
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

May 2020

Automated Digit Recognition on Sound Pressure Level Meters Automated Digit Recognition on Sound Pressure Level Meters

Based on Deep Learning Based on Deep Learning

Che-Wei Tung
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Tung, Che-Wei, "Automated Digit Recognition on Sound Pressure Level Meters Based on Deep Learning"
(2020). Theses and Dissertations. 2432.
https://dc.uwm.edu/etd/2432

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=dc.uwm.edu%2Fetd%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2432?utm_source=dc.uwm.edu%2Fetd%2F2432&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

AUTOMATED DIGIT RECOGNITION ON SOUND PRESSURE

LEVEL METERS BASED ON DEEP LEARNING

by

Che-Wei Tung

A Thesis Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Master of Science

in Engineering

at

The University of Wisconsin-Milwaukee

May 2020

ii

ABSTRACT

AUTOMATED DIGIT RECOGNITION ON SOUND PRESSURE LEVEL
METERS BASED ON DEEP LEARNING

by

Che-Wei Tung

The University of Wisconsin-Milwaukee,2020

Under the Supervision of Professor Yi Hu

Sound pressure level (SPL) meter is one of the useful devices used for measuring the sound

level pressure. The measurement device displays the SPL value in decibels (dB) on a standard

LCD screen (no backlight). We could base on the digit number shown on the LCD screen to do

some adjustments or evaluations. Thus, SPL has been widely used in several fields to quantify

different noise, such as industrial, environmental and aircraft noise. However, in my basic

knowledge, there is no previous study used machine learning to auto-recognize the digit on the

SPL meter. This thesis presents a novel system that recognizes the digit number on the SPL meter

automatically.

In this thesis, we present a novel approach to preprocess the image of SPL meter. This

approach could help us to reduce the noise and amplify the number. Then, we train two machine

learning models to auto-recognize the multi-digit on the SPL meter. In our experiment result, it

could be efficient to detect the SPL meter under high accuracy. There are two main claims to our

thesis. First, this is the original research that utilized the ML to auto-recognize the SPL meter.

Second, we are the only researchers to set up the SPL meter dataset which includes one-digit and

multi-digit images.

iii

© Copyright by Che-Wei Tung, 2020
All Rights Reserved

iv

To

my parents,

my brother,

and my girlfriend

v

TABLE OF CONTENTS

ABSTRACT .. ii

TABLE OF CONTENTS .. v

LIST OF FIGURES ... vi

LIST OF TABLES .. vii

I. Introduction ... 1

II. Related Work ... 4

i. Neural network .. 4
ii. Convolution Neural Network .. 5

III. Technical Approach ... 7

i. System Pipelined ... 7
ii. Data Collection ... 8
iii. Data Preprocessing .. 11
iv. Digit Recognition .. 16

IV. Experimental Setup .. 19

i. Build Method .. 19
ii. Data ... 19
iii. Training configuration .. 20
iv. Performance Analysis ... 22

V. Conclusion ... 29

Reference .. 30

vi

LIST OF FIGURES

Figure 1.A diagrammatic representation of the perceptron ... 5

Figure 2. Architecture of how fully managed machine learning works ... 7

Figure 3. System architecture ... 8

Figure 4.The data collected from the SPL meter ... 10

Figure 5. Labeling images using ‘LabelImg’ tool .. 10

Figure 6. Sample images in our database ... 11

Figure 7. Step by step processing flowchart .. 13

Figure 8. Input and intermediate image in finding first bounding box .. 15

Figure 9. Segmentation step ... 15

Figure 10. Fully connected neural network structure .. 17

Figure 11. Convolution neural network structure .. 18

Figure 12. Training and validation accuracy in our NN model ... 23

Figure 13. Training and validation loss in our NN model ... 24

Figure 14. Training and validation accuracy in our CNN model ... 25

Figure 15. Training and validation loss in our CNN model ... 25

vii

LIST OF TABLES

Table 1. Model performance .. 26

Table 2. Runtime breakdown between stage ... 26

Table 3. Classification report ... 28

1

I. Introduction

In the United States, about 28.8 million adults could benefit from hearing device but not use.

The main reason is that the current system of testing typically involves high costs due to a lack of

insurance coverage for these diagnostic tests and the need for specialized instrumentation.

Therefore, there is an idea that we could automate the process of sound calibration in smartphones

that enables these devices to be used in hearing assessment applications. This approach could

reduce the cost of the testing process significantly and hence greatly improve access and

affordability of this technology to those who need it the most while maintaining high accuracy. To

tackle this problem, an automated digit recognition on the sound pressure level meter system has

been proposed in this thesis.

Due to different neural networks have been widely developed, such as convolution neural

network (CNN) and deep neural network (DNN), the technique of automated digit recognition is

a rapidly growing and development market. This technique has been widely used in different fields,

such as license plate recognition [1], automatic meter reading [2] and street view imagery [3].

However, to our best knowledge, to automatically recognize the multi-digit shown on the SPL

meter using deep neural networks has not been well studied.

