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ABSTRACT

A HARDWARE-IN-THE-LOOP PLATFORM FOR DC PROTECTION

by

Mark Vygoder

The University of Wisconsin - Milwaukee, 2020
Under the Supervision of Professor Robert M. Cuzner

With the proliferation of power electronics, dc-based power distribution systems can be re-

alized; however, dc electrical protection remains a significant barrier to mass implementation dc

power distribution. Controller Hardware-in-the-loop (CHiL) simulation enables moving up tech-

nology readiness levels (TRL) quickly. This work presents an end-to-end solution for dc protection

CHiL for early design exploration and verification for dc protection, allowing for the rapid de-

velopment of dc protection schemes for both Line-to-Line (LL) and Line-to-Ground (LG) faults.

The approach combines using Latency Based Linear Multistep Compound (LB-LMC), a real-time

simulation method for power electronic, and National Instruments (NI) FPGA hardware to enable

dc protection design with CHiL. A case study is performed for a 1.5 MW Voltage Source Rectifier

(VSR) under LL and LG faults in an ungrounded system. The deficiency in real-time simula-

tion resolution of Commercial-off-the-Shelf (COTS) for dc fault transients is shown, and addressed

by using LB-LMC RT solver inside NI FPGA hardware to achieve 50 ns resolution of dc fault

transients.
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Dedications

Some of the two great challenges humanity faces in the 21st century include climate change, and

the millions of people (if not billions) without electricity and billions of people without clean cooking

and internet access. To ensure a sustainable future, humanity must achieve net-zero global emissions

while also lifting the remaining civilization out of poverty. To achieve sustainable energy, the

solution seems pretty obvious: mass implementation of renewable energy source like PV and wind

with a large amount of energy storage, both batteries and supercapacitors to support the interments

of renewables, and nuclear fission for a baseline amount of power generation during the night and

extended periods of no sun. Then using HVdc or high-temperature superconducting cables at

the transmission level, MVdc at the distribution/industrial level, and LVdc at the residential/load

level, with energy storage and renewable distributed at each voltage level. The dessert, in areas

such as the southwest U.S and the Sahara in Africa, should be filled with PV farms, and then

distributed with HVdc throughout the continent. This solution is sufficient until fusion made

economically viable and can produce more power than it consumes, but this is still several decades

away. Furthermore, EVs will replace all land-based transportation, this is just a matter of time,

but hopefully sooner rather than later.

Most likely developed countries will be hybrid ac/dc systems due to the currently existing power

distribution system, while developing nations will go straight to dc systems. The latter point is

similar to when developing nations went straight to cell phones, skipping the landlines entirely, as

a better technology existed.

All the above is enabled by the proliferation of WBG power electronic devices and power

converters. To achieve the goals mentioned above will require the implementation of renewables,

energy storage, and power electronics on an unprecedented scale. To do this, cabinet-level/system-

level design tools are needed to develop optimized power electronics-based distribution systems.

These tools should be able to go from a single die to an optimized multichip power module to

an optimized power converter to an optimized cabinet of power electronic converters, to an entire

optimized power electronics distribution system such as an entire microgrid or electrified shipboard
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system.

Dc protection remains one of the barriers to the widespread implementation of dc power distri-

bution system. My hope for this work was to create a real-time simulation sandbox environment to

develop and assess dc protection and coordination schemes to help move up technology readiness

levels quickly and rapid design iteration.

To this end, I would like to thank my advisor, Prof. Robert Cuzner for the opportunity to work

on cutting edge research, solving challenges associated with power electronic-based distribution

system, the opportunity to learn through both direct instruction and osmosis, as well as the various

opportunity to travel, present our research both within the U.S and internationally, and collaborate

with world-class colleagues. I would like to thank my family on the east coast for their support.

I would like to thank wonderful mother for her support throughout my university education, and

particularly in the last few years. I would like to thank Big Alex for this handiness around our

condo, and Art Miller for his mentorship several years ago in photography. I would like to tip my

hat to my fellow lab mates for being in the trenches with me, and in particular, Jake Gudex for

his help with the controls in LabVIEW FPGA and his help with writing/editing. I would also like

to thank my colleagues at the University of South Carolina, Matthew Milton, and Prof. Andrea

Benigni (now with FZ-Juelich), for their collaboration of the past two years to help make this work

possible. Without their inputs and efforts, much of this work, if not all, would have not been

possible, and I have learned a lot through this collaboration.
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Chapter 1

Introduction

Human-made greenhouse gasses are the primary contributors to climate change [1–3, 9]. When

accounting for variations from the sun’s 11-year cycle, the average temperature of the earth has

increased by 1◦C in the last 40 years, as seen in Fig. 1-1. Fig. 1-2 shows the increase in Carbon

Dioxide (CO2) emission per year and shows the commutative amount of CO2 in the atmosphere.

Fig. 1-3a shows the impact of different scenarios of average parts per million (ppm) of CO2 and

annual CO2 emissions. For example, if no action is taken to reduce emissions, then the average

surface temperature would increase by 4◦C [3], and the average CO2 in the atmosphere would

be about 1000 ppm by 2100. If significant action is taken, the average CO2 ppm can be kept

to 430-480 ppm; however, this requires reaching annual emissions of 0 or even negative emission

using carbon capture. For reference, today’s atmospheric CO2 content is 414 ppm. Fig. 1-3b

shows the relationship between different levels of average atmospheric ppm of CO2, and relative

temperature change. The circles are color-coated to correspond with the different scenarios in Fig.

1-3a. To prevent the average temperature from increasing above 2◦C, which corresponds to an

average atmospheric CO2 content of 480-530 ppm, yearly greenhouse gas must reduce to zero, or

may even need to go negative.

However, it is not just sufficient to analyze greenhouse gas emissions with today energy demands.

Currently, the International Energy Agency estimates there are 860 million people without access

to electricity and 2.6 billion people with access to clean cooking facilities [10]. As these developing

countries gain access to reliable electricity and clean methods of cooking, ideally, these countries

can leverage the latest in technology and develop the electrical infrastructure in a sustainable way,

1



Figure 1-1: Average surface temperature and
average solar irradiance between from 1880 to
2018 [1].

Figure 1-2: Global annual and cumulative CO2 emis-
sions [2].

(a) (b)

Figure 1-3: (a) Projected annual CO2 emission based on different Representative Concentration Pathways
(RCP) scenarios, and (b) relating scenarios and CO2 ppm to temperature change [3].

such as microgrids [11–13].

Generally speaking, power electronics enable conversion of power in the four following forms:

ac to ac, ac to dc, dc to dc, and dc to ac. Power electronics allows electrical sources to be

different voltage level and shape than the load [14]. The debate between ac and dc distribution

goes back to the 1890s between Nicola Tesla and Thomas Edison. Tesla being the proponent of

ac, while Edison advocated for dc. Without power electronics, ac distribution was the clear choice

from the viewpoint of being able to use reliable ac machinery for power generation and passive ac

transformers for power distribution and changing voltage levels. It is fair to say that Tesla won the

2



battle against Edison with the installation of the world’s first hydroelectric power plant in Niagara

Falls with Westinghouse in 1895, which used ac generators and ac distribution.

Today, with switching power electronics, digital feedback control, low cost embedded processors

and Field Programmable Gate Array (FPGA), advanced magnetic materials, and other advance-

ments in the past 130 years, ac distribution may no longer be the better option. However, these

technological advancements are relatively recent. Looking back in history, solid-state devices began

to replace vacuum tubes in the 1950s with the development of the P-N junction by the research team

at Bell Labs. Through the 1950s, the power diode, Bipolar Junction Transistor (BJT), and Silicon

Controlled Rectifier (SCR) were developed and became commercially available. Around 1970, the

power Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) became commercially avail-

able. However, it was not until the commercial availability of the Isolated Gate Bipolar Transistor

(IGBT), when the field of power electronics took off. The IGBT combined the voltage-controlled

gate properties of a MOSFET with the current-carrying capabilities of a BJT, which resulted in

a device suitable for medium and high power applications and was much easier to control than a

BJT. During this time, most of the world’s power distribution was utilizing ac, as there was not a

viable, i.e., not just technological feasible, but economical from a cost, size, and weight perspective,

approach for dc distribution in most cases. However, with today’s power electronics, dc distribution

is not only viable but has many advantages over ac distribution. These advantages include:

1. Increased electrical efficiency. Photo Voltaic (PV) panels, Energy Storage Systems (ESS),

such as lithium-ion batteries and supercapacitors, and many loads, such as LED lighting

and computers, are naively dc. These can integrate into a common dc bus via dc-dc Power

Electronic Converters (PECs), which are more efficient than dc-ac converters.

2. Improved power quality and more straightforward controls. A dc system is at 0 Hz and is not

as susceptible to lower-order harmonics of the fundamental frequency like in ac systems.

3. Easy to parallel multiple sources. Dc systems do not have frequency and phase angle, which

needs to be synchronized like in ac systems.

4. Interfacing ac generators or ac motor loads via power electronics decouples the ac source and

load. For example, this enables both ac generators and ac motors to each operate at optimal
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conditions, which reduces fuel consumption for the ac generator, and increases performance

for the ac motor loads [15] [16].

The advantages listed above do not mean dc systems are without disadvantages or challenges.

For one, active and reactive power in ac systems, although perhaps more complex, allows for an

additional degree of freedom in ac system controls. Another, and perhaps the main challenge, is

that dc distributions systems are a network of PECs. In other words, with power electronic based

interfaces to distributed energy resources, dc distribution systems are dc Power Electronic-based

Distribution Systems (dcPEDS). The challenges of dcPEDS includes system stability [4], electri-

cal protection [17], and creepage/clearance and insulation coordination standards for dc system.

Electrical protection is the focus of this work.

Examples of dcPEDS for emerging Low Voltage dc (LVdc) and Medium Voltage dc (MVdc)

applications include dc microgrids, shipboard electrification, and More Electric Aircraft (MEA).

Fig. 1-4a shows a notional diagram with PV, ESS, diesel generator, ac motor loads, and resistive

loads with an ac distribution, while Fig. 1-4b shows a notional diagram for a dc distribution system.

