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ABSTRACT 

QUANTITATIVE OPTICAL IMAGING OF METABOLIC AND STRUCTURAL 

BIOMARKERS IN RODENT INJURY MODELS 

 

by 

Shima Mehrvar 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor Mahsa Ranji 

 

The assessment of organ metabolic function using optical imaging techniques is an overgrowing 

field of disease diagnosis. The broad research objective of my PhD thesis is to detect quantitative 

biomarkers by developing and applying optical imaging and image processing tools to animal 

models of human diseases. To achieve this goal, I have designed and implemented an optical 

imaging instrument called in vivo fluorescence imager to study wound healing progress. I have 

also developed a 3-dimensional (3D) vascular segmentation technique that uses intrinsic 

fluorescence images of whole organs. 

Intrinsic fluorophores (autofluorescence signals) provide information about the status of 

cellular bioenergetics in different tissue types. Reduced nicotinamide adenine dinucleotide 

(NADH) and oxidized flavin adenine dinucleotide (FAD) are two key Krebs cycle coenzymes in 

mitochondria, which are autofluorescent. The ratio of these two fluorophores (NADH/FAD) is 

used as an optical biomarker for mitochondrial redox state of the tissues. The custom-designed 

optical tools have enabled me to probe the metabolic state of diseases as well as structural 

information of the organs at different regimes (in vivo, at cryogenic temperature, and in vitro). 

Here are the main projects that I have conducted and significantly contributed to: 
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1) Fluorescent metabolic imaging. I have designed and implemented an in vivo fluorescence 

imaging device to study diabetic wounds in small animals. This device can monitor the 

dynamics of the metabolism of the skin by capturing the images of the surface fluorescence of 

NADH and FAD. The area of the wounds can also be monitored simultaneously. The 

spatiotemporal mitochondrial redox ratio changes can give information on the status of wound 

healing online. This device was utilized to study diabetic wounds and the effect of photo-

biomodulation on the wound healing progress.  

I have also utilized the optical cryo-imaging system to study the three-dimensional (3D) 

mitochondrial redox state of kidneys, hearts, livers, and wound biopsies of the small animal 

models of various injuries. For example, cryo-imaging was conducted on irradiated rat hearts 

during ischemia-reperfusion (IR) to investigate the role of mitochondrial metabolism in the 

differential susceptibility to IR injury. Also, I developed a 3D image processing tool that can 

segment and quantify the medullary versus the cortical redox state in the kidneys of animal 

injury models.  

2) 3D Vascular-Metabolic Imaging (VMI). I have designed VMI, an image processing 

algorithm that segments vascular networks from intrinsic fluorescence. VMI allows the 

simultaneous acquisition of vasculature and metabolism in multiple organs. I demonstrate that 

this technique provides the vascular network of the whole organ without the need for a contrast 

agent. A proof validation has performed using TdTomato fluorescence expressing 

endothelium. The VMI also showed convincing evidence for the “minimum work” hypothesis 

in the vascular network by following Murray’s law. For a proof-of-concept, I have also utilized 

a partial body irradiation model that VMI can provide information on radiation-induced 

vascular regression. 
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3) Time-lapse fluorescence microscopy. I have utilized fluorescence microscopy to quantify the 

dynamics of cellular reactive oxygen species (ROS) concentration. ROS is imaged and 

quantified under oxygen or metabolic stress conditions in cells in vitro. This approach enabled 

me to study the sensitivity of retinal endothelial cells and pericytes to stress under high glucose 

conditions. 

In short, I developed and utilized optical bio-instrumentation and image processing tools to be able 

to detect metabolic and vascular information about different diseases. 
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1. Introduction 

The advancement of optical imaging technologies is one of the fastest-growing research areas. 

Most of these studies are focused on understanding biological systems and disease diagnosis by 

the determination of tissue properties. Optical imaging techniques combine safe radiation (non-

ionizing) with fast, low-cost, and high-contrast imaging [1]. Among optical imaging systems, 

fluorescence imaging can provide biochemical information and functional imaging on cells, 

tissues, and even the whole organ.  

The research presented here includes the development of fluorescence imaging instruments in 

different regimes, conducting experiments, acquiring images, and processing them to extract 

markers for tissue metabolism and structure. This information bridges physiological function to 

the tissue structure, which is one of the most important information in understanding, treatment, 

and prevention of disease. 

1.1. Major contributions 

I have contributed in the following 3 major areas: 

1.1.1.  Optical bio-instrumentation 

I have designed and implemented an optoelectronic device called in vivo fluorescence imager. It 

is designed to be able to monitor intrinsic mitochondrial fluorophores, namely NADH and FAD, 

from the surface of skin in vivo. I have also been involved in designing a user interface platform 

to control the device and synchronize the acquisition. The optical design of the device has been 

upgraded to be able to translate the system to future clinical applications. 
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1.1.2. 3D image processing of fluorescence cryo-images 

The 3D fluorescence cryo-imager has conventionally been utilized to capture the 3D images of 

NADH and FAD. My contribution is the implementation of 3D image processing algorithms on 

the metabolic cryo-images to visualize the morphology alongside the biochemistry of multiple 

organs. This can importantly give both physiological and anatomical information. 

To analyze the heterogeneity of the mitochondrial fluorophores regarding the anatomy of 

a kidney, a medullary and cortical segmentation algorithm is designed and implemented. This 

provides a platform to study animal injury models and their effects on the regional mitochondrial 

redox state in kidneys. Using this tool, the effect of partial body irradiation and lisinopril treatment 

afterwards on kidneys have been studied.   

 Vascular-metabolic imaging (VMI) using intrinsic fluorescence is another technique that 

I have designed to extract and quantify the 3D vessel network of whole organs from label-free 

fluorescence images. VMI has been validated using a TdTomato rat expressing endothelium. I 

showed that VMI fallows the minimum work hypothesis proposed by Murray’s law, and the 

segmented vasculature has successfully detected the defective vasculature and the resulting 

impaired blood circulation in radiation-induced injuries. 

1.1.3. Experimentation, image acquisition, and data interpretation 

The first two mentioned contributions were for studying the underlying mechanism of multiple 

animal injury models and the effect of specific treatments on them. For that, I involved in 

experimentation, image acquisition, and interpretation of the metabolic data from the following 

animal injury models: a) the effect of radiation-induced injuries and lisinopril mitigation on the 

kidney, b) the susceptibility of the irradiated hearts to further ischemia-reperfusion injury, c) 
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ischemia-reperfusion injury in liver, d) diabetic wound healing and the effect of 

photobiomodulation, e) Unilateral nephrectomy, and e) Tmem overexpression of hearts. 

Conducting all these experimental studies required the assembly of the required tools and 

designing experimental protocols to study the metabolism in the cryogenic, in vivo, and in vitro 

regimes. For each regime used in this study, unique treatment and preparation of the tissues, as 

well as proper imaging and acquisition methods are required. The cells, samples, and surgery needs 

are provided by the Medical College of Wisconsin, the University of Wisconsin-Madison, and the 

College of Nursing at the University of Wisconsin-Milwaukee. My PhD contributions and research 

are published in the following peer-reviewed journals and conference proceedings. 

 

Journal Publications 

J1. S Mehrvar, S Mostaghimi, F Foomani, N Narayanan, B Fish, AKS Camara, MM Medhora, 

and M. Ranji, “3D vascular-metabolic imaging using inverted intrinsic fluorescence,” (In 

submission process) 

J2. S Mehrvar, S Mostaghimi, FH Foomani, B Abroe, JT Eells, S Gopalakrishnan and M Ranji, 

“670nm Photobiomodulation improves the Mitochondrial Redox State of Diabetic Wounds,” 

(Submitted) 

J3. S Mehrvar, FH Foomani, S Shimada, C Yang, N Zheleznova, S Mostaghimi, A Cowley, 

and M Ranji, “The Early Effects of Uninephrectomy on Rat Kidney Metabolic State Using 

Optical Imaging,” (under revision) 

J4. S Gopalakrishnan, S Mehrvar, S Maleki, H Schmitt, P Summerfelt, AM Dubis, B Abroe, 

TB Connor, J Carroll, W Huddleston, M Ranji, and JT Eells, “Photobiomodulation Preserves 
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Pigmentosa,” (In submission process). 

J5. S Mehrvar, K Rymut, F Foomani, S Mostaghimi, JT Eells, M Ranji, and S Gopalakrishnan, 

“Noninvasive fluorescence imaging of mitochondrial redox state to assess diabetic wounds,” 

IEEE Journal of Translational Engineering and Health Medicine, (2019) 

J6. S Mehrvar, MF la Cour, MM Medhora, AKS Camara, and M Ranji, “Optical Metabolic 

Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigating by 

Lisinopril,” Annals of Biomedical Engineering, (2019) 
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1.2. Biological backgrounds 

1.2.1. Organ anatomy and vasculature 

Defective vasculature and the resulting impaired blood circulation in organs cause pathological 

injures, such as organ failure and stroke [2]. Therefore, vascular imaging has a pivotal role in 

diagnosis, follow-up of disease evolution, and assessment of treatment efficacy [3]. Assessment 

of vascular structure in rodent models is key to characterize organ vasculatures quantitatively [4, 

5]. This quantitation could be beneficiary in analyzing conditions, such as hypertension [6], 

diabetes [7], and retinopathy [8]. Vascular imaging is also important in therapeutic angiogenesis 

[9]. 

The gold standard for vascular imaging of small animal organs is histology, which has a 

major limitation for obtaining a 3D picture of structural components as a connected vascular tree 

[10].  Additionally, adapting this technique to small animals besides transgenic mice [11] requires 

the development of molecular tools such as specific antibodies [12, 13]. Imaging modalities such 

as micro-computed tomography (micro-CT) [4, 14], ultra-microscopy [14], near-infrared 

fluorescence imaging [15], magnetic resonance imaging [16], and ultrasound imaging [17] are 

existing tools for vascular imaging in 3D, but they are complex and costly. Labeling with a contrast 

agent is the only way to produce the needed contrast for most vascular imaging technologies [18]. 

A solvent can also be used to optically clear the tissue and overcome the limiting 3D vascular 

image contrast in high scattering organs like the kidney [19]. Imaging systems typically provide 

information about just one biological marker that limits the capacity to decipher complex disease 

with multiple hallmarks [20]. Integrating multiple imaging modalities to have a hybrid imaging 

tool can produce multi-parametric data set [21]. For instance, positron emission tomography (PET) 
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is the gold standard for molecular imaging. A hybrid imaging technology, such as PET-CT [22] 

acquires anatomical and molecular information, which in turn comes with increased cost, 

acquisition time, and complexity. 

1.2.2. Cell physiology and metabolism 

The structural and functional units of life are cells, the building block of all known living 

organisms [23]. Many injuries and diseases can be traced back to irregularities in the behavior 

within the cell [24]. Early detection and treatment of such injuries could lead to a significantly 

lower rate of permanent damage and help in reducing further therapy costs.  

Mitochondria play central roles in various key cellular processes, such as ATP production, the 

regulation of calcium homeostasis, cell death pathways, and disposal of ROS [23]. The chemical 

reactions in mitochondria result in providing energy for the cell that is essential for the organism 

to remain healthy and viable. Mitochondria are specialized for aerobic respiration in the presence 

of oxygen [25]. In this process, a chain of mitochondrial coenzymes is oxidized, resulting in 

adenosine triphosphate (ATP), which is the unit of energy for the cells. Any irregularity in the 

amount of oxygen in the cell and its surrounding environment leads to perturbation to cell functions 

and eventually, cell death [26]. 

The electron transport chain, represented in Figure 1 is a complex system of chemical 

reactions that take place in the inner mitochondrial membrane to produce ATP [23]. In the electron 

transport chain, two coenzymes, nicotinamide adenine dinucleotide (NADH) and flavin adenine 

dinucleotide (FADH2), are oxidized through a series of protein complexes [23]. A change in the 

oxidation state of these two cofactors, or in other words, a change in the concentration of the 

oxidized form, is a direct marker of a change in tissue oxidation status and metabolism [27]. 
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The normal metabolism of oxygen has some natural by-products, which can produce ROS. 

ROS are chemically reactive molecules containing oxygen and play a vital role in cell signaling 

and redox regulating. The excessive amount of ROS leads to oxidative stress that is greatly 

involved in pathologies of various diseases [28]. In mitochondria, incomplete processing of 

oxygen and the release of free electrons result in the production of mitochondrial ROS, produced 

at a rate higher than their scavenging capacity [29, 30]. Any irregularity in the amount of oxygen 

introduced to the mitochondria represents an imbalance between the production and consumption 

of ROS. A slight increase in oxidative stress leads to mitophagy, in which the mitochondria 

degrades, but the cell manages to recycle the nutrients released. However, in extreme case, the 

excessive amount of ROS or the production of peroxides and free radicals, can cause damage to 

any and all parts of a cell [31]. This is especially important given that a variety of diseases can 

disrupt the balance of oxygen flow into and around cells, causing improper function of the 

mitochondria, and thus an increased rate of cell death via apoptosis or necrosis [26].  

 

Figure 1: A simplified block diagram of the electron transport chain. NADH plays role in complex I and FADH2 in complexII. 
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Mitochondrial dysfunction is a term that is used when there is an impairment in any of these 

processes. Mitochondrial dysfunction inevitably leads to cellular damage, and it is linked to 

various diseases and injuries such as Parkinson [32], obesity [33], Alzheimer [34], and cancer [35]. 

Multiple approaches have been developed to assess mitochondrial dysfunction. For instance, 

mitochondrial function and dysfunction can be determined with isolated mitochondrial assays such 

as mitochondrial respiratory control [36]. In an intact cell assay, cell respiratory control can give 

the rate of ATP production, the proton leak rate, the coupling efficiency, the maximum respiratory 

rate, the respiratory control ratio, and the spare respiratory capacity [37]. Phosphorus-31 nuclear 

magnetic resonance spectroscopy can give insights on bioenergetic monitoring in vivo by 

providing an indicator of mitochondrial oxidative phosphorylation [38]. 

1.3. Optical metabolic imaging 

Living tissues can be studied using optical imaging. A wide range of optical imaging 

techniques can be utilized to visualize tissue morphologies or to assess metabolic processes [39]. 

Optical imaging techniques provide quantitative physiological and structural information 

reflecting disease progression. Furthermore, these techniques have been shown to possess high 

sensitivity and specificity for discriminating between diseased and healthy tissue [40]. Among 

optical imaging systems, fluorescence imaging techniques provide the capability of monitoring the 

metabolic state of cells, tissue, and organ through probing the intrinsic or exogenous fluorophores. 

