequence S/T-P-X-K/R which allows the proline to fit 

into the hydrophobic pocket. CDK activation occurs in two steps. First, cyclin binding to CDKs 

trigger a change in the CDK conformation, making it partially active45. Second, the CDK activating 

kinase (CAK) phosphorylates a threonine residue on the activation loop of the CDK of the CDK-

cyclin complex and fully activates the CDK (Fig 1.6). This allows ATP binding and catalysis of 

phosphorylation16,44,46. 

 

 

 

Figure 1.6 Schematic representation of activation of CMGC kinases 

The CMGC kinase CDK is shown in grey color with the activation loop as a black curved line. Cyclin 

is colored blue. During activation of CDKs, cyclin first binds to the CDK for its partial activation and 

then the CAK (CDK activating kinase) phosphorylates the activation loop threonine of the cycline-

bound CDK to fully activate it. (Adapted from Morgan, Nature, 1995) 
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iv) PTK group 

 The protein tyrosine kinase group comprises a large number of protein kinases and they 

specifically phosphorylate tyrosine residues of substrate proteins. PTKs are found mostly in 

metazoans and they have important roles in growth and differentiation. These kinases prefer a 

glutamic acid (Glu) residue on both N- and C-terminal flanks of the acceptor Tyr residue16. There 

are two classes in the PTK group- receptor tyrosine kinases (RTKs) and non-receptor tyrosine 

kinases (NRTKs)47,48.  

In RTKs, ligand binding to the extracellular ligand binding domain results in trans-

autophosphorylation (Fig 1.7). Activation loop phosphorylation renders the kinase active and 

facilitates correct positioning of the residues involved in binding of Mg2+ and ATP for substrate 

phosphorylation. Additional tyrosine residues are phosphorylated, which serve as binding sites for 

downstream effectors22.  

 

 

Figure 1.7 Schematic representation of activation of a receptor tyrosine kinase 

Inactive receptor tyrosine kinase monomer kinase domains are indicated in blue, the transmembrane region 

is indicated as a grey curved line, the activation loop is colored green, and the ligand binding domain is 

colored maroon. The ligand is indicated as a yellow dumbbell shape. The ligand binding to the extracellular 

ligand binding domain results in trans-autophosphorylation. Activation loop phosphorylation renders the 

kinase active. Additional tyrosine residues are phosphorylated, which serve as binding sites for downstream 

effectors. (Adapted from Hubbard et al, JBC, 1998) 
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NRTKs (for example, Src) mostly contain protein-protein or protein-ligand interaction 

modules called the SH2 and SH3 domains48. Src, an oncoprotein, remains autoinhibited through 

binding of the SH2 with a phospho-tyrosine at the C-terminal end of the KD49,50 (Fig 1.8). The 

SH3 remains bound to the linker joining the KD and the SH2 domain17 (Fig 1.8). The SH3 domain 

and the linker interact with the N lobe and stabilize the helix C of the KD in an inactive state17. 

Ligands binding to the SH2 and SH3 domains releases the autoinhibition. The kinase undergoes 

trans-autophosphorylation on the activation loop which stabilizes the active conformation of the 

kinase for substrate phosphorylation51,52 (Fig 1.8). 

 

 

 

 

Figure 1.8 Schematic representation of activation of a non-receptor tyrosine kinase 

The KD is indicated in blue, the SH2 domain in green, the SH3 domain in orange, the helix C in purple, 

the activation loop is indicated with a dark blue curved line, the linkers are indicated as grey curved lines 

and phosphorylation is indicated as a red circle with a “P” inscribed. The SH2 and SH3 domains keep the 

kinase in an autoinhibited state by keeping the helix C and activation loop in an inhibited conformation. 

Ligand binding to the SH2 and SH3 domains releases the autoinhibition and initiates activation loop 

phosphorylation. The kinase is activated for substrate binding and phosphorylation. (Adapted from Huse 

and Kuriyan, Cell, 2002) 
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Endoplasmic Reticulum Protein Homeostasis 

The protein homeostasis or proteostasis network (PN) in eukaryotic cells (from yeast to 

human) is controlled by multiple signaling pathways that regulate the transcriptional and 

translational programs in the cell which govern protein synthesis, folding, distribution, localization 

and degradation. By doing so, these pathways control the development, cell differentiation and 

stress response that guide cells to change their physiology.  

To date, many signaling pathways have been discovered which act to maintain homeostasis 

in the cell. Some examples are the phosphoinositide 3-kinase (PI3K) pathway, initiated by the 

PI3-kinase, which governs cell growth and differentiation, the MAP Kinase (MAPK) pathway 

initiated by Raf, MEKK1, which governs cell proliferation and cell migration, and the unfolded 

protein response (UPR) pathway, initiated by endoplasmic reticulum (ER)-resident proteins 

Ire1/PERK/Atf6, which alleviates the ER stress caused by the accumulation of unfolded or 

misfolded protein in the ER, and the ER-associated degradation (ERAD) pathway, which governs 

the degradation of unfolded proteins. Overall the proteostasis network comprising protein 

synthesis, folding, targeting and degradation is controlled and supported by more than 2000 

proteins and sophisticated machineries in the cell through several signaling pathways.  

 

Protein synthesis, folding and targeting 

 About one third of all the nascent polypeptide chains, either co-translationally or post-

translationally enter the ER for correct folding to become biologically active53. The endoplasmic 

reticulum (ER), the largest organelle in the cell, is a complex structure with an intricate network 

of interconnected tubules54. The ER membrane is a bilayered structure that is continuous with the 
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nuclear membrane and encloses an internal compartment in the cell called the lumen. The ER plays 

a crucial role in protein targeting, protein folding, lipid biogenesis, calcium regulation and 

carbohydrate metabolism53,55,56. The ER has different compartments each of which has unique 

functions. One of the primary functions of the ER is acting as the site for protein folding.  

The transportation of the polypeptide chains towards the ER is mediated by a signal 

recognition particle (SRP)57,58. The SRP interacts with the SRP receptor (SR), which is bound to 

the ER membrane, and transfers the polypeptide to the pre-inserted protein complex, called the 

translocon, in the ER membrane59,60. This mechanism of targeting starts right after the signal 

sequence of the nascent polypeptide emerges out of the exit channel of the ribosome. The SRP 

recognizes and binds to a stretch of hydrophobic amino acid signal sequence (Tyr-Val-Thr-Phe-

Ile-Ser-Leu-Leu-Phe in human serum albumin61) and consequently, leads to a momentary pause 

in translation. The mRNA-ribosome-elongating polypeptide chain-SRP complex is driven towards 

a free translocon on the ER membrane62,63. The SRP-SR interaction leads to structural changes in 

the SRP that facilitate the transfer of the mRNA-ribosome-nascent polypeptide chain complex to 

the nearest translocon. Subsequently the SRP-SR interaction is dissolved and the SRP becomes 

free for another round of ER transport64 (Fig 1.9). 

 In addition to targeting the nascent polypeptide chain to the ER, the signal peptide also acts 

to open the translocon channel. The signal peptide remains attached to the translocon channel while 

the polypeptide chain is threaded through the translocon like a large loop. Once the polypeptide 

chain has completely entered the ER lumen, the signal peptide is cleaved off by signal peptidase 

complex. The signal peptide is then released from the translocon and rapidly degraded65. 
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 If a protein is destined for a secretory pathway or it is a lumenal protein, it is released into 

the ER lumen, and then it keeps folding until it reaches its native stable conformation. On the 

contrary, trans-membrane proteins are not released into the ER lumen. In the simplest situation, 

where a transmembrane protein spans the membrane just once (i.e. single pass transmembrane 

protein), the signal sequence initiates translocation just like in the case of a soluble protein. 

However, a stretch of hydrophobic residues in the polypeptide chain called the stop transfer 

membrane anchor sequence results in translocation pause. In this situation, the protein is shifted 

laterally so that it remains anchored to the ER membrane. In the case of complex multi-pass 

proteins, there are additional pairs of start and stop hydrophobic sequences to reinitiate and stop 

Figure 1.9 Schematic representation of targeting secretory proteins to the ER by SRP 

The nascent polypeptide (blue curved lines) emerging from the ribosome (indicated in light blue) exit 

channel contains a signal peptide (yellow curved line) which is recognized by the SRP (purple dumbbell 

shape). The polypeptide chain is transported towards the ER by the SRP. The SRP interacts with the 

SRP receptor (SR, indicated in green), which is bound to the ER membrane, and transfers the 

polypeptide to the translocon (indicated in orange) in the ER membrane. Subsequently the SRP-SR 

interaction is dissolved and the SRP becomes free for another round of ER transport. (Adapted from 

Walter et al, Phil. Trans. R. Soc. Lond. B, 1982) 
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the translocation. These multi-pass transmembrane proteins, thus, get stitched in the ER membrane 

as they are being made66.  

 Proteins can fold co-translationally as well as post-translationally67. Although the exit 

channel of the ribosome can accommodate an  helix, there is more space for folding once the 

protein enters the ER lumen68. With high concentrations of calcium ions and oxidizing conditions, 

the ER lumen provides the optimum environment for protein folding. In addition to protein folding, 

there are other events that lead to protein maturation like disulfide bond formation, N-linked 

glycosylation and glycophosphatidylinositol (GPI) anchor addition69.  

 The ER lumen contains a high concentration of molecular chaperones that assist in protein 

folding and prevents the aggregation of mis-folded/unfolded proteins. The ER lumen houses the 

members of the Hsp70 and Hsp90 chaperone family70. In metazoans, the glucose-regulated protein 

(GRP78/ BiP) is a member of the Hsp70 family71. The counterpart of BiP in yeast is Kar2. BiP is 

also called the master regulator of the ER. BiP facilitates protein folding and aggregation, regulates 

the translocation of nascent polypeptide chains to the ER, acts as an ER barrier by blocking the 

luminal side of the translocon, regulates the levels of calcium and prepares misfolded proteins for 

degradation72–77. With the help of these protein-folding chaperones, the polypeptides are folded to 

their native quaternary structures and then transported via the Golgi body to designated locations 

in the cell where they can perform their biological activity (Fig 1.10).  
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Protein degradation by ER associated protein degradation (ERAD) 

Errors in modifications such as N-linked glycosylation or disulfide bond formation, can 

generate misfolded/unfolded proteins. These aberrant proteins in the ER are subjected to 

degradation via the ER-associated protein degradation (ERAD) pathway78,79. ERAD is a multistep 

process that involves the retrotranslocation of the aberrant protein from the ER to the cytoplasm, 

followed by tagging the protein (ubiquitination) and finally, transport of the ubiqitinated protein 

to the proteasome complex for degradation80.  

Figure 1.10 Protein synthesis, folding and targeting 

The nascent polypeptide chain (blue scribbled line) is translocated to the ER through the translocon 

complex (indicated as red dumbbell). In the ER lumen (light orange gradient area), the polypeptide chain 

undergoes correct folding with the help of chaperones and modifications by glycosylation, palmitoylation, 

myristoylation and isoprenylation. Once proteins reach their native stable state, they are transported 

through vesicles to designated parts of the cell via Golgi complex. The misfolded proteins undergo 

degradation via the ERAD (ER associated degradation) pathway through the ubiquitin proteasome 

complex (indicated with clusters of blue circles). However, accumulation of misfolded proteins in the ER 

cause ER stress which in turn activates the UPR. (Adapted from Sitia and Braakman, Nature, 2003) 



   19 
 

There are three known ERAD pathways in the yeast Saccharomyces cerevisiae81. 

Misfolded proteins in the ER lumen trigger the ERAD-L pathway, misfolded proteins in the ER 

membrane trigger the ERAD-M pathway, and misfolded proteins in the cytoplasm trigger the 

ERAD-C pathway. Each of these ERAD pathways triggers a unique component to initiate protein 

degradation. For example, ERAD-L and ERAD-M substrate are directed to the Hrd1/Der2 

ubiquitin ligase system and ERAD-C substrates are directed to the Doa10 ubiquitin ligase 

system82,83. 

Ubiquitination itself requires three enzymatic steps each of which is catalyzed by a specific 

enzyme. First, the enzyme E1 (ubiquitin activating enzyme) bonds with the ubiquitin molecule, 

which is a 76 amino acid-long conserved protein. Second, the enzyme E2 (ubiquitin conjugating 

enzyme) binds with the ubiquitin. Subsequently the enzyme E3 (ubiquitin ligase) catalyzes the 

bond formation between the ubiquitin and the protein substrate. This cycle is repeated until there 

are at least four ubiquitin molecules attached to the substrate protein. This tagging leads to the 

transfer of the protein to the proteasome complex and eventual degradation84.  

 

ER stress and the Unfolded Protein Response (UPR) 

 The secretory proteins fold and mature inside the ER. Perturbations to ER protein 

homeostasis due to biotic or abiotic factors lead to accumulation of unfolded protein inside the ER, 

a condition known as ER stress85,86. ER stress activates a series of signaling pathways that alter 

the transcriptional and translational machinery in the cell. These pathways are collectively called 

the Unfolded Protein Response (UPR)87–90.  
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The fundamental goal of the UPR is to help alleviate ER stress by four different ways. 

First, the UPR increases the capacity of the ER to handle the huge amount of unfolded proteins. 

Second, the UPR reduces overall translation in the cell to reduce the amount of nascent protein 

load in the ER. Third, the UPR induces the expression of certain genes that make chaperones to 

assist with the protein folding90,91. Fourth, the UPR initiates apoptosis when the ER stress is 

prolonged92.   

 UPR in humans is initiated by three major ER-resident stress sensors, namely, Ire1, PERK 

and Atf6.  These sensors initiate three parallel signaling pathways. Among these three pathways, 

the Ire1 pathway is conserved from yeast to humans (Fig. 1.11)89. 

i) The Ire1-mediated UPR pathway 

The Ire1-mediated UPR pathway is the most conserved UPR pathway. Saccharomyces 

cerevisiae is known to have only the Ire1-mediated UPR pathway. During ER stress, this pathway 

is mediated by the trans-membrane ER resident protein, Ire1.  

Ire1 contains an ER lumenal domain (Ire1-LD), a transmembrane region and a cytoplasmic 

kinase and RNase domain (Ire1cyto). Under normal conditions, Ire1 exists as a monomer and the 

chaperone BiP (in human) or Kar2 (in yeast) remains associated with Ire1-LD93. During ER stress, 

BiP/Kar2 is released93. Ire1-LD senses the unfolded proteins in the ER lumen and it is activated94. 

Activation of Ire1 requires its dimerization, oligomerization and trans-autophosphorylation95–98. 

Active Ire1 in different organisms has different substrates. Ire1 cleaves the HAC1 pre-mRNA in 

yeast, XBP1 pre-mRNA in humans, xbp-1 pre-mRNA in worm, and bZIP74 pre-mRNA in rice 

plant99,100.  The active RNase domain of Ire1 cleaves the pre-mRNA at conserved regions in two 

stem-loop structures101. Ire1 cleaves the HAC1 pre-mRNA in yeast102,103. Subsequently, two exons 
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are joined by tRNA ligase104. The mature HAC1 mRNA translates the Hac1 protein, a transcription 

factor. Hac1 is translocated to the nucleus where it binds to the UPR elements (UPRE) and drives 

the expression of nearly 400 UPR genes which encode various proteins such as protein folding 

enzymes, ERAD components and lipid biosynthesis enzymes (Fig 1.11). 

 In mammals, there are two isoforms of Ire1: IRE1α and IRE1β encoded by the ERN1 and 

ERN2 genes respectively. IRE1α is more ubiquitously expressed as compared to IRE1β, which is 

expressed only in lung and intestinal epithelial cells. Hence, IRE1α pathway is the most 

extensively studied UPR pathway105,106. During ER stress, Ire1 cleaves the XBP1 pre-mRNA107. 

The exons are ligated by RtcB ligase that makes a frame-shifted mRNA108, resulting in the 

production of Xbp1 (X-box binding protein-1) protein. Xbp1 is a B-ZIP (basic leucine zipper) 

transcription factor. Xbp1 is translocated to the nucleus where it binds to the UPRE and drives the 

expression of the UPR genes. Xbp1 induces expression of genes required for protein folding and 

genes necessary for the secretory pathway107. Interestingly, in metazoans, both forms of XBP1 

mRNA (spliced and unspliced) are translated109. However, the spliced version activates the UPR 

genes but the precursor version represses UPR signaling110. During ER stress response, the level 

of XBP1 mRNA is increased but even when UPR is deactivated the XBP1 levels keeps increasing. 

At this point, since Ire1 is also deactivated, the XBP1 mRNA remains in its unspliced form. This 

unspliced XBP1 mRNA translates into a protein that is a negative regulator of XBP1 signaling110.  
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Figure 1.11 Schematic representation of Ire1-mediated UPR pathway 

Ire1 contains a lumenal domain (blue), cytoplasmic kinase domain (purple) and cytoplasmic 

RNase domain (green). Under normal conditions Ire1-LD remains associated with chaperone 

BiP (yellow) and remains inactive. During ER stress, BiP is released, and Ire1 is activated by 

dimerization, oligomerizes and autophosphorylation. Active Ire1 cleaves the XBP1/ HAC1 

mRNA is humans/ yeast. Mature mRNA translates into the protein Xbp1/ Hac1. These are 

active transcription factors that enter the nucleus, bind to the UPR element (UPRE) and activate 

the expressions of the UPR genes to alleviate ER stress. (Adapted from Walter and Ron, 

Science 2011) 
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ii) The PERK-mediated UPR pathway 

 The second ER stress sensor is PERK111. Under conditions of ER stress, PERK is activated 

by dimerization in a back-to-back manner and autophosphorylation12. The active PERK 

phosphorylates the alpha subunit of the eukaryotic initiation factor 2 (eIF2) at Ser-51. The 

phosphorylated eIF2 inhibits the function of eIF2B that catalyzes the formation of an active eIF2-

GTP-Met-tRNAiMet ternary complex (TC) from its inactive GDP-bound form.  The low TC reduces 

the overall rate of translation and the inflow of nascent proteins into the ER and helps to reduce 

the ER stress88 (Fig 1.12).  

 PERK reduces the global translation; however, it paradoxically up-regulates the translation 

of Gcn4 in yeast cells or Atf4 in mammalian cells via the following unique mechanisms. The 5’-

untranslated region (5’-UTR) of GCN4/Atf4 mRNA contains four or two short inhibitory upstream 

open reading frames (uORFs)112. Under physiological conditions, GCN4 translation is repressed 

by these uORFs as they block the movement of the scanning ribosomes towards the start codon of 

GCN4/Atf4. During stress conditions, PERK phosphorylates eIF2 thereby reducing the 

formation of active eIF2-GTP-Met-tRNAiMet ternary complex levels (TC). The low TC can allow 

the scanning ribosome to bypass the start codon of uORF1, uORF2, uRORF3 and uORF4. Finally, 

ribosomes reach the authentic start codon of GCN4 mRNA and translate protein113.  

 In metazoans, PERK induces the expression of Atf4, which is a transcription factor. Atf4 

has two important target genes: CHOP (C/EBP homolog protein) and GADD34 (growth arrest and 

DNA damage-inducible 34). CHOP is a transcription factor and it regulates the expression of 

components involved in apoptosis. GADD34 is involved in dephosphorylating eIF2 to counteract 

PERK to resume protein synthesis114,115. 
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Figure 1.12 Schematic representation of the PERK-mediated UPR pathway 

During ER stress, PERK (lumenal domain in blue and kinase domain in purple) is activated by 

dimerization and autophosphorylation. The active PERK phosphorylates the alpha subunit of 

the eukaryotic initiation factor 2 (eIF2). The phosphorylated eIF2 inhibits the function of 

eIF2B that catalyzes the formation of an active ternary complex (TC).  The low TC reduces the 

overall rate of translation and the inflow of nascent proteins into the ER and helps to reduce the 

ER stress. PERK reduces the global translation; however, it paradoxically up-regulates the 

translation of Gcn4 in yeast cells or Atf4 in mammalian cells via the following unique 

mechanisms. The 5’-untranslated region (5’-UTR) of GCN4/Atf4 mRNA contains four or two 

short inhibitory upstream open reading frames (uORFs, represented as orange rectangles). 

Under normal conditions, GCN4 translation is repressed. During stress conditions, low TC can 

allow the scanning ribosome to bypass the start codon of uORF1, uORF2, uRORF3 and 

uORF4. Finally, ribosomes reach the authentic start codon of GCN4 mRNA and translate 

protein. (Adapted from Walter and Ron, Science 2011) 
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iii) The Atf6-mediated UPR pathway 

 Atf6 contains a lumenal domain that senses the ER stress. Under conditions of ER stress, 

Atf6 is translocated to the Golgi bodies via transport vesicles116. Then, the lumenal domain and 

the transmembrane region of Atf6 are cleaved by 2 Golgi-resident proteases, S1P and S2P (site-1 

and site-2 protease), respectively117,118. As a result, the N-terminal cytosolic domain of Atf6 is 

released, which translocates to the nucleus and drives the expression of UPR genes (Fig 1.13). The 

cleavage of Atf6 shares some similarities with the cleavage of sterol response element binding 

protein (SREBP)118. In both cases, proteins are first translocated to the Golgi body and then the 

proteolytic cleavage takes place. The major difference in these two pathways is the initiation step: 

in the case of SREBP, it is the release from sterol repression, and in the case of Atf6, it is the 

accumulation of unfolded proteins. Amongst several targets of Atf6, major ones are protein folding 

chaperones like BiP and GRP94.  

 

 

Figure 1.13 Schematic representation of the Atf6-mediated UPR pathway 

During ER stress ATF6 (lumenal domain in blue and cytoplasmic domain in maroon) is translocated to 

the Golgi body (light grey), where its cytoplasmic domain, which is an active transcription factor, is 

cleaved. The active transcription factor enters the nucleus, binds to the UPR element (UPRE) and activates 

the expressions of the UPR genes to alleviate ER stress. (Adapted from Walter and Ron, Science 2011) 



   26 
 

In our lab, we study the inner workings of the UPR signaling pathways in budding yeast 

Saccharomyces cerevisiae. In yeast, UPR is known to be initiated by only Ire1 that has both kinase 

and endonuclease activities. Recently, our lab identified that kinases ‘Kin1’ and its isoform ‘Kin2’ 

significantly contribute to the UPR beyond their canonical role in cell polarity. These Kin kinases 

belong to the Kin/Par-1/MARK family of protein kinases and are known to have varied roles in 

the cells. 

The Kin/Par-1/MARK family of Protein Kinases 

Recent development in the field of kinases has brought into light the roles of two yeast 

protein kinases Kin1 and its isoform Kin2. The budding yeast Kin kinases are orthologs of worm 

PAR-1 (partitioning defective kinase) and the human MARK (microtubule affinity-regulating 

kinase) 119. The number of genes encoding the members of this family vary from lower to higher 

eukaryotes. Schizosachharomyces pombe contains only one whereas mammals contain more than 

four. Their roles include maintaining protein balance in the cell, establishing cell polarity, ensuring 

microtubule stability and cell cycle control. 

The human MARK has a role in the progression of Alzheimer’s disease120. During different 

cellular processes like cell polarity establishment, cell shape determination, cell differentiation, 

chromosome separation during mitosis and meiosis, and intracellular transport, microtubule 

reorganization is a key factor121,122. Microtubule reorganization requires microtubule-associated 

proteins (MAPs) which bind to the microtubules123. Phosphorylation status of MAPs determines 

their binding affinity to microtubules. MARK hyper-phosphorylates the MAP Tau at serine 262 in 

the KXGS motif and reduces the binding affinity of Tau to microtubules124,125. The rapid 

phosphorylation of Tau results in its dissociation from the microtubule leading to microtubule 
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depolymerization. Microtubule depolymerization leads to the formation of paired helical 

fragments and neurofibrillary tangles, which are pathological hallmarks of neurodegenerative 

diseases126. 

PAR-1 in the worm C. elegans functions by providing anterior-posterior axis specification 

and determining asymmetry during cell division127. Mutations in the Par genes in the worm can 

cause defects in early embryogenesis and embryonic lethality128. Par-1 indirectly controls cell fate 

by determining the distribution of different regulators during development, and also by restricting 

degradation of germplasm proteins that are synthesized in the somatic cells129,130. 

PAR-1 homolog in Drosophila helps in the directional transport of biomolecules during 

the differentiation of the germline cell into the oocyte131. During the development of the fly 

embryo, a large amount of Oskar (OSK) mRNA is required in the posterior pole of the embryo. 

This transportation of the OSK mRNA to the posterior pole is essential for development and it is 

mediated by the Par-1 protein132. The Osk protein stability also depends on its phosphorylation by 

Par-1133. 

The Kin kinases (Kin1 and Kin2) in budding yeast have roles in establishing cell polarity 

and assisting in exocytosis134. Kin1 in fission yeast assists in cell polarity establishment and 

initiates bipolar growth135. However, detailed mechanisms of function of these kinases are yet 

unknown. 

Members of this closely related family of Ser/Thr kinases share a similar domain 

architecture with an N-terminal conserved kinase domain, followed by an undefined spacer and a 

KA1 (kinase associated) domain at the C-terminal end (Fig 1.14). This KA1 domain remains 

associated with the catalytic kinase core and keeps the kinase in a dormant state. Detailed 
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mechanisms of release of the KA1 domain and activation of the kinases are yet to be determined. 

Some kinases in this family contain a UBA (ubiquitin associated) domain at the C-terminal end of 

the catalytic domain136. Studies show that the UBA domain binds polyubiquitin and targets the 

protein for degradation through the Ubiquitin Proteasome System.  

 

 

Recent findings from our lab indicate that the yeast protein kinases, Kin1 and Kin2 have 

an added role in the UPR other than their ascribed role in cellular exocytosis. Kin1/Kin2 mediate 

the splicing, translocation and translation of the HAC1 mRNA137.  

Figure 1.14 Domain organization of the MARK/Par-1/Kin kinase family of proteins 

(A) The N-terminal kinase domain is colored dark blue, the UBA-associated domain green and the kinase associated 

domain 1 light blue. (B) Phylogenetic tree showing the relation between the different members of the MARK/Par-

1/Kin family from diverse species (MEGA7). 

A 

B 
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During ER stress, targeting of the HAC1 pre-mRNA towards Ire1 for splicing requires a 3’ 

bipartite element (3’BE), positioned at the 3’-UTR (untranslated region) of HAC1138. Our lab 

provides evidence that two of the 3’BE nucleotides in HAC1 (GG-1143-44) help to target the 

HAC1 pre-mRNA towards Ire1 for splicing and improve the translation efficiency of the mature 

HAC1 mRNA. This indicated that there is a 3’BE-ribonucleoprotein complex (3’BE-RNP) that 

drives the translocation, splicing and translation of HAC1 mRNA. In order to identify the 

components of the 3’BE-RNP, our lab generated a 3’-BE crippled mutant of HAC1 mRNA (HAC1-

GG1143-44CC) that was not able to generate a wild type (WT) UPR response. Recently, we have 

shown that high-copy protein kinase gene KIN1 or its paralog KIN2 restores the defective ER-

stress response associated with a mutation at the 3’-untranslated region (3’-UTR) of HAC1 mRNA 

in the budding yeast Saccharomyces cerevisiae137. Previously, Elbert and coworkers (2005) have 

shown that high-copy KIN1 or KIN2 suppresses the growth defect associated with mutations in 

several secretory proteins, including mutations in secretory/vacuolar pathway components Sec1 

and GTPase Cdc42134. Thus, it appears that both Kin1 and Kin2 participate in the control of cellular 

protein homeostasis likely by engaging the UPR and by modulating the secretory pathways by yet 

unknown mechanisms. Indeed, a very limited number of studies have been done on how Kin 

kinases contribute independently or additively to either pathway. 