Fig. 1-5a shows an electrified shipboard system with a conventional Medium Voltage ac (MVac)

distribution for a cruise ship, and Fig. 1-4b shows a notional MVdc shipboard for a future US

Navy destroyer. Fig. 1-6a shows an MEA with LVac distribution, and Fig. 1-4b shows an MVdc

architecture. From looking at the dc implementations of the three applications listed above, one

can see similarities between the architectures. They all have multiple sources and loads interfacing

through power electronics, connecting to a common dc bus. The notional MVdc shipboard has

two MVdc bus, one port and one starboard, for survivability purposes, but comparing one bus of

the shipboard with MEA and dc building microgrid, they all look similar. Currently, the navy is

pushing higher power density (MW/m3) in shipboard applications. NASA is pushing specific power

for MEA (kW/kg). For building microgrids, cost is one of the main driving factors. Regardless,

all three are pushing for improvements, and since the architectures all look very similar, it is very

likely improvements in one application carries over to another and to dcPEDS in general.

Protective system design is challenging for PEC-based systems in general, and specifically for

dcPEDS, due to the lack of standards and experience-based design practices [18]. Microgrids,

electrified ships, and MEA have short cable lengths, dc distribution, and, generally, meshed power
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(a)

(b)

Figure 1-4: Notional building microgrid for (a) ac, and (b) dc distribution.

and energy delivery. In such systems, fault behavior at its extreme, i.e., low impedance sudden

inception Line-to-Line (LL) and Line-to-Ground (LG) faults, is characterized by cable inductance

and the filter capacitance of the connected PECs [19]. There is also a race condition between

the time for protective circuits to respond and isolate a fault, and the actuation of internal unit-

protection of PECs. These factors result in the demand for extremely fast time responses of
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(a)

(b)

Figure 1-5: Notional shipboard with (a) MVac distribution for cruise ship [4], and (b) MVdc distribution
for navy destroyer.

protective equipment and associated protection schemes to achieve fault discrimination. Solid State

Circuit Breakers (SSCBs) and fast-acting no-load isolating switches installed at interconnection

points within the distribution architecture enable this capability. Radially distributed architectures

require extremely fast coordination to achieve overcurrent relay capability [20]. Meshed distribution

architectures will, as a minimum, require high-speed communications between protective devices.
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(a)

(b)

Figure 1-6: Notional MEA with (a) LVac distribution for current aircraft, and (b) MVdc distribution for
future aircraft [5]

Real-time simulation of power systems provides an opportunity to advance to higher Technology

Readiness Levels [21] when paired with CHiL-based real-time controls [22], [23]. Table 1.1 describes

TRL as applied to power electronics development. Offline simulation can be considered as TRL 3.

Examples of TRL 3 can be seen in [19,24,25]. Implementing the design into CHiL allows engineers
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Table 1.1: TRL as applied to Power Electronics

TRL Description Simulation
Environment

9 System proven through successful operations. -
8 System completed and qualified through testing and demon-

stration activities (ready to procure).
-

7 Demonstration of a system prototype in an operational envi-
ronment.

-

6 Demonstration of system or subsystem model or prototype
in the relevant environment.

CHiL / PHiL

5 Component or breadboard validation in the relevant environ-
ment

CHiL / PHiL

4 Component or breadboard validation in a laboratory envi-
ronment.

CHiL

3 Analytical and experimental critical function and/or charac-
teristic proof of concept.

Offline

2 Technology concepts and/or applications formulated. -
1 Basic principles observed and reported. -

to move from TRL 3 to TRL 4 (or even up to TRL 6) by enabling testing and validation of control

schemes in an real-time environment on real hardware.

Due to the speed and resolution requirements of Low Voltage dc (LVdc) and Medium Voltage dc

(MVdc) protection systems, performing real-time CHiL simulations to evaluate and validate fault

detection, coordination, and isolation schemes in Commercial-off-the-shelf (COTS) systems are

limited in scope due to the simulation time step of COTS systems. This results in having to develop

laboratory-scale hardware to truly understand the performance of the system. Laboratory-scale,

Low Voltage (LV) hardware may also be considered TRL 4, as seen in [26–29]. A downside is this

approach results in limited test coverage of the protection scheme and inevitable sub-optimal design.

Furthermore, once laboratory hardware is built, it is virtually impossible to explore alternative

solutions due to the costs involved in such systems.

Additionally, scaling up laboratory hardware to full-scale hardware, requires almost a full, if not

a complete, redesign of the protection hardware and controls. However, running a CHiL simulation

takes less development time, is safer to run (especially when performing fault protection), and

allows for more design exploration. Validating the protection scheme with CHiL allows for more

carryover to the full-scale system, which reduces development times and risks when progressing to
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higher TRLs compared to laboratory hardware. While, from a fault standpoint, there will always be

field conditions that cannot be adequately simulated with CHiL, it is reasonable to expect the fault

behaviors that can be simulated, and the system response to them, should be explored rigorously

in a sandbox environment before committing to hardware.

Examples of CHiL-based dc protection can be seen in [30,31], but are for High Voltage dc (HVdc)

systems with kilometers of cabling or with non-zero fault impedance, which both significantly limit

the di/dt of the fault transient. LVdc and MVdc systems have much shorter cable lengths, which

significantly increase the di/dt of the fault transient. An extensive review of microgrid CHiL

applications is given in [32], but examples of real-time CHiL of dc protection are missing.

Next, one could use Power Hardware-in-the-Loop (PHiL) simulation [33] to process to TRL 5

or 6. Examples of dc protection at TRL 5 or 6 can be found in [34–37].

Additionally, most COTS real-time simulation systems are meant for testing controls of power

electronics to validate Differential-Mode (DM) behavior, but not necessarily Common-Mode (CM)

nor fault transient behavior. These behaviors are particularly crucial to the design of PEC-based

systems. Fault-induced resonant CM voltages dictate LG voltage stresses on the system. Fur-

thermore, multiple LG fault-induced CM circulating currents between non-isolated paralleled con-

verters, and through unintended fault current paths internal to PECs can cause voltage stresses

in components within the system at magnitudes greater than twice the rated system voltage (de-

pending upon meshed inter-connection schemes) [38]. Thus, CM and correct grounding must be

included in the real-time simulation.

To achieve PEC-based distribution system simulations in real-time suitable for testing of pro-

tective approaches, the real-time simulation must be able to simulate:

1. Sufficient simulated fault transient resolution to test out the capability of the protective

control hardware;

2. Accurate simulation of earthed neutral (TT), chassis neutral (TN) and floating (IT) grounding

schemes to enable correct LG fault characterization;

3. Mixed-mode (MM) DM/CM behavior resulting from PEC network asymmetry and the im-

pacts of controls delays and Pulse-Width Modulation (PWM);
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4. Ability to perform high-speed FPGA-to-FPGA communication sufficient for high-speed pro-

tective relaying;

5. Ability to simulate large networks through plug and play parallel-ability of the real-time

simulator components;

6. Ability to add limitations such as compute and sensor bandwidth, and communication delays,

to derive the performance required for protection schemes, controls, and sensors.

This thesis provides an approach to addressing the above real-time simulation needs by propos-

ing a CHiL platform via combining a Latency-Based Linear Multi-step Compound (LB-LMC)

real-time simulation method with National Instruments (NI) FPGA based hardware to enable dc

protection design in a real-time environment for emerging dc applications at the TRL 4 level. To

this end, this work simulates LG and LL fault transients and associated DM and CM behaviors in

real-time with sufficient time resolution, using a case study of a 1.5 MW, 12 kV, ac-to-dc Voltage

Source Rectifier (VSR).

Chapter 2 gives a background on the evolution of real-time simulation, how to compares for

dc protection, and different types of CHiL. Chapter 3 discusses LG capacitances in DC systems

and shows the gap between COTS real-time simulators and time steps required for realistic cable

lengths in emerging dc systems. Chapter 4 introduces the LB-LMC simulation method and a

new component developed for this study. Chapter 5 describes NI platforms, LB-LMC simulation

engine implementation, and LabVIEW FPGA code used for controls and data logging. Chapter 6

simulates CM voltage and current produced by the VSR in a floating ground system, and LG and

LL faults transients at 50 ns time steps. Conclusions and future works are discussed in Chapter 7.
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Chapter 2

Real Time Simulation of DC

Protection

Fig. 2-1 shows a pseudo-quantitative-qualitative curve of CPU and FPGA based RT Simulation

platforms, both COTS and LB-LMC versus their circuit size, and their application towards pro-

tection. CPU based RT solvers can achieve time steps in the tens of microseconds (µs) for small

systems or milliseconds for large systems. An exponential decay is drawn to represent the trade-off

between system size and achievable time step for a given amount of computing. For RT simulation

of power systems, power systems faults, and line commutated devices, tens of µs of simulation

resolution is adequate. These solvers can exploit natural time delays in considerable cable lengths

to enable parallel computation of larger power systems.

With the introduction of power electronics into electrical distribution systems, higher frequency

dynamics such as switching events, harmonics, and passive component dynamics now need to be

simulated, and achieving lower time steps smaller than tens of µs became necessary. However, this

became difficult for CPU based RT simulators due to the jitter of the Operating System. The

FPGA’s inherent ability to parallel computations, reconfigure its hardware for specific circuits,

reduction of execution latency, and the lack of required OS, allowed for the hardware improvements

needed for RT simulators to achieve lower time steps.

FPGA based RT simulators also have constant compute curves, with time steps ranging from

a few hundred ns for minimal systems to 20 µs on the higher end. From the authors’ experience,

most systems of reasonable size run between 1-4 µs. This range of time steps is sufficient for most
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Figure 2-1: Real Time Simulation Resolution vs Model Size

power electronic systems. To achieve larger power electronics networks, FPGA based solvers need

to be paralleled.

The first step in performing protection design for a distribution system, fault characterization

must be performed to determine the differences between fault current at different nodes in the

system. The differences in currents between these nodes determine the settings at different breaker

locations. A case study was performed for an LVdc residential microgrid in [39]. It was shown, due

to the short cabling inductance of the system, the time-trip characteristics between the upstream

and downstream breakers were on the order of µs. In [34], MVdc SSCBs were tested for both

operation and coordination for MVdc shipboard applications. In the validation of the controls, the

author noted an attempt to test operation and coordination in a COTS RT environment. However,

in testing fault scenarios with minimum cabling required by the protection system design specifi-

cation, the time of operations of the SSCB was on the order of a µs, and the RT COTS platform

did not have sufficient interface bandwidth capabilities to validate coordination and operation of

SSCBs.

