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ABSTRACT 

A REINFORCEMENT LEARNING APPROACH TO SEQUENTIAL 
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by  
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The University of Wisconsin-Milwaukee, 2020 
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 In the 21st century, globalization coupled with technological advancement and free 

trade has created competition among various businesses enterprises. This competition has led 

many businesses to adopt various management techniques such as acceptance sampling 

aimed at transforming their processes in order to remain competitive in the global market and 

adapt to new market demands. The successful implementation of acceptance sampling is 

highly dependent on what the academic literature refers to as acceptance sampling 

optimization. A literature review on the optimization of acceptance sampling has  not shown 

any work that studied whether acceptance sampling and machine learning (ML) plans can be 

considered as an optimal acceptance sampling technique (sequential sampling being one 

improved acceptance sampling technique). ML algorithms can be divided into four 

categories: supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning. Reinforcement learning is different from the other types of machine 

learning, since it is a method of self-learning and acting based on observed data.  
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The aim of this dissertation is to develop a model based on coupling reinforcement 

learning methodology (RL) and sequential acceptance sampling in manufacturing to improve 

and achieve optimality  in process and product monitoring. This model will serve as a 

continuous improvement strategy towards a better acceptance sampling implementation in 

the manufacturing industry.  Simulation has been used as the model for proof of concept. The 

simulation model is designed to simulate any manufacturing process. However, this 

dissertation focuses on simulating the inspection process in a production line. In order to 

determine if an RL-based sequential sampling model is able to reduce the sample size and 

time of inspection, this dissertation compares the proposed model with the sequential 

acceptance sampling plan and the MIL-STD 1916 

The result of the research will show the integration of sequential sampling and RL as 

a key to reduce the sample size and the sampling time interval during the inspection process 

in a manufacturing industry. 
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Chapter 1: Introduction 

The goal of Chapter One is to enable the reader to have an overview of what this thesis all 

about by covering the research framework, problem statement of the study, objectives of the 

research, the research questions, and the significance of the study. 

 

1.1 Research Framework 

The goal of this dissertation is to integrate the Reinforcement Learning RL tool as a solution 

framework to Sequential Sampling in a Lean Six Sigma methodology (LSS) of process 

management. The result of the dissertation will show the integration of sequential sampling 

and reinforcement learning as an optimal acceptance sampling technique in a manufacturing 

industry. This paper is divided into chapters; the soul of this research will be defined in 

Chapter One by way of problem statements, the objective of the research, the research 

questions, and the scope of study.  

 

Chapter Two, on the other hand, will explain and provide the necessary background 

information on which the research was assessed for suitability. The fundamentals of the 

industrial and manufacturing revolutions and the history of modern quality and quality 

control methods as part of the continuous improvement strategy have also been discussed in 

Chapter Two. Lean six sigma (LSS) methodology is also introduced, with emphasis given to 

its strengths and weaknesses.  Acceptance attribute sampling plans are also discussed as a 

part of LSS tools, focusing on a sequential acceptance sampling plan. The end of Chapter 

Two includes a discussion of the background of Reinforcement Learning as one of the 

current topics in Machine Learning (ML). The literature review section in Chapter Three will 

include a discussion of past research that address sequential sampling methodologies, and 

reinforcement learning with some applications. Most importantly, the literature review will 
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show a dearth of past work on RL application to sequential acceptance sampling, which is the 

main contribution of this dissertation. Chapter Four will give a summary of the analyzed 

literature review and the linkage between reinforcement learning and sequential acceptance 

sampling. Chapter Five will present the methodology of sequential acceptance sampling 

based on RL. Chapter Six will simulate the presented methodology using an open-source 

software called Python and comparing its results with the results of simulated acceptance 

sampling plans.  

 

1.2 Problem Statement 

For the past decades, globalization coupled with technological advancement and free-trade 

has created competition among various businesses enterprises. This competition has led many 

businesses to adopt various quality management techniques such as acceptance sampling, 

aimed at  transforming their processes in order to remain competitive in the global market 

and adapt to new market demands  (Alhuraish, Robledo, & Kobi, 2017). 

 

Although many studies show the success stories of acceptance sampling, they also portray 

some of the barriers that tend to deter companies from deploying acceptance sampling.  

Some of the barriers that prevent companies from enjoying the merits of sampling include the 

risk associated with rejecting “good” lots or accepting “poor” lots (Mitra, 2016).  

 

The problem is that even though a lot of academic research has focused on improving 

acceptance sampling plans, particularly sequential sampling, none has delved into the 

importance and effectiveness of coupling reinforcement learning with sequential acceptance 

sampling to serve as a new model to reduce sample size and eventually the production cost  
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1.3 Goals of Research 

The overarching goal of this research is to examine and develop a model based on coupling 

reinforcement learning methodology (RL) and sequential acceptance sampling in 

manufacturing to improve and achieve the optimal sample size and product monitoring. This 

model will serve as a continuous improvement strategy towards a better acceptance sampling 

implementation in the manufacturing industry.  In other words, this dissertation aims to 

develop an improved acceptance sampling plan that incorporates reinforcement learning in 

the quality decision-making framework as shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 1: General framework for the proposed model 
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1.4 Research Questions  

The primary research questions are the following: 

I. Can reinforcement learning be applicable to acceptance sampling?   

II. Is there a difference between the traditional sequential sampling and sequential 

sampling using the reinforcement learning methodology?   

The secondary research questions are the following:  

I. Is RL part of ML techniques in the fourth  industrial revolution? 

II. What are the latest techniques for optimizing RL and sequential acceptance sampling? 

 

1.5 Significance of Study 

Even though the current massive studies on sequential acceptance sampling plans have 

provided significant insight for successful acceptance sampling implementation, there is still 

an opportunity to identify more techniques for optimizing the implementation of acceptance 

sampling. The significance of this research is that the outcome of the study may prove 

important in contributing towards the success of acceptance sampling implementation in 

manufacturing by identifying and adding a new technique to the current acceptance sampling 

plans. 

 

The excessive demand for implementing acceptance sampling plans in manufacturing 

justifies the need for more research into acceptance sampling. From the sequential sampling 

standpoint, the results of this research will ultimately reduce the number of samples needed to 

be taken for quality determination and control, hence addressing the disadvantage of the high 

cost of quality implementation in the process of inspection.  
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 The following chapter provides a background into the history of manufacturing and quality 

control, which will lead to the need for the proposed research methodology as a road map for 

further studies.  
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Chapter 2: Research Background 

2.1 Introduction 

 Chapter Two contains three parts, as follows: a background of how the manufacturing 

revolution played a major role in the industrial revolution and how quality has been integral 

in the manufacturing revolution. A background of acceptance sampling plans is also 

presented. Lastly, a background of how Reinforcement Learning became a major topic in 

manufacturing is followed by a brief chapter summary.   

 

2.2 Background part 1: Brief discussion of the Impact of Manufacturing in the 

American Economy   

In today’s global economy, manufacturing continues to be a cornerstone for creating jobs for 

millions of people living in developed and developing nations. The manufacturing sector 

remains the major driving force for economic growth. Manufacturing activities have not only 

created lasting wealth, but they have also more importantly aided in distributing wealth in 

both developed and developing nations by creating high-paying jobs. Higher wages translate 

into changes in the economic status of the working class in society to either middle class or 

upper middle class (United Nations Industrial Development Organization, 2015). 

 

It is important to point out that manufacturing activities in recent decades have seen major 

shift in the regions where certain products are made. For example , the majority of companies 

in the United States are moving their low-tech manufacturing activities overseas where cost 

of labor and raw material is relatively cheaper. The transfer of such internal company 

activities to another country is referred to as offshoring. On the other hand, moving some of 

the internal manufacturing activities outside the company is referred to as outsourcing. If the 

manufacturing activities are moved back to the U.S., it is referred to as reshoring and if  
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manufacturing activities are moved nearer the U.S., then it is termed as nearshoring. The 

driving force behind these relocations of  manufacturing activities includes, but is not limited 

to, cost reduction, quality improvement, and productivity improvement (Hartman, Ogden, 

Wirthlin, & Hazen, 2017).  It is important to note that developed nations have moved to 

manufacturing very sophisticated technologies in the aviation, medical and cyber-security 

arenas. That is to say that employment growth in the manufacturing sector has not been 

uniformly distributed among countries.  

 

The manufacturing industry has evolved through the industrial revolution, which in turn led 

to the evolution of several manufacturing paradigms since its beginning over two centuries 

ago (World Economic Forum, 2016).  The next section will provide some background of the 

different stages of the industrial revolution, focusing on their influence in the manufacturing 

sector. 

 

2.2.1 Industrial Revolution and The Manufacturing Revolution 

The industrial revolution that spanned from the late 1760s to date triggered the manufacturing 

revolution.  The first industrial revolution (1780-1870) was ignited by the construction of 

railroads and introduction of steam engines that  powered the majority of production during 

this era  (Hudson, 2014). The first industrial revolution not only made mechanical production 

possible, but it also more importantly created a major shift in employment and income from 

the agricultural to industrial activities (Trew, 2014). The Second Industrial Revolution (1870-

1970), on the other hand, was ushered in by the introduction of electricity and the assembly 

line. The introduction of this new science (electricity) and process improvement methods 

(assembly lines) helped to streamline the production of commodities, thereby making mass 

production feasible in the late 19th and early 20th centuries.  
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The digital or computer phase, also called the third industrial revolution, began in the 1970s 

and was initiated by the introduction of semiconductors, mainframe computing, personal 

computing and the internet (Schwab, 2016). The third industrial revolution took place as a 

result of extensive use of electronics and information technology, thereby allowing the 

introduction of automation in the manufacturing industry. This revolution offered a solution 

to a mass production paradigm, which was running into difficulties in relation to the need for 

increased production as a result of increased population growth rate, high levels of 

unemployment, and global trade imbalances. Automation allowed a transition from an era of 

mass production to one of flexible specialization that allowed for some degree of customized 

manufacturing.  

 

The current fourth industrial revolution, which began in 2006, is characterized by the use  of 

Cyber-Physical Systems (CPSs) resulting from the fusion of technologies that are blurring the 

lines between the physical, the digital, the cyber and the biological spheres (Régio, Gaspar, 

Farinha, & Morgado, 2016). The term CPSs emerged  in the United States in 2006 and is 

attributed to Dr. Helen Gill who was then at the National Science Foundation. A cyber-

physical environment can be defined as “the interaction of computation with a physical 

process, usually with a feedback loop where physical process affects computation and vice 

versa” (Herwan, Kano, Oleg, Sawada, & Kasashima, 2018). The fourth industrial revolution 

helped trigger a wave of breakthroughs in areas ranging from gene sequencing to 

nanotechnology and from renewables to quantum computing. It is the fusion of technologies 

and their interaction with the physical, digital and biological domains that make the fourth 

industrial revolution fundamentally different from previous revolutions. The establishment of 

the fourth industrial revolution paved the way for more advancement in technology such as 
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automated vehicles, 3D Printing, advanced robotics and new and self-healing materials, just 

to name a few.  In particular, advanced robots would not exist without the added values of the 

current era of artificial intelligence and machine learning (ML), which largely depends on 

high power computing capabilities (Syam & Sharma, 2018; Wood et al., 2017). The 

industrial revolution contributed significantly in creating what has become in today’s global 

market.  Figure 2 depicts the timeline of the four industrial revolutions. 

 

 

Figure 2: Industrial revolutions’ path 

 

The next section will discuss the major paradigms in consumer goods manufacturing, namely 

(1) craft production, (2) mass production, (3) mass customization and  (4) global 

manufacturing (Hu, 2013). 

 

2.2.1.1 Craft Production Paradigm 

Craft production dates back to the first industrial revolution and is attributed to creating 

exactly the product the customer asks for, on demand and usually one unique product at a 

time using specializing hand tools in  small machine shops (D. Chen et al., 2015). There were 

no manufacturing systems associated with craft production and this form of production was 

not scalable since the majority of the craft laborers, who had unique knowledge, were 

confined to specific geographical areas. Craftsmanship, which generally used  highly skilled 

labor, was used in making precision parts used in automobile and drive trains. This 

manufacturing paradigm was not capable of handling the demand for high volumes of 
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products. With the emergence of new markets and new technologies, the craft production 

paradigm evolved into mass production through the interchangeability and the moving 

assembly lines (D. Chen et al., 2015; Hu, 2013). 

 

2.2.1.2 Mass Production Paradigm 

This paradigm was widely used in the 20th century during the second industrial revolution. It 

is defined as the production of extremely large quantities of identical products for a specific 

period of time. This manufacturing paradigm was carried out through synchronized flow of 

production lines to manufacture key precision hardware and assembly of the finished product. 

To enable response to the high demands of products from consumers, companies had to 

maintain high production volumes and as a result had to incorporate machinery into their 

production system to take the place of human labor. The main objective of this paradigm was 

to reduce the cost of manufacturing, which translated into low product price (Koren, 2010). 

 

2.2.1.3 Automated Production and Mass Customization  

Mass customization may be defined as the production of an expanded variety of products of 

the same product family at a low cost. This manufacturing paradigm began in the 1980s and 

was initiated by society’s need for a larger product selection. The key characteristic is that 

manufacturers tend to offer product “options” that  add  extra features to the standard 

product. The main objective of this manufacturing paradigm is to increase the variety of 

products at a low cost to the customer (K. Chen, 2014). The manufacturers have full control 

of the basic product options that they can offer, and customers choose the “package” that they 

want, buy it and only then is the product moved to the next stage to be finished according to 

custom choices. This approach allows a manufacturer to use  the unique strengths of its mass 

production resources to produce major components of a particular product at the lowest cost 
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while leaving the customization process to be the last step in the manufacturing process of the 

products with optioned accessories. Mass customization has been made possible by the use of 

computers in industrial manufacturing, which has in turn made it possible for flexible 

automation that helps make mass customization inexpensive (Koren, 2010). One may argue 

that mass customization has a similar concept like craft production. However, is important to 

make it clear that mass customization does not necessarily mean producing a unique product 

as expressed in the craftsmanship form of production. 

 

2.2.1.4 Personalized Customization and Digital Technology  

The emergence of the internet, smart computers and technologically advanced manufacturing 

systems such as 3D printing has made it possible for a new manufacturing paradigm to be 

born, known as personalized customization (Sridharan, 2015). The basis of personalization is 

to tailor contents to known wishes and needs of a customer. This manufacturing paradigm 

requires the participation of consumers in the design, product simulation, manufacturing, 

supply and assembly process of goods and services to meet consumer needs and preferences 

(Sridharan, 2015). Under this manufacturing paradigm, customers create various innovative 

products and realize value by collaborating with manufacturers and other consumers and this 

process is enabled mainly by open product architecture. A summary of the four 

manufacturing paradigms is depicted in Figure 3. 
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Figure 3: The drivers to new paradigms (Koren, 2010) 

 

2.2.2 Quality and its Importance to Manufacturing  

The term quality may simply refer to the degree of excellence of a product or service to a 

customer or the end user of a produced part or product. Quality has a long history and its 

application has accelerated over the last few decades. Joseph M. Juran, who is an honorary 

member of ASQ, concluded that the application of quality dates back to the ancient Egyptians 

and the building of the pyramids (Borror, 2009). Prior to the industrial revolution, quality was 

heavily associated with craftsmanship where each craftsman had full control of the end 

product of his craft (Borror, 2009). This meaning of quality changed with the emergence of 

the industrial and manufacturing revolution. For the past decades, the concept of quality 

control has evolved to become a key strategic tool in operating a successful business 

enterprise in a competitive global market.  
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The motivation and rationale behind quality in every business enterprise stems from the 

increasing demand from consumers for companies to produce goods that meet or exceed their 

needs and expectations. For countries such as the United States, China, Japan, Germany, and 

the United Kingdom, just to mention but a few, to continue their strong economic power, 

their manufacturing sectors must remain competitive (Gray, 2017). One may argue that 

economic indicators such as the national trade deficit are often linked to a country’s 

manufacturing capabilities and competitiveness. Based on multiple studies, customers are 

willing to pay more for a better quality of product, hence making quality in manufacturing a 

critical factor for nations such as the United States to reduce their trade imbalances with other 

nations.  

 

Striving for quality has always been and will always be a major part of human endeavor.  The 

implementation of quality takes two major approaches. The first approach seeks to take the 

attitude that quality is fundamental to all functions, policies, and procedures of a company. 

The second approach, on the other hand, seeks to implement quality on an “as–needed” basis, 

which implies adding quality to a product or service as a means to improve and maximize 

profits through a highly specialized team (Jones, 2014). In most cases, companies use both 

approaches throughout their business operations in an effort to produce products that meet 

customer expectations.  

 

2.2.3 Cost of Quality 

The majority of business enterprises may attest to the fact that good quality products and 

services go hand-in-hand with cost associated with satisfactory products and services. For the 

past decades, one of the key stumbling blocks to the creation of stronger quality programs 

was linked to the misguided idea that the achievement of better-quality products required 
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much higher costs. Poor quality means poor resource use  that may involve waste of 

materials, poor use  of labor and equipment time, which then leads to higher costs 

(Feigenbaum, 1991). 

 

On the other hand, one may attribute satisfactory quality to satisfactory resource use  that 

then leads to lower costs. One of the major factors in these misguided past notions of the 

relationship between quality and cost was the unavailability of meaningful data since 

businesses in the past believed that quality could not practically be measured in terms of cost. 

The reasoning behind this belief is the fact that traditional cost accounting failed or did not 

attempt to quantify quality, which may have to do with the fact that quality cost did not easily 

fit into older accounting structures for most businesses (Feigenbaum, 1991). 

 

In today’s global market, businesses not only recognize the measurability of quality costs but 

that these costs are vital to the management and engineering of modern total quality control 

as well as to the business strategy planning of companies and plants. The costs of quality can 

be defined as the basis through which investments in quality programs may be evaluated in 

terms of cost improvement, profit enhancement, and other benefits for plants and companies 

from these programs (Feigenbaum, 1991). It is also important to point out that the cost of 

quality is generated not only throughout the marketing, design, manufacturing, inspection 

shipping stages or cycle but also continues to be accounted for throughout the total life cycle 

of the product in service and use. 