 This research is aimed at uncovering the mechanistic details to fully understand the Kin 

kinase signaling pathway in the budding yeast. I have been able to understand partially the 

mechanism of Kin kinase domain activation. In a collaborative project, we identified the 

downstream effector of the Kin kinase. These experiments and results are explained in detail in 

Chapters 2 and 3 followed by a summary and discussion on the future prospects of this research in 

Chapter 4. 
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Proteostasis in Health and Disease 

 Proteostasis is a tightly regulated process with many branches. Each branch of proteostasis 

is controlled by hundreds of factors. Based on large-scale genomic studies, it has been estimated 

that, in humans, there are about 280 factors that contribute to protein synthesis, 330 contribute to 

protein folding, 855 factors are involved in the Ubiquitin proteasome mediated degradation, and 

533 factors in autophagy139. Perturbance to any of these branches in proteostasis can lead to the 

onset of many diseases.  

Diseases associated with protein synthesis 

 In eukaryotes, the process of translation is tightly regulated and mediated by several factors 

including the ribosomal subunits, the tRNAs that bring in the amino acids, the mRNA to be 

translated, and eukaryotic translation factors. Diseases associated with protein synthesis may arise 

from mutations in any of these factors140.  

An example of a disease caused by mutation in the mRNA is hereditary hyperferritinaemia 

or cataract syndrome which causes early onset of cataract in patients. The mutation in the 5’-

untranslated region (5’-UTR) of the ferritin mRNA disturbs the mechanisms by which translation 

of ferritin (iron storage protein) is suppressed, causing excessive production of ferritin which 

aggregates in the lens and causes cataract141. A second example, the reduced expression of a cyclin-

dependent kinase inhibitor (p16) which causes melanoma. In this case, there is a G to T mutation 

at the -34 position which creates an AUG codon in the 5’-UTR of the p16 mRNA. This lowers the 

levels of the wild type p16 tumor suppressor protein and dysregulation of the cell cycle leading to 

melanoma142. The Wolcott–Rallison syndrome, an autosomal recessive disorder is caused through 

impaired regulation of the translational initiation factor eIF2. A mutation in the gene encoding 
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PERK results in the reduced activity of PERK leading to increased production of insulin and 

causing diabetes mellitus in infants143. Mutations in the ribosomal protein S19 encoded by RPS19 

lead to onset of the Diamond-Blackfan anemia, a condition characterized by aregenerative anemia 

manifested during infancy144. Other factors in translation, such as aberrant tRNAs and mutated 

charging enzymes, can cause neurological disorders. Evidence shows that mutations in the GARS 

gene encoding the glycyl tRNA synthetase result in muscular dystrophy145. 

Diseases associated with protein folding and aggregation 

 Biotic or abiotic factors such as heat stress, oxidative stress or stress from toxic components 

like cadmium, can result in protein unfolding. Unfolded proteins can form toxic aggregates leading 

to the onset of many diseases146.  

 Some proteins contain unstructured disordered regions which are prone to misfolding and 

form aggregates. Other types of proteins undergo a partial unfolding step in order to form 

aggregates. An example of the latter is amyotrophic lateral sclerosis (ALS) caused by the unfolding 

and aggregation of the globular protein superoxide dismutase 1 (SOD1)147. As protein folding is 

an error prone process, defects in the folding can lead to onset of diseases, for example, the cystic 

fibrosis transmembrane conductance regulator (CFTR) has a folding efficiency of ~25% and 

mutations can further lower that efficiency148. 

 Toxic protein aggregates can disturb the overall cellular environment by engaging with and 

having deleterious effects on membranes and by interacting with macromolecules like RNA and 

membrane associated proteins. Overall, these can result in disturbing the cellular proteostasis 

network leading to an array of diseases.  
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Protein Kinases in Health and Disease 

 The human genome encodes more than 530 distinct kinases. Almost 30% of human 

proteins are modified by phosphorylation which regulates different cellular processes like growth, 

differentiation, proliferation and apoptosis. The process of phosphorylation is tightly regulated and 

any perturbance to kinase activity can lead to the onset of many diseases like metabolic disorders, 

neurodegenerative diseases and certain types of cancers10.  

Kinases in neurological disorders 

 One of the most researched neurological disorders is Alzheimer’s disease caused by 

hyperphosphorylation on Ser262 of tau protein by the kinase MARK2 (microtubule affinity-

regulating kinase)151. A second example of an aberrant kinase associated neurodegenerative 

disorder is Parkinson’s disease. The G2019S mutation in the gene of leucine-rich repeat kinase 2 

(LRRK2) is a major cause of the development of Parkinson’s disease152. In the progression of both 

Parkinson’s disease and Huntington’s disease, it has also been shown that the double stranded 

RNA-dependent protein kinase (PKR) has an important role. Evidence indicates that there is 

abnormal aggregation of phosphorylated PKR in tissue samples obtained from autopsies from 

patients suffering from these diseases. These aggregates have been predicted to play a role in the 

pathogenesis of Huntington’s or Parkinson’s disease153.  

 

Kinases in metabolic disorders 

 Cellular metabolism constitutes the essential chemical reactions which are responsible for 

various catabolic and anabolic cellular processes like ATP production, nucleic acid and protein 

synthesis, carbohydrate production, degradation and elimination of toxic wastes154. Several protein 
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kinases are embedded in these metabolic pathways and hence abnormal protein kinase activity can 

impair these metabolic pathways causing an array of diseases.  

 In humans, AKT2 which encodes a ubiquitous serine-threonine kinase plays a crucial role 

downstream of the insulin receptor in the phosphoinositide 3-kinase (PI3K) signaling pathway. It 

translates the physiological effects of insulin, and its malfunction has been implicated in glucose 

metabolism disorder and development of diabetes mellitus. Mutations in AKT2 result in insulin 

resistance and onset of type 2 diabetes, hyperglycemia, dyslipidemia and hepatic steatosis155. 

Another kinase implicated in the development of obesity and type 2 diabetes is the atypical Protein 

kinase C (aPKC). In insulin resistant states of obesity and diabetes, it has been observed that aPKC 

activation by insulin is defective in heart and skeletal muscles. This is a result of reduced activation 

of insulin receptor substrate (IRS)-dependent PI3K which works upstream of aPKC, and also 

reduced capability of the lipid product of PI3K to directly activate aPKC156. Another group of 

kinases called the mammalian sterile twenty (MST) which comprise the germinal center kinase 

(GCK) II and III have been implicated in modulating the metabolism and in pathophysiology. 

MST1 is a key player in the progression of type 2 diabetes because of its role in the apoptosis of 

pancreatic  cells. Destruction of  cells leads to an increase in the blood glucose level thereby 

causing diabetes157. In the cases of obesity and diabetes, another kinase that is affected is the AMP-

activated protein kinase (AMPK). AMPK is known to be activated during cellular low energy 

states so that it can in turn activate energy generating processes like fatty acid oxidation and 

glucose transport. AMPK counteracts cellular processes like ER stress and oxidative stress that are 

activated during diabetes and obesity. Dysregulation in AMPK by its upstream kinase LKB1 leads 

to metabolic diseases and also certain types of cancers158. 
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Kinases in cancer  

 Research progress in the field of kinase signaling pathways and cancer has advanced the 

understanding of the role of aberrant kinases in cancer progression. Protein kinases are embedded 

in most signaling cascades that guide cell differentiation and proliferation, and if these kinases are 

overexpressed or hyper active, it leads to oncogenesis159.  

One of the first extensively studied kinase mutations in cancer is in the Bcr-Abl fusion 

protein which causes chronic myeloid leukemia (CML) that accounts for up to 20% of all adult 

leukemias160. The Abl tyrosine kinase has a role in oncogenesis associated with the reciprocal 

chromosome translocation that creates the Philadelphia chromosome21. Under normal conditions, 

the Abl kinase keeps shuttling between the nucleus and cytoplasm. However, the Bcr-Abl fusion 

protein remains in the cytoplasm where it is constitutively active and keeps interacting with its 

partners involved in the oncogenic pathway. For examples, Bcr-Abl interferes with the MAPK 

pathway causing increased proliferation of cells, the Janus-activated kinase (JAK)-STAT pathway 

leading to aberrant transcriptional activity, and the PI3K/AKT pathway causing enhanced 

apoptosis162. The first tyrosine kinase inhibitor designed to inhibit the Bcr-Abl kinase activity was 

Imatinib, which has now become the first line of treatment for CML. Imatinib binds close to the 

ATP binding site of Abl kinase in its inactive conformation and blocks its action semi 

competitively163.  

 In multiple cases of lung cancer, particularly non-small cell lung carcinoma (NSCLC), it 

has been observed that the epidermal growth factor receptor (EGFR) tyrosine kinase contains 

mutations like in-frame deletions, nucleotide substitutions or in-frame duplications or insertions164. 

Under normal conditions, EGFR tyrosine kinase adopts an autoinhibitory form. Following 

mutations in the kinase domain, it is destabilized, and the kinase hypersensitivity leads to inhibited 
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apoptosis, increased cell proliferation, angiogenesis and metastasis. So far, two inhibitors, namely 

erlotinib and gefitinib have been designed and approved to curb the EGFR activity by reversibly 

binding to its active site165. 

 A kinase that has been implicated in the progression of breast cancer is the ErbB2 or Her2 

belonging to the family of HER receptor tyrosine kinases. In breast cancer tumors, Her2 is 

overexpressed by up to 30%166.  

 The slightest error or dysregulation in the proteostasis or mutations in the kinases that 

disrupt kinase signaling cascades can result in the onset of hundreds of diseases many of which 

could be life-threatening. Extensive research in drug target identification and drug development 

has led to discovery of small molecules which in the form of drugs can combat if not cure several 

diseases. Thus, it is important to gain mechanistic insights into these signaling pathways and 

understand the functioning of kinases so that it can lead to novel drug discovery and ensure better 

treatment of the diseases. 
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2. Chapter 2: Adaptation to Endoplasmic Reticulum Stress Requires 

Trans-phosphorylation within the Activation Loop of Protein 

Kinases Kin1 and Kin2, Orthologs of Human Microtubule 

Affinity-regulating Kinase   
 

Introduction 

 Kin1 and Kin2 belong to the Kin1/Kin2/Mark/Par1 family of Ser/Thr protein kinases. Kin1 

in fission yeast Schizosaccharomyces pombe has a role in cell polarity135, Par-1 (partitioning-

defective 1) in worm127 C. elegans have been shown to be important for establishing cell 

polarity132, and MARK (microtubule affinity-regulating kinase)120 in humans play a critical in the 

progression of Alzheimer’s disease. Recently, the role of the two budding yeast Kin kinases, Kin1 

and Kin2 has come to light. The Kin kinases were first described and partially characterized in the 

90s. Both Kin1 and Kin2 were shown to be fairly large protein with 1064 and 1147 amino acids. 

Both these kinases contain an N-terminal catalytic kinase domain (KD) and they share about 85% 

amino acid identity in the KD167,168. Recent studies show that Kin1 and Kin2 in budding yeast are 

involved in cellular exocytosis and cell polarity establishment134 and the ER protein homeostasis 

pathway137.  

Cell polarity is a critical process that refers to the asymmetric distribution of biomolecules 

(RNAs, proteins and lipids) in the cells. Polarization is important for cell with growth, 

development, differentiation and cell division169. Several essential yeast proteins that are important 

for establishing cell polarity and exocytosis are Cdc42, Rho3, Sec15, Sec4, Sec1 and Sec10. 

Genetic studies show that overexpression of the Kin kinases in the temperature sensitive secretory 

mutant strains can overcome the growth defect of the mutant strains134. Furthermore, it was shown 

that the C-terminal end of the Kin kinases contain a KA1 (kinase associated 1) domain. The KD 
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and KA1 remain associated with each other and keep the kinases inactive134. However, the detailed 

mechanism of release of the KA1 from KD and the mechanism of activation of the KD are as yet 

unknown. 

Recent studies from our lab show that the Kin kinases are novel regulators of the Unfolded 

Protein Response pathway in the budding yeast137. To date, the budding yeast UPR was known to 

be controlled by two key players, Ire1 and Hac187. During ER stress, targeting of the HAC1 pre-

mRNA towards the Ire1 for splicing requires a 3’ bipartite element (3’BE), positioned at the 3’-

UTR (untranslated region) of HAC1138. Computer modelling predicts that the 3’-BE forms a helix-

bulge-helix-bulge structure. Mutational, genetic and microscopy data provides evidence that there 

are two guanine nucleotides (GG1143,1144) on one of the bulges that play an important role in 

the translocation of the HAC1 mRNA137. In an attempt to identify the genes that can suppress the 

growth defect of the guanine mutations, our lab discovered that over expression of Kin2 can restore 

the optimum UPR response in the GG mutant strain. This evidence was backed by the increased 

splicing of HAC1 mRNA in the GG mutant strain when Kin2 was overexpressed137. 

Here, we show that Kin1 and Kin2 proteins minimally require a kinase domain (KD) and 

an adjacent kinase extension region (KER) for their function both in vivo and in vitro. We also 

show that the functional mini Kin2 protein is predominantly localized within the cytoplasm and 

precipitated with the cellular membrane fraction, suggesting its association with the cellular 

endomembrane. Furthermore, we provide in vivo and in vitro evidence that the Kin2 residue Thr-

281 and Kin1 residue Thr-302 within a flexible loop, also known as the activation loop, are 

phosphorylated in trans to activate the kinase domains.  
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Results 

Bioinformatics analysis on yeast proteins Kin1 and Kin2 and comparison with related 

kinases in higher eukaryotes 

 Yeast Kin kinases contain an N-terminal kinase domain and a C-terminal KA1 domain 

separated by a long spacer of undefined function. As long as the KD and KA1 remain associated 

the kinase is inactive134. Sequence analysis and bioinformatics show that these Kin kinases are 

closely related to the MARK in humans, PAR-1 in worm and share a similar domain architecture 

(Fig 2.1). Some kinases in the Kin1/Kin2/Mark/Par1 family contain a UBA (ubiquitin associated) 

domain at the C-terminal end of the catalytic domain136. Studies show that the UBA domain binds 

polyubiquitin and targets the protein for degradation through the Ubiquitin Proteasome System. 

 

 

Figure 2.1 Schematic representation of Kin kinases and its counterparts 

A phylogenetic tree was constructed using the protein sequences of Kin1, Kin2 and Snf1 from yeast, 

Par1 from worm, and AMPK and Mark3 from human. All the kinases share a similar domain 

architecture with an N-terminal KD (grey) and a C-terminal long region. Kin kinases, Par1 and Mark3 

also contain a KA1 domain (blue) at the C-terminal end. Mark3 contains a UBA-like domain (dark 

green) after the KD. 
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In vivo assay to study Kin2 function 

 In order to study the Kin kinase function in the yeast cells we developed an in vivo assay. 

We cloned the protein coding sequence with a Flag-tag (DYKDDDDK) under a CYC1 promoter 

containing a galactose-inducible upstream activator sequence (Gal-UAS) (Fig 2.2A). The CYC1 

promoter is used to mimic the weak natural promoter of Kin1 and Kin2 and the Gal-UAS is used 

to induce the protein expression which is almost undetectable under the natural promoter (Fig 

2.2B). In order to test the Kin2 function in UPR we use a functional complementation approach 

using a kin1 kin2 yeast strain. This kin1 kin2 yeast strain shows sensitivity to Tunicamycin. 

Tunicamycin blocks N-linked glycosylation of nascent protein and causes protein folding defects 

and ER stress170. Hence, cells expressing a basal level of a functional Kin2 allele can grow on 

Tunicamycin. The Kin2 constructs were transformed in a kin1 kin2 yeast strain. The 

transformed cells were grown, serially diluted and spotted on synthetic minimal media with or 

without Tunicamycin. The transformed cells were also spotted and grown on synthetic media 

containing galactose. Galactose induces the expression of the kinase and this assay was used to 

test the kinase activity when the kinase was expressed at a higher level.  
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Kin1 and Kin2 proteins require a kinase domain followed by an extra set of residues to 

activate the UPR 

Previous reports show that protein kinase Kin2 or its N-terminal region (residues 1-526) 

are sufficient to suppress the growth defects of several secretory mutants134. To determine the 

minimum length of Kin2 that can activate the UPR, we made several Kin2 constructs that lacked 

the DNA sequences encoding either N-terminal or C-terminal residues (Fig 2.3). Effects of 

truncations were then tested by a functional complementation approach. Each truncated Kin2 

construct was introduced in a kin1kin2 strain. The resulting strains were then grown on the 

Figure 2.2 Schematic representation of Kin kinase constructs and scheme to study the 

kinase function 

(A) The schematic representation of the tagged expression vectors. Both Kin1 and Kin2 are tagged with 

a Flag-epitope (close circle) at the N-terminus and expressed from a weak CYC1 promoter containing 

a galactose inducible upstream activator sequence (UAS). The kinase domain (dark blue bar), long 

spacer (solid dashed line), newly defined kinase extension region (KER) and kinase-associated 1 (KA1) 

domain (light blue) are indicated. Numbers on the top indicate amino acid residues for Kin1 and Kin2. 

(B) Schemes for the proposed role of Kin2 and its substrate phosphorylation. On the dextrose medium 

(Scheme I), Kin2 expresses at a low level, leading to a low level of phosphorylation of its substrate and 

resistance to tunicamycin. On the galactose medium (Scheme II), Kin2 expresses at a high-level, which 

phosphorylates its own substrate as well as other unknown proteins promiscuously at a high-level, 

leading to a lethal phenotype. 
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medium containing dextrose, dextrose with tunicamycin or galactose. The kin1kin2 strain 

containing the empty vector plasmid grew on the dextrose medium (Fig 2.3A, row 1) but did not 

grow on the medium containing Tunicamycin (Fig 2.3A, row 1). The same strain grew on the 

tunicamycin medium when the vector plasmid expressed a full-length Kin2 protein from its native 

promoter or from the weak CYC1 promoter rows (Fig 2.3A, rows 2 and 3). The low level of Kin2 

expression from either promoter was sufficient to promote growth on the medium containing 

tunicamycin likely by phosphorylating its substrate at a low level.  

The minimum length of Kin2 that was able to complement the Kin1 and Kin2 double null 

strain, thus promoting growth on the tunicamycin medium was 94-510 (Fig 2.3A, row 4). Further 

deletion of 15-residues from the N-terminal end of Kin2-(94-526) or 10-residues from the C-

terminal end of Kin2-(94-510) completely abolished yeast growth on the tunicamycin medium 

(Fig 2.3A, rows 5 and 6). Western blots from whole cell extract were probed with anti-Flag 

antibody to detect Flag-Kin2, and anti-Pgk1 antibody to determine loading control. The protein 

expression of Kin2-(94-500) was reduced to half that of Kin2-(94-510) (Fig 2.3B) possibly 

because the residues 500-510 likely play a role in maintaining the structural integrity of the protein. 

To further confirm our results, we grew the kin1kin2 yeast strain harboring the full-

length Kin2 or its derivatives on the galactose medium (Fig 2.3A, Galactose). We observed that 

yeast cells expressing a full-length Kin2 grew on the galactose medium (Fig 2.3A, row 3), whereas 

cells expressing a truncated Kin2 protein did not grow on the galactose medium (Fig 2.3, row 4). 

The growth of the full length Kin2 on galactose was likely because the kinase domain (KD) of the 

full-length Kin2 is associated with its C-terminal KA1 domain as reported earlier134, resulting in 

an inhibition of its KD function and a normal growth phenotype on the galactose medium.  

However, KD of the truncated Kin2-(94-510) protein is released from autoinhibition and results 
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in lack of cell growth on galactose medium. Cells expressing the truncated Kin2-(94-500) or Kin2-

(110-526) protein grew on the galactose medium (Fig 2.3, rows 5 and 6) likely because of the lack 

of the kinase activity. These N-terminal or C-terminal residues are probably required for correct 

folding of the kinase domain in order to be functional inside the cell. Collectively, these data 

further confirm that Kin2 residues 94-510 are minimally required for its kinase function. 

 

 

We observed a similar pattern with the paralog Kin1. We expressed the full length and 

truncated Kin1 constructs, introduced them in a kin1kin2 strain tested for their growth on 

dextrose and tunicamycin media. The full length Kin1 could complement the kin1kin2 strain 

Figure 2.3 In vivo assay to study Kin2 protein kinase function   

(A) Analysis of yeast cell growth. A kin1kin2 strain containing a vector plasmid (null) or expressing a 

wild type Kin2 from the native promoter [PnativeKin2-(1-1147)] or CYC1 promoter [PCYC1Kin2-(1-1147)] 

were grown, serially diluted, spotted and grown on a synthetic dextrose medium, dextrose plus tunicamycin 

(an ER stress inducer) medium, and galactose medium. A kin1kin2 strains expressing truncated Kin2 

proteins from the CYC1 promoter [PCYC1Kin2-(94-510), PCYC1Kin2-(94-500)] and PCYC1Kin2-(109-526)] 

were also tested for their growth on the dextrose, tunicamycin and galactose media. (B) Analysis of Kin2 

protein expression. Whole cell extracts were prepared from yeast cells containing a vector plasmid or 

indicated Kin2 derivatives (94-510 and 94-500) and subjected to SDS-PAGE followed by Western blot 

analyses using an anti-Flag (to detect Kin2) and anti Pgk1 (to determine the loading control) antibodies. 
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but the Kin1-(115-430) could not. The minimum length of Kin1 required to complement the 

kin1kin2 strain was Kin1-(115-515) suggesting that the growth defect was due to expression of 

a non-functional Kin1 kinase domain (Fig 2.4A). Western blots from whole cell extracts were 

probed with anti-Flag antibody to detect Flag-Kin1, and anti-Pgk1 antibody to determine loading 

control (Fig 2.4B). 

 

Collectively, we refer to the minimum functional Kin1 as Kin1mini (i.e., Kin1 residues 115-

515) and minimum functional Kin2 as Kin2mini (i.e., Kin2 residues 94-526).  

 Using NCBI Blast we determined that the Kin1 residues 120-400 and Kin2 residues 94-

510 showed sequence homology with the typical protein kinase PKA. However, residues 380-510 

of Kin2 protein had no detectable homology to any conserved protein domain family other than 

with the residues 425-515 of Kin1 protein (Fig 2.5). We named this region as the kinase extension 

region (KER) and investigated the relative importance of KER in Kin2 protein.  

Figure 2.4 In vivo assay to study Kin1 protein kinase function   

 (A) Analysis of yeast cell growth. A kin1kin2 strain expressing a full-length Kin1 from its natural 

promoter [PnativeKin1-(1-1064)] and its indicated derivatives from the CYC1 promoter [PCYC1Kin1-(115-

430) and PCYC1Kin1-(115-515)] were grown, serially diluted, spotted and grown on dextrose and 

tunicamycin media. (B) Analysis of Kin1 protein expression. Whole cell extracts were prepared from 

yeast cells containing a vector plasmid or indicated Kin1 derivatives (115-430 and 115-515) and subjected 

to Western blot analyses using an anti-Flag (to detect Kin1) and anti Pgk1 (to determine the loading 

control) antibodies. 
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Understanding the importance of the Kin2 KER 

 Pairwise sequence alignment of Kin1 and Kin2 protein sequences showed that Kin1 

residues 463-482 had some homology with the Kin2 residues 442-462 (30% identities Fig 2.5). It 

also revealed that Kin1 lacked 23 residues corresponding to Kin2 residues 464-485 (Fig 2.5). 

Based on these findings, we proposed that KER of Kin2 was likely composed of three separate 

subdomains: KER-I (residues 386-440), KER-II (residues 440-480) and KER-III (residues 480-

510). BLAST search with the small peptide sequences of each subdomain revealed that KER-I 

showed a partial protein sequence homology with the ubiquitin-associated (UBA) domain of 

several proteins, including a human autophagy protein Nbr1171 and a human Kin2 ortholog 

Mark3136. This computational analysis suggested that the KER-I subdomain might adopt an UBA-

like domain and KER-II & III subdomains might play an unknown role in the kinase domain 

function. To understand the role of each KER segment we deleted KER-I, II and III separately and 

studied the growth of the cells harboring these constructs on tunicamycin containing medium.  

 

 

Figure 2.5 Pairwise sequence alignment of the KER of Kin1 and Kin2 

Comparison of the KER sequences in Kin1 and Kin2 proteins. Protein sequences of Kin1 and Kin2 were 

pairwise aligned. From the sequence alignment, the KER residues of Kin1 (residues 407 to 517) and Kin2 

(residues 386 to 520) are shown. In between two sequences, the conserved residues are shown by ‘letters’ 

and the identical residues are shown by “+” signs. The putative KER subdomains I and III are shown by 

boxes. 
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 Three Kin2mini constructs were generated by consecutively deleting DNA sequences 

encoding 40-residues from the C-terminal end [e.g., Kin2-(94-480), Kin2-(94-440) and Kin2-(94-

400)] and two Kin2mini constructs by deleting DNA sequences encoding 40-residues from the 

internal region (e.g., Kin2mini-(400-440) and Kin2mini-(440-480)] (Fig 2.6B). Each of these 

derivatives was then transformed into a kin1kin2 strain and the resulting strains were tested for 

their growth on dextrose and dextrose plus tunicamycin media (Fig 2.6A). Yeast cells harboring 

Kin2mini-(440-480), like the Kin2mini, grew on the tunicamycin medium (Fig 2.6A, rows 4 and 6), 

suggesting that Kin2mini-(440-480) expressed a functional protein. In contrast, yeast cells 

containing the Kin2-(94-480), Kin2-(94-440), Kin2-(94-400) and Kin2mini-(400-440) alleles 

were unable to grow on the tunicamycin medium (Fig 2.6A, rows 1, 2, 3 and 5). Western blot 

analysis was performed to show the expression of the truncated Kin2 proteins, (Fig 2.6C, lanes 1, 

2 and 3). The protein expression was quantified (Fig 2.6D). These data suggested that growth 

defects were not due to major lack of protein expression, but due to expression of non-functional 

proteins. The Kin2mini-(400-440) protein expression was extremely low suggesting the residues 

400-440 might play a role in conferring stability. 