Traditionally, multi-digit recognition would be separated up into three steps, which are

localization, segmentation, and recognition. Thus, there are several different approaches have been

proposed to segment and recognize the image. Optical Character Recognition (OCR) method is

one of the conventional approaches [4], it would segment the individual characters and recognize

these characters separately. Due to recognize each character individually ignores the relationship

between the characters. However, this flow is useful in some digit recognition approaches, since

it would not affect recognition when the number be segmented. And this flow is easy to combine

2

the neural network in the recognition step, such as [5] [6] using a conventional image detector

algorithm to localized the digit and using a convolution neural network (CNN) to recognize digit.

There are several recent studies [3] [7] proposed an approach that could recognize the multi-digit

or text without segmentation. By training the probabilistic model of sequences given images,

Goodfellow et al. [3] could recognize the multi-digit without segmenting the digit. Shi et al. [7]

proposed a convolution recurrent neural network (CRNN) to integrate CNN and recurrent neural

network (RNN) for text recognition. However, these models are impossible to implement on the

portable device since the heavy network.

The digit number is generated by the seven-segment display shown on the SPL meter. And the

numbers are surrounded by the rectangular box. Different from the other wording style, the digit

number display on the seven-segment display consists of 7 segments. The number could not be

written in a single stroke. There is some interspace in a single number. There is no existing dataset

that we could use to train our model directly. Furthermore, the environment of the SPL meter could

be messy and complicated, which could be used in different places under different lighting. Thus,

we need to propose a uniform approach to segment the number from the SPL meter.

In this thesis, we propose an automated digit recognition on SPL based on a deep neural

network that could be implemented on the portable device. This approach consists of digital region

detection and recognition. To detect the digital region efficiently, we adopt Canny edge detection

[8] in our image preprocessing step. Due to the portable device have its constraints, such as timing

delay, limited computing resources. We propose two custom shallow networks to recognize the

digit without high computation.

In this thesis, we make the following contribution:

3

• In our basic idea, we are the first one to build the SPL meter dataset. This dataset

consisted of 1000 SPL meter images under different lighting and angle. And the label

could be found in the file name. This dataset could be used to train the multi and single-

digit recognition. Since each image consisted of multiple digits. And our dataset also

provides every digit coordinate for cropping into a single digit.

• We build and train a custom neural network offline, achieving high validation and

testing accuracy. Since the model is relatively shallow, it could be implemented on a

portable device without a high-computing resource.

The remainder of this paper is organized as follows. In Section II, we present some related

work that we would use in our approach. Subsequently, our proposed approaches are described in

Section III. The experiment results and analysis are shown in Section IV. Finally, some concluding

remarks are given in Section V.

4

II. Related Work

In this section, we provide a description of two main related work. One is a neural network,

and the other one is a convolution neural network. In our method, we would use these two

approaches to build our model to recognize the SPL meter. Thus, we would provide some previous

works and describe some basic concepts in these two networks.

i. Neural network

The first concept of an artificial neural network was proposed in the 20th century [9]. This

idea was inspired by the brain that several neurons are connected to process the data. The main

feature of the brain is it can determine the answer by learning the experience from the previous

result. Therefore, the neural network has been proposed to solve the problem in a similar way the

human brain does but highly simplified. In recent years, the neural network has been widely

developed and implemented in several areas. There are several reasons for this trend. First of all,

there are several better hardware (e.g. GPU) or new architectures that have been proposed [10]

which could be used to compute the network contain with lots of neurons efficiently. Second, there

are more valuable dataset could be provided to train the model.

In a neural network, there are lots of kernels connected to compose a model. We refer to

these kernels as neurons, as shown in Figure 1. The neuron receives one bias and inputs from m

neurons. The strength of the connection from the first neuron to m neuron is denoted by w0 to wm.

Then the neuron sums the weighted input and applied an activation function to produce the output.

With this simple mechanism, the network could learn from the data simply. Thus, even the simplest

network, two-layer fully connected network (i.e. one input layer and one output layer) can be

served in several fields [11]. Our problem targets at recognizing digit shown on the SPL meter.

Since the two-layer fully connected network has been shown it works well on handwritten digit

5

recognition. Therefore, we could suppose this approach could work well in our cases as well.

However, to deal with a more complex problem, there are more networks have been proposed,

either fully connected network or convolutional neural network. In the next section, we would

discuss some related work on CNN, which is the most powerful model for object recognition.

Figure 1. A diagrammatic representation of the perceptron

ii. Convolution Neural Network

Convolution neural network (CNN) has shown its strong capability in object recognition

and pattern detection. CNN mainly contains several hierarchy convolutional layers which are the

most computation heavy part. The convolutional layers are composed of several filters, which used

to extract the feature from the input and create the feature map. The size of the filter should smaller

than the input data to slide across the width and the height. And the dot products between the input

and the filters are computed at every spatial position. Typically, the size of a 3x3 filter is used in

practice. Apart from the convolution layer, CNN consisted of different types of layers. Normally,

the pooling layer connects directly to the convolution layer. The pooling layer is used to reduce

the spatial size of the convolved feature. Their task is to simplify the output of the convolution

layer and to downsample the feature map for further processing. Subsequently, the fully connected

would be connected at the end of the network to generate the output.