In both these examples, and in general, if coordination must occur on the µs time scale, then the

12



simulation must have a time step orders of magnitude smaller than µs to have sufficient resolution to

simulate the fault transients. Additionally, the RT simulation platform’s interface latency between

the simulator itself and the controls or hardware under test must be low enough not to interfere

with the testing. For these reasons, COTS platforms did not have sufficient resolution for the

tripping and coordination being assessed. LB-LMC RT simulation method can achieve 50 ns time

steps on Xilinx 7-series FPGA [7], [40]. For these cases described above, this would have provided

enough resolution.

The main limitation of the circuit size that can be implemented using LB-LMC is the Digital

Signal Processor (DSP) resources on the FPGA. Since the solver is performing mostly multipli-

cations and additions, this is the resource which generally runs out first. Larger circuits can be

achieved using the UltraScale+ FPGA due to the increase in DSP resources compared to prior

fabrication generations. Additionally, the newer fabrication process results in the DSP multipli-

ers on the FPGAs being more efficient. Moreover, the LB-LMC method has been extended to

multi-FPGA systems [41], allow the system to run at 100 ns on 2 FPGAs in parallel.

In general, One challenge that is faced, especially with dc networks, is how to partition the

model between paralleled FPGA solvers as the system grows in size. PECs interconnected by dc

buses represent a contiguous system that is also the main source of fault vulnerability. If parts

of the system are partitioned into separate FPGA’s separated by a dc cable, which is relatively

short in a dc microgrid, ship system or MEA, the routing of signals between simulation platform

components may introduce unacceptable time delays that affect the fault response. The 100 ns

multi-FPGA approach in [41] shows promise for dc systems.

Fig. 2-2a shows a typical CHiL interface for power electronics. The RT simulator is on an

FPGA, and the controls platform is on an FPGA or DSP. The two interface with analog and digi-

tal inputs/outputs (IOs). This approach is easy to implement and works if a controller has already

been selected for the application. However, if the protection scheme is still being designed/verified,

then selecting a controller can limit the design prematurely as the controller requirements such as

bandwidth, compute, and signal resolution may be unknown or may not be sufficient. Addition-

ally, the Digital-to-Analog Converter (DAC)/Analog-to-Digital Converter (ADC) interface of the

controller and RT simulation platform, can limit possible solutions as both have bandwidth and

resolution limitations. At the 10’s of MHz level, a level required to see the full resolution of a 50
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(a) (b) (c)

Figure 2-2: Controller Hardware-in-the-Loop interfaces between RT Simulator and Controls/Protection
Scheme via (a) Analog/Digital I/Os, (b) FPGA-to-FPGA Gigabit Serial, and (c) on same FPGA.

ns RT solver, commercial DAC options that can interface to FPGAs can be limited, either by the

number of output channels, price, or ease of implementation.

Fig. 2-2b shows the controls and RT simulation platform interfacing via a duplex Gigabit serial

protocol Small Form-Factor Pluggable Transceiver (SFP+) based protocols. These communication

protocols can transmit data over fiber optic and is capable of up to 10 Gbit/s per channel (Gigabit

Ethernet could also be used). The exact latency can vary, but are generally on the order of a

few hundred ns. An advantage of this approach includes no limitation on the number of signals

transferring data, nor the resolution of the signals. These settings are up to the user. The downside

of this approach is the user must be proficient in FPGA programming, using the Gigabit proto-

cols, and developed one’s own interface on top of the protocol to keep track of signals and their

corresponding data.

Fig. 2-2c shows the solver entity and the protection logic entity on the same FPGA. This

approach offers a latency of a few clock cycles between the solver and protection logic. Also, the

precision and throughput of signals are limited by the area of the FPGA. This approach removes the

downsides of the two methods mentioned above. Another advantage is, once the protection scheme

is validated, delays and resolution limitations can be added to determine the amount of compute,

allowed latency, and minimum bandwidth. A downside of this approach is that the controls must
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share FPGA resources with the solver entity. If the power electronic circuit in the solver entity is

close to maxing out of one of the resources of the FPGA, then there is not much room to implement

the protection scheme. Another drawback is that the FPGA code needs to be recompiled every

time.
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Chapter 3

Line to Ground Capacitances in DC

systems

To explore the benefits of this RT simulation approach, an example was chosen of a VSR with a

floating (ungrounded) system. Floating grounds or high resistances grounds are used in mission-

critical systems like maritime applications [42] to maintain operability via the LL DM voltage

remains constant during a single LG fault. The downside is that ground faults are more difficult to

detect due to the much lower, or nonexistent, steady-state fault current compared to hard grounded

or low resistance grounded system [43,44].

Bulk capacitive elements, inductive cabling, and filter drive the fault characteristics in dc power

electronics-based systems. For LG faults, the inductive elements of the system are cabling and

filters, while the capacitive elements are LG capacitance, which can come from 3 sources:

1. parasitic capacitance of the baseplate found in multi-chip power electronic module;

2. parasitic capacitance of cabling;

3. capacitance of Electromagnetic Interference (EMI) filters.

A ground fault’s characteristics are governed by the equivalent path L inductance and bulk LG

capacitance C, which gives a resonant frequency of

fres =
1

2π
√
LC

(3.1)
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Table 3.1: Baseplate-to-Ground Capacitance for Half-Bridge Modules

Parameter CAS120M12BM2 Gen. III Power Module

Device Rating 1.2 kV / 120 A 10 kV / 240 A

Baseplate Dimensions 62 mm x 106 mm 195 mm x 125 mm

Baseplate Area 6,572 mm2 24,375 mm2

Area Ratio 1.000 3.709

CU 191.0 pF 708.4 pF

CM 255.7 pF 948.4 pF

CL 102.6 pF 380.5 pF

CP (3CU ) 573.0 pF 2,125.2 pF

CN (3CL) 307.8 pF 1,141.6 pF

CO (3CU + 3CL) 880.8 pF 3,266.8 pF

CAC (CM ) 255.7 pF 948.4 pF

CTM (CU + CM ) 446.7 pF 1,656.8 pF

CBM (CL + CM ) 358.3 pF 1,328.9 pF

3.1 Parasitic Capacitance of 12 kV Neutral Point Clamped Con-

verter

A 12 kV dc bus voltage is a consideration for the MVdc power distribution in shipboard applications

[42]. Using a 10 kV / 240 A Silicon Carbide (SiC) MOSFET multi-chip power module in half-bridge

(a) (b)

Figure 3-1: NPC Converter with baseplate-to-heat sink parasitic capacitances (a) for each module, and
(b) simplified.
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configuration [45] and applying 60% voltage and current derating [46] gives 6 kV / 144 A building

block. These modules can be configured into a Neutral Point Clamped (NPC) VSR converter to

achieve a 12 kV bus. The geometry between the half-bridge module and heat can be represented

as three parasitic capacitors at the upper, middle, and lower part of the module, labeled as CU ,

CM , CL, respectively [47]. Due to lack of availability of the 10 kV power module, the capacitances

from a Cree 1.2 kV / 120 A half-bridge module taken from [48], and scaled by the increased area of

the module’s baseplate, and are tabulated in Table 3.4. Fig. 3-1a shows a 3 phase NPC converter

made of multi-chip power module half-bridges and the parasitic capacitances. The capacitances

can be added in parallel, as shown in Fig. 3-1b. Table 3.4 tabulates these values.

3.2 Parasitic Capacitance of Cabling

To determine the parasitic capacitance of cabling, some assumptions need to be made about the

current and insulation rating. The current rating of the cable is assuming to be the output current

rating of the power converter. Given a 3 phase, 6 kVac LL RMS input voltage, and 144 A RMS

input current, the input power is about 1.5 MW. A 12 kV dc output at 1.5 MW gives an output dc

current of 125 A. Assuming a current density of 3.76 A/mm2 for copper cable [49], gives an area

of 33.24 mm2. Using a 35 mm2 single-core, copper cable with polyethylene (XLPE) insulation,

conformed to IEC 60502 from [50], the capacitance, inductance and resistance per meter can be

found. Table 3.2 tabulates these values for different cable lengths and insulation ratings. (3.1)

calculates the resonant frequency of the cable. Dividing the resonant simulation time step by the

resonant period gives the amount of simulation time steps per resonant period. The COTS platform

assumes a time step of 1 µs or a frequency of 1 MHz, and the LB-LMC solver assumes a time step

of 50 ns, or a frequency of 20 MHz. Columns 6-8 of Table 3.2 tabulate these values.
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The question then becomes what constitutes a sufficient resolution? The resolution of the RT

platform should be sufficiently greater than the dynamics of the circuit such that the resolution

of the RT simulation does not interfere with the protection solution design, nor drive the design

requirements. A conservative amount of samples could be said to be 100. Using the LB-LMC

method, the shortest cable length a ground fault would be simulated in RT with sufficient resolution

would be 50 m. Using a COTS platform, at 50 m of cabling, there would only be 4-5 samples period,

which would be insufficient for any design. For this particular cable, 1 km of cabling is required

to achieve 100 time steps per period during an LG fault. With a 20x reduction in time steps, 20x

shorter cable lengths can be simulated in RT.

The lengths of potential dc applications are shortening. In essence, the length of a Boeing-777

or Airbus A340 is around 70-75 meters, a US Navy Zumwalt-class destroyer is 183 meters, and a city

block varies from 80 to a few hundred meters. The length of the transportation system or microgrid

is not an exact unit of measure, but helps to provide an intuition for cable length. Thus, for these

emerging applications, cable length will be in term of tens to few hundreds of meters, as opposed

to kilometers cabling. The shorter cable length means the LB-LMC solver enables RT simulation

of dc protection with realistic cable lengths for shipboard, MEA, and microgrid applications. At

the same time, the COTS solution is suitable for cable length greater than 1 km for this particle

cable.