Taken together, it appears that Kin2 residues 440-480 (i.e., KER-II) likely play a 

dispensable role, whereas residues 400-440 (i.e., KER-I) and 480-526 (i.e., KER-III) separately 

modulate the Kin2mini function either by stabilizing the closed conformation of the KD as observed 

in typical kinases including the human Mark3136, or by controlling the catalytic activity of the KD 

as observed in Ca2+/calmodulin-dependent protein kinase 1172, or by dimerization like in Src family 

kinases173. 
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Figure 2.6 Two distinct regions within the KER control the Kin2 kinase function.  

(A) Analysis of yeast cell growth. (Left panel) The kin1kin2 deletion strains expressing the indicated 

Kin2 derivatives were tested for growth on dextrose and tunicamycin media. (Right panel) Schematic 

representation of Flag-epitope (violet circle)-tagged Kin2 deletion constructs. The kinase domain (solid 

bar) and the kinase extension region (KER, solid line) are shown. The dashed line indicates that the region 

is deleted. The number indicates residues number within the protein. (C) Analysis of Kin2 protein 

expression. Whole cell extracts from the indicated yeast cells (see panel B) were subjected to SDS-PAGE 

followed by Western blot analyses using anti-Flag and anti-actin (Act1) antibodies. The Flag-tagged Kin2 

protein bands are indicated by “*” signs. (D) The relative expressions of Flag-Kin2 protein deletion 

mutants. The protein band intensities of Flag-tagged Kin2 and Act1 were measured using the ImageJ 

software. The ratios of Flag-Kin2 and Act1 are represented in a bar diagram.  
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KER-I sequences of Kin1 and Kin2 are partially similar to the UBA-like domain sequences 

of human Mark3 and Nbr1 proteins. However, the spatial arrangement of three constituent -

helices in the Mark3-UBA domain is different from the spatial arrangement of three constituent 

helices in Nbr1-UBA domain136.  

The UBA-like domain in Mark3 has 3  helices oriented in three different directions and 

has been shown to bind the N-terminal lobe of kinase domain, implicating its potential role in 

integrating and stabilizing the kinase domain136. We wanted to check if the KER-I of Kin2 which 

has certain sequence similarity to the UBA-like domain of MARK3 (Fig 2.7A) could be replaced 

by the latter. To address that, we made a chimeric protein where we replaced the Kin2-KER with 

MARK-UBA-like domain (Kin2-UBAMark3) (Fig 2.7B). We transformed this construct in the 

kin1kin2 strain and the resulting strain was tested for their growth on dextrose and galactose to 

check kinase activity. The chimeric Kin2 grew on galactose media and the Western blot showed 

that the protein level was undetectable (Fig 2.7C, D). An explanation could be that deletion of the 

KER-I disrupted the protein folding and resulted in protein degradation or the UBA of Mark3 

targeted the chimeric protein for degradation. 
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The UBA-like domain in Nbr1 appears to be a negative regulator of Nbr1 function where 

an alanine mutation of the conserved leucine residue (i.e., L954 in Nbr1, L364 in Mark3) impairs 

Figure 2.7 Replacement of KER-I by the Mark3 UBA domain 

(A) Comparison of amino acid sequences of UBA-like domains in Mark3 and yeast Kin1 and Kin2 

proteins. The protein sequences of Mark3, Kin1 and Kin2 were aligned using Clustal Omega. A part of 

the sequence alignment showing the UBA-like domain is shown. The residue numbers of Kin2 are 

shown both sides. The conserved and identical residues are indicated by the symbols “*” and “:”, 

respectively. (B) Schematic of the Kin2 construct where KER-I was replaced with Mark3-UBA domain. 

Cartoon representations of crystal structures Mark3 kinase domain. The kinase domain of human Mark3 

(PDB ID = 2QNJ) is shown in blue and the UBA-like domain in green. (C) The kin1kin2 yeast strains 

expressing indicated Kin2 proteins were tested for growth on glucose and galactose media. (D) Whole 

cell extracts from the indicated yeast strains were subjected to Western analysis using an anti-Flag 

antibody.  



   49 
 

the binding of ubiquitin171. We wanted to check if mutation of the conserved leucine residue in 

Kin2 resulted in a stabilizing effect for Kin2 protein. We generated a Kin2 construct with a point 

mutation [(Kin2-(94-526)-L436A]. We transformed this construct in the kin1kin2 strain and the 

resulting strain was tested for their growth on dextrose and dextrose with tunicamycin. The cells 

expressing the Kin2-(94-526)-L436A grew just like the cells expressing the wild type Kin protein 

(Fig 2.8A). To analyze if there was any difference in the levels of Kin2 protein the cells were 

grown and induced with galactose and collected at different time-points (4 hours and 8 hours) and 

subjected to a western blot analysis (Fig 2.8B). Cells collected at the 8th hour showed slightly more 

expression of Kin2-(94-526)-L436A as compared to wild type Kin2 protein. This could be likely 

because of the mutation that impaired ubiquitin binding and stabilized the protein. 

 

 

 

 

 

Figure 2.8 L436A point mutation in the UBA-like domain in Kin2 

(A) kin1kin2 strains expressing the indicated Kin2 alleles were grown on dextrose and dextrose with 

tunicamycin media. (B) Indicated strains were grown in galactose media for protein induction for 4 and 8 

hours. Cell lysates were prepared and subjected to western blot analysis to detect the levels of Kin2 with 

anti-Flag antibody. 
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One of the mechanisms by which a kinase is activated is dimerization, and it is a common 

intermediate for many kinases including Src family kinase173. To test if the KER-III has a function 

in dimerization, we took advantage of the ability of the protein glutathione S-transferase (GST) to 

dimerize. We replaced the Kin2 residues 480-526 with GST to construct a chimeric Kin2-(94-

480)-GST. We transformed this construct in the kin1kin2 strain and the resulting strain was 

tested for their growth on dextrose and galactose to check kinase activity (Fig 2.9A). We predicted 

that, if the residues in KER-I had the ability to dimerize and activate Kin2, the cells expressing the 

Kin2-(94-480)-GST should not grow on galactose. However, we observed growth of the galactose 

containing media (Fig 2.9B) suggesting that KER-I likely does not dimerization to activate Kin2.  

 

 

Figure 2.9 Replacement of KER-III by the GST 

(A) Schematic of the Kin2 construct where KER-III was replaced by GST. Cartoon representations of 

crystal structure of two protomers of GST (PDB ID = 1BYE) are shown in red and green color. (B) The 

kin1kin2 yeast strains expressing indicated Kin2 proteins (were tested for growth on glucose and 

galactose media. No growth on the galactose medium indicates the positive (+) Kin kinase activity. 

(Lower panel) (C) Whole cell extracts from the indicated yeast strains were subjected to Western 

analysis using an anti-Flag antibody. Kin2 protein bands are indicated by the symbol “*”.      
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Kin2mini is tethered to a membrane bound organelle 

Previous studies have shown that Kin kinases precipitate with the membrane fraction174, 

indicating that Kin kinases are likely to be associated with the plasma and/or organelle membranes. 

Previously we have shown that, under conditions of ER stress, both GFP-Kin2 and GFP-Kin2ΔKA1 

fusion proteins were predominantly visualized as discrete dots within the cytoplasm137. Recently, 

Yuan et al. (2016) show that the GFP-fused full-length Kin2 protein is localized at the sites of 

polarized growth within the bud neck/tip175. They also show that the GFP-Kin2-(1-526) fusion 

protein is localized at the bud tip175. Collectively based on these observations, we hypothesized 

that the functional Kin2mini might be a membrane-anchoring protein and we investigated the 

cellular localization of Kin2mini protein.  

 We generated a GFP2-Kin2mini fusion protein construct under the Kin2 native promoter in 

which the coding sequence of a monomeric A206K green fluorescence protein GFP2176 was 

inserted at the N-terminal end of the Kin2mini protein coding sequence (Fig 2.10A). The GFP2-

Kin2mini fusion protein, like the wild type Kin2mini protein, complemented the kin1kin2 strain 

and allowed yeast cells to grow on the tunicamycin medium (Fig 2.10B), suggesting that GFP2-

Kin2mini was a functional protein. Then, the GFP2-Kin2mini fusion protein was transformed in a 

strain lacking a trans-membrane protein Ste2 (i.e., ste2 strain). The ste2 strain containing the 

GFP2-Kin2mini was re-transformed with a plasmid expressing the Ste2-YFP (yellow fluorescent 

protein) fusion protein176. The ste2 strain co-expressing both GFP2-Kin2mini and Ste2-YFP was 

then used for imaging studies by a two-photon microscope in the presence and absence of an ER 

stressor DTT. About 60-70% of cells showed the YFP signals at the edge of cells because of the 

membrane localization of Ste2 protein (Fig 2.10C). The same cells predominantly showed the 

GFP2 signals inside the cytoplasm (Fig 2.10C). Moreover, we observed that overall GFP2 signal 
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was 60% stronger in cells when treated with DTT (Fig 2.10D).  Collectively, our data suggested 

that Kin2mini localizes predominantly inside the cytoplasm.  

 

 

 

 

Figure 2.10 Expression and localization of GFP-Kin2mini fusion protein 

(A) Schematic representation of the GFP (green)-fused Kin2 (blue bar) expressed under the Kin2 native 

promoter (black arrow). (B) GFP-fused Kin2 constructs complemented the kin1 kin2 strain on 

tunicamycin medium suggesting these constructs encoded functional kinases. (C) The GFP2-fused Kin2mini 

protein was expressed in a ste2 cell harboring a Ste2-YFP fusion protein The GFP and YFP signals were 

detected by two-photon microscopy and shown by arrows. (B) Quantification of relative expression of 

GFP2 signals. The relative expression of GFP2 signal in the presence (+) and absence (-) of an ER stressor 

DTT were measured. The average intensities + weighted errors are represented as arbitrary units. 
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To determine whether or not Kin2mini protein was associated with a membrane bound 

organelle, we prepared the whole cell extract from a kin1kin2 strain expressing the Flag-

Kin2mini and then separated soluble and insoluble fractions by centrifugation at 20,000g. Both 

soluble and insoluble fractions were subjected to SDS-PAGE and Western blot analysis using an 

anti-Flag antibody to detect Flag-Kin2 protein, an anti-Hac1 antibody to detect a soluble 

cytoplasmic protein and an anti-Kar2 antibody to detect an ER-resident and membrane-associated 

chaperone. As expected, majority of Hac1 protein was detected in the soluble fraction whereas 

Kar2 with the insoluble fraction (Fig 2.11A). A small fraction of Kar2 was also observed in the 

soluble fraction (Fig 2.11A), suggesting that a fraction of Kar2 protein might be released from the 

membranes and/or the speed 20,000g partially precipitated the cellular membranes. Interestingly, 

we observed that majority of Kin2mini protein was separated with the insoluble fractions along with 

the Kar2 protein (Fig 2.11A, upper panel, lanes 2 and 3). These data suggest that Kin2mini is a 

membrane-associated protein. 

To rule out the possibility that the membrane-association was not a result of deposition of 

Kin2 inclusion bodies on the membrane, we treated the membrane fraction containing the Kin2mini 

protein with 0.5 or 1% of Triton-X100 to the break the lipid-lipid and lipid-protein interactions 

and to solubilize the membrane proteins. The soluble proteins were then separated from the pellet 

by centrifugation at 20,000g. Then, both soluble and pellet fractions were subjected to Western 

blot analysis.  In the Western blot, we observed a significant amount of Kin2 protein in the 0.5% 

or 1% Triton-X100 solubilized fraction (Fig 2.11B, lanes 5 and 7) suggesting that Kin2mini protein 

was associated with membrane, not precipitated as an inclusion body. Taken together, our data 

suggest that both Kin2mini, like full-length Kin2, is an endomembrane kinase.   
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The C-terminal end of human Mark3 (ortholog of yeast Kin2) contains a KA1 domain that 

can drive the GFP-Mark3 protein to the cellular membrane177, suggesting that KA1 motif plays a 

role in targeting the protein to the membrane. The bioinformatics analysis (using Clustal Omega) 

showed that the KA1 of Mark3 has extensive sequence similarity with the C-terminal 90 residues 

of Kin1 or Kin2 protein, which includes the KA1 motif (Kin2 residues 1048-1147) (Fig 2.12A).  

We wanted check if KA1 of Kin2 had the ability to drive the protein to the cell membrane. 

To address that we constructed a GFP-KA1Kin2 fusion protein and expressed it from the Kin2 

promoter (Fig 2.12B). We expressed this construct in a kin1kin2 strain, using confocal 

microscopy checked the localization of the KA1. GFP signals were observed majorly from near 

the cell membrane suggesting that the KA1 of Kin2 acts similar to that of Mark3 (Fig 2.12C). 

Figure 2.11 Membrane fractionation of cells harboring Kin2mini  

(A) Yeast cell extract containing the Flag-tagged Kin2mini protein was separated by centrifugation as 

soluble and insoluble membrane fractions (see Materials and Method). Both fractions were subjected to 

SDS-PAGE and Western blot analysis using an anti-Flag antibody to detect Kin2, anti Hac1 antibody to 

detect soluble protein and anti-Kar2 antibody to detect an insoluble ER membrane-resident protein. (B) 

Triton X-100 partially solubilizes Kin2mini protein from the membrane fraction. Yeast cell extract 
containing the Flag-tagged Kin2mini protein was separated as soluble and insoluble membrane fractions. 

The insoluble fraction was mixed with 0.5 or 1% of TritonX-100 to solubilize the membrane bound 

proteins. The pellet (P) and supernatant (S) fractions were separated by centrifugation, subjected to SDS-

PAGE and Western blot analysis using an anti-Flag antibody to detect Kin2 protein.    
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Computer modeling to predict the structure of Kin2 kinase domain 

Previous studies have shown that the C-terminal end of the Kin kinases contains a KA1 

(kinase associated 1) domain. The KD and KA1 remain associated with each other and keep the 

kinases inactive134. However, the detailed mechanism of release of the KA1 from KD and the 

mechanism of activation of the KD are as yet unknown. In order to understand the Kin2 kinase 

Figure 2.12 Localization of GFP-KA1Kin2 

(A) Ribbon representation of the crystal structure of KA1 domain of human Mark3 (PDB ID= 3OSE). The 

 sheets are indicated in green and  helices are indicated in orange. Sequence alignment of the KA1 domain 

from Mark3, Kin1 and Kin2. (B) The schematic representation of the GFP-fused Kin2-KA1. The GFP 

protein (green box) was conjugated with KA1 domain of Kin2 (dark blue box) and the GFP-KA1 was 

expressed from the Kin2 native promoter (black arrow). (C) The indicated construct was expressed in kin1  

kin2 strain. The GFP signal was detected by confocal microscopy. 
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domain activation, we searched the literature and the Protein Data Bank (PDB) for the crystal 

structure of Kin2. Because of the unavailability of the structure we used a homology modeling 

online tool, Swiss Model, to predict the crystal structure of Kin2 residues 94-526. From the 

generated results on Swiss Model, we used Pymol to analyze the predicted structure of Kin2.  

The predicted Kin2 KD structure has a typical bilobal structure like the classical protein 

kinase PKA (Fig 2.13). It has an N-lobe, a C-lobe and the active site is embedded in between the 

two lobes. The activation loop ranges from the conserved APE to the DFG motif. Just like any 

typical kinase Kin2 also has landmark regions like the helix C, helix G, a conserved Lys-128 

(K128) in the VAIK motif and a catalytic Asp-248 (D248) in the HRD motif15. To determine if 

these landmark regions or the conserved residues are phosphorylated to activate Kin2, we searched 

the database along with a mass spectrometric approach.  

 

 

Figure 2.13 Ribbon representation of the predicted structure of Kin2 kinase domain  

Kin2 kinase domain has a bilobal structure with an N lobe and a C lobe. The active site is in between. It 

has landmark regions just like other kinases - the helix C in orange, the helix G in cyan, and the activation 

loop in magenta. It has an extra region which we termed as the Kinase insert region depicted in green.  
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Mass spectrometric approach to identify phosphorylation sites on Kin2mini 

The Saccharomyces genome database (SGD) shows that protein kinases Kin1 and Kin2 are 

phosphorylated at more than 30 serine, threonine and tyrosine residues (some of which are 

common in both proteins), indicating that these kinases are regulated by a complex mechanism 

involving auto- and/or trans-phosphorylation. Next, we determined how many of these reported 

residues were phosphorylated in the Kin2mini protein under conditions of ER stress. In order to do 

that, we purified Kin2mini protein from cells grown under a condition of ER stress and analyzed 

the protein phosphorylation by mass spectrometry. The mass spectra analysis identified three 

major phosphorylated peptides with phosphorylated residues S151 (peptide 1), Y275 and T281 

(peptide 2) and S328 and S329 (peptide 3). Other than these five kinase domain residues, there 

were eleven residues at the undefined domain (Kin2 residues T577, T608A, S609, S612, T629, 

S663, S706, S714, S1020, T1031 and T1037) which were conserved between Kin1 and Kin2 

(Table 1).  

Table 1 Phosphorylation sites on Kin1 and Kin2 proteins 

# Conserved phosphorylated residues  Kin2 mutations analyzed 
 

Kin1  Kin2  
 

1 S23  S24  
 

2 S25  T26  
 

3 - S151 S151A 

4 S296 Y275 Y275A 

5 T302  T281 T281A  

6 S349 S328 S328A 

7 S350  S329  S329A 

8 S569  T577   T577A 

9 T592  T608  T608A 
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10 S593  S609  S609A  

11 S596  S612  S612A 

12 S612  T629  T629A 

13 S647  S663  S663A 

14 S677  S706   S706A  

15 T700   S741  S741A 

16 S966   S1020  S1020A 

17 S973  T1031  T1031A  

18 S979  T1037  T1037A 

 

To determine if phosphorylation of these residues influenced the Kin2 kinase function we 

mutated these residues to non-phosphorylatable alanine (singly or in combination) and mutated 

proteins were expressed in the kin1kin2 strain. We found that mutations of 11 residues at the 

regulatory domain by alanine in a single protein (i.e. Kin2-11Ala) did not affect the ability of the 

full-length Kin2 to support cell growth on the tunicamycin medium. We also found that a single 

mutation of the residue S151 or double mutation of residues S328 and S329 within the kinase 

domain by alanine in the Kin2mini protein (i.e., Kin2mini-S151A or Kin2mini-S328A,S329A) did not 

impair yeast cell growth on the tunicamycin medium (Fig 2.14). These data suggested that 

phosphorylated residues S151, S328, S329, T577, T608A, S609, S612, T629, S663, S706, S714, 

S1020, T1031 and T1037 have insignificant impact on the ER stress response. 
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Activation loop phosphorylation is important for kinase activity of Kin2mini  

Since we did not see any physiological significance of phosphorylation on the above-

mentioned residues, we focused on activation loop residues Y275 and T281 in the Kin2 protein. 

Residues corresponding to Y275 and T281 in Kin2 are residues Ser296 (S296) and Thr302 (T302) 

in Kin1 (Fig 2.15). To determine the physiological relevance of Y275 or T281 phosphorylation, 

we individually mutated each one to alanine, generating Kin2mini-Y275A and Kin2mini-T281A 

constructs in the Gal4-UAS hybrid system. Kin2mini-Y275A and Kin2mini-T281A constructs were 

separately introduced in a kin1kin2 strain. The resulting strains were then tested for growth on 

dextrose, tunicamycin and galactose media and protein expressions were determined by Western 

blot (Fig 2.15 B and C). Cells expressing the Kin2mini-Y275A), like wild-type Kin2mini , grew on 

Figure 2.14 Mutational analysis of reported phosphorylation sites of Kin2  

(A) The schematic representation of Kin2 protein with a kinase domain, kinase extension region (KER), 

regulatory domain and kinase associated domain 1 (KA1). The phosphorylated residues in the Kin2 protein 

as indicated were mutated by alanine.  (B) Analysis of yeast growth test. A kin1kin2 strain harboring 

the indicated vector plasmid and the same vector containing the wild type or mutated Kin2 protein was 

tested for growth on the dextrose or tunicamycin medium. 
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the tunicamycin medium, but did not grow on the galactose medium (Fig 2.15B, rows 5 and 2). 

Similarly, cells expressing the Kin2mini-T281A grew on the tunicamycin medium (Fig 2.15B, row 

6). However, cells expressing Kin2mini-T281A grew moderately on the galactose medium (Fig 

2.15B, row 6). These growth phenotypes suggested that Kin2mini-Y275A and Kin2mini-T281A 

expressed functional kinases, the alanine mutation of Y275 or T281 did not impair the kinase 

activity, and the phosphorylation at either residue played insignificant role under physiological 

conditions.  

To test if these residues act in combination, we mutated both residues Y275 and T281 to 

alanine in a single protein, generating a Kin2mini-Y275A,T281A mutant. We also mutated both 

residues Y275 and T281 to glutamate in order to generate phospho-mimetic substitutions (i.e., 

Kin2mini -Y275A,T281E and Kin2mini -Y275E,T281A). These Kin2mini -Y275A,T281A, Kin2mini – 

Y275E,T281A and Kin2mini -Y275A,T281E mutants were then separately expressed in a  

kin1Δkin2Δ strain. We observed that the kin1Δkin2Δ cell expressing Kin2mini -Y275A,T281A 

mutant protein, like kinase dead mutants Kin2mini -K128R (K128 is the conserved Lys of the VAIK 

motif) and Kin2mini -D248A (D248 is the conserved catalytic Asp of the HRD motif), did not grow 

on the tunicamycin medium (Fig 2.15B, rows 3, 4 and 7), but grew on the galactose medium (Fig 

2.15B, galactose, compare rows 3, 4 and 7). These data suggested that Kin2mini -Y275A,T281A 

expressed a non-functional protein like the catalytically inactive Kin2-K128R and Kin2-D248A 

mutants. Interestingly, we observed that the kin1Δkin2Δ cells expressing the Kin2mini -

Y275E,T281A or Kin2mini -Y275A,T281E mutant protein, like the wild type Kin2mini, grew on the 

tunicamycin medium (Fig 2.15B, Tunicamycin, rows 2, 8 and 9) and exhibited a lethal phenotype 

on the galactose medium (Fig 2.15B, galactose, compare rows 2, 8 and 9). These in vivo data 

suggested that Kin2mini -Y275E,T281A and Kin2mini -Y275A,T281E expressed active kinases in 



   61 
 

which glutamate substitutions for Y275 and T281 likely mimicked the active phosphorylated state. 

Taken together, these data suggested that activation loop phosphorylation is important for the 

Kin2mini kinase activity. 

 

 

Activation loop phosphorylation is important for activity of full length Kin2  

 Next, we investigated the importance of activation loop phosphorylation in a full-length 

Kin2 protein. A kin1Δkin2Δ strain was separately transformed with an empty vector and the same 

vector bearing a wild type (WT) KIN2 gene under its native promoter. We cloned the KIN2 gene 

Figure 2.15 Activation loop phosphorylation is important for Kin2mini kinase activity 

(A) Comparison of the activation loop sequences of Kin1 and Kin2 kinases. The activation loop sequences 

of Kin1 (residues 287 to 313) and Kin2 (residues 267 to 292) were aligned. The phosphorylated residues 

are indicated on the top for Kin2 or at the bottom for Kin1. (B) Analysis of yeast cell growth. The 

kin1kin2 deletion strains containing a vector plasmid (null) or expressing a wild type Kin2mini (WT) 

and its indicated derivatives were tested for growth on dextrose, tunicamycin and galactose media. The 

kinase activity is indicated as “+” (active) or “-” (inactive) signs. (C) Analysis of Kin2 protein expression. 

Whole cell extracts prepared from the yeast cells indicated in the panel (B) were subjected to SDS-PAGE 

followed by Western blot analyses using anti-Flag and anti-Pgk1 antibodies. The relative expressions 

(ratio of Flag-Kin2 and Pgk1 protein band intensities) are indicated at the bottom.  
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to express a Flag-epitope at its N-terminal end. Transformants were streaked on both dextrose and 

tunicamycin media (Fig 2.16). We observed that transformants with the vector plasmid were able 

to grow on the dextrose medium but were unable to grow on the tunicamycin medium.  However, 

the kin1Δkin2Δ cells containing the same plasmid bearing a Flag-tagged Kin2 gene were able to 

grow on both dextrose and tunicamycin media (Fig 2.16). These data suggested that the Flag-tag 

at the N-terminal end of Kin2 protein had no impact on its kinase function. Then, we mutated the 

catalytic residue Asp-248 of Flag-Kin2 protein, generating a kinase-inactive Kin2-D248A mutant. 

We also mutated the phosphorylated residues Y275 and T281 to generate several activation loop 

mutants (e.g., Kin2-Y275A, Kin2-T281A, Kin2-Y275A-T281A, Kin2-Y275E-T281A and Kin2-

Y275A-T281E). These Kin2 mutants were separately transformed in the kin1Δkin2Δ strain and 

the resulting strains were tested for growth on both dextrose and tunicamycin media (see Fig 2.16).      

 The kin1Δkin2Δ strain containing a kinase-inactive Flag-Kin2-D248A mutant was 

sensitive to tunicamycin just like the vector. The kin1Δkin2Δ strain containing the Flag-Kin2-

Y275A-T281E mutant was resistant to tunicamycin like the strain containing a wild-type Flag-

Kin2. The resistance to tunicamycin was reduced when the kin1Δkin2Δ cells contained a Flag-

Kin2-Y275A or Flag-Kin2-T281A mutant (Fig 2.16), and the resistance was further reduced when 

the kin1Δkin2Δ cells contained a Flag-Kin2-Y275A-T281A or Flag-Kin2-Y275E-T281A mutant. 

We were unable to detect the Flag-Kin2 protein by Western blot analysis in the whole cell extract 

containing 100μg of total protein, probably because of low expression from the native promoter. 

However, the obvious ER stress-resistant growth phenotype suggested that the kinase domain 

function was important to activate the ER stress response and the activation loop phosphorylation 

was important for full Kin2 kinase activity. Moreover, we found that the tunicamycin-resistant 
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phenotype of kin1Δkin2Δ cells containing the Flag-Kin2-Y275A-T281E derivative was 

comparable to cells containing a wild type Flag-Kin2 (Fig 2.16).  

 

 

 To further confirm that the activation loop phosphorylation was important for the full 

kinase activity of Kin2, we performed in vitro kinase assays.  Approximately 10 mg of total cellular 

proteins from the kin1Δkin2Δ cells expressing the Flag-Kin2-WT, Flag-Kin2-D248A or Flag-

Kin2-Y275A-T281A were immunoprecipitated by anti-Flag M2-agarose. The immunoprecipitated 

proteins were washed with 5X kinase buffer and mixed with α-casein (0.5 μg) and γ-33P-ATP (1μCi 

per reaction) like in Donovan et al (1994)168. After 30 minutes, 2X SDS-dye was added to the 

reaction mixture to quench the kinase reaction. The reaction mixture was then heated at 900C for 

1 minute and loaded in an SDS-PAGE gel to separate the α-casein and M2-agarose precipitated 

proteins. The gel was stained to visualize the α-casein protein, dried and auto-radiographed (Fig 

2.17).   

