
University of Wisconsin Milwaukee University of Wisconsin Milwaukee 

UWM Digital Commons UWM Digital Commons 

Theses and Dissertations 

May 2020 

Modeling of Cloud Droplet Formation: Software Development and Modeling of Cloud Droplet Formation: Software Development and 

Sampling Strategies Sampling Strategies 

Niklas Selke 
University of Wisconsin-Milwaukee 

Follow this and additional works at: https://dc.uwm.edu/etd 

 Part of the Atmospheric Sciences Commons, and the Mathematics Commons 

Recommended Citation Recommended Citation 
Selke, Niklas, "Modeling of Cloud Droplet Formation: Software Development and Sampling Strategies" 
(2020). Theses and Dissertations. 2421. 
https://dc.uwm.edu/etd/2421 

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more 
information, please contact open-access@uwm.edu. 

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/187?utm_source=dc.uwm.edu%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2421?utm_source=dc.uwm.edu%2Fetd%2F2421&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


Modeling of Cloud Droplet Formation: Software
Development and Sampling Strategies

by

Niklas Selke

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Mathematics

at

The University of Wisconsin–Milwaukee

May 2020



Abstract

Modeling of Cloud Droplet Formation: Software
Development and Sampling Strategies

by

Niklas Selke

The University of Wisconsin–Milwaukee, 2020
Under the Supervision of Professor Vincent E. Larson

Updraft speeds are an important factor in the formation of cloud droplets which play an

important role in an atmospheric simulation. The updraft speeds are varying very strongly

in small areas of space. Current models do not account for this kind of variability. Support

for a probability density function (PDF) based approach in representing the variability of the

updraft speeds has been implemented in the Energy Exascale Earth System Model (E3SM).

Specifics of the implementation process have been discussed.

Different sampling strategies were tested to analyze the convergence behavior of the new

approach to the cloud droplet formation process. It has shown that using a simple Monte

Carlo sampling strategy has given good convergence rates for the different variables that are

important to the cloud droplet formation process.

ii



c© Copyright by Niklas Selke, 2020
All Rights Reserved

iii



To my family

iv



Table of Contents

1 Introduction 1
1.1 Atmospheric Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Implementation 5
2.1 Current Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Code Changes to Subcolumnize the Droplet Activation Process . . . . . . . . 9
2.3 Notes on the Code Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Notes on Necessary Array Lengths . . . . . . . . . . . . . . . . . . . 12
2.3.2 Notes on Active Columns . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 Notes on Mismatching Indices . . . . . . . . . . . . . . . . . . . . . . 13
2.3.4 Notes on Aerosol Types . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Notes on Vertical Levels . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Setup for the Analysis 16
3.1 Case Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Sampling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Convergence Analysis of Different Sampling Strategies 19
4.1 Monte Carlo Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Latin Hypercube Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Clustered Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4.1 Setup 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4.2 Setup 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Conclusion and Outlook 31
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Bibliography 33

v



List of Figures

2.1 Call structure of the droplet activation process . . . . . . . . . . . . . . . . . 6
2.2 Memory layout of physics buffer variables . . . . . . . . . . . . . . . . . . . . 8

4.1 Convergence of wp2 for the Straight Monte Carlo Sampling . . . . . . . . 19
4.2 Convergence of rcm for the Straight Monte Carlo Sampling . . . . . . . . 20
4.3 Convergence of wp2 for the Latin Hypercube Sampling . . . . . . . . . . . 21
4.4 Convergence of rcm for the Latin Hypercube Sampling . . . . . . . . . . . 22
4.5 Convergence of wp2 for the Importance Sampling . . . . . . . . . . . . . . 24
4.6 Convergence of rcm for the Importance Sampling . . . . . . . . . . . . . . 25
4.7 Convergence of wp2 for the Clustered Sampling with setup 1 . . . . . . . . 27
4.8 Convergence of rcm for the Clustered Sampling with setup 1 . . . . . . . . 28
4.9 Convergence of wp2 for the Clustered Sampling with setup 2 . . . . . . . . 29
4.10 Convergence of rcm for the Clustered Sampling with setup 2 . . . . . . . . 30

vi



List of Tables

2.1 Overview on the column definitions . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Subcolumn usage control options . . . . . . . . . . . . . . . . . . . . . . . . 9

4.1 Overview on the eight categories for the Clustered Sampling . . . . . . . . 26

vii



Acknowledgements

First and foremost, I would like to thank Professor Larson for being my adviser on this

thesis and for him giving me the chance to work in his research group for the past year as

a research assistant. In this time I have learned so many new and interesting things. I am

very thankful for all the support he has given me while working for him and working on my

thesis.

Furthermore, I would like to thank Professor Lauko and Professor Spade for serving as

members of my thesis committee.

I would also like to thank Professor Dikta at Fachhochschule Aachen in Germany for

offering me the opportunity to study abroad for a year and all his support in preparing for

this year abroad previous to my departure from Germany.

viii



Chapter 1

Introduction

There are many different atmospheric models used in the scientific community to create the

best possible simulation of the atmosphere and its implications for the climate. These models

are very complex as there are so many different aspects and processes happening all at once

in the atmosphere.

1.1 Atmospheric Models

The models used in atmospheric science are based upon a wide variety of differential equa-

tions to describe various processes happening in the atmosphere. To solve these equations

using numerical methods the calculations are discretized on a grid and evaluated on the

evenly spaced grid points. The grid has a fixed number of grid columns each describing a

part of the whole area that is simulated. In every grid column there are a number of vertical

levels to get a three dimensional discretization of the simulated area. Each of the vertical

levels has its own set of values for different atmospheric components like temperature or

pressure.