3.3 EMI Filter

For this active rectifier, an LC CM filter was used. During an LG fault, the LG capacitors can

discharge. However, with an LG fault occurring on the dc side, the current discharging from the

CM capacitors are limited by the CM inductor. If an LG fault occurs on the ac side, the fault

current contribution of the CM capacitors may be more significant since the CM inductor would

not shunt the current. Thus, the placement of EMI filters within the system should be considered

in terms of fault current.
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Figure 3-2: VSR circuit

3.4 Discussion on Offline Simulation of Ground Faults

Fig. 3-2 shows the VSR circuit simulated in Simulink 2017a 64-bit with PLECS v4.3 blockset

with the goal of applying a Positive Line-to-Ground (+LG) fault and Negative Line-to-Ground

(-LG) fault. The ac-dc converter is in Fig. 3-1a with the parameters in Table for the baseplate-to-

heatsink capacitances, Table 3.3 for the di/dt limited MOSFET parameters, and Table 6.2 for the

filter parameters.

A discussion can be had on how to model the cable. Conventionally, π or T models are used

to include the cable’s LG capacitance for power systems [51]. If an LG fault is applied on a π

model, then the fault is being directly applied to the π model’s capacitances, so a T model cable

may be more favorable. The challenge with adding capacitances is the formation of resonances

with inductances in the system. These resonances can be excited by switching events and produce

high-frequency content in the simulation results that may not be present in real life due to effects

not simulated like the skin-effect of cables. For this reason, these resonances have to be manually

damped out. This results in a trade off of adding resistance damping to CL paths to damped noise

likely not present in a real system while trying not to dampen out the effects of the sought after

frequency content occurring during a ground fault. Additionally, there is a practical challenge to

such simulations of stiff systems where, in this example, time constants of L’s and C’s are many

orders of magnitudes smaller than the time constants of the controls. For a boost rectifier, like

the one in this paper, it takes time to bring the bus voltage up to steady-state. Even with the

dc-link capacitors initialized to the nominal bus voltage, it still takes time, once the converter starts

switching, for the controls to bring the bus voltage to steady-state. Additionally, the lower time
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Table 3.3: Gen. III Power Module Simulation Parameters

Parameter Description Value Unit

Vds Blocking voltage 10 kV
Id Continuous drain current 240 A

Rdson Drain-Source On-resistance 23 mΩ
Rdsoff Drain-Source Off-resistance 1 MΩ
tr Rise time 60 ns
tf Fall time 100 ns
Lσ Stray Inductance 15 nH
Vf Diode Forward Voltage 3.5 V
Rdon Diode On-resistance 12 mΩ

(a) (b)

(c)

Figure 3-3: Offline PLECS Simulation of NPC based VSR: (a) +LG and -LG fault, (b) +LG zoomed, and
(c) -LG zoomed

constant of the L’s and C’s drives the lower bound of the simulation time steps. If a variable-step

solver is used, it will hit the lower bounds of the time steps and may error out due to reaching the

maximum number of consecutive minimum time steps. For this reason, either a fixed time step

solver should be used with the drawback of increase computational time, or these time constants

need to be damped out for the variable time step solver.

Fig. 3-3a shows a +LG and -LG fault using the NPC with the equivalent baseplate capacitances
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showing in Fig. 3-1b. Zoomed views are showing for +LG and -LG in Fig. 3-3b and 3-3c,

respectively. Damping resistors were added between the baseplate capacitance and ground, then

tuned to set the lower bounds of the simulation dynamics. The model with capacitances shown in

Fig. 3-1b makes tuning the damping resistors easier compared to the model in 3-1a. These results

do not claim to be the exact results during an LG fault, but gives an approach on how to simulate

the correct behavior that can be adjusted based on the system parameters. As will be seen in

Section 6.1, for real-time simulation, this capacitance can be lumped at the midpoint of the dc-link

to ground to allow for similar fault behavior. Discussion on LG faults in IT systems is carried out

in Section 6.1 as well.
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Chapter 4

LB-LMC Solver method

4.1 Summary of LB-LMC Method, and FPGA implementation

This section provides a summary of the LB-LMC method as from the perspective of the author,

which is directed more towards the power electronic engineer, who maybe a layman in terms of

simulation methods. For the more technical description and analysis of the LB-LMC method by

the creator of the method, please see [7] [52], which contains details of the method not presented

here, such as stability analysis, computational considerations, and further comparison to traditional

simulation methods.

The LB-LMC method is a numerical integration approach for solving transient, linear and

non-linear systems such as for power electronics and multi-physics system. This method has been

implemented on Xilinx 7 series FPGAs to achieve time steps in the mid-tens of ns range, such as

50 ns as in [7, 8, 40, 53]. It is possible to achieve lower time steps using the latest UltraScale or

UltraScale+ FPGAs. As the circuit size increases, the compute time stays almost constant. The

main operations of the LB-LMC solver are additions and multiplications, which tend to heavily

utilize DSP responses on the FPGA. For this reason, the DSP resources on the FPGA is the resource

type which runs out first, and is the main limitation of the circuit size one can simulate on a single

FPGA. To address this, [54] implements the LB-LMC solver across multiple FPGA at 100 ns with

a custom FPGA to FPGA bus interface, but is outside the scope of this work.

The LB-LMC method is a modified Resistive Companion (RC) method. The RC method is a

commonly used circuit solving approach, and is used in such solvers as EMTP and SPICE based
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(a) (b)

Figure 4-1: RC models of (a) Inductor and (b) capacitor for different 1st order integration methods [6].

Figure 4-2: LB-LMC Component Models: (a) component with current state, and (b) component with
voltage state [7].
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Figure 4-3: LB-LMC Solution Flow [7].

simulation software like PSCAD or LTSpice.

Fig. 4-1 shows different RC equivalent circuits for an inductor and capacitor for Forward

Euler, Backward Euler, and Trapezoidal.The RC equivalent circuits translate the system in voltage

sources, current sources, and resistors, and a linear set of equations can be formed. For the implicit

integration method, such as Backward Euler and Trapezoidal, the current sources are accompanied
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by a companion resistor, hence the name, resistive companion. These linear set of equations can

then be formed into a matrix form of Gx = b, where G is the conductance matrix, x is a vector of the

system solution (i.e., next time step), and b is a vector of the source contributions (i.e., present time

step). The system solution can be solved by inverting the conductance matrix G on both sides to

get x = G−1b. G−1 is computed offline prior to the simulation start. This works for linear systems;

however, power electronics are non-linear, piece-wise components. Implementing power electronics,

or systems with non-linearities, in traditional RC method would involve recomputation of G−1 when

the switch state changes, or storing all the G−1 in memory and then jumping between different

G−1 matrices depending on the switch states. In order to keep G constant, and avoiding having

to perform a matrix inverse during real-time simulation, and/or having a non-iterative solver, the

non-linear components, such as PECs, are integrated with explicit integration methods like Forward

Euler or Runge-Kutta, while the linear components such as inductors and capacitors are integrated

with implicit integration methods like Trapezoidal. The core component model building blocks in

LB-LMC can be seen in Fig. 4-2. After the integration is performed, the source contributions to

each node of the circuit/each element of the b vector. Then the system solutions are found via

x = G−1b. Fig. 4-3 shows the solution flow of the LB-LMC solver. To highlight an example of

the different integration methods in a circuit, Fig. 4-4 shows the active rectifier circuit, which will

be simulated in Chapter 6. The VSR has an LCL DM filter with passive damping and LC CM

filter powering a resistive load, and measurement points referred to throughout the paper. Fig. 4-5

shows the different integration methods used for the different components in the circuit (One of

the DM inductors, Ldm1, is added to leakage term of the CM inductor to reduce components).

For FPGA implementation, the fixed-point data type is used to avoid iterative computation.

The numerical accuracy of the LB-LMC approach running in C++ double-precision floating-point

was shown to be less than 1% of traditional RC running at two orders of magnitude smaller times

time steps (LB-LMC running at 50 ns and RC running at 500 ps), and indistinguishable from zero

when comparing LB-LMC running in C++ double-precision floating-point vs. fixed-point [7]. In

the author’s own experience, this solver matches PLECs exactly, or at least (indistinguishable form

the naked eye). The fixed-point word size of the system variables and internal solver signals can

be larger than 64 bits. The signal size used in this model was 69 bits of 28 integer bits and 41

fractional bits. Moreover, each component’s integration method and contribution to the source
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Figure 4-4: VSR Circuit with LCL DM filter, LC CM filter, floating ground, measurement points, +LG
and LL faults.

Figure 4-5: VSR Circuit showing the different integration methods used per component.

contribution vector, b, can be, and are, performed in parallel to leverage the natural strength of

FPGAs. A diagram of the LB-LMC solver engine in an FPGA is shown in Fig. 4-6. To summarize

how the LB-LMC solver executed on FPGAs is able to such low time steps compared to COTS

simulation approaches:

1. LB-LMC maintains a fixed conductance matrix by explicit integration for non-linear compo-

nents like PECS, while preserving their non-linearity.

2. The data type of signals used is set to fixed-point to avoid iterative computation, allowing

the solver to execute solutions in a single clock cycle.

3. Much of the computation, including the component integration, is performed in parallel on

an FPGA.
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Figure 4-6: LB-LMC Solver Engine [7].

4.2 Half-Bridge State Space Model

The half-bridge module is the workhorse of the power electronics industry. An example half-bridge

with anti-parallel diodes that will be used in the LB-LMC solver is shown in Fig. 4-7. This module

is building block for many topologies such as buck and boost converters, single-phase, and 3-phase 2-

level Voltage Source Converter (VSC), and other topologies such as, but not limited to, Dual Active

Bridge (DAB), NPCs, and sub-modules of Modular Multilevel Converter (MMC). This component

allows for independent switching of the upper and lower of a conventional half-bridge module. This

enables testing of dead-time, and the conduction of both anti-parallel diodes simultaneously. This

conduction of both anti-parallel diodes is important in evaluating power electronic converters under

fault conditions. In general, the anti-parallel diodes are there to prevent output current from going

to zero during dead time. In IGBT modules, the diode is added. In MOSFET modules, the body

diode is inherent to the device structure. If the diodes were not present, then during dead-time,

Figure 4-7: Schematic of half-bridge VSC with anti-parallel diodes
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the inductor current would go to zero instantaneously, which would cause a large di/dt, and a large

voltage spike. This voltage spike could damage or destroy the devices.