Figure 2.16 Activation loop mutations affect the protein function of full length Kin2 

Analysis of yeast cell growth. The kin1kin2 deletion strains containing a vector plasmid (null), or the 

same vector plasmid bearing a wild type Flag-Kin2 (WT) or its indicated derivatives were streaked on the 

dextrose (upper panel) and tunicamycin (lower panel) media. Cells were then grown at 300C for 48 hours. 
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  Several phosphorylated protein bands (molecular mass ranging from 42-150 kDa) appeared 

in the reaction mixture containing the WT Flag-Kin2 (lane 3), indicating that Flag-Kin2 (molecular 

mass of Kin2 is 128.36 kDa) are autophosphorylated or they in turn phosphorylated other proteins 

in the immunoprecipitates. We also observed that α-casein was phosphorylated ~10-fold more in 

the reaction mixture containing the WT Flag-Kin2 protein than the reaction mixture containing the 

kinase-inactive Flag-Kin2-D248A protein (Fig 2.17, lanes 2 and 3). The Flag-Kin2-D248A is an 

inactive kinase, suggesting that phosphorylation in α-casein might occur by unknown kinases 

present in the immunoprecipitates. Moreover, we observed significant α-casein phosphorylation 

in the reaction mixture containing the Flag-Kin2-Y275A-T281A (Fig 2.17, lane 1) mutant, 

suggesting that Y275A and T281A mutations in a single protein did not completely abolish the 

kinase domain function. The relative phosphate incorporation in the α-casein showed that Flag-

Kin2-Y275A-T281A mutant phosphorylated α-casein 5-fold less efficiently than the WT Flag-

Kin2 (Fig 2.17, lanes 1 and 3). We were unable to detect the expression of Flag-Kin2 protein by 

Western blot analysis due to its extremely low expression. The data collectively suggested that 

Flag-Kin2-Y275A-T281A mutant expressed a weaker kinase and that the activation loop 

phosphorylation is important for the full kinase activity of Kin2.  
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Figure 2.17 Activation loop phosphorylation is required for full Kin2 kinase function. 

(A) Analysis of Kin2 kinase activity in vitro.  Whole cell extracts (~10 mg) prepared from the kin1kin2 

deletion strains expressing a wild-type Flag-Kin2 (WT) and the indicated Kin2 derivatives mixed with 

anti-flag M2 agarose beads. The Flag-tagged Kin2 proteins were precipitated, washed with kinase buffer 

and mixed with -casein (0.5 g) and -33P-ATP (1 Ci). The reaction mixture was then mixed with 2X 

SDS dye, heated at 900C for 1 minute, centrifuged and loaded on an SDS-PAGE. The gel was stained, 

dried and auto-radiographed (33P, upper panel). The -casein protein bands are shown in the middle panel. 

Incorporations of 33P in -casein were determined by the relative band intensities and shown by bar 

diagram in the lower panel. 
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Activation loop phosphorylation is important for Kin1mini kinase activity  

 Based on results of our experiments showing that phosphorylation of the activation loop is 

important for the activity of Kin2, we decided to perform similar studies on the related Kin1 kinase. 

The Kin2 residues Y275 and T281 correspond to Kin1 residues S296 and T302. Thus, we 

investigated whether or not substitution of glutamate for T302 activated the kinase function of 

Kin1mini protein. We expressed the Kin1mini and its derivatives Kin1mini -D269A (kinase-inactive 

mutant), Kin1mini -S296A,T302A (non-phosphorylatable mutant), Kin1mini -S296A,T302E and 

Kin1mini -S296E,T302A (phospho-mimetic mutants) in a kin1Δkin2Δ strain (Fig 2.18). The 

kin1Δkin2Δ strain containing a vector plasmid was unable to grow on the tunicamycin medium 

but was able to grow on the same medium when the vector plasmid contained a WT KIN1mini gene 

(Fig 2.18A, rows 1 and 2). The kin1Δkin2Δ strain containing the Kin1mini -S296A,T302E mutant, 

like WT Kin1mini,  was able to grow on the tunicamycin medium (Fig 2.18A, rows 2 and 5). In 

contrast, the kin1Δkin2Δ strain containing the Kin1mini -D269A, Kin1mini -S296A,T302A or 

Kin1mini -S296E,T302A mutants, like the vector control, was unable to grow on the tunicamycin 

medium (Fig 2.18A, rows 1, 3, 4 and 6). Western analysis showed that all the mutant proteins were 

expressed at the levels comparable to WT (Fig 2.18B, lanes 1-6), suggesting that Kin1mini -D269A, 

Kin1mini -S296A,T302A and  Kin1mini -S296E,T302A mutants expressed non-functional kinases. 

These data further suggested that Kin1mini -S296A,T281E likely expressed an active kinase in 

which the glutamate substitution for T302 mimicked a phosphorylated residue. Phospho-mimetic 

substitution at the Kin1 residue S296 (i.e., Kin1mini -S296E,T302A), probably because the 

glutamate substitution, S296E, did not mimic the phosphorylated state, or phosphorylation of S296 

had only a minor role for Kin1 kinase activity. Taken together, it appears that phosphorylation of 
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T302 in Kin1 or the corresponding T281 in Kin2 is important for the full Kin1 or Kin2 kinase 

domain function.    

 

 

Phosphorylation of the residue T302 in Kin1 or T281 in Kin2 occurs in trans  

 The inactive-to-active transition of kinases, in most cases, requires phosphorylation within 

the activation loop178.  Phosphorylation of the activation loop can occur by itself (i.e., auto-

phosphorylation) or may occur via other kinases (i.e., trans-phosphorylation), or both179.  To 

address this question, we had an antibody raised against the phosphorylated T281 residue by 

GenScript. To determine how T281 phosphorylation occurs in cells, two catalytically inactive 

kinase mutants (i.e., Kin2mini-D248A and Kin2mini-K128R) were expressed in a kin1Δkin2Δ strain 

(Fig 2.19A) and then examined the phosphorylation status of the T281 residue. Western blot 

analysis showed that expressions of Kin2mini-K128R and Kin2 mini-D248A were similar to the wild 

Figure 2.18 Activation loop phosphorylation is important for Kin1mini kinase activity.  

(A) The kin1kin2 deletion strains containing a vector plasmid (null) or expressing a wild-type Flag-

Kin1 (WT) and the indicated derivatives were tested for their growth on dextrose and tunicamycin media. 

The kinase activity is indicated as “+” (active) or “-“ (inactive) signs. (B) Whole cell extracts from the 

yeast cells indicated in the panel (A) were subjected to SDS-PAGE followed by Western blot analysis 

using anti-Flag and anti-Pgk1 antibodies.  
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type Kin2mini protein (Fig 2.19A, lanes 3,4 and 2). The residue T281 was phosphorylated in both 

Kin2mini-K128R and Kin2mini-D248A kinase-inactive proteins (Fig 2.19A, Western, lanes 3 and 

4). We also observed that the level of T281 phosphorylation in Kin2mini-K128R or Kin2mini-D248A 

was much lower than in the Kin2mini protein (Fig 2.19A, lanes 2,3 and 4) probably because of their 

susceptibility to de-phosphorylation by unknown phosphatases180. The phosphorylation of T281 

residue in kinase-dead mutants suggested that T281 phosphorylation likely occurred in a trans 

mechanism by an upstream kinase. To confirm that Kin2mini-K128R was inactive kinase, we 

induced the expression of Flag-Kin1mini, Flag-Kin2mini and Flag-Kin2mini-K128R proteins in yeast 

Saccharomyces cerevisiae cells. The recombinant proteins in Saccharomyces cerevisiae (referred 

to as the ScKin1mini, ScKin2mini and ScKin2mini-K128R) were purified and subjected to in vitro 

kinase assays using α-casein as a substrate. We observed that the purified ScKin1mini or ScKin2mini 

readily phosphorylated α-casein, but the phosphorylation of α-casein was significantly lower when 

we used ScKin2mini-K128R mutant protein (Fig 2.19B). 

 

 

Figure 2.19 Mechanism of Kin2mini phosphorylation on T281 

(A) Western blot analysis. Whole cell extracts from the yeast cells expressing the wild-type Kin2mini or its 

derivatives as indicated in (A) were subjected to SDS-PAGE followed by Western blot analysis using T281 

phospho-specific and anti-Flag antibodies. (B) In vitro kinase assays.  Partially purified ScKin1mini, 

ScKin2mini and ScKin2mini-K128R proteins were mixed with -casein in a kinase reaction buffer containing 

-33P-ATP. The reaction mixture was quenched after 20 minutes by addition of 3X SDS-dye and resolved 

by gel-electrophoresis. The gel was stained to see protein bands (lower panel), dried and then subjected to 

autoradiography to detect the incorporation of 33P in the -casein. 
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 To further confirm that T281 phosphorylation occurs in a trans mechanism, we performed 

an in vitro kinase assay using purified Kin2-KD from yeast and bacteria. The expression of the 

glutathione S-transferase (GST)-fused Kin2mini (residues 94-526) protein in E. coli was extremely 

low. Thus, we made a GST-Kin2-(60-526)-Δ40-ΔKI construct (D1386, plasmids list) in which 30 

residues added at the N-terminal end of GST-Kin2mini and residues 440-480 (the KER-II region) 

and residues 136-165 [the kinase insert (KI) region) were deleted. We performed a growth test just 

to ensure that the Kin2-(60-526)-Δ40-ΔKI protein activated the UPR similar to the Kin2mini protein 

(Fig 2.20). 

 

 

Then, we made derivatives of GST-Kin2mini derivatives Kin2mini-T281E (D1347, plasmids 

list) and Kin2mini-Y275E (D1942, plasmids list) and expressed in E. coli. The recombinant proteins 

in E. coli (referred to as EcGST-Kin2mini, EcGST-Kin2mini-T281E or EcGST-Kin2mini-Y275E) was 

purified and mixed with the α-casein or histone in a reaction buffer containing γ-33P-ATP [1μCi 

per reaction). The reaction mixture was then resolved in an SDS-PAGE and the incorporation of 

33P in α-casein was detected by autoradiography (Fig 2.21A). A robust phosphorylation of 

Figure 2.20 Growth test to ensure functionality of the Kin2 mutant used for kinase assays 

The kin1kin2 deletion strains containing a vector plasmid (null) or expressing a wild-type Flag-Kin1 

(WT) and the indicated derivatives were tested for their growth on dextrose and tunicamycin media. 
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α−casein was observed in a reaction mixture containing GST-Kin2mini-T281E protein, but not in 

the reaction mixture containing the EcGST-Kin2mini or EcGST-Kin2mini-Y275E (Fig 2.21A). 

These data suggested that the recombinant GST-Kin2mini-T281E was an active kinase, whereas the 

recombinant EcGST-Kin2mini and EcGST-Kin2mini-Y275E proteins were inactive kinases, likely 

due to lack of the activating T281 phosphorylation. Collectively, our data suggest that glutamate 

substitution for T281, but not Y275, mimicked the phosphorylated state, thereby activating its 

kinase function.   

To determine that T302 phosphorylation in Kin1 occurred in trans, we expressed GST-

Kin1mini and GST-Kin1mini-T302E proteins in E. coli. The recombinant proteins in E. coli (referred 

to as the EcGST-Kin1mini and EcGST-Kin1mini-T302E) were purified and subjected to in vitro 

kinase assays as described above. We observed that the recombinant EcGST-Kin2mini was unable 

to phosphorylate the α-casein (Fig 2.21B). However, consistent with the EcGST-Kin2mini-T281E 

protein, the EcGST-Kin1mini-T302E readily phosphorylated α-casein (Fig 2.21B). These data 

suggested that the glutamate substitution for T302 mimicked the phosphorylated state, thereby 

activating its kinase function. Taken together, our data suggest that phosphorylation of T281 in 

Kin2 or T302 in Kin1 occurs in trans.  
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The glutamate substitution of T281 restores the defective ER-stress response associated with 

a mutation at the HAC1-3’-UTR  

Since the Kin kinase was reported to modulate the translocation, splicing and translation 

of the HAC1 mRNA, we therefore studied the effect of active Kin2mini-T281E protein in Hac1 

expression from HAC1 mRNA. In the HAC1 mRNA it has been shown that an intra-molecular 

interaction between 5’-UTR and intron blocks the translation initiation181,182, thus rendering HAC1 

mRNA translationally silent (Fig 2.22A). Under conditions of ER stress, HAC1 mRNA associates 

with an ER-resident endonuclease Ire1 that cleaves out the intron, thus releasing the translational 

block181,182. Recently, our lab showed that a conserved sequence element (5’-G1140CGGG1144-3’) 

Figure 2.21 Phosphorylation of Kin2-T281 or Kin1-T302 occurs in trans. 

(A) The recombinant EcGST-Kin2mini-T281E protein phosphorylates -casein in vitro.  Partially purified 

recombinant EcGST-Kin2mini (WT) or EcGST-Kin2mini-T281E protein was subjected to in vitro kinase 

assay using -33P-ATP and -casein as a substrate. The EcGST-Kin2mini and -casein protein bands are 

shown at the lower panel, whereas the phosphoate (33P) incorporataion in the respective -casein and 

EcGST-Kin2mini proteins are shown at the upper panel. The sign “*” indicates a non-specific protein band 

bound with the GST-Kin2mini protein. (B) The recombinant EcGST-Kin1mini-T302E protein 

phosphorylates -casein in vitro. Partially purified recombinant EcGST-Kin1mini (WT) or EcGST-

Kin1mini-T302E protein was subjected to in vitro kinase assay using -33P-ATP and -casein as a substrate. 

The EcGST-Kin1mini and -casein protein bands are shown at the lower panel, whereas the phosphoate 

(33P) incorporataion in the respective -casein and EcGST-Kin1mini proteins are shown at the upper panel.  
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at the 3’-UTR has a significant contribution to translocation, splicing and translation of HAC1 

mRNA137. Mutations of two consecutive guanine nucleotides (G1143 and G1144) at the 3’-UTR 

reduce the UPR (Fig 2.22B) induction due to defects in both splicing and translation of HAC1 

mRNA, which can be restored by over-expressing the protein kinase Kin1 or Kin2137.  

 

 

In order to provide additional direct in vivo evidence that the glutamate substitution of the 

residue T281 could activate the kinase domain, we overexpressed the Kin2mini-T281E mutant 

protein in kin1Δhac1Δ yeast strain containing a HAC1-GG1143-44CC allele. The resulting strains 

were then tested for their growth on the tunicamycin medium. Yeast cells expressing a HAC1-

GG1143-44CC allele grew slowly on the tunicamycin medium when compared with cells expressing 

a wild-type HAC1 allele. The growth on tunicamycin was rescued when Kin2mini or Kin2mini-

Y281A,T281E, but not  Kin2mini-Y281A,T281A, was overexpressed from a high-copy numbered 

vector (Fig 2.23A, rows 3 and 4) because of higher levels of Hac1 protein expression (Fig 2.23B, 

Figure 2.22 HAC1 nucleotides GG (1143-44) play an important role in UPR 

(A) The schematic representation of HAC1 mRNA. The cap (closed oval), 5'- and 3'-UTRs (black dotted lines), exons 

(dark blue boxes), intron (solid orange line) and poly-adenine (An) tail are shown. The 5’-UTR intron interaction 

and the consensus element at the 3’-UTR (i.e., 5’-G1140UUGG1144-3’) are shown. (B) Analysis of yeast cell growth. 

A hac1kin1 deletion strain was transformed with the indicated HAC1 or KIN2 alleles. Transformants were then 

tested for growth on dextrose and tunicamycin media. 
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lanes 2 and 4). These genetic and biochemical data collectively suggest that T281 phosphorylation 

within the activation loop of Kin2 is important for expression of Hac1 protein. 

 

 

The list of plasmids and yeast strains used in this chapter are compiled in the Appendix I. 

All materials and methods are listed under chapter 5. 

Some of these findings are collectively published in Molecular and Cellular Biology as a Spotlight 

article. (DOI: 10.1128/MCB.00266-18). 

 

  

 

Figure 2.23 Thr-281 phosphorylation is required to suppress the defective alleles of HAC1 

mRNA. 

(A) Analysis of yeast cell growth. A hac1kin1 deletion strain was transformed with the indicated 

HAC1 or KIN2 alleles. Transformants were then tested for growth on dextrose and tunicamycin media. 

(B) Analysis of Hac1 protein expression. Whole cell extracts from the yeast cells indicated in (C) were 

subjected to SDS-PAGE followed by Western blot analysis using an antibody of the recombinant Hac1 

protein.  Non-specific bands are indicated as loading controls and the relative amount of Hac1 protein 

was estimated as a ratio of each protein band density (ImageJ software) compared to the lane's loading 

control.  
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3. Chapter 3: Phosphorylation of Pal2 by the Kinases Kin1 and 

Kin2 Modulates HAC1 mRNA Splicing in the Saccharomyces 

cerevisiae Unfolded Protein Response 
 

Introduction 

 Almost one third of cellular proteins fold and mature inside the endoplasmic 

reticulum (ER). Abiotic or biotic stresses cause protein misfolding in the ER leading to 

accumulation of these misfolded proteins in the ER, a condition called ER stress85,86.  ER stress 

triggers a network of signaling pathways collectively known as the unfolded protein response 

(UPR)85–88. Ire1 and Hac1 are key players of the UPR pathway in budding yeast87. A major step in 

the yeast UPR pathway is the targeting of the HAC1 pre-mRNA towards the Ire1 protein for 

splicing138,182,18. Following colocalization, Ire1 splices the intron of HAC1 mRNA that blocks 

translation initiation of the HAC1 pre-mRNA. Eventually the mature HAC1 mRNA is translated 

and the Hac1p which is a transcription factor that drives the expression of numerous proteins, 

including ER-resident chaperones, to enhance the protein folding capacity of the cell. The 

colocalization of Ire1 and HAC1 mRNA requires a 3’ bipartite element (3’BE), positioned at the 

3’-UTR (untranslated region) of HAC1138. Computer modelling predicts that the 3’-BE forms a 

helix-bulge-helix-bulge structure. Our lab showed that there are two guanine nucleotides 

(GG1143,1144) on one of the bulges on the 3’-BE that play an important role in the translocation 

and splicing of the HAC1 mRNA137. In an attempt to identify the genes that can suppress the 

growth defect of the guanine mutations, our lab discovered that over expression of Kin2 can restore 

the optimum UPR response in the GG mutant strain. This evidence was backed by the increased 

splicing of HAC1 mRNA in the GG mutant strain when Kin2 was overexpressed137. However, the 

detailed mechanism of this translocation is yet unknown. Based on observations, we speculate that 
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Kin kinases likely promotes the formation of a ribonucleoprotein (RNP) complex on the 3’-BE of 

HAC1 mRNA, which facilitates co-localization of HAC1 mRNA with Ire1 (Fig 3.1). Hence, 

identification of the RNP might shed light on the inner mechanisms of the translocation process. 

 

 

Figure 3.1 Working hypothesis: An RNA-Protein (RNP) Complex Assembles on the 3’-BE 

and Controls the HAC1 mRNA Targeting  

Unfolded protein (red scribbled line) accumulation in the ER causes ER stress and activates the ER resident 

transmembrane protein Ire1 (luminal domain and cytoplasmic kinase / RNase domain indicated in grey). 

Ire1 activation involves its dimerization, oligomerization and autophosphorylation (phosphorylation 

indicated as “P” in a red circle). The active Ire1 splices the HAC1 pre-mRNA (mRNA cap indicated as a 

purple oval shape, 5’-UTR and 3’-UTR indicated in black dotted lines, exons in grey, intron is indicated 

by orange dotted line, cap binding complex eIF4F in blue). The intron remains base paired with the 5’-

UTR and keeps the mRNA translationally silent. Following splicing the mature HAC1 mRNA then, 

translates the Hac1 protein. Hac1p is an active transcription factor which enters the nucleus, binds to the 

UPR elements and drives the expression of the UPR target genes. UPR target genes are mainly protein 

folding enzymes and chaperones that assist with the protein folding capacity of the ER and thereby reduce 

ER stress. A key event in this Ire1-mediated UPR is the colocalization of the Ire1 with the HAC1 mRNA. 

This colocalization is mediated by a cis-acting bipartite element (BE, indicated as a stem loop) located at 

the 3’-UTR of the HAC1 mRNA. We hypothesize that there is a ribonucleoprotein (RNP) complex which 

assembles near the 3’-BE and targets the HAC1 mRNA to the Ire1 foci. Kin2 is predicted to signal the RNP 

in order to generate an optimum stress response.  

 



   76 
 

Results  

Identification of the Ribonucleoprotein (RNP) complex 

In order to identify the RNP, we developed a strategy using the HAC1 mRNA 3’-UTR 

Bipartite element (BE) sequence. The 3’-BE nucleotides range from C1134 to A1192, where, adenine 

of the AUG codon is +1138. We generated a construct where the 3’-BE sequence was conjugated 

with an RNA mimic of biotin (RMB) which is a 43-nucloetide RNA aptamer that mimics biotin183. 

This was expressed from an ADH1 constitutive promoter. For control, we generated a construct 

with the 5’-RD (RNA duplex)-RMB in which the 5’-UTR nucleotides U-19 to U-42 were linked 

with the intronic sequence from U763 to A783 and the RMB. This was also expressed under the 

control of the ADH1 promoter. Since the intronic sequence of HAC1 mRNA base pairs with the 

5’-UTR181, the prediction was that the control RNA would fold in a similar way (Fig 3.2). 

 

 

Figure 3.2 Construct designs for identification of RNP components 

(A) The schematic representation of 3’-BE- and 5’-RD-RMB expression constructs. The template DNA 

sequence of the 3’-BE- or 5’-RD RNA was cloned under the constitutive ADH1 promoter. The predicted 

structure of RNA mimic of biotin (RMB) has been shown. (B) The nucleotide composition of 3’-BE and 

5’-RD mini RNA. The predicted secondary structure of 3’-BE and 5’-RD RNAs are shown. The conserved 

RNA motif within the 3’-BE is shown in brick red color. The 5’-RD consisting of 5’-UTR and intron are 

shown in black and red color, respectively. The numbers indicate the nucleotide positions. 
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Both 3’-BE-RMB and 5’-RD-RMB constructs were transformed into a hac1Δ strain, and 

expression of both RNAs was confirmed by RT-PCR (Fig 3.3A). Next, we grew yeast cells in the 

presence of 4-thiouridine (4sU) in order to label the uracil residues of these mini RNAs with thiol 

groups. The 4sU-labeled RNA and associated proteins were photo-crosslinked by UV-

irradiation184. RMB-conjugated RNAs were precipitated using streptavidin-agarose, and bound 

proteins were eluted. A fraction of the elute was separated on SDS-PAGE and another fraction 

was subjected to LC tandem mass spectrometry (LC-MS/MS) (Fig 3.3B).  

 

 

Analysis of the 3’-BE specific proteomes identified Pal2 as a putative HAC1 mRNA binding 

protein 

 The mass spectrometry data generated hundreds of proteins that were associated with the 

3’-BE-RMB and the 5’-RD-RMB. Common mRNA binding proteins like proteins associated with 

the large and small subunit of ribosomes were identified. A comparative proteomic analysis 

Figure 3.3 Analysis of 3’-BE specific proteomes of HAC1 mRNA 

(A) Analysis of mini RNA expression. Total RNA was isolated from the yeast cells containing the 3’-

BE- or 5’-RD-RMB expression constructs. Then, cDNA was synthesized from the total RNA using 

gene-specific primer in the presence and absence of reverse transcriptase (RT). (B) Immuno-

precipitation of 3’-BE-specific proteins. Yeast cells expressing the 3’-BE- or 5’-RD-RMB mini RNA 

was grown in the presence of 4-thiouracil and irradiated with UV-light. Total RNA was isolated and 

mixed with streptavidin agarose. The mixture was then washed thoroughly. An aliquot of the 

streptavidin agarose was run in an SDS-polyacrylamide gel. The gel was then stained.  
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identified the list of proteins that were associated uniquely with either 3’-BE-RMB (Table 2) or 

5’-RD-RMB. This list identified a protein of unknown function, Pal2. 

Table 2 A list of putative 3’-BE and 5’-RD binding proteins 
 

Function Protein 

3’BE-specific 

proteins 

Metabolic enzymes Leu2, NTH1, FAA4, Frs1, PNC1, Ams1, Prs5, 

Cab3, Apa1, Pgm1 

Transporter Vma8 

Transcription Rpb2, Pbp4 

Endocytosis Pan1 

Translational repressor Ssd1  

mRNA export Arx1 

mRNA localization She3 

P-body Xrn1 

Kinases Cdc28, Bcy1, Ypk1 

Cytokinesis Shs1, Cdc3, Vrp1 

Unknown  Pal2 

5’RD-specific 

proteins 

Metabolic enzymes Mmf1, Snz1, NCE103, Arg5, Bna1, Sry1, TPl1, 

Adk1, Met10, Cys3, Ade17, Sfa1, Spe3 

Transporter Oac1, Pho88 

Chaperone Phb2, Mge1, Ggc1 

V-ATPase Vma10 

Phosphatase Sac1 

Translocase Tom70 

Unknown  Aim46 

 

Previously, it was reported that Pal2 binds to HAC1 mRNA185. Another report shows that 

Pal2 contains the consensus sequence motif that is preferred by the Kin kinases (N-X-S-X-pT-X-

L, where N is asparagine, X is any amino acid, S is serine, pT is phosphorylated threonine, L is 
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leucine)1. The latest mass spectrometry data identified Pal2 as well (Table 3.1). As Pal2 fits all 

three criteria, it was chosen for further study. 

Yeast genome encodes two paralogs of the Pal protein-Pal1 and Pal2 

 Yeast proteins Pal1 and Pal2 are shown to regulate the first stage of clathrin-mediated 

endocytosis186. GFP tagged Pal1 is reported to localize to the cytoplasmic membrane during the 

site selection process of endocytosis and forms a part of the early coat module186.  

 Pairwise sequence alignment of Pal2 and Pal2 proteins show 45% sequence identity, 56% 

similarities and 18% gaps between the two sequences (Fig 3.4). 

 

  

Figure 3.4 Pal1 and Pal2 protein sequence alignment. 

Protein sequences were aligned with Clustal omega software. The Pal2 phosphorylated residues are 

indicated in red on the top. Kin2 phosphorylation site is boxed. 
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Role of Pal1 and Pal2 proteins in yeast UPR 

 Recent observations indicating the association of Pal2 with the yeast UPR components 

suggested that Pal proteins might be implicated in the UPR. To determine whether Pal2 and/or 

Pal1 were required for activation of ER stress, we generated a pal1Δ pal2Δ strain and examined 

its growth in the presence or absence of tunicamycin (Fig 3.5A). While yeast cells lacking both 

Pal1 and Pal2 grew slightly slower than wild-type (WT) cells on control medium, their growth was 

substantially reduced in the presence of tunicamycin (Fig 3.5A). Control strains lacking either Ire1 

or Hac1 did not grow at all on medium containing tunicamycin (Fig 3.5A). Interestingly, the 

tunicamycin growth defect of pal1Δ pal2Δ cells was exacerbated when cells were grown on media 

containing galactose, a less preferred carbon source (Fig 3.5B). The advantage of using galactose 

medium was that, it allowed us to use lower concentration of tunicamycin which will avoid any 

non-specific toxicity.  