 

Accounting for the cost of quality in a business enterprise includes two major areas: the costs 

of control and the costs of failure of control. These are known as producer operating quality 

costs. From the book, (Total quality control), operating quality costs entail those costs 
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associated with the definition, creation, and control of quality as well as the evaluation and 

feedback of conformance with quality, reliability, and safety requirements, and those costs 

associated with the consequences of failure to meet the requirements both within the factory 

and in the hands of customers (Feigenbaum, 1991). 

 

According to Feigenbaum, the costs of control can be accounted for in two main segments, 

namely prevention costs and appraisal costs. Prevention costs help keep defects and 

nonconforming products from occurring and include the quality expenditures to keep 

unsatisfactory products from ending up in the hands of customers. Examples of these costs 

may include employee quality training and quality engineering. Appraisal costs, on the other 

hand, involve the costs for maintaining company quality levels by means of formal 

evaluations of product quality. Examples of such costs are inspections, tests, outside 

endorsements and quality audits. The costs of the failure of control that are  attributed to 

products not meeting the quality requirements and poor materials can also be placed in two 

segments, namely internal failure costs and external failure costs. Internal failure costs 

include scraps, spoilage and reworked material. External failure costs include product 

performance failures and customer complaints (Feigenbaum, 1991). 

 

 

Figure 4: Types of the costs of quality 
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2.2.4 The History of Modern Quality  

The implementation of modern process management principles has existed for centuries and 

its usage continue to evolve over time (Figure 5). These process management principles 

began with the scientific management, Toyota production (lean manufacturing), total quality 

management, ISO 9000, six sigma, and lastly, lean six sigma. These principles will be 

discussed briefly in this part of the dissertation. 

 

 

Figure 5: Timeline of modern quality strategies 

 

2.2.4.1 Scientific Management (1890-1940) 

Scientific management was introduced by Fredrick Taylor and applied in the manufacturing 

industry between 1890 and 1940. Scientific management refers to a management technique 

for improving work efficiency, labor productivity and standardizing work processes. It is 

considered to be a backbone of modern-day lean manufacturing. The main objective of 

scientific management is to enforce thorough collection of data, continual improvement to 

identify an optimal approach to conduct every manufacturing operation. It also exemplifies 

the need for management of an organization to monitor and enforce standard operating 

practices (Franchetti, 2015). Figure 6 is a representation of the scientific management as  

proposed by Taylor. 
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Figure 6: The Content of Scientific Management (Thompson, 1917) 

 

2.2.4.2 Toyota Production System (1945-1950) 

The Toyota Production System (TPS), on the other hand, was developed after World War II  

(1945-1950) by Taiichi Ohno and his associates who were working at Toyota Motor 

Corporation. Faced with a scarcity of resources, Eiji Toyoda, who later became the president 

of the Toyota Corporation, is largely attributed to have brought the company international 

eminence. Eiji Toyoda asked Taiichi Ohno (shop floor supervisor) and his associates to 

develop a mechanism to reduce waste in the production system. The quest led to the 

development of the TPS paradigm that was hinged upon the reduction of seven production 

wastes, namely, (1) over-production, (2) defects, (3) unnecessary inventory, (4) inappropriate 

processing, (5) excessive transportation, (6) waiting, and (7) unnecessary motion. These 

seven forms of wastes became the principal  cornerstones in the development of the Lean and 

Just In Time (JIT) strategies (Pepper & Spedding, 2010). TPS was modeled to shine light on 

the end customer and create processes that drive end value and consistent delivery for the 

customer. It uses  the application of more efficient production systems to eliminate material 

waste and time (Franchetti, 2015).  That is to say, TPS sheds more light on the end customer 
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because it aims to (1) provide outstanding quality products and service to the customer, (2) 

develop a culture within the company where mutual respect, trust and cooperation are 

embraced, (3) eliminate waste, which in turn reduces cost and maximizes profit, and (4) 

create flexibility in production standards to meet market demand (Smalley, 2013).  Figure 7 

is a schematic representation of the TPS strategy and more insight can be obtained from 

(Liker, 2004; Stecher and Kirby, 2004). 

 
Figure 7: The Toyota Production System (Liker, 2004) 

 
2.2.4.3 Total Quality Management (1950-1980) 

Between 1950-1985, a new phase of a quality management principle emerged,  known as 

Total Quality Management (TQM). The concept of TQM resurfaced in Japan after World 

War II when two American statisticians (Edward Deming and Joseph Duran) embarked on a 

journey to implement statistical quality control concepts in an effort to rebuild Japan’s 

manufacturing companies (Franchetti, 2015). In 1951, Feigenbaum published the first edition 

of the book Total Quality Control where he established the principles of Total Quality 
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Management (TQM). TQM, according to Feigenbaum, “is an effective system for integrating 

the quality development, quality maintenance, and quality improvement efforts of the various 

groups in an organization so as to enable production and service at the most economical 

levels which allow full customer satisfaction” (Feigenbaum, 2019). Figure 8 is a 

representation of the TQM strategy and more insight can be found in (Borror, 2009; 

Feigenbaum, 1991; Naidu, Babu, & Rajendra, 2006; Zairi, 1991). 

 

Figure 8: Total Quality Management Elements (ASQ, 2019) 
 
 
2.2.4.4 ISO 9000 (1987 and Beyond) 

ISO (International Organization for Standardization) is known to be the world’s largest 

developer of voluntary international standards used around the world. It was founded in 1947 

right after World War II. These standards are written with the mindset that a well-designed 

quality assurance program provides confidence in a company’s product and management.  

 

In 1987 the international organization with its 91-member nations adopted the ISO 9000 

series of standards and its implementation  in manufacturing industries began.  However, in 
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1994 the standard was updated to an ANSI/ISO/ASQ standard to enable a majority of U.S. 

companies to be certified to the standard. Many companies around the world continue to 

adopt the ISO 9001 Standard mainly because in the 21st Century, companies that are not ISO 

9001 certified find it difficult to obtain contracts from other companies or from their 

respective governments. The main driving force behind adopting an international standard 

was to avoid conflict of different national standards that govern the production of goods and 

services (“The ISO story,” 2017).  

 

2.2.4.5 Six Sigma (1990 and Beyond) 

The concept of Six Sigma (SS) is another of the management strategies many companies 

have adopted. It was developed by Motorola in 1987 and was later used and improved by 

General Electric (Taylor, 2014). The primary objective of this concept is to reduce product 

defects to assure the sustainability of an organization in a competitive global market.  The 

term SS in manufacturing can be interpreted as 3.4 defects per million opportunities 

(DPMO), which means 99.99966 percent of the goods or services must be free of defects, and 

its focus is always on financially measurable results. Considering that many organizations 

have an error rate of between 35,000 and 50,000 in a million, their sigma level of error is 

within 3 and 4 standard deviations from the mean (Griffin et al., 2016). Hence, the range for 

improving a process to achieve the 6-sigma level is still enormous. 

Table 1: The six sigma measurement (Ellis, 2016) 

Sigma 
Level  

Defects per Million 
Opportunities (DPMO) 

1 691,462 
2 308,537 
3 66,807 
4 6,210 

5 233 
6 3.4 
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Table 2: Another look of six sigma measurement 

Sigma 
Level  

% Non-Defective 

1 30.9% 
2 69.15% 
3 93.32% 
4 99.379% 
5 99.9767% 
6 99.99966% 

 

The six sigma strategy is characterized by a sequence of predefined phases that  include: 

Measure, Analyze, Improve and Control, and formed what was known as the MAIC process. 

These four phases were first used by Motorola around 1987. As the manufacturing sector 

progressed, around 1995, GE incorporated a fifth phase called Define, hence establishing the 

DMAIC process (Define, Measure, Analyze, Improve and Control) (Lal, Kumar, & 

Bhardwaj, 2014). 

 

Table 3: The road map for DMAIC 

Define Measure Analyze Improve Control 
- Define the 
project  
 

- Understand the 
process  
 

- Evaluate risks 
on process 
inputs 
 

- Verify critical 
inputs using planned 
experiments 

- Finalize the 
control system 
 

- Define the 
process 
 

- Develop and 
evaluate 
measurement 
system 
 

- Analyze data to 
prioritize key 
input variables 
 

- Design 
improvements 
 

- Verify long 
term capability 

- Determine 
customer 
requirements  
 

- Measure the 
current process 
performance 

- Identify waste - Pilot new process  

- Define key 
process output 
variables 
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The DMAIC process is often used  in the production sector of a business unit and considered 

to be a "Closed Loop" methodology that aided in the elimination of ineffective steps in 

production. Its primary focus is on measurement and improvement processes and it often uses 

technology for Continuous Improvement (CI). Continuous improvement may entail seeking 

to improve and enhance every process by being aware of the variations in each process in 

order to diminish those variations. Figure 9 is a flow Chart that explains the loop for the five 

phases and Table 3 elucidates what needs to be executed at each phase (Barone & Eva, 

2012). 

 

Figure 9: DMAIC Flow Chart (Barone & Eva, 2012) 
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2.2.4.6 Lean Six Sigma (2002 and Beyond) 

The concept of lean six sigma is the latest modern quality principle, introduced in 2002 by 

Michael George in the book Lean Six Sigma: Combining Six Sigma with Lean Speed.  

Lean six sigma, as the name implies, is a combination of lean and six sigma methodologies 

and focuses primary on quality improvements and cost reduction for businesses, processes or 

a product. According to Stern (2016), lean six sigma can also be defined as a “hybrid 

methodology” designed to accommodate global challenges and international constraints by 

capitalizing on two main powerful process improvement methodologies: six sigma and lean 

thinking (Stern, 2016).   

 

Prior to the introduction of lean six sigma, leaders in different organizations viewed quality 

improvements and work efficient initiatives as two separate undertakings (Jones, 2014).  

Whereas the six sigma strategy focuses only on quality, the lean strategy addresses process 

speed and workflow efficiency. The introduction of lean six sigma therefore helped bridge 

the gap and brought some awareness in implementing both quality improvements and cost 

reduction initiative simultaneously to overcome the shortcomings of both methodologies 

when implemented separately (George, 2002). In recent years, LSS has been used  as a 

continuous improvement tool in the manufacturing and service sectors to achieve quality and 

operational excellence in the business arena (Lal et al., 2014). These benefits include, but are 

not limited to (Albliwi, Antony, & Lim, 2015):  

1. Increased profits and financial savings 

2. Increased customer satisfaction 

3. Reduced cost 

4. Reduced cycle time 

5. Improved key performance metrics 
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6. Reduced defects 

7. Reduced machine breakdown time 

8. Reduced inventory 

9. Improved quality 

10. Increased production capacity 

Section 2.2.5 is entirely dedicated acceptance sampling plans as strategies for implementing 

LSS, the latest modern quality principle in manufacturing.  

 

2.2.5 Data Acquisition and Acceptance in Lean Six Sigma 

Data acquisition is a key characteristic in the successful implementation of LSS. The DMAIC 

cycle, as the name implies, uses statistical analysis and tools to define, measure, analyze, 

improve and control business processes. As it was stated earlier, the objective of LSS is to 

enhance the quality of a product or service (key process output) by minimizing variability of 

the key process indicators (KPI). Therefore, sufficient knowledge and control about process 

inputs (X’s) will increase the accuracy in the prediction and control of process outputs (Y’s). 

This is generally expressed as ! = #(%&, %(, %), … , %+). 

 

To reduce variability in a process or production, it is critical to employ statistical methods to 

aid in the verification of the quality of the products or services at different stages of the 

process. For a process to be verified, businesses need to plan, collect, and analyze data on the 

sample that has been taken from the entire production. Without data acquisition it can be 

challenging to evaluate variability in the process. Some of the statistical methods used in LSS 

to achieve DMAIC objectives include: means and variance, random variables and probability 

distributions, control charts, sampling and acceptance sampling, hypothesis testing, design of 

experiments, regression analysis, reliability engineering, and tolerancing (Franchetti, 2015). 
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Table 4 illustrates the statistical tools in DMAIC and shows where acceptance sampling plans 

(sequential sampling), which are the focus of this research, are used in the LSS strategy. 

Table 4: Statistical Tools for Each Phase in LSS 

Define Measure Analyze Improve Control 
Project charter Operational 

definitions 
Pareto charts Design of 

experiments 
Control planning 

PIP management 
process 

Data collection 
plans 

C & E matrix Kanban/Pull Process 
documentation  

Value stream map Pareto chart  Fishbone 
diagrams 

TPM Standard operating 
procedures 

Financial analysis Histogram Brainstorming  Training plans 
Multi generation 
plan 

Box plot Basic statistical 
tools 

Process flow 
improvement 

Communication 
plan 

Stakeholder 
analysis 

Statistical 
sampling  

Constraint 
identification 

 Mistake proofing 

Communication 
plan 

Continuous 
MSA (Gage 
R&R) 

Non-parametric Replenishment 
pull 

Statistical process 
control 

SIPOC map Attribute MSA 
(Kappa studies) 

Confidence 
intervals 

Sales and 
operation 
planning 

Implementation 
plan 

High-level process 
map 

Control charts 
 

Simple and 
multiple 
regression 

Quick changeover Visual system 

Brainstorming Process cycle 
efficiency 

Chi-square Mistake proofing Project 
commissioning 

Affinity 
diagramming 

Process sizing T-tests Setup reduction  Project replicating 

Murphy’s analysis Process 
capability Cp & 
Cpk 

Hypothesis 
testing 

Generic pull PDCA cycle 

Surveys QFD Queuing theory Process mapping 5S discipline 

Customer 
requirements trees 

Flow down Analytical batch 
sizing 

5S improvement Review with 
sponsor 

Nonvalue-added 
analysis 

ANOVA x-y map  Kaizen  

VOC and Kano 
analysis 

Review with 
sponsor 

Spaghetti 
diagrams 

Poka-yoke Acceptance 
sampling 

QFD 
 
 

Process 
observation 
 

VA/NVA 
analysis 

FMEA TAKT time 

RACI and Quad 
charts 

 Takt time /Cycle 
time 

Solution selection 
matrix 

 

Stakeholder 
analysis 

 Time value chart Piloting and 
simulation 

 

Key process 
output variabilities 
KPOV’s 

 5S analysis 
 

Control plans  

Review with 
sponsor 

 Review with 
sponsor 

Review with 
sponsor 
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2.2.6 Acceptance Sampling  

Data analysis, as explained earlier, is a vital tool in the latest modern management principle 

that helps establish a baseline data that  LSS uses  to draw conclusions and improve 

processes. In most cases, the first steps in the sampling process are to ascertain how much 

data to collect to be able to effectively evaluate and validate conclusions statistically. In the 

process of ascertaining data, sample size plays a critical role in acceptance sampling 

(Franchetti, 2015). One of the common sampling techniques known as acceptance sampling 

can be defined as a quality control process that entails randomly selecting several items in a 

large lot to judge whether the entire lot meets the product specification and required quality 

standards. Based on the number of defective items in a sample, a decision may be made to 

either to (1) accept the batch, (2) reject the batch and (3) continue sampling until a decision is 

made (Fallahnezhad, Babadi, Momeni, Sayani, & Akhoondi, 2015). Acceptance sampling 

can be applied in many business areas. For example, in the manufacturing sector, acceptance 

sampling is used as an inspection tool to determine whether incoming materials or parts meet 

the quality requirements of the finished product to be manufactured. Acceptance sampling 

can also be used to inspect whether the unfinished units are within the acceptable quality 

level to move to the next phase in the production line, or to ensure that the quality of finished 

products at the end of the production line is within the customer’s acceptable quality level. 

 

There are two main categories of acceptance sampling plans based on the quality 

characteristics of the units to be inspected, namely, acceptance by variables and acceptance 

by attributes. Acceptance by variables deals with sampling based on quality characteristics 

that are measured on a numerical scale like measuring the mean, standard deviation, and the 

variability of the produced unit or process (temperature, diminution, etc.). Thus, Acceptance 

by variables leads to a continuous measurement. On the other hand, acceptance by attributes 
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is solely based on quality characteristics expressed in the form of a "go-no-go" and "bad or 

good" basis. 

 

Of the two types, acceptance sampling by attributes is the most commonly used form of 

acceptance sampling plans (Borror, 2009). Sampling based on attributes is also easy to 

implement and more cost effective than sampling based on variables (Aslam, Muhammad; 

Khan, Nasrullah; and Khan, 2015). The Department of Defense (DOD) of the United States 

has studied and implemented acceptance sampling since 1989. Two widely use sampling 

standards published by the DOD include the MIL-STD-105E (military standard-105E), and 

the MIL-STD-1916. Those two widely used standards will be discussed later in part 2.2.6.4. 

In this dissertation, the acceptance sampling by attributes will be emphasized. Figure 10 

shows the process of acceptance sampling. 

 

 

Figure 10: Acceptance Sampling Process 

 

2.2.6.1 Designing of Acceptance Sampling Plans 

In the process of designing any of the acceptance sampling plans, two levels of quality are 

usually considered . These two quality levels are known as the acceptable quality level 

(AQL), and the lot tolerance proportion defective (LTPD)/rejectable quality level (RQL). 

AQL is known to be the consumers’ preferable quality level choice and it is usually 

incorporated into a purchase order or contract. According to the American Society for 

Quality (ASQ), AQL is defined as “the quality level that is the worst tolerable process 

average when a continuing series of lots is submitted for acceptance sampling” (Borror, 
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2009). The producer of the product often tries to achieve AQL, which is associated with 

producer risk (α) . Producer’s risk or alpha risk is characterized by rejecting a good lot as a 

result of the nature of the sampling technique (Walker, Elshennawy, Gupta, & McShane 

Vaughn, 2012). 