To start a simulation, an initial state the atmosphere is in has to be provided. This

initial state has information on all the atmospheric components with which the simulation

will start to operate. These can either be modeled data created by researchers or come from

measurement campaigns and are therefore actual conditions that were recorded at some

point in time. These sets of initial data are called cases. Depending on the case, simulations

will produce very different results. Atmospheric models usually also come with a large set of

options for different physical processes that can be adjusted in order to change the behavior

1



of them or to save simulation time. All these possible settings allow for a wide variety of

simulations that can be done with the same initial state which makes atmospheric models

very versatile.

1.2 Motivation

An important factor for the climate is cloud coverage. The clouds reflect solar radiation,

which cools the ground below them. The amount of reflection depends on the concentration

and size of cloud droplets (Boucher et al., 2013). Consider two clouds with the same cloud

water content (grams of liquid per gram of dry air), but one cloud has more numerous but

smaller droplets while the other cloud has fewer but larger droplets. Calculations show that

the cloud with more numerous but smaller droplets reflects more solar radiation (Lohmann

and Feichter, 2005). Therefore, it is important that atmospheric models calculate the droplet

size accurately.

The droplet size is in part determined by droplet activation (i.e. nucleation). Droplet

activation is the formation of a new droplet by condensation. In the atmosphere droplet

activation requires the presence of a small particle (i.e. aerosol) on which liquid can condense.

More aerosol in the air leads to more small droplets and therefore more reflection.

A complicating factor in the activation process is the updraft speed. The higher the

updraft speed, the more droplets are activated. This happens due to the air being cooled

down more rapidly with higher updraft speeds. The problem is that the updraft speed is

hard to represent in a model because the updraft width is approximately a kilometer but a

typical climate model grid box might have a width of 100 kilometers (Malavelle et al., 2014).

Therefore, the updrafts are not resolved accurately by the numerical grid and potentially

misrepresented on the grid.

Currently climate models just feed one representative value (the standard deviation of

updraft speeds) into the droplet activation formula and take the result as a representative for

2



the whole grid box. This is potentially not very representative e.g. for a skewed distribution

function.

In order to be able to get a better representation of the highly diverse updrafts, many

values for updraft speeds have to be taken inside one grid box. The process of doing so

consists of the following four steps.

1. Calculate probability density function (PDF)

2. Draw samples from PDF

3. Feed samples one by one into droplet activation formula

4. Average the result from each sample back to the grid scale

The PDF is computed in CLUBB1. The samples are then drawn using SILHS2 which comes

with a lot of different configurable parameters to change the sampling strategy. The profiles

of the chosen samples at each grid level are the so-called subcolumns (Larson, 2017). SILHS

does rely on an external module to provide a PDF from which it draws samples, in this case

CLUBB.

The third step presented a problem as the current implementation of the droplet acti-

vation formula does not allow for samples to be fed into the calculation and therefore also

does not allow to follow through with step four.

In this thesis I will analyze the convergence of the simulation results when using a sampled

droplet activation process. To be able to do that I will first describe the implementation of

a version of the droplet activation process which is capable of using a sampled input. Then

I will discuss certain challenges and possible refactorings that I found during implementing

the necessary changes. Finally, I will look at the convergence in the simulation results with

different sampling strategies.
1Cloud Layers Unified By Binomials (Larson, 2017)
2Subgrid Importance Latin Hypercube Sampler (Larson and Schanen, 2013)

3



For this thesis I am using the Energy Exascale Earth System Model (E3SM) (E3SM

Project, 2018) which is a very versatile model. I am concentrating on the atmosphere com-

ponent of that model as this is the component in which the droplet activation process is

located.

4



Chapter 2

Implementation

In this chapter I will describe the implementation of a droplet activation process which is

capable of using a sampled input. For this, I will start by describing the current implemen-

tation of the droplet activation process in section 2.1. Then, I will go over the necessary code

changes for the droplet activation process to work with subcolumns in section 2.2. Finally,

I will give some notes on the refactoring process in section 2.3 which could be useful for

potential future changes to other physical processes used in the model to also be able to use

subcolumns.

The E3SM model used for this thesis is written in the Fortran programming language,

in particular the Fortran 90 coding standard (Fortran 90 Standard, 1991). It consists of

many different components to model different aspects of the climate. The droplet activation

process is located in the atmosphere component.

2.1 Current Implementation

Involved with the droplet activation process are four different subroutines, namely tphysbc

located in the module physpkg, microp_aero_run located in the module microp_aero,

nucleate_ice_cam_calc located in the module nucleate_ice_cam and dropmixnuc located

in the module ndrop. Figure 2.1 shows the structure of the droplet activation process with

the relationships between the mentioned subroutines.

The tphysbc subroutine is responsible for calling the different physical processes used in

the model and as such is also calling the droplet activation process. After the called process

is finished this subroutine gets back tendencies for the atmospheric components effected by

5



call microp_aero_run

return

call nucleate_ice_cam_calc

return

call dropmixnuc

return

tphysbc

Figure 2.1: Call structure of the droplet activation process

the previously called physical process to update the current atmospheric state.

The microp_aero_run subroutine is the main driver of the droplet activation process. It

is responsible for calculating the new cloud fractions, calling the ice nucleation process and

the droplet activation process itself.

The nucleate_ice_cam_calc subroutine calculates the nucleation process on ice parti-

cles. It returns the number of activated aerosol for the ice nucleation.

The dropmixnuc subroutine takes the calculated cloud fractions and then calculates the

vertical diffusion and nucleation of cloud droplets. It returns the change of the droplet

number concentration.