Optical metabolic imaging can be classified into three main categories [41]: 

Auto-fluorescence imaging of redox ratios. Imaging intrinsic fluorophores (auto-

fluorescence signals) of tissue provide information about the status of cellular bioenergetics in 
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different tissue types [42-44]. This approach quantifies mitochondrial redox state by imaging 

reduced nicotinamide adenine dinucleotide (NADH) and oxidized flavin adenine dinucleotide 

(FAD), two key Krebs cycle coenzymes in mitochondria. NADH and FAD fluorescence signals 

can be captured without the use of exogenous fluorescent dyes. Studies conducted by other 

researchers as well as our team show that the ratio of these fluorophores, (NADH/FAD), the redox 

ratio, acts as a quantitative marker of the tissue metabolism in injury due to ischemia-reperfusion 

[42, 44-48], hyperoxia[49], diabetes [50], gene knockout [43, 51-54], and also as indicators for the 

response of different treatments such as photodynamic therapy [55], cancer therapy [56-58], and 

mitigating radiation-induced injuries [59].  

Fluorescence imaging of exogenous markers. By Imaging exogenous fluorophores, the 

mitochondrial ROS production rate, which is correlated with OS, can be monitored. Using 

fluorescence time-lapse microscopy, the dynamics of oxidative stress concentration in injuries can 

be quantified in vitro. Also, the new methodology and experimental protocol can quantify the 

changes in oxidative stress because of different stress conditions in an uncoupled or inhibited state 

of cells. This approach studies the metabolic activity preferences under different metabolic 

stressors such as hypoxia or high glucose condition. 

Oxygenation imaging. Tissue oxygen consumption correlates with cytochrome oxidase in 

the tissues. Therefore, whole-body respiration can be correlated with the overall rate of 

mitochondrial electron transport. However, the inference of mitochondrial dysfunction from 

changes in oxygen consumption is difficult due to the complexity of whole organisms and tissues. 

Therefore, without having another source of information, a dysfunction in the supply of substrates 

or the consumption of ATP in the tissues may not show mitochondrial dysfunction [37]. However, 

optical absorption provides the contrast for functional imaging since it provides information on 
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the oxygen saturation of hemoglobin. Near-infrared spectroscopy (NIRS) by utilizing the light in 

the near-infrared window (700-1300nm), can determine the in vivo concentrations of 

chromophores, noninvasively. The oxygen consumption and hemodynamics of skeletal muscles 

can be monitored by NIRS in various diseases [60-62]. As a side-project, NIRS is applied to 

monitor the muscle oxygenation of patients with postural orthostatic tachycardia syndrome 

(POTS) [63]. 

1.4. Animal injury models 

The animal injury models that are studied here include the followings. 

Diabetic wound and photobiomodulation (PBM). Chronic lower-extremity ulcers are a common 

complication of diabetes, and approximately 15% to 25% of individuals diagnosed with diabetes 

will develop a lower extremity ulcer at some point in their lifetime [64]. Moreover, diabetic ulcers 

often persist for months to years in debilitated patients [65-67].  These ulcers can become infected 

causing pain, discomfort, hospitalizations, and poor quality of life, which impose a tremendous 

economic burden on the healthcare system with costs conservatively estimated for the management 

of diabetic foot ulcers to be $9–$13 billion in the United States [68]. This increases a secondary 

demand; a need to be able to monitor and track the cellular changes during the wound healing 

trajectory, so that effective interventions can be identified and implemented during the early stages 

benefiting the patient population [69]. 

PBM using far-red (FR) to near-infrared (NIR) light is a non-invasive, painless, and 

inexpensive therapeutic modality with documented efficacy in preclinical and clinical studies in 
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soft-tissue injuries and wound healing. We studied the excisional wound on the db/db mouse and 

the progress of wound healing was also monitored after FR-PBM. 

Uninephrectomy (UNX). The compensatory hypertrophy of a remaining kidney following 

unilateral nephrectomy (UNX) and other forms of reduced renal mass is essential to sustain normal 

kidney functions and for the long-term survival [70]. Compensatory kidney hypertrophy refers to 

the increase in the size, weight, and functionality of the remaining kidney to restore the lost renal 

function [71]. The degree to which the remaining kidney can compensate for a reduction in total 

renal mass is remarkable as seen to occur in many chronic kidney diseases, diabetes, and most 

dramatically in the kidney of donors for transplantation [72, 73]. The hypertrophic and other 

adaptive responses of the remaining kidney following a 50% loss of renal mass are adequate to 

sustain homeostatic responses required for normal function, and kidney donors from 

transplantation exhibit relatively low risk of end-stage renal disease [74]. However, it is also 

evident that the loss of a kidney may reduce the overall margin of safety when faced chronically 

with excess solute or electrolyte loads and accelerate the progression of chronic kidney disease 

[75]. Although the long-term clinical impact of UNX and renal hypertrophy may be debated, the 

rapid hypertrophic response during the first several days following UNX is critical to prevent the 

immediate consequences of acute kidney failure and for the survival. However, the mechanistic 

basis of these rapid compensatory responses remains poorly understood. It is unclear what signals 

the remaining kidney to hypertrophy [70]. The goal of the present study was to determine whether 

renal oxidative stress may be important in this signaling process. 

Partial body irradiation and mitigating by lisinopril. The Ionizing radiation induces cell death 

mainly by DNA damage, making it a useful therapy to treat tumors.  However, organ damage to 

non-tumor (normal tissue) can also occur by radiation.  The gut, bone marrow, skin, lung, and 
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kidney are acutely injured by radiation, though damage to each system is dependent on the time 

after exposure and the dose of radiation.  The gut and bone marrow manifest injury within days 

after radiation, while renal failure takes months to develop.  However, after the bone marrow, the 

kidney is one of the most radiosensitive organs manifesting effects from doses as low as 6 Gy and 

up.  Therefore, the kidney could exhibit injuries in cancer survivors undergoing radiotherapy [76-

78]. Furthermore, exposure to high doses of radiation from a radiological terrorist attack or nuclear 

accident will injure the kidney and cause renal dysfunction [79, 80]. As the effects of radiation on 

the kidneys can be life-threatening, the assessment of the mechanism of injury and the 

development of medical countermeasures to treat the effects of irradiation become increasingly 

essential. 

 Late renal dysfunction after irradiation is mainly attributed to radiation-induced 

nephropathy, which is characterized by a slow progressive reduction of renal function, and its 

clinical symptoms such as increased serum creatinine levels, proteinuria, azotemia, anemia and 

high blood pressure [77, 81]. It is well-known that irradiation at higher doses may attenuate renal 

hemodynamics, which contributes importantly to elevated levels of reactive oxygen species 

(ROS), glomerulosclerosis, tubulointerstitial fibrosis, and renal dysfunction [82, 83]. 

 A rat model of one leg-out partial body irradiation (PBI) (i.e., shielding one hind leg) has 

been previously described [84]. The whole animal model is developed to study the effects of 

radiation in the context of exposures of multiple organs that are injured at different times. This 

model spares enough bone marrow to repopulate the hematopoietic system but not the other 

organs.  Our studies revealed that angiotensin-converting enzyme (ACE) inhibitors such as 

enalapril, captopril, fosinopril, and lisinopril abrogated the radiation-induced injuries and renal 

toxicity[84, 85]. Moreover, ACE inhibitors, particularly lisinopril, demonstrated significant 
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protection in cancer patients[86, 87]. Our team has shown that combining lisinopril with hydration 

and antibiotics provides optimum mitigation of acute and delayed radiation injuries in multiple 

organs after a single dose of 13 Gy[85]. There was a 100% morbidity rate in rats exposed to 13 Gy 

by 160 days, while the morbidity was only 20% in animals treated with lisinopril with saline and 

Enrofloxacin with G-CSF at the same time after irradiation. 

Whole thoracic irradiated heart exposed to ischemia reperfusion. Radiation The two main 

causes of death in the United States are heart disease and cancer [2]. Studies have shown that the 

two may be interconnected in radiotherapy during the treatment of intrathoracic malignancies [88]. 

Indeed, radiation is an independent risk factor for death from cardiovascular disease in cancer 

patients after prolonged thoracic radiotherapy [88]. Insofar as cardiomyocytes are well-

differentiated and nonproliferating cells, the heart is perceived as relatively radiation-resistant as 

compared to other tissues, such as bone marrow, gut, or lungs [89, 90]. Therefore, it has been 

suggested that radiation damage to the heart is primarily caused by inflammatory changes in the 

microvasculature with a reduced number of capillaries, leading to occlusion of vessels, reduced 

vascular density, perfusion defects, and eventually, myocardial ischemia, cell death, and fibrosis 

[91-94]. The manifestation of cardiovascular disease is more likely to occur with a high dose and 

a long-time exposure to irradiation; hence, the potential for short-term low-dose irradiation-

induced injuries is less likely to occur in the heart. Evidence indicates that there are compelling 

associations between high therapeutic doses of thoracic radiation and increased risks for 

cardiovascular disease in long-term cancer survivors [95-98]. 

In the present study, we investigated the impact of a single low dose 15Gy WTI on the 

mitochondrial function before, during, and after global ex vivo IR injury. Our aims were: (a) to 

determine whether WTI predisposes the myocardium to worsened outcome following IR injury 
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and (b) whether altered mitochondria metabolism, specifically redox state, is a key contributor to 

WTI aggravated IR injury. 

Ischemia-reperfusion injury in liver. End-stage liver disease is a leading cause of death in the 

USA. Liver transplantation (LT) is the only cure, but liver organs qualified for LT are in shortage. 

One of the reasons for this shortage is ischemia and reperfusion injury (IRI), which has a 

significant negative impact on organ functionality. IRI occurs both during hepatic surgery with 

clamping of the vascular pedicle of the porta hepatis (Pringle maneuver) and in LT [99]. Hepatic 

IRI has a profound clinical impact on graft function after LT with organs from marginal or 

extended criteria donors because its deleterious effects are augmented in these grafts. IRI causes 

early organ failure in up to 12% of patients, and 15% to 25% of patients experience long-term graft 

dysfunction [100]. Post-reperfusion syndrome, with an incidence rate of up to 30%, causes acute 

cardiovascular collapse that could lead to patient death [101]. Poor graft function after LT 

contributes to the need for a retransplantation of the liver and results in an increase in resource 

utilization. In the present study, we investigated the mitochondrial redox state of livers before, 

during, and after global IRI. 

Hyperglycemia in retina endothelial cells. Increased oxidative stress and mitochondrial 

dysfunction have been linked to the development and progression of diabetic retinopathy and 

trigger the pro-apoptotic actions of mitochondria [102, 103]. Specifically, oxidative stress plays a 

key role in retinal vascular cell injury and degeneration of capillaries during diabetes [103]. 

However, little is known about the primary retinal vascular cell target and the mechanism(s) 

involved in metabolic stress associated with diabetes and pathogenesis of diabetic retinopathy. 

The distribution of vascular pericytes (PC) and endothelial cells (EC) reflect specific functional 

features of the microvasculature in different organs and relate to the organ metabolic demand and 
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specialized cellular functions. The greatest PC density has been noted in the retinal blood vessels, 

which is needed for the particularly high metabolic activity of the retina and requires meticulously 

regulated blood flow. The greater pericyte number and coverage has been linked to higher capillary 

and venular blood flow and better microvascular barrier. Due to the important role of retinal 

pericytes (RPCs) in controlling blood flow, a higher sensitivity to metabolic changes is expected 

for these cells compared with retinal endothelial cells (RECs), especially under stress conditions. 

We previously showed that RPCs are more sensitive to the adverse effects of high glucose 

compared with RECs [104, 105]. However, the reason for this selective sensitivity remains 

unknown. We proposed this sensitivity may be linked to a preference of bioenergetic sources for 

these cells. 

Here, we measured the metabolic resistivity of the RPC and REC by monitoring reactive oxygen 

species (ROS) production in real-time, while the live cells were challenged with various metabolic 

stressors. Stress conditions were induced by a mitochondrial uncoupler or inhibitors of electron 

transport chain (ETC) complexes affecting the oxidative metabolic pathway. Moreover, the 

metabolic stress was exacerbated by HG condition to gain insight into the underlying cause of RPC 

sensitivity to HG. Using time-lapse microscopy, an experimental protocol was previously designed 

to quantify the dynamics of ROS production in vitro [40, 106]. In this protocol, the nano-molar 

concentration of MitoSOX red was used to monitor mitochondrial ROS production levels and the 

rate in live cells over time. Using this experimental protocol, the dynamics of ROS production in 

REC and RPC were determined. Live cells were incubated with PCP (a mitochondrial uncoupler) 

or rotenone and antimycin A (mitochondrial ETC inhibitors) under normal glucose (NG). 

Furthermore, the mitochondrial stress from PCP treatment was compared under HG. 
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Hypoxia in pulmonary artery endothelial cells. Hypoxia is severe oxygen stress, which mostly 

causes irreversible injury in lung cells. However, in some studies, it is reported that hypoxia 

decreases the severity of injuries. This study assessed the effect of the oxygen tension on fetal 

pulmonary artery endothelial cells (FPAECs). 
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2. Fluorescence metabolic imaging 

2.1. In vivo fluorescence imaging of diabetic wounds 

The objective of this project is to examine the correlation of mitochondrial metabolism to the 

delayed wound healing in diabetic mice by developing a surface fluorescence imaging instrument. 

Diabetes is known to cause delayed wound healing, and extremity diabetic ulcers may end with 

lower limb amputations and mortalities. It is expected that diabetes can alter the spatiotemporal 

distribution of the mitochondrial redox state of wounds. Using surface fluorescence imaging, we 

monitored mitochondrial redox state, i.e., reduced nicotinamide adenine dinucleotide (NADH), 

oxidized flavin adenine dinucleotide (FAD), in the in vivo diabetic wounds. What follows is a brief 

description of wound induction and experimental protocol, the explanation of surface fluorescence 

imager, and signal processing along with the results. 

2.1.1. Experimental protocols 

The experiments conducted were approved by the Institutional Animal Care and Use Committee 

(IACUC) at the University of Wisconsin Milwaukee. Genetically diabetic male ~20-week old mice 

(db/db; BKS.Cg-m+/+ Leprdb) were obtained from Jackson Laboratories (Bar Harbor, ME). The 

blood glucose level and the weight of the mice were measured. Mice were anesthetized with 4% 

isoflurane. A 10mm circular full-thickness wound was prepared midline at the shoulder-level. 