 

 

Figure 3.5 Pal1 and Pal2 double deletion strains is sensitive to Tunicamycin 

(A) and (B) The indicated yeast strains were grown serially diluted and spotted on the YEPD (A) or YEPG 

(B) medium with or without tunicamycin. 
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We wanted to check if Pal1 or Pal2 by themselves (single mutant strains) affected the UPR. 

Deletion of PAL1 alone had no effect on growth on tunicamycin medium, but the single deletion 

of PAL2 showed a substantial growth defect (Fig 3.6).  

 

 

 The pal1Δ pal2Δ yeast strain showed a slightly slower growth as compared to the WT 

strain on the YEPG media without tunicamycin (Fig 3.6, YEPG, rows 4 and 1). To confirm this 

phenotype, we grew the WT, pal1Δ pal2Δ and kin1Δ kin2Δ yeast cells in YEPG medium for 16 

hours and measured O.D.600 every 2 hours to plot a growth curve. From the growth curve it was 

evident that the pal1Δ pal2Δ exhibit a slow growth on YEPG medium (Fig 3.7A). We did not 

observe any apparent morphological abnormalities in the pal1Δ pal2Δ cells (Fig 3.7B). 

 

 

Figure 3.6 Pal2 deletion strain shows a severe UPR defect compared to Pal1 deletion 

The indicated yeast strains were grown serially diluted and spotted on the YEPG medium with or without 

tunicamycin. 

Figure 3.7 Pal1 and Pal2 double null strain displays slow growth phenotype 

(A) The pal1Δ pal2Δ strain exhibited slow growth phenotype. Yeast cells were grown, OD600 were 

measured, and plotted. (B) Confocal image of wild type (WT), kin1Δ kin2Δ and pal1Δ pal2Δ strains.  
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The tunicamycin sensitivity of the pal1Δ pal2Δ strain could be due to a defect in HAC1 

mRNA splicing, Hac1 protein expression, or impaired colocalization of HAC1 mRNA with Ire1. 

To test if the HAC1 splicing was defective, WT, pal1Δ pal2Δ and kin1Δ kin2Δ yeast cells were 

grown in the presence or absence of tunicamycin (Tun). Total RNA was extracted, and cDNA 

was synthesized from the total RNA. The synthetic cDNA was used to detect the spliced (HAC1s) 

and un-spliced (HAC1u) form of HAC1 mRNA. Only unspliced HAC1 mRNA (HAC1u) was 

observed in WT cells grown in the absence of tunicamycin, whereas both un-spliced and spliced 

(HAC1s) HAC1 mRNAs were observed in the presence of tunicamycin. In the pal1Δ pal2Δ strain, 

the splicing of HAC1 mRNA (Fig 3.8) was significantly reduced just like the reduced levels in 

kin1Δ kin2Δ strain.  

 

 

 In order to check the Hac1 protein expression, the WT and the pal1Δ pal2Δ yeast cells 

were grown in the presence or absence of tunicamycin (Tun). Whole cell extract was prepared 

and subjected to a Western blot analysis using anti-Hac1 antibody and to detect Hac1 protein 

expression and anti-Pgk1 antibody to detect Pgk1 for loading control. The expression of Hac1 

protein from the spliced mRNA (Fig 3.9A) was significantly reduced (>50%). The single deletion 

Figure 3.8 Splicing of HAC1 mRNA is reduced in the Pal1 and Pal2 double deletion strain 

The indicated yeast cells were grown in the presence or absence of tunicamycin (Tun). Total RNA was 

isolated (lower panel) and cDNA was prepared from the total RNA. The synthetic cDNA was used to 

detect the spliced (HAC1s) and un-spliced (HAC1u) form of HAC1 mRNA. 
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mutants were also tested for Hac1 expression. Hac1 protein expression was reduced (40%) in the 

pal2Δ strain but not in the pal1Δ strain (Fig 3.9B) which was consistent with the growth defect. 

Collectively, these data suggest that Pal1 and Pal2 significantly contribute to HAC1 mRNA 

splicing and/or translation, with Pal2 playing the major role.  

 

 

 Another standard assay to test the UPR induction in yeast strains is by using the LacZ 

reporter assay187. WT, pal1Δ pal2Δ and kin1Δ kin2Δ were transformed with a plasmid encoding 

beta-galactosidase under the control of an UPR element (UPRE) of the yeast KAR2 gene188. The 

transformants were grown with or without DTT (an ER stressor) and the cell lysates were 

prepared and used to check the beta-galactosidase activity. In WT cells, UPRE-driven lacZ 

expression was elevated about 6-fold when cells were treated with the ER stressor DTT, an effect 

that was reduced in the pal1Δ pal2Δ and kin1Δ kin2Δ strains (Fig 3.10). 

 

Figure 3.9 Hac1 protein production is reduced in the Pal1 and Pal2 double deletion strain 

Whole cell extracts were isolated and subjected to Western blot analysis using antibodies against the 

Hac1 and Pgk1 proteins. The ratios of Hac1 and Pgk1 protein band signals are shown. 
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To determine whether Pal1 and Pal2 act at the level of HAC1 mRNA splicing, we examined 

growth on tunicamycin of strains expressing a plasmid-encoded intron-less HAC1 construct. As 

anticipated, expression of the intron-less HAC1 gene rescued the growth of an ire1Δ strain on 

tunicamycin medium (Fig 3.11A). Likewise, intron-less HAC1 allowed the pal1Δ pal2Δ strain to 

grow in the presence of tunicamycin (Fig 3.11A), likely because it was able to translate the protein 

without Ire1-mediated splicing (Fig 3.11B). These data collectively suggest that Pal1 and Pal2 

serve to promote HAC1 mRNA splicing, likely by targeting mRNA to the ER stress site.  

 

 

Figure 3.10 UPRE-driven LacZ reporter gene expression is reduced in the Pal1 and Pal2 

double deletion strain 

The yeast strain (wild type, kin1kin2 or pal1pal2) was transformed with a plasmid carrying the 

UPRE-driven LacZ reporter gene. Transformants were grown in the presence (+) and absence (-) of DTT. 

Whole cell extract was prepared, and the -galactosidase activity was measured. 



   85 
 

 

 

Comparison of protein sequences of Pal protein from related fungal species 

 To study the conserved regions and the redundant domains in the Pal proteins, protein 

sequence of Pal2 homologs from Saccharomyces cerevisiae (Sc), Torulaspora delbrueckii (Td), 

Kluyveromyces lactis (Kl), Lachancea quebecensis (Lq), Ashbya gossypii (Ag) and Eremothecium 

cymbalariae (Ec) were aligned (Fig 3.12). Sequence comparison of Pal1 and Pal2 proteins indicate 

an overall 45% sequence identity, including a number of annotated phosphorylation sites. S. 

cerevisiae PAL2 and its orthologs in other species contain an intron of variable length, whereas 

the paralogous PAL1 gene does not have any intronic sequence (yeast genome database). 

Moreover, sequence comparison of Pal2 homologs among lower eukaryotes showed that the N-

terminal region of Pal2 is highly variable (Fig 3.12) 

 

 

 

Figure 3.11 Analysis of Hac1 protein expression from the intron-less HAC1 mRNA 

(A) Analysis of yeast cell growth. The indicated yeast strains expressing a vector plasmid and the same vector 

containing an intron-less HAC1 gene (HAC1c) were grown serially diluted and spotted on the YEPG medium 

with or without tunicamycin. (B) Analysis of Hac1 protein expression.  Yeast cells indicated in (A) were 

grown and whole cell extracts were isolated and subjected to Western blot analysis using antibodies against 

Hac1 and Pgk1 proteins. The ratios of Hac1 and Pgk1 protein band signals are shown. 
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Physiological role of truncated Pal proteins in the ER stress response  

 To determine the physiological role of Pal2 in the ER stress response, we used a functional 

complementation approach. We generated a Flag-tagged PAL2Δintron derivative in which the intron 

was deleted, and a Flag-epitope was inserted at its N-terminus. This construct along with the WT 

Pal2 construct were transformed in the pal1Δ pal2Δ strain and the tunicamycin sensitivity was 

studied. Like WT PAL2, Flag-PAL2Δintron was able to complement the pal1Δ pal2Δ strain (Fig 

Figure 3.12 Alignment of protein sequences of Pal2 homologs 

Protein sequences from Saccharomyces cerevisiae (Sc), Torulaspora delbrueckii (Td), Kluyveromyces lactis 

(Kl), Lachancea quebecensis(Lq), Ashbya gossypii (Ag) and Eremothecium cymbalariae (Ec) were aligned. 

The Pal2 phosphorylated residues in S cerevisiae are indicated in red on the top. The Kin2 phosphorylation 

site is boxed. 
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3.13). However, Western blot analysis suggested that the basal expression of Pal2 in cells was 

extremely low.     

The sequence alignment of Pal1 and Pal2 proteins showed that amino acid residues 165-

499 of Pal1 are highly similar to residues 65-366 of Pal2 (Fig 3.4). To determine whether the N-

terminal residues of Pal2 protein had any role in activating the UPR, we separately deleted the 

DNA sequences encoding residues 65 and 135 from the N-terminal end (Fig 3.13), generating 

Flag-tagged PAL2Δintron-ΔN65 and PAL2Δintron-ΔN135 constructs, respectively. Growth test on 

Tunicamycin showed that the minimum length of Pal2 that could activate the UPR was PAL2Δintron-

ΔN65 (Fig 3.13B). Western blot showed the protein expressions. These data suggest that the N-

terminal 65 residues of Pal2 are dispensable for its function in the UPR, and that PAL2Δintron-ΔN135 

expressed a non-functional protein.  

 

 

 

Figure 3.13 Truncation analysis of Pal2 

(A) The schematic representation of Pal1 and Pal2 protein and its derivatives. The homologous Pal1 

domains (PD) are indicted by dark blue boxes. Amino acid residue numbers are indicated. (B) Intron-less 

Pal2 can complement the Pal1 and Pal2 double deletion strain. The pal1 pal2 strains expressing the 

indicated wild type Pal2 or its derivatives were tested for growth on the complete synthetic (SC) without 

uracil (Ura) medium and the same medium containing tunicamycin. Whole cell extracts were prepared 

from yeast strain indicated in (B) and subjected to Western blot analysis using anti-Flag antibody. The 

symbol “*” indicates the Pal2 protein band. 
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We performed similar truncations on the paralog Pal1. Pal1 protein (residues 165-499, 

referred here to as PAL1ΔN) could complement the tunicamycin growth defect of the pal1Δ pal2Δ 

strain (Fig 3.14). Hereafter, we used the PAL2Δintron-ΔN65 and PAL1ΔN derivatives for our studies 

to determine the physiological function of the respective proteins.   

 

 

Association of Pal1 and Pal2 proteins with HAC1 mRNA 

To determine if Pal1 and Pal2 proteins associate with HAC1 mRNA in vitro, we employed 

the electrophoretic mobility shift assay (EMSA). Recombinant Pal1 or Pal2 protein was incubated 

with a fluorescein labeled 3’-BE (Flc-3’-BE from Sigma) and resolved on a native gel followed 

by fluorescence imaging. Both Pal1 and Pal2 induced an upward mobility shift of the Flc-3’-BE 

RNA (Fig 3.15A), suggesting that they indeed bind directly to the 3’-BE of HAC1 mRNA. The 

gel shift of the fluorescein RNA was not observed when HAC1 mRNA binding protein Ypt1185 

or a Met-tRNA binding protein eIF2α189 was used. This indicated that Flc-3’-BE RNA binds 

selectively to Pal1 and Pal2, and that Ypt1 presumably interacts with other regions of the HAC1 

mRNA. To further confirm these data, we also found that co-incubation with unlabeled 3’-BE 

(synthesized by in vitro transcription) reduced the interaction of Pal2 with Flc-3’-BE (Fig 3.15B), 

further confirming that Pal1 and Pal2 specifically bind to the 3’-BE of HAC1 mRNA.          

 

Figure 3.14 Truncation analysis of Pal1 

Truncated Pal1 (residues 165-499) can complement the full length Pal1 protein. The pal1 pal2 strains 

expressing the indicated wild type Pal1 or its derivatives were tested for growth on the complete synthetic 

(SC) without uracil (Ura) and tunicamycin media. 
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Figure 3.15 Truncated Pal proteins bind to the 3’-BE of HAC1 mRNA in vitro. 

(A) Electrophoretic mobility shift assay (EMSA) reveals that the recombinant proteins Pal1 and Pal2 bind 

to the 3’-BE of HAC1 mRNA. A fluorescein-tagged synthetic RNA corresponding to the 3’-BE (Flc-3’-

BE) was mixed with the recombinant protein His6-Pal1, His6-Pal2, His6-eIF2 or His6-Ypt1 in a binding 

buffer. The reaction mixture was then resolved in a native gel followed by illumination with ultarviolet 

(UV)-light to see the RNA-protein interaction. (B) Competitive replacement of Flc-3’-BE RNA by the 

non-fluorescent 3’-BE RNA. The Flc-3’-BE (2nd panel) was mixed with the recombinant His6-Pal2 

protein (bottom panel) in a binding buffer with or without the non-fluorescent 3’-BE (top panel). The 

reaction mixture was then resolved in a native gel. The gel was illuminated with ultarviolet (UV)-light to 

see the Flc-3’-BE-Pal2 interaction. The portion of gel showing the Flc-3’-BE bound to Pal2 is shown (3rd 

panel).   
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Kin1 and Kin2 substrate identification 

 In budding yeast, Kin1 and Kin2 have dual roles in exocytosis134 and the ER stress 

response137. The Kin/Par-1/MARK kinases are reported to phosphorylate a variety of substrates. 

Kin1 kinase in the fission yeast S. pombe phosphorylates three polarity proteins (pal1, mod5, and 

tea4)190. Par-1 in C. elegans phosphorylates Mex5, Mex6 and LIN-5191. Human MARK isoforms 

are known to phosphorylate the KXGS motifs in the repeat domain of Tau protein that stabilizes 

microtubules192. However, physiological substrate(s) of Kin kinases have not been identified.  

Positional scanning-oriented peptide library (PSPL) analysis indicated that Kin kinases 

have a strong preference for sequences containing a conserved N-x-S-x-pT-x-L motif (Fig 3.16), 

where pT represents a phosphorylated threonine at the position +2 of the phosphorylation site1. 

Previous analysis of the yeast phosphoproteomics data identified 36 proteins that contained an N-

x-S-x-S/T-x-L motif (KINtide). Out of those 36 proteins, 12 proteins have been observed to be 

phosphorylated on the Ser or Thr residue found at position +2, which may “prime” the substrate 

for subsequent phosphorylation by Kin1 or Kin2. This list includes Pal2, Eap1 and a previously 

reported Kin substrate Sec9134. To examine whether these candidates might be authentic Kin1 or 

Kin2 substrates, we overexpressed six of them (Sec9, Pal2, Kip3, Svl3, Mlf3 and Eap1) in yeast 

from a galactose-inducible high copy plasmid193 and purified them via a C-terminal tandem affinity 

purification tag (Fig 3.16B). Partially purified proteins were subjected to kinase assays in the 

presence or absence of Kin1 purified from the same system in a reaction buffer containing 

radiolabeled γ-32P-ATP (Fig 3.16C). In addition to Kin1 autophosphorylation, we observed robust 

phosphorylation of Sec9, Pal2, and Eap1 (Fig 3.16C). Svl3 and Mlf3 appeared to be 

phosphorylated to a lower level by Kin1, while Kip3 had substantial background phosphorylation 

in the absence of Kin1. 
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To further confirm that Pal2 is a substrate of Kin kinases, we expressed the Pal2 protein 

(residues 65-366) in bacteria. Circular dichroism (CD) spectroscopy indicated that recombinant 

Pal2 was composed of α-helices (10%), antiparallel β-sheet (25%), with the rest made up of turns 

and/or irregular structure (Fig 3.17). Thus, it appears that the overall fold of Pal2 protein likely 

consists of largely irregular structure, which is consistent with the predictions based on its amino 

acid sequence. 

 Next, we performed in vitro kinase assays using the same recombinant Pal2 protein as a 

substrate and Kin2 or PKR as a kinase. PKR is known to specifically phosphorylate the translation  

Figure 3.16 Kin1 phosphorylates Pal2 in vitro. 

(A) Consensus element of Kin2 phosphorylation site motif (referred to as the Kintide). The conserved 

N-x-S-x-pT-x-L peptide sequence motif, where x indicates any amino acid and pT indicates a predicted 

primed phosphorylated threonine at the position +2 of the phosphorylated site (S). (B) Analysis of 

purified proteins from yeast. The indicated proteins were purified from yeast and subjected to SDS-

PAGE analysis. Proteins are shown by the “*” symbols. (C) Phosphorylation of candidate substrates by 

Kin1. Purified proteins were mixed with Kin1 in a reaction mixture containing radiolabeled ATP (-33P-

ATP). The reaction mixture was quenched by 2X SDS-dye and separated by SDS-PAGE. The gel was 

dried and subjected to autoradiography (32P) to detect the incorporation of radioactive phosphate.     
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Figure 3.17 Circular dichroism spectroscopy of recombinant Pal2 protein 

The recombinant Pal2 protein (0.5 mg/mL) was used to collect spectra in the wavelength range of 190−360 

nm. CD spectra were collected in 0.1 cm path length quartz cells on a Jasco J-810 Spectropolarimeter. 

Spectra in the wavelength range of 190−360 nm were collected using the following acquisition parameters: 

0.1 nm steps, 1 nm bandwidth, 4 s response, 100 millidegree sensitivity, and 50 nm/min scanning speed 

with an accumulation of 3. Secondary structure composition was estimated from the analysis of the CD 

spectrum by the BeStSel web server. (Wavelength used was 190-250nm) 

Figure 3.18 Kin2 specifically phosphorylates Pal2 in vitro 

The recombinant His6-Pal2 (residues 65-366) or eIF2  protein was mixed with the purified Kin2 or PKR 

in a kinase reaction buffer containing -32P-ATP. The reaction mixture was quenched by addition of 2X 

SDS-dye and resolved by gel-electrophoresis. The gel was stained to see protein bands (lower panel), dried 

and then subjected to autoraiograpgy to detect the incorporation of 32P in the respective protein (upper 

panel). 
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initiation factor eIF2α (eIF2α) to regulate cellular translation194. As expected, we found that eIF2α 

was readily phosphorylated by PKR, but not by Kin2 (Fig 3.18). Pal2 was phosphorylated by Kin2, 

but not by PKR. These results suggest that Pal2 is a specific substrate of Kin2.  

 

Identification of specific Pal2 residues phosphorylated by Kin2 

To map specific sites where Kin2 phosphorylates Pal2, Pal2 was mixed with Kin2 in kinase 

reaction buffer with ATP. Phosphorylated Pal2 was subjected to LC-MS/MS analysis (Fig 3.19B). 

We identified a major phosphorylated tryptic peptide (ANSSTTTLDAAIKPNSK) that included 

the site predicted to be phosphorylated by Kin1/Kin2 (S222 within the N-x-S-x-T-x-L sequence 

motif) (Appendix II). Of six potential phospho-acceptor residues within this peptide, prior 

phosphoproteomics studies have found five of them (S221, S222, T223, T224, T225) to be 

phosphorylated in vivo195 (Fig 3.19A).    

 

  

Figure 3.19 Pal2 is phosphorylated at multiple sites. 

(A) Pal2 is phosphorylated at multiple sites. The reported phosphorylation sites from SGD are listed. 

(B) Mass spectrometric analysis of the Pal2 protein phosphorylated by Kin2 identified a single 

phosphorylated peptide.  
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 To determine if the phosphorylation sites identified through the mass spectrometry results 

have any importance in Pal2 phosphorylation by Kin2, we performed in vitro kinase assays, using 

a series of Pal2 point mutants (Fig 3.20). Combined mutation of four putative phosphorylated 

residues (S222, T223, T224 and T225) to alanine (referred to as Pal2-4Ala) drastically reduced the 

level of Pal2 phosphorylation by Kin2 (Fig 3.20). By contrast, combined mutation of the three Thr 

residues (T223, T224 and T225, referred to as Pal2-3Ala) had a more modest effect, while mutation 

of S222 alone or in combination with T224 (referred as 2Ala) led to reduced phosphorylation by 

Kin2 (Fig 3.20). Collectively these data strongly suggest that S222 is the major site on Pal2 

phosphorylated by Kin2 in vitro.   

 

 

Next obvious question was whether Pal1 follows the same pattern. We observed that Pal1 

lacks the Kin1/Kin2 consensus phosphorylation site sequence but does have a single threonine 

residue at position 323, analogous to Thr-225 of Pal2 (Fig 3.16A). We also found that the truncated 

Pal1 protein (residues 165-499) was weakly phosphorylated by Kin2 in vitro (Fig 3.21). This low 

Figure 3.20 Kin2 phosphorylates Ser-222 of Pal2 in vitro 

The recombinant His6-Pal2 (residues 65-366) and its indicated derivatives were subjected to kinase assay. 

Pal2-4Ala = S222A,T223A,T224A and T225A. Pal2-3Ala = T223A,T224A and T225A. Pal2-2Ala = 

S222A and T224A. Protein markers (kDa) are indicated.       
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level of phosphorylation was unaffected by mutation of Thr-323 to Ala (Fig 3.21). These data 

suggest that unlike Pal2, Pal1 is not a substrate of Kin2.  

 

 

In vitro and in vivo phosphorylation of Pal2 by Kin2  

We next examined whether the Kin kinases phosphorylated Pal2 in vivo. We transformed 

the pal1Δ pal2Δ and kin1Δ kin2Δ strains with plasmids expressing Flag-tagged WT Pal2 protein. 

Transformants were grown under ER stress conditions, and whole cell extracts were subjected to 

either standard SDS-PAGE or phosphate affinity Phos-tag SDS-PAGE followed by Western 

blotting. On the Phos-tag gel, wild-type Pal2 was separated into at least three distinct species (Fig 

3.22, lane 2), suggesting that Pal2 is phosphorylated at multiple sites. Notably, the slowest 

migrating protein band was absent from samples expressing the Pal2-4Ala mutant, in which two 

faster migrating protein bands were prominent. A similar pattern was seen when wild-type Pal2 

was expressed in kin1Δ kin2Δ cells. Taken together, these data indicate that Pal2 is phosphorylated 

at one or more sites in the S222–T225 region in a manner dependent on Kin1 and/or Kin2. 

Collectively, our results suggest that Pal2 is a bona fide in vivo substrate of Kin1/Kin2.            

Figure 3.21 Pal1 is not a substrate of Kin2 

Kin2 does not phosphorylate Pal1 in vitro. Recombinant His6-Pal1 (residues 165-499) protein was 

subjected to kinase assay with purified Kin2 and -32P-ATP 
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Importance of phosphorylation of Kin2 Thr-281 for its activation 

Activation loop phosphorylation is a key event in the activation of a kinase. Our data 

showed that phosphorylation of Thr-281 within the activation loop of Kin2 is important for its 

activation196. Thus, we wanted to determine if T281 phosphorylation controls the ability of Kin2 

to phosphorylate Pal2. We purified the Flag-tagged Kin2 protein (residues 94-526) from yeast cells 

(i.e., ScFlag-Kin2). We also purified the GST-Kin2 (residues 94-526) and its derivatives GST-

Kin2-T281E and GST-Kin2-ΔKI-T281E from E. coli (i.e., EcGST-Kin2 and EcGST-Kin2-ΔKI-

T281E). Then, we performed in vitro kinase assays with the recombinant Pal2 protein as a substrate 

using ScFlag-Kin2, EcGST-Kin2 or EcGST-Kin2-ΔKI-T281E as the kinase. ScFlag-Kin2 purified 

from yeast cells is presumably phosphorylated at T281196, and was able to phosphorylate Pal2 (Fig 

3.23, lane 2). The EcGST-Kin2 protein purified from bacteria was unable to phosphorylate Pal2 

(Fig 3.23, lane 3) likely because of the fact that the bacterially purified Kin2 protein was not 

phosphorylated at the activation loop residue T281. However, the EcGST-Kin2-ΔKI-T281E 

protein that contained a phospho-mimetic glutamate in place of T281 was able to phosphorylate 

Figure 3.22 Kin1 or Kin2 phosphorylates Pal2 in vivo 

Whole cell extracts were prepared from indicated yeast strains containing a vector plasmid (null) or the 

same plasmid containing the Flag-tagged wild type (WT) Pal2 or its 4Ala mutant. Samples were then 

subjected to normal SDS-PAGE or Phos-tag SDS-PAGE gel followed by Western blot analysis using anti-

Flag antibody.  
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Pal2 (Fig 3.23, lane 4). Collectively, these results suggest that T281 phosphorylation within the 

activation loop of Kin2 is required for Pal2 phosphorylation, and that activation loop 

phosphorylation of Kin2 occurs in trans by another kinase.  

 

 

 

 

 

 

 

 

Figure 3.23 T281 phosphorylation of Kin2 is important for Pal2 phosphorylation 

Recombinant His6-Pal2 (residues 65-366) was subjected to kinase assay with Flag-tagged Kin2 purified 

from yeast (ScFlag-Kin2), GST-Kin2 purified fom E. coli (EcGST-Kin2) and GST-Kin2-T281E purified 

fom E. coli (EcGST-Kin2-T281E). 
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Effect of Pal2 Phosphorylation on ER stress response 

 In order to test if phosphorylation of Pal2 is important for ER stress response, we used a 

functional complementation approach. The WT Pal2 (Flag-Pal2Δintron-ΔN65) construct encodes a 

functional protein that complemented the pal1∆ pal2∆ double deletion strain (Fig 3.24A, row 2). 