 

LTPD/RQL, which is the second level of quality, refers to the poorest quality in a specific lot 

that should be accepted. It is usually linked to the worst level of quality the consumer can 

tolerate but wish to reject because it meets the minimum acceptance quality requirement. It is 

associated with what is referred to as consumer risk (β). Consumer risk or beta risk is simply 

defined as the risk associated with accepting a poor lot based on the nature of the sampling 

technique (Walker et al., 2012). That being said, RQL is the defective rate at which there is β 

probability that produced items will be accepted by the consumers.   

 

Figure 11: Acceptance Quality Level and Rejectable Quality Level 

 

2.2.6.2 Advantages and Disadvantages of Acceptance Sampling by Attribute 

Acceptance sampling can be seen as a reactive quality control process and a method for 

inspecting not only a manufacturing product but also service (Allen, 2010). It also can be 

considered as an auditing technique and has its benefits and flaws. One of the key merits of 

acceptance sampling by attribute is its economic benefits. For example, if the cost of 

inspection is high and or the time to inspect a product is long, sampling by attribute can be 

preferable as opposed to 100 percent inspection. Additionally, acceptance sampling also 

reduces the risk of damaging a product due to process handling. Acceptance sampling also 
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helps to reduce inspection errors significantly in the sense that repetitive inspection such as 

100 percent inspection can lead to inspector fatigue, thereby preventing the inspector from 

identifying all nonconforming products.  

 

Acceptance sampling also has certain key demerits that may hinder its implementation. One 

of the major demerits of acceptance sampling is the risk associated with rejecting “good” lots 

or accepting “poor” lots identified as the producer’s risk and the consumer’s risk, 

respectively  (Mitra, 2016). 

 

2.2.6.3 Types of Attribute Acceptance Sampling Plans 

As discussed earlier, one of the key classifications of sampling plans is associated with 

attributes. This part of the paper will briefly discuss acceptance sampling plans for attributes 

with their own advantages and disadvantages. These attribute-based acceptance sampling 

plans include those with a fixed sample size such as single, double, and multiple acceptance 

sampling, as well as plans with variable sample sizes, referred to as sequential sampling 

plans. The implementation of any of these types of sampling plans is based on several factors 

that include ease of usage, the general quality of incoming lots of product from the suppliers, 

that is, are the incoming parts (material) of excellent quality history or questionable quality 

history?  

 

2.2.6.3.1 Single Sampling Plan 

In a single sampling plan, a lot-sentencing technique is used. In this case information 

retrieved from one sample is used to make a decision to either accept or reject a particular lot 

of size N. The two main features of this type of sampling plan are the samples size denoted 

by (n) and the acceptance number denoted by (c), which can randomly be selected 
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(Montgomery, 2013). In this case, the acceptance number (c) is defined as the acceptable 

number of defective items allowed in a lot (N) to be considered as an acceptable lot and pass 

the inspection test successfully.  

 

One of the key merits of a single sampling plan is related to its ease of implementation. 

Moreover, the fixed or rigid nature of its sample size makes it difficult to take advantage of 

the potential cost saving of reduced inspection when incoming parts are either good or bad 

(Borror, 2009). The graph below shows how a single sampling plan is used. It starts with 

defining the number sample size (n) needed to be inspected from the current lot and the 

acceptance number (c) for the lot. The sample size (n) is inspected in order to detect any 

nonconforming items or defectives items (d1). The number of nonconforming items (d1) that 

is found in the sample size is compared with the acceptance number of the lot that was 

determined before. If the detected nonconforming items (d1) are  more than the acceptance 

number, the lot is rejected. On the contrary, if the number of nonconforming items is less 

than or equal to the acceptance number, then the lot is accepted and termed to be good 

(Montgomery, 2013), as shown in Figure 12.  

  

 

Figure 12: Single Acceptance Sampling Plan 

Lot N 

Inspect - 

.1 ≤ 1 

Reject N Accept N 

Yes No 
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2.2.6.3.2 Double Sampling Plan  

As the name implies, with a double sampling plan, a second sample is necessary before a lot 

can be deemed good or bad. In other words, the double sampling particularly works when the 

result of the first inspected sample fails to show clear evidence whether to accept or reject the 

lot (Allen, 2010). Unlike single sampling, a double sampling plan can be characterized by six 

variables: the size of the first sample (n1), the acceptance number of the first sample (c1), the 

size of the second sample (n2), the cumulative acceptance number of both the first and second 

samples (c2), the nonconforming units (d1 and d2), the rejection number of the first sample 

(r1), and the rejection number of the second sample (r2). 

 

 

Figure 13: Double and Multiple Acceptance Sampling Plans 
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Figure 13 shows the process of accepting and rejecting the lot (N) in a double sampling plan. 

From Figure 13, a lot can be accepted or rejected from the first sample without necessarily 

taking a second sample. That is to say that the lot can be accepted based on the first sample 

only when the nonconforming units are less than or equal to the acceptance number for the 

first sample d1 ≤ c1. The lot can be rejected when the number of nonconforming units is 

greater than the rejection number d1 > r1. However, if the number of nonconforming units is 

greater than the acceptance number of the first sample but less than the rejection number of 

the first sample, then the second sample n2 must be drawn.  If the number of nonconforming 

units from the first sample plus the nonconforming units from the second sample are less than 

or equal to the acceptance number of the second sample d1+d2≤ c2, the lot will be accepted. If 

not, lot N is rejected (Schilling & Neubauer, 2017).  

 

2.2.6.3.3 Multiple Sampling Plan  

With respect to a multiple sampling plan, more than two samples are required to make a 

decision to either reject or accept a lot. It is simply an extension of the double sampling plan 

but with an extension of the number of samples to be performed. See Figure 13. According to 

ANSI/ASQ Z1.4-2003, a multiple sampling plan can be performed up to seven times (Allen, 

2010; Borror, 2009). The main advantage of a multiple sampling plan is the fact that smaller 

samples are required at each stage compared with  single and double sampling plans. This 

advantage makes it more economically efficient than the single and double sampling 

(Schilling & Neubauer, 2017). 

 

2.2.6.3.4 Sequential Sampling  

In this section of the paper, a more specific sampling plan that is used  in special sampling 

cases is considered. Sequential sampling plans aim to reduce the inspection time and effort, 
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to simplify, or to provide better protection and agility under unique conditions (Mitra, 2016). 

Unlike the fixed plans (single, double, multiple), this plan requires a smaller number of 

inspected units, with the predicted sample size adopting to the estimated rate of defectives. 

For that reason, this plan can be beneficial to implement especially when testing is costly and 

or the units needing to be inspected are fragile and easy to break (Childs & Chen, 2011). 

The mechanism behind sequential sampling is similar to multiple sampling in the sense that 

the number of items required for sampling is dictated by the results of the sampling process 

itself, hence dynamic and adaptive. In sequential sampling, a decision to accept a lot, reject a 

lot or continue with the sampling process is solely based on the outcome of the cumulative 

inspection results.  Sequential sampling can be used to inspect products until 100% 

inspection is reached but this might undermine the core principle of sequential sampling, 

which is to reduce inspection time and sample sizes. For this reason, the rule of thumb is that 

sequential sampling cannot exceed three times the number to be inspected by an equivalent 

single sampling plan, at which point a decision must be made to terminate the plan and notify 

the vendor to demonstrate an improved product quality before any further product can be 

accepted (Mitra, 2016). 

 

Sequential sampling can be categorized based on the sample size. If the sample size chosen at 

each stage is greater than one, the process is referred to as group sequential sampling. On the 

other hand, if the sample size chosen for inspection at each stage is one, then the process is 

referred to as item-by-item sequential sampling (Montgomery, 2013). Often times, item-by-

item sequential sampling is used especially in cases where it is necessary to reach a decision 

to either accept or reject a lot as soon as possible to help reduce inspection cost and time. 
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The item-by-item sequential sampling plan is based on the sequential probability ratio test 

(SPRT) developed by Wald (1947). The primary objective of SPRT is to test a lot or a batch 

of items based on optimal sample size in order to make a decision to accept or reject the lot 

(Chetouani, 2013; Starvaggi, 2014). It is considered to be one of the most commonly used 

methods worldwide especially in manufacturing. SPRT is used to test a hypothesis regarding 

the proportion of non-conforming items in a lot or the quality level of the current lot.  

Ho: p £ p1 

Ha: p ³  p2 

Where p is the quality parameter of a lot under inspection, p1 is the acceptable quality level of 

nonconformities, and p2 is the rejection quality level of nonconforming units or items.  

 
Figure 14: Item-by-item Sequential Sampling Plan 

 

Figure 14 depicts the operation of item-by-item sequential sampling. The cumulative number 

of defectives (r) is plotted against the cumulative number of samples/units inspected (n). 

There are two main lines depicting acceptance and rejection line (Xa, Xr). These lines, as the 

name implies, determine the regions for acceptance and rejection and in between these two 

lines is the region that gives room to continue sampling until an inspection decision is 
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reached. When a sample point falls on or below the acceptance line, a decision is made to 

accept the lot. On the other hand, if the sample point falls on or above the rejection line, a 

decision is automatically made to reject the whole lot. These two lines are influenced by the 

predetermined parameters from above (a, P1, b, P2) and are generated using defined 

equations (Mitra, 2016; Montgomery, 2013). 

 

Xa = -ha + sn (acceptance line) 

Xr = hr + sn (rejection line) 

These equations are dictated by the producer’s risk (a) and its associated acceptable quality 

level (P1) and the consumer’s risk (b) and its associated rejectable quality level (P2). The 

equations are also controlled by (- ha, hr), which is the intercept on the vertical axis, s is the 

slope, and k is the average acceptable number of defective unites. The equations below show 

how k, ha, hr and the s are calculated (Mitra, 2016; Montgomery, 2013). 

 

2 = log 6((1 − 6&)6&(1 − 6()
 

ℎ9 =
:log 1 − ;< =

2  

ℎ> =
:log 1 − <; =

2  

? =
@AB 1 − 6&1 − 6(

2  

 

Given the agility requirement for sequential sampling, the goal of this research is to develop a 

novel sequential sampling framework, the reinforcement learning methodology, which is 

introduced in Section 2.4. 



 
 

36 
 
 

 
 

 

2.2.6.4 MIL-STD-105E and MIL-STD196 

Two well-known acceptance sampling plans standards for dealing with attribute data are 

military standard-105E (MIL-STD-105E), and military standard-1916 (MIL-STD-1916).  

The United States Department of Defense (DOD) published the first standard in 1989 during 

World War II to provide procedures and reference tables for designing and implementing the 

appropriate methods for acceptance sampling by attributes. MIL-STD-105E, also  known as 

ANSI  Z1.4 and ISO 2859, is one of the most widely used systems in acceptance sampling 

worldwide. MIL-STD-105E is considered to be the traditional version of the U.S. DOD for 

fixed sampling plans where the acceptable quality level (AQL) and the producer’s risk is the 

primary focal of this standard (MIL-STD-105E, 1989). In other words, when implementing  

MIL-STD-105E for inspection, the lot size, inspection level, AQL level, type of inspection, 

and type of sampling plan must be defined. 

 

In 1996 the U.S. DOD adopted MIL-STD-1916 to be the new version of accepting sampling 

system to replace the traditional MIL-STD-105E sampling plans (MIL-HDBK-1916, 1999). 

Unlike MIL-STD-105E, MIL-STD-1916 is known to be less complicated since it contains 

fewer tables and less information to use (M. H. C. Li & Tsao, 2011). In contrast, MIL-STD-

1916 mainly focuses on “zero accept one rejects” as criteria of whether to accept or reject a 

batch or lot. If a sample has at least one nonconformance, then the whole batch or lot must be 

rejected. Using MIL-STD-1916 indirectly forces the producers to have a strict quality control 

system (Hamzic, 2013). For that reason, MIL-STD-1916 can be used when the contractor or 

the supplier is extremely confident in the quality of its products. MIL-STD-105E takes into 

account the three attribute sampling plans (single, double, and multiple). Unlike MIL-STD-

105E, MIL-STD-1916 deals with attribute sampling, variable sampling, and continues 

sampling. Moreover, the only information that needs to be specified in implementing MIL-
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STD-1916 is the lot size, type of inspection, and inspection level  (MIL-STD-105E, 1989; 

MIL-STD-1916, 1996) 

 

2.2.6.5 Inspection levels 

MIL-STD-105E and MIL-STD-1916 show three types of inspection (severity inspection) 

during sampling, including normal inspection, tightened inspection, and reduced inspection.  

The normal severity inspection is the most common type used during the process of 

inspection, and it can be implemented when the supplier is confident that the quality level 

meets the acceptable level, whereas, tightened inspection is implemented when a large 

sample size is required to be inspected because of a history of poor quality, or when the 

product is  newly developed. On the other hand, reduced inspection is implemented when it is 

a requirement to inspect a small sample size due to a short time or budget or when a company 

has a reliable quality management system  (MIL-STD-105E, 1989; MIL-STD-1916, 1996). 

 

Seven verification levels (VL) of sampling inspection are proposed in both standards for each 

sampling plan with their code letters to determine the relationship between the lot or batch 

size and the sample size. According to MIL-STD-1916, “Verification Level (VL) prescribes 

the level of significance or utility of a characteristic (attribute) to the user” (MIL-STD-105E, 

1989; MIL-STD-1916, 1996). 

 

Table 5 and Table 7 present the verification level for MIL-STD-1916 and MIL-STD105E, 

respectively. Level I is implemented when it is a requirement to inspect a small sample size 

due to a short  time or budget or when a company has a reliable quality management system. 

Level II is the normal severity inspection level, and according to MIL-STD-105E, it is the 

most common level used during the inspection. Level III can be used when a large sample 
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size is required to be inspected because of a history of poor quality or a newly developed 

item. In contrast,  applying level IV-VII requires  more effort in sampling, since they can be 

implemented where “ small sample sizes are necessary for inspection and large sampling 

risks can or must be tolerated” (ISO 2859-standard).  

 

After determining the appropriate verification level and the lot or batch size, MIL-STD-1916 

shown in Table 5 helps to find the proper sample size code letter to carry over to the chosen 

sampling plan table. Then, the accurate inspected sample size for that particular batch size 

can be found in the sampling plan standard shown in Table 6.  

 

Table 5: Sample size code letters  (MIL-STD-1916, 1996) 
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Table 6: Attribute Sampling Plans (MIL-STD-1916, 1996) 

 

 

When creating a sampling plan using MIL_STD-105E, the information presented in   Table 7 

helps to find the proper sample size code letter to carry over to the chosen sampling plan 

table. After locating the sample size code letter and specifying the acceptable quality level 

(AQL) which is the nonconformities per 100 items by the authority responsible for sampling, 

then the accurate inspected sample size and the acceptable and rejectable number for that 

particular batch size can be found in the sampling plan standard (Table 8, Table 9, Table 10). 

 

Example 1 

Here is an example of how to perform MIL-STD-105E for single sampling. Suppose a 

product X is submitted in batches of size N = 500. The buyer and the producer have agreed to 

the acceptable quality level (AQL) that equal to 1.5% for a normal single sampling plan and 

using the general inspection level II. The buyer and the producer are looking to find out how 

many samples are required for inspection, and how many nonconforming items are allowed 

in order to accept or reject the batch. In this matter, first we find the row that corresponds to 
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the total batch size of 500 from Table 7, so the appropriate row is the 281 to 500. Second, 

determine the applicable inspection level and find the corresponding column in Table 7. 

Level II, which stands for standard severity inspection, will be used in this example. So the 

correct sample size code letter to carry over to Table 8 for a single sample plans will be the 

letter H. As a result, Table 8 shows that the sample size code H requires a sample size of 50 

for inspection from each batch. Since the AQL is 1.5%, Table 8 gives a maximum number of 

2 defective items for accepting a single batch and a minimum of 3 defective items for 

rejecting the batch.  

 

Example 2  

Following the same example from the single sampling section, where the batch size is 500, 

and the AQL is equal to 1.5%, for the double sampling, it can be performed twice if the 

number of nonconforming units from the first sample size is between the rejectable and 

acceptable numbers. Looking back to the example, since we have a batch size of 500, the 

appropriate sample size code letter from Table 7 is H, and the necessary sample size for the 

first and second sample size is 80 for each one. In this case, Table 9 shows each sample size 

has a different number of defects as a limit, where the acceptable and rejectable number of 

defectives for the first sample size are 0 and 3 and for the second sample size are 3 and 4, 

respectively. So, if the number of inspected items from the first sample size is excellent, 

meaning that there are 3 defects or fewer, the batch is accepted. If it is terrible, meaning that 

there are 4 defects or more, then the batch is rejected and there is no need to inspect the 

second sample. However, if the number of defectives found in the first sample size is 1, then 

the next sample size of 32 should be inspected with a limitation of an acceptance number of 3 

defects and a rejection number of 4 cumulatively. So, if the total number of nonconforming 
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items from the first and second sample size is equal to 3 or less, the batch is accepted, and if 

it is equal to 4 or greater, it is rejected.  

 

Table 7: Sample Size Code Letters (MIL-STD 105E) 
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Table 8: Single Sampling Plans for Normal Inspection (Master Table) 

 

↓   = Use first sampling plan below arrow. If samples size equals or exceeds lot or batch size, do 100 inspections 

↑   = Use first sampling plan above arrow.  

Ac = Acceptance number 

Re = Rejection number 
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Table 9: Double Sampling Plans for Normal Inspection (Master Table) 

 
↓   = Use first sampling plan below arrow. If samples size equals or exceeds lot or batch size, do 100 inspections 

↑   = Use first sampling plan above arrow.  

Ac = Acceptance number 

Re = Rejection number 

•    = Use corresponding single sampling plan (or alternatively, use double sampling plan, where available). 
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Table 10: Multiple Sampling Plans for Normal Inspection (Master Table) 

 
↓   = Use first sampling plan below arrow. If samples size equals or exceeds lot or batch size, do 100 inspections 

↑   = Use first sampling plan above arrow.  