Age-matched non-diabetic mice were used as controls (n=6/group).  

In vivo images of metabolic indices (NADH and FAD) were captured just after wound 

induction. For the assessment of wound healing progress, the wounds also imaged at the 2nd, 4th, 

and 6th day of post-wounding. At the end of the experimental protocol, mice were euthanized, 
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wound biopsies were collected and snap-frozen in liquid nitrogen for later 3D cryo-imaging of the 

volumetric mitochondrial redox state. Table 1 shows the experimental protocol timeline. Biopsies 

from the two groups of mice (n=4/group) were collected right after wound induction. 

For studying the effect of FR-PBM, db/db mice were randomly assigned to 670 nm PBM 

or sham treatment groups. Treatment consisted of irradiation of the wound using a 670 nm LED 

array (Quantum Devices, Barneveld. WI) to deliver a light dose of 4.5 J/cm2 at the wound surface 

(60 mW/cm2 for 90 sec) five times per week. The 670nm LED array was positioned directly over 

the wound area at a distance of 1 cm. Sham-treated mice had the LED array positioned above the 

wound for 90 seconds, but not illuminated. In vivo fluorescence imaging was performed at day 0, 

3, 6, and 9 post-wounding (n=6 FR-PBM, n=5 Sham-treated). The imaging procedure takes around 

5 min, and during this time, all the animals are kept anesthetized. This anesthetic stage keeps the 

animals’ movement in minimum during the imaging. At the end of the experimental protocol, the 

entire wounds were excised and snapped frozen immediately. The frozen biopsies were then 

imaged by cryo-imaging for the volumetric redox study. 

2.1.2. Instrumentation 

Figure 2 illustrates a schematic view of the costume-designed surface fluorescence imager. 

This system can record the online and real-time fluorescence images of tissues using a charge-

coupled camera (QImaging, Rolera EM-C2, 14 bit) with 1,004×1,002 pixel arrays. A mercury arc 

lamp (Intensilight, Nikon, Tokyo, Japan) generates the excitation light through a liquid light 

guide.  For each channel, the light spectrum is filtered by optical filters at selected wavelengths to 

excite the specific fluorophores from the surface of the wounds. For mitochondrial redox 
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experiments, we set the excitation filter for NADH at 350 nm (80-nm bandwidth, UV Pass 

Blacklite, HD Dichroic, Los Angeles, CA). The FAD excitation filter was set at 437 nm (20-nm 

bandwidth, 440QV21, Omega Optical, Brattleboro, VT). NADH and FAD emission filters are set 

at 460 nm (50-nm bandwidth, D460/50M, Chroma, Bellows Falls, VT) and 537 nm (50-nm 

bandwidth, QMAX EM 510-560, Omega Optical), respectively. Two neutral density filters 

(ThorLabs, NJ) are used as excitation and emission filters for white field channel imaging. The 

appropriate excitation and emission filters are selected using two motorized filter wheels 

(FW103H, ThorLabs, NJ), which is controlled by a two-channel APT™ benchtop stepper motor 

controller (BSC202, ThorLabs, NJ).  

2.1.3. Image processing 

NADH and FAD autofluorescence images of wounds were analyzed using MATLAB. The 

images of two cuvettes containing 50µM NADH and 0.5µM FAD solutions from their respective 

channels were used for calibration. The calibration performed to minimize day-to-day variations 

in light intensity. The wound border was found manually using the white field image, and then the 

wound segmented for both NADH and FAD images. The ratio of these two images (NADH/FAD) 

 

Figure 2: A schematic view of in vivo fluorescence imager. Specific filter set is chosen at excitation and emission wavelength 

of NADH and FAD. 
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was calculated pixel-by-pixel. Subsequently, the mean of redox ratio histograms was considered 

as the quantitative marker and calculated according to Eq. (1): 

1
( )RR wound pixels

N
= 

               (1) 

where N is the number of wound pixels.  

2.1.4. Results 

Figure 3 shows the on-line fluorescence redox ratio images of diabetic wound vs. control during 

the first six days of wound healing. Table 1 shows a statistical analysis of all the redox ratios 

calculated based on Eq. 1. Comparing diabetic mouse to control, lower NADH and higher FAD 

fluorescence signals were observed throughout the wound resulting in a dropped redox ratio value 

(oxidized state) over time. At the end of day 4 of wound healing, the surface redox ratio of the 

diabetic wound had a 61% lower state (oxidation of ETC) compared to control. 

 

Figure 3: Real-time metabolic images of the wounds from all diabetic and control mice. In diabetic mice, a decrease in redox 

ratio and an increase in size of the wounds are observed in comparison with controls over time. 
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Table 1: A comparison of image quantifications over days Diabetic versus Control. Surface RR and area of the 

wounds measured by in vivo fluorescence imager. * significant differences with the control (P<0.05). 

  DAY0 DAY2 DAY4 DAY6 

SURFACE RR Control 1.32 ± 0.08 1.37 ± 0.05 1.27 ± 0.06 1.52 ± 0.04 

 Diabetic 1.16 ± 0.03 0.67 ± 0.06* 0.65 ± 0.03* 0.60 ± 0.06* 

NORMALIZED AREA Control 1 0.61 ± 0.09 0.57 ± 0.09 0.50 ± 0.08 

 Diabetic 1 1.21 ± 0.05* 1.18 ± 0.03* 1.38 ± 0.06* 

 

Temporal images from fluorescence imaging of the effect of FR-PBM are shown in Figure 

4. It can be conducted that the redox ratio in the FR-PBM wounds is much higher than those of 

sham-treated mice. This is a consequence of a decrease in the NADH and an increase in the FAD 

 

Figure 4: Real-time metabolic images of the wounds from all diabetic sham-treated and FR-PBM mice. FR-PBM caused an 

increase in redox ratio and a decrease in size of the wounds at day 9 of post wounding. 
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level of the FR-treated wounds over days, which caused the conspicuous higher redox ratio at days 

6 and 9.  

Table 2 presents the data and the statistical analysis for FR-PBM and sham-treated groups 

of mice over days. As it has been previously discussed in methods, Surface RR and wound size 

are obtained using in vivo fluorescence imager, and their corresponding changes over time are 

called RR change rate and closure rate, respectively. FR-PBM treatment caused a significant 

increase in Surface RR at days 6 and 9, and the change rate of surface RR became significant at 

day 9. Therefore, as time passed, the mitochondrial redox state of the wounds in the FR-treated 

group increased with a faster rate than the Sham-treated group.  

In sham-treated diabetic mice, normalized wound size increased from day 0 to day 3 and 

resulted in a negative closure rate (bigger wound size than day 0). Despite the descending rate of 

wound size at day 3 and day 9 in sham-treated wounds (positive closure rate), the wound size is 

still bigger than the wound size at day 0. On the other hand, in the FR-PBM group, the wound 

Table 2: A comparison of image quantifications over days diabetic Sham-treated versus FR-PBM. Surface RR 

and size of the wounds measured by in vivo fluorescence imager. * significant differences with the control 

(P<0.05). 

  
Day0 Day3 Day6 Day9 

Surface RR FR-PBM 1.01 ± 0.07 0.46 ± 0.03 0.55 ± 0.05* 1.26 ± 0.07* 
Sham 1.08 ± 0.07 0.47 ± 0.05 0.36 ± 0.06  0.67 ± 0.04 

RR change 

rate 
FR-PBM - -0.54 ± 0.07 0.09 ± 0.05 0.71 ± 0.08* 

Sham - -0.61 ± 0.11 -0.05 ± 0.06 0.25 ± 0.04 

Normalized 
wound size 

FR-PBM 1 0.87 ± 0.08* 0.82 ± 0.02* 0.61 ± 0.09* 
Sham 1 1.32 ± 0.14 1.26 ± 0.09 1.08 ± 0.11 

Closure rate FR-PBM - 0.13 ± 0.08* 0.05 ± 0.06 0.21 ± 0.11 
Sham - -0.32 ± 0.14 0.06 ± 0.10 0.18 ± 0.11 
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starts to diminish in size from day zero, and it keeps its descending trend to the end of experimental 

protocol time. The normalized wound sizes in the FR-PBM and sham-treated groups were 

significantly different on days 3, 6, and 9. The FR-treated wound is 44% smaller than the wound 

in the diabetic sham-treated group on day 9.  

2.2. 3D optical cryo-imaging 

The objective of this project is to evaluate the redox state of organs in various models of injuries 

using fluorescent imaging. Imaging intrinsic fluorophores (autofluorescence signals) of tissue 

provide information about the status of cellular bioenergetics in different tissue types. Rapid 

freezing of organs in liquid nitrogen temperatures preserves the metabolic state of the tissue and 

increases the quantum yield. This approach quantifies mitochondrial redox state by imaging 

reduced NADH and oxidized FAD, two key Krebs cycle coenzymes in mitochondria. In this 

section, a brief explanation of the cryo-imager instrument is presented.  

2.2.1.  Experimental protocols and tissue preparation 

To perform cryo-imaging, tissues are frozen rapidly after extraction form the animal, which results 

in the preservation of the tissue's metabolic state [107]. Using optical cryo-imaging, I investigated 

intact rodent organs in the following injury models. All the experiments complied with the 

standards presented in the Care and Use of Laboratory Animals and were approved by the 

Institutional Animal Care and Use Committee. 

A) Wound biopsy from db/db mouse. Transgenic diabetic mice (db/db; BKS.Cg-m+/+ 

Leprdb) were obtained. A 10mm circular full-thickness wound was prepared midline at the 

shoulder-level. Age-matched non-diabetic mice were used as controls. For the assessment of 
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healing progress, at the end of the 6th day of post-wound, mice were euthanized, and wound 

biopsies were collected. 

B) Photobiomodulation (PBM). The FR-PBM was performed by 670 nm LED arrays 

engineered to eliminate heat (GaAlAs LED arrays, Quantum Devices, Barneveld WI). db/db 

mice were randomly assigned to 670 nm PBM or sham treatment groups. Treatment 

consisted of irradiation of the wound to deliver a light dose of 4.5 J/cm2 at the wound surface 

(60 mW/cm2 for 90 sec) five times per week. The 670nm LED array was positioned directly 

over the wound area at a distance of 1 -2 cm. Sham-treated mice had the LED array 

positioned above the wound for 90 seconds, but not illuminated. In vivo fluorescence imaging 

was performed at day 0, 3, 6, and 9 post-wounding (n=6 FR-PBM, n=5 Sham-treated). The 

imaging procedure takes around 5 min, and during this time, all the animals are kept 

anesthetized, which minimized movement artifacts during imaging. At the end of the 

experimental protocol, the entire wounds were excised and snapped frozen immediately. The 

frozen biopsies were then imaged by cryo-imaging for the volumetric redox study. 

C) Uninephrectomy (UNX). The effect of unilateral nephrectomy (UNX) on the mitochondrial 

oxidation state of the remnant kidney was studied in Sprague Dawley (SD) rats. All rats were 

studied at 6-7 weeks of age.  SD rats were obtained from Harlan Sprague Dawley Inc 

(Madison, WI) and SS rats (SS/JrHsdMcwi) from colonies maintained at the Medical College 

of Wisconsin (MCW). Rats were fed a custom AIN-76 diet (Dyets, Bethlehem, PA) 

containing 0.4% NaCl since weaning. Two groups of SD rats were studied: rats with UNX 

(n=9) of the right kidney, and sham surgery rats in which the same procedures were 

performed with the right kidney not removed (n=8). All surgeries were performed under 

isoflurane anesthesia. On day 3 following recovery from UNX or sham surgery, rats were 



29 

 

again anesthetized for the rapid removal of the right and left kidneys of the sham rats, and 

removal of the remaining kidney (left kidney) of the UNX-performed rats.  Removed kidneys 

were hemisected and dropped into a container of isopentane cooled by liquid nitrogen. After 

2 min in the cooled isopentane, the kidneys were moved into liquid nitrogen and then stored 

at -80°C until cryo-imaging was performed.  

D) Partial body irradiated rat kidney and lisinopril treatment. The non-anesthetized rats 

were exposed to a total single dose of 13 Gy partial body irradiation (PBI) by shielding part 

of one hind limb of each rat. The details of the animal model and lisinopril treatment used in 

this study can be found in our previous report [85, 108, 109]. Briefly, 10 irradiated rats along 

with 6 age-matched non-irradiated controls were given the antibiotic and hydration post-

irradiation. Five of the irradiated rats were randomly chosen to receive further treatment with 

lisinopril starting one week after irradiation and continued at 24 mg m-1 d-1 until the tissue 

was harvested. The kidneys were imaged by optical cryo-imaging to compare the irradiation 

impact on mitochondrial redox in the three groups of rats; 1) non-irradiated controls (Control, 

n=6), 2) leg-out partial body irradiated (PBI, n=5), and 3) leg-out partial body irradiated 

followed by lisinopril treatment (PBI+Lisino, n=5). 

E) Whole thoracic irradiated rat heart exposed to ischemia reperfusion. Unanesthetized 

female WAG/RijCmcr (Wistar) rats were irradiated in batches, with a single dose of 15 Gy 

to the whole thorax only as already described [110]. On day 35 after irradiation, the animals 

were sacrificed, and the hearts were extracted for ex-vivo Langendorff perfusion. In brief, 

after cannulating the hearts for retrograde perfusion via the aorta, they were left to stabilize 

for 25 to 30 mins before initiating the ischemia, ischemia-reperfusion (IR), or time control 

(TC) perfusion protocol. For the ischemia only group, the hearts were subjected to global 
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ischemia for 25 min by constricting the retrograde flow through the aortic cannula. The IR 

groups underwent similar ischemia for 25 min, followed by reperfusion, i.e., removing the 

aortic constriction, for 60 min. The TC hearts were perfused for the same protocol duration 

as the IR experiments, without ischemia. The TCs are expected to show no significant 

difference in redox signal intensity and cardiac function over the entire protocol; thus, 

validating the reliability of the ex vivo model for evaluating IR-induced damage. 