Mutations were introduced in the context of this construct. Next, these constructs were transformed 

into the pal1∆ pal2∆ double deletion strain and the ability of the cells to grow in tunicamycin was 

tested. The mutation of S222 to Ala did not affect the ability of Pal2 to rescue the tunicamycin 

growth defect of a pal1Δ pal2Δ strain (Fig 3.24A, row 3). These data suggested that 

phosphorylation at S222 alone did not affect the resistance to tunicamycin. Accordingly, we 

combined mutations of nearby phosphorylated residues (i.e., T223, T224 and T225) with the 

S222A mutant. We observed that the pal1Δ pal2Δ strain expressing all double mutant 

combinations grew on tunicamycin medium (Fig 3.24A). However, the pal1Δpal2Δ cells 

expressing the 4Ala quadruple mutant (Pal2ΔN65-STTT222-225AAAA) exhibited a slow-growth 

phenotype compared to its isogenic wild type strain and were unable to grow on medium 

containing tunicamycin (Fig 3.24A). Western blot analysis showed expression of Pal2 protein 

from the 4Ala construct (Fig 3.24B, lane 9), suggesting that the growth defects were not due to 

defects in protein expression, but somehow these residues act together. We also observed that a 

phosphomimetic 4Glu quadruple mutant (Pal2ΔN65-STTT222-225EEEE) grew on tunicamycin 

medium, suggesting that the functional impact of mutating these sites to Ala is due to ablating 

phosphorylation. It therefore appears that the phosphorylation of Pal2 at S222, T223, T224 and 

T225 are important for the tunicamycin resistant phenotype.  
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In order to test if the sensitivity to tunicamycin of the 4ala containing cells was due to Hac1 

protein expression, we grew pal1pal2 cells harboring a vector, and the same vector expressing 

the WT-Pal2 and Pal2-4ala with tunicamycin. The cell lysates were subjected to western blot using 

antibody against Hac1. As expectation, the Hac1 expression in the 4ala mutant was drastically 

reduced (Fig 3.25). 

Figure 3.24 Phosphorylation of Pal2 is important for ER stress response 

(A) The pal1 pal2 strains expressing wild type Pal2 and its derivatives were tested for growth on 

synthetic complete medium with and without tunicamycin. (B) Analysis of Pal2 protein expression. Whole 

cell extracts from the strains indicated were subjected to Western blot analysis using anti-Flag and Pgk1 

antibody.  
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Collectively, our data suggest that Kin2 phosphorylates Pal2 specifically at S222. We are 

yet to identify the unknown kinase(s) that might phosphorylate the residues T223, T224 and/or 

T225 (Fig 3.26).  

 

 

 

Figure 3.25 Hac1 protein expression is reduced in Pal2-4ala cells 

pal1pal2 yeast cells harboring the indicated Pal2 alleles were grown in synthetic complete medium 

without uracil and whole cell extracts were isolated and subjected to Western blot analysis using antibodies 

against Hac1 and Pgk1 proteins. 

 

Figure 3.26 Schematic representation of Pal1 and Pal2 proteins 

The homologous Pal1 domains (PD) are indicted by dark blue boxes. The phosphorylation loop of Pal2 is 

shown. The numbers indicate the amino acid residues.   
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Contribution of the Pal proteins in targeting HAC1 mRNA to the ER stress site 

 So far, our data suggest that Pal proteins have a role in HAC1 mRNA splicing and 

translation. During ER stress, HAC1 mRNAs and Ire1 proteins aggregate and form discrete foci 

within the cytoplasm138. Hence, we wanted to study if the Pal proteins have any effect on HAC1 

mRNA foci formation. We used a constructed a plasmid expressing the HAC1 mRNA tagged with 

a nucleolin recognition element (NRE) at its 3’-UTR. Co-expression of this RNA with an NRE-

binding domain (ND)-GFP fusion protein allows us to visualize HAC1 mRNA localization137. We 

transformed the WT and pal1Δ pal2Δ cells with these constructs and subjected the transformants 

to two-photon fluorescence microscopy. Cells co-expressing HAC1-NRE with ND-GFP grown in 

the presence of tunicamycin showed GFP signals distributed throughout the cytoplasm, with some 

discrete punctate structures suggestive of ER stress foci. The number of these punctate structures 

was reduced nearly two-fold in pal1Δ pal2Δ cells compared to the WT (Fig 3.27). These data 

suggest that Pal proteins likely play a significant role in HAC1 mRNA foci formation. 

 Previously, it was shown that the Pal2 protein has a role in endocytosis and they localize 

near the cytoplasmic membrane197. However, our data indicates that Pal2 has an important role in 

ER stress response. Based on our observations, we predict that Pal2 might localize near the ER 

stress sites to generate an optimum UPR signaling. Hence, we examined whether Ire1 and Pal2 co-

localize at sites of ER stress. We expressed an Ire1-YFP (yellow fluorescent protein) fusion protein 

in a yeast strain expressing Pal2-GFP from its chromosomal locus, and visualized GFP and YFP 

by two-photon fluorescence microscopy (Fig 3.28).  
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The Pal2-GFP fusion protein was observed throughout the cells, in contrast to a previous 

report that Pal2 localized strictly to the cell membrane197. As expected, Ire1-YFP was basally 

distributed throughout the cytoplasm, whereas discrete punctae of Ire1 molecules were visualized 

when cells were treated with DTT. Ire1-YFP fusion protein was seen to co-localize with the GFP 

signal within the cytoplasm. In the presence of DTT, Ire1-YFP fusion protein formed an average 

of 3.86 foci per cell. The merged Pal2-GFP and Ire1-YFP intensity maps (lower panel of Fig 3.28) 

indicate that within the diffuse GFP signal there is some co-localization of the two molecules. 

Taken together, these data suggest a possible connection between Ire1 activation and Pal2 protein 

function. 

Figure 3.27 HAC1 foci formation is reduced in Pal1 and Pal2 double deletion strain 

Analysis of HAC1 mRNA foci formation by two-photon micro-spectroscopy. The wild type or pal1 pal2 

cells expressing HAC1-NRE and ND-GFP were grown for two days at 300C on a solid synthetic complete 

medium containing tunicamycin (1 g/ml) and then imaged by two-photon microscopy. The GFP signal 

(top panel) was unmixed from the auto-fluorescence elementary spectra. The GFP intensity map was 

filtered (middle panel) to reveal the high-intensity punctate. Cells lacking both Pal1 and Pal2 protein 

deletion showed reduced punctate formation compared to its isogenic WT strain (bottom panel). 
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The list of plasmids and yeast strains used in this chapter are compiled in the Appendix I. 

All materials and methods are listed under chapter 5. 

Mass spectrometry results are listed under Appendix II. 

These findings have been compiled, revised and recommunicated to the journal Science Signaling. 

 

 

 

Figure 3.28 Analysis of Ire1-YFP and Pal2-GFP colocalization 

Yeast cells co-expressing Pal2-GFP and Ire1-YFP was imaged by a two-photon micro-spectroscope. The 

signals were spectrally unmixed to obtain separate maps of GFP (top panels) and YFP (middle panels) in 

both the absence (left) and presence (right) of DTT. The images (bottom panel) were merged to show that 

Ire1-YFP foci overlapped with the Pal2-GFP. 
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4. Chapter 4: Discussion and future prospects 

 Protein kinases Kin1 and Kin2 belong to a family of serine/threonine kinases that have 

been shown to coordinate the cellular exocytosis as well as the ER-stress response. However, it is 

not known how Kin kinases are activated and how they transmit stress signals to the downstream 

components. In chapter 2, we investigated the molecular events that lead to activation of the Kin 

kinase domain under conditions of ER stress.  We show that both Kin1 and Kin2 proteins 

minimally require a kinase domain (KD) and a short adjoining kinase extension region (KER) for 

their function. We refer to these mini functional Kin1 and Kin2 proteins as Kin1mini and Kin2mini, 

respectively. We further demonstrate that Kin2-KER is composed of two distinct subdomains 

(KER-I and KER-III) separated by a spacer of at least 40 amino acids. The computational analyses 

suggest that KER-I might fold and function like an UBA-like domain by yet unknown 

mechanisms.   

 Typically, most protein kinase domains are kept in an inactive state by means of intra-

molecular interaction(s) mediated by its own domain or inter-molecular interaction(s) mediated by 

other subunit(s), or both33. For example, the KA1 domain in Kin kinases functions as an 

autoinhibitory domain134, whereas a regulatory subunit of PKA inhibits its kinase activity198. The 

inactive kinase domain must be activated in order to do its physiological function. Inactive-to-

active transition requires release of the KD from its own domain or subunit, or both. But, in many 

cases, the isolated kinase domain is not functional. For example, we did not find any measurable 

Kin kinase activity when the isolated KD of Kin1 (residues 115-430) or Kin2 (residues 94-380) 

was expressed in yeast cells. For the kinase activity, Kin kinases required at least an adjoining 

extension region (i.e., KER) outside the kinase domain. However, the structural and functional 

role of KER is not yet clear. Most likely, KER increases the stability of protein by promoting a 
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specific intra-molecular interaction, binds a specific partner protein that activates the kinase 

domain, and/or targets the protein to a specific cell compartment.  

 Both Kin1 and Kin2 are shown to be phosphorylated proteins. Thus, it appears that each 

one is regulated by a complex mechanism involving auto- and/or trans-phosphorylation. 

Mutational analyses of several phosphorylated residues revealed that the substitution of phospho-

mimetic glutamate for the activation loop residues (Kin1 residue T302 or the Kin2-residues Y275 

and T281) bypassed the requirement of phosphorylation in Kin1mini or Kin2mini proteins. The 

activation loop phosphorylation is a common mechanism by which protein kinases are activated20. 

Interestingly, we found that the Kin2 residue T281 was phosphorylated in the Kin2mini-K128R and 

Kin2mini-D248A kinase-inactive mutants. Furthermore, we found that the bacterially expressed and 

purified GST-Kin1 or GST-Kin2 protein was unable to phosphorylate α-casein, likely due to lack 

of the activating T302 or T281 phosphorylation. Consistent with this notion, we observed that the 

glutamate substitution of the residue T302 or T281 in GST-Kin1 or GST-Kin2 protein led to 

phosphorylation of α-casein. Collectively, these data suggest that phosphorylation of the residue 

T302 in Kin1 or T281 in Kin2 occurs in a trans mechanism. 

  The Kin kinase domain shows a significant homology with the kinase domain of Snf1 

(sucrose non‐fermenting‐1) in yeast and AMPK (AMP‐activated protein kinase)-related kinase 

MARK in humans. Snf1 is phosphorylated and activated by a group of three upstream kinases 

Sak1, Tos3 and Elm1199. If Sak1, Tos3 and Elm1 indeed were upstream kinase for the Kin2 T281 

residue, we hypothesized that deletion strains lacking these kinases would result in a defective 

UPR. We performed a yeast growth test using the Sak1, Tos3 and Elm1 deletions in combination 

and test the growth on YEPD and YEPD with tunicamycin. We did not observe any growth defect 
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suggesting that Sak1, Tos3 and Elm1 might not be the upstream kinase for Kin2 T281 residue (Fig 

4.1). 

 

Figure 4.1 Sak1, Tos3 and Elm1 deletion strains are not deficient in ER stress response 

Indicated deletion strains were grown and replica printed on YEPD and YEPD with different concentrations 

of tunicamycin (g/ml). 

  The human MARK is phosphorylated and activated by an upstream kinase LKB1 

complex200. We performed an in vitro kinase assay with the recombinant Kin2 protein and LKB1 

complex purified from human cells. No phosphorylation of Kin2 protein was observed (Fig 4.2).  

 

Figure 4.2 LKB1 complex does not phosphorylate Kin2 

Bacterially purified Kin2mini was subjected to an in vitro kinase assay with the LKB1 complex in presence 

of 32P-ATP and kinase buffer. Kinase reactions were stopped, separated on SDS-PAGE. Gel was stained 

(upper panel) and autoradiographed (lower panel). 
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 In another attempt to identify the Kin2 T281 upstream kinase, we analyzed the T281 

phosphorylation status of Kin2 in certain kinase deletion strains. These kinase deletion strains were 

chosen on the following basis. Yeast has 129 reported kinases13.  Out of these 19 are essential 

kinases, and among the non-essentials, 24 kinases have paralogs and the remaining do not. We 

made a list of non-essential kinases without paralogs and searched the database to check if any of 

these kinase deletion strains were reported to show tunicamycin sensitivity which would indicate 

a possible role of that kinase in the ER stress response pathway. However, we did not see much 

defect in the T281 phosphorylation in these kinase null strains (Fig 4.3). 

 

Figure 4.3 T281 phosphorylation status in non-essential kinase null strains 

The indicated yeast strains were grown under ER stress conditions and the cellular extracts were collected 

and subjected to Western blotting using an antibody against the phosphorylated Kin2 T281 residue.  
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 In future, it would be interesting to test the T281 phosphorylation status in the temperature 

sensitive mutants of the essential kinases and also in the deletion strains lacking the paralogous 

kinases. Collectively, these data suggest that T281 phosphorylation is mediated by a currently 

unknown kinase.    

 We also found that Kin2mini protein associates with endomembrane when cells are under 

ER stress. Recently, Yuan et al. (2016) shows that Kin2 is predominantly located at the bud 

tip/neck175. Thus, it appears that association of Kin2 with membrane regulates its kinase function, 

and the membrane association varies depending upon the cellular conditions. Still, molecular 

events leading to association of Kin kinases with endomembrane in specific cellular responses 

remain to be established. Moreover, roles of Kin kinases in ER proteostasis raise some intriguing 

questions: How, when and in what context do Kin kinases sense and transduce the ER stress signal? 

How do Kin kinases coordinate with the Ire1 pathway to produce an optimum UPR? 

In Chapter 3, we show that the endocytic proteins Pal1 and Pal2, contributes to HAC1 

mRNA processing. We also show that Kin1 and Kin2 specifically phosphorylate Pal2, but not its 

isoform Pal1. Previously, we have shown that Kin kinases are required for optimal activation of 

the UPR137. Thus, our work provides evidence of a previously unappreciated Kin2-Pal2 signaling 

pathway contributing to HAC1 mRNA metabolism and ER homeostasis. 

 Under conditions of ER stress, the ER-resident endonuclease Ire1 cleaves the HAC1 

mRNA at two specific sites (G661 and G913), thus removing an intervening sequence that blocks 

the initiation of translation181,182. Cleavage requires co-localization of HAC1 mRNA with the Ire1 

RNase domain, which is known to be mediated by a bipartite element (3’-BE) located within the 

3’-UTR of its mRNA138. We have shown previously that a conserved element (5’-G1143GCGC1147-

3’) within the 3’-BE of the HAC1-3’-UTR carries information that helps target the mRNA to ER 
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stress sites and subsequent co-localization with Ire1137.  We also have shown that overexpression 

of the Kin1 or Kin2 protein kinase suppresses the co-localization defect of the HAC1-3’-BE mutant 

with Ire1, implicating Kin kinase’s role in the HAC1 mRNA splicing and translation137. However, 

the mechanism by which Kin1 and Kin2 controls these physiological processes has not been 

clearly defined. As cis-acting regulatory elements located at the 3’-UTR of mRNAs influence their 

localization by interacting with RNA binding proteins201, we speculated that Kin kinases likely 

control the formation of an mRNA protein (RNP) complex on the 3’-BE or modulates an existing 

RNP complex, which drives HAC1 mRNA targeting, splicing and/or translation. In an effort to 

identify the components of this RNP, we expressed a 3’-BE mini RNA and identified several 3’-

BE- associated proteins, including Pal2 that has been recently reported to be one of the putative in 

vitro substrates of Kin21. The mass spectrometric approach to identify the 3’-BE associated 

proteins revealed several other proteins along with Pal2. In future, it would be fascinating to 

investigate the relation between Pal2 and these other proteins and study if and how they modulate 

each other’s activities to drive the HAC1 mRNA to the Ire1 foci for its splicing. 

 Pal2 has a paralog, Pal1. We tested the sensitivity of tunicamycin of pal1Δ pal2Δ strain in 

the medium exclusively containing glucose (the preferred carbon and energy source) and galactose 

(a less preferred carbon and energy source).  Interestingly, we observed that the pal1Δ pal2Δ strain 

is severely sensitive to low concentration of tunicamycin on medium containing galactose. 

Tunicamycin inhibits the enzyme GlcNAc 1 (N-acetylglucosamine)-phosphotransferase that 

transfers GlcNAc-1-P from UDP-GlcNAc to dolichyl-phosphate, a step in the formation of N-

linked glycosylation of nascent protein170. Thus, it may be that the absence of exogenous glucose 

limits the pool of GlcNAc available for protein N-linked glycosylation, sensitizing cells to ER 

stress. The mechanistic details of galactose utilization are still being studied. 
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 Kin2 uniquely phosphorylates Pal2 but not Pal1. Several prior reports also support unique 

paralog-specific functions of Pal1 and Pal2. For instance, Moorthy et al. recently showed that Pal2 

associates with the endocytic coat factors to promote clathrin-mediated endocytosis197, whereas 

Carroll et al. showed that Pal1 plays a critical role in the formation of endocytic sites186. Pal1 is 

known to significantly contribute to cell polarity both in budding and fission yeast, a process 

essential for differentiation, morphogenesis and migration169. Like budding yeast, the Pal1 

ortholog in the fission yeast S. pombe has been shown to play an important role in maintaining cell 

morphology202. The functional divergence between Pal1 and Pal2 can be attributed in part to 

differences in their primary sequence and patterns of expression. For instance, the PAL2, but not 

the PAL1, mRNA contains an intron sequence. Pal1 and Pal2 have only 45% sequence identity at 

the protein level.  Most relevant to our study, only Pal2 harbors a consensus phosphorylation site 

sequence for Kin1 and Kin2, which is located within a group of phosphorylation sites that 

collectively are essential for its function in the UPR. More detailed functional analyses of Pal1 and 

Pal2 are necessary to fully determine how they buffer each other’s function.  

 The circular dichroism spectrum suggests that Pal2 is likely a disordered protein, and likely 

stabilized by its partner proteins in order to be able to function as a protein with pleotropic actions. 

It would be interesting to study if the other identified 3’-BE associated proteins interact with Pal2 

and modulate its function. 

 The most well studied post-translational modification is reversible protein 

phosphorylation. Mutational studies on Pal2 suggested that single mutation of the phosphorylation 

site S222 was not sufficient to reduce the ER stress response; however, mutations of four 

consecutive phosphorylated residues (i.e., S222, T223, T224 and T225) by non-phosphorylatable 

alanine significantly reduced the ability of pal1Δ pal2Δ strain to induce the ER stress response. 
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These results demonstrate that phosphorylation of all four residues in Pal2 protein together play 

an important role in ER stress response. Kin kinases phosphorylate S222, but the kinase(s) that 

phosphorylates residues T223, T224 and/or T225 is yet to be identified. Taken, together, these data 

provide evidence of a previously unappreciated Kin2-Pal2 signaling pathway contributing to 

HAC1 mRNA processing.  

 Recently, Jeschke et al. (2019) have shown that sucrose non-fermenting 1 (Snf1) kinase is 

a potential kinase engaging in priming a substrate (e.g., Sec9) for subsequent phosphorylation by 

Kin1/Kin21. To check if Pal2 is primed by Snf1 phosphorylation, we generated a kin1Δ kin2Δ 

snf1Δ strain and tested its ability to grow in the presence of tunicamycin. We found that the 

kin1Δkin2Δsnf1Δ strain grew on tunicamycin medium similarly to kin1Δkin2Δ, also confirmed by 

growth curves (Fig 4.4), in contrast to our expectation that the triple mutant would be more 

sensitive to tunicamycin. Also, the sequence surrounding the Pal2 priming site did not conform to 

the substrate recognition (L-x-R-x-x-S/T-x-x-x-L) motif of Snf1203. Collectively, these results 

ruled out the possibility that Snf1 phosphorylates Pal2 under physiological conditions and 

contribute to the ER stress response. Kinases that phosphorylate T223, T224 and/or T225 remain 

to be identified. 

 

 

Figure 4.4 Snf1 does not contribute to the ER stress response 

(A)  Indicated yeast strains are tested for growth on the YEPG and tunicamycin media. (B) The 

indicated yeast cells were grown, OD600 were measured, and plotted. 
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  Previous reports show that mRNAs can be specifically targeted to distinct subcellular 

compartments204.  mRNA localization signals are commonly found within their 3′-UTRs, like the 

3’-BE in the HAC1 mRNA that mediates co-localization with Ire1138. This co-localization is 

evident in the formation of microscopic foci under conditions of ER stress137,138. We have found 

that Pal2 partly localizes to these foci, suggesting that its interaction with the HAC1 3’-BE might 

be induced by ER stress. This is confirmed by the observation that HAC1 mRNA foci are 

significantly reduced in yeast lacking Pal1 and Pal2. These data collectively suggest that Pal 

proteins likely contribute to the fine-tuning of Ire1 and/or HAC1 mRNA foci formation. However, 

the specific role of Pal proteins in the formation of these foci is yet unknown.  

 In summary, our work unravels a Kin kinase signaling pathway that modulates the UPR 

signaling in budding yeast.  The working model shows an integration of Kin-kinase and Ire1-

mediated UPR signaling pathways (see Fig 4.5). During the ER stress, both Ire1 and Kin kinases 

are activated. Ire1 is activated by dimerization, oligomerization and auto-phosphorylation187,205. 

The Kin kinases are activated when their kinase domain is released by an unknown mechanism 

from their kinase-associated domain 1 (KA1). Subsequently, the Kin2- kinase domain is activated 

by phosphorylation of its activation loop residue Kin2-T281 or Kin1-T302 in a trans 

mechanism196. The active Kin kinase phosphorylates Pal2 that likely facilitates targeting of the 

translationally repressed HAC1 mRNA to the active Ire1 to excise its intron. The translation of 

HAC1 mRNA is then derepressed, resulting in production of an active transcription factor which 

activates expressions of several protein folding enzyme and chaperone genes to alleviate the ER 

stress.  
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Figure 4.5 Model for Kin2-Pal2 pathway in promoting the UPR 

The ER-resident chaperone Kar2 binds to the lumenal domain (LD) of Ire1 and keeps it in an inactive 

form. During the ER stress, unfolded proteins (scribbled red line) accumulate inside the ER lumen and 

titrate Kar2, thus activating cytoplasmic kinase and RNase domain of Ire1. The exons (grey bars) of 

HAC1 mRNA are separated by an intron (orange dashed line) that interacts with the 5’-UTR (solid 

black) line of mRNA to form an inhibitory RNA duplex (RD). The active RNase domain of Ire1 cleaves 

out the intron from the HAC1 mRNA. The kinase associated domain 1 (KA1, light blue bar) binds to 

the kinase domain (KD, dark blue bar) of Kin1 or Kin2, thus keeping the kinase domain (KD) in an 

inactive form. An essential kinase extension region (KER) of Kin1/Kin2 is also shown. Under stress 

conditions, KD is activated by phosphorylation within the activation loop on residue T281 in a trans 

mechanism, shown here by the sign “P” encircled within a red circle. The active KD then phosphorylates 

Pal2, which is likely associated with the 3’-BE and 3’-BE-specific RNP (serrated green shape), thus 

targeting HAC1 mRNA to the ER stress site.   
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5. Chapter 5: Materials and methods 

Media, Buffers, Reagents and Stock Solutions 

All chemicals and reagents were purchased from commercial suppliers Sigma-Aldrich, 

Acros Organics or Fisher Scientific unless otherwise noted. Restriction enzymes were purchased 

from NEB (New England Biolabs, USA). Protein assay reagent was obtained from Bio-Rad 

(USA).  

1. Media 

Agar plates were prepared by adding 2% Agar A (Bio Basic) to all media. Media was autoclaved 

at 15psi, 120ºC for 20 mins. Ingredients were dissolved in double distilled water before 

autoclaving. 

Luria Bertani (LB) 

  1% (w/v) Tryptone 

  0.5% (w/v) Yeast extract 

  1% (w/v) NaCl 

 

 Yeast Extract Peptone Dextrose (YEPD) 

  2% (w/v) Peptone 

  1% (w/v) Yeast extract 

  2% (w/v) Dextrose 

 

 Yeast minimal media (Synthetic Dextrose-SD) 

  0.142% (w/v) Yeast Nitrogen base (w/o ammonium sulfate) 

  0.5% (w/v) Ammonium sulfate 

  0.2% (w/v) Amino acid mixture 

  2% (w/v) Dextrose 
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 Super Optimal Broth (SOC) 

  2% (w/v) Tryptone 

  0.5% (w/v) Yeast extract 

  10mM Nacl 

  2.5mM KCl 

  10mM MgCl2 (added after sterilization) 

  20mM Glucose (added after sterilization) 

 

2. Buffers 

Volume of the buffers were adjusted by adding appropriate amount of double distilled water. 

 10X Tris-Glycine 

  30 g Tris Base 

  144 g Glycine 

  1L Water 

  Filter and store at 4℃. 

 

 10X Tris-Glycine SDS 

  30 g Tris Base 

  144 g Glycine 

  10 g Sodium dodecyl sulfate (SDS) 

  1L Water 

  Filter and store at 4℃. 

 

 50X Tris-Acetate EDTA (TAE) 

  242 g Tris Base 

  57.1 ml 100% Glacial acetic acid 

  100 ml 0.5 M EDTA (pH 8.0) 

  1L water 
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 10X Tris-Borate EDTA (TBE) 

  108 g Tris base 

55 g boric acid 

40 mL 0.5 M EDTA (pH 8.0) 

1L water 

Filter and store at RT. 

 

 0.5 M EDTA (ethylenediamenetetraacetic acid) 

  186.1 g disodium EDTA.2H2O  

  800 ml water 

pH 8.0 adjusted by adding NaOH solution. Volume adjusted to 1L. Sterilized by 

autoclaving. Stored at RT.  

 

 1M Tri-HCl pH 8.0, pH 6.8, pH 7.5 

  121.2 g Tris base 

  800 ml water 

pH adjusted by adding HCl solution. Volume adjusted to 1L. Sterilized by 

autoclaving. Stored at RT.  

 

 1.5 M Tri-HCl pH 8.8 

  181.7 g Tris base 

  800 ml water 

pH adjusted by adding HCl solution. Volume adjusted to 1L. Sterilized by 

autoclaving. Stored at RT.  

 

Ponceau Stain 

  0.5% (w/v) Ponceau stain 

  1% Acetic acid 

  Stored at 4℃. 
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5X Protein Loading Dye for SDS-PAGE 

  0.25% Bromophenol blue 

  50% Glycerol 

  10% SDS 

  0.25 M Tris-HCl (pH 6.8). Stored at RT. 

  5% -mercaptoethanol (added right before use) 

 

 5X Protein Loading Dye for Native Gel 

  0.25% Bromophenol blue 

  50% Glycerol 

  0.25 M Tris-HCl (pH 6.8). Stored at RT. 

  

 10X Tris Buffered Saline (TBS) 

  24 g Tris base 

  88 g NaCl 

  800 ml water 

pH adjusted to 7.6 by adding HCl solution. Volume adjusted to 1L. Sterilized by 

filtration. Stored at RT 

  Add 0.1% Tween 20 before storing. 

To make TBST add 1ml Tween 20 in 1L 1X TBS. 