There are a few important structures used throughout the whole simulation process. The

first structure that is relied on heavily is the state variable. It is a Fortran derived type

holding all the information about the current state of the atmosphere. That includes infor-

mation about position on earth, temperature, pressure and wind at the corresponding grid

box. It also holds information about the setup of the simulation itself. That is information

about the number of active grid columns, the maximum number of columns (i.e. product of

6



grid columns and number of subcolumns) and the total number of active columns. Active

columns are columns that actually contain data. If every column is an active column the

number of active columns equals the number of columns on the grid and the total number

of active columns equals the product of grid columns and subcolumns per grid column. Ta-

ble 2.1 gives an overview on the different variables that hold information about the columns

used.

Variable Name Description
pcols Maximum number of grid columns

psubcols Maximum number of subcolumns
psetcols Maximum number of all columns
ngrdcol Number of active grid columns
ncol Number of all active columns

Table 2.1: Showing an overview on the components of the state variable which hold the
information about the grid in terms of the used columns (Thayer-Calder et al., 2015).

The state variable is fed into each of the subroutines listed above as all of them need

some information about the current atmospheric state.

The other important structure is the pbuf (physics buffer) variable. It holds a lot of

variables that are used throughout the subroutines. Different subroutines read the variables

while others calculate and write them to the pbuf variable. So, as the state variable, the

pbuf variable is also fed into all of the subroutines mentioned above. The pbuf variable has

the capability of holding values for each of the grid columns as well as holding values for each

of the subcolumns by reserving memory for two separate arrays, one for the grid columns

and one for the subcolumns. When a variable is requested from the physics buffer, a pointer

is returned to the array that has the requested type, either grid values or subcolumn values.

As illustrated in Figure 2.2, the data in the subcolumn array can either be duplicated

from the grid, meaning the value of the grid column is copied to each of the subcolumns as-

sociated with this grid column, or the data in the subcolumn array is distributed, meaning

the value of each of the subcolumns is not necessarily equal to the value of the correspond-

ing grid column or the other subcolumns associated with the same grid column. Data is

7



1 2 3 4
4 4 4 43 3 3 32 2 2 21 1 1 1

C
ol

um
n 

1

C
ol

um
n 

2

C
ol

um
n 

3

C
ol

um
n 

4

Column 1 Column 2 Column 3 Column 4

Grid

Subcolumns

1 2 3 4
9 1 6 22 0 5 83 8 1 46 2 9 7

C
ol

um
n 

1

C
ol

um
n 

2

C
ol

um
n 

3

C
ol

um
n 

4

Column 1 Column 2 Column 3 Column 4

Grid

Subcolumns

a

b

Memory Address 1

Memory Address 2

Memory Address 1

Memory Address 2

Figure 2.2: Memory layout of the physics buffer. In this example there are four grid columns
each having four subcolumns. Part a shows a variable that has been duplicated on the
subcolumns. Part b shows a variable that has been distributed on the subcolumns.

duplicated for variables that are only calculated on the grid in some component of the sim-

ulation and are therefore not equipped with values for subcolumns. Data is distributed for

variables that are sampled and therefore have individual values for each of the subcolumns.

Important to keep in mind is that the two different arrays with values in the memory are

independet of one another. If the pointer is pointing to the subcolumn version of the variable

(memory address 2, see Figure 2.2) and updates it, the grid version is not automatically

updated as well and the other way around. In the current code only the grid versions of

variables (memory address 1, see Figure 2.2) are used in the droplet activation process.

8



2.2 Code Changes to Subcolumnize the Droplet Activa-

tion Process

In order to be able to use subcolumns in the droplet activation process, all the involved

subroutines had to be checked for necessary changes. Moreover, all the helper routines that

are called, needed to be checked as well in order to get the code working correctly.

First, I introduced three new options in order to control the behavior of the subcolumn

usage. These options with their possible values are shown in Table 2.2.

Option Name Possible Values
use_subcol_aero .true. .false.
subcol_aero_mode interactive non-interactive

subcol_aero_copy_state .true. .false.

Table 2.2: Options used to control the behavior of the subcolumn usage. They are shown
with their possible values.

The use_subcol_aero option switches the use of subcolumns in the droplet activation

process on or off. Only if it is set to .true., the code changes I will describe next are going

to be needed as the current code is not using subcolumns in the droplet activation process.

The other two options are only relevant when use_subcol_aero is .true..

The subcol_aero_mode option controls the behavior of how the subcolumn calculations

are used. If it is set to interactive all the calculations done on the subcolumns are being

averaged back to the grid and will update the state variable and the pbuf variable. If it is

set to non-interactive all the calculations are first done on the grid as it is done without

the code changes and then again on the subcolumns for each timestep. The results of the

subcolumn calculations are written to disk but are otherwise not used. The state variable

and the pbuf variable are getting updated with the calculations that were done directly on

the grid. This allows for better convergence analysis as the noise in the sampled data is not

fed back to the atmospheric state each timestep which keeps the atmospheric state on the

right track.

9



The subcol_aero_copy_state option controls how the state variable is populated with

data on the subcolumns. The normal behavior is that SILHS samples values for the com-

ponents of the state variable that should be distributed on the subcolumns which will

then lead to different values in each of the subcolumns. The other components of the state

variable are duplicated. As a diagnostic tool, this option, if set to .true., overrides the

normal behavior for distributed components of the state variable by simply copying the

current grid values to each of the subcolumns, essentially treating them like duplicated

variables. This leads to the same calculations being done in each of the subcolumns and

these calculations are the same that would have been done on the grid itself. When averag-

ing the subcolumn results back to the grid they will have the same result as the calculations

done on the grid without the use of subcolumns, with the exception of roundoff level error,

if the code changes are working properly.

The advantage of having the state variable already used in all relevant subroutines, is

that it, as mentioned in section 2.1, holds information over the maximum number of columns.