When operating the half-bridge module as an ac-dc boost rectifier, on startup with zero bus

voltage, the anti-parallel diodes cause the boost rectifier to operate as a conventional uncontrolled

diode bridge rectifier while precharging the bus voltage. Once the bus has reached a steady-state,

then the boost rectifier can begin operation in a controllable manner. Additionally, if there is an

LL fault on the dc side of the converter, the anti-parallel diode should conduct in a free-wheeling

manner. Lastly, the component model should function as a conventional buck converter. This half-

bridge module, typically called a leg, can be configured with three legs for 3 phase applications. To

summarize the operational modes of the VSC for 3 phase application:

1. dc-ac, buck, Voltage Source Inverter (VSI).

2. ac-dc, boost, VSR.

3. ac-dc, diode bridge rectifier.

4. free wheeling diodes during fault conditions.

It is also possible for the three-leg VSC as an interleaved buck or boost converter, and which the

component model should be able to do, but is not covered in this work.

A VSI without dead time can be implemented with just switching between the upper and lower

leg. This is a typical approach used in converter legs of this type, but it does not encompass all the

operational modes listed above. To allow for shoot-through conditions caused by errors in gating

logic or diode free-wheeling condition caused by LL faults in the system, the circuit state with

both switches should be considered. Additionally, the circuit condition with both switches are off

should be included when switches are not conducting. In the context of real-time simulation, the

integration is performed with fixed, non-iterative time steps (as opposed to variable or iterative),

as each computation per time step must be complete before the next time step. From a modeling

and simulation perspective, power electronic devices can be thought of as an open or closed switch.

Depending on the switch position, a different part of the circuit is connected. The circuits equations

can be written out as a set of differential equations represented in state-space form for each switching

position. Then, to integrated with respect to time to see the time domain response of the system.
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(a) (b)

(c) (d)

Figure 4-8: Half-bridge converter with anti-parallel diodes (a) upper switch/diode on, (b) lower switch/-
diode on, (c) both switches or both diodes on, and (d) both switches and both diodes off

For the half-bridge component, first, the state-space equation should be determined for the

different half-bridge states: upper switch on, lower switch on, both switches on, and both switches

off. These different equivalent circuits are shown in Fig 4-8. Assumptions for modeling include ideal

switches for both the switching devices and diodes, with the same fixed on-state resistance of Rsw.

The Rin and R resistances are small values used for the discretization of capacitor and inductor,

respectively. The state-space equations were derived with the midpoint of the dc-link capacitors as

an access point to allow the implementation of various ground schemes. A complete derivation can

be found in Appendix A.1. The final equations are shown in Table 4.1 for ˙iLa, and Table 4.2 for

˙vcp and ˙vcn. The equations are organized by the different switching states. Depending on which

switch state is active for a given time step, the appropriate set of differential equations will be used.

There are two sets of equations for both switches on-state. One derivation was done by Matthew

from USC using the voltage at the midpoint of the leg, v∗, where v∗ = 1
2

(
vcp + vcn

)
+ vg − Rsw

2 iL.
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Another was done by the author without using v∗. Both give the same equations once v∗ is plugged

in.

Table 4.1: Switching functions for ˙iLa equations

Switch State
∆x[n]
DT

Switching Functions
RswR/L x[n]

SA+ SA- vcp vcn vg v∗ vx

ON OFF ˙iLa = 1
La

[
vcp + 0.0 + vg + 0.0 - va

]
- (Rsw +R)/L iLa

OFF ON ˙iLa = 1
La

[
0.0 + vcn + vg + 0.0 - va

]
- (Rsw +R)/L iLa

OFF OFF ˙iLa = 1
La

[
0.0 + 0.0 + vg + 0.0 - va

]
- R/L iLa

ON ON ˙iLa = 1
La

[
0.0 + 0.0 + 0.0 + v∗ - va

]
- R/L iLa

ON ON ˙iLa = 1
La

[
1
2
vcp + 1

2
vcn + vg + 0.0 - va

]
- R/L−Rsw/(2L) iLa

Table 4.2: Switching functions for ˙vcp and ˙vcn equations

Switch State
∆x[n]
DT

x[n] Switching function

SA+ SA-

ON OFF ˙vcp = 1
RinC

[
vp − vcp − vg

]
+ 1

C

[
−iLa

]
OFF ON ˙vcp = 1

RinC

[
vp − vcp − vg

]
+ 1

C

[
0.0

]
OFF OFF ˙vcp = 1

RinC

[
vp − vcp − vg

]
+ 1

C

[
0.0

]
ON ON ˙vcp = 1

RinC

[
vp − vcp − vg

]
+ 1

RswC

[
vcp + vg − v∗

]
ON ON ˙vcp = 1

RinC

[
vp − vcp − vg

]
+ 1

2RswC

[
−vcp + vcn +RswiLa

]
ON OFF ˙vcn = 1

RinC

[
vn − vcn − vg

]
+ 1

C

[
0.0

]
OFF ON ˙vcn = 1

RinC

[
vn − vcn − vg

]
+ 1

C

[
−iLa

]
OFF OFF ˙vcn = 1

RinC

[
vn − vcn − vg

]
+ 1

C

[
0.0

]
ON ON ˙vcn = 1

RinC

[
vn − vcn − vg

]
+ 1

RswC

[
vcn + vg − v∗

]
ON ON ˙vcn = 1

RinC

[
vn − vcn − vg

]
+ 1

2RswC

[
vcp − vcn +RswiLa

]
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(a) (b)

Figure 4-9: Voltage Source Converters with anti-parallel diodes (a) Full Bridge (b) 3-Leg.

Extending the state-space equations to multi-phase applications such as the full-bridge converter

(Fig. 4-9a) or 3-leg, 2-level converter (Fig. 4-9b) is fairly straight forward. The switching function

equations for ˙iLb and ˙iLc are the same as Table 4.1. For ˙vcp and ˙vcn, the switching functions add

the inductor current term for each of the legs. For example, if the ON switches are SA+, SB-, and

SC-, then the capacitor voltage state-space equations will be:

˙vcp =
1

RinC

[
vp − vcp − vg

]
+

1

C

[
− iLa

]
(4.1)

˙vcn =
1

RinC

[
vn − vcn − vg

]
+

1

C

[
− iLb − iLc

]
(4.2)

If one of the legs has a short circuit, then the short circuit term would be added for that leg.

4.3 Logic for VSC with Anti-Parallel Diode behavior

The next step is to determine which switch should be on under which conditions. If the component

was modelled as a single-pole, double-throw switch, where the switch state was drive by the gate

signals, then determining the switch state would just be equal to the gate signal. As mentioned

before, this approach works for VSI under steady-state operation, but does not work for the VSR

due to its diode rectification upon startup, so the VSR must include both the actively gating

operation and diode operation, and be able to go between the two modes seamlessly. This section

describes the logic used to simulate diode behavior.
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A standard diode, as shown in Fig. 4-10a, becomes forward biased when the voltage across

the diode, vf , is greater than the diode threshold voltage, vTH . Once the diode is conducting, it

turns off on zero current. The distinction of zero current compared to zero or negative voltage

is if an ac to dc diode rectifier has an input voltage with lagging current, then it is possible for

the diode to experience negative voltage across the device with positive current. To capture the

voltage turn-on, and current turn-off, a diode state machine was used, as shown in Fig. 4-10b.

Fig.4-11 shows the logic implemented combining the diode state machines, and gate signals, two

per leg. Additional logic is added to ensure if the inductor current is nonzero, that the correct

diode will freewheel, such as in a buck converter. This logic is then repeated per each leg to build

the state-space equations for Forward Euler integration. The updated states are turned into source

contributions, the capacitor voltages are multiplied by the conductance of Rin, and the inductor

(a) (b)

Figure 4-10: (a) Diode and (b) Diode State Machine.

Figure 4-11: VSC with anti-parallel diode component logic flow in LB-LMC.
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currents are the source contributions themselves. The source contributions for the whole circuit

are then aggregated into the b vector, and the system solution found for x just as mentioned in

Section 4.1.

4.4 VSR filter Implementation

An issue which was run into during the design process was that the high-order filter of the VSR

consumed a large portion of available DSP resources on the FPGA. Since the filter is integrated

with the trapezoidal method, an LCL DM filter, 3 phase filter, will form a 3x3 matrix block. This

can be seen in the middle 3x3 matrix block in Fig. 4-12a. This figure shows the sparsity of the G−1

matrix for a VSI circuit with an LCL DM filter feeding an RL load. This VSI circuit is essentially

the same circuit as the VSR circuit shown in Fig. 4-5, but with dc sources instead of dc loads

and ac RL loads instead of ac sources. An LCL DM filter with passive damping ends up forming

a 6x6 matrix block. This can be seen in the middle 6x6 matrix block of Fig. 4-12b. The matrix

blocks are separated by the explicit integration components used in the circuit, as shown in Fig.

(a) (b)

Figure 4-12: G−1 sparsity matrix for (a) VSI with LCL DM filter, and (b) VSR with LCL DM filter with
passive damping.
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4-5. Increased sparsity reduces DSP resource usage on the FPGA at the expense of using explicit

integration which may lead solver instability. However, the lower time steps on the order of tens

of ns allows for explicit integration to be used without accuracy or stability issues. Still, these

trade-offs are something the user must be aware off.

Building a high order filters, as may be needed to meet EMI standards, should be carefully

considered as they lead to a large, non-sparse matrix blocks, and consumes a fair amount of DSP

resources. Originally, the VSR filter was implemented with an LCCL DM filter with a passive

damping and an LCL CM filter. However, this DM filter forms a 9x9 martix block, and due to

the over all filter’s resource usage, it was reduced to an LCL DM filer with passive damping and

an LC CM filter, as shown in 4-4. An attempt was made to reduce the filter to an LCL DM

filter without passive damping, but the solver went unstable, and the parameters would need to be

adjusted. Sythesis reports for the VSI and VSR circuits can be seen in Fig. 4-13a, and Fig. 4-13b,

respectively. Removing the passive damping from the LCL filter reduces the DSP resource usage

from by about 400. This equates to about a 25% reduction of the DSP resources on the Kintex-7

410T FPGA for this circuit.

(a) (b)

Figure 4-13: Synthesis Reports for (a) VSI circuit, and (b) VSR circuit.
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Chapter 5

National Instrument FPGA Platform

and LB-LMC Solver Implementation

5.1 NI FPGA Platform for Real-Time Simulation

This chapter provides a discussion on how real-time simulation can be performed on NI FPGA-

based platforms using the LB-LMC solver engine and how the controls are implemented for the

VSR in LabVIEW FPGA. Further material on this subject can be found in [8].