F) Ischemia reperfusion injury in rat liver. A total of five groups of Sprague-Dawley (SD) 

rats containing five per group were studied. The first group consisted of the control (ctrl), 

which received no treatment. The second group consisted of rats subjected to 60 minutes of 

ischemia (Isc60), which was achieved by temporarily occluding the blood vessel pedicles to 

the median and lateral lobes of the liver with a clamp. The third group received treatment 

like the second group, but with 90 minutes of ischemia injury (Isc90). The fourth and fifth 

groups had the same ischemia treatments as Isc60 and Isc90, but instead of harvesting the 

liver after ischemia, the clamp was removed, and the abdomen was closed to allow 

reperfusion for 24 hours for each ischemia injury group (IRI60 and IRI90). Two different 

ischemia durations were used to investigate the effect of longer ischemia time, followed by 

reperfusion injury. 

2.2.2. Cryo-imaging system 

The custom-built cryo-imager at the Biophotonics Lab, University of Wisconsin Milwaukee, 

images autofluorescence signals of NADH and FAD at the freezing time, and the redox ratio 

(NADH/FAD) is calculated from the three-dimensional (3D) image [42, 44]. Freezing, embedding, 

cryo-imager system (Figure 5), and imaging procedures were previously described in detail [40].  

Briefly, the cryo-preserved tissues were first embedded in a customized black mounting medium 
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for imaging and fixed into the cryo-imager system. The system has an automated acquisition 

system, which sequentially slices the tissue with a microtome blade and acquires separate images 

of NADH and FAD from the surface of the frozen tissue. A mercury arc lamp (200 W lamp, Oriel, 

Irvine, CA, with a bulb from Ushio Inc., Japan) was used as the light source. The excitation filter 

for NADH was set at 350 nm (80-nm bandwidth, UV Pass Blacklite, HD Dichroic, Los Angeles, 

CA), and the corresponding FAD filter was set at 437 nm (20-nm bandwidth, 440QV21, Omega 

Optical, Brattleboro, VT). Another set of filters was used to only pass the desired emitted auto-

fluorescent signals before reaching the image recordings system (CCD camera, QImaging, Rolera 

EM-C2, 14 bit). Emission filters for NADH and FAD were set at 460 nm (50-nm bandwidth, 

D460/50M, Chroma, Bellows Falls, VT) and 537 nm (50-nm bandwidth, QMAX EM 510-560, 

Omega Optical), respectively. All filters were controlled by two motorized filter wheels (Oriental 

Motor Vexta Step Motor PK268-01B). The lateral pixel size was 40 µm/pixel, and the z resolution, 

defined by slice size, was set to 30 µm. 

2.2.3. Image processing 

 

Figure 5: A schematic view of cryo-imager used in this study. All components of the system are labeled. 
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A biomarker for the whole organ redox state quantification and visualization is calculated 

through the following steps. NADH and FAD autofluorescence images are taken from tissue 

coronal slices and post-processed with an algorithm in MATLAB (MATLAB Inc., Boston, MA). 

As previously described [42], calibration was performed to minimize the day-to-day variations in 

light intensity, mirror angle, and non-uniformity of the illuminations pattern. The low-intensity 

voxels as background and high-intensity voxels as fat tissue were set to zero by thresholding. 3D 

rendering of the redox ratio (NADH/FAD) for all kidneys were calculated voxel-by-voxel. 

Subsequently, the histograms of the redox ratio, which is a distribution of pixel intensities through 

the whole volume, were calculated. The corresponding mean values of the whole sample 

histograms were calculated according to the following equation, 

1
_ ( )mean whole whole kidney voxels

N
=  ,            (2) 

where N is the number of voxels within the organ. The mean redox ratio values of the 

histograms can be used for quantitative analyses of metabolic states. 

Medullary and cortical redox ratio quantification. The objective of my research is to quantify 

the 3D heterogeneity and spatial distribution of the redox state in different organs using an image 

processing tool. It is expected that injuries can alter the metabolic heterogeneity and the 

distribution of mitochondrial redox state. For example, the kidney medullary region can respond 

differently to injuries comparing to the cortex. 3D cryo-images can also give an anatomical 

distribution of the mitochondrial redox state throughout the organ. My 3D image processing 

algorithm allows the segmentation of medullary and cortical regions in redox cryo-images. The 

developed image processing tool also can quantify the spatial distribution and correlation of the 

regional mitochondrial redox state to the various renal injury models. 
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As shown in Figure 6A, the histograms of images from kidneys were bimodal, i.e., there were 

two regions of a kidney with different levels of redox ratios. The two modes in the histogram are 

distinguished by two different colors in Figure 6B. While most of the ATP produced by the kidney, 

particularly in the cortex, is through aerobic mechanisms[111, 112], the medulla can efficiently 

use anaerobic metabolism [113].  Therefore, it can be approximated that the second mode in 

bimodal histograms showing a high redox ratio corresponds to the renal medulla, while the first 

mode with a low redox ratio corresponds to the renal cortex.  

 The kidney was segmented into its medullary and cortical regions to analyze the 

heterogeneity of redox ratio regionally, as shown in Figure 6A. The algorithm for segmenting 

approximate medullary and cortical regions is shown in Figure 6C. After loading the stack of grey-

scale redox images, a 5×5 Gaussian filter was applied to each slice of images as a low pass filter 

to reduce machine-induced artifacts and noise, while improving the global thresholding. Then, the 

 

Figure 6: Medullary and cortical segmentation. (A) a whole kidney redox ratio image (the black line shows the segmentation 

boundary), the segmented approximate medulla, and the rest of the kidney (approximately cortex). (B) 3D volumetric histogram 

of the whole kidney in part. The local minimum between approximate cortex and medulla voxels. (C) A simplified flowchart for 

the segmentation algorithm. 
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smoothed image was converted to a binary image by selecting an appropriate threshold. The local 

minimum between the two modes of histograms was considered for thresholding, as shown in 

Figure 6C. Then, the largest connected component (i.e., the largest object) was found in the binary 

image since the medullary region is the largest high-intensity object in the redox image. This 

component was used as a mask for the medullary section. By filling the mask, we are assured that 

inside the component is also detected as the medulla. The remaining pixels correspond to the 

cortical and papillary regions. The papilla was visually segmented and masked to have a better 

approximation of the cortex. The process was repeated for every 2D image to form the 3D redox 

ratio for approximating both the medulla and the cortex. The same mask for segmentation was 

used to analyze NADH and FAD images separately.  

 The corresponding mean values of the whole kidney, medulla, and cortex histograms were 

calculated according to equations 

1
_ ( )

c

mean cortex segmented cortex voxels
N

=  ,             (3a) 

1
_ ( )

m

mean medulla segmented medulla voxels
N

=  ,         (3b) 

where Nc and Nm are the numbers of voxels within the segmented cortex, and medulla, 

respectively. The mean redox ratio values of the histograms can be used for quantitative analyses 

of metabolic states of the cortical (Eq. 3a) and medullary (Eq. 3b) regions. 

2.2.4. Results 

A) Diabetic wound biopsy on mouse: Figure 7A shows 3D rendered metabolic images (NADH, 

FAD, and redox ratio) obtained from diabetic wound and control at the end of the experimental 

protocol. Figure 7B shows the histogram comparison of the redox ratio 3D images. The mean 
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redox ratios calculated according to Eq. (2) to display the redox state of biopsy wounds at day 4 

of wound induction, shown in the legend of Figure 7B. Complying with the trend we observed 

with the in vivo fluorescence imager, at the end of the experimental protocol, the diabetic mouse 

had a %114 lower volumetric redox ratio (oxidized state) comparing to control, lower NADH and 

higher FAD fluorescence signals. 

Figure 8a represents 3D rendered cryo-images captured from the biopsies collected at day 0 and 

at the end of the experimental protocol for studying FR-PBM. The color-coded images of wound 

biopsies show higher NADH and lower FAD in the FR-treated group in comparison with the sham-

treated group resulting in a higher intensity of volumetric redox ratio images. Figure 8b indicates 

that on day 9, the volumetric redox ratio histograms were shifted to the right by 46% on average 

 

Figure 7: A comparison on redox ratio of diabetic versus control wound biopsy. A) 3D cryo-images of representative biopsy 

wounds from diabetic vs. controls at day0 and day6 of post punching, B) their corresponding tissue redox ratio (NADH/ FAD) 

histograms. The percentage difference between the mean value of histograms (Volumetric RR) from control vs diabetic is shown 

for each day of post punching. 
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in the FR-PBM group when compared to the sham-treated. The difference in mean volumetric RR 

± standard error is also shown in Figure 8c. The Volumetric RR drops at day 9 of post wounding 

in sham-treated mice when compared to the sham-treated mice at day 0. When comparing the FR-

PBM group with the sham-treated group on day 9, there is a significant difference (P<0.05). This 

observation confirms the data that was obtained from the in vivo fluorescence imager.  

B) Uninephrectomy: Figure 9A shows the 3D rendered NADH, FAD, and NADH/FAD redox 

ratio (RR) images of right and left kidneys obtained from a single representative normal Sprague 

Dawley (SD) rat in which the right kidney was removed (UNX) and a single SD rat in which a 

sham surgery was performed (Sham).  As it can be seen in pseudo color representation, the left 

 

Figure 8: A comparison on redox ratio of diabetic Sham-treated versus FR-treated wound biopsy. a) 

Representative fluorescence cryo-images of NADH, FAD, and the tissue redox ratio (NADH/FAD) for representative wounds 

are shown at day 9 and day 0 (b) The redox ratio histogram of the wounds on the FR-PBM and sham-treated group of mice is 

also shown. (c) the bar plot illustrates the statistical analysis of volumetric RR. 
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kidney in UNX exhibit a lower RR value, indicating that UNX caused an oxidized redox state 

within the medullary and cortical regions. Figure 9B shows the distribution of the redox ratio 

integrated throughout the ½ kidney calculated from the same four (½) kidneys shown in Figure 

9A. The distribution of redox ratio is lower in the left kidneys of UNX rat compared to sham, while 

the histograms of the right kidneys exhibit similar distributions of the redox ratio. 

 

Figure 9: The effect of uninephrectomy (UNX) on the volumetric redox ratio. (A) Representative 3-dimensional rendered 

images of kidneys from each treatment: UNX, and Sham. The fluorescence patterns for the redox ratio (NADH/FAD) of the 

whole kidney, medullary and cortical regions are shown.  The corresponding intensity histogram distributions of the whole 

kidney (B), medullary (C), and cortical (D) redox ratios are illustrated. 
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Figure 9C summarizes the mean ± standard error of the RR calculated from the kidneys of SD rats 

3 days following UNX and compared to Sham rats. It was found that the average RR of the 

remaining left kidney of SD rats was reduced by 29% compared to the right kidneys of these same 

rats that had removed 3 days earlier (P<0.01).  A similar reduction of RR was observed averaging 

24% (P<0.05) when the remaining left kidney was compared to the left kidney of the sham-

operated rats removed 3 days following sham surgery.  No significant difference was observed 

between the right and left kidneys of sham rats (P>0.05), neither between the right kidneys of the 

two groups (P> 0.05). 

 The mean ± standard error kidney weights of the rats summarized in Figure 9D found that 

UNX resulted in a 14% increase in the left kidney weight compared to the right kidneys (P<0.01). 

Similarly, there was a significant weight increase (20%, P<0.01) of the remaining kidney after 

UNX compared to the left kidneys of the sham-operated SD rats. No significant differences were 

observed comparing weights of the left and right kidneys of the sham rats (4%, P>0.05) neither 

when comparing the right kidneys of the two groups (P>0.05). 

C) PBI rat kidney: Representative examples of 3D cryo-images of the NADH and FAD 

fluorescence signals and their redox ratios (NADH/FAD) obtained from control rats, partial body 

irradiated (PBI) rats, and rats treated with lisinopril after PBI (PBI+lisino) are shown in Figure 

10A. The medullary and cortical regions segmented from the same three representative kidneys 

are shown in Figure 10B and Figure 10C, respectively. Figure 10D, Figure 10E, and Figure 10F 

show the corresponding redox ratio histograms of the same three representative kidneys from each 

group shown in Figure 10A, Figure 10B, and Figure 10C, respectively. Comparing PBI rats to 

controls, lower NADH and higher FAD fluorescence signals were observed throughout the kidney 

as shown in Figure 10A, especially in renal medullary regions. Notably, when the PBI rats were 
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treated with lisinopril after radiation, the kidneys exhibited higher levels of redox ratios, i.e., 

reduced redox state, throughout the kidney compared with those of PBI alone treated animals. 

D) WTI heart exposed to IR: Figure 11(a) shows representative 3-D cryo-images obtained from 

the different treatment groups (TCnon, TCirr, ISCnon ISCirr, IRnon, IRirr). Representative 3-D 

rendered RRs from each group are also shown. A difference in the 3-D rendered images can be 

observed in the different experimental conditions (TC, ISC, and IR); there was no significant 

difference in the RR between nonirradiated and irradiated hearts under similar experimental 

conditions. This observation is suggesting that the RRs increased during ischemia and decreased 

during reperfusion when compared to their respective TCs. The individual representative images 

for the RR distributions are summarized in the histograms in Figure 11(b). The weighted mean 

value calculated using Eq. (2) is shown in the plot legend. A high mean value of RR suggests a 

 

Figure 10: The effect of partial body irradiation (PBI) on the whole kidney, medullary and cortical redox ratio. (A) 

Representative three-dimensional rendered images of kidneys from each treatment: Non-irradiated (Control), Partial Body 

Irradiated without (PBI) and with lisinopril treatment (PBI+lisino). The fluorescence patterns for NADH, FAD, and the tissue 

redox ratio (NADH/FAD) are shown. (B) The 3D segmented cortical regions for each treatment and (C) the medullary regions 

for each treatment. (D), (E), and (F) are the corresponding intensity histogram distributions of the whole kidney, cortical, and 

medullary redox ratio, respectively. 
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reduced redox state of mitochondria, and a low value suggests an oxidized redox state of 

mitochondria. Figure 11(c) shows a summary bar plot of the mean ± SEM of cryo-imaging RR for 

each treatment group. There was a significant difference in RR (p < 0.05) between TC and ISC or 

IR for the irradiated and nonirradiated hearts when compared to their TCs. For nonirradiated and 

irradiated hearts, ischemia increased RR 78% and 105%, respectively, whereas IR decreased RR 

by 42% and 55%, respectively. Thus, there was no significant difference in the RR between the 

two groups.  

E) IR injury in rat liver: Figure 12a shows redox ratio cryo-imaging results for all the samples 

in each group. The results are shown as the maximum projection of the redox ratio represented by 

a pseudo-color scale, with red indicating a high signal level and blue indicating low signal level. 