Ac = Acceptance number 

Re = Rejection number 

•    = Use corresponding single sampling plan (or alternatively, use double sampling plan, where available). 

†   = If, after the second sample, the acceptable number has been exceeded, but the rejection number has not been reached, accept the lot, but reinstate normal inspection. 

∞  = acceptance not permitted at this sample size  
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2.2.6.5.1 Acceptance Sampling Performance 

To measure the performance of each acceptance sampling plan, the operating characteristics 

(OC) curve measurement has to be implemented. This curve plots the probability of 

accepting the current lot for a range of proportion of defective products. The outputs or 

results of the OC curve show how well a sampling plan differentiates between good and bad 

lots and help to determine which acceptance sampling plan is more appropriate for a 

production inspection process. It is also noted that there are other measurement techniques to 

test the performance of a sampling plan such as, but not limited to, the average quality level, 

the average sample number (ASN), the average quality level of the outgoing items, the 

average total inspection of items (ATI) and many other techniques (Mitra, 2016; Schilling & 

Neubauer, 2017).  

 

2.3 Machine Learning and Reinforcement Learning 

2.3.1 Introduction 

This part of the dissertation gives a general idea of reinforcement learning (RL) and the 

model that is related to the proposed research. The introduction of RL will include the 

following: the background of RL, the history of RL, the components of RL and its 

mechanism, and the special cases of RL. In recent decades, machine learning has become an 

effective subtopic of artificial intelligence and it is geared towards the development of 

complex artificial learning systems (Mitchell et al., 2018; Si, Barto, Powell, & Wunsch, 

2012). 

 

Currently, the manufacturing industry has been embracing the fourth industrial revolution’s 

technologies such as machine learning to meet the quality requirements of a product and 

optimize production processes. Machine learning (ML) is known to be an automated learning 
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process that observes data from the past and analyzes them to make predictions, 

classification, clustering patterns, and actions. ML algorithms can be divided into four 

categories: supervised learning, unsupervised learning, semi-supervised learning, and 

reinforcement learning (RL) (Lee, Shin, & Realff, 2018). ML is a supervised learning 

whereby the features in the data under study are labeled or targeted (labeled training 

examples). The supervised learning process helps predict the relationship between the labeled 

examples for classification and for better decision making (Kulkarni, 2012). However, if the 

features are available but not labeled (unlabeled training examples), then it is unsupervised 

machine learning. The unlabeled features can be used on multiple tasks such as clustering, 

comparison, and feature extraction based on their distribution. Machine learning can also be 

semi-supervised learning when a majority of the training examples are unlabeled, and some 

are labeled. Semi-supervised learning uses the labeled examples and the unlabeled examples 

combined to predict the probability distribution and find the similarity between labeled and 

unlabeled examples. Lastly, reinforcement learning is different from the other types of 

machine learning, since it is a method of self-learning and acting based on observed data (Lee 

et al., 2018).  

 

For the past 40 years, researchers have studied mainly supervised, semi-supervised and 

unsupervised learning and have been able to discuss the importance of their usage, their 

downside and what can be done to improve their application. However, in recent years, RL 

has surfaced and its application has been seen in many fields of study (Zarandi, M., Moosavi, 

H., & Zarinbal, 2013). This dissertation focuses on the application of RL in manufacturing, 

and in particular as a way to model acceptance sampling.   
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Reinforcement Learning is known to be one of the most interesting topics in machine 

learning and sits at the intersection of many professional disciplines, including computer 

science, engineering, mathematics, economics and psychology, just to mention a few. 

According to the book, “Artificial Intelligence for All: An Abiding Destination,” RL can be 

defined as “a learning method for an agent that interacts with its environment by producing 

actions, thus discovering errors or rewards” (Pathak & Tiwari, 2018). The main reason why 

RL has the ability to be adoptive when applied in various sectors is that it has the capability 

to solve complex sequential decision-making problems and to find an optimal course of 

action (Gatti, 2015). For example, RL can solve problems associated with traffic light 

control, process scheduling, inventory control, maintenance management, supply chain 

management and supplier selection (Zarandi, M., Moosavi, H., & Zarinbal, 2013). 

 

2.3.2 The History of RL 

The history of reinforcement learning stems from two major roots. The first root is attributed 

to learning by trial and error, which was used in the psychology of animal learning (Fathi, 

Maihami, & Moradi, 2013). Some of the earliest work in artificial intelligence used  the trial 

and error method that later helped to revive reinforcement learning in the early 1980s  (Sutton 

& Barto, 2012). The second root, on the other hand, is attributed to the problem of optimal 

control and its solution, using value functions and dynamic programming. According to the 

book “Reinforcement learning: An Introduction.”, the term “optimal control” is used to 

describe the problem of designing a controller to minimize a measure of a dynamical 

system’s behavior over a period of time. One of the approaches to the “problem of optimal 

control” was developed in the mid-1950s by Richard Bellman and other scholars by 

extending a nineteenth century theory of Hamilton and Jacobi (Sutton & Barto, 2012).   It is 

believed that Edward Thorndike is credited with the term trial-and-error learning, which deals 
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with the notion that “actions followed by good or bad outcomes have their tendency to be 

reselected  and altered accordingly.” This is called the “Law of Effect” since it describes the 

effect of reinforcing events on the predisposition to select actions (Sutton & Barto, 2018). 

 

2.3.3 The Mechanism Behind RL 

The term Reinforcement Learning basically refers to learning what to do by mapping 

situations in order to maximize what is termed as a numerical reward signal (Mannion, 

Devlin, Mason, Duggan, & Howley, 2017). The basic underlying principle of reinforcement 

learning is that the learner and the decision-maker or the brain of a system, who, in many 

books and research work is referred to as an agent, is not told which actions to take as 

implied in many forms of machine learning, but must rather find which actions would 

generate the most reward by trying an action or a combination of actions (H. Li, Cai, Liu, 

Lin, & Wang, 2018).  

 

The two main features of reinforcement learning are trial-and-error search and delayed 

reward. As the name implies, trial-and-error search is simply when the agent takes an action 

or actions and waits for either a positive or negative feedback to be able to make a final 

decision. A negative feedback from an action taken will alert the agent to take a different 

action until a positive feedback is achieved. Thus, in a trial-and-error search, the agent keeps 

trying different actions until a positive signal propels it to move forward with its selected 

action (Sutton & Barto, 2018). Delayed reward, on the other hand, implies that the agent 

takes a long sequence of actions, receiving insignificant reinforcement, then finally arrives at 

a state with high reinforcement. The agent must be able to learn which actions are desirable 

based on the expected reward or return that can take place arbitrarily far in the future (Sutton 

& Barto, 2018). 
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One of the stumbling blocks of reinforcement learning is associated with the trade-off 

between what is termed as exploration and exploitation. For a reinforcement agent to secure a 

reward, the agent must select actions that it has tried and executed in the past and concluded 

to be effective in generating and maximizing an acceptable outcome or reward in the long 

term (Azizzadenesheli, Lazaric, & Anandkumar, 2017). However, it is important to point out 

that, in order to discover such a rewarding action, the agent has to experiment with actions 

that it has not selected before. Thus, the agent has to exploit previous actions to maximize the 

reward. The agent also has to explore beyond its past actions to achieve a better action 

selection in the future. From a general perspective, the underlying principle of both 

exploration and exploitation cannot be pursued without the agent failing at a task. The agent 

must carryout the concept of trial-and-error on a variety of actions and select those that tend 

to be effective in addressing a problem (Kulkarni, 2012; Sutton & Barto, 2018). 

 

2.3.4 Agent’s History in RL 

The history of an agent in RL is defined as a tuple (", #, $) where " is a sequence of actions 

("&, "(, ")	, "+, …"-), # is a sequence of states (#&, #(, #)	, #+, … #-),	and $	is a sequence of 

rewards  ($&, $(, $)	, $+, …$-) that it has seen so far. So, all of those are the observable 

variables up to time (.). What happens next depends on those variables. 

/-= "&, #(, $(, ………….., "-, #-, $- 

Where Ht is the agent’s history at time t. 

However, according to Sutton and Barto in their book, “Reinforcement Learning: An 

Introduction,” the whole history is not very useful because it is going to contain huge data, 

and this will make it impossible or difficult for the agent to track all past actions within 

microseconds. In RL, the history will be substituted as a state that  is the summary of 

information used to determine what happens next. In other words, in RL we replace the 
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history with a summary of the history that captures all the information that is needed to 

determine what happens next. Formally, state (#-)	is the function of the history and we can 

only look at the last observation (Silver, 2015). 

 

#- = 1	(/-) 

 

A state (St) is whatever information is accessible to the agent and it follows a Markov process 

if and only if the probability of the next state (2[#-4(]) conditioned on the current state (St) is 

equal to the probability of the next state (St+1) conditioned on all previous states. In other 

words, we can ignore all the previous states and just retain the current state (Oddi & 

Pietrabissa, 2013). Then we will get the same characterization of the future.  

 

2[#-4(|#-] = 2[#-4(|#(, #), ……… , #-] 

In other words, we only need to store the current state because the history will not give any 

additional information about what will happen in the future. Hence, the current state is a 

sufficient statistic of the future and fully characterizes the distribution of future action (Sutton 

& Barto, 2018). 

 

2.3.5 Agent and Environment Interaction 

The agent  in RL is often controlled by an algorithm that is responsible and dictates the action 

taken by the agent toward a stochastic environment, hence the term agent’s state (Gatti, 

2015). Figure 15 is a visual representation of how the agent and the environment interact 

(Gatti, 2015; Sutton & Barto, 2018). The chart shows that at each state or step, the agent 

undertakes an action based on both the information that was received from the previous state 

and the accessible actions in the current one (Sutton & Barto, 2018). The next action the 
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agent will make will be based on the result of its action, the agent will receive a new reward, 

and go to new state. 

 
Figure 15: The Agent-Environment Interaction (Sutton & Barto, 2018) 

 
 

Going into details of the interaction between the agent and the environment happens at each 

discrete  step, . = 0, 1, 2, 3, … , ;.		In RL, the agent makes its sequential decision’s action as a 

function of a signal from the environment called the environment’s state, #-=	#, and S is the 

number of possible states the agent can have. The environment state at time t (St), is basically 

defined as the information that is used within the environment to determine what happens 

next. The agent in this case has no prior knowledge of what is within the environment, so the 

agent’s action will depends on what it receives from the environment’s state, "-=	"(#-), 

where "(#-) is the set of a potential actions agent can make in state #-.  

 

The goal of the agent’s actions is to maximize the total amount of reward Rt it receives over a 

period of time. For the agent to maximize the total future rewards (Gt), the agent must 

consider an action that maximizes not only the immediate reward in each time step, but also 

the expected return of the future steps. In the case where the reward is received immediately 

in each step, then the return will be the sum of the total rewards (Sutton & Barto, 2018). 

>- = $-4( + $-4) + $-4+ ……+ $@ 

Where RT is the final step and it is called an episodic task. On the other hand, if the number 
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of actions taken by the agent toward the environment is an infinite (T=¥) , then we call it 

continuing task. In this case, the agent’s behavior is to find the optimal policy to maximize 

the expected discounted return.  

 

The discounted return expresses the value of the future expected reward at the present time, 

where the value of the reward collected at k time steps in the future is worth gk-1, where g is 

the discount factor rate and has to be between zero and one (0 ≤  g ≤ 1) (Sutton & Barto, 

2018).  

The agent’s action At depends not only on maximizing the immediate reward but also  

maximizing the expected reward. For that reason, if g = 0, then the agent chooses its action to 

maximize only the immediate reward in each state and use the sum of the total reward 

equation.  

On the other hand, when g = 1, the agent has to choose its action to not only increase the 

immediate reward but also to increase the future expected reward. That is because receiving 

an immediate reward can influence the future reward. In this case, the cumulative discounted 

reward is (Sutton & Barto, 2018). 

>- = $-4( + A$-4) + A
)$-4+ …… =BAC$-4C4(

D

CE&

 

 
In each time step the environment receives an action ("-) that is taken by the agent and emits 

an observation (#-4() as well as a numerical reward ($-4(Î	ℝ). Since the agent bases its 

selection of actions on past experiences and reward, it will select its future actions based on 

previous observation (#-G(), and rewards ($-G() (Silver, 2015). At each discrete time step, 

the agent’s selection action is followed by what is called an agent’s policy that is represented 

by pt. The agent’s policy pt in reinforcement learning can be categorized into two types: 

deterministic policy and stochastic policy. Deterministic policy can be defined as a function 
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that maps each state to a particular action followed by policy p: S®A. On the contrary, 

stochastic policy is a function that maps a specific state St = s to probabilities of performing 

one particular action over another At = a at step t.  

 
H-I"-½#-J = 2I"- = K½#- = LJ 

 
It is not enough for the agent in reinforcement learning to know its policy in selecting a 

specific action from a specific state (agent’s policy) to maximize its expected reward and 

move to another state see Figure 16 since performing one action over the other available 

actions in a given state can increase or decrease the expected return. 

 

 
Figure 16: Agent’s Transition State Diagram 

 
For that reason, it is important for the agent to estimate in advance how good it is to be in a 

specific state or how good to perform a specific action in a given state in order to maximize 

its expected reward. Two value functions are useful to the agent to increase its expected 

reward with respect to the policy p viz, the state-value function and the action-value function. 

Both functions are based on the well-known Bellman’s equation.  

 

The state value function for policy p, denoted as Vp, gives the agent an insight into how good 

is the expected return (value of a state) in any given state St at any time t and following 

policy p. In other words, the value function of each state St is the total expected future reward 

given that the agent in state St and followed policy p.  
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Mp(#-) = NO[>-|#-] 

= NO PBAC$-4C4(|#-

D

CE&

Q 

 
In like manner, the action-value function for policy p, denoted as Qp, gives the agent insight 

into how good the expected return is for the agent to perform a particular action from a set of 

available actions in a given state "-=	"(#-) following policy p. The function below shows 

how to calculate the action-value function under policy p: 

 
Rp(#-, "-) = NO[>-|#-, "-] 

= NO PBAC$-4C4(|#-, "-

D

CE(

Q 

 

2.3.6 Optimal policies and Value functions. 

Whenever the agent interacts with its environment, there is always one policy better than or 

equal to the other policies. Thus, the agent keeps interacting with its environment to find an 

optimal policy, denoted p*, that maximizes the long term expected reward or is at least as 

equal to all other policies.  

 

H∗ = KTUVKWX$	(L, K) 

 

The optimal policy is coupled with an optimal state-value function Vp* as well as the optimal 

action-value function Q* where the optimal state-value function tells the reinforcement 

learning agent what the maximum expected return is obtained by being in a certain state s, 

following policy p.  
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The optimal action-value function, on the other hand, gives the maximum expected return for 

taking a particular action a at state s (state-action pair (s, a)) following policy p. 

 

M∗(L) = VKWOMp	(#) 

R∗(L, K) = VKWOYp	(L, K) 

 

The optimal value-state function known as Bellman’s optimality equation for V*   provides 

the maximum value of a state St from taking the best action from that state and the reward 

received Rt from performing that action At added to the discounted value from the next state 

St+1 weighted by the probability transition followed by  policy p. 

 
M∗(L) = VKWX	N[	$-4( + AM∗	(#-4()|#- = L, "- = K] 

																		= VKWX∈[(\) 	B2(L]|L, K)

\]

[T(L, K, L]) + AM∗(L
])] 

Likewise, the optimal action-value function is the second Bellman’s optimality equation that 

provides the maximum expected discounted return from any given state-action pair (s,a) at 

any discrete time t. In other words, the Q function gives the maximum expected return (or the 

quality) of executing At at state St following policy p.  

 

R∗(L, K) = N[	$-4( + AVKWX]	Y∗	(#-4(, K′)|#- = L, "- = K] 

											= B2(L]|L, K)[T(L, K, L]) + AVKWX]	Y∗(L
], K)]

\]

 

Although the value function V(s), and the quality function Q (s, a) are useful tools to RL in 

some sense, the agent in reinforcement learning wants to act and learn what action to take in 

each state; hence, the agent should learn the action-state value function (Q-value), not the 

state-value function (V(s)). The Q-value function is also beneficial in a situation of RL where 
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an agent does not know the rewards and the transition probability functions in advance. 

Therefore, the Q-value is calculated by using experienced data without the need of knowing 

the transition probability or the reward model from the environment.  

2.3.7 Q-Learning and Sarsa 

The Q-learning algorithm is a major topic for reinforcement learning. It dynamically iterates 

the action-value function (Q) for each state s until the Q-function estimates the optimal 

action-value function Q*. The goal of Q-learning is to teach the agent to act optimally by 

lowering the cost and to find the optimal policy. The Q-learning algorithm starts by giving 

each action a value; the agent then performs the chosen action and after the algorithm 

measures the reward received from that action, the value of Q is updated (Sutton & Barto, 

2018). This value iteration process is mathematically represented as:  

 

R(#-, "-) ⟵ R(#-, "-) + K[$(#-, "-, ) + A	VKWX	R(#-4( + K) − R(#-, "-)] 

 

Where the first R(#-, "-) is the new Q value, the second R(#-, "-) represents the current Q 

value, K	is the learning rate, $(#-, "-, ) is the current reward, VKWX	R(#-4( + ") is the 

maximum expected future reward given all the available actions A in state St+1 . 

 

On the other hand, Sarsa, which stands for state-action-reward-state, very much resembles Q-

learning. The major difference between Sarsa and Q-learning is that Sarsa is a deterministic 

policy algorithm. It implies that Sarsa learns the Q-value based on the action performed by 

the current policy instead of the greedy policy. 

 

R(#-, "-) ⟵ R(#-, "-) + K[$-4( + AR(#-4( + "-4() − R(#-, "-)] 
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The action (At+1) is the action performed in the next state (St+1) under current policy (p). 