This means that, if subcolumns are used or not, the psetcols variable which is a member

of the state variable holds the maximum length needed to store values for calculations

on either the grid or the subcolumns. Therefore, the first step in changing the code is to

initialize all local variables in the involved subroutines with the value of psetcols.

The fields in the state variable are correctly allocated using SILHS. If subcolumns are

used, SILHS samples values to the subcolumns as described before in connection with the

subcol_aero_copy_state option leading to correctly allocated arrays inside the state vari-

able. If no subcolumns are used the state variable is staying as it is implemented now.

For the variables saved in the physics buffer, the ones that are needed in the droplet

activation process are calculated in parts of the code that is not using subcolumns. This

means that only the grid length array is filled with values while the subcolumn array is not

allocated at all. However, the physics buffer comes with an option when retrieving arrays

from it which, if set to .true., is going to allocate memory and copy the grid values down

10



to the subcolumns, resulting in a duplicated variable, and then ultimately will return a

pointer to this newly created array.

As described in section 2.1, the physics buffer grid and subcolumn arrays are independet

from one another. If subcolumns are used and the variable is copied from the grid, the pointer

eventually ends up pointing to the newly allocated array with subcolumn length. When one

of these variables is updated in the droplet activation process it has to be averaged back

by first retrieving an extra pointer to the grid length array and then writing the averaged

value back to that memory address. This is important because other processes after the

droplet activation process might not use subcolumns and will just request the grid length

array. That is why it has to be up to date as well even though, for the droplet activation

process itself, it is not relevant as these arrays are not used when subcolumns are used.

In terms of helper subroutines only two had to be slightly changed. Both of them are part

of the rad_constituents module, namely the subroutine rad_cnst_get_mode_num and the

subroutine rad_cnst_get_mam_mmr_by_idx. Both routines are used to return pointers to

certain information about different aerosol types. The subroutine rad_cnst_get_mode_num

gives back a pointer to the number mixing ratio for the requested aerosol type and the

subroutine rad_cnst_get_mam_mmr_by_idx gives back a pointer to the mass mixing ratio

information for the requested aerosol type. Depending on the requested aerosol type, the

information for number and mass mixing ratios are either contained in the state variable

or saved in the pbuf variable. This is not a problem if no subcolumns are used. However,

if subcolumns are used and the information is stored in the state variable then the array

pointed to is of subcolumn length, but if the information is stored in the pbuf variable

the pointer will always point to the grid length array in the physics buffer. This led to

the same subroutine delivering arrays of different length depending on where the requested

information was saved. So, changes had to be made for the aerosol types that are stored in

the pbuf variable. As the information about number mixing ratio and mass mixing ratio is

not changed in the droplet activation process it is only available on the grid. Therefore, the

11



information needs to be copied from the grid down to the subcolumns as seen in Figure 2.2

part a and then a pointer needs to be returned to the copied version which has subcolumn

length.

2.3 Notes on the Code Refactoring

In this section I am going to talk about the challenges of the code refactoring while also

listing some aspects of the refactoring that are worth keeping in mind for potential future

changes to other components of the simulation to work with subcolumns.

2.3.1 Notes on Necessary Array Lengths

The first important thing to note is that there was already an implementation at least for

the state variable to work with subcolumns and that this variable does contain all the

information needed to determine the correct length of the arrays for the currently used

grid with or without subcolumns. Table 2.1 gives an overview on the relevant components

of the state variable while they are described in detail in Appendix A of Thayer-Calder

et al. (2015). With these information it can be determined if subcolumns are used or not,

depending on the values of pcols and psetcols. If no subcolumns are used pcols and

psetcols will equal. On the other hand, if subcolumns are used psetcols will be equal to

pcols · psubcols. So, it is possible to figure out if subcolumns are used by simply comparing

the values of pcols and psetcols.

2.3.2 Notes on Active Columns

Regarding the ncol variable and the psetcols variable it is worth noting that these two will

equal each other if every column, including subcolumns, is active. This holds for a grid with

and without subcolumns. Local variables are allocated with the value of psetcols as this

variable describes the maximum number of possibly active columns. The calculations are

12



done only on the number of actually used columns, i.e. active columns, so the ncol value

will be used for loops in the subroutines themselves. This allows for setups with all columns

being active to work as well as setups with some inactive columns without needing to do any

changes to the code depending on the setup.

2.3.3 Notes on Mismatching Indices

One early thing I noticed was that as soon as a state variable that had values on subcolumns

was plugged into the droplet activation process the process was not able to finish without

getting runtime errors. That happend due to a mismatch in array lengths. All loops over

the number of used grid columns used the value of the ncol variable as the upper index

which does describe the number of active columns, thus including the active subcolumns.

This meaned that the loops ran over too many indices for all the variables that were only

accessed on the grid. That mismatch could have been avoided by simply running loops up

to the value of the ngrdcol variable which has the information on the number of active grid

columns. That would have made the loop indexing inside the subroutines consistent with

the hardcoded array lengths of all the local variables that were used. This remark is mainly

included to clearly state the difference between ngrdcol and ncol. For the refactoring it is

going to work to always use the value of the ncol variable for the loops and allocate local

arrays with the length given by the variable psetcols.

2.3.4 Notes on Aerosol Types

Another thing worse noting that I found during the code refactoring was the use and handling

of different aerosol types and their number mixing ratios and mass mixing ratios. Depending

on what type of aerosol is requested, the information about the ratios are either found in

the state variable or in the pbuf variable. As described in the last paragraph of section 2.2,

that led to problems with pointers pointing towards different arrays in the memory which

had different lengths if no changes were made to the helper subroutines. Furthermore, it

13



was not possible to know outside of the helper subroutine if the pointer returned is pointing

to an array belonging to the state variable or an array in the pbuf variable. A possible

future change could be made to create a new structure that will hold all the information on

the different aerosol types on its own. This would make the interface to interact with them

more easily to work with subcolumns. It would also remove some of the components from

the state variable which already holds a lot of different information and could therefore be

easily reduced on these components.