1

X1

Xm-1

Xm

w0

w1

wm-1

wm

Output∑ |∫∑ |∫

6

Due to its powerful computational ability in computer vision. Many CNN implementations

have been proposed to focus on recognizing a single object [12]. To tackle with some complicated

problems and improve the accuracy, there are a lot of networks based on the CNN have been

proposed to recognize the object, such as Spatial Displacement Neural Network (SDNN) [13],

recurrent CNN (RCNN) [14] and YOLO [15]. However, these networks suffer from the heavy

computation workload. It is difficult to implement these networks on the portable device with

limited computation resources, especially for cellphones. In our approach, we would segment the

multi-digit into individual patches and then use CNN for digit recognition.

7

III. Technical Approach

i. System Pipelined

For machine learning application development, there are consisted of three main steps: data

preparation, training model and making a prediction. As you can see in Figure 2, we would base

on the data to train the model. After we build a model, the user could send the request for the

system to predict the result. In our case, we want to develop an app for digit recognition. First, we

need to gather enough images contain with different digit numbers that the system could

recognition. Second, we would base on the dataset that we obtain from the last step to train a model.

At last with the information provided by the user, the app should be able to recognize and show

the result to the user.

Figure 2. Architecture of how fully managed machine learning works

In machine learning application development, the approach you use to train the model

could be varied. There are two main categories in the machine learning application. One is online

learning and the other one is offline learning [16]. In offline learning, we would base on a certain

dataset to train the model. Once you trained a model, you would use this model to make predication.

However, in online learning, you would continuously upload your new batches of data to adjust

your model. The model weight would base on the observation from a new dataset to adjust the

Training
Data Trained

Model
User

Image

Results

8

weight. Therefore, as an edged computing application, we would subject to the device’s memory

and clock delay latency. We would not available to retrain the data continuously. It would consume

lots of memory and power consumption. In this case, we need to develop a system without heavy

calculation. Thus, in this thesis, we propose several techniques to resolve those limitations.

As shown in Figure 3, is our system architecture. Our whole system consists of two parts.

The first one is image preprocessing, when we received the input image, we would locate the digit

and crop the image into a small size. This step would help us to reduce the noise and amplify the

digit number. These could help us to recognize the digit more accurately. The second step is image

recognition. In our proposed approach, the model is trained off-line. Since the training model takes

a lot of resources and also takes time, if we could train the model off-line, it would help us to have

a high-speed system.

Figure 3. System architecture

ii. Data Collection

The data collection is one of the critical issues in machine learning. Since there are lots of

novel applications have been proposed. The labeled data may not be enough or even not existed.

Therefore, collecting the data would be the first step when we train the model. However, data

collection usually is the most time-consuming and experience. If the dataset is too small, you need

to go back and train again. Sometimes training with small data may hard to converge your model

or cannot train a model. But collecting too much data may also cost too much money. Thus, how

Image
Preprocessing

Image
Recognition Input Image Output Result

Our System

9

to collect the data efficiently and also acquire a good dataset has been widely discussed. In [17], it

discussed several kinds of approach to collect the data. There are largely three main methods of

data collection. They are acquisition techniques, data labeling techniques and improving existing

data.

As a new application for multi-digit recognition on SPL meter, the best way for us is to

accumulate the data by ourselves. Though this way is relatively time-consuming, we need to

collect the data and label it. But it is the best way for us to train the high-quality model with a small

image dataset. Since the model quality depends on the quality of input data. By using this approach,

we can make sure the image quality before we train the model. Therefore, our proposed approach

of data collection consisted of three steps. These three steps are data acquisition, labeling and

First of all, we would take the picture for the SPL meter under different volumes, as shown

in Figure 4. To acquire different digit numbers shown on the SPL meter. We would also collect

the data under different conditions. To obtain the image with different light and shadow. The

second step is labeling. In this step, we used the existing labeling tool ‘LabelImg’ to label the

image. By using this tool, we would find out the boundary of each digit and store the coordinate

in the xml file, as shown in Figure 5. However, it is not feasible to utilize the coordinate from the

xml file directly. There are lots of redundant information in this file and also each image has one

file. It’s time-consuming to looking for the information by opening and closing the file several

times. Instead of directly using the xml file, we would extract the coordination and label into a csv

file. This information is only what we needed. Therefore, by using the csv file, we can crop the

multi-digit image into a segmented digit patch efficiently. The last step is cropped the multi-digit

image into a segmented digit patch. By referring MNIST dataset [18], the segmented digit would

be resizing into 28x28 and convert the image into grayscale (i.e. convert the channel size into 2).

10

The reason why we crop the image size into 28 x 28 is that it may help us not only to find the

feature more precise but also speed-up the training time. After the whole processing, I would store

the new image into the new folder and rename my new image with the label. Then, our dataset

would be set up and we could use this dataset as our input dataset in the machine learning. Some

samples in our database are illustrated in Figure 6.