 

5% Bovine Serum Albumin (BSA) 

  5 g BSA 

  100 ml 1X TBS 

   Sterilized by filtration. Stored at 4℃. 
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 10% Polyacrylamide gel composition  

Running gel 4 gels Stacking gel 4 gels 

water 15.2 ml water 16.8 ml 

Tris-Cl (1.5M) pH= 8.8 10.4 ml Tris-Cl (1M) pH= 6.8 2.4 ml 

Acrylamide (30%) 13.6 ml Acrylamide (30%) 4 ml 

10% SDS 400 l 10% SDS 240 l 

TEMED 20 l TEMED 20 l 

10% APS 400 l 10% APS 240 l 

 

 50 M Phos-tag gel composition (10 ml, always made fresh) 

8% Running gel 10 ml 4.5% Stacking gel 2 ml 

water 4.47 ml water 1.17 ml 

Tris-Cl (1.5M) pH= 8.8 2.5 ml Tris-Cl (1M) pH= 6.8 0.5 ml 

Acrylamide (30%) 2.67 ml Acrylamide (30%) 0.3 ml 

10% SDS 100 l 10% SDS 20 l 

TEMED 10 l TEMED 2 l 

10% APS 50 l 10% APS 10 l 

Phos-tag (5.0 mmol/L) 100 l   

MnCl2 (10 mmol/L) 100 l   
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 10X MOPS  

  41.8 g 3-(N-morpholino) propanesulfonic acid (MOPS) 

  700 ml Diethyl pyrocarbonate (DEPC) treated water 

pH 7.0 adjusted by adding NaOH solution.  

20 ml 1M Sodium acetate 

20 ml 0.5 M EDTA (pH 8.0) 

Volume adjusted to 1L. Sterilized by filtration. Stored at RT.  

 

 Yeast cells breaking buffer for genomic DNA extraction 

  100 mM NaCl 

  10 mM Tris-HCl pH 8.0 

  1 mM EDTA 

  1 % SDS 

  Autoclaved and stored at RT. 

    

 Yeast cell breaking buffer for -galactosidase assay  

  0.1 M Tris-HCl pH 8.0 

  20 % glycerol (v/v) 

  1 mM -ME (added right before use) 

 

 Z-Buffer  

  16.1 g Na2HPO4.7H20 

  5.5 g NaH2PO4.4H20 

  0.75 g KCl 

  0.246 g MgSO4.7H20 

  2.7 ml -ME 

  Volume adjusted to 1 lit, filter sterilized, aliquoted and stored at -20℃.  
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10X PBS 

25.6 g Na2HPO4·7H2O 

80 g NaCl 

2 g KCl 

2 g KH2PO4 

Volume adjusted to 1 lit, autoclaved and stored at RT. 

   

3. Stock solutions 

 Ampicillin: 100 mg/ml. Stored at 4℃. 

 Kanamycin: 50 mg/ml. Stored at 4℃. 

 Tunicamycin: 1 mg/ml DMF. Stored at 4℃. 

 Dithiothreitol: 1M (154 mg/ml). Stored temporarily at 4℃. 

 Nourseothricin Sulfate: 5 mg/ml stock. 100 l was used for one plate. 

 Hygromycin: 6 mg/ 30 ml media. 

 G418 Sulfate: 5 mg/ml stock. 500 l was used for one plate. 

 

 

4. Antibodies 

 Anti-Flag antibody was purchased from Sigma (cat # F-3165).  

Anti-Pgk1 antibody was purchased from Thermo Fisher (cat # 459250).  

Anti-actin antibody was purchased from Santa Cruz (Cat # SC-47778).  

Anti-GST antibody was purchased from Invitrogen (cat # 13-6700).  

Anti-PGK1 antibody monoclonal (Invitrogen; Cat #459250). 
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We had a polyclonal antibody raised against the recombinant Hac1 protein from Thermo 

Fisher Scientific (USA).  

We had a monoclonal antibody raised against the T281-phopsho-specific peptide 

(RKQLHpTFCGS) from Genscript, USA.  

5. Agarose slurry for immunoprecipitation 

M2-Flag agarose slurry was purchased from Sigma (M8823)  

GST agarose beads was purchased from GE Healthcare (cat # 17-0756-01) 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   122 
 

Protocols 

1. Plasmid DNA Isolation 

The Biobasic plasmid DNA isolation kit (BS614) was used for plasmid DNA preparation.  

1. Single bacterial colony bearing the plasmid was grown in 5 ml of Luria broth overnight.   

2. Tube containing overnight culture was centrifuged at 2,900 rpm (1630 X g) for 10 

minutes. Liquid media was drained by and tube was dried by keeping inverted on a 

paper towel for 5-10 minutes.  

3. 100 μl of Solution I (containing RNaseI) was added to the pellet, mixed well, and 

incubated in RT for 1 minute. Solution was transferred into a 1.5 ml microcentrifuge 

tube. 

4. 200 μl of Solution II was added to the mixture and mixed gently by inverting the tube 

10 times and incubated at room temperature for 1 minute.  

5. 350 μl of Solution III was added and mixed gently by inverting tubes for 10 times and 

incubated at room temperature for 3 minutes. 

6. Microcentrifuge tubes were centrifuged at 12,500 rpm (10,500 X g) for 7 minutes. 

7. Supernatant was transferred to the EZ-10 column. Centrifuged at 10,000 rpm (6720 X 

g) for 1 minute. 

8.  Flow-through was discarded. 500 μl of Wash Solution was added to the column, 

incubated for 1 minute, and centrifuged at 6720 X g for 2 minutes.  

9. Column was centrifuged at 6720 X g for 5 minutes for drying. Flow-through was 

discarded. 

10.  Column was transferred to a clean 1.5 ml microfuge tube. 100 μl of TE was added to 

the center part of the column, incubated at RT for 2 minutes. Centrifuged at 6720 X g 

for 2 minutes. Purified DNA was stored at -20°C for long-term use. 
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2. Yeast Genomic DNA Isolation 

 Reagents: 

 Yeast breaking buffer 

 Tris saturated phenol 

 Chloroform: Isoamyl alcohol (24:1) 

1. 200 μl of yeast breaking buffer was taken in a microcentrifuge tube and one yeast 

colony was resuspended in the buffer.  

2. 100 μl of zirconium beads was added to the tube. Break the cells at 4 °C by vortexing 

for 10 minutes.  

3. 200 μl of Tris saturated phenol was added to the broken cells and mixed by inverting 

the tube 5 times.  

4. Tube was centrifuged at 10,500 X g for 10 minutes at 4 °C. Aqueous layer was 

transferred into a new tube.  

5. 200 μl of chloroform: isoamyl alcohol was added and the tube was centrifuged at 

10,500 X g for 5 minutes.  

6. Aqueous layer was transferred in a tube with 500 μl of binding buffer. The mixture 

was transferred to an EZ- spin column and centrifuged at 6720 X g for 1 minute.  

7. Flow through was discarded. 500 μl of wash buffer was added and centrifuged at 

6720 X g for 2 minutes.  

8. Flow through was discarded and centrifuged at 6720 X g for 5 minutes.  

9. Column was transferred to a 1.5 ml microcentrifuge tube. 40 μl of TE was added and 

incubated in RT for 2 minutes.  

10. Centrifuged at 6720 X g for 2 minutes. Genomic DNA was stored at -20 °C.  
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3. Chemical competent cells preparation 

 Reagents: 

 LB broth (4.5 liters) 

Autoclaved distilled water (500ml) 

Autoclaved 10 mM Calcium chloride in 10% Glycerol (100ml) 

Day 1:  

1. E. coli DH5 alpha cells were streaked on LB agar plate with and without Ampicillin.  

Day 2: 

2. 6 flasks containing 750 ml of Luria broth and one flask with 50 ml of LB broth was 

autoclaved along with 10 mM Calcium chloride in 10% Glycerol and centrifuge 

bottles.  

3. Single colony of E. coli DH5 alpha from LB plate without ampicillin was inoculated 

in 50 ml of LB broth and grown overnight. 

Day 3: 

4. Absorbance of the 50 ml culture was recorded at A600 and cells equivalent to 

O.D.=0.05 was inoculated in 750 ml of broth.  

5. Cells were grown till A600  = 0.4- 0.5. The culture was centrifuged at 4,500 rpm (3400 

X g) for 5 minutes. The cell pellet was collected in centrifuge bottles.  

6. Pellet was washed with cold autoclaved water twice.  

7. Pellet was resuspended in 5-8 ml of calcium chloride and glycerol (10 mM calcium 

chloride in 10% glycerol).  

8. 50 μl cells were aliquoted into microcentrifuge tubes and snap-chilled in dry ice. 

Cells were immediately stored at -80 °C.   
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4. Electro-competent cells preparation 

 Reagents: 

LB broth (4.5 liters) 

Autoclaved distilled water (500ml) 

Autoclaved 10% Glycerol (100ml) 

Day 1:     

1. E. coli DH5 alpha cells were streaked on LB agar plate with and without Ampicillin.  

Day 2:  

2. 6 flasks containing 750 ml of Luria broth and one flask with 50 ml of LB broth was 

autoclaved along with 10% Glycerol and centrifuge bottles.  

3. Single colony of E. coli DH5 alpha from LB plate without ampicillin was inoculated 

in 50 ml of LB broth and grown overnight. 

Day 3:     

4. Absorbance of the 50 ml culture was recorded at A600 and cells equivalent to 

O.D.=0.05 was inoculated in 750 ml of broth.  

5. Cells were grown till A600  = 0.4- 0.5. The culture was centrifuged at 3400 X g for 5 

minutes. The cell pellet was collected in centrifuge bottles.  

6. Pellet was washed with cold autoclaved water twice.  

7. Pellet was resuspended in 5-8 ml of 10% glycerol.  

8. 50 μl cells were aliquoted into microcentrifuge tubes and snap-chilled in dry ice. 

Cells were immediately stored at -80 °C.   
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5. Bacterial transformation (heat-shock method) 

Reagents:  

SOC medium, LB plates with appropriate antibiotics, Dry bath 

1. 1 vial of 50 μl chemical competent cells were thawed on ice.  

2. 50 ng - 100 ng of plasmid DNA was added to the cells.  

3. Tubes were incubated on ice for 2 minutes. 

4. Tubes were incubated on dry bath at 42 °C for 90 seconds.  

5. Tube were incubated on ice for 2 minutes.  

6. 500 μl of SOC was added in the tube and incubated on shaker (850 rpm) at 37 °C for 

1 hour.  

7. Culture was plated on LB plate with appropriate antibiotic (Ampicillin/ kanamycin).  

8. Plates were incubated at 37 °C overnight.  

 

6. Bacterial transformation (electroporation) 

Reagents:  

SOC medium, LB plates with appropriate antibiotics, Dry bath, Electroporator 

1. 1 vial of 50 μl electro-competent cells were thawed on ice.  

2. 10 ng of plasmid DNA was added to the cells.  

3. Competent cells with plasmid mixture was transferred to electro cuvettes.  

4. Cells were pulsed in the electroporator. 

5. 500 μl of SOC was added in the cuvette and the entire mixture was transferred to an 

microcentrifuge tube. 

6. The microcentrifuge tube was incubated on shaker (850 rpm) at 37 °C for 1 hour.  
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7. Culture was plated on LB plate with appropriate antibiotic (Ampicillin/ kanamycin).  

8. Plates were incubated at 37 °C overnight.  

 

7. Yeast transformation  

Reagents:  

1X TE  

0.1 M Lithium acetate in TE  

PEG  

Calf thymus DNA (CT DNA) 

Selection media 

Preparation of reagents:  

1. 1 M Lithium acetate stock solution was prepared by dissolving 6.6 g of Lithium 

acetate in water and filter sterilized. 1 ml of 1 M lithium acetate was added in 9 ml of 

TE to make 0.1 M Lithium acetate in TE.  

2. 110 g of PEG-3550 (Sigma) was dissolved in 150 ml of TE and autoclaved. After 

autoclaving, volume increases to 225 ml. 25 ml of 1 M Lithium acetate was added 

after autoclaving.  

Day 1:  

1. Yeast colonies were inoculated in 5 ml of YEPD or in appropriate minimal media and 

grown overnight.  
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2. O.D.600 of starter culture was measured and amount required for inoculation in 30 ml 

YEPD such that the O.D. of the secondary culture is 0.2 was calculated. 

To check O.D. primary culture was diluted 1:20 {50µl culture and 950µl water}.  

O.D. calculated by multiplying with dilution factor. 

Calculation:  

Amount of primary culture to be inoculated in secondary = (0.2*30) / [O.D.600] 

3. Culture was grown till O.D. (~0.6-0.8) 

4. When desired O.D. was obtained, culture was harvested in a falcon tube at 1630 X g 

for 6 mins. 

5. Cells were washed with 750 µl of 1X TE and transferred to microfuge tubes. 

6. Cells were pelleted down (10,500 X g, 1 min) and supernatant thrown. 

7. In the same way wash the cells were again washed with 750µl 0.1 M Li-Ac (diluted 

in 1X TE). 

8. Cells were resuspended in 750 µl (1X TE + Li-Ac) and incubated in shaker at 30°C 

for 1 hour. 

9. Following was taken in a microfuge tube:  

Plasmid DNA-5 µl (if concentration is >200ng/ml) 

Carrier DNA-5 µl 

Yeast Cells-100 µl 

This mix was incubated for 1 hour at 30°C (static) 

10. 750 l PEG-LiOAc was added to tubes and incubated for 1 hour at 30°C (static). 

11. Heat shock at 42°C for 8 mins. 

12. Kept at RT for 1 min. 
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13. Cells were pelleted at 10,500 X g for 1min and supernatant thrown. 

14. 500 µl SD media was added to resuspend the cells. 

15. 3000 µl was plated on minimal media and grown for 2-3 days. 

 

 8. Total protein precipitation from yeast  

Reagents: 

  100% TCA (Sigma) 

  20% TCA (diluted in distill water from 100% TCA) 

  5% TCA (diluted in distill water from 100% TCA)   

  0.5 mm zirconium beads  

  1 M Trizma Base (pH not adjusted) 

 Day 1:  

1. Single yeast colony was inoculated in 5-10 ml of appropriate liquid medium and 

grown overnight.  

Day 2:  

2. 0.5 ml of overnight culture was inoculated in 25 ml of liquid medium. Cells were 

grown till O.D.600 ~ 0.6-0.8.  

3. Cells were treated with 5 mM DTT for 2 hours for the detection of Hac1 protein 

expression on Western blot.  

4. Cells equivalent to O.D. = 15 was harvested. Cells were transferred to a 

microcentrifuge tube and spun down to separate the media. 

5. 200 μl of 100 % TCA was added to the pellet and incubated overnight at 4°C.  
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Day 3:  

6. Tubes were centrifuged for 4 mins at 1075 X g at RT. Pellets contain protein sample. 

7. Supernatant was discarded and re-suspend in 200 µl 20% TCA. 

8. Zirconium beads were added to the 100 l mark. Cells were disrupted by vortexing 

using Vortex-Genie at 4°C: 2 cycles of 1 min each. 

9. 200 µl of cell suspension was collected in a fresh tube. 

10. 400 µl 5% TCA was added and vortexed for 1 min. Total collection is now 600 µl. 

11. Tubes were centrifuged at 605 X g for 10 mins at RT. 

12. Supernatant was discarded. Proteins are in the pellet. 

13. For western blot, 50 µl 2X LSB was added. The color is supposed to turn yellow from 

the acid. 

14. Titration was performed with 50 µl 1 M Trizma-base. Color should turn blue.  

15. Tubes were incubated at 95°C and tapped in-between to dissolve the cell pellets. 

16. Tubes were centrifuged at 10,500 X g for 1 min at RT. 

17. 15 l of protein sample was loaded on protein gel.  

 

9. Western Blot analysis  

Reagents:  

 Transfer buffer  

 10X Tris Glycine 50 ml 

 Methanol  100 ml 

 Cold water  350 ml 

 



   131 
 

Day 1:  

Polyacrylamide gel electrophoresis (PAGE)  

1. 15 µl of protein sample isolated using TCA method was loaded in the 10 % SDS-

PAGE gel, run for 70 minutes on 150 Volts (Bio-Rad PowerPac 1645050). 4µl 

protein ladder (Bulldog-Bio) was used.  

Transfer 

2. Transfer setup was prepared using Nitrocellulose membrane.  

3. Overnight transfer at 4°C using transfer buffer. Run at 25 V for 12 hours (Invitrogen 

XCell IITM Blot Module EI 9051). 

Day 2:  

4. Nitrocellulose membrane was stained with Ponceau dye to check transfer.  

5. Ponceau dye was washed off with 1X TBST.  

6. 5% BSA was used to block the membrane for 1 hour at RT. 

7. Primary antibody was added and incubated overnight on a nutator shaker at 4°C.  

Day 3:  

8. Membrane was washed with 1X TBST 5 times (each wash should be for 10 mins).  

9. Membrane was incubated with secondary antibody (0.5µl in 5ml BSA). 

10. Membrane was washed with 1X TBST 5 times (each wash should be for 10 mins).  

11. Membrane was scanned in LICOR Odyssey IR Imaging system to visualize protein 

bands. 
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10. Total RNA isolation from yeast  

The PureLinkTM RNA mini kit (Invitrogen 12183018A) was used for RNA preparation.  

Reagents:  

1. Elution buffer  

  1X TE   300 l 

  RNase free water 700 l 

2. 0.1% DEPC water 

MiliQ water  1 lit 

DEPC (from Sigma)  1 ml  

Shaken gently and kept at RT overnight (DEPC is carcinogenic, handled with care). 

Autoclaved next day. 

3. Formaldehyde RNA running gel (1.4%) 

Agarose   0.7 g 

Formaldehyde  730 µl 

Ethidium bromide  1.0 µl 

10X MOPS  5 ml 

DEPC water  45 ml 

Agarose was dissolved in the DEPC water with MOPS, formaldehyde was added in 

the fume hood followed by EtBr.  

 Protocol:  

1. 10 µl of β-ME (Sigma) was added in 1 ml lysis buffer and kept on ice.  

2. 600 µl of lysis buffer was added in the microcentrifuge tubes containing yeast cells. 
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3. Cells were thawed on ice.  

4. Zirconium beads were added approximately equivalent to volume of 100 µl. 

5. Cells were disrupted by vortexing for 10 minutes at 4°C.  

6. Centrifuged for 12K for 5 minutes.  

7. 600 µl supernatant was collected in a tube containing 600 µl of chilled 70% ethanol. 

Thus, total volume was 1200 µl.  

8. 600 µl was added on a column (Ambion kit), centrifuged (10 K for 2 min), and liquid 

discarded from collector.     

9. Remaining 600 µl was added to the same column step 8 was repeated.  

10. 500 µl wash buffer was added to the column and washed twice.  

11. Centrifuged at 12K for 5 minutes for drying.  

12. RNA was eluted with 40 µl of elution buffer. Stored at -80 °C.  

13. RNA concentration was measured using a Nanodrop (Thermo Scientific NanoDrop 

1000 Spectrophotometer) and quality was examined by RNA gel electrophoresis.  

 

11. Reverse Transcriptase PCR  

 Reagents:  

10mM dNTP – NEB Biolabs dNTP mix- #N0447S (make aliquots of 20 l and store) 

100uM random primer – Biolabs #1254S (aliquots of 10 M stored) 

DEPC-treated water – prepared in lab 

5X first strand buffer – Invitrogen- P/N y02321 (aliquots of 20 l stored) 

0.1M DTT – Invitrogen -- P/N y00147 (aliquots of 20 l stored) 

RNase OUT – Invitrogen- P/N 100000840 



   134 
 

Reverse Transcriptase III - Invitrogen 18080-093 

Protocol:  

1. First strand cDNA synthesis reaction. Primer-dNTP reaction mixture: 

1 reaction  5 reactions 

  10 mM dNTP   1.0 µl   5.0 µl 

  10 µM Random primer 0.5 µl   2.5 µl 

  DEPC water   8.5 µl   32.5 µl 

  Total    9.5 µl   47 µl 

2. 9.5 µl of total mix was dispensed in microcentrifuge tubes. 

3. 2000 ng of RNA was added. 

4. Mixture was heated at 70 ⁰C for 3 minutes and transferred to ice immediately (this is 

to break secondary structures of RNA). 

5. Reaction mixture with Reverse transcriptase: 

1 reaction  5 reactions 

  5X First strand buffer  4.0 µl   20 µl 

  0.1 M DTT   1 µl   5 µl 

  RNase out   0.2 µl   1 µl 

  Reverse transcriptase  0.2 µl   1 µl 

6. 5.4 µl reaction mixture was added to each tube containing RNA mix and incubated:   

Temperature  Time  

       50 ⁰C   45 minutes  

       65 ⁰C    10 minutes   

7. Synthetic cDNA was stored at -80⁰C.  



   135 
 

12. In vitro transcription 

 1. DNA template 200 ng-(5’-GGGGCGTAATACGACTCACTATAGGGCGTGAGGTT 

GGCGCGCCCTCCTACAATTATTTGTGGCGACTGGGCAGCGACACTGAACA-3’)  

1X T7 reaction buffer, 1mM rNTP mix, 1 U RNase OUT, 1 U T7 RNA polymerase (NEB 

M0251S). Reactions were incubated at 37 °C for 2 hours and run on a 1.5% agarose gel to 

quantify the amount of RNA product. 

 

13. Detection of HAC1 mRNA splice variants 

1. PCR master mix for testing the HAC1 mRNA splicing  

PCR super mix (Invitrogen)       44 µl 

10 µM Primer omd 1225 (5ʹ-CGCAATCGAACTTGGCTATCCCTACC-3ʹ) 2 µl 

10 µM Primer omd 1226  (5ʹ-CCCACCAACAGCGATAATAACGAG-3ʹ) 2 µl 

Synthetic cDNA         2 µl  

PCR conditions:  

Temperature                                        Time  

94 ⁰C                                                        4 minutes  

94 ⁰C                                                        1 minute  

55 ⁰C                                                        45 Sec           20 cycles 

72 ⁰C                                                        30 Sec 

72 ⁰C                                                         5 minutes     

4 ⁰C                                                           ∞ 

2. 10 µl PCR products were separated on a 1.5 % DNA gel.  

3.     Quantities of HAC1s and HAC1u were measured using ImageJ. Percent splicing was        

         calculated as Hac1s / (HAC1s + HAC1u)*100%. 
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14. β-galactosidase assay  

Reagents:  

1. Z-buffer 

2. ONPG (o-nitrophenyl--D-galactopyranoside) stock solution.  

ONPG  4 g 

Z- buffer 1000 ml 

Filter sterilized, aliquoted and stored at -20℃. 

3. β-galactosidase breaking buffer 

4. 1M sodium carbonate (5.3 g in 50 ml water) 

Protocol:  

1. Yeast cells were grown in minimal media till O.D. =  0.6. Cells were treated with 

5mM DTT for 30 minutes to 2 hours as required.  

2. Cultures were harvested, cells washed with TE and transferred to microcentrifuge 

tubes. Cells can be stored at -20°C or subjected to breaking using breaking buffer.  

3. 200 μl of β-galactosidase breaking buffer was added in cell pellet (5 μl β-ME was 

added in 10 ml lysis buffer) on ice.  

4. About 100 μl of zirconium beads was added, tubes were vortexed in 4°C for 10 min, 

spun down at 4°C for 10,500 X g , 5 min.  

5. Supernatant was transferred into a clean tube.  

6. ONPG and Z-buffer aliquots were thawed at 28°C for at least 1 hour.  

7. 2 μl of protein sample was added to 1 ml of 1X Bradford reagent. A600 for each 

sample was recorded.  
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8. 1ml Z-buffer was added to 5 ml glass test tube and equilibrated at 28°C water bath. 

(Three tubes per sample) 

9. 25μl protein supernatant was added, briefly vortexed to mix.  

10. 200 μl ONPG was added and vortexed. Time was recorded. 

11. Tubes were incubated in 28°C as it takes 5-30 minutes for the of yellow color to 

develop. Reaction was stopped after yellow color saturated by adding 500 μl of 1 M 

sodium carbonate.   

12. A420 was recorded for each sample.  

13. The -galactosidase units are calculated by using the following formula:  

                       Beta galactosidase Units = (OD420 X 1000)/Concentration X 1.7 

        0.0045 X time (min) X volume (μl) 

OD420 = Take 1 ml of assay reaction mixture to read the OD420 

Concentration = 1 μl /protein concentration, μg/ml 

Time (min) = Incubation time (20 min) 

Volume (μl) = 25 μl 

 

15. Protein purification from Yeast cells 

 Reagents:  

 Breaking buffer (40 ml) (prepared under cold conditions) 

  1M Tris-Cl (pH= 7.5)   800 μl 

  2. 5 M NaCl    8 ml 

  Ammonium sulfate   1.6 g 

  100 mM PMSF (in ethanol)  400 μl 
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  Protease inhibitor tablet  1 

  (Thermo Scientific A32963) 

  25 % Triton X-100   40 μl 

  Water to volume   40 ml 

 20 ml buffer was kept aside for washing agarose beads after immunoprecipitation. 

 To the rest 20 ml, the following phosphatase inhibitors were added: 

  Sodium fluoride   1 mg 

  Sodium orthovanadate  1 mg 

  β- Glycerophosphate   150 mg 

Protocol:  

1. 750µl breaking buffer with phosphatase inhibitors were added to cells. Cells were thawed 

on ice. 

2. Glass beads were added to the 200µl mark. Cells were disrupted by vortexing in 4°C for 

10 minutes. Tubes were centrifuged at 10,500 X g for 10 minutes. 

3. Supernatant was transferred to a fresh tube. 500 µl breaking buffer was added and the 

cells were disrupted under the same conditions.  

4. Tubes were centrifuged at 10,500 X g for 10 minutes. Supernatant was pooled in a single 

tube. 

5. Bradford assay for protein quantification: 1ml 1 X Bradford reagent was dispensed in 

microcentrifuge tubes. 5 µl cell lysate was added to 1 ml of Bradford reagent. OD600 was 

recorded. OD600 = 0.1 is equivalent to 1µg of protein. 
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6. 100 µl 50% agarose bead (slurry) was equilibrated with the breaking buffer by washing 

the beads 3 times in 500 µl breaking buffer. Centrifugation was carried out at 4⁰C 270 X 

g for 1 minute. 

7. Cell lysate was added to the equilibrated beads and kept in the nutator shaker (Clay 

Adams 421105) for 1 hour at 4⁰C. 

8. To remove unbound protein, the beads were washed either in microcentrifuge tubes or in 

columns (BioRad PolyPrep Columns 7311550) with the buffer without phosphatase 

inhibitors. Beads were washed a minimum of 5 times. 

9. Protein was eluted in 100 µl elution buffer:  

 50 mM Tris pH= 8.00, 10% glycerol  900 µl 

  Flag peptide/ reduced Glutathione  1 mg/ 3.5 mg 

 1 M DTT     100 µl 

10. 100-150 µl of elution buffer was added to washed beads. Incubated in ice for 10 minutes 

with intermittent tapping. Centrifuged at 10,500 X g for 1 minute at 4⁰C. 5µl of elute was 

used to measure protein concentration using Bradford reagent.  

11. ~0.5 µg protein was mixed with 2X or 3X SDS dye, heated for 5 mins and separated on 

SDS-PAGE.  