NI is a manufacturer of widely used computing and instrumentation platforms often applied in

system automation, testing, and control, with applications ranging from industrial automation to

automotive to wireless to aerospace, just to name a few. Within NI’s line of products are many

FPGA+processor based computing platforms with modular and numerous Analog and Digital

Input/Output (ADIO). Such platforms include the CompactRIO (cRIO), FlexRIO, and PXIe series

of products, as depicted in Fig. 5-1. These platforms often incorporate ARM or x86 (Intel Core

i and Xeon) based processors with Xilinx FPGAs such as Kintex-7, Kintex Ultrascale, and Zynq

devices. Generally speaking, the cRIO provides a small FPGA with ARM-based or Intel-based

embedded CPUs with a lot of I/O options that can be removed and swapped. cRIO provides up to

8 slots for different I/O modules, from digital I/O, multichannel lows sampling rate analog I/O, up

to 2 channel 1MHz analog input. NI’s flagship product is the PXIe chassis. This chassis allows for

multiple FPGA processing and FPGA I/O cards, or other types of modules such as vector network

analyzers, 5G or industrial communications, various types of analog and digital I/O together in
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(a) (b)

(c) (d)

Figure 5-1: NI CPU+FPGA Platforms: (a) CompactRIO, (b) Controller for FlexRIO, and (c) PXIe
Chassis; (d) LabVIEW FPGA Software [8].

one platform. The CPU can be higher-end Intel processes such as i7’s or Xeon’s. Most recently,

NI released FlexRIO coprocessing modules based on the Kintex UltraScale series, but most of the

FlexRIO I/O-type modules are either Kintex-7 series or Virtex-5 series. These I/O modules are

more on the oscilloscope range with bandwidth ranging from 10’s MHz to a few GHz. At the time of

this work, NI does not offer Kintex UlstraScale+ FPGA options. In between these two platforms,

NI offers the Controller for FlexRIO, showing in Fig. 5-1b, which is a stand-alone platform for

running one FlexRIO FPGA, and one I/O module. At the time of writing this, the options FPGAs

are the Kintex-7 series 325T, or 410T. The 410T version is the hardware platform used in Section

6.1.

Because these platforms are capable of CPU+FPGA architectures and I/O options, real-time

simulation, HiL testing, and CHiL can be conveniently performed entirely on these platforms.
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To perform real-time simulation, the LB-LMC solver engines can be implemented on the FPGA

portions of the NI platforms. Furthermore, due to the ability to rack-and-stack multiple FPGAs

into a single PXIe chassis, many FPGA based real-time solvers can be paralleled in one common

platform.

NI offers a wide range of software tools. The most common software tool for NI platforms is

LabVIEW. LabVIEW provides a graphical software environment, as shown in 5-1d, to allow users

to rapidly program real-time targets, such as embedded and FPGA based systems. Moreover, Lab-

VIEW can be thought of a software suite with different version and flavors depending on the target

platform and application. For example, when programming real-time targets with an embedded

processor, LabVIEW Real-Time is used. For programming FPGA based targets, LabVIEW FPGA

is used. For running LabVIEW on desktops, just ”regular” LabVIEW is used. Similar to Simulink,

logic in LabVIEW is connected in a graphical signal flow like manner. When building logic in

LabVIEW, one window is used for the logic flow, and another is used for the user interface. This

user interface is versatile, and can display such items as buttons, graphs, dials, knobs, etc, or any

other items a human-machine interface would have. Very fitting to the application, these files are

called Virtual Instruments (VI). One .VI is written per target. Taking the FlexRIO used in this

work as an example, one .VI program is used for the embedded cpu and another .VI is used for the

FPGA.

NI LabVIEW allows for easy integration of I/Os, as I/Os are just another logic block, which can

be written to or read from, and easy incorporated into the overall code. Using I/Os is simple for

both embedded CPU and FPGA targets. Having simple I/O integration is a huge positive for the NI

platform. Other code generation methods, such as Xilinx System Generator for DSP (FPGA code

generation with Simulink), only generates the code for an FPGA entity for said Simulink Logic.

This FPGA entity then needs to be integrated into a top-level design, which varies per FPGA chip

and pcb assembly. Futuremore, if ADCs/DACs functionality is desired in the application, then the

FPGA must interface to external ADCs/DACs over some type of communication protocol, such

as Serial Peripheral Interface (SPI), as FPGAs do not natively have this functionality built into

the silicon. This results in the user having to manually interface with the ADCs/DAC through

additional Hardware Description Language (HDL) code, such as VHDL or Verilog, in the top-level

design. Since NI makes both the hardware and software, they are able to integrate between the
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hardware and software, which allows the FPGA code generation to integrate with NI’s ADCs/DACs.

This is a feature is generally not present in other FPGA code generation platforms. More over,

LabVIEW FPGA is able take the .vi, and after compilation, download the compiled code straight

the FPGA without the user needing to integrate the compiled code into a top-level design, etc.

There is always a trade-off between platform cost, engineering time, and performance. NI

platforms generally cost more than FPGA development boards, such as Xilinx VC707 evaluation

boards used in [40], [7], but NI platforms generally require much less intimate knowledge FPGAs

to be productive. For reference, the author has taken one formal FPGA class at UW-Milwaukee.

This class, along with the NI tutorials, gave mostly a sufficient background on FPGAs and using

LabVIEW FPGA to be productive with the FlexRIO platform. LabVIEW FPGA provides a nice

balance between control of the FPGA code and a level of abstractions, as generally abstraction and

control are conflicting objects. In the authors experience, building most logic is straight forward

with LabVIEW FPGA, but performing more complex tasks such as using the SFP+ based protocols,

like Xilinx Aurora for FPGA-to-FPGA communication, proved more complicated on the FlexRIO

than on a regular Xilinx VC707 evaluation board. In terms of cost, a cRIO chassis + I/Os ranges

in the lower $1,000s. A FlexRIO chassis ranges in the upper $1,000’s, and with an I/O module,

can cost in the range of lower $10,000s. A PXIe chassis, depending on the I/O configuration can

range from lower $10,000s to up to a couple $100,000s. For comparison, an equivalent Xilinx FPGA

evaluation board comparable with a FlexRIO, costs in the lower $1,000s. But although the FlexRIO

cost more, it also has an ARM processor, easy to interface I/O and lower development times for

most applications. For a university laboratory research environment, the reduced learning curve

is highly desirable as students programs are for a limited number of year compared to industry.

Additionally, many students, including the author, do not have an extensive enough background

in FPGAs to perform complex research objects on FPGA evaluation boards. A down side of using

NI FPGA platforms is sometime the NI FPGA hardware does not use the latest FPGA, such as

the Xilinx UltraScale+ FPGAs, where as these large FPGAs are available in evaluation boards.

LabVIEW FPGA also allows for external/custom HDL code integration into a .VI design

through what NI calls Component Level Intellectual Property. Since the LB-LMC solver is an

FPGA entity, the solver can imported via a wizard into a CLIP, and the integrated into the Lab-

VIEW FPGA code, as shown in Fig. 5-2a. A CLIP core it just a wrapper around the HDL entity to
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(a) (b) (c)

Figure 5-2: LabVIEW Simulation Setup: (a) CLIP core with I/O Nodes, (b) Single-Cycle Timed Loop
(SCTL), and (c) Clock Domain Synchronization between Resources with Registers [8].

allow integration with the .VI. The CLIP core’s I/O block elements correspond to ports signals in

the HDL entity. This allows the user to send and receive signal to and from the custom HDL code.

In the case, having the LB-LMC solver in a CLIP core allows for sending and receiving signals to

an from the real-time solver.

The LB-LMC solver executes in real-time within a single clock cycle on FPGAs. Thus, the

CLIP core is placed in a Single-Cycle Timed Loop (SCTL), as shown in Fig. 5-2b. In general,

SCTLs forces timing requirements during compilation on the logic inside the loop structure. If

timing fails, LabVIEW will let the user know which part of the logic failed timing. The time step

which the LB-LMC solver was designed to execute at should match the clock period of the SCTL.

For example, in this work, the LB-LMC solver is set to execute at 50 ns, so the frequency of the

SCTL is set to 20 MHz. The base clock on the Kintex-7 410T is 40 MHz, so a 20 MHz clock is

derived, then used to drive the SCTL and the CLIP core. The data going to and coming from the

CLIP core inside the SCTL is synchronized to the 20 MHz clock.

For crossing clock domains, and moving data around on the FPGA between loops, LabVIEW

FPGA provides a few options such as synchronization registers, First-In-First-Out (FIFO), or global

variables to name a few. An easy choice one can implement is synchronization registers, as shown

in Fig. 5-2c. This allows the user to move data between different clock domains by simply writing

to and reading from a register. The clock domain crossing through registers has a few clock cycles

of overhead. The registers do not guarantee lossless data transfer, and can only be read from one

location at a time. Examples of using synchronization registers is shown throughout Section 5.3.
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Figure 5-3: LB-LMC NI Platform Solver Engine Development Flow [8].

Figure 5-4: Netlist of VSR circuit.

If lossless data transfer is required FIFOs should be used. FIFOs are discussed in detail in Section

5.4.1.

5.2 NI FPGA Platform Solver Development Flow

This section provides a summary on how the real-time LB-LMC solver engine for a power electronic

system is developed and then incorporated into a NI platform application. Further details on this

process can be found in [8].

Fig. 5-3 shows the tool-chain and development flow used for creating an LB-LMC solver engine
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for real-time FPGA execution on NI platforms. The first step involves defining a netlist of the

circuit, similar to old SPICE modeling before Graphical User Interfaces (GUIs) were developed.

An example of the circuit netlist in this work is shown in Fig. 5-4. This netlist is then implemented

into a Command Line Interface (CLI) tool developed by Matthew Milton [55]. The parameters and

netlist are listed out in a text file according to the tools syntax. At the time of this work, various

components are available in the tool library such as functional and ideal voltage and current sources,

standard passive components such resistors, capacitors, inductors, and 3-phase mutual inductors,

a few types of PECs such as VSC, half-bridge MMC and DAB, and an RL switch for applying

faults. These various components are called out in the netlist. An example of the text file for the

CLI tool used in this work is provided in Appendix A.6. Then, an executable file is run which

takes netlist file location as an input parameter. The executable file then generates an LB-LMC

simulation engine of the netlist circuit in C++ code. This C++ code is a function, which can then

be integrated into a test bench file to validate correct behaviour of the solver.