Figure 4.The data collected from the SPL meter

Figure 5. Labeling images using ‘LabelImg’ tool

11

Figure 6. Sample images in our database

iii. Data Preprocessing

In our system, the users are required to take the picture on SPL meter. Since the data is

from the natural world, it may have some noise, such as lightning, shadows, and specular highlight.

These noises may affect our prediction accuracy. Thus, data preprocessing would be a good

approach for us to reduce the noise and amplify the feature. There are a lot of approaches have

been proposed to preprocess the data [19] [20]. In this thesis, I would use two main approaches to

deal with my data. One is image detection, and the other one is image localization. In this section,

I would present my data preprocessing design flow. The complete process of our preprocessing is

demonstrated in Figure 7. The proposed SPL meter digit preprocessing algorithm includes the

following steps:

1. First canny edge detection: On SPL meter, there are lots of function buttons and

information on it. Canny edge detection algorithm has a good ability to eliminate the

noise and find the main edge. Thus, we start to find the edge by using canny edge

detection. Several edges would be found out and so further processing is applied.

12

2. Contour selection: By applying canny edge detection, there are lots of edges that have

been found out. We could use the feature from the screen which is the biggest

rectangular on the device. By setting the threshold, we could find out the bounding

box for the next step.

3. First cropping: The best way to reduce noise is to eliminate it. Through the bounding

box that we found from the previous step, we could easily crop the image into small

size and save to grayscale.

4. Second canny edge detection: Canny edge detection algorithm performance a high

response to detect the contour. The digit number shown on the SPL device is black.

Thus, we could easily find out some digit candidates.

5. Digit localization: In our cases, there are three-digit numbers on the screen. By setting

the threshold, we could obtain the coordinate of the digit number from the last step.

6. Second cropping: The coordinate that we found from the last step is the boundary for

the digit. Thus, we could crop the image again to obtain the multi-digit image without

any noise.

7. Digit segmentation: In our cases, the three-digit number septate equally on the screen.

We could base on this feature to segment the three numbers into individual patches.

And the whole preprocessing step would be done here.

13

Figure 7. Step by step processing flowchart

 In our approach, we address the issue by separating the processing into two parts, as I

present in Figure 7. For the first part, we would crop the main screen into individual images. Since

there are lots of bottoms and labels on the SPL measure device, as you can see in Figure. 8(a), the

best way to reduce the noise is to remove that. Therefore, Canny edge detection has been used to

detect the contour. By setting the threshold between 100 and 160, we could obtain several

candidates for the screen, as you can see in the Figure. 8(b). There are lots of edge detection

algorithm have been proposed [21]. However, Canny edge detection is one of the most efficient

edge detection algorithms which has been widely used in image processing [8]. Canny edge

detection consists of 4 steps [22]:

1. Noise reduction: The edge detection is highly sensitive to the noise. Therefore, the

Gaussian filter has been used to remove the noise. The blurring effect could be

Input Image

First Canny Edge
Detection

Contour Selection

First Cropping

Second Canny Edge
Detection

Digit localization

Second Cropping

Digit Segmentation

Second PartFirst Part

14

controlled by how big the kernel size that we want to use. In our case, since there are

lots of reflections on the image, to remove those noise we would use 11 by 11

Gaussian kernel.

2. Gradient calculation: After filtering the image, we could detect the edge intensity by

calculating the gradient of each pixel. We could almost get the edge after this step.

However, the thickness of the edge is not uniform, we need to mitigate the thinker

edge in the further step.

3. Non-maximum suppression: In this step, we would use a non-maximum suppression

algorithm to find the pixels with the maximum value in the edge direction. It would

help us to obtain a uniform edge (i.e. edge is one-pixel width).

4. Double threshold: In the above, we found out lots of edge candidate. To find the real

edges, we would set two thresholds which are maxval and minval to make a decision.

If the edge with the intensity gradient greater than maxval, we would set it as a real

edge directly. If the edge with the intensity gradient between maxval and minval, we

would tag it as a low-intensity gradient. Others would directly be ignored. Here, we

set our maxval to 150 and minval to 100.

5. Edge tracking by Hysteresis: The edge that we tag it as a low-intensity gradient, we

would check whether there is any confirmed edge surrounding nearby this pixel. If

there is one confirmed edge surrounding it, we would also set it as a real edge. Thus,

all the edge would be found.

After we obtain several candidates for the screen by utilizing Canny edge detection, we

could use the screen feature which is the biggest square in the SPL meter to find out the edge of

15

the screen. By utilizing contour finder, we could obtain the coordination for the SPL meter’s screen,

as you can see in the Figure. 8(c). Therefore, we could base on this coordination to crop the image.

This approach could help us to drop the noise and amplify the digit.

(a) Example test image (b) Canny edged feature (c) First bounding box

Figure 8. Input and intermediate image in finding first bounding box

(a) Cropped image after first bounding box (b) Canny edge features

(c) Cropped image after second bounding box (d) Segmented digit patch

Figure 9. Segmentation step

16

For the second part, we plan to segment the digits into individual patches and resize the

image into 28 by 28. We would crop the image by using the final result in the first part. And filter

the image into grayscale, as you can see in the Figure. 9(a).

By using the Canny edge algorithm again, we could obtain all the control in the image.