 

16. Site Directed Mutagenesis (ABM SDM kit E088) 

 Primers were designed to incorporate diagnostic restriction site. 

 Recently purified plasmid DNA was used (this ensures higher success rates.) 
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PCR reaction: 

      Experiment  Control 

  Plasmid template (10ng/l) 2 l   2 l 

  Primer 1 (10 M)  1 l   0 

  Primer 2 (10 M)  1 l   0 

  2 X PCR Mix   20 l   20 l 

  Water    16 l   18 l  

Extension time was set according to template size and PCR run for 30 cycles. PCR 

products were run in DNA gel to check for amplification. 

PCR treatment: 

 0.5 l Assembly Enhancer and 1 l Cloning Optimizer was added to 40 l PCR. 

 Reaction was set up for 5 mins at 37⁰C followed by 20 mins at 80⁰C. 

10 l 2X Ligation Free Master mix was added to 10 l treated PCR and incubated at 

50⁰C for 15 mins.  

2 l was used for electroporation.  

Transformants were selected on appropriate Antibiotics. In case of extremely high 

transformation efficiency, the ligations mixtures were treated with DpnI followed by 

electroporation. 

Plasmids were digested with diagnostic restriction sites, followed by sequencing to 

confirm mutation(s). 
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17. Electrophoretic Mobility Shift Assay (EMSA) 

 Reagents: 

  8% non-denaturing polyacrylamide gel (2 gels)   

   40% polyacrylamide  4 ml 

   10X TBE buffer  11.3 ml 

   10 % APS   0.2 ml 

   Water    4.5 ml 

   TEMED   10 l 

 

  Binding buffer (stock) 

   100 mM Tris-HCl (pH 7.0) 

   200 mM MgCl2 

 

Loading Dye  

   50 % Glycerol 

   1 mg/ml Xylene Cyanol 

 Protocol: 

1. Protein and fluorescein tagged RNA was thawed in ice. 

2. Binding buffer was prepared for 5 or 10 reactions: 

5 reactions  10 reactions 

  100 mM Tris-HCl pH 7.0 20 l   40 l 

  200 mM MgCl2  1.25 l   2.5 l 

3. EMSA reaction was set up as follows: 
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Reaction:  1  2  3 

   RNA oligomer  5 l  5 l  0 

   Protein   0  5 l  5 l 

   Buffer   4 l  4 l  4 l 

   Water   21 l  16 l  21 l 

4. Tubes were incubated in 30°C for 45 mins with taping every 15 mins. 

5. 5X loading dye was added and samples were separated on TBE gel with the 

following running conditions: 

20 mins at 120 V at RT, then 3 hrs at 120 V at 4°C. 

6. Fluorescein tagged RNA was visualized under UV and protein bands were 

visualized by staining and destaining the protein gel. 

 

18. Protein purification from BL21 bacterial cells 

A. GST-tagged protein purification 

1. Cells were grown in LB broth with Ampicillin at 37°C. At O.D.600 ~0.6, 1 mM IPTG 

was added and culture was grown in RT overnight. Cells were collected in 50 ml 

falcon tubes (Corning 352070), centrifuged and media discarded. Cells were either 

processed for protein purification or stored at -20°C. 

2. 50 ml 10X PBS cell lysis buffer was prepared with 1 Protease inhibitor tablet. 

3. Following stock solutions were prepared:  

DNase  10 mg/ml 

Lysozyme 10 mg/ml 

DTT 1 M 1 ml 

MgCl2  1 ml 
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4. To each tube containing cells, the following were added: 

2X PBS lysis buffer 2 ml 

DNase   20 l 

Lysozyme  20 l 

DTT 1 M  20 l 

MgCl2   20 l 

5. Cells were either thawed in this buffer or dissolved by pipetting gently. 

6. To the rest 30 ml buffer 300 l 25 % Triton X-100, and 300 l 1 M DTT was added. 

This served as the equilibration and washing buffer for agarose beads. 

7. Cells were sonicated 6-8 times to ensure cell lysis. Frothing avoided. 

8. Cell debris was separated by centrifugation at 11,350 X g for 15 mins at 4°C. 

9. Clear cell lysate was pooled in a falcon tube and protein concentration measured by 

using Bradford reagent. 

10. Glutathione conjugated agarose beads (from Gold Bio G-250) were equilibrated with 

the buffer by washing the beads 3 times in 500 µl buffer. Centrifugation was carried 

out at 4⁰C 270 X g for 1 minute. [Gold Bio GST beads capacity = 8 mg GST protein / 

1 ml gel] 

11. Cell lysate was added to the equilibrated beads and kept in the nutator shaker for 1 

hour at 4⁰C. Either falcon tubes can be used or Bio Rad columns (731-1550).  

12. To remove unbound protein, the beads were washed either in microcentrifuge tubes or 

in columns (BioRad) with the buffer. Beads were washed a minimum of 6 times. 

13. Protein was eluted in 300 µl elution buffer:  

    50 mM Tris pH= 8.00, 10% glycerol  900 µl 

     Reduced Glutathione    3 mg 

    1 M DTT     100 µl 
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300 µl of elution buffer was added to washed beads. Incubated in ice for 10 minutes 

with intermittent tapping. Centrifuged at 10,500 X g for 1 minute at 4⁰C. 5µl of elute 

was used to measure protein concentration using Bradford reagent.  

14. ~0.5 µg protein was mixed with 2X or 3X SDS dye with -ME, heated for 5 mins and 

separated on SDS-PAGE.  

15. Gel was fixed (50% methanol and 10% glacial acetic acid), stained for 20 minutes in a 

staining solution (0.1% Coomassie Brilliant Blue R-250, 50% methanol and 10% 

glacial acetic acid) and de-stained overnight in a de-staining solution (40% methanol 

and 10% glacial acetic acid) to visualized protein bands.  

B. His-tagged protein purification 

1. Cells were grown in LB broth with Ampicillin at 37°C. At O.D. ~0.6, 1 mM IPTG was 

added and culture was grown in RT overnight. Cells were collected in 50 ml falcon 

tubes, centrifuged and media discarded. Cells were either processed for protein 

purification or stored at -20°C. 

2. Lysis buffer was prepared using 1X NaHPO4 (50 mM) and NaCl (300 mM) pH 8.0 

with 1 Protease inhibitor tablet (per 40 ml) and 10 mM Imidazole. 

3. 5 ml lysis buffer was added to thaw the cells. 

4. Cells were sonicated 6-8 times to ensure cell lysis. Frothing avoided. 

5. Cell debris was separated by centrifugation at 11,350 X g for 15 mins at 4°C. 

6. Clear cell lysate was pooled in a falcon tube and protein concentration measured by 

using Bradford reagent. 
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7. Ni-NTA conjugated agarose beads (ThermoFisher 88221) were equilibrated with the 

buffer by washing the beads 3 times in 500 µl buffer. Centrifugation was carried out at 

4⁰C 270 X g for 1 minute.  

8. Cell lysate was added to the equilibrated beads and kept in the nutator shaker for 1 

hour at 4⁰C. Either falcon tubes can be used or Bio Rad columns (731-1550).  

9. To remove unbound protein, the beads were washed either in microcentrifuge tubes or 

in columns (BioRad) with the same buffer but containing 20 mM Imidazole. Beads 

were washed a minimum of 6 times. 

10. Protein was eluted in 300 µl elution buffer:  

    50 mM Tris pH= 8.00, 10% glycerol  900 µl 

     Imidazole     34 mg 

    1 M DTT     100 µl 

300 µl of elution buffer was added to washed beads. Incubated in ice for 10 minutes 

with intermittent tapping. Centrifuged at 10,500 X g for 1 minute at 4⁰C. 5µl of elute 

was used to measure protein concentration using Bradford reagent.  

11. ~0.5 µg protein was mixed with 2X or 3X SDS dye with -ME, heated for 5 mins and 

separated on SDS-PAGE.  

12. Gel was fixed, stained and destained to visualized protein bands. 

 

19. Proteolysis 

 1 ml protein was incubated with 100 l 10 X HRV 3C Protease Buffer and 10 l Protease 

(ThermoFisher 88946) and incubated in 4⁰C for 1 hour. Mixture was dialyzed. 
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20. Dialysis 

1. Protein with protease mix was injected into a cassette (Thermo Scientific 66380) 

2. Cassette kept in dialysis buffer (50 mM Tris-HCl pH 8.0, 10 % glycerol, 1mM 

DTT) overnight at 4⁰C. 

3. Sample was taken out next morning and stored in -80⁰C or separated in SDS-

PAGE. 

21. In-vitro radiolabeled kinase assay  

 Reagents: 

  5X Kinase Buffer (aliquoted and stored at 4⁰C) 

   1 M Tris-HCl pH 8.0  2 ml 

   1 M KCl   5 ml 

   1 M MgCl2   2.5 ml 

   50 % Glycerol   20 ml 

   Water to volume  100 ml 

  ATP [-32P] (gloves and lab coat worn at all times with ionizing detector badge) 

  SDS-PAGE gel was cast on disposable cassettes (Novex mini gel 1.5 mm   

  cassettes NC2015). 

 Protocol: 

1. Purified kinase, substrate and ATP [-32P] were thawed in ice.  

2. Geiger counter was kept ON, to monitor ionizing radiation throughout workflow. 
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3. Reactions were prepared in the following manner: 

Reaction Kinase  Substrate 5 X KB + 0.5 l 32P H2O 

1  5 l  0  4 l   11 l 

2  0  5 l  4 l   11 l 

3   5 l  5 l  4 l   6 l 

4. After carefully adding proteins and buffer with ATP, the tubes were centrifuged and 

tapped a few times to mix. 

5. Reaction was incubated in RT for 20 mins. 

6. Reaction was stopped using 5 l 5 X SDS dye containing -ME. 

7. Samples were heated at 95⁰C, centrifuged, and loaded on a denaturing gel. 

8. 1/3 of the gel was run at 120 V for 90 mins. 

9. Gel was fixed, stained and destained to visualized protein bands. 

10. Gel was dried (BioRad Gel Dryer 583) for 1.5 hours at 80⁰C. 

11. Dried gel was exposed on a Phosphorimager for 30 mins. 

12. The Phosphorimager was scanned using the STORM 860 Molecular Imager. 

22. Membrane fractionation  

1. Yeast cells were harvested and lysed by glass beads in a microfuge tube with 400μl of 

lysis buffer (25mM Tris-phosphate pH 6.7, 1mM β-mercaptoethanol (β-ME), 1mM 

PMSF and 1 protease tablet per 25 ml buffer).  

2. The whole-cell lysate was clarified by centrifugation at 5000 rpm (2655 X g) for 10 

minutes at 40C. The clear supernatant was divided into two separate tubes (150 μl each).  

3. The first tube with 150 μl of lysate was used to precipitate the total soluble and 

insoluble proteins as follows. 37.5 μl of 100% TCA was added and kept in ice for 10 
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minutes. Total protein was collected by centrifugation at 2400 X g for 10 minutes and 

solubilized in a buffer (40 μl of 1M Tris-HCl pH 8.0 and 10 μl of 5X SDS-dye) at 90ºC. 

This fraction was considered as the “input”.     

4. The second tube containing 150 μl of lysate was further centrifuged at 14,000 rpm 

(20,817 X g) for 30 minutes at 4ºC in order to pellet the insoluble fraction (the 

membrane fraction).  

5. The supernatant containing the soluble proteins was then collected in a fresh tube and 

total protein was precipitated and solubilized in a buffer as described above (the soluble 

protein fraction).   

6. The pellet containing the insoluble membrane fraction was solubilized in a buffer (40 

μl of Tris-HCl pH 8.0 and 10 μl of 5X SDS-dye) at 90ºC.  

7. The “input”, “soluble” and “insoluble” protein fractions were subjected to Western 

analysis.  

8. The pellet containing the membrane fraction was also solubilized in a buffer (50mM 

Tris-HCl pH 8.0, and 1mM DTT) containing 0, 0.5% or 1% of TritonX-100. The pellet 

and supernatant fractions were separated by centrifugation at 20,817 X g for 20 min at 

4ºC. The pellet and supernatant fractions were then separated on an SDS-PAGE and 

subjected to Western blot analyses using an anti-Flag antibody.  
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23. Pull down of biotinylated RNA and protein 

1. Yeast cells expressing the 3’-BE-RMB or 5’-RD-RMB were grown in SC-uracil 

medium, until OD600 reached 0.8. Then, 4-thiouracil (20 mM) and DTT (5 mM) were 

added together and cells were grown for another 3 hours. The 200 ml culture was then 

harvested and washed with 1X PBS (phosphate buffered saline).  

2. Cells were re-suspended in 1X PBS in a 15 cm petri dish and exposed to UV light inside 

a UV-Stratalinker-1800 (Stratagene), twice for 2.5 minutes each (auto-crosslink 

setting).  

3. Cells were pelleted by centrifugation at 40C and lysed in 20 mM Tris-HCl, pH 7.4, 1 

mM EDTA, 50 mM LiCl, 1% β-mercaptoethanol, 1 mg/ml heparin, 0.5mM 

phenylmethyl-sulfonyl fluoride (PMSF), 10 mM vanadyl adenosine.  

4. The RMB-conjugated RNAs were immobilized on Streptavidin agarose and bound 

proteins were eluted by 2X SDS dye (100 mM Tris-HCl pH 6.8. 4% SDS. 0.2% 

bromophenol blue).  

5. A fraction of the RNA elution was separated on SDS-PAGE and another fraction was 

sent to the Center of Biotechnology (Madison, WI, USA) for LC-MS/MS to identify 

associated proteins. 

 

23. Circular dichroism (CD) spectroscopy (collaboration with Dr. Pokkuluri, Argonne      

Laboratory, Chicago) 

 Protein samples were analyzed at a concentration of 0.5 mg/mL in 20 mM sodium 

phosphate, pH 8.0. CD spectra were collected in 0.1 cm path length quartz cells on a Jasco J-810 

Spectropolarimeter. Spectra in the wavelength range of 190−360 nm were collected using the 

following acquisition parameters: 0.1 nm steps, 1 nm bandwidth, 4 s response, 100 millidegree 
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sensitivity, and 50 nm/min scanning speed with an accumulation of 3. Secondary structure 

composition was estimated from the analysis of the CD spectrum by the BeStSel web server206 

(wavelength range used for analysis is 190-250 nm).   

 

24. In vivo imaging of yeast cells by a confocal microscope 

1. Cells were grown under ER stress conditions using DTT.  

2. Cells were pelleted and resuspended in minimal media. An aliquot of cells was used 

for in vivo imaging studies.  

3. Images were recorded using Leica TCS SP2 confocal microscope equipped with HCX 

PL APO 63X/1.2 NA water immersion objective lens.  

4. The GFP was excited at 458 nm, and emissions were recorded at 466-526 nm. 

 

25. In vivo imaging of yeast cells by a two-photon micro-spectroscope (collaboration with Dr. 

Valerica Raicu, Physics, UWM) 

1. We used an optical micro-spectroscope (OptiMiS, Aurora Spectral Technologies, 

Milwaukee, WI). The OptiMiS consists of a two-photon microscope with spectral 

resolution207 and a Nikon Ti-E Inverted Microscope (Nikon Instruments Inc., New 

York) equipped with a high NA (=1.45) and 100x objective. A tunable femtosecond 

Ti:Sapphire laser (MaiTaiTM HR, Newport) was used to provide light of wavelength of 

930 nm in order to excite yeast cells expressing the YFP and/or GFP.  
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2. About 200 µL of yeast cell suspension was placed onto 35 mm glass-bottom dishes 

(Cellvis D35-14-1.5-N, California), allowed to settle for 5 minutes, washed with 1 mM 

KCl and then taken to the microscope for imaging.  

3. Spectrally resolved images were acquired for emission wavelengths ranging from 400 

nm to 600 nm with a resolution of 5 nm using an average laser power of 400mW for 

the entire line of 500 pixels, with a line-integration time207 of 100ms.  

4. Spectral unmixing was then performed on acquired images of co-expressed the Ire1-

YFP and Pal2-GFP using separately acquired elementary spectra of GFP and YFP, 

using a procedure previously described208.  

5. Briefly, the average emission spectra obtained from several cells containing only the 

GFP or the YFP fluorescent species were normalized to their maximum values to obtain 

elementary spectra of GFP and YFP, respectively.   

6. An automatic computer algorithm was used to separate the composite spectra 

originating from co-expressing cells. 

7. Intensity maps were generated for both GFP and YFP signals, and YFP images were 

filtered to remove intensity counts less than 750 A.U. to isolate and distinguish 

relatively bright Ire1-YFP foci.  

8. Individual maps of the Ire1-YFP and Pal2-GFP fluorescence were assigned false colors 

and then overlaid to determine co-localization.  

9. The average number of foci per cell and the number of cells displaying foci were 

calculated for samples both treated and untreated with DTT. 
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10. For punctate counting experiments of GFP in yeast strains (WT and pal1∆ pal2∆) 

treated with DTT, the same imaging system described above was employed using 

excitation light of 800nm and an average laser power of 500mW for the entire line of 

500 pixels. Elementary spectra separately obtained for ND-GFP and auto-fluorescent 

signals were used to unmix composite spectra.  

11. An algorithm written in MATLAB filtered the intensity maps such that GFP punctate 

become visible above the nearly uniform fluorescence background. The first filter 

removed pixels that showed GFP intensity lower than 50 A.U. (to exceed background 

level) or more than 500 A.U., to remove cells that have so much GFP expression that 

would saturate any information from punctate. A second filter required a minimum 

ratio of GFP to auto-fluorescent intensity greater than 6, in order to avoid incorrect 

assignment of auto-fluorescent to the GFP channel due to possible errors in spectral 

unmixing. The use of auto-fluorescent maps alongside with GFP also leads to correct 

identification of cell boundaries.  

12. We required that a minimum of 3 pixels be immediately adjacent to one another in the 

filtered image in order for it to be counted as a punctate. The average number of 

punctate per cell was computed in the presence of DTT. 
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APPENDIX I 

Table 3 List of yeast strains used in this study 

Chapter 2 

Yeast strain Genotype Reference 

WT(BY4741) MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 Research Genetics 

kin1Δkin2Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

kin1::NatMX kin2::KanMX 

Anshu et al. (2015) 

hac1Δkin1Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

hac1::NatMX kin1::kanMX 

Anshu et al. (2015) 

ste2Δ MATa leu2-3,112 ura3-52 his3-Δ1 trp1 

ste2::leu2 sst1-Δ5 

Stoneman et al. 

(2017) 

 

Chapter 3 

Standard S. cerevisiae media was used to grow and analyze the yeast strains. To construct 

the pal1Δ pal2Δ strain, we first replaced The KanMX cassette in the pal1::KanMX strain with the 

NatMX gene by the standard PCR-mediated gene disruption protocol. In the resulting pal1::NatMX 

strain, the PAL2 gene was disrupted by KanMX to generate the double deletion strain. To generate 

the kin1Δ kin2Δ snf1Δ strain we first disrupted the KanMX gene of the snf1Δ strain (MATa his3-

Δ1 leu2-Δ0 met5-Δ0 ura3Δ0 snf1::KanMX, yeast deletion collection) with the hphMX4 cassette 

(to generate MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 snf1::hphMX). The genomic DNA of this 

strain (snf1::hphMX) was used as a template to amplify the hphMX cassette using primers 

annealing ~200-bases upstream and downstream of the SNF1 open reading frame. The amplified 
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PCR product was used to disrupt the SNF1 gene of the kin1Δ kin2Δ strain (MATa his3-Δ1 leu2-

Δ0 met5-Δ0 ura3-Δ0 kin1::NatMX  kin2::kanMX). 

Yeast strain Genotype Reference 

WT MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 Deletion collection 

ire1Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

ire1::kanMX 

Deletion collection 

hac1Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

hac1::kanMX 

Deletion collection 

pal1Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

pal1::kanMX 

Deletion collection 

pal2Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

pal2::kanMX 

Deletion collection 

pal1Δ pal2Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

pal1::natMX, pal2::kanMX 

This study 

kin1Δ kin2Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

kin1::NatMX  kin2::kanMX 

Anshu et al. (2015) 

snf1Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

snf1::kanMX 

Deletion collection 

kin1Δ kin2Δ snf1Δ MATa his3-Δ1 leu2-Δ0 met5-Δ0 ura3-Δ0 

kin1::NatMX  kin2::kanMX snf1::HphMx 

This study 

PAL2-

GFP:NatMX6 

MATa leu2 ura3-52 trp1 his3∆200 GAL2 

PAL2-GFP:NatMX6 

Moorthy et al., 2019 
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Table 4 List of plasmids used in this study. 

Chapter 2 

Plasmid Details Reference 

D1 pRS313, low copy HIS3 vector Low copy vector 

D8 pRS426, high copy URA3 vector High copy vector 

D18 pEMBLyeX4 expression vector High copy vector 

D197 Kin2 in 2μ URA3 vector Patrick Brennwald 

D619 Kin1 in pBG1805 expression vector Benjamin Turk 

D1163 pGEX-2T-TEV HTa expression vector Kean et al. (2011) 

D1400 Kin2 (1-1147) in D18 This study 

D1129 Kin2 (94-526) in D18 Anshu et al. (2015) 

D1186 Kin2 (94-400) in D18 This study 

D1184 Kin2 (94-440) in D18 This study 

D1182 Kin2 (94-480) in D18 This study 

D1220 Kin2 (94-526)-Δ(400-440) in D18 This study 

D1191 Kin2 (94-526)- Δ (440-480) in D18 This study 

D1742 Kin2-(94-510) in D18 This study 

D1181 Kin2-(94-500) in D18 This study 

D1221 Kin2 (94-526)- D248A in D18 This study 

D1239 Kin2 (94-526)-Y275A,T281A in D18 This study 

D1514 Kin2 (94-526)-Y275A,T281E in D18 This study 

D1353 Kin1-KD in D18 This study 

D1534 Kin1 (115-515)-Y294F,S296A,T302A in D18 This study 
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D1535 Kin1 (115-515)-Y294F,S296A,T302E in D18 This study 

D1507 Kin2 (94-526)-K128R in D18 This study 

D1386 Kin2 (60-526) Δ40, ΔKI in D1163 This study 

D1347 Kin2 (60-526) Δ40, ΔKI, T281E in D1163 This study 

D1688 Hac1 WT in D1 This study 

D1689 Hac1 GG1143-1144CC in D1 This study 

D1459 GFP-Kin2 (1-526) in D8 This study 

D1258 GFP-KA1 in D8 This study 

D1882 Kin1 (115-430) in D18 This study 

D1963 Ste2-YFP in a high copy TRP1 vector Stoneman, et al. (2017) 

D1237 Kin2 (94-526)-Y275A in D18 This study 

D1238 Kin2 (94-526)-T281A in D18 This study 

D1570 Kin2 (94-526)-Y275E,T281A in D18 This study 

D852 Kin2 in D8 This study 

D853 Kin2-D248A in D8 This study 

D1950 Kin2-T281A in D8 This study 

D1949 Kin2-Y275A in D8 This study 

D1946 Kin2-Y275A,T281A in D8 This study 

D1947 Kin2-Y275E,T281A in D8 This study 

D1948 Kin2-Y275A,T281E in D8 This study 

D1968 Kin1 (115-515)-D269A in D18 This study 

D1955 Kin1 (115-515)-S296E,T302A in D18 This study 

D1942 Kin2 (60-526) Δ40, ΔKI, Y275E in D1163 This study 
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D1379 Kin1 (58-515) ΔKI in D1163 This study 

D1380 Kin1 (58-515) ΔKI, T302E in D1163 This study 

 

Chapter 3 

Plasmid  Description Reference 

D3 pRS315, low-copy-number. LEU2 vector Lab collection 

D4 pRS316, low-copy-number. URA3 vector Lab collection 

D8 pRS426, high-copy-number. URA3 vector Lab collection 

D18 pEMBLyeX4 expression vector Lab collection 

D23 pET15b expression vector Lab collection 

D49 UPRE-LacZ in URA3 vector Lab collection 

D1163 pGEX-2T-TEV HTa expression vector Lab collection 

D774 Hac1 bipartite element with Biotin aptamer- under 

ADH1 promoter and terminator in p1379 

This study 

D844 Hac1 5’-UTR-intron with Biotin aptamer- under 

ADH1 promoter and terminator in p1378 

This study 

D1951 HAC1 exon1 in D4 This study 

D1096 Pal2-(77-364) in D23 This study 

D1525 Ypt1 in D23 This study 

D1536 Pal2 (1-366) with intron in D4 This study 

D1537 Pal2 (1-366) in D4 This study 

D1538 Pal2 (65-366) in D4 This study 



   158 
 

D1539 Pal2 (135-366) in D4 This study 

D1129 Kin2 (94-526) in D18 Ghosh et al. (2018) 

D619 Kin1 in pBG1805 MORF collection 

D624 Kin2 in pBG1805 MORF collection 

D665 Eap1 in pBG1805 MORF collection 

D676 Kip3 in pBG1805 MORF collection 

D651 Svl3 in pBG1805 MORF collection 

D675 Pal2 in pBG1805 MORF collection 

D666 Sec9 in pBG1805 MORF collection 

D647 Mlf3 in pBG1805 MORF collection 

D109 PKR wild type in p2734 Lee et al. (2015) 

D2199 Pal1 (162-499) in D23 This study 

D1637 Pal1 (162-499) T323A in D23 This study 

D1443 Pal2 (65-366) S221A in D23 This study 

D1428 Pal2 (65-366) S222A in D23 This study 

D2200 Pal2 (65-366) S222A, T224A in D23 This study 

D2201 Pal2 (65-366) T223A, T224A, T225A in D23 This study 

D2202 Pal2 (65-366) S222A, T223A, T224A, T225A in D23 This study 

D1427 Pal2 (65-366) S221A, S222A in D23 This study 

D1386 Kin2-(60-526)-Δ40, ΔKI in D1163 Ghosh et al. (2018) 

D1347 Kin2-(60-526)-Δ40, ΔKI, T281E in D1163 Ghosh et al. (2018) 

D1551 Pal2 (65-366) S222A in D4 This study 

D2142 Pal2 (65-366) T224A in D4 This study 



   159 
 

D1559 Pal2 (65-366) S222A, T225A in D4 This study 

D2144 Pal2 (65-366) S222A, T223A in D4 This study 

D1695 Pal2 (65-366) S222A, T223A, T224A, T225A in D4 This study 

D1649 Pal1 (162-499) in D4 This study 

D1620 Pal1 (1-499) in D4 This study 

D2264 Pal2 (65-366) S222E, T223E, T224E, T225E in D4 This study 

D2239 HAC1-NRE in D4 This study 

D995 ND-GFP2 in D3 Anshu, et.al. 2015 

D800 Ire1-YFP in D8 This study 
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APPENDIX II 

Mass spectrometry results to identify phosphorylated peptide on Pal2. Shown below is the MS/MS 

spectrum of the Pal2 phospho-peptide. 
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