Once behaviour is consider correct, this solver is then imported into an High-Level Synthesis

(HLS) tool, such as Xilinx Vivado HLS. This tool converters the C++ code automatically into either

VHDL or Verilog. The user test can the LB-LMC simulation engine in fixed point to validation

sufficient accuracy. HLS directives are used to set timing requirements, latency, and resource usage

requirements. An example of using the HLS directives for this project is included in Appendix A.7

in lines 36, 37, 40, 43, and 105. These directives enable the FPGA to execute in a single clock

cycle, tell the signal port to not have memory interfaces, which would add delays. They also tell

the signals port to output array elements in parallel, and to place any nested functions into one

large function, which eliminates additional signal interfacing and delays. LabVIEW FPGA’s largest

datatype is 64-bits, while signal width in the LB-LMC solver engine for this design was chosen as

69-bits of 28-integer and 41-fractional bits. To make the LB-LMC solver engine compatible with

LabVIEW FPGA, the ports have to be no more than 64-bits. Additional logic is added which

converts the data types of the input signals from 64-bits to 69-bits by padding zeros to the end,

and converts output signals from 69-bits to 64-bits by truncating the last 5 fractional bits. This can

be seen in lines 67-69, and 109-123, respectively, in Appendix A.7. The design is then complied,

and an VHDL entity is now made. This VHDL entity is then imported into LabVIEW FPGA via

an import wizard to form a CLIP core. With this, the LB-LMC simulation engine is now imported
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Figure 5-5: Block diagram of top level VI in LabVIEW FPGA

into LabVIEW FPGA and ready to use for HiL testing.

The author would like to would to acknowledge and thank Matthew Milton, Dr. Andrea Benigni,

and the team at University of South Carolina (USC) for the C++ code, CLI tool, code generation

library, and showing the author how to implement the various software tools presented here.

5.3 Controls and PWM Implementation in LabVIEW FPGA

Fig. 5-5 shows a block diagram of the Top Level VI implemented in LabVIEW FPGA. The hardware

used was NI FlexRIO, model number NI-7935R (Fig. 5-1b). This particular FlexRIO model has

a Xilinx Kintex-7 410T FPGA, where the LB-LMC solver, controls, and PWM are implemented.

Sine and Cosine lookup tables are used to generate the sin θ’s and cos θ’s need for power-variant dq

and inverse dq transforms using in the controls, as well as to synthesize the 3 phase ac input signals

to the LB-LMC solver. Registers are used to cross clock domains. For data logging, LabVIEW

FPGA utilized FIFOs to transfer data between the FPGA and ARM processor. Then, the ARM

processor saves the data to an SD card. Due to limitations in data logging ability, longer time data

are captured at a lower resolution, and the shorter times are captured at a higher resolution. All

vi’s and subvi’s shown in this chapter were made by the author.

For the active rectifier, a 2-level converter was used, but in practical application, a high number

of levels would be used to reach a 12 kV bus such as the NPC described in Chapter 3. The source
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is modeled as an ideal 3-phase voltage source of 6 kVLL RMS with a feeder cable. The feeder cable

represents resistance and inductance from cabling and a synchronous generator’s stator windings.

The controls utilize decoupled voltage oriented controls in the rotating dq frame [56], but with 3rd

harmonic injection and per-unitized input signals, as shown in Fig. 5-11. The power invariant dq

and inverse dq transforms are given by (5.1) and (5.2), respectively, where θ is the electrical angle.
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As mentioned above, to reduce the computational burden on the FPGA of doing trig multiplication,

6 lookup tables were implemented, one for each of the angles required for the dq transform; however,

these lookup tables are not able to be implemented inside SCTLs, and are instead implemented

in while loops. The lookup tables are set to 60 Hz, 16 bits, with different offsets of 2π/3 for the

different terms. The lookup tables can also be 8 or 32 bits, and can vary in size. A screenshot

is provided in Fig. 5-6. The output of the lookup table is signed integer. The controls were

implemented in fixed-point, so a reinterpret block was added to move the decimal to the designated

fixed-point value. These values are then saved to registers to be used in other loops, either SCTLs

or while loops on the FPGA. If a register is read from multiple places at the same time in LabVIEW

FPGA, data loss can occur. For this reason, the output of each lookup table saves the same data

to 3 or 4 different registers to be used later at different parts of the vi, such as 1 for dq transform

of voltage, 1 for currents, 1 for dq inverse transform of modulation indexes, and 1 for the 3 phase

ac input. This is shown in Fig. 5-7.

Fig. 5-8 shows a PI (Proportional Integral) block diagram with clamping integral logic. This

logic prevents the integral term from blowing up if the output of the PI is saturated. Also, the

integral term does not engage until the enable signal is high, and clears when the enable signal is

low. In a standard Simulink model, the integrator accounts for the time step in its integration, i.e.,
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Figure 5-6: LabVIEW FPGA - sin lookup table configurator

Figure 5-7: LabVIEW FPGA - saving sin and cos angles for dq transforms
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Figure 5-8: PI block with clamping integrator and saturation

Figure 5-9: LabVIEW FPGA implementation of PI controller

the integral gain is multiplied by the time step automatically. However, in FPGA implementation,

this does not automatically occur. What is conventionally thought of as an integrator is really

an accumulator. To account for this, the loop rate for the SCTL must be manually multiplied by

the integral gain. In the authors’ experience with LabVIEW FPGA, the additional logic of the

clamping integrator must be implemented in an SCTL, as opposed to while loops or other timing

structures. The LabVIEW implementation of the PI block is shown in Fig. 5-9. A saturation block

was made as well, shown in Fig. 5-10.
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Figure 5-10: LabVIEW FPGA implementation of saturation block

With all of these pieces in place, we now have all the building blocks needed for the main

VSR controls. A block diagram of the controls is shown in Fig. 5-11. The LabVIEW FPGA

implementation is shown in Fig. 5-13. The controls were implemented in a 40-bit fixed-point,

with an 8-bit integer part, and a 32-bit fractional part. This is not claiming to be optimal, but

enough bits where the resolution would not be an issue. The resolution can be reduced if the area

becomes limited on the FPGA. In general, when working with fixed-point in LabVIEW FPGA, the

software will automatically increase the fixed-point signal size to account for the largest possible

and smallest possible signal size. If multiplication is performed on many signals in a row, the signal

size can quickly expand from a 4- or 8-bit word to a 64 bit word. The output size of mathematical

operations can be manually set in LabVIEW FPGA, as well as for any signal. Incite from the

designer on the appropriate signal size can be used to set the signal size sufficiently large enough to

handle expected signal transients, but no larger to not use more resources than necessary. To NI’s

credit, this is very easy to set in the properties of the constant or math operation, as LabVIEW

FPGA displays the range of the signal and precision of the fractional portion. Fig. 5-12 shows an

example of the lower limit constant used, which feeds into the saturation blocks.

In Fig. 5-13, one may notice the long trailing decimals. This is due to the fixed-point rep-

resentation, which, unlike floating-point, does not have the ability to create rational fractional-

parts, so many fractional terms cannot be perfectly represented. For example, the upper and

lower saturation limits for the idq PI controllers are to 1.2 and -1.2, respectively. The 0.2 term

of 1.2 cannot perfectly represented with the 40-bit word chosen, and is instead represented as
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Figure 5-11: Decoupled Voltage Orient Controls for Voltage Source Rectifier

Figure 5-12: LabVIEW FPGA fixed-point properties for a contant

”1.19999999995343387126922607421875.” This obviously is close enough to 1.2 due to the 32 frac-

tional bits, but just something the designer needs to keep in mind when using fixed-point in Lab-

VIEW FPGA.

One key point on implementing logic inside an SCTL is division operations are not allowed

because divisions are an iterative operation and thus cannot be performed in a single clock cycle.

The controller gains were designed in Simulink and are based on the per-unitized signals. Since

divisions are not allowed, multiplications by the inverse of the constants was used. Constants such

as these were manually entered.
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(a) (b)

Figure 5-14: 3rd harmonic injection (a) diagram, and (b) LabVIEW FPGA implementation

After the inverse dq transform, the 3rd harmonic injection is added to the modulation signal.

This increases bus voltage utilization by about 15% [57]. This means for the same bus voltage, the

RMS output of an inverter can be 15% greater. Fig. 5-14a shows a block diagram of 3rd harmonic

injection and Fig. 5-14b shows its implementation in LabVIEW FPGA.

Fig. 5-15a shows the PWM.vi in the top level. It is implemented in its own SCTL with registers

reading the duty cycles from the output of the controls, and write the outputs to registers which

go to the gate signals of the simulation engine. This could have also been implemented in the

same SCTL as the LB-LMC simulation engine. Fig. 5-15b shows the internals of the PWM.vi. It

contains a triangle wave generator block and a PWM comparator block for a 3 phase converter. The

triangle wave block generators a triangle waveform between -1 and 1, with a period of the switching

period of the converter. The state machine for the triangle wave contains two states: ramping up,

and ramping down, shown in Fig. 5-16. It starts at zero then counts up to 1. Once the count is

equal to 1, then it counts down to -1, then back up to 1, and so on. A triangle wave ramping up

and down between -1 and 1 and back to -1 has an effective slope of 4. Or thought of another way,

this triangle wave is essentially an integrator with a gain of 4. If a switching frequency (fsw) of 1

was desired, then the clock frequency would be multiplied by 4 and either added or subtracted onto

itself. To increase the frequency of the triangle, one can simply increase the term, which is added

or subtracted with each iteration. To set the frequency of the triangle wave generator at the fsw,
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(a) (b)

Figure 5-15: LabVIEW FPGA PWM.vi (a) in Toplevel.vi, and (b) internals.

(a) (b)

Figure 5-16: LabVIEW FPGA implementation in fixed-point of triangle wave: (a) ramping up state, and
(b) ramping down state.

one can multiply the clock period by 4 and by the switching frequency. This works for fixed-point

representation. A similar approach can also be done with integer data types as well, but is not

covered here.