2.3.5 Notes on Vertical Levels

On a last note in this section I wanted to go over the vertical levels used in each of the

grid columns. Having vertical levels in each grid column gives a three-dimensional model.

However, some precaution has to be taken when dealing with them. These comments are

regarding both the grid with and without subcolumns in the same way. The variables are

usually allocated with the value of the variable pver which describes the number of vertical

levels. In many different processes throughout the simulation a so-called top level is specified

and saved in the top_lev variable. This also happens in the droplet activation process.

Calculations are then done only up until the value of the top_lev variable. This leads to

uninitialized array elements for the few vertical levels above the top level. For the simulation

and the calculations in it that is not a problem because if an upper level is specified it is used

consistently throughout so that calculations are never including any uninitialized memory

addresses. A problem arises when outputting some of the variables that have uninitialzed

elements. Depending on what is currently saved at the memory address it can potentially

be uninterpretable for the software component that handles outputs to disk which results in

runtime errors. This can happen for different variables each simulation run as it is possible

that different memory addresses are used for different runs even without changing the setup

in any way. To avoid this, variables should be initialized with a fixed value over all vertical

levels before they are first used, ensuring that there will be no problem when outputting

14



them. This is done for many variables but not all of them. This is easy to do and does not

require any other change than one line of code initializing the variable but it is something

that can easily be forgotten especially because it does not always result in a runtime error

as the content of the uninitialized memory address could potentially be interpretable as a

number.

15



Chapter 3

Setup for the Analysis

In this chapter I will go over the setup used for the simulations that are analyzed in chapter 4.

I will start with describing the case setup that I used for all the simulations in section 3.1.

Next, I will describe the plots I will going to use for analyzing the convergence in section 3.2.

Finally, I will describe the general workings of the sampling process in section 3.3 before

going into detail with specific sampling strategies in chapter 4 together with the convergence

analysis.

3.1 Case Setup

For the simulations, that I will analyze in chapter 4, I used the BOMEX (Barbados Oceano-

graphic and Meteorological Experiment) case (Holland and Rasmusson, 1973; Siebesma et al.,

2003). It is a case which data was recorded east of Barbados in 1969. I am running a single

column model with 72 vertical levels in the grid column. The simulation simulates a period of

six hours. The time step size is 30 minutes. The only physical process that uses subcolumns

is the droplet activation process. I use the non-interactive mode in order to simplify the

analysis of the convergence in chapter 4. I am using up to 10000 subcolumns for the analysis

of the convergence.

The variable w describes the vertical velocity (i.e. updraft/downdraft speed). As de-

scribed in section 1.2, this is the variable that will be distributed on the subcolumns.

16



3.2 Plots

In order to see if the sampling is working correctly, I will look at the plot of wp2 which is

the variance of the w variable. The more subcolumns used the better the variance should

match the original variance of the underlying PDF.

The other plot I will look at is the plot of the variable rcm which is the cloud water

mixing ratio. This value is dependent on the outcome of the droplet activation process. If

the subcolumnization and the sampling are working properly it should converge to the value

of rcm which is computed in CLUBB.

The plots will have the vertical levels on the vertical axis and the corresponding values

on the horizontal axis, as this is the convention in atmospheric science. The reference values

for wp2 and rcm will be drawn with a black line while the different sampled output lines

will rotate through an array of colors to distinguish the sampled lines and the reference line.

3.3 Sampling Process

CLUBB is used to construct a multivariate PDF that includes the vertical velocity w. The PDF

chosen is a double Gaussian (Larson et al., 2005). The concrete PDF used in each grid box

and time step is determined by the grid box means and some higher order moments which

are advanced in time (Golaz et al., 2002). SILHS will then draw samples from the offered

PDF. This is done by choosing a starting grid level and generating a correlated, multivariate

sample at that level (Larson and Schanen, 2013). To create a profile over all vertical levels

SILHS chooses similar values for adjacent levels which means that there is a high vertical

correlation between adjacent vertical levels which will decrease with the distance (Larson

and Schanen, 2013).

SILHS has two possible ways to reduce noise in the samples. Both Stratified Sampling,

namely Latin Hypercube Sampling, and Importance Sampling can be used within SILHS

(Larson and Schanen, 2013). In chapter 4 I will describe the different sampling strategies in

17



detail when looking at the convergence for these methods.

The droplet activation process itself does not need to know that the profiles, that are

given as input to it, are not grid box averages but instead subcolumns. The calculations

are done in the same way. The only thing is that the droplet activation process must allow

feeding in more profiles, as described in section 2.2.

18



Chapter 4

Convergence Analysis of Different Sampling Strategies

In this chapter I will be discussing different sampling strategies and analyse their convergence

behavior. The general simulation setup was discussed in the previous chapter in section 3.1.

4.1 Monte Carlo Sampling

The first sampling strategy I will discuss is the Monte Carlo sampling without any special

treatment. Hereafter, I will call this strategy Straight Monte Carlo Sampling. With this

strategy the samples are picked completely relying on some pseudorandom number generator.

More information about Monte Carlo sampling in general can be found in Gentle (2003).

Figure 4.1: Convergence of wp2 for the Straight Monte Carlo Sampling

19



Figure 4.1 shows that the Straight Monte Carlo Sampling is converging for wp2 but

this is happening very slowly. With 10 subcolumns the variance of the vertical velocity

w is not following the underlying variance of the PDF from which was sampled. With 100

subcolumns the general course of the variance is followed but only with 1000 subcolumns the

original wp2 line is closely followed with the exception of the higher altitudes from around

1800 meters upwards. Only with 10000 subcolumns it looks like wp2 is really converged.