From the equation above (Sarsa) one can notice that two action selections are performed, 

which always follows the current policy. By contrast, the Q-learning equation has no 

constraint over the next action (At+1), as long as it maximizes the Q-value for the next state. 

Therefore, Sarsa is a deterministic policy algorithm (Sutton & Barto, 2018). 

 
 
2.3.8 RL Special Cases 

2.3.8.1 Fully Observable Environment  

In this case the agent can directly observe and is aware of all the possible states in the 

environment (Kulkarni, 2012), thus qualifying the system as a Markov Decision Process 

(MDP). RL has been established to solve an MDP problem in order to come up with an 

optimal behavior for an agent to interact properly with an evolving environment. An MDP 

can be defined as a finite Markov Decision Process (a finite MDP) when the number states 

and actions are finite (# < ∞, Kcd	" < ∞) (Kulkarni, 2012). A finite MDP is a tuple (S, A, T, 

T the and actions,  the finite set of Adenoting the finite set of environment states,  Swith  ),gR, 

the discount  g, R the reward function, and t+1to St state transition probability function from S

factor. A finite MDP is pivotal in understanding reinforcement learning and as a result is 

known to be critical to the theory of reinforcement learning (Fathi et al., 2013; Sutton & 

Barto, 2018).This particular case will make it possible for an agent to predict the transition 

starting  t+1  Sstate  which is the probability function of every potential next T,probabilities 

tSfrom the current state  

 

;[#-4( = L′|#- = L, "- = K] = 2[#-4( = L′|#- = L, "- = K] → [0,1]			 
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 On the same concept, the finite MDP has the ability to expect the value of the next 

together with the t and action A tby taking into consideration the current state S t+1reward R

this can be called the reward function. ;t+1Snext state  

 

	$-4((#-, "-, #-4() = N[$-4(|#- = L, "- = K, #-4( = L′] 

 

2.3.8.2 Partially Observable Environment 

The transition probability function and the expected reward function are crucial to the 

dynamic nature of a finite MDP, but optional to RL. According to Silver (2015), it is optional 

and not a requirement to build a model to predict the transition probability function of the 

next state St+1 as well as the function of the expected reward. Most RL cases are based on a 

model-free method that assumes that the transition probability and reward functions are 

unknown to the agent, and the agent must interact with its environment to optimize its policy.  

 

In this case, he Markov Decision Process (MDP) is not applicable since in many cases the 

agent or the learner indirectly observes the environment and does not get to see all possible 

states in the environment, because the environment may contain irrelevant data (Pyeatt, D., 

1999). Partially Observable Markov Decision Processes (POMDPs) make it more general 

than the MDP to model partially observable environment (Dornheim, Link, & Gumbsch, 

2018). In this situation the agent’s job is to build and construct its own state representation by 

either remembering the complete history to have the agent state equal to the history #- = /- 

or by building beliefs of the environment state. One way to do that is by using the 

probabilistic Bayesian approach (Pyeatt, D., 1999).   
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Chapter Three: Literature Review 

3.1 Introduction 

This chapter of the dissertation evaluates and reviews the current literature on identifying 

sequential sampling and reinforcement learning. This section of the dissertation will also 

focus on the literature reviews on researched articles pertaining to the underlying goal of this 

paper, which is the integration of reinforcement learning and sequential sampling 

methodology to help improve and aid in the successful implementation of acceptance 

sampling plans in an organization. This chapter also reviews the merits and demerits of 

industrial manufacturing, the cost of quality, the history of modern quality, sequential 

acceptance sampling and reinforcement learning to help give meaning to the importance of 

these topics to the core problem statement and objective of this dissertation. The concluding 

remarks on the various selected research articles for the paper will be in Chapter 4. 

 

3.2 Documentation for The Literature Review and Keywords 

In the process of gathering information for this research paper, the following online library 

resources, journals and electronic textbooks were consulted: University of Wisconsin-

Milwaukee library database, ProQuest, Journal Storage (JSTOR), IEEE Xplore Digital 

Library, Informs, sinceDirect, and Compendex. The following key words will be present in 

this chapter: quality, lean six sigma, six sigma, lean six Sigma’s CSFs, sequential sampling, 

acceptance sampling, and reinforcement learning.  

 

3.3 Sequential Sampling 

During World War II many manufacturing industries witnessed a major shift to the 

application of various sampling techniques for batches and or lots of products due to the mass 

production as a result of high demands for military equipment. The increase in production at 
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various manufacturing sites and the demand for good quality products made it extremely 

difficult for companies to perform unit-by-unit or 100% inspection of products (Cudney, Qin, 

& Hamzic, 2016; Jamkhaneh & Gildeh, 2013). As a result, quality control through 

acceptance sampling has been used  in many applications and continues to be under study. In 

practice, optimizing acceptance sampling techniques have widely been considered to 

determine the best technique for lot sentencing (Fernández, 2015).  

 

Wu, and Liu (2014) clearly mentioned that acceptance sampling has extensively been used to 

determine whether to accept or reject the lot under study or inspection. The authors believe 

the methods of acceptance sampling plans can be one of the most well-known practical 

methods for quality control and quality assurance applications. Accordingly, even though 

there are several ways to categorize acceptance sampling plans, the authors pointed out 

acceptance sampling by attribute and acceptance sampling by variables as one of the major 

categorizations of acceptance sampling.  

 

Much of the current studies and literature on sequential acceptance sampling have been 

focused on sequential sampling based on fuzzy sequential sampling. Jamkhaneh, and Gildeh 

(2013) aimed their work to shine new light on acceptance sampling by integrating item-by-

item sequential sampling with a sequential probability ratio test for fuzzy hypotheses testing. 

In the process of building the authors’ new model, they developed Sequential Probability 

Ratio Test (SPRT) for fuzzy hypotheses where the acceptable quality level (AQL) and the lot 

tolerance percent defective (LTPD) were considered to be the imprecise parameters. Since 

AQL and LTPD discussed in the article are imprecise, they tend to follow the fuzzy SPRT. 

However, if the authors’ model has  a firm AQL and LTPD, then the model is likely to follow 

the traditional sequential sampling plan (SSP). Afshari and Gildeh (2017) have also studied 
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item-by-item sequential sampling based on fuzzy SPRT. However, the authors proposed a 

modified attribute sequential sampling plan for fuzzy hypothesis testing (FHT) with crisp 

observations. They then proceeded to study the impact of the ambiguity amount of defective 

items on the acceptance and rejection regions on their modified SSP. 

 

Fallahnezhad, Babdi, Moeni, Sayani, and Akhoodi (2015) developed a new acceptance 

sampling model by using a well-known mathematical approach called dynamic programming 

procedure to optimize sequential sampling plans. The major objective of their study was to 

optimize decisions that reduce the cost associated with rejecting a batch, inspection of a batch 

as well as the cost of nonconforming items. In 2016, Fallahnezhad and Babadi claimed in 

their paper that a huge number of products are produced daily from different companies that 

makes it impossible for the buyers to inspect each item in the received lot. Building upon 

their study in 2015, Babadi tried to optimize the decision process to accept or reject or 

continue sampling based on the cost analysis of the lot under study by applying dynamic 

programming and Bayesian inference. First Bayesian inference modelling was used to predict 

the probability distribution of the nonconforming proportion of the lot. Later, dynamic 

programming was implemented to come up with the optimal decision. This dynamic 

programming was used when the inspection process system was  imperfect and when it was 

perfect. The inspection process can be considered as imperfect when the producer’s risk and 

consumer’s risk (type I and type II) have an impact on the process; otherwise the inspection 

process is perfect. 

 

 Kumar and P. C. (2016) have also studied acceptance sampling but with a different 

approach. The goal of their study was to find an optimal and most efficient acceptance 

sampling plan that is solely based on focusing on the average life of products in a sample to 
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make a decision to either accept or reject the lot. In order for the authors to establish their 

new model, a sequential sampling plan and a repetitive group sampling plan were considered. 

The idea behind using a sequential sampling plan was to determine when a lot can be 

accepted or rejected or continue sampling based on the time between successive failures (Y) 

and the parameters are obtained via an optimization problem for total cost reduction. On the 

other hand, a repetitive group sampling plan that  was introduced was used and tested under 

four different measures. The four tested measures include the minimum of observations in a  

random sample, the maximum of observations in a random sample, Type I censoring, and 

lastly the maximum power of the test (i.e., minimizing the probability of type II error). 

Kumar and P. C. (2015) believe the proposed model, acceptance sampling based on the 

lifetime of units, will reduce  the cost of inspection up to 50%.  

 

The study goal of Fudenberg, Strack, and Strzalecki (2015) was to build a choice process that  

is based on how the probability of a more frequent choice varies with respect to the time it 

takes to make a decision on a task. Fudenberg et al. (2015) tested their new drift diffusion 

model (DDM) on a neuroscience choice experiment where the decision time in a binary 

choice task was explored. This model is considered as a solution to a problem of optimal 

sequential sampling where the agent does not have access to the outcome of its action taken 

in each step, and cost is involved in each sampling test. In other words, this model allows an 

agent to accept one alternative over another not only based on the time the agent spends to 

gather information, but also by the cost associated with the time spent in making a decision.  

 

Chick, Forster, and Pertile, (2015) in their research article also agreed on the popularity of 

sequential sampling and how it has been implemented in various sectors such as simulation, 

e-commerce, and clinical trials. However, Chick et al. (2015) argued that the classic 
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sequential acceptance sampling concept that assumes that a decision can be made right after 

collecting a sample without any delay might not be applicable especially in the context of 

clinical trials. For example, clinical trials, according to the authors, often take into account 

the delays between the time a decision is made during sampling and the time that the results 

from that sampling is finally observed. As a result, Chick et al.’s paper was focused on 

extending and improving sequential sampling from simulation optimization to deal with 

situations where delays in observing data from sampling are involved with specific emphasis 

on situations when the sampling variances are unknown. Chick et al. used a Bayesian model 

to support the case of unknown variance using a published clinical trial. 

 

In the article by Shadlen & Shohamy (2016), the authors focused on making informed 

decisions based on a sequence of samples of evidence from memory. For the authors to 

establish their concept, they present the notion that sampling past experiences from memory 

aids in making value-based decisions and taking appropriate actions in the future. The 

authors in the article focused on linking memory to sequential sampling and experimented 

with their model using monkeys by studying how past rewards influenced their decisions.  

 

Fernández (2015) focused on the design of an inspection plan for nonaccepted lots to be 

resubmitted for resampling inspection using two approaches, namely, the Poisson defect 

count and prior knowledge of the samples submitted for inspection. The author applied and 

studied his approach in the glass manufacturing industry. In Fernández's approach, the 

submitted lot is only accepted when the number of nonconforming units in a single sample is 

small. If not, then the lot is subjected to lot sentencing at a fixed number of times fails to 

relay the information. The author claimed assessing information received from previous 
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inspections with its prior probability distribution of an unknown defect rate per unit is more 

beneficial and logical for the future inspection process.  

 

Section 3.4 is dedicated to a literature review of reinforcement learning. The linkage between 

RL and sequential sampling will be presented in Section 4.1. 

 

3.4 Reinforcement Learning RL 

The theories and applications of reinforcement learning are much less studied compared with 

the other types of machine learning methodologies. However, researchers have been trying to 

use reinforcement learning in different sectors such as health care, economics, entertainment, 

and manufacturing (Gatti, 2015). In this dissertation we consider the application of RL in the 

field of manufacturing and particularly process or quality control. Other studies have used RL 

in manufacturing as well. For example,  in scheduling, Ou, Chang, Arinez, and Zou (2018) 

pointed out that there are increasing trends of automation in today’s manufacturing arena to 

meet the quality requirements of a product as well as satisfying increased efficiency in 

manufacturing processes. For instance, gantry robots, which were initially widely used in 

production systems for part processing, are now being used . They therefore propose an 

optimal gantry moving policy by using a reinforcement technique, namely Q-learning, to 

maximize the system outputs of the gantry-based work cell. Q-learning is known to be one of 

the essential techniques of RL, and it can be used to optimize the action-selection policy for 

any Markovian decision process. The main objective of formulating and elevating the gantry 

scheduling was to increase the efficiency of the work cell’s real-time performance of the 

gantry during the production operation. The same gantry optimization approach can be used 

for gantry-based material handling, product transportation and quality inspection systems (Ou 

et al., 2018).  
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Shahrabi, Adibi, and Mahootchi (2017) combined reinforcement learning with a quality 

factor algorithm (Q-factor) to optimize the process of scheduling for dynamic job shop 

scheduling (DJSS).  The authors implemented reinforcement learning in their model because 

it has the ability to optimize the process of scheduling by continually improving the policy 

for choosing the best parameters at each scheduling point.  

 

Stricker, Kuhnle, Sturm, and Friess (2018) argued that there is a massive amount of data 

gathered and it can be useful especially in manufacturing industry, but unfortunately most of 

the data goes unused. Not using the available data and building a strong database can cost a 

company its competitive edge in its market due to lost capabilities to increase the production 

performance and the control process. Stricker et. al. (2018) optimized RL based on an 

adaptive control system for order dispatching and applied it in the semiconductor industry. 

The authors defined dispatching as “an optimization problem that aims to assign orders to 

resources and hence determine also the sequence and schedule of orders” (Stricker et al., 

2018).   

 

RL has also been applied in the area of inventory control.  Katanyukul and Chong (2014) 

mention that inventory management can be seen as a sequential decision process and can be a 

decisive factor for businesses. Katanyukul and Chong’s study was aimed at increasing the 

efficiency and flexebility of the inventory process by solving an inventory management 

problem using ruminative reinforcement learning (RRL). RL in its traditional form does not 

require domain knowledge but using RRL helps harness such knowledge of a problem’s 

structure to improve the learning quality and speed of RL with respect to inventory 

management.  The model proposed in this case, which is RRL, is driven by how humans 
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ponder the consequences of their action in trying to learn how to make an optimial decision. 

In their study, two methods of RRL, namely ruminative state-action-reward-state-action 

(RSarsa) and policy weighted RSarsa (PRS), were discussed. RSarsa is portrayed to be “fast 

learning but leads to an inferior learning quality in the long run” (Katanyukul and Chong, 

2014). PRS  is portrayed to have a “suporior learning quality in the long run, but with a 

slower rate” (Katanyukul & K. P. Chong, 2014). 

 

Kara and Dogan (2018) concentrated on using Q-learning and Sarsa policy to determine the 

optimal inventory process of product that can easily be damaged or have short lifetime. To 

achieve an optimal inventory process, the authors implemented their model in a manner that 

takes into consideration the balance between outdating a quantity of perishable products and 

the shortage quantity in a stochastic market. 

 

Controlling process is another attractive area for improvement in manufacturing where RL 

has been implemented. Nassima, Bouziane, and Amine (2013) emphasized the importance of 

manufacturing control, focusing on developing a distributed dynamic control model for 

flexible job shop (FJS). Nassima et al.’s model was based on heuristic and reinforcement 

learning.  

 

Dornheim, Link, and Gumbsch (2018) studied RL and considered it to be a potential quality 

tool for sequence decision making in manufacturing process. Dornheim et al. modeled a 

control system for nonlinear sequential processing of workpieces with discrete variables 

using model-free optimal control based on reinforcement learning. The proposed model was 

formed as a Markov decision process with a partially observable environment. A Summary of 

findings from the literature review will be presented in Section 4.1. 
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Chapter Four: Summary of Literature Review, Research Goals and Objectives 

 

4.1 Literature Review Findings and Linkage of RL to Sequential Sampling 

After an extensive background review of the history of manufacturing and quality, the results 

show that machine learning is part of the 4th industrial revolution and sequential acceptance 

sampling is part of lean six sigma, which is the latest quality technique in modern 

manufacturing (arguably as well as in the service industry).  

 

From the presented literature, manufacturing industries are currently more focused on finding 

ways to improve product quality and variety (process agility) and produce more products 

within a short lead time. As a result, quality control and optimizing acceptance sampling 

techniques, particularly sequential sampling, have been considered in many studies. 

Noticeably, the reviewed articles showed that sequential sampling plans are the focus of 

many studies, most of which try to improve the sampling policies  by reducing the sample 

size and eventually the production cost.  The literature review shows several proposed 

approaches to optimizing sequential sampling plans based on integrating different techniques, 

but none use the reinforcement learning approach. As a summary, some of the techniques 

used in the literatures for sequential sampling optimization include: 

1. Fuzzy sequential sampling  

2. Dynamic programming  

3. Average life of products in a sample  

4. The Bayesian methodology 

5. Poisson defect counts  

6. Prior knowledge of the samples submitted for inspection (Sampling based on 

memory). 
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We therefore believe that with this dissertation we present a novel RL-based approach to 

sequential sampling optimization. 

 

After reviewing the RL literature, it is certain RL has had a major role in revolutionizing the 

manufacturing industry with applications such as, but not limited to, sequence decision 

making optimization, quality control, supply chain, scheduling, inventory, and production 

optimization, but not many studies have been conducted to study the integration of RL and 

acceptance sampling.  

 

One of the major attributes or components of reinforcement learning is a reward system that  

guides an agent to optimize its decision making towards its next action. In previous studies, 

system reward and recognition have been considered as a major key for RL but there has not 

been a study that directly links RL to sequential sampling. This dissertation will attempt to 

improve sequential acceptance sampling with RL and investigate its impact on the process of 

inspection. In another words, this dissertation aims to consider an improved sequential 

acceptance sampling plan with RL as an optimal inspection plan. 

 

Dornheim et al. (2018) claimed that in every manufacturing process, the process quantities 

measured do not precisely define the state of the process with regards to an optimization 

problem. This claim does not support the idea of LSS where the processes have to be clear 

and fully observable. For example, in the process of acceptance sampling that  is the focus of 

this dissertation, managers, operators, and inspectors have prior knowledge about quality 

parameters of the produced products and whether the products (lots) were accepted or 

rejected. That is to say, the proposed integration between RL and sequential sampling will 
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consider the process of inspection as a fully observable environment for inspectors and 

follows MDP. 