It can be seen that both ischemia groups have higher redox ratio values, which indicate a more 

 

Figure 11: The effect of whole thoracic irradiation on hearts exposed to ischemia reperfusion. a) Cryo-imaging results of 

representative hearts in each group. (a) 3-D fluorescent images of NADH, FAD, and RR. (b) Corresponding histograms of 

voxel distribution of the RR fluorescent images. (c) Bar plot of mean for volumetric histograms showing statistical analysis (n 

= 5∕group). * shows the group that are significantly different from their respective TCs. 
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reduced metabolic state, whereas both reperfusion groups show lower redox ratio values and a 

more oxidized state. From the full 3D reconstruction of the redox ratio images, the relative voxel 

frequency distribution of the redox ratio for each sample was constructed. These can be seen in 

Figure 12b for a representative sample from each group. The ischemia groups have slightly higher 

redox ratio (RR) levels than the control, and the reperfusion groups show two levels of lower RR. 

A bar plot of the RR values for each group of samples can be seen in Figure 12c. This revealed no 

significant difference between the control and both ischemia groups. However, there were 

significant differences between the control and reperfusion groups (p = 0.0168 for IRI60 and p = 

2.79·10−7 for IRI90). It was found that the IRI60 group had a 29% decrease in RR, whereas the 

IRI90 group had a 71% decrease in RR. 

 

 

 

Figure 12: The mitochondrial redox state of livers exposed to ischemia reperfusion.  a) Maximum projection of the redox 

ratio for n = 5 samples in each group. Each image scale is 4 cm × 4 cm. b) Relative voxel frequency distribution of redox ratio 

for a representative sample in each group. c) Statistical analysis of mean values of RR with n = 5 samples in each group and 

significant difference marked with *. 
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2.3. Discussion  

Mitochondrial dysfunction and the resulting apoptotic cell death have a major role in the pathology 

of many diseases in different organs [114-121]. The dysfunctionality of mitochondria can be seen 

by dysregulation in mitochondrial metabolic activity. Therefore, measuring the mitochondrial 

metabolic state could potentially be an early indicator of organ dysfunction during the disease. 

In this chapter, I presented two methods that measure fluorescence from both NADH and 

FAD, allowing calculations of the redox ratio, which has proven to be a powerful diagnostic 

marker [41]. The first method, in vivo fluorescence imager, can map the surface redox ratio of 

wounds in 2D, noninvasively. Fluorescence redox imaging was also performed using the 3D 

optical cryo-imager. FAD autofluorescence signal originates only from mitochondria [122, 123]. 

The primary source of NADH is mitochondria, with negligible contribution from cytoplasmic 

sources and minimal impact from NADPH [123-125]. Cytosolic NADPH, which has the same 

fluorescence characteristics as NADH, could be contributing to the signal attributed to NADH in 

this study. However, Chance et al. demonstrated that the fluorescence signal originates mostly 

from NADH in the mitochondria, and the contribution of NADPH - present in cytosol - is very 

small [126]. The fluorescence signal is mainly from NADH since its quantum yield is much higher 

than NADPH (1.25 to 2.5), its concentration is 5 times larger than NADPH, and is the only one 

affected by metabolic perturbations [127-129]. Thus, NAPDH’s contribution to the NADH signal 

and the change in the NADH signal due to diseases studied in this thesis was assumed to be small 

and was ignored. 

Fluorescence metabolic imaging was performed to determine the changes in mitochondrial 

redox state and use data to predict the progression of different ROS-mediated diseases and injuries 
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including, diabetic wounds, uninephrectomy, radiation-induced injuries, and ischemia-reperfusion 

injury. The therapeutic actions of FR-PBM on diabetic wounds and lisinopril treatment on 

irradiated kidneys. Mitochondrial redox state was analyzed in mouse eyes suffering from these 

diseases. The percentage change in the signals was expected to correlate with the severity of 

injuries in the tissue (injured vs. normal). 

A) Diabetic wounds and FR-PBM. Our custom-designed non-contact non-invasive fluorescence 

imager detected the effect of diabetes and FR-PBM on wound healing trajectory by monitoring the 

mitochondrial metabolic state quantitatively. At days 2, 4 and 6 of post-wounding, the redox ratio 

of diabetic wounds was lower than those of controls. At days 6 and 9 of post-wounding, the redox 

ratios in FR-treated wounds on diabetic mice were higher than those of sham-treated animals. The 

cryo-imaging confirms the results from in vivo fluorescence imaging. These results support our 

previous investigations documenting the ability of FR-PBM to decrease oxidative stress and 

improve mitochondrial function [130, 131]. The mitochondrial dysfunction of wounds in diabetes 

is mitigated by FR-PBM, resulting in an accelerated healing process. 

B) Uninephrectomy (UNX). We found that by day 3 following UNX, rats exhibited a significant 

decrease of the global redox index compared to sham controls. Mitochondrial oxidative stress is 

crucially involved in renal hypertension [132-141] and the ability of the nephrons to maintain a 

balance of the redox ratio necessary for normal bioenergetics was therefore diminished.  This was 

observed in both the cortex and medulla of left (remaining) kidneys when compared to the matched 

right (removed) kidneys of the UNX rats.  This indicates that both regions of the remaining kidney 

were utilizing more oxygen and requiring more energy to compensate for the function of the 

missing kidney, as was determined by studies of primary cultured proximal tubular cells from the 

remnant kidney of UNX rats [32].  As the proximal tubular hypertrophies, there is an increase in 



44 

 

the basolateral surface area of nephron and an associated increase of Na+-K+-ATPase activity [10]. 

This enables the remaining kidney to cope with the increased energy needed to reclaim the greatly 

increased filtered amounts of Na+, glucose, amino acids, and other solutes suddenly thrust upon 

the remaining kidney.  Greater mitochondrial ROS production associated with the greater 

workload of the remaining nephrons could lead to uncoupling of oxidative phosphorylation and 

cell mitophagy, but the extent to which this occurs following UNX has not been quantified.   

C) PBI kidney and lisinopril treatment. 3D optical cryo-imaging revealed that a single dose of 

PBI caused significant oxidation of the whole kidney redox state (NADH/FAD) due to lower 

NADH and higher FAD in the kidneys of irradiated rats compared to non-irradiated controls. 

Therefore, in mitochondria of irradiated kidneys, there was less NADH and more FAD compared 

with non-irradiated rat kidneys. That is, the ability of the nephrons to maintain balanced 

NADH/NAD ratio necessary for normal bioenergetics is diminished following irradiation. Hence, 

these changes would result in the lack of availability of adequate reducing equivalents necessary 

for the ETC to generate the electron-motive force required for ATP production in the irradiated 

kidneys. The altered mitochondrial metabolism and bioenergetics after PBI could contribute to 

potential compromise in renal function. The increase in the oxidized state of mitochondria 

following exposure to radiation could be ascribed, in part, to impaired ETC function. In this case, 

it is possible that the higher NADH oxidation without a concomitant increase in ATP production 

could cause an increase in reactive oxygen/nitrogen species (ROS/RNS) production [142, 143]. 

On the other hand, another report suggests the lack of the oxidative stress in the irradiated kidney 

by routine biochemical assays such as measurements of lipid peroxidation, carbonylated proteins 

or DNA oxidation [144]. 
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Our findings confirm the results of previous studies, which showed that lisinopril, an ACE 

inhibitor, is effective against radiation-induced nephropathy [145]. Our findings are also in line 

with reports suggesting that lisinopril can be considered for use in clinical trials for the treatment 

of radiation injuries [146]. The rats in our study were administered lisinopril in their drinking water 

(see Methods), but lisinopril can be given once a day, and this provides a clinical advantage over 

other ACE inhibitors such as captopril, which has a shorter biological half-life and must be dosed 

more frequently [146]. Consistent with our previous study [85], showing that lisinopril could 

mitigate the radiation-induced injury on multiple organs, the present study revealed the 

contribution of this ACE inhibitor on the renal redox state as a potential mechanism for 

ameliorating the injury. The significant improvement in the redox state of PBI kidneys after 

lisinopril treatment suggests that renal mitochondrial disruption after PBI was mitigated by 

lisinopril. Furthermore, the mitigating effects of lisinopril could be ascribed, in part, to a decrease 

in oxidative stress. 

D) WTI heart exposed to IR. The oxidation of the mitochondrial redox state on reperfusion 

tended to be more pronounced in the irradiated hearts, albeit not significant. This observation 

suggests that mitochondrial metabolism was not altered after WTI. Furthermore, the similarities in 

redox state in the two groups before, during, and after ischemia suggest that cardiomyocyte 

mitochondrial physiology was preserved during exposure to the brief pulse of WTI. 

An increase in the oxidized state of mitochondria following ischemia could be ascribed to, in 

part, impaired ETC function and OXPHOS. Higher NADH oxidation without a concomitant 

increase in ATP production suggests an increase in reactive oxygen/nitrogen species (ROS/RNS) 

production, which are contributing factors in IR injury [142, 143, 147]. We showed previously that 

ROS and RNS production increase dynamically in the ex vivo perfused heart during ischemia and 
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on reperfusion, and the magnitude of cardiac functional recovery correlated with the extent of ROS 

or RNS produced. Thus, cardioprotective interventions that mitigate IR damage and improve 

functional recovery on reperfusion show significant attenuation of ROS emission during ischemia 

and on reperfusion [148]. Our functional data in the current study infer that WTI may not 

predispose irradiated hearts to more ROS production during IR and hence, worsening of cardiac 

function. 

E) Ischemia reperfusion injury in livers. The main mechanism of injury in hepatic IRI is due to 

an immune-mediated response during the reperfusion phase [149]. This also matches well with our 

results because we see a significant difference in the severity of damage in the reperfused livers 

according to the duration of ischemia before reperfusion. The reperfusion groups both show lower 

redox ratios than the control group, indicating a more oxidized redox state. The change in 

coenzyme levels during hepatic IRI has been known to be incongruent, and it is difficult to 

interpret. The exact details of NADH and FAD metabolism during hepatic IRI remain elusive, 

though a report on human liver perfusion models indicated that the NADH:NAD ratio was 

unchanged after reperfusion, but the estimated FAD level was increased [150]. This means that 

RR, which is NADH/FAD, decreased, and it agrees with our findings that the RR decreased as the 

severity of the IRI increased. 

The current study demonstrated the utility of RR to detect ocular and mitochondrial OS in 

multiple animal injury models. Moreover, I have designed and implemented a vascular 

segmentation algorithm from the cryo-images that is going to be explained in the next chapter. 
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3. Vascular-metabolic imaging 

The objective of this research is to segment and quantify 3D vascular network of the whole organs 

to examine the vasculature alterations that can be caused by injuries and to provide a platform that 

can serve as the basis to evaluate vascular therapeutics in diseases. Most diseases are associated 

with endothelial and capillary injuries in blood vessels. It is expected that the quantitative 

monitoring of 3D vascular morphology can give more information on the progress of vessel 

dysfunction during progressive diseases.  

 We propose an approach that enables us to only perform auto-fluorescence metabolic 

imaging but provide both metabolic and vascular information simultaneously. Fluorescence 

metabolic imaging techniques pioneered by Chance et al. [107] have been developed to measure 

mitochondrial redox state (NADH/FAD). Fluorescence imaging or spectroscopy of metabolic 

indices provides 2D functional maps from the surface of tissues in vivo or ex vivo [44, 151, 152]. 

3D functional maps can be built using our fluorescence cryo-imaging, which provides a 3D 

mitochondrial redox state of the tissue [21]. 

In this study, we present a high-resolution segmentation algorithm for vasculature 

detection, which is based on intrinsic fluorescence images. This novel technique enables vascular 

detection without the need for labeling vessels with contrast agents. We termed the technique 

‘vascular-metabolic imaging’ (VMI). It is the foreground intrinsic fluorescence (NADH or FAD) 

that reveals the background vessel network devoid of such metabolic signatures. We hypothesized 

that the dark voxels are associated with the vasculature because the red blood cells quench the 

auto-fluorescence signals from NADH and FAD [107]. Our segmented vasculature from VMI 

quantifies a 3D vascular network of whole organs, such as kidney, lung, heart, and liver. 
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Remarkably, VMI, via intrinsic fluorescence, can produce both metabolic redox state and vascular 

information simultaneously that is currently unattainable with any other existing imaging tools. 

We validated our vascular detection approach by co-registering the VMI vessel images with the 

vessel images segmented from red fluorescence images of a genetically-modified rat kidney 

(TdTomato) tagging endothelial cells. Here, we also demonstrate the capability of our vascular 

segmentation approach by illustrating vascular damage in a rat partial body irradiation injury 

model. 

3.1. Vascular segmentation algorithm 

Figure 13 shows the flowchart of the proposed algorithm that can segment background vasculature 

from the foreground 3D intrinsic fluorescence images. Below is the sequence of steps that are 

carried out to obtain and reconstruct a vascular network from the inverted fluorescent image. 

Step 1. Brightness and contrast adjustments: The captured intrinsic fluorescence intensity 

might be different from samples to samples. This step of the algorithm is designed 

to specifically normalize the variations in the intensity of images from various 

samples. Contrast enhancement is generally used to make objects in an image more 

distinguishable. Therefore, remapping intensity values to the full range of 16-bit 

images helped us to sharpen the differences between the black and white voxels.  

Step 2. Image inversion: In our application, the objects of interests (vascular network) are 

the dark voxels. The inverted image can show up the vasculature as the light voxels 

to be able to segment vasculature using background subtraction. 

Step 3. Background Subtraction: A background subtraction algorithm called rolling-ball 

background correction [153] is used next. The rolling ball radius in each organ 

should be at least set to the largest vessel radius that we expect the organ possesses. 



50 

 

Background subtraction is traditionally used in fluorescence microscopy to isolate 

bright objects from an uneven illumination [154]. 

 Brightness and contrast of 3D NADH fluorescence images are adjusted to the whole volume 

intensity range, but the image inversion and background subtraction are performed on each 2D 

slices separately. Final contrast enhancement is also done on the 3D structures. Before feeding the 

3D vasculature images to the tracing algorithm, the heart cavities (atria and ventricles) were 

masked out using a thresholding mask calculated from the original NADH images. Also, for the 

kidneys, the segmented vasculature from the medullary region was masked out to ensure total 

removal of any false segmentation originating from renal tubules within the medullary region. 

Since most of the vascular network of the kidney lies in the cortical region, this removal of 

medullary voxels will only remove a small portion of the 3D vascular network, while making sure 

that the segmented vasculature does not have the tubular network.  