This result is not surprising as there is no strategy in place to make sure that most of

the samples drawn can be put to good use in terms of the convergence.

Figure 4.2: Convergence of rcm for the Straight Monte Carlo Sampling

Figure 4.2 shows that the Straight Monte Carlo Sampling is converging for rcm but

like before with wp2 it is converging slowly. With 10 subcolumns the cloud water mixing

ratio does not follow the course of the grid column version of rcm. With 100 subcolumns

the overall course of the graph is matched quite good already with the exception of the peak

at around 600 meters. With 1000 subcolumns there is a pretty good match to the reference

rcm line. There are only some slight deviations from around 1200 meters to 1800 meters.

20



With 10000 subcolumns the line is for the most vertical levels on top of the reference line.

So, even without trying to do anything to improve the convergence rate the convergence

for rcm is already not too bad.

4.2 Latin Hypercube Sampling

The next sampling strategy I am going to look at is the Latin Hypercube Sampling. It does

start out by dividing the space covered by the PDF into squares, the so-called hypercubes.

Each of these has equal probability. Then one of these squares is chosen at random and a

point inside this square is then randomly chosen. After that the row and column in which

the chosen square is, are eliminated from the grid. Then the process starts over again by

choosing the next square at random (Larson et al., 2005). This helps spreading the points

more evenly across the space that is covered by the PDF.

Figure 4.3: Convergence of wp2 for the Latin Hypercube Sampling

21



Figure 4.3 shows that the Latin Hypercube Sampling does give a better convergence

rate than with the Straight Monte Carlo Sampling. Between 10 and 100 subcolumns

there is some improvement in taking the course of the original values of wp2. With 1000

subcolumns the process is mostly converged to the reference line. Using 10000 subcolumns

does not improve the outcome that much over using 1000 subcolumns.

Using the Latin Hypercube Sampling does help the vertical velocity because it is vary-

ing very strongly inside one grid box as described in section 1.2. By stretching out the

samples it covers more of the many different values and therefore the sample variance is

converging faster to the convergence of the underlying PDF.

Figure 4.4: Convergence of rcm for the Latin Hypercube Sampling

Figure 4.4 shows that the Latin Hypercube Sampling did slightly worsen the conver-

gence rate of the cloud water mixing ratio in comparison to the Straight Monte Carlo

Sampling. For 10 subcolumns as well as for 100 subcolumns the lines are far off the refer-

ence line. With 1000 subcolumns it does match the reference line at the lower vertical levels.

22



Using 10000 subcolumns does improve the fit of the cloud water mixing ratio specifically in

the upper vertical levels.

The rcm plot does still show convergence but the Latin Hypercube Sampling did not

improve the convergence rate. This is most probably because the drawn samples are now

pushed away from each other. The value of rcm is basically only dependent on the values in

cloud as there is more water than in the surrounding air outside the cloud. Spreading the

samples puts many of them out of cloud where the water ratio is significantly smaller than

in cloud. This leads to many sample points underrepresenting the actual value of the water

ratio in the grid box.

The slightly worse results for 100 subcolumns in comparison to the Straight Monte

Carlo Sampling could come from the fact that for both strategies only one simulation was

done. So, for the Latin Hypercube Sampling the subcolumns could just have been sampled

unfortunately.

Concluding, the Latin Hypercube Sampling has shown that spreading the sampled

points more evenly across the space covered by the PDF is not necessarly a way to im-

prove convergence. For a variable like the vertical velocity w that is a good approach. On

the other hand, for a variable like the cloud water mixing ratio rcm that does more harm

than good for the convergence rate.

4.3 Importance Sampling

For the next sampling strategy I am going to look at the Importance Sampling. For this

strategy the samples are picked in a way that there is an equal amount of points inside and

outside of liquid clouds as long as the liquid cloud fraction in the grid box is lower than

0.5. Thus, the regions inside of liquid clouds are deemed the important regions. This is

done because regions with liquid are often the ones with the most variability (Larson and

Schanen, 2013).

23



One very important thing to remember here is that the samples are drawn on one specific

vertical level. The liquid cloud fraction from this one level is used for the Importance

Sampling. For the other levels the points are chosen in a way that the points decorrelate

exponentially with larger distances between the vertical levels (Larson and Schanen, 2013).

The level that is used as the starting level is the one with the greatest liquid water mixing

ratio (Larson and Schanen, 2013). This level can easily being identified from the plots in

this thesis as it is the level where the value of rcm, the cloud water mixing ratio, has the

maximum value. That is at around 650 meters.

Figure 4.5: Convergence of wp2 for the Importance Sampling

Figure 4.5 shows that for 10 subcolumns there is not really any sort of resemblance for

the variance of the vertical velocity w. With 100 subcolumns this already looks a lot better.

At the starting level it is pretty much exactly on point with the underlying variance from

which was sampled. For around 500 meters up and down from the starting level it is close to

the reference line. Above and below that area the line is less converged. For 1000 and 10000

24



subcolumns it is a similar result. Only the area where the convergence looks really good

is larger. The main difference between 1000 and 10000 subcolumns is for the most upper

levels of the simulation where the correlation between that level and the starting level is the

lowest. With 10000 subcolumns the convergence in that area is slightly better.

Compared to the simple Straight Monte Carlo Sampling, Importance Sampling did

slightly improve the convergence rate. The reason for that could be that the vertical velocity

is not only varying inside of clouds but also outside of it. So by deeming the region inside

the cloud more relevant it took away samples from the area outside of it.