 

4.2 Research Goal and Objectives 

The overarching purpose of this dissertation is to improve the process of sequential 

acceptance sampling using the RL methodology and to examine the impact of the proposed 

model on the LSS strategy for a high-volume manufacturing system. The following research 

objectives will be accomplished to achieve this goal: 

 

Objective 1: Build a sequential acceptance sampling model using the RL methodology for a 

partially observable environment. We hypothesize that by incorporating the RL methodology, 

the sequential sampling procedure will be improved in comparison with the traditional 

sequential sampling method.   

 

Objective 2: Carry out a sensitivity analysis. 

 

Objective 3: Compare the results of the RL-based sequential sampling with other sampling 

techniques, such as the fixed and sequential sampling techniques as well as the MIL-Standard 

policies. 
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Chapter Five: The Methodology 

5.1 Introduction  

The concepts of sequential acceptance sampling and reinforcement learning are introduced 

and discussed in Chapter 4. Sequential sampling is a quality control technique in which time 

and cost can impact the process of product quality inspection in several ways. First, defective 

items that are detected may be scrapped or rerouted for rework, the cost of which dwindles in 

comparison with the cost of defective products being released into the market. Second, an 

increase in the number of items to be tested (sampling size) increases the cost of testing and 

especially when such tests are destructive. Third, the sampling time also adds onto the cost of 

sampling. That said, sequential test policies enable the sample size and inspection interval to 

be dynamic, in response to the current known system quality state. It is for this reason that we 

propose using an RL-based sequential sampling technique. 

 

RL is a self-learning technique that ensures optimal agent action in the future. We 

hypothesize that modeling sequential acceptance sampling using the RL methodology will 

result in reduced cost and time in the process of implementing LSS to ensure that quality 

products are been produced.  

 

The proposed model is a comprehensive RL-based sequential sampling optimization 

technique for a high-mix, low variety manufacturing facility. The proposed model focuses on 

the sample size, the sampling frequency, and the sampling interval, all of which are 

parameters considered by a quality inspector when making a decision on whether to accept or 

reject products in an assembly line. In this case, the inspector bases his or her decision on the 

observations and rewards received from the previous inspection.  
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Since the process of the proposed model has randomness in its operation, it is a stochastic 

problem. The inspector in the proposed model has no previous knowledge about what 

product is good or not. Moreover, this model assumes the inspectors can fully observe the 

products under inspection and determine if they are acceptable or should be rejected based on 

their defects. The overarching purpose of this dissertation is to improve the process of 

sequential acceptance sampling by using RL and to examine the impact of the proposed 

model on the sampling process. The results from this novel model will determine whether 

linking RL with sequential sampling can be considered as an optimal solution to sequential 

sampling. The second part of this chapter begins with explaining the most related criteria to 

the proposed model. The third part illustrates the steps of the proposed model. The fourth part 

simulates the presented model using Python programing. Lastly, the results and conclusions 

are presented.     

 

5.2 Models Description 

The proposed model is based on discrete manufacturing processes that produce hundreds or 

thousands of products a day. In such cases, 100% quality would be nearly impossible to 

achieve. To ensure that quality products are being produced at low costs while achieving 

customer products’ requirements and satisfaction, the majority of these manufacturing 

companies adopt different sampling techniques to aid and streamline the inspection process 

for products coming off the production line. These sampling techniques or inspection plans 

often involve selecting samples off the production flow and spending some time (inspection 

time) to perform quality inspections for defects.  

 

This dissertation introduces a model that  addresses some inefficiencies with the sampling 

techniques. To reiterate, inspectors or decision makers are the model agents, who are trained 
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and have  complete knowledge of how to inspect each item, as well as full control to decide 

when to continue sampling, stop sampling, determine when to take the next sample, and the 

number of samples. The sampling process is the agent’s environment and it is stochastic and 

discrete. 

 

The current number of samples and the sampling interval depend on the number of 

nonconformities observed from the previous inspection. The sampling plan used in this 

scenario is a sequential sampling plan and it is considered to follow a Partially Observable 

Markov Decision Process (POMDP), where each state in the process of sampling is partially 

observable by the inspector at each timestep. 

 

5.3 Model Notations  

The problem here is to find the optimum sampling policy regarding the sampling operation 

that exists in the production line by using reinforcement learning and sequential sampling as 

a new acceptance sampling plan. The production process considered in this dissertation is a 

continuous process and requires selecting a small number of samples due to the cost and 

inspection time. Overall, the quality control process of the proposed model depends on the 

sequential sampling hypothesis, which is: 

Ho: p £ p1 

Ha: p ³  p2 

Where p is the quality parameter of a lot under inspection, p1 is the acceptance point, and p2 

is the rejection point.  As stated earlier, sequential sampling is controlled by the 

predetermined value of the producer’s risk (a), the consumer’s risk (b), and the acceptance 

and rejection points p1 and p2, respectively, are estimated as follows:  
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f( ≈ log
k

1 − l
 

f) ≈ log
1 − k

l
 

The log-likelihood function in this matter follows a binomial distribution and uses the 

number of nonconformities p found in sample n to test its hypotheses, where r is the number 

of non-confirming products, and n is the sample size. 

 

mnUD	(T, c) = mnU
1op(T, c)

1oq(T, c)
 

 

The quality decision in the proposed model is considered as the agent action and is controlled 

by the cumulative log-likelihood ratio Si.  

 

#r	 = 	 #rG( + mnUD 

 

If Si is less than or equal to the acceptance constant p1, the lot is accepted. If the Si is greater 

than or equal to the constant rejection p2, the lot is rejected. However, if Si is in between p1 

and p2, then another sample must be drawn (Otieno & Nanduri, 2012). 

 

This work aims to optimize the sample size and the sampling frequency from using 

sequential sampling and by using the reinforcement learning-based MDP solution. 

Below are the criteria of the agent process: 

1- S is a set of environment states StÎS, and it is defined by whatever information is 

available to the agent during each inspection at each discrete time step t. In the 

model, the available observed data to the agent during each state are characterized by 
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the proportion of defectives (pt). Thus, the state space is presented as St  =  {p1, p2, 

……, pt,}.  

2- A is a set of possible actions AtÎA at each state St , where the available actions for the 

agent at each time can be defined as At = {(g1, k1, w1), (g2, k2, w2), ….., (gt, kt,  wt)} 

where gt is the action of taking a sample, k1  is the action of stopping the process, and 

wt is the action of waiting for later sampling. The agent policy is a stochastic policy 

denoted as pt (a|s) that is mapping the probability of each available action given the 

current state St.  At each state the agent follows a policy to select an action from a set 

of actions At+1 Î (gt, k1, wt) that maximize the expected return modeled as 	

H∗ = KTUVKW[	$	(#-, "-). The optimal policy is based on the proportion of 

defectives pt observed from each sample St (environment’s state) and the reward Rt 

associated with it.   

3- R is the reward distribution function, and it can be defined as the immediate reward 

the agent will receive after each inspection at t time. Rt is the reward received at each 

state St after executing action At. The reward Rt for this study is a policy based on the 

proportion of defectives pt observed from each sample St and the sampling interval 

(wt). Roughly speaking, the total rewards for the proposed model are saving cost and 

time as well as we assume that all the immediate rewards are positive. 

4- To minimize the risk associated with each available action such as deciding to 

continue sampling in a fixed time that will cost money and time, especially in the 

process where LSS is implemented and the level of the quality process is high. Q-

learning is a value-based learning method used in reinforcement learning that helps 

the agent to find the optimal action-selection. The Q- learning algorithm 

R(#-, "-) ⟵ R(#-, "-) + K[$(#-, "-, ) + A	VKWX	R(#-4( + ") − R(#-, "-)] 
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5- T (St, At, St+1) is the transition probability function in the transition between one state 

St to another state St+1 after the agent executing action At. The transition probability 

function in the proposed model is under the influence of the predetermined 

parameters of sequential sampling viz, the producer’s risk (a), the consumer’s risk 

(b), and the acceptance of a rejection point p1 and p2 respectively. For example, if the 

observed data (number of defects) is greater than or equal to the rejection quality 

level, then the probability of stopping the process for further investigation will be 1. 

6- w (St, At, St+1)  is the transition time between one state St to another state St+1 after the 

agent executing action At. The transition time between states represents the time the 

inspector has to wait for taking another sample.  

7- Gamma (g) is the discount factor that helps the decision makers to determine the 

expected value of the future reward received from the future sampling. The value of 

gamma is between 0 and 1 (gÎ[0, 1] ); the higher the value of g, the less the agent is 

discounting.  

 

5.4 Model Formulation 

In this section, we will review the general steps and the algorithms after combining 

reinforcement learning with sequential sampling: 

1- We set Q-factors for all state-action pair and value function V to 0. Thus, there are 3 

actions for each state where At Î (gt, kt, wt), and state St Î S. Thus, for each Q (At, St) 

¬ 0, Vt (At, St)¬ 0.  

2- The agent takes an action At Î A at time t from the initialized state St with a 

probability of 
(

[(st)
.  

3- The optimal action-value function At is calculated  
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R(#-, "-) ⟵ R(#-, "-) + K[$(#-, "-, ) + A	VKWX	R(#-4( + K) − R(#-, "-)] 

4- Agent observes the number of defects and reward Rt from state St after executing 

action At, let R (St, At, St+1) to reduce the sample size and wait time. For instance, the 

observed reward at each state followed a model  

If pt < pt-1 and wt > wt-1 ®  Rt = 1 

If pt = pt-1 and wt = wt-1 ® Rt = 0 

If pt  > pt-1  and wt ≤ wt-1  ® Rt = -1 

5- Agent updates the total reward: total reward ¬ w (St, At, St+1) 

6- Agent updates the function Q (s, a) 

a. Exploration if it is larger than lambda ( u) 

b. Exploitation if it is less than lambda ( u) 

c. Continue until done 

7- Agent transition time between states w (St, At, St+1) can be based on the expected 

probability of defects that set by Bayesian probability or based on the predefined 

defects limitations. 

2(vw1|#-) =
2(#-|vw1)	2(vw1)

2(#-)
 

For example,  

If 1 ≥ P ≥ 0.90® wt+1 > wt 

If 0.89 ≥ P ≥ 0.80® wt+1 = wt 

If 0.87 ≥ P ≥ 0.60® wt+1 < wt 
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Figure 17: Sequential Acceptance Model Based on RL 
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Chapter 6: Sequential Sampling RL based Simulation 

6.1 Introduction 

 
An efficient production system requires models that are capable of reducing the number of 

samples during an inspection. While this paper has described the impact of acceptance 

sampling plans in industries, it is necessary to have a model that optimizes the process of 

sampling. It is also fundamental that the proposed model to be simulated on a real-world 

inspection planning problem before it is implemented in practice. This chapter presents a 

simulation technique based on integrating RL with sequential sampling that helps to 

minimize the total number of samples during the inspection process. The goal of using 

simulation is to give a representation of a real process over time by imitating the real 

production system. Therefore, the performance of the RL-based sequential sampling 

technique, sequential sampling, and MIL-STD-1916 is evaluated by simulation using Python 

programming. This software uses a collection of built-in functions and methods (libraries) 

that meets the users’ needs to perform actions without the need for writing new code such as 

statistical analysis, optimization, and plotting functions. 

 

The simulation model in this dissertation describes the inspection processes in a production 

line and estimates its performance for each given factor (Q, S). That is to say, the (Q, S) 

factor is considered as the input of the new model, and the related sample size and number of 

nonconformities are the output of the model. Reducing the sample size during the inspection 

is the primary goal of this dissertation. The RL-based sequential sampling technique will 

achieve that goal, and it will be compared with the MIL-STD-1916 and sequential sampling 

plans that were described in Chapter 4. 

In order to achieve a specific production goal such as reducing the time of inspection or 

reducing the sample size in the implementation of any acceptance sampling plans for 
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manufacturing industries, decision-makers have to consider and evaluate the current 

production system, measure the performance of the current system, and standardize the 

operating system procedures. For those reasons, we consider the production system in the 

simulation of RL-based sequential sampling, sequential sampling, and MIL-STD 196  as a 

stochastic environment. The dataset that is used for the simulation was created using Python; 

we assume there are 5,000,000 products in a production line, and they are produced following 

a discrete event. The number of nonconformities is assumed to be 8% for the entire batch and 

follows the Poisson distribution. 

 

This section of the dissertation provides the criteria for evaluating the performance of each 

model. Moreover, this part will cover in detail the simulation of the RL-based sequential 

acceptance sampling technique in the field under study. The simulation of sequential 

sampling, MIL-STD-196, and  MIL-STD-196 will be presented  in Part Three. Lastly, the 

results of the simulated inspection process problem will be described. 

 

6.2 Simulation Model (RL-Based Sequential Sampling) 

Python programming was used to build and train the RL-based sequential sampling model. 

The Python libraries that were used include NumPy, Matplotlib, CSV, Collections, and 

Ransom. The model focuses on the activities of sampling during production. The 

assumptions made to build this model are as follows:  

 

1. The model assumes there are continuous manufacturing processes that produce a 

specific number of 5,000,000 products. The beta distribution is known to be a prior 

distribution and finite support. As a result, beta distribution is applied to simulate the 
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behavior of generating random variables from observing the number of a random 

process that emits a series of defective or not defective items over time.  

2. The model assumes that there are discrete manufacturing processes that produce a 

specific number of products (N=5,000,000).  

3.  The process is assumed homogeneous, i.e., the distribution of the non-conformance 

has an expected value of 0.08 for all simulated data. 

4. The batch size of the reinforcement learning model is assumed to be between 400 and 

15000, depending on what the algorithm learns. 

5. The model assumes that the acceptable quality level of nonconformities (p1) is 0.01, 

and the rejection quality level of nonconformities (p1) is 0.06. 

6. For simulation purposes, a parameter lambda (u) is used to speed up the algorithm 

and to configure the Poisson distribution that controls the environment's batch sizes. 

In this case, the model assumes that lambda equals 0.1, the beta value (β) that  is the 

consumer’s risk equals to .10 and the producer’s risk (a) is assumed to be 0.05. 

7. Each inspection plan works for the entire production processes. 

8- The model assumes that there are five states for the agent’s space St  = {S1, S2, S3, 

S4, S5}.  

8. During the inspection process, this model assumes there are five different states that 

the agent can be in, based on the number of nonconforming samples. 

9. The model assumes that the agent’s actions are dependent on the state in which the 

algorithm is. 

10. All quality inspection parameters are assumed to be predefined and controlled by the 

sequential acceptance sampling plan. 

11. The reward function for this model is assumed to be a function of (the number  of 

samples, the accepted weight, the number of accepted bad samples, the rejected 
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weight, the number of rejected bad samples, and the states). This reward function can 

be logically acceptable for the purpose of this work, since it considers different types 

of samples’ rates for comparison. 

 

Figure 18: RL-based Sequential Sampling Model's States 

 

6.3 Simulation Performance Measures 

The main goal of the dissertation is to reduce the sample size during the inspection process. 

So, it is critical to find out the different rates of sampling. Therefore, we evaluate and 

compare the performance of each plan based on five criteria that will give us the information 

not only on how many samples are inspected but also the information on how many bad 

samples are accepted, and how many bad samples are actually rejected. The performance of 

each acceptance sampling plan can be measured in many different ways, as discussed in 

section 2.2.6.5.1. For this work the different rates of inspection will be considered and 

calculated as follows:  
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6.4 Model constraints  

The purpose of the algorithm is to determine a more efficient method of sampling in order to 

use fewer samples to determine if product made will meet the required manufacturing quality 

specification. Having constraints for the problem will make the algorithm more efficient 

because it decreases the size of the search space. The main constraints that are used in the 

process of designing the simulation model include: 

1. Hidden batch size min/max (400 samples/15,000 samples): is one of the parameters 

that the agent is trying to learn. Basically, the performance of the model is determined 

by the hidden batch size and the cut-off point for the model. Since the parameters are 

learned, it enables the model to have a higher performance than simply taking the 

batch size value from a table. The hidden batch size considered in this model is 

between 400 samples and 15,000 samples. 

2. Sample size min/max (11 samples/1111samples): the minimum sample size that the 

agent can inspect from each batch is 11samples, and the maximum sample size is 

1111. 



 

 
 

83 
 
 

 
 

 

3. Wait time min/max (11 samples/1111 samples): the minimum wait time that the agent 

can wait between each inspection  

States’ thresholds (S1, S2, S3, S4, S): it is essential to constrain the search space (number 

of nonconformities in our model) in order to make it so that the algorithm will converge 

faster and better. The states’ thresholds are designed by first determining the rejected 

point and accepted point from the sequential sampling plan. Table 11 presents the number 

of nonconforming samples for each state threshold constraint. 

 

Table 11: States’ threshold constraints 

State Minimum Maximum 

State 1 threshold 
(Rejected line in SS) 

0.80 0.91 

State 2 threshold 0.85 0.93 

State 3 threshold 0.88 0.96 

State 4 threshold 0.90 0.97 

State 5 threshold  
(Accepted level in SS) 

0.92 0.98 

 

The most general case of the algorithm would not have any constraints for determining the 

required thresholds in order to meet that purpose. The following cases are used to address the 

algorithmic convergence challenge: 

1. Lack of constraints in determining the thresholds will lead to slow convergence. 

2. With exact constraints, the algorithm will converge on the first iterations. In this 

case, there is no point in having the thresholds as a tunable parameter.  

That being said, since we do not know what the thresholds should be ahead of time (this is 

supposed to be determined by the characteristics of the distribution of the quality of the 

product), the constraints can be made to be as broad as possible. Thus, in order to make them 
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as broad as possible while also having excellent convergence characteristics in some cases, 

there can be an overlap between multiple state’s constraints. Moreover, each state transition 

shows in Figure 19 is determined by what the current state is. So, the agent’s transition is 

dependent on which state the algorithm is in and what the algorithm has learned should be the 

state transitions. 