 

Figure 13: Algorithm flowchart for background vasculature segmentation from fluorescence images. After loading the 3D stack 

of images, the brightness and contrast are adjusted to have an enhanced image. Then, for each slice, the image is inverted, and the 

background is subtracted. The reconstructed 3D vasculature can be fed to 3D vessel tracing algorithms for quantification purposes. 
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3.2. Vascular quantifications  

By tracing the 3D vessel networks, we can track, measure, and quantify the vasculature. We used 

Imaris 9.5 software (Bitplane Inc.) and their filament tracing algorithm, which is based on local 

intensity contrast. It traces and finds the path from a large starting point(s) to the small terminal 

points (Figure 14A). Then, the vessel branches can be quantified to provide various vascular 

biomarkers. For an instance, the diameter of a vascular branch (Figure 14B) can be calculated as 

illustrated in Figure 14C. 

There are multiple vascular quantifications that have a key role in diagnosis and therapeutic 

applications. The number of branches and the number of terminal points (smallest detected 

branches) can be related to the vascular network (Figure 14). The quantifications regarding the 

size of branches include vessel diameter and volume are related to vasoconstriction or vasodilation.  

3.3. Validation 

3.3.1. Td-tomato rats 

A genetically-modified rat model expressing TdTomato in mostly vascular endothelial cells was 

utilized to image the vasculature in kidneys. Histological assessment of rat kidneys was also done 

 

Figure 14: Quantification of vascular markers. (A) a schematic view of a branch: a vessel tracing algorithm the terminal 

points, and the beginning point and how the branch depths are increasing in each branch are shown. (B) a simple branch 

illustrated with its terminal points. (C) The branch color-coded with Vessel Diameter (µm). 
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to visualize TdTomato expression in endothelial cells of these rats using an antibody for 

TdTomato. The capability of the 3D fluorescence cryo-imaging system to acquire images from 

multiple channels simultaneously allows us to have both red and NADH fluorescence of the 

kidney. We used the foreground vasculature extracted from red fluorescence as proof for 

examining the vasculature segmented from the NADH channel. The co-registration of the vascular 

network extracted from the two channels validates the proposed method of our vascular 

segmentation.   

3.3.2. Dice coefficient 

One of the common metrics for evaluating the quality of image segmentation is the Dice 

coefficient, which measures the overlap between the ground truth and the test [155]. For 

calculating the Dice coefficient, we let the 3D volume be represented by the point set 𝑋 =

[𝑥1, … , 𝑥𝑁], where N is the total number of voxels. We let the red vasculature be represented by 

the partition Vred of X with assignment function 𝑓𝑟𝑒𝑑(𝑥), i.e., voxel intensity at x, and we let the 

VMI vasculature be represented by the partition Vvmi of X with assignment function 𝑓𝑣𝑚𝑖(𝑥). Then, 

the Dice coefficient is defined by: 

𝐷𝑖𝑐𝑒 =
2|𝑉𝑟𝑒𝑑  ∩  𝑉𝑣𝑚𝑖|

|𝑉𝑟𝑒𝑑| + |𝑉𝑣𝑚𝑖|
=

2 ∑ 𝑓𝑟𝑒𝑑(𝑥𝑖)𝑓𝑣𝑚𝑖(𝑥𝑖)
𝑁
𝑖=1

∑ 𝑓𝑟𝑒𝑑
2 (𝑥𝑖)

𝑁
𝑖=1 + ∑ 𝑓𝑣𝑚𝑖

2 (𝑥𝑖)
𝑁
𝑖=1

                                                                      (1) 

where the numerator represents the common elements between the two images. To quantify |𝑉𝑟𝑒𝑑| 

and |𝑉𝑣𝑚𝑖|, we used the squared sum operation. There is a multiplication by 2 in the numerator 

because the denominator counts the common elements twice.  

The branching structure of the VMI vasculature can also be compared with red 

fluorescence vasculature. Murray [156] proposed an optimization theory that the fundamental 
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structure of a vascular tree should be such that it minimizes work. Murray’s law states that a branch 

that fallows the “minimum work” hypothesis should also follow the equation:  

(𝐷𝑝)3 = ∑(𝐷𝑑)3

𝑑

,                                                                                                                                      (2) 

where 𝐷𝑝 indicates the diameter of a parent vessel, and 𝐷𝑑 indicates the diameter of the dth daughter 

vessel coming from the parent p. The equation 2 can be stated as the cubed diameter of a parent 

vessel is equivalent to the sum of the cubed diameter of its daughter vessels. 

After employing the tracing algorithm using Imaris, we used the information on the depth 

of the vessels to define the parents and daughters. The depth of a vessel increases every time a 

bifurcation happens in the branch. Therefore, all vessels with a specific depth k+1 are the daughter 

vessels of the parent vessels with depth k and the Murray’s law can be written as: 

∑(𝐷𝑝
𝑘)3

𝑝

=  ∑(𝐷𝑑
𝑘+1)3

𝑑

,                                                                                                                         (3) 

where 𝐷𝑝
𝑘 indicates the diameter of pth parent vessel at depth k, and 𝐷𝑑

𝑘+1 indicates the diameter of 

the dth daughter vessel at depth k+1. Now, we can look at the relationship between the parent vessel 

diameters with their daughters’ diameter by having the depth information of the vessels. The 

summation of the cubed diameter of all the vessels at each depth (parents in the left side of equation 

3) are then compared with the summation of the cubed diameter of all the vessels at next depth 

(daughters in the right side of equation 3). A vascular data follows the Murray’s law if this 

relationship is significantly linear and has a linear fit close to identity line. 

Notably, using the depth to find the parent-daughter relationship in vessels, can impose an 

unavoidable error by making the left side of the equation 3 higher than the real value. The reason 
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is that the terminal branches from lower depths (starred in Figure 14A) are considered as parent 

vessel while there is no corresponding daughter in the next depth. 

3.3.3. Murray’s law 

The branching structure of VMI vasculature can also be compared with red fluorescence 

vasculature. Murray[156] proposed an optimization theory that the fundamental structure of a 

vascular tree should be such that it minimizes work. Murray’s law states that a branch that fallows 

the “minimum work” hypothesis should also fallow the following equation:  

(𝐷𝑝)3 = ∑(𝐷𝑑
𝑝)3

𝑑

.                                                                                                                                      (4) 

where 𝐷𝑝 indicates the diameter of the pth parent vessel and 𝐷𝑑
𝑝
 indicates the diameter of the dth 

daughter vessel coming from pth parent. The equation two means the cubed diameter of a parent 

vessel is equivalent to the sum of the cubed diameter of the daughter vessels. 

After employment of tracing algorithm using Imaris, we used the information on the 

diameter and the depth of the vessels. The depth of a vessel increases every time a bifurcation 

happens in the branch. By having the depth information of the vessels, the Murray’s law can be 

simplified as 

∑(𝐷𝑝)3 =  ∑ ∑(𝐷𝑑
𝑝)3

𝑑𝑝𝑝

,                                                                                                                         (5) 

which means the summation of the cubed diameter of all the vessels at depth k (parents, left side 

of equation) should be equivalent to the summation of the cubed diameter of all the vessels at depth 

k+1 (daughters, right side of equation).  
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3.4. Proof-of-concept using irradiated rat models 

Leg-out partial body irradiation (PBI) rat model has been extensively explained in our previously 

published studies [59, 108, 109]. In short, the rats were placed in Plexiglas jig and irradiated 

uniformly by X-rays with shielding only one hind limb. Therefore, most vital organs have been 

irradiated and make the animal model a good choice to study multiple organ injuries by irradiation. 

A high dosage of radiation is well-known to damage the vessel networks of organs substantially. 

Therefore, a well-established radiation-induced animal injury model such as PBI can provide a 

proper example that allows us to show the sensitivity and efficacy of the algorithm to detect the 

vascular damage. In this study, 4 doses of radiation have been studied; 0Gy, 7.5Gy, 10Gy, and 

12.5Gy (n=3/group). 

3.5. Results 

3.5.1. 3D vascular-metabolic imaging (VMI) 

Figure 15 supports our hypothesis that a foreground fluorescence image can be inverted to reveal 

the vasculature of an organ like the kidney.  The 3D raw NADH (excitation at 350nm and emission 

 

Figure 15: A background vasculature is segmented from a foreground intrinsic fluorescence image of a kidney. For a rat 

kidney, a 3D raw image of NADH fluorescence is shown. A sagittal slice view of raw kidney image is chosen, and the segmented 

vasculature from dark voxels is shown in red and merged with the raw slice to show the localization of the vascular pixels in 

the image. The 3D vasculature is reconstructed from all 2D segmented pixels.   
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at 460nm) image of a kidney, a sagittal slice of the kidney, and the segmented vasculature on one 

slice are illustrated in Figure 15. The stack of 2D vascular images reconstructed to generate the 

3D vascular images of the whole kidney. 

VMI can also be applied on other organs, such as heart and liver.  Figure 16 shows a 

selected representative slice for the step-by-step outcome images of the algorithm for each organ: 

kidney, heart, and liver. In step 1, the contrast and brightness of the images are enhanced. The 

inverted images of 1 slice of each organ can be seen in step 2. Now, the feature of interest 

(vasculature) is bright in the image. A background-subtracted image of the slice can be seen in 

step 3 images. The resulting 3D vascular images are reconstructed from the stack of 2D images.  

 

 

Figure 16: VMI can be used to segment vascular networks of multiple organs, including rat kidney, mouse heart, and rat 

liver. An example slice in each step of the algorithm is illustrated for each organ. Step1 is contrast enhancement, step2 inverts 

the image, step3 background subtraction, and at last, the 3D vasculature is reconstructed. 
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3.5.2. 3D vasculature of airway-injected lungs. 

Vascular segmentation from the background of intrinsic fluorescence in lung tissues was not 

feasible because the vasculature, airway, and alveoli appeared dark in the images. Therefore, 

distinguishing the vasculature from these structures was not possible. To circumvent this problem, 

we instead injected a FITC solution into the airway and alveoli. Extrinsic fluorescence from FITC 

(excitation at 494 and emission at 537) and FAD (excitation at 437 and emission at 537) are 

overlapped. This overlap and the injection of a FITC solution into the airway and alveoli, enabled 

us to lighten the airway in FAD images and keep the vascular structures dark (Figure 17). 

Afterwards, the same proposed segmentation algorithm was applied to extract the inverted 

 

Figure 17: FITC airway injection helps to segment background vasculature from lungs. For a rat lung, FITC-dextran 

solution is injected into the airway. A raw 3D image of FAD fluorescence of Lung is shown. A transverse slice view of raw 

lung image is chosen, and the segmented airway from light voxels of FITC image and vasculature from dark voxels are shown 

in green and red, respectively. Segmented airway and vasculature are merged with the raw slice to show the localization of 

the vascular and airway pixels in the segmenting image.  Also, the 3D vasculature and airway are combined and shown zero 

intersection with each other. 
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vasculature from the FAD images of the lungs. Figure 17 shows a 3D raw FAD image of the lung 

and a single slice of the lung. The airway, which is filled with FITC solution are segmented from 

light voxels, and vasculature is segmented via inversion of FAD images for lungs. The 3D 

vasculature (in red) and airway (in green) are then reconstructed as shown in 3D. In the combined 

or merged images, the voxels that have an overlap between the segmented airway and vasculature 

should be in yellow color, but due to a very little intersection, no yellow voxels appeared in the 

figure. The Dice coefficient < 0.001 also confirms that the airway and the vasculature had no 

overlap. These results demonstrate that the segmentation structures from inverted FAD images do 

not originate from airways but from the vasculature. Note that the FAD images are originating 

from both FITC and FAD fluorescence now. This helped us to lighten the airway, but the FITC 

fluorescence in airway also interfere with the FAD signal. Therefore, on the downside, the 

mitochondrial metabolic imaging does not work in the airway-injected lungs.  

3.5.3. Co-registration with TdTomato rat kidney to confirm VMI vasculature 

The transgenic rat model called Td-tomato is utilized as the ground truth for validating vascular 

segmentation method. By utilizing the TdTomato rat model, the cryo-imaging was performed in 

the two channels of NADH (excitation 545, emission 645), and red (excitation 545, emission 645) 

fluorescence. The bright voxels in the red channel and the dark voxels in the NADH channel are 

segmented and reconstructed (Figure 18a and Figure 18b, respectively).  The anatomy of the 

vasculature extracted from the NADH using VMI is then combined with the vasculature segmented 

from red fluorescence (Figure 18c). The merged parts that overlap display yellow color. The co-

registration evaluation gives a dice coefficient of 0.91, which shows a high degree of overlap 

between the two segmented vasculatures. In red fluorescence vessels, due to the selective staining 

of the endothelium rather than blood, the imaging of larger vessels is not feasible, but VMI is ideal 
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for imaging and quantifying larger vascular structures. That might explain the small number of 

voxels in pure green or red color in the coregistred image (Figure 18).  

The branching of the two vasculature is also compared in Figure 19. The relationship 

between the cubed diameter of the parent vessels to the summation of the cubed diameter of their 

corresponding daughter vessels are presented. Using linear regression, two lines are fitted to each 

set of data points and are shown in Figure 19. According to Murray’s law, the data should be fitted 

 

Figure 18: TdTomato rat kidney validates that VMI has high overlap with expressed vessels in red fluorescence. The red 

channel is used as the ground truth for validating the vasculature extracted using VMI. The segmented vasculature from light 

voxels of red channel and vasculature from the dark voxels of the NADH channel (VMI technique) are shown in red and green, 

respectively. Segmented vasculatures are then combined to localize their intersection in yellow. The dice coefficient of 0.91 

shows a great precision in vascular segmentation. 



60 

 

to y=x line, i.e., a line with slope of 1 and y-intercept of 0. The y-intercepts for both lines are 

negligible, and the slopes for both VMI and Red channel are close to 1, indicating that the VMI 

branching like the red vascular branching follows Murray’s law and the “minimum work” 

hypothesis successfully.  

3.5.4. Partial body irradiation in different doses 

Here, we present a selected example that illustrates the capability of VMI to uniquely drive the 

topography of two sets of parameters simultaneously: mitochondrial redox state and the 3D 

vascular network of whole organs. Figure 20 illustrates the representatives of the 3D rendered 

vascular networks of kidneys, livers, and lungs from rats exposed to different irradiation doses. 