Figure 4.6: Convergence of rcm for the Importance Sampling

Figure 4.6 shows that, for the cloud water mixing ratio, choosing an important region

does work very well. This is mainly due to the fact that the Importance Sampling was

implemented in SILHS with variables like the cloud water mixing ratio in mind. This is why

the important regions are the ones with liquid clouds, as most variables vary the most in

there, and that the starting level is the one where the cloud water mixing ratio peaks.

25



With 10 subcolumns there is a good convergence already at least near the starting level.

With 100 subcolumns the cloud water mixing ratio is almost converged on all vertical levels.

With 1000 subcolumns the cloud water mixing ratio is almost identical with the original rcm

values with the exception of an area from around 1800 meters to 2200 meters and then with

10000 subcolumns the cloud water mixing ratio is fully converged.

With the Importance Sampling Strategy it can be observed that, especially with the

convergence of rcm, while the area around the starting level is matched very well, due to the

exponentially declining correlations between the vertical levels the factor of that strategy

does decrease the further away the vertical levels are from the starting level.

4.4 Clustered Sampling

The Clustered Sampling is a special case of the important sampling and was published by

Raut and Larson (2016). This sampling strategy allows the modeler to give specific regions

which should be considered more important than others in the Importance Sampling. This

is done by dividing the domain of the PDF into eight different disjoint categories (Raut and

Larson, 2016). They are listed in Table 4.1.

Category Number Category Description
1 In cloud, In component 1, In precipitation
2 In cloud, In component 2, In precipitation
3 Out of cloud, In component 1, In precipitation
4 Out of cloud, In component 2, In precipitation
5 In cloud, In component 1, Out of precipitation
6 In cloud, In component 2, Out of precipitation
7 Out of cloud, In component 1, Out of precipitation
8 Out of cloud, In component 2, Out of precipitation

Table 4.1: Overview on the eight categories for the Clustered Sampling (Raut and Larson,
2016)

The component refers to the double Gaussian PDF that is used to model the vertical ve-

locity. “In component 1” means drawing a sample from the first Gaussian and “In component

26



2” means drawing a sample from the second Gaussian.

Each of the eight categories is assigned a weight by the modeler, the only limitation being

that they have to add up to 1. Naturally this allows for countless different settings and I

will list only two exemplary cases.

All my settings do not put weight to the categories 1 to 4 as there was no precipitation

during the simulation of the BOMEX case.

4.4.1 Setup 1

The first setup I used put equal weights to the categories 5 to 8. This is a setup comparable

to the Importance Sampling. This is done to check if the result will be similar.

Figure 4.7: Convergence of wp2 for the Clustered Sampling with setup 1

Figure 4.7 shows in fact similar results to the Importance Sampling. For 10 subcolumns

there is a huge difference but this is no surprise when using so few sample points. With 100

subcolumns there is already a good convergence. Mainly the area the furthest away from the

27



starting level is again the main problem. For 1000 and 10000 subcolumns the convergence

is improving further.

Figure 4.8: Convergence of rcm for the Clustered Sampling with setup 1

Figure 4.8 shows also similar results to the Importance Sampling. For 10 subcolumns

there is already very good convergence near the starting level. With 100 subcolumns the

cloud water mixing ratio is almost fully converged. 1000 and 100000 subcolumns only give

slight improvement.

This first case shows that the Clustered Sampling is working properly with the im-

plementation in the droplet activation process as it does produce similar results to the

Importance Sampling when the categories are set accordingly.

4.4.2 Setup 2

For the next setup I put equal weights to the in cloud and out of cloud categories but I favored

the first component three times over the second component. In other words categories 5 and

28



7 have the same weight, categories 6 and 8 have the same weight and category 5 (7) has

three times the weight of category 6 (8). With the BOMEX case there is more emphasize on

the first component of the PDF.

Figure 4.9: Convergence of wp2 for the Clustered Sampling with setup 2

Figure 4.9 does look similar to the first setup in subsection 4.4.1. For 100 subcolumns

there is some good convergence already. The problem is again mainly in the areas furthest

away from the starting level. Between 1000 and 10000 subcolumns that is exactly the area

that is improving the most and it does look a little better than in the setup before.

Figure 4.10 shows a similar result to Figure 4.9. In general the result does look very

similar to the result from the first setup in subsection 4.4.1. However, favoring component

1 over component 2 did help a little with the convergence at the upper vertical levels.

The second setup has shown that changing the weights can influence the behavior at

the starting level and the regions furthest away in different ways. Compared to the first

setup the overall convergence is pretty similar but in the second setup the region around the

29



Figure 4.10: Convergence of rcm for the Clustered Sampling with setup 2

starting level does look slightly worse than in the first setup while the regions furthest away

from that level looked a bit better. The worse result around the starting level could come

from favoring component 1 too much over component 2.

30



Chapter 5

Conclusion and Outlook

In this final chapter I will summarize what was found during the previous chapters and will

give an outlook on what could be done building on the findings in this thesis.

5.1 Conclusion

Implementing the support of subcolumns for the droplet activation process in E3SM has

proven to be more difficult than originally expected. Some concepts in the model did help

the task of refactoring the code for the use of subcolumns. Mainly, the challenge was to

understand all the different variables that are used to specify the grid that is used as some

of them were having the same values when running without subcolumns. This led to some

mismatches in early stages of the refactoring in regards to array lengths of local variables. The

refactoring has shown some specifics of the code that could be changed to help understand

certain details of it better in the future, mostly in regards to the information on many

different aspects of the simulation being placed in huge derived types.