 

Figure 19: Overlap Between Multiple State’s Constraints 

 

6.5 Simulation Procedure 

Once the constraints are defined, see part 6.4, all that remains is the setup and initialization 

for the algorithms following the same steps that were explained in Section 5.4. Once the 

algorithms are initialized, the steps can be repeated until either a fixed number of iterations is 

reached, or a stopping criterion is achieved. That stopping criterion is easy to define if the 

reward function is well understood. When the reward function is not well understood or not 

designed well, then there may be two options: (1) run the algorithms a set number of 

iterations (algorithm loop) or (2) determine a better reward function (that  can be easier said 

than done because each organization has its own quality parameters and ways for evaluation).  

 

After the algorithms are initialized, create the Q-table and set the Q-factors for all state to 0. 

We initialize the first state to state 3, and the loop of the model starts as: 

1. Evaluate the current state (data environment, state, and current state). The purpose of this 

step to determine what the characteristics of the environment are while evaluating. 
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a. Get the number of the next sample that the algorithm will evaluate for the next 

iteration of the loop. 

b. Get sample size number of samples from the data environment (only accepted 

samples) 

c. Calculate all the values from the wait time for reward evaluation (number of samples 

not sampled).  

d. Calculate the accepted weight from the samples:   

"zzwf.wd	ÄwyUℎ. =
#	n1	fKT.L	Kzzwf.wd

{	|K.zℎwL ∗ |K.zℎ	Ly~w
 

e. Compare with the current best state: 

If the current accepted weight is larger than the values of state 5 ® the state return is 

state 4. 

Else if: the current accepted weight is larger than the value of state 4 ® the state 

return is state 3. 

Else if: the current accepted weight is larger than the value of state 3 ® the state 

return is state 2. 

Else if: the current accepted weight is larger than the value of state 42® the state 

return is state 1. 

Else if the state return is not equal to the current stat® break 

else: the state return will remain the same. 

2. Calculate the current state reward (a function of (number of samples, accepted weight, 

accepted bad samples, rejected weight, rejected bad samples, states). In order to reduce 

the number of sample size and motivate an agent to inspect fewer samples, each sample 

will have a value of -1 to the total reward of the current state. The 

reward equation is 
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-1 per sample + number of good samples per correctly accepted batch – size batch if 

rejected – (10 x number of bad batches incorrectly accepted) + 100: 

If the current state is state 1 and the bad accepted rate > 0.1   

If the current state is state 2 and the bad accepted rate < 0.1   

If the current state is state 3 and the bad accepted rate < 0.0875  ®  new reward 

+=100 

For state 4 

If the current state is state 4 and the bad accepted rate  < 0.075   

for state 5 

If the current state is state 5 and the bad accepted rate < 0.06   

If any state and  the bad accepted rate < 0.05   

3. Compare the current reward with the best reward; if the reward is higher than the best 

reward, then the best state is set to the current Q value and the best reward is set to the 

current reward.  

4. Current reward is set to 0  

5. A random number is generated and compared with lambda 

6. If the number is greater than lambda, then the algorithm will be set into exploit mode, 

meaning the constraints for generating the next state are set to be close to the current best 

state (exploit).  

7. If the random number is less than lambda, then the global constraints are used for setting 

the next state (explore).  

8. Once the new state is generated, we repeat the loop, or we stop if the policy meets 

objectives.  

A summary of the simulation process is shown in Figure 20 
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Figure 20:  A Summary of RL-based Sequential Sampling Simulation 

 
 
6.6 RL-Based Sequential Sampling Results 

After three different trials of the simulation to estimate the performance of the proposed model 

in Part 6.5, Table 12 shows the average of the best three results from 12 hours of running the 

algorithm. From the same table, the sample rate of run 3 was 16%, which is higher than the 

other two. From the simulation results, there is no statistical difference in the bad accepted rate 

between the three simulations. However, the rejected weight for run 2 is 14%, and it is higher 

than the other cases. Table 12 also shows that the accepted weight of the three runs appeared 

to have a 3 percent difference between the lowest and the highest. Additionally, there is clear 

evidence that there is a direct correlation between the sample rate and the accepted weight, 

where, when the sample rate increase, the accepted weight increased as well. Figure 22 



 

 
 

88 
 
 

 
 

 

represents the trend of trial 2 results.  The trends of trials 1 and 3 are very similar to trial 2 and 

hence are not included. We note that the average values in Table 12 are for comparison between 

the RL model and the other sampling plans (Chapter 7). 

 

Table 12: Results of the 6 hours simulation RL-based sequential  simulation in % 

 Sample rate 
Bad accepted 
rate 

Accepted 
weight 

Bad rejected 
rate 

Rejected 
weight 

Run 1 7 10 97 12 3 

Run 2 4 10 94 14 6 

Run 3 16 10 96 12 4 

Ave. 9 10 96 13 4 

 
 

 

 
Figure 21: Results of Similation1, 2, and 3 for RL-based Sequential Sampling 

 
Figure 22 shows an example of how the algorithm has randomness in its operation. This 

randomness is due to the agent policy, where it has to explore the environment to accumulate 

more rewards. For the agent to obtain more rewards, it has to sample fewer  and detect more 

defectives at the same time. There presents an opportunity for the model to promote the agents’ 
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exploitation rather than exploration, which would potentially increase the number of the bad 

accepted rate with the minimal sampling rate possible. This idea will be discussed in the future 

research section. 

 

 

Figure 22: RL-based Simulation Behavior 

 

Similarly, Figure 23 shows that the sample rate is always increasing at the beginning of each 

simulation, and later decreases. This is because the agent policy promotes the exploration of 

the environment more than taking the same action in each state. Similarly, the algorithm is 

detecting more defectives at the end of the simulation than at the beginning, because later in 

the algorithm, the agent has already built knowledge on how the environment works.  
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Figure 23: Histogram of RL-based Sequential Sampling 

 

In Chapter 7, we consider a set of perform in a sensitivity analysis of the RL-based model  

by choosing to make perturbations to the model design parameters, to produce seven 

sensitivity analysis scenarios. In addition, we compare the results of Trial 2 of the RL model 

with the other acceptance sampling models, i.e., the existing sequential model, MIL-STD-

1916 (32), MIL-STD-105E (Single sampling), MIL-STD-105E (Double sampling), and 

MIL-STD-105E (Multiple sampling).  
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Chapter 7: Numerical results and Model Comparisons 

 
7.1 Introduction  

Chapter 7 aims to perform a sensitivity analysis to identify and test the behavior of the RL- 

based sequential sampling model under different parameter value conditions. This chapter 

describes some empirical evidence of the advantages of using the RL-based sequential 

sampling over the other acceptance sampling plans. In Chapter Five, the formulations for RL-

based sequential sampling model were provided. In Chapter 6, conceptual design parameters 

such as the beta value, lambda value, and state’s constraints were provided in the design of 

simulating RL-based sequential sampling. The simulation then interacts in a manufacturing 

process specifically in the process of inspection. This section shows  that RL-based sequential 

sampling can adjust to a different level of parameters. Later in this chapter,  comparisons are 

presented between the simulation model described in Part 6.2 to sequential sampling, ML-

STD-1916, and MIL-STD-105E. For a visual representation of the results of the comparison, 

the reader is referred to Table 25.The data and their graphical display gathered for each 

simulation are too large; thus, they are not included in this chapter, but they are included in the 

appendix. 

 

Moreover, to perform the sensitivity analysis, one or two factors occur in each case, while the 

other factors remain the same. The factors considered in these sensitivity analyses are the 

states’ thresholds, beta value, lambda value, sample size, and batch size. Generally, when a 

change is made to one model parameter, all the rest are kept constant. The following is a 

discussion into each model parameter that is used in the sensitivity analyses:  

1- State thresholds constraints. 

In the RL-based sequential sampling model, overlap parameters are used to constrain 

the search space (states’ thresholds), to enable the algorithm to converge faster (Figure 
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19). For testing the performance of the proposed model, fixed thresholds parameters 

are implemented as shown in Figure 24. 

 

 

Figure 24: States’ Exact Thresholds Constraints 
 
 

2. Beta value   

One way to study the performance of the proposed model is to try to change the parameters 

in the sequential sampling plan, such as the rejectable quality level and the beta value 

(consumer’s risk) that represents the probability of sending a lot with several defectives 

that exceed the rejectable quality level to the consumer.  

3. Lambda value 

Lambda (λ) is a value between (0, 1), and it is part of the algorithm to speed up the process 

of learning. The lambda value helps the algorithm to accelerate and learn faster in each 

state instead of going back to the system that had been created. Lambda is also used to 

configure the Poisson distribution that controls the environment's batch sizes. Three values of 

lambda are considered 0.9, 0.05, and 0.2. 

4. Sample size and batch size 

The sample size and batch size can affect the results of the simulations. As a result, the 

sample size is considered to range between 8 to 50, which represents the smallest sample 

size and the largest sample size in the MIL-STD-105E for a batch with 500 parts.   
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5. Reward  

The agent performance depends on how the reward function works in each state. The same 

reward function in 6.5 is implemented but with different conditions in receiving the 

rewards. The reward function is defined as: 

-1 per sample + number of good samples per correctly accepted batch – size batch if 

rejected – (10 x number of bad batches incorrectly accepted) + 100: 

If the current state is state 1 and the bad accepted rate > 0.2 

If the current state is state 2 and the bad accepted rate < 0.2   

If the current state is state 3 and the bad accepted rate < 0.1   

If the current state is state 4 and the bad accepted rate  < 0.0785 

If the current state is state 5 and the bad accepted rate < 0.05 

If any state and  the bad accepted rate < 0.05   

 
Table 13 shows a summary of the factors that are used to perform five different sensitivity 

analyses, followed with a description for each factor. The results of each model and the 

comparisons between the models are discussed later in this chapter. 

 
Table 13: Description of Sensitivity Simulations 

Sensitivity 
analysis Factor 1 Factor 2 

1 Fixed State Thresholds 
constraints 
State1: 0.80 – 0.85 
State 2: 0.85 – 0.88 
State 3: 0.88 – 0.90 
State 4: 0.90 – 0.93 
State 5: 0.93 – 0.98 

 

2 Sample size: 8 to 50 Batch size = 500 
3 Beta = 5  
4 Lambda = 0.9  
5 Beta= 5 Lambda = 0.05 
6 Reward  
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7.2 Data Analysis and Results 

Similar to the main model, each sensitivity analysis scenario simulation is repeated three times, 

and each run takes an average of 12 hours. The average of the best three results in Part 6.5 will 

be compared with the model under different parameters and the acceptance sampling plans. 

 

7.2.1 RL-Based Sequential Sampling Under different parameters 

The first part of this analysis is to find out how the RL-based sequential sampling parameters 

can be critical to the results. 

 

Table 14: Sample Rate-parameters Comparisons 

Test Evaluation criteria  Sample rate  
RL RL-based Seq. Sampling  9 
1 State Thresholds constraints 12 
2 Sample size: 8 to 50, Batch size = 500 22 
3 Beta = 5 21 
4 Lambda = 0.9 10 
5 Beta= 5, Lambda = 0.05,  49 
6 Reward, Lambda = 0.2 15 

 

It is apparent from Table 14 in that the sample rate of four tests has increased by more than 

50% comparing with the result from the first line. Noticeably, the highest sample rate is realized 

when the beta value is 5 and lambda = 0.05. That is because when lambda is too low, the model 

will learn excessively about the characteristics of the training data, and that enables the model 

to generalize to new data and actions. Where lambda is too high such as in test 4 where lambda 

is 0.9, the model reduces its speed and the agent does not learn enough about the observed data 

to make a better decision, thus resulting in fewer inspected samples.  
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Table 15: Bad Accepted Rate-parameters Comparisons 

Test Evaluation criteria  Bad accepted rate 
RL RL-based Seq. Sampling  10 
1 State Thresholds constraints 10 
2 Sample size: 8 to 50, Batch size = 500 10 
3 Beta = 5 19 
4 Lambda = 0.9 8 
5 Beta= 5, Lambda = 0.05,  16 
6 Reward, Lambda = 0.2 8 

 

Table 15 indicates that there is a significant difference in the bad accepted rate after changing 

the beta values. Unlike the results obtained from the first two simulations where the bad 

acceptance rate was similar to the original model, a change of beta to 5 increases the bad 

accepted rate to 16. 

 

Table 16: Accepted Weight-parameters Comparisons 

Test Evaluation criteria  Accepted weight 
RL RL-based Seq. Sampling  96 

1 State Thresholds constraints 88 
2 Sample size: 8 to 50, Batch size = 500 88 
3 Beta = 5 88 
4 Lambda = 0.9 88 
5 Beta= 5, Lambda = 0.05,  88 
6 Reward, Lambda = 0.2 93 

 

Table 16 shows that the changes in the state thresholds parameters, sample size (min 8, max 

500), beta value, and lambda value have the same impact on accepted weight at 88% compared 

with the original model whose value is 96%. However, Table 16 shows that there is no 

significant change in the accepted weight when lambda is increased to 0.2, and the new reward 

system is changed. 
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Table 17: Bad Rejected Rate-parameters Comparisons 

Test Evaluation criteria  Bad rejected rate 
RL RL-based Seq. Sampling  13 
1 State Thresholds constraints 15 
2 Sample size: 8 to 50, Batch size = 500 15 
3 Beta = 5 25 
4 Lambda = 0.9 14 
5 Beta= 5, Lambda = 0.05,  22 
6 Reward, Lambda = 0.2 13 

 

Table 17 shows positive rates of change in the bad rejected rate for all the tests since defectives 

are detected before the lots are shipped. It also shows the highest bad rejected rate when the 

beta value is set to 5. Even though the beta value is changed as well as the reward in test 6, the 

bad rejected rate remains the same at 13% when compared to the base model. 

 
Table 18: Rejected Weight-parameters Comparisons 

Test Evaluation criteria  Rejected weight 
RL RL-based Seq. Sampling  4 
1 State Thresholds constraints 12 
2 Sample size: 8 to 50, Batch size = 500 12 
3 Beta = 5 13 
4 Lambda = 0.9 12 
5 Beta= 5, Lambda = 0.05,  12 
6 Reward, Lambda = 0.2 7 

 

Table 18 shows  marked changes in the rejected weight, which means that more good parts are 

rejected. In contrast, there is a slight increase in the rejected weight when the reward and 

lambda values are changed. The table also indicates that test 7 has the highest rejected weight 

where tests 1, 2, 4, and 5 have the same weight of 12%. Figure 25 depicts that the model’s 

parameters have to be addressed carefully since any change in the parameters can change the 

results.  
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Table 19: RL-based Sequential Sampling vs. its Parameters’ Comparisons 

Test Evaluation criteria Sample 
rate 

Bad 
accepted 

rate 

Accepted 
weight 

Bad 
rejected 

rate 

Rejected 
weight 

RL RL-based Seq. Sampling  9 10 96 13 4 

1 State thresholds constraints 12 10 88 15 12 

2 Sample size: 8 to 50, Batch size = 500 22 10 88 15 12 

3 Beta = 5 21 19 88 25 13 

4 Lambda = 0.9 10 8 88 14 12 

5 Beta= 5, Lambda = 0.05, Reward 49 16 88 22 12 

6 Lambda = 0.2, Reward,  15 8 93 13 7 

 

 

Figure 25 RL based Sequential Sampling vs. its Parameters 

 
7.2.2 RL-Based Sequential Sampling vs. Acceptance Sampling Plans (Comparisons) 

Part of studying the performance of the proposed model is to compare it with the 

performance of other acceptance sampling plans (existing sequential model, MIL-STD-

1916 (32), MIL-STD-105E (Single sampling), MIL-STD-105E (Double sampling), and 

MIL-STD-105E (Multiple sampling). For simulating the acceptance sampling plans, we 

suppose that 100,000 products of part X are submitted in batches of size N = 500. The 

acceptable quality level (AQL) is 1.5% for a normal the single, double, and multiple 

sampling plans. Also, the normal verification level is considered for the inspection. The 

0

20

40

60

80

100

Sample rate Bad accepted rate Accepted weight Bad rejected rate Rejected weight

RL-based sequential sampling  vs its parameters

RL-based Seq. Sampling State thresholds constraints

Sample size: 8 to 50, Batch size = 500 Beta = 5

Lambda = 0.9 Beta= 5, Lambda = 0.05, Reward

Lambda = 0.2, Reward,



 

 
 

98 
 
 

 
 

 

results of the comparisons obtained from 12 hours of running the algorithm for each of the 

simulated models are as shown in Table 20. 

 
Table 20: Sample Rate-acceptance Sampling Plans 

Evaluation criteria  Sample rate 
RL-based Seq. Sampling  9 
Sequential sampling 9 
MIL-STD-1916 (32) 16 
MIL-STD-105E (Single sampling) 10 
MIL-STD-105E (Double sampling) 10 
MIL-STD-105E (Multiple sampling) 10 

Table 20 indicates that there are no major differences in sample rate for all the models.  

 
However, MIL-STD-1916 appears to have the highest sample rate of 16%; that is because 

sometimes the sample can be increased when there are two or more batches are rejected right 

after each other. On the other hand, the sequential sampling plan has the same rate as the RL-

based sequential sampling model with a 9% sample rate. 

 
Table 21: Bad Accepted rate-acceptance Sampling Plans 

Evaluation criteria  Bad accepted rate 
RL-based Seq. Sampling  10 
Sequential sampling 7 
MIL-STD-1916 (32) 4 
MIL-STD-105E (Single sampling) 6 
MIL-STD-105E (Double sampling) 5 
MIL-STD-105E (Multiple sampling) 4 

 

The results in Table 21 indicate that RL-based sequential sampling and sequential sampling 

models have accepted more bad samples than the other models. That is because both models 

have a random sample size to inspect between  a min of 8 and max of 50. Sometimes the sample 

size can be small and sometimes, it can be large, depending on how many samples an agent 

(inspector) wants to inspect.  
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Likewise, Table 22 shows that the accepted weight for both models is the highest, with 96% 

for RL-based sequential sampling and 63% for the sequential sampling model. By contrast, 

double sampling and multiple sampling have the lowest accepted weight. That is because the 

sample sizes selected for use in single, double, multiple plans are predetermined.  