Their corresponding 3D redox ratio (NADH/FAD) of kidneys and livers are also presented in 

 

Figure 19: VMI follows Murray’s Law. The parent vessel diameter cubed is plotted against the sum of the diameter cubed of 

their corresponding daughter vessels. The data from red fluorescence of TdTomato rat are shown as red circles, and the data 

from vasculature extracted using the VMI technique are represented as green stars.  Two vascular branching data from VMI 

and red fluorescence have merged, and their linear regression fit has shown very good compliance with Murray’s law (identity 

line, y=x). 
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Figure 20. The redox ratio images of the lungs are not presented due to the interference of FITC 

with FAD.  

The vascular networks in Figure 20 illustrates the strong virtual destruction of the vessel 

networks after PBI. The vascular damage in kidneys and lungs also correlated to the dosage of 

irradiation in the PBI rats. The redox ratio images are pseudo-colored with higher redox ratio 

voxels shown in red, and the lower redox ratio voxels in blue. The kidneys and livers undergone a 

higher dosage of irradiation are more prone to a drop in the redox ratio, i.e., more oxidized 

mitochondrial redox state.  

3.5.5. Partial body irradiation and lisinopril treatment 

Figure 21A illustrates representatives of the 3D rendered vascular networks from each group of 

rat kidneys. The virtual destruction of the vessel networks after PBI is strong. The damage to the 

 

Figure 20: Different doses of PBI caused related vascular-metabolic damage in kidneys (A) and livers (B), and lungs (C). 

As the dosage of irradiation increases the vascular damage is increasing while the redox ratio decreases. 
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vessels due to irradiation was significantly mitigated in kidneys obtained from rats exposed to 

PBI+lisino compared to the PBI group. The mean vessel diameter of kidneys in the PBI rats was 

significantly reduced by 45%, and lisinopril treatment caused 44% improvement in the vessel 

diameter of PBI kidneys compared to PBI kidneys (Figure 21B). This result shows that radiation 

leads to significant vasoconstriction, and lisinopril negates this by increasing dilatory response. 

 

3.6. Discussion 

Due to the weak intrinsic signals in tissue auto-fluorescence metabolic imaging, the auto-

fluorescence images have limited tissue contrast anatomically when compared to the histology 

images. This limitation was partially circumvented in this study by using vascular-metabolic 

imaging (VMI) and providing the 3D vascular network of the whole organs. Here, we demonstrate 

the feasibility of VMI to generate anatomical and physiological information simultaneously. The 

vascular segmentation algorithm in VMI uses the same 3D auto-fluorescence cryo-images that we 

have used previously to produce tissue mitochondrial redox state [44, 59, 157].   

        

Figure 21: Radiation-induced vascular injury and lisinopril treatment. A) Representative three-dimensional rendered vascular 

network of kidneys from each treatment: Non-irradiated (Control), Partial Body Irradiated without (PBI) and with lisinopril 

treatment (PBI+lisino). B) Bar plot of mean vessel iameter of vascular network of kidneys from each treatment. *Significant 

difference when compared with Control (P < 0.05); §significant difference of PBI+lisino when compared with PBI (P < 0.05). 
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 A genetically-modified rat model of endothelium selective expression has been chosen as 

the ground truth testing. The high overlap between the red fluorescence of TdTomato rat kidney 

and VMI vasculature indicates the specificity of VMI in the segmentation of vascular networks. 

Also, we have shown that the minimum work hypothesis proposed by Murray has been satisfied 

by both approaches. This suggests that the VMI vasculature has similarities in branching with the 

ground truth vasculature as generated by TdTomato.  

The potential interest of combining exquisitely sensitive intrinsic metabolic information 

with vascular information was demonstrated in a proof-of-concept study of radiation-induced 

damage to multiple organs. 3D mitochondrial redox state of PBI rat kidneys and livers were 

examined. The mitochondrial redox state of kidneys and livers dropped in close relation with 

irradiation dose. This result is consistent with our previous study [59] showing that the radiation 

diminished the ability of the cells to maintain balanced mitochondrial redox state necessary for 

normal bioenergetics in kidneys. Using VMI, the vascularization in different doses of irradiation 

was examined in the kidneys, livers, and lungs. We showed that the exposure to irradiation could 

also cause significant vasoconstriction, which in turn can decrease the available oxygen and trigger 

an increase in the oxidation state of cells. This implies the existence of tight links between the 

deregulation of mitochondrial metabolism and the abnormal vasculature typical of radiation 

injuries [110, 158, 159]. Together, this study showed that vascular metabolic imaging using 

intrinsic fluorescence can successfully stratify the dosage of irradiation based on these two 

hallmarks of injury. 

The proposed algorithm in this study has generated both vascular and metabolic 

information with major implications:  
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a) The vascular images are produced without the use of any extrinsic contrast agents or tissue 

clearing-solvents, which might induce structural deformity by itself [160]. 

b) Since the technique uses optical imaging technologies, it is capable of high-resolution 

imaging compared to X-ray or ultrasound instruments. By increasing the resolution of the 

fluorescence cryo-imaging instrument, VMI can present additional details in the vascular 

networks. 

c) The co-registration of metabolic and vascular images has perfect precision because they 

originate from the same 3D images. 

d) Unlike laborious, complex, and time-consuming sample preparation in micro-CT [14], the 

only sample preparation needed for VMI is snap-freezing the samples in liquid nitrogen. 

In addition, VMI is less time consuming, and VMI of a whole rat organ takes less than 2 

hours to finish. 

e) Vascular images of the kidney, lung, heart, and liver were segmented here using VMI. This 

VMI approach could be extended to other organs and pathologies, such as eye, skin 

wounds, and tumor as we [52, 157] and others [161] have investigated in previous reports. 

f) VMI is implemented by adding an image processing algorithm to the existing 3D 

fluorescence cryo-imaging. Therefore, no major hardware modification is needed to extract 

vascular network of organs from intrinsic fluorescence. Also, fluorescence metabolic 

imaging systems are much more cost-effective in comparison to other similar 3D whole 

organ vascular imaging modalities, such as micro-CT. 

g) VMI can extract vascular networks from not only NADH or FAD fluorescence but also 

any inverted intrinsic fluorescence images that are devoid of red blood cells. 

Vascular-metabolic imaging can be applied to quantitatively characterize the organ 

vasculatures and the metabolic state simultaneously. The vascular-metabolic imaging can also 

explore the pathophysiology in rodent injury and treatment models. Optical metabolic imaging has  

been used in this application for several years [42, 44, 48, 49, 59, 157], and by using the proposed 

segmentation technique, another key hallmark of injury, vascular quantifications, would 

significantly help in understanding the underlying effects of injuries and their treatment options in 

multiple organs. For example, VMI of tumors can expose the effects of drugs and radiotherapy on 
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the tissue metabolism and vascularization in various animal models of cancer. Also, the vascular-

metabolic imaging offers the attractive options in hearts, such as the studies of the interaction of 

tissue metabolism, vasculature, and elasticity during myocardial infarction. 
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Chapter 4 

 

Time-Lapse Fluorescence Microscopy 

in vitro 
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4. Time-lapse fluorescence microscopy 

This section is dedicated to live-cell studies, using fluorescence microscopy to assess reactive 

oxygen species (ROS) in cells due to the metabolic stressor, and oxygen tension. 

4.1. Live cell preparation and experimental protocol 

4.1.1. Retina endothelial cells and pericytes under different glucose conditions 

Retina pericytes (RPC) and endothelial cells (REC) were isolated from C57BL/6 J Immorto 

mice and cultured, as previously described [162]. For imaging, RECs were passed and cultured on 

gelatin-coated, while RPCs were cultured on uncoated, 8-well chamber slide (4 × 104 cells/well, 

LabTekII, ThermoFisher) and incubated in low glucose (normal glucose; NG) growth medium for 

24 h. To determine the effect of HG on cellular metabolic resistivity and ROS production, cells 

were grown in medium with different glucose concentrations. Following 24 h of incubation, cells 

were fed in 2 to 3 wells with high glucose (HG, 30 mM) medium, 2 to 3 wells with normal glucose 

(NG, 5 mM) medium, and 2 to 3 wells with D-glucose (5 mM) plus L-glucose (25 mM) for 

osmolarity control (OS) for 3 days. Following exposure to various glucose conditions, live cells 

were imaged using fluorescence microscopy. Before imaging, cells were subjected to nuclei 

staining, and during the imaging, the intracellular ROS level was determined by a mitochondrial-

targeted red fluorescence probe, MitoSOX. All experiments were performed with cells between 

passages 9 to 11. To measure the mitochondrial ROS production rate, and hence the metabolic 

resistivity of REC and RPC, cells were stained with 400 nM MitoSOX (Invitrogen M36008; 

excitation/emission: 510/580 nm) during the experiment. MitoSOX was kept in the medium while 

imaging. To maintain the focus of imaging, the nuclei of the cells were also stained before imaging 
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with 200 nM Hoechst (Life technologies H1399, excitation/emission: UV/blue) and incubated in 

medium containing Hoechst for 30 min. Following incubation, the cells were rinsed twice with 

Hank's Balanced Salt Solution (HBSS, Life Technologies 14025092). After washing, HBSS was 

added for subsequent fluorescent imaging. Hoechst stains nuclei, whereas MitoSOX stains 

mitochondria ROS upon oxidation under appropriate excitation. 

4.1.2. Lung endothelial cells under hypoxia 

FPAECs were isolated from the normal lamb lungs. Two groups of cells were examined. The 

first group of cells was exposed to 2hr 3% hypoxia prolonged to an hour of fluorescence time-

lapse microscopy. For the second group, the same experimental protocol of microscopy was used 

except they were in normoxic gas conditions. The fluorescence images of both groups of cells were 

captured, and intensity profiles [40] of cells were plotted to compare their mitochondrial activity. 

FPAECs were isolated from the normal lamb lungs and incubated in the 8-well bottom glass dishes 

in 5% CO2 and 37ºC for both culturing and imaging. The growth medium included 1X 

antibiotic/antimycotic (AB/AM) and 20% fetal bovine serum (FBS) diluted in ATCC Dulbecco's 

Modified Eagle's Medium (DMEM). Before each experiment, the cells were loaded with a blue 

fluorescent dye (250 nM Hoechst) for probing nuclei and were incubated for 20 minutes. After 

washing the cells twice with Hank's Balanced Salt Solution (HBSS), HBSS was added to the dish 

for subsequent fluorescent imaging. For hypoxic cells, before starting microscopy, the cells were 

incubated in hypoxia (3% O2, 5% CO2) and 37ºC for 2 hours. The incubation initiated with hypoxic 

HBSS previously bubbled with N2 gas. This hypoxic condition was kept during microscopy.  

The experimental protocol was designed as previously described in Ghanian et al [40]. 

Fluorescent images were captured every 1 minute. After 10 minutes of baseline imaging, the cells 

were loaded with Mito-SOX (250 nM). The nanomolar concentration of Mito-SOX is used to make 
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sure that there is no direct effect of Mito-SOX on metabolism of cells [163]. PCP (5 µM) was 

added 20 minutes later (30 min of protocol time) to study the dynamic of ROS production in the 

mitochondria as indicated by fluorescence intensity. PCP concentration was chosen to ensure that 

the cell’s viability is not affected.  

4.2. Microscope system 

In this study, a Nikon Ti-E inverted fluorescence microscope was used (Figure 22). It has an 

environmental control chamber (37°C, a gas mixture of 95% O2 and 5% CO2) around it to make 

an incubation environment for the live-cells over time. It has four fluorescent interchangeable filter 

cubes in addition to the standard DIC and bright-field channels. An overhead halogen lamp and a 

mercury arc lamp are used for illumination in bright field channel and fluorescent channels, 

respectively. Mercury lamp's intense peaks in the ultraviolet spectrum are suitable to excite 

 

Figure 22: Time-lapse fluorescent microscope system. 
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fluorophores. Magnification of 20× was chosen for image acquisition due to the need for capturing 

a high level of image detail while maintaining a large field of view. A charge-coupled device 

camera (Q-imaging, Aqua Exi, 14 bit, 6.45 μm pixel) captures the images with proper exposure 

time and gain set to ensure that the images are in the dynamic range of the camera while avoiding 

saturation and photo-bleaching. The excitation and emission spectra for the blue channel are 340-

380 nm and 528-553 nm, respectively, while for the red channel, the excitation and emission 

spectra are 435-485 nm and 590-650 nm, respectively.  

4.3. Image processing and quantifications 

The cells were segmented from the first slide of the time-lapse stack using the previously 

described segmentation algorithm [8]. The intensity of the segmented images in the red channel is 

calculated and plotted as the intensity profile over time. These graphs show the dynamics of ROS 

production in red channel. 

The intensity profile was driven in the following steps. First, the intensity profile of the 

background was subtracted from the intensity profile of the cells. Then, the slope of the intensity 

profiles after administration of PCP (between 30 min and 45 min) was calculated by linear curve-

fitting. This slope represents the rate of mitochondrial ROS production [106, 164]. 

4.4. Results 

4.4.1. Metabolic sensitivity of retinal pericytes under high glucose condition.  

In microscopic images captured in fluorescent channels, the nuclei were targeted by Hoechst in 

blue, and mitochondrial compartments were detected by MitoSOX in red. Panels a and b in Figure 
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23 show the overlay of the blue and red fluorescent markers in REC and RPC. Panels c and d in 

Figure 23 demonstrate changes in the fluorescence intensity of the REC (red profiles) and RPC 

(blue profiles) overtime under NG and HG. Panel c and d compare the metabolic resistivity of 

REC with RPC under NG and HG. Figure 23(c) shows that the metabolic properties of REC and 

RPC were different even at a normal glucose level. However, under high glucose conditions 

(Figure 23(d)), RPC produced more mitochondrial ROS while REC did not exceed the level 

reached in NG. 

The ROS initiation rates right after the addition of PCP (t = 30 min) in REC and RPC exposed to 

the different glucose conditions were compared statistically in Figure 24. Bar graphs in Figure 24 

demonstrate significant changes in the ROS initiation rate of the REC group (red bars) compared 

 

Figure 23: The fluorescence intensity of the REC and RPC over time under NG and HG. Top panels: Overlay of the blue 

(Hoechst) and MitoSOX red fluorescence signals. Note that the scale bar represents 32 μm (~100 pixels); a) retinal 

endothelial cells (REC); b) retinal pericytes (RPC). Bottom panels: Comparing resistivity of REC and RPC under normal 

glucose (NG) and high glucose (HG) conditions; c) The fluorescence intensity profiles of REC and RPC in NG; d) 

Fluorescence intensity profiles of REC and RPC in HG. 
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with the RPC group (blue bars) in response to different glucose conditions. The results show that 

ROS initiation rate in uncoupled RPC was significantly smaller than that of uncoupled REC under 

NG and OS conditions, but not under HG condition. Since OS was used to account for changes in 

the osmolality of HG and to separate the effects of glucose from osmolality, OS-NG addresses the 

changes in the ROS initiation rate due to osmolality. ROS initiation rates in uncoupled REC 

appeared with no significant changes, while uncoupled RPC showed a significant increase of 7.33 

times under high glucose conditions. 