However, the digit number shown on the SPL meter is the seven-segment display. That is to say

we cannot find the digit by using contour finder directly. Since the digit number on the seven-

segment display consists of seven segments. Although we utilized the GaussianBlur function to

blur the digit, we cannot find out the individual contour for number “1” and “7”. Thus, we set the

threshold and boundary to find the digit, as shown in the Figure. 9(b). And then find the bounding

box and crop into small size. In our cases, the three digits numbers in the bounding box are

distributed equally. We used this feature to segment the digit patch. The digit patch is resized to

28 by 28 to fit in a simple convolution neural network (CNN) in the following step. The segmented

digit patch is shown in Figure. 9(d).

iv. Digit Recognition

In this section we provide a description of two neural network models that we used to

recognize the digit on the SPL meter. Since we want to build a system that could implement on

the portable device. We build two shallow custom neural networks with fewer kernels and train

the model only for the digit on the SPL meter. The first one is the model only consisted of two

fully connected layers. The second one is the convolution neural network (CNN).

After we preprocessed the image from the last step, these individual patches are the image

that we want to recognize. One 28 by 28 patch consisted of one digit. Thus, these patches would

be fed into the model that we built to recognize. Furthermore, we would use the dataset that we

create by ourselves to train the model, as we mentioned in section ii. The training set consisted of

17

2686 grayscale images of size 28x28 pixels. Each image has a one-digit number. The images are

divided into 10 classes (i.e. 0 to 9) and the label is shown on the file name.

The first model is consisted of two fully connected layers (FC1 and FC2), as shown in

Figure 10. Since the image is two dimensions (i.e. 28x28), we need to flatten the image into a one-

dimension vector. It transforms the bidimensional tensor into a monodimensional tensor. Thus, the

input image would be flattened into a long vector (i.e. 28x28=784). After the flattening step, a long

vector of input data would be fed into the artificial neural network to process further. The first

fully connected layer consisted of 512 neurons. The second fully connected layer consisted of 10

neurons. And the output of FC2 is passed to SoftMax activation to generate the 10 probability

distributions over 10 classes (i.e. label ‘0’ to ‘9’). The class has the highest probability would be

our final answer, the rest of the classes would be ignored. For instance, the probability of ‘1’ is 0.7,

the probability of ‘7’ is 0.2, the probability of ‘9’ is 0.1 and the rest of the label is ‘0’. The output

result would be ‘1’.

Figure 10. Fully connected neural network structure

Flatten

1

8

9

0

7

FC1 FC2

512

10

784

28x28

2

18

In the second model, our architecture is similar to LeNet-5 [23] which is the most well-

known CNN architecture for hand-written digit recognition. Our model comprised of three

convolutional layers (C1, C2, and C3), two max-pooling layers (S1 and S2) and two fully

connected layers (FC1 and FC2), as I showed in the Figure 11. The first convolution layer (C1)

filters the input image (i.e. 28x28 grayscale single digit) with 32 kernels of 3x3 size. In the second

convolutional layer (C2), it consisted of 64 kernels of 3x3 which used to filter the down-sampled

14x14x32 feature maps from S1. The third convolutional layer (C3) also consists of 64 kernels of

3x3 size while it filtered the down-sampled 7x7x64 feature maps from S2. The output of the C3 is

fed into the fully connected layer (FC1). The two pooling layers (S1 and S2) implement the max-

pooling function over a non-overlapping pooling window of size 2x2. Finally, we used the same

configuration as the first model, two fully connected layer (FC1 and FC2) with 512 and 10 neurons

have been used to calculate the distribution probability of ten classes and SoftMax activation has

been used to generate the output result. Note that, we used ReLU [24] as our activation function

which is used at the output of each convolutional layer and the first fully connected layer. Under

the same accuracy, compare with other activation functions, such as sigmoid, hyperbolic tangent

function, ReLU has been seen as the most efficient activation function [12].

Figure 11. Convolution neural network structure

3x3
convolution

2x2
pooling

3x3
convolution

2x2
pooling

3x3
convolution

0
1

8
9

fully connected

FC1 FC2C1 C2 C3S1 S2

19

IV. Experimental Setup

In this section, we provide the description of our experimental setup including

computational resources, datasets used for the experiments, training configuration, and the

evaluation criteria to judge our system performance.

i. Build Method

The whole system pipeline includes image preprocessing and digit recognition is

implemented in Python 3.7.5 and built using PyCharm Professional 2019. Building the model by

importing Keras package to use TensorFlow backend. Experiments are worked on the laptop with

a 2.3 GHz Intel Core i5 CPU.

ii. Data

In machine learning, the data play the most important part. Without high-quality data, it is

impossible to acquire a high-accuracy model. Furthermore, the size of the dataset is also one of

the main points. One of the main reasons that the machine learning would rapidly develop in recent

years is because of the data booming. However, there is no existing dataset for the SPL meter

device. Thus, there is one of our main contributions in this thesis, we create an SPL meter device

dataset, as we mention in the previous section (III.ii). In this dataset, each image has a multi-digit

in the single digit. We also provide the coordinate for every single digit. These could make a user

for further processing, such as cropping or digit localization.