Table 22: Acceptance Weight-acceptance Sampling Plans 

Evaluation criteria  Accepted weight 
RL-based Seq. Sampling  96 
Sequential sampling 63 
MIL-STD-1916 (32) 49 

MIL-STD-105E (Single sampling) 60 

MIL-STD-105E (Double sampling) 53 

MIL-STD-105E (Multiple sampling) 52 

 

The results in Table 23 show that multiple sampling plans have the highest rate of rejecting a 

batch with a high number of bad samples. In contrast, RL and the sequential sampling model 

show the least rate of bad rejected rate. The reason is that the algorithm is trading off 

exploration for exploitation.  

 
Table 23: Bad Rejected Rate-acceptance Sampling Plans 

Evaluation criteria  Bad rejected rate 
RL-based Seq. Sampling  13 

Sequential sampling 16 

MIL-STD-1916 (32) 16 

MIL-STD-105E (Single sampling) 14 

MIL-STD-105E (Double sampling) 14 

MIL-STD-105E (Multiple sampling) 17 

 

By contrast, Table 24 shows that there is a significant difference between the RL-based 

sequential sampling and the other models in rejected weight where the RL-based sequential 

sampling model only rejected 4% of the total sample size compared with 48% from multiple 

sampling. 



 

 
 

100 
 
 

 
 

 

Table 24: Rejected Weigh-acceptance Sampling Plans 

Evaluation criteria  Rejected weight 
RL-based Seq. Sampling  4 
Sequential sampling 37 
MIL-STD-1916 (32) 51 
MIL-STD-105E (Single sampling) 40 
MIL-STD-105E (Double sampling) 47 
MIL-STD-105E (Multiple sampling) 48 

 

Figure 26 depicts a comparison of the 6 models. It shows that the RL-based sequential sampling 

has the highest accepted weight and the lowest rejected weight. However, the rest of the rates 

are close to the other plans. 

 
Table 25: Results of RL-based Sequential Sampling vs. Acceptance Sampling Plans 

 

 

Figure 26: RL-based Sequential Sampling vs. Acceptance Sampling Plans 
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7.3 Results Summary and Discussion 
 

Table 26 summarizes the results gathered from the various models of simulations. The data in 

the table are the sample rate, the bad accepted rate, the accepted weight, the bad rejected rate, 

and the rejected weight. The results in the table are used to compare the results of RL-based 

sequential sampling with the results of the simulated acceptance sampling plans and the results 

of different simulated parameters. For a complete visual representation of the comparison, 

histograms of these variables are included in the appendix. 

 
Table 26: Summary of All Models in Percent 

 

Table 26 shows that all the model parameters used in the performance study have an impact on 

the implementation of  RL-based sequential sampling. For example, a smaller number of 

lambda and beta could result in inspecting more samples; this can be seen in test 3, test 4, test 

5, and test 6, where the sample rate is increased by 56%, 10%, 80%, and 60%, respectively. As 

a result, having a small value of lambda will not only increase the learning process of the agent 

but will also add more variability to the process.  

 

Similarly, considering the small beta value in the process (test 3 and test 5) will increase the 

probability of sending a batch with a number of defectives that exceeds the rejectable quality 
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level to the consumer (the bad accepted samples increases by 45% for test 3, and 35% for test 

5). Unlike the small lambda (0.02) that results in a positive impact on the result of a bad 

accepted rate, test 4, where lambda is 0.9, resulted in a decrease in the bad accepted rate by 

25%. Interestingly, there is an interaction effect whereby, when beta and lambda values are 

small and the reward parameters are increased, the bad accepted rate increased by 35%.  

 

Lambda and beta can also change the performance of the model when it comes to the accepted 

weight.  An increase in both values reduces the weight of acceptance by approximately 9% and 

that helps the agent to reject batches with a high number of defectives. Table 26 shows that all 

the considered scenarios have increased the rejected weight by at least 39%, except in test 6. 

When lambda is set to 0.2 and the rewards parameters are changed, test 6 results in the least 

rejected weight. Moreover, if a small beta value is added to the model, it will have the same 

impact on the sample rate as seen in test 3. 

 

Table 24 also indicates that not only lambda and beta values can have an impact on the process 

and its results, but also the change in the state’s thresholds constraint (test 1). This means that 

changing the state's thresholds from overlapping to having fixed boundaries (no overlap 

between state), has an impact in the results as seen in Figure 24. The same impact is realized 

when the sample size range is changed from 400 to 1500 (in the original model) to 8 to 50.  In 

particular, the results from performing test 1 and test 2 show that both tests have the same 

impact on the bad accepted rate, the accepted weight, the bad rejected rate, and the rejected 

weight, but not on the sample rate. Table 26 shows that there is a 25% increase in the sample 

rate for test 1. Interestingly, the rejected weight increased by 65% compared with the main 

model, which means that the agent is limited to its transition space and takes more steps in each 

state before moving to another state.  
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Comparing acceptance sampling plans with the model explained earlier in Section 6.5, Table 

26 shows an increase of the sample rate for all the acceptance except a sequential sampling 

plan. From the same table, using sequential sampling plan gives an advantage of having 7% 

less in the sample rate, 46% less in the bad accepted rate, and  21% more in the bad rejected 

rate. However, the sequential sampling plan’s rejected weight is 89% more, which means it 

rejects more batches that contain not just defectives but also a lot of good parts. Thus, the 

rejected weigh for the sequential sampling plan is 89% higher than the proposed model.  

 

In contrast, MIL-STD-1916 and MIL-STD-105E results show a marked difference compared 

with the result of RL-based sequential sampling. Both MIL standards show that they are 

rejecting good parts more than defectives. That is because both MIL-STD-1916 and MILE-

STD-105E have  fixed sample sizes. Additionally, MIL-STD-1196 follows a very strict policy, 

which is “zero defects,” and that explains why 51% of the parts are rejected. 
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Chapter 8: Conclusions and Future Work  

This chapter recapitulates this dissertation and concludes the work accomplished during this 

research. The main of objective of this dissertation is to integrate RL as a machine learning 

model to sequential acceptance sampling plan to minimize the number of sample sizes during 

the inspection process in a production line. In order to achieve the objective of the 

dissertation, the following sub-objectives have been accomplished:  

1. The establishment of clear understanding and definitions of each of the following:  

a. The history of the industrial revolution, the manufacturing revolution sector 

and the history of the modern quality.  

b. The history of machine learning as a branch of artificial intelligence 

(supervised learning, unsupervised learning, semi-supervised learning, 

reinforcement learning). 

c. Acceptance sampling plans such as single, double, multiple, and sequential 

sampling, and their current applications. 

d. Reinforcement Learning, its history, and its main components (agent, 

environment, policy, reward function, observation, and the action taken 

toward  the environment), and its equations. 

2. The development of  straightforward formulations suited for use in explaining the 

process of sequential sampling using reinforcement learning. 

3. The establishment of quality specifications and assumptions matching the purpose of 

initializing the simulation model. 

4. The description of the constraints used for the simulation (min/max values for hidden 

batch size, sample size, wait time, and state thresholds).  
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5. The development of a flexible computer simulation program using Python 

programing for RL-based sequential sampling appropriate for implementation in a 

different acceptance sampling scenario.  

6. The development of comparisons between the proposed model, sequential sampling, 

and MIL-STD 1916. 

Based on the literature reviews and the results attained through this dissertation, the 

following statements may be made: 

1. Sequential sampling is the most common plan that researchers have tried to improve 

due to its ability to reduce cost and sample size compared with the other acceptance 

sampling plans. 

2. RL plays a major part for revolutionizing the industry of manufacturing.  

 
3. Not many studies have been conducted to investigate the integration of RL into 

acceptance sampling.  

4. Before considering any sampling methods, constraints for the problem must be 

considered. Having these constraints makes the algorithm more sample-efficient 

because they decrease the size of the search space. 

5. Sequential acceptance sampling plays a major role to achieve the latest modern 

management principle objectives.  

6. As a result of the above analysis and comparisons, RL-based sequential sampling has 

advantages over the other acceptance sampling plans, in that its sample rate is less, 

while detecting a similar proportion of more bad samples, so the risk of sending bad 

part to the costumers is minimal. It is also acceptant of relatively more good parts than 

the other acceptance plans that would rather penalize the process by rejecting more of 

the good parts.  
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Several promising research directions were identified throughout the development of this 

dissertation.  

1. This dissertation has been focused on learning features in sequential acceptance 

sampling and reinforcement learning, by developing RL-based sequential sampling 

model and driving effective algorithms that can be applied not only in manufacturing 

but also to various sectors such as economics, medical, and any other large scale 

sectors. The contribution of this research is to solve the sequential acceptance 

sampling optimization problem using the RL methodology, by reducing the inspection 

sample size and wait time, and thus reducing the inspection costs.  

2. There is more work to be done to test whether the algorithm can respond to a 

heterogeneous rate of non-conformance, i.e., when the process is not Poisson in 

nature. 

3. More study can be accomplished on how to evaluate the importance and impact of the 

constraints in the algorithm. 

4. More studies can be made in the future to investigate the effectiveness and 

efficiencies of the proposed model on a real-world problem. In practice, first more 

analysis is needed to define the optimal constraints’ parameters.  

5. More analysis into the state transition cost can be done by adding to the complexity of 

the transition cost calculation.   

6. It was noted earlier that the model parameters promote agent exploration rather than 

exploitation, which we suspect is impacting the number of detected defective parts in 

the samples. Further research is needed to fine-tune model parameters to enable quick 

initial exploration followed by exploitation to avoid the trade-off being made between 

lowering the sampling rate and increasing the bad rejected rate.  
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7. More studies can be made on whether or not sequential sampling with RL can be 

considered as a critical success for lean six sigma (LSS), the latest modern quality. 

 

As testing and implementation of the RL-based sequential sampling model, more questions 

will be answered, and more recommendations will be made in the future. The background of 

acceptance sampling, RL, and the methods in this dissertation will serve as a first step for 

further improvements in all the areas mentioned in the work.   
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APPENDICES 

Appendix A: RL-Based Sequential Sampling Simulation 

 
 

APPENDIX A1: RL-Based Sequential Sampling Histogram 
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APPENDIX A2: RL-Based Sequential Sampling Figures 

 
Figure A2-1: RL- based sequential sampling agent’s behavior for sample rate 

 

 
 
 

Figure A2-2: RL- based sequential sampling agent’s behavior for bad accepted rate 
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Figure A2-3: RL- based sequential sampling agent’s behavior for accepted weight 
 

 
 
 

Figure A2-4: RL- based sequential sampling agent’s behavior for bad rejected rate 
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Figure A2-5: RL- based sequential sampling agent’s behavior for rejected weight 
 

 
 
 

Figure A2-6: RL- based sequential sampling agent’s behavior for all performance parameters 
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APPENDIX B: RL-Based Sequential Sampling Simulation Histogram for State 

Thresholds Constraints (Test 1) 

 
 

APPENDIX B: RL-Based sequential sampling Histogram for state thresholds constraints  
(test 1) 
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APPENDIX B2: RL-Based Sequential Sampling Figures for State Thresholds 

Constraints (Test 1) 

 
 

Figure B2-1: RL- based sequential sampling agent’s behavior for sample rate (Test1) 
 

 
 
 

Figure B2-2: RL- based sequential sampling agent’s behavior for bad accepted rate( Test1) 
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Figure B2-3: RL- based sequential sampling agent’s behavior for accepted weight (Test1) 
 

 
 
 
 

Figure B2-4: RL- based sequential sampling agent’s behavior for bad rejected rate (Test1) 
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Figure B2-5: RL- based sequential sampling agent’s behavior for rejected weight (Test1) 
 
 

 
 
 
 
 

Figure B2-6: RL- based sequential sampling agent’s behavior for sample rate (Test1) 
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APPENDIX C: RL-Based Sequential Sampling Simulation Histogram for Sample Size: 

8 To 50, Batch Size = 500 (Test 2) 

 
 

APPENDIX C: RL-Based sequential sampling Histogram for Sample size: 8 to 50, Batch size 
= 500 (test 2) 
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APPENDIX C2: RL-Based Sequential Sampling Figures for Sample Size: 8 To 50, And 

Batch Size =  500 (Test 2) 

 
 
 

Figure C2-1: RL- based sequential sampling agent’s behavior for sample rate (Test 4) 
 

 

 
 
 

Figure C2-2: RL- based sequential sampling agent’s behavior for bad accepted rate (Test 2) 
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Figure C2-3: RL- based sequential sampling agent’s behavior for accepted weight (Test 2) 
 

 
 
 
 
 

Figure C2-4: RL- based sequential sampling agent’s behavior for bad rejected rate (Test 2) 
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Figure C2-5: RL- based sequential sampling agent’s behavior for rejected weight (Test 2) 
 
 

 
 
 
 
 

Figure C2-6: RL- based sequential sampling agent’s behavior for all parameters (Test 2) 
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APPENDIX D: RL-Based Sequential Sampling Simulation Histogram for  Beta = 5 

(Test 3) 

 
 

APPENDIX D: RL-Based sequential sampling Histogram for Beta = 5 
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APPENDIX D2: RL-Based Sequential Sampling Figures for Sample Size: Beta= 5   

(Test 3) 

 
 

Figure D2-1: RL- based sequential sampling agent’s behavior for Beta =5 (Test 4) 
 

 

 
 
 
 

Figure D2-2: RL- based sequential sampling agent’s behavior for bad accepted rate (Test 3) 
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Figure D2-3: RL- based sequential sampling agent’s behavior for accepted weight (Test 3 ) 
 
 

 
 
 
 
 

Figure D2-4: RL- based sequential sampling agent’s behavior for bad rejected rate (Test 3) 
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Figure D2-5: RL- based sequential sampling agent’s behavior for rejected weight (Test 3) 
 

 
 
 
 
 

Figure D2-6: RL- based sequential sampling agent’s behavior for all parameters (Test 3) 
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APPENDIX E: RL-Based Sequential Sampling Simulation Histogram for Lambda = 0.9  

(Test 4) 

 
 

APPENDIX E: RL-Based sequential sampling Histogram for Lambda = 0.9 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

75604530150

120

90

60

30

0
8.78.48.17.87.57.2

60

45

30

15

0
9690847872

48

36

24

12

0

18.016.515.013.512.010.5

40

30

20

10

0
3024181260

48

36

24

12

0

Sample rate-4

Fr
eq

ue
nc

y

Bad accepted rate-4 Accepted weight-4

Bad rejected rate-4 Rejected weight-4

Histogram of Sample rate-, Bad accepted, Accepted wei, ...



 

 
 

130 
 
 

 
 

 

APPENDIX E2: RL-Based Sequential Sampling Figures For Sample Size: Lambda=0.9 

(Test ) 

 
 

Figure E2-1: RL- based sequential sampling agent’s behavior for sample rate (Test 4) 
 

 
 

Figure E2-2: RL-Based sequential sampling for bad accepted rate (Test 4) 
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Figure E2-3: RL- based sequential sampling agent’s behavior for accepted weight (Test 4 ) 
 

 
 
 
 
 

Figure E2-4: RL- based sequential sampling agent’s behavior for bad rejected rate (Test 4) 
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Figure E2-5: RL- based sequential sampling agent’s behavior for rejected weight (Test 4) 
 

 
 
 
 

Figure E2-6: RL- based sequential sampling agent’s behavior for all parameters (Test 4) 
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APPENDIX F: RL-Based Sequential Sampling Simulation Histogram for Beta= 5, 

Lambda = 0.05, Reward (Test 5) 

 
 

APPENDIX F: RL-Based sequential sampling Histogram for Beta= 5, Lambda = 0.05, 
Reward 
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APPENDIX F2: RL-Based Sequential Sampling Figures for Beta= 5, Lambda = 0.05, 

Reward (Test 5) 

 
Figure F2-1: RL- based sequential sampling agent’s behavior for sample rate (Test 5) 

 
 

 
 
 
 

Figure F2-2: RL- based sequential sampling agent’s behavior for bad accepted rate (Test 5 ) 
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Figure F2-3: RL- based sequential sampling agent’s behavior for accepted weight (Test 5) 
 

 
 
 
 

Figure F2-4: RL- based sequential sampling agent’s behavior for bad rejected rate (Test 5) 
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Figure F2-5: RL- based sequential sampling agent’s behavior for rejected weight (Test 5) 
 

 
 
 

Figure F2-6: RL- based sequential sampling agent’s behavior for all parameters (Test 5) 
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APPENDIX G: RL-Based Sequential Sampling Simulation Histogram for Lambda = 

0.2, Reward (Test 6) 

 
 

APPENDIX G: RL-Based sequential sampling Histogram for Lambda = 0.2, Reward 
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APPENDIX G2: RL-Based Sequential Sampling Figures for Lambda = 0.2, Reward 
(Test 6) 

 
Figure G2-1: RL- based sequential sampling agent’s behavior for sample rate (Test 6) 

 

 
 
 

Figure G2-2: RL- based sequential sampling agent’s behavior for bad accepted rate (Test 6 ) 
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Figure G2-3: RL- based sequential sampling agent’s behavior for accepted weight (Test 6) 
 
 

 
 
 

Figure G2-4: RL- based sequential sampling agent’s behavior for bad rejected rate (Test 6) 
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Figure G2-5: RL- based sequential sampling agent’s behavior for rejected weight (Test 6) 
 

 
 
 

Figure G2-6: RL- based sequential sampling agent’s behavior for all parameters (Test 6) 
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APPENDIX H: Record of Six Simulation Runs for Each KPI (The Minimum, Maximum, Average and Standard Deviation) 
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