4.4.2. Lung endothelial cells under hypoxia 

The panel in Figure 25 corresponds to the average background-subtracted intensity profiles of the 

normoxic (blue curve) and hypoxic (red curve) cells. For both hypoxic and normoxic conditions, 

n=6 wells of FPEACs were imaged. Under hypoxic conditions, the slope of the red intensity profile 

was 1.10±0.06 at the time of the addition of uncoupler (PCP), while under normoxia, PCP 

increased the slope by 2.09±0.22 degree. As Figure 25 shows, PCP induced cellular ROS 

production significantly greater in normoxia when compared with hypoxia.  

 

Figure 24: Bar graphs demonstrate the statistical analysis (mean±SE) of ROS initiation rate (at 30 min) induced by PCP in 

live retina cells in NG, OS, and HG exposures (n = 6/group). 
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4.5. Discussion 

The fluorescence time-lapse microscopy using nano-molar Mito-SOX can be used as a tool 

for real-time monitoring of the mitochondrial ROS production in live cells. This approach could 

have far-reaching implications for the assessment of ROS in physiology and pathophysiology. The 

dynamics of ROS production was determined overtime before, during, and after cells were 

incubated with PCP. This approach has been utilized in two studies. 

 I investigated the metabolic resistivity of two types of retinal vascular cells, EC and PC. To 

gain detailed insight into preferential bioenergetic sources impacted in REC and RPC, the ROS 

generation rate was studied under different glucose conditions, including HG. A major finding of 

this study regarding the different metabolic activity of REC and RPC is that under normal glucose 

conditions, REC and RPC exhibited different sensitivity to mitochondrial stressors. Under the HG 

condition, only the metabolic resistivity of RPC was affected by the increase in glucose levels and 

showed an increase in the ROS production rate. These results may justify the sensitivity of RPC 

to HG condition and/or diabetes [105]. 

 

Figure 25: Dynamics of red fluorescence intensity of cells under hypoxia and normoxia. 

Mito-SOX
PCP
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Figure 23(c) shows that the metabolic properties of REC and RPC are different even at a 

normal glucose level. However, under high glucose (Figure 23(d)), RPC generated more 

mitochondrial ROS while REC did not exceed the levels reached in normal glucose. These results 

suggest that high glucose has a minimal effect on the metabolic activity of REC and their 

mitochondrial ROS production. The enhanced expression and activity of endothelial nitric oxide 

synthase (eNOS) may explain the inhibitive effect on mitochondrial ROS production in REC under 

HG. eNOS, which is expressed in EC [165], is responsible for most of the vascular nitric oxide 

(NO) production. NO mediates vasodilation by acting on perivascular supporting cells and can act 

as a scavenger of superoxide anions maintaining a cellular balance of redox signaling in the 

endothelium in NG levels [166]. Huang et al. reported an enhanced expression of eNOS in retinal 

EC under HG [104]. The enhanced eNOS activity, and hence increased bioavailability of NO [167, 

168]. is consistent with the decreased generation rate of superoxide in retinal EC under HG. 

Moreover, the increased production of eNOS is shown to prevent apoptosis of EC under HG [169]. 

This may justify the decreased rate of apoptosis in REC compared to the RPC due to diabetes. 

However, the potential differences in glucose uptake in these cells cannot be ruled out. 

We found that mitochondrial uncoupling by PCP increased ROS production in both REC and 

RPC. PCP binds to mitochondrial proteins and inhibits mitochondrial ATPase activity. Thus, both 

the formation of ATP and the release of energy to the cell from the breakdown of ATP to ADP are 

prevented. Electron transport is not inhibited by PCP, although reactions dependent on available 

high-energy bonds, such as oxidative and glycolytic phosphorylation, are affected. Although 

glycolysis is the main source of ATP in cultured REC, the higher level of oxidative stress in 

uncoupled REC indicates that glycolysis and oxidative phosphorylation are linked for ATP 

production. Cultured RECs are highly dependent on ATP for their activity. Since PCP inhibits 
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mitochondrial ATPase activity, RECs activate a mechanism to compensate for ATP and increase 

the ETC activity in the uncoupled chain [170]. This mechanism expedites the electron transfer 

through the chain leading to the generation of more ROS. This does not appear to be the case for 

RPC. Lack of proton gradient for phosphorylation and polarized membrane potential activates a 

mechanism to compensate for the uncoupling effect of PCP, by increasing proton pumping and 

respiration, to reestablish the proton gradient. Ironically, the increase in the activity of the complex 

I and II in the uncoupled chain [106] increases electron transfer along the electron transport chain. 

As a result, increases electron leak to oxygen leading to superoxide production [171-174]. 

Although RPC and REC are differentially affected by metabolic stress conditions, most likely 

because of their preferential bioenergetic sources, both cell types showed a higher rate of ROS 

production under stress. However, RPCs were more resistant to mitochondrial stress under normal 

glucose conditions when compared with REC. Right after incubation with a mitochondrial stressor 

(PCP), REC showed a significantly greater increase in the rate of ROS production when compared 

with RPC. These results suggest that both inhibited REC and RPC metabolic activities, at least 

under normal glucose conditions, may depend on the integrity of mitochondrial respiration. 

However, the reason for enhanced ROS generation in REC is not clear and requires further 

delineation of the bioenergetic pathways utilized by these cells. These may be linked to the oxygen 

and glucose levels. The use of different glucose and/or oxygen levels provides additional insight 

into the preferential bioenergetic pathway(s) utilized by these cells. However, the preferential 

utilization of glycolysis by REC as the major bioenergetic source suggests that REC may also 

depend on some intermediate metabolite(s), including those generated by isocitrate dehydrogenase 

1, during respiration to maintain the cellular reductive state. Thus, attenuation of respiration could 
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significantly reduce the level of such metabolite(s) and result in increased accumulation of ROS 

in REC. 

Our results revealed a higher sensitivity of the RPC compared to REC under HG conditions. 

While under normal glucose conditions, the metabolic resistivity of RPC was greater than REC, 

the metabolic resistivity of RPC significantly decreased under HG condition triggering the pre-

apoptosis process of the RPC. ROS overproduction in this stage leads to a higher level of oxidative 

stress [175], which is known as an underlying mechanism causing the apoptosis of vascular cells 

associated with diabetic retinopathy. However, it remains unclear how the HG condition leads to 

REC apoptosis. We have observed that the incubation of REC under high glucose does not affect 

their rate of apoptosis [104]. Other studies suggest an indirect role for HG mediated REC death in 

retinal vasculature [176]. Thus, deterioration of vascular structure due to RPC loss may contribute 

to the demise and dysfunction of REC in the retinal vasculature. 

The disparity seen between RPC and REC may be also explained by the fact that 

mitochondrial oxygen consumption is compromised in RPC exposed to HG. Therefore, the 

extracellular acidification levels may be an influential factor in RPC. Trudeau et al. reported an 

increase in extracellular acidification levels in REC, possibly to compensate for HG-induced 

decreased mitochondrial oxygen consumption [177]. This compensation helps EC to maintain the 

rate of ROS generation with HG exposure without a significant increase compared to NG 

condition. Interestingly, the inability of the RPC to compensate for the HG induced decrease in 

mitochondrial oxygen consumption, due to the significant decrease in extracellular acidification 

[177], indicates an increased susceptibility of the RPC to HG. 

Moreover, the differential transport of glucose between the two cell types may also illustrate 

their different metabolic resistivity under HG conditions. Previous reports have shown that HG 
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downregulates Glut1 activity in PC but not in EC [178]. Thus, different extracellular acidification 

levels and possibly glycolytic levels may indirectly lead to the differential alternation of ROS 

production rate and metabolic resistivity in RPC and REC in response to HG exposure. Further 

research is required to indicate the mechanisms for the observed difference between the two cell 

types. 
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5. Conclusion and future direction 

This thesis has illustrated how different optical techniques are developed and implemented to 

quantify the effect of injuries on the physiology and structure of multiple organs. The novel 

approaches presented in this thesis have shown the ability for the quantitative detection of 

mitochondrial and vascular dysfunction due to injuries and stress conditions in tissue and cells. 

The following four sub-sections present the conclusions and outlook for each optical 

imaging technique. 

5.1. In vivo fluorescence imaging 

I developed a device that provides an optical metabolic marker, redox ratio, which is sensitive to 

the impaired diabetic wound healing, suggesting the diagnostic potential of optical imaging 

systems for clinical wound care. The in vivo fluorescence imager has also successfully 

distinguished the mitigation effect of FR-PBM, confirming the application of this technique in 

detecting the effect of wound healing strategies. 

Apart from the expansion of application to a wide variety of wounds in preclinical studies, a 

prototype is also designed that can be used in clinical wounds to pilot the diagnostic potential of 

this novel and emerging technology. The system is non-invasive, non-contact, and portable to 

hospitals and clinics for in situ wound assessment. Such an investigation would be relevant to 

examine the efficacy of wound healing interventions targeting ROS and mitochondrial dysfunction 

during diabetic wound healing. 
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5.2. 3D fluorescence cryo-imaging 

The results of 3D cryo-imaging studies demonstrate the quantitative capability of this device to 

measure the mitochondrial redox state. Optical redox imaging yields a direct analysis of the 

cellular metabolic state within the mitochondrial compartment of the multiple organs from the 

animal model of diabetes, uninephrectomy, radiation induce injuries, and ischemia-reperfusion 

injuries, which have not previously been reported.  

3D optical cryo-imaging is helpful to study the effect of disease and injuries on wound 

biopsies, kidney, heart, and liver metabolism. Our results revealed that an increase of oxidative 

stress may be an important signal for renal hypertrophy following UNX driven by enhanced 

mitochondrial energy production of the remaining kidney. We also observed a significant 

difference in the redox state of mitochondria between the irradiated and non-irradiated kidneys. 

Furthermore, lisinopril restored mitochondrial redox state after 13Gy single fraction radiation. 

However, we did not observe any significant difference in the redox state of mitochondria between 

the irradiated and nonirradiated hearts, and irradiation did not lead to aggravated reperfusion 

injury. The mitochondrial redox state can also be successfully served as a quantitative marker of 

hepatic IR injury. 

These results will inspire future studies that will allow researchers to establish a diagnostic 

tool for early detection of different diseases, and to study a correlation between disease progression 

and changes in the RR levels as a marker of oxidative stress. Furthermore, the studies presented in 

this thesis set the stage for future studies of using 3D cryo-imaging of mitochondrial redox states 

to characterize disease progression in various diseases and injuries to evaluate mitochondria-

targeted drug regimens that diminish oxidative stress. 
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5.3. Vascular metabolic imaging 

Autofluorescence metabolic imaging has been used to image mitochondrial metabolites 

(NADH and FAD). However, it has not been used to report anatomical aspects of organs such as 

the vasculature. I have developed a 3-dimensional (3D) vascular segmentation technique, 

leveraging intrinsic fluorescence images of whole organs. This novel technique provides 3D 

vascular-metabolic imaging (VMI) without the need for a contrast agent for the first time. VMI 

allows the simultaneous acquisition of vasculature and metabolism in multiple organs in rats. The 

vasculature from genetically engineered rats expressing endothelial-specific red fluorescent 

protein TdTomato, demonstrated a high overlap with VMI, confirming the identification of 

vasculature by VMI.  Lung airways perfused with a fluorescent dye and showed no overlap of 

signal with VMI. The VMI also showed convincing evidence for the “minimum work” hypothesis 

in the vascular network by following Murray’s law. Finally, I utilized a partial body irradiation rat 

model for a proof-of-concept to detect radiation-induced vascular regression by VMI. 

The pre-clinical vascular-metabolic imaging has the capacity to explore the 

pathophysiology in rodents and study the rodent models of whole organ injuries. Optical metabolic 

imaging has been used in this application for several years, and by using the proposed segmentation 

technique, another key hallmark of injury (vascular quantification) would significantly help in 

understanding the underlying effects of injuries in multiple organs. Another straight-forward 

application of vascular-metabolic is in imaging tumors to study metabolism and vascularization of 

drugs and radiotherapy in various animal models of cancer. Also, the vascular-metabolic imaging 

offers the attractive options in hearts, such as the studies of the interaction of metabolic, vascular, 
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and mechanical (that is, tissue elasticity) of myocardial infarction are currently underway in our 

laboratory. 

5.4. Time-lapse fluorescence microscopy 

Using time-lapse fluorescence microscopy, the dynamics of O2•- production was quantified under 

different simulated oxygen and metabolic stress conditions in intact live cells. Utilizing 

fluorescence microscopy, ROS dynamics were assessed in retina cells due to metabolic stress (high 

glucose, diabetes) and in PAECs due to oxygen tension (hypoxia, IR). ROS-mediated injuries, 

including hypoxia and IR, were modeled with the hypoxic environment in microscope top 

incubator. 

Metabolic modulation and IR demonstrated greater mitochondrial superoxide production 

rates. However, uncoupled ETC in hypoxic conditions showed that lower concentration of ambient 

oxygen decreases the severity of the metabolic stress and mitochondrial dysfunction. This 

phenomenon shows the potential of hypoxia therapy for lung injuries, including hyperoxia and 

PPHN, and it is our next step to further expand this research. 

These results show that the approach has far-reaching implications for the assessment of 

ROS in physiology and pathophysiology. Measuring the O2•- dynamics, particularly in the early 

phase of the stress response, could lead to future studies extending the approach to situations that 

would allow us to establish a diagnostic tool for assessing the role of the mitochondrial ROS in 

different diseases. It is intended for future studies to monitor the behavior of the injured PAECs 

under long hypoxic conditions followed by hyperoxic conditions to investigate the effect of the 

ambient oxygen concentrations on the severity of the lung injuries. Studying a hypoxic condition 
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followed by a hyperoxic condition is advantageous in another aspect as well since it simulates the 

birth transition of the fetal lung for the PAECs. The immature lung of the fetus that develops in 

moderate hypoxia in-utero might be more vulnerable to another injury in the relatively hyperoxic 

extra-uterine environment.  
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