In this dataset, it contains with 1000 labeled high-resolution images. The images were

collected from the two different SPL meters. We collect the image under different lightening, angle

and distance by our cellphone camera. The noise is generated from the cellphone under constant

frequency for SPL meter to capture and display on the screen. And labeled by humans using

20

LabelImg [25] labeling tool. To train a model, we need to have a constant input dimensionality.

Therefore, we crop the image by using the coordination that we provide in the dataset and

downsampled the image to a fixed resolution 28x28 in grayscale. Here, we divide the dataset into

7:3, 70 percent for training and 30 percent for testing.

iii. Training configuration

Many hyperparameters may affect the performance of training the model such as the

optimize that we used, the number of the learning rate, batch size, and learning rate. In our research,

we did not explore the best configuration. Instead, we use several parameter configurations to train

the model and compare their performance. Thus, we would provide the further discussion in the

below.

• Optimizer: The optimizer is one of the most critical hyperparameters for training the

model. The optimizer that you choose would affect your algorithm converging or

exploding. In [26], it discusses considerable optimizers. SGD (Stochastic Gradient

Descent) has been widely used in practice. However, our model could not converge

by using this optimizer. Therefore, we used a similar one, RMSprop optimizer, it has

a better performance in our case. The only difference between RMSprop and SGD is

the way how they calculated the gradient.

• Learning rate: The learning rate control how fast the model is adapted to the model.

If the learning rate is too large, it would not find the optimal solution. Whereas the

learning rate is too small can cause the process to get stuck. Furthermore, it requires

more epochs for training updated. Since we used the RMSprop optimizer, we used its

default value, 0.001, in our model to converge.

21

• Batch size: The batch size is a hyperparameter used to define the number of samples

that will be propagated through the network once. Normally, we would set the size in

power of 2 to fit the memory requirement, such as 32, 64, 128, and so on. The large

batch size would cause the slowly converge processing but with the accurate results.

In contract to small batch size, the learning processing converges quickly but with

more noise. Due to our experimental result, the size of the batch size has the best

performance when the number is 128 in CNN and 256 in the neural network.

• Epoch: Epoch is a parameter used to define how many times the learning algorithm

will work through the whole training dataset. The number of the epoch should be

integer. The size of the epoch would significantly affect the training time. In our case,

the size of the epoch in 50 and 100 has a relatively better performance in our neural

network and CNN model, respectively. We would have the further discussion in the

next section.

• Loss function: Loss function is a function used to evaluate your model when you are

training the model and the output value is referred to as loss. Since the loss function

is directly connected to the activation function in the output layer of your neural

network, we would base on your activation function to choose the loss function. In

our case, we use SoftMax to categorize the 10 class. Thus, we used

categorical_crossentropy as our loss function.

• Metrics: Matric is a function for you to evaluate your model after you trained the

model. There are a lot of metrics we could use to evaluate your model. Base on

different metrics, your result would also be different. We used the most

22

straightforward one, classification accuracy, as our metric to evaluate our machine

learning algorithm.

iv. Performance Analysis

In this section, we analyze our performance by utilizing several approaches to explore our

model. We plot the training curve to find the appropriate number of epochs. The training time has

been recorded to analyze the network. And we also perform the accuracy of each class after the

classification to demonstrate the dataset.

The training curve is a diagnostic tool that has been widely used to check the training is

overfitting, underfitting or well-fit. By observing the plot, we could adjust our model for training

faster and reduce overfitting. Thus, there are two matrices that we applied to plot the curve to

evaluate the model. One is a performance learning curve that we based on the classification

accuracy to make the plot which represents the accuracy over the epochs. The other one is the

optimization learning curve which is based on cross-entropy loss to plot the curve for checking the

model fitness. By dividing the data into training and validation dataset, the two training curves

could be a plot to analyze our model, as I shown in the below.

Three common dynamics could be used to observant the behavior of the machine learning

model, which are overfitting, underfitting and well-fit. By using this observation, we could adjust

the configuration in the machine learning. For overfitting, the plot of the training loss continues to

decrease with more experience. However, the plot of the validation loss decreases to the point and

begin increasing again. For underfitting, the plot of the training loss has not been flattened at the

end of the training. The plot of the training loss and the plot of validation loss has a small gap.

Furthermore, the plot of the training loss has been flattened at the end of the training. This scenario

refers to a well-fitting model.

23

In our neural network experiment, we allocated 2000 images for the training dataset, 379

images for the validation dataset and 307 images for testing. If the validation dataset is too small,

it would be unstable. To analysis the model, the size of the epoch set to 150 in the beginning.

Figure 12 shown the plot of the training and validation accuracy under our neural network training

configuration. As we can see the plot of the training accuracy start to flatten when the epoch goes

to nearly 100. At the same time, the accuracy is higher than 90%. Besides, the optimization

learning curve shown in Figure 13. The curve of the training loss flattens when the size of the

epoch is nearly 100. The curve of the validation loss decreases until the point of 90 and start to be

unstable with more experiment. According to these two plots, it is observed that when the

hyperparameter of the size of the epoch is 100 could avoid overfitting and reduce training time.