To generate the AC mains input signals, which feeds into the real-time simulator as voltage

source, the cos angles saved to registers earlier are multiplied by the line to neutral amplitude, then

saved back into a register to be used in a different SCTL, as shown in 5-18. This multiplication

could take place in another part of the .vi, not necessarily in an independent SCTL.

Fig. 5-19 shows the CLIP core of the LB-LMC simulation engine containing the VSR circuit.

One can see the registers sending the signals of AC mains, data signals, and fault application and

removal on the left side of the figure. The right side of the figure shows the various measurement

points from inductor currents and node voltages being saved to registers, which will be either used
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Figure 5-17: LabVIEW FPGA SPWM implementation

Figure 5-18: LabVIEW FPGA AC Mains implementation

for controls feedback or data logging.
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5.4 Data logging on FlexRIO

5.4.1 Data logging in LabVIEW FPGA

The challenge of data logging on an FPGA, is the FPGA itself cannot inherently store data, nor

can it directly communicate/read/write to something like a hard-drive or SD card. To save data to

a file, or in this case, an SD card, the data must pass through the embedded CPU. The embedded

processor is made up of a Xilinx Zynq-7020 System-on-Chip (SoC), which contains a dual-core

ARM Cortex-A9 32-bit processor running NI Linux Real-Time at a clock speed of 667 MHz. The

non-volatile storage of the system is only 512 MB, which is why a 32 GB SD card was used.

The main task from the user’s perspective is to get the data from the FPGA to the ARM

processor and saved to the SD card. Sending data between the FPGA and ARM processor is done

using Direct Access Memory (DMA) FIFOs. DMA FIFOs can be configured based on the elements

writing/reading to it at a time, the data type, the FIFO size, and the resource making up the FIFO.

The FIFO can be made up of Flip Flops, Lookup Tables (LUTs), or Block Random Access Memory

(BRAM). There is a trade-off between the writing speed and the size of memory based on the type

of resource being used, but generally, BRAM is sufficiently fast and the largest memory-related

resource available on the FPGA silicon. The Flip Flops are more likely used for FIFOs at higher

clock rates. The Kintex-7 410T FPGA model used in the FlexRIO has 28,620 kbits of BRAM,

which translates to 29,306,880 individual bits. From this, the user can divide this by the number

of bits per element and the number of elements per write cycle to find how deep the FIFO can be

before running out of resources. This FPGA supports up to 16 different DMA channels, but for

this work, only one large DMA channel was used. All the elements written to the same channel

must be the same data type. Different channels can be used when logging different data types or

writing at different speeds. Fig. 5-20 shows how the lower speed data logging was performed. This

data was sampled at 10 or 20 kHz. The ”sampling” rate was achieved with a loop timer and logic

implemented in flat sequence structure. Every n amount of µs, or in this case, every 50 or 100 µs,

the sequence would kick-off, then move the next frame where the data was read from the registers

and written to the FIFO. Regardless of how long the latter sequence takes, the timer in the first

frame ensures the logic starts executing every n amount of µs. The loop timer can also be changed

to be controlled in units of clock tick, or ms. This structure is then implemented in a true/false
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case statement controlled by a button on the front panel. This allows the user to start and stop

data logging at their discretion. If there is an error, such as an overflow, a fault signal flag will be

raised, which will stop the loop and display on the front panel to let the user know something went

wrong.

The main limitation of data logging is how fast the CPU side can read from the FIFO, while

the FPGA is writing to the FIFO. If the CPU cannot read as fast as the FPGA is writing to the

FIFO, the FIFO will overflow and error out. So if continuous data logging is desired, i.e., ”live

streaming” the data, a trade-off must be made between data type, number of elements, and data

sampling rate. To capture data at 20 MHz, a ”burst data capture” approach was used, where the

data was written to the FIFO for a short amount of time, then read on the CPU side. A screenshot

is shown in Fig. 5-21, which in the Top-Level.vi is located right under the LB-LMC simulation

engine in Fig. 5-19. This was done with a state machine that would enable the 50 ns data logging

for a few clock periods to capture the data at steady state. Then, apply the fault for a few hundred

clock period, and remove the fault for a few hundred clock period. Lastly, the state machine will

disable writing to FIFO. Enclosing the FIFO block in a True/False case statement allows for the

enable/disable behavior.

An alternative to using the BRAM is using the Dynamic Random Access Memory (DRAM).

DRAM is the same type of memory used on standard desktops and laptops. It is not located on the

FPGA silicon, but is on the PCB assembly. NI provides an example.vi on reading/writing to the

DRAM, as there is a lot of communication and data manipulation overhead to getting data from

the FPGA to the DRAM and back. The example.vi can be modified and used by the user. The

amount of DRAM which comes on the FlexRIO used in this work is 2 Gigabytes, which translates

to 16 Gigabits. Compared to the 28 kbits of BRAM, the DRAM offers 586x the amount of memory.

This translates to 586x longer waveforms being saving at the MHz level. However, in the author’s

experience, modifying the single-channel example of reading/writing to the DRAM working with 4

channels was not as straight forward as expected, and the author was not able to get this working.

Fig. 5-22 shows how the DRAM example would have been integrated into the LabVIEW FPGA

shown above.
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Figure 5-22: LabVIEW FPGA Data logging using DRAM

5.4.2 LabVIEW Real-Time of Data logging

This subsection describes the embedded CPU real-time side of the data logging after the FPGA

has written to the DMA FIFO. However, before the reading from the DMA FIFO can begin, the

real-time.vi must be configured probably. Fig. 5-23 shows an example of initial configuration, file

creation, and data logging using in this work. First, the resource name block is used to select

the FPGA target on the chassis. The FlexRIO only has one FPGA target, but a PXIe chassis

could contain multiple FPGA targets. Then, the FPGA bitstream (the compiled FPGA code)

is selected and loaded onto the FPGA. A read-write block is used to set initial condition prior to

FPGA execution, such as switching frequency, FIFO sampling rating, Vdc controller command, and

various flag initialization. This block has a small icon of a pair of glasses and a pencil to symbolize

reading and writing. Next, the FIFO is configured and started prior to the actual execution of the

FPGA target. Lastly, the FPGA target is given the ”run” command to start real-time execution.

From there, the real-time.vi splits off into two parallel loops, one for data logging (Fig. 5-23)

and one for real-time monitoring and control (Fig. 5-24). Data logging starts when the user selects

an enable button on the front panel. Then, the .vi creates a Technical Data Management Streaming

(TDMS) file with a date and timestamped file name. Setting the file directory to ”/u” saves the

file on the SD card. TDMS is NI’s proprietary file format which was developed for handing high
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Figure 5-23: LabVIEW real-time example of data logging

data rates and Gigabits of data in a single file. Options for data logging in .csv and a few other file

formats are also available. Once the TDMS file is created, a command from the real-time side is

sent to the FPGA to enable one of the case statements in the FPGA.vi, such as those shown in Fig.

5-20 or Fig. 5-21, for the FPGA to start writing to the DMA FIFO. The real-time.vi will enter a

while loop and begin reading from the DMA FIFO. The data from the DMA FIFO gets converted

from fixed point to double-precision floating point (double), as the TDMS file requires doubles as

the data type. Next, the data gets manipulated from a single column array to a 4 column array,

one for each of the 4 channels being saved. Finally, the data is written to the TDMS file. The while

loop keeps running until the FIFO is empty, the user selects to stop data logging, or an error has

occurred, such as a FIFO overflow. The loop structure was setup so the user could log multiple

TDMS files while the system is running.

Fig. 5-24 shows the monitoring and control loop, which runs in parallel to the data logging

loop. This loop allows the user to enable ac mains, enable the controls, set the vdc command for
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Figure 5-24: LabVIEW real-time example of monitoring

the controller, and monitor different statuses within the FPGA will the simulation is running in

real-time.

If an error occurs or the user decides to finish the simulation, then both loops are exited,

commands are sent to the FPGA to stop the various loop inside the FPGA, the DMA FIFOs are

reset, and the FPGA reference is closed. If the DMA FIFOs are not reset, then when starting them

up again in a later execution, the data from the previous run will still be present. If the reference

to the FPGA is not closed, then the FPGA will still be running. Lastly, any errors occurred will

display on the front panel.
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Chapter 6

Real-Time Simulation Results

6.1 Real-Time Simulation of Common Mode and +LG Fault in

an Ungrounded dc System

Fig. 6-1 shows the same VSR circuit discussed in Chapter 4, which was simulated in real time for

both LG and LL faults in this Chapter.

Within this circuit, LG ac and dc voltage measurements are used in the simulation, but for the

controls, their respective DM parts are extracted. Table 6.1 shows the equations used to extract

DM and CM from MM for 2 and 3 phases for voltages and currents. IT grounding is modeled

with a capacitor (Cog) and resistor (Rog) in parallel to ground, with values of 0.1µF and 10kΩ,

respectively. This represents the parasitic capacitance in an ungrounded system [58], [59].

Figure 6-1: VSR Circuit with LCL DM filter, LC CM filter, floating ground, measurement points, +LG,
-LG, and LL faults.
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Figure 6-2: CM Voltage at V abcg. Data is captured at 50 kHz.

(a) (b) (c)

Figure 6-3: VSR CM current at (a) iabcf (b) iabc (c) idc. Data is captured at 50 kHz.

The parallel resistor Rog is present to ensure the bus voltages returns to initial conditions.

Changing this resistance affects how long the bus voltage takes to recover after a fault is removed.

The voltage recovery is governed by the RC time constant of Rog and Cog. To get the exact value

of the parasitics to ground, one would have to use a Network Vector Analyser (NVA) to extract

S-parameters or make an FEA model, for example, with COMSOL Multiphysics [60]. However,

this changes with the geometry of the system. So unless the exact system is known beforehand,

the protection scheme will have to be modified once it is deployed. The section shows such high-

frequency ringing during sudden inception, zero impedance LG faults can be modeled in the real-

time simulation. A list of circuit parameters can be found in Table 6.2.

The 2 level, 3 phase VSR produces CM voltage of ±Vdc/2, and ±Vdc/6 depending on the

switching state [61]. With a 12 kV bus, the CM voltage outputs are ± 6 kV and ± 2 kV, as seen

in Fig. 6-2. This leads to CM currents, as seen at measurement point iabcf in Fig. 6-3a. The CM

current is reduced after passing through the CM LC filter