The analysis of the different sampling strategies has shown that the Straight Monte

Carlo Sampling does a good job in terms of convergence when compared to the other more

complex strategies. Overall the convergence is happening relatively slow as for the most

part 1000 or even 10000 subcolumns only seem to give a good convergence. Importance

Sampling and Clustered Sampling for that matter have shown to improve the convergence

at the starting level where the samples are actually drawn, at least for the rcm plots. This

gave very good convergence even for only 10 subcolumns. The good these strategies did

around the starting level did unfortunately not go through all the vertical levels as they

31



are more and more uncorrelated to the original samples the further away they are from the

starting level. All together this does suggest to just simply go with the Straight Monte

Carlo Sampling as the preferred method of sampling as the results are good with a certain

amount of samples and it does save some time during the simulation because there are no

steps necessary besides drawing samples at random from the PDF.

5.2 Outlook

For the future there are some things that can be done by building on the findings of this

thesis. It could be looked at other physical processes to determine if they would profit from

using subcolumns. Such a refactoring could probably be done more easily with my notes on

how to integrate subcolumns into physical processes in section 2.2. These remarks are for

the most part not specific to the droplet activation process.

The Importance Sampling Strategy could be improved in a way that the positive ef-

fects at the starting level are carried through all vertical levels.

It could be worth taking the time trying different setups with the Clustered Sampling

Strategy to find a setup that will better support the convergence of wp2. If a setup is found

that improves the convergence not only for rcm but also for wp2 that would probably make

the Clustered Sampling Strategy the preferred strategy.

32



Bibliography

Boucher, O., D. Randall, P. Artaxo, C. Bretherton, G. Feingold, P. Forster, V.-M. Kerminen,

Y. Kondo, H. Liao, U. Lohmann, et al., 2013: Clouds and aerosols. Climate change 2013:

the physical science basis. Contribution of Working Group I to the Fifth Assessment Report

of the Intergovernmental Panel on Climate Change, Cambridge University Press, 571–657.

E3SM Project, 2018: Energy Exascale Earth System Model (E3SM). [Computer Software]

https://dx.doi.org/10.11578/E3SM/dc.20180418.36.

Fortran 90 Standard, 1991: ISO/IEC 1539:1991. Standard, International Organization for

Standardization.

Gentle, J. E., 2003: Random Number Generation and Monte Carlo Methods . 2nd edition,

Springer.

Golaz, J.-C., V. E. Larson, and W. R. Cotton, 2002: A PDF-based model for boundary layer

clouds. Part I: Method and model description. J. Atmos. Sci., 59, 3540–3551.

Holland, J. Z. and E. M. Rasmusson, 1973: Measurements of the atmospheric mass, energy,

and momentum budgets over a 500-kilometer square of tropical ocean. Monthly Weather

Review , 101, 44–55.

Larson, V. E., 2017: CLUBB-SILHS: A parameterization of subgrid variability in the atmo-

sphere. ArXiv preprint arXiv:1711.03675.

Larson, V. E. and D. P. Schanen, 2013: The Subgrid Importance Latin Hypercube Sam-

pler (SILHS): a multivariate subcolumn generator. Geosci. Model Dev., 6, 1813–1829.

doi:10.5194/gmdd-6-1813-2013.

33

https://dx.doi.org/10.11578/E3SM/dc.20180418.36


Larson, V. E., J.-C. Golaz, H. Jiang, and W. R. Cotton, 2005: Supplying local microphysics

parameterizations with information about subgrid variability: Latin hypercube sampling.

J. Atmos. Sci., 62, 4010–4026.

Lohmann, U. and J. Feichter, 2005: Global indirect aerosol effects: a review. Atmos. Chem.

Phys., 5, 715–737.

Malavelle, F. F., J. M. Haywood, P. R. Field, A. A. Hill, S. J. Abel, A. P. Lock, B. J.

Shipway, and K. McBeath, 2014: A method to represent sub-grid scale updraft velocity

in km-scale models: Implication for aerosol activation. J. Geophys. Res..

Raut, E. K. and V. E. Larson, 2016: A flexible importance sampling method for integrating

subgrid processes. Geosci. Model Dev., 9, 413–429.

Siebesma, A. P., C. S. Bretherton, A. Brown, A. Chlond, J. Cuxart, P. G. Duynkerke,

H. Jiang, M. Khairoutdinov, D. Lewellen, C.-H. Moeng, et al., 2003: A large eddy simula-

tion intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60, 1201–1219.

Thayer-Calder, K., A. Gettelman, C. Craig, S. Goldhaber, P. A. Bogenschutz, C.-C. Chen,

H. Morrison, J. Höft, E. Raut, B. M. Griffin, J. K. Weber, V. E. Larson, M. C. Wyant,

M. Wang, Z. Guo, and S. J. Ghan, 2015: A unified parameterization of clouds and turbu-

lence using CLUBB and subcolumns in the Community Atmosphere Model. Geosci. Model

Dev., 8, 3801–3821.

34


	Modeling of Cloud Droplet Formation: Software Development and Sampling Strategies
	Recommended Citation

	Introduction
	Atmospheric Models
	Motivation

	Implementation
	Current Implementation
	Code Changes to Subcolumnize the Droplet Activation Process
	Notes on the Code Refactoring
	Notes on Necessary Array Lengths
	Notes on Active Columns
	Notes on Mismatching Indices
	Notes on Aerosol Types
	Notes on Vertical Levels


	Setup for the Analysis
	Case Setup
	Plots
	Sampling Process

	Convergence Analysis of Different Sampling Strategies
	Monte Carlo Sampling
	Latin Hypercube Sampling
	Importance Sampling
	Clustered Sampling
	Setup 1
	Setup 2


	Conclusion and Outlook
	Conclusion
	Outlook

	Bibliography