Figure 12. Training and validation accuracy in our NN model

24

Figure 13. Training and validation loss in our NN model

For our CNN model, we allocated 2055 images for training, 324 images for validation and

307 for testing. We also set the size of the epoch to 150 initially for analysis. The plot of the

training and the validation accuracy is shown in Figure 14. When the size of the epoch is 50, both

of the training and validation curves start to flatten, and the accuracy is nearly 100% at the same

time. Figure 15 illustrated the learning performance over experience. As we can see, the plot of

the training loss decrease until the size of the epoch is 50. Furthermore, the smallest gap between

the plot of the training loss and validation loss is also at 50. However, after the size of the epoch

is 50, the plot of the validation loss starts to increase which means the training is overfitting. By

these observations, we set the size of the epoch at 50 when we train our CNN model.

25

Figure 14. Training and validation accuracy in our CNN model

Figure 15. Training and validation loss in our CNN model

We train and build the model offline in python. The dataset that we used is mentioned in

the section IV. ii. The performance of the different models is represented in Table 1. We also train

the state-of-the-art object detection model, tiny YOLO model [15] on the workstation with two

GeForce RTX 2080 Ti GPU to make a comparison. As you can see the accuracy in CNN and

YOLO could achieve 100%. However, due to the tiny-yolov3 model which contains 19 layers

instead of 7 layers in our CNN model, it takes at least 6 hours to train this heavy network in two

26

GPUs. According to our experimental results, CNN would be the best model to implement on the

SPL automated recognition. Since the system that we proposed would be used on the sound

calibration for hearing aid. There is no error-tolerant for medical device. Therefore, the system

could not make any mistakes. Furthermore, to implement the system on the portable devices, the

size of the system is one of the critical issues. Due to the memory limitation and the computational

capability, it is infeasible to contain too much convolutional layers in the model. The reason is that

the convolutional layer is the most computationally intensive in machine learning. Table 2 shows

the CPU time breakdown in the stage of preprocessing and recognition under two models. The

main difference between the neural network and the convolutional neural network is CNN

composed of several convolutional layers. In our CNN model, it consisted of three convolutional

layers which make the timing increase at the stage of recognition.

Table 1. Model performance

Model NN CNN tiny-yolov3

Training time 9.69 seconds 50.25 seconds 6 hours

Best accuracy 99.34% 100% 100%

Table 2. Runtime breakdown between stage

 Preprocessing Recognition

NN 0.0289 4.9307

CNN 0.0314 7.1791

A confusion matrix is a table that often used to evaluate the result of a machine learning

model on a set of testing data for which the true values are known. Furthermore, there are some

performance measures applied to analyses the classifier performance, such as precision, recall and

27

F-factor. These three performance measures are computed from the confusion matrix. The

classification accuracy could also be calculated by the confusion matrix as follow:

 (1)

Precision is defined as the ratio of the total number of correctly classified positive examples

(i.e. true positive) over the total number of predicted positive examples (i.e. the number of true

positives plus the number of false positive) as follow:

 (2)

Recall is defined as the ratio of the total number of correctly classified positive examples

divided to the total number of positive examples (i.e. the number of true positives plus the number

of false negatives) as follow:

 (3)

F-factor is also called F-measure which is the performance measure represents the

harmonic mean of precision and recall, as shown in (4).

 (4)

accur ac y = TP + T N
TP + T N + FP + FN

preci sion = TP
TP + FP

reca l l = TP
TP + FN

f 1 = 2 * Preci sion * Recal l
Reca l l + Preci sion

28

Table 3 presents the classification report from our neural network model. Although the

accuracy could achieve 100% in our CNN model, we still could though the classification report to

analyze our result to strengthen our SPL meter dataset.

Table 3. Classification report

Class Precision Recall F1-score

0 0.96 1.00 0.94

1 0.88 0.92 0.94

2 0.50 1.00 0.65

3 0.95 0.93 0.97

4 1.00 1.00 0.99

5 1.00 0.97 0.98

6 1.00 0.96 0.99

7 1.00 0.98 0.99

8 0.90 1.00 0.95

9 1.00 0.64 0.78

In our cases, class 2 has a high recall but low precision. It illustrates the number of the

testing data is not 2 but the model recognizes it as 2 is large. For class 9, it has a high precision but

low recall. This presents that there are a lot of numbers are 9 but the model recognizes it as a

different number. The rest of the classes have high recall and high precision which means all results

return correctly in that class. According to this observation, most of the class 2 has been recognized

correctly but some of the class 9 has been recognized as 2. Thus, we could improve our dataset by

increasing more class 9 to enhance class 9 identification rate.

29

V. Conclusion

In this thesis, we proposed a novel system that could be applied to recognize the multi-digit on

the SPL meter automatically. In our basic knowledge, digit recognition for SPL meter by using a

machine learning approach has not been well study. We are the first group to propose this idea.

From our experimental results, our system achieves high accuracy under low computational

resource and memory requirements. We also proposed a new approach to preprocess the input

image for machine learning. By utilizing this algorithm, we could obtain the individual digit

patches from the original input image efficiently. Nevertheless, we built the first SPL meter dataset

which is the first complete dataset for SPL meter. This dataset could be widely used for future

applications.

30

References

[1] C. J. S.M. Silva, "License Plate Detection and Recognition in Unconstrained Scenarios," in

ECCV, 2018.

[2] V. B. ,. M. A. D. ,. G. R. G. ,. W. R. S. ,. D. M. Rayson Larocaa, "Convolutional Neural
Networks for Automatic Meter Reading," Journal of Electronic Imaging , vol. 28, no. 1,
2019.

[3] Y. B. J. I. S. A. V. S. Ian J. Goodfellow, "Multi-digit Number Recognition from Street
View Imagery using Deep Convolutional Neural Networks," in International Conference
on Learning Representations, 2014.

[4] M. C. Y. N. a. H. N. A. Bissacco, "PhotoOCR: Reading Text in Uncontrolled Conditions,"
in IEEE International Conference on Computer Vision, Sydney, 2013.

[5] M. D. S. F. F. K. R. S. Michael Opitz, "End-to-End Text Recognition using Local Ternary
Patterns, MSER and Deep Convolutional Nets," in 11th IAPR International Workshop on
Document Analysis Systems, 2014.

[6] J. P. Xuan Yang, "MDig: Multi-digit Recognition using Convolutional Nerual Network on
Mobile," in Proc. Yang2015 MDigMR, 2015.

[7] B. a. B. X. a. Y. Shi, "An End-to-End Trainable Neural Network for Image-based Sequence
Recognition and Its Application to Scene Text Recognition," IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2016.

[8] V. H. a. R. B. Milan Sonka, Image Processing, Analysis, and Machine Vision (Second
Edition), Beijing: Posts & Telecom Press, Sep 2003.

[9] P. W. Sonali. B. Maind, "Research Paper on Basic of Artificial Neural Network,"
International Journal on Recent and Innovation Trends in Computing and
Communication , vol. 2, no. 1, pp. 96-100, 2014.

[10] Y. C. J. E. A. S. a. Z. Z. V. Sze, "Hardware for machine learning: Challenges and
opportunities," in IEEE Custom Integrated Circuits Conference (CICC), Austin, 2017 .

[11] A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal
function," IEEE Transactions on Information Theory, vol. 39, pp. 930-945, 1993.

[12] I. S. a. G. E. H. Alex Krizhevsky, "Imagenet classification with deep convolutional neural
networks," in dvances in Neural Information Processing Systems 25 , 2012.

31

[13] L. B. Y. B. a. P. H. Y. Lecun, "Gradient-based learning applied to document recognition,"
Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324, 1998.

[14] J. D. T. D. a. J. M. R. Girshick, "Rich feature hierarchies for accurate object detection and
semantic segmentation," CVPR, 2014.

[15] S. K. D. R. B. G. A. F. J. Redmon, "You Only Look Once: Unified, Real-Time Object
Detection," CoRR, 2015.

[16] S. K. E. &. M. Y. Ben-David, "Online Learning versus Offline Learning," Machine
Learning 29, pp. 45-63, Oct. 1997.

[17] G. H. S. E. W. Y. Roh, " A survey on data collection for machine learning: a big data-ai
integration perspective".IEEE Transactions on Knowledge and Data Engineering.

[18] "The MNIST Database of Handwritten Digits," 〈http://yann.lecun.com/exdb/mnist/〉.

[19] L. Canchen, "Preprocessing Methods and Pipelines of Data Mining: An Overview,"
arXiv:1906.08510 [cs.LG], Jun 2019.

[20] M. S. H. T. L. a. M. W. T. N. Minh, "Automated Image Data Preprocessing with Deep
Reinforcement Learning," Computing Research Repository (CoRR), 2018.

[21] C. Zhan, X. Duan, S. Xu, Z. Song and M. Luo, "An Improved Moving Object Detection
Algorithm Based on Frame Difference and Edge Detection," in Fourth International
Conference on Image and Graphics, 2007.

[22] J. Canny, "A Computational Approach to Edge Detection," IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vols. PAMI-8, no. 6, pp. 679-698, Nov. 1986.

[23] L. ́. B. Y. B. a. P. H. Yann LeCun, "Gradient-based learning applied to document
recognition," Proceedings of the IEEE, 1998.

[24] V. N. a. G. E. Hinton, "Rectified linear units improve restricted boltzmann machines," in In
Proceedings of the 27th International Conference on Machine Learning (ICML-10), 2010.

[25] Tzutalin, "LabelImg," 2015. [Online]. Available: https://github.com/tzutalin/labelImg.

[26] S. Ruder, "An overview of gradient descent optimization algorithms," arXiv preprint
arXiv:1609.04747, 2016.

	Automated Digit Recognition on Sound Pressure Level Meters Based on Deep Learning
	Recommended Citation

	Microsoft Word - AUTOMATED DIGIT RECOGNITION ON SOUND PRESSURE LEVEL METERS BASED ON DEEP LEARNING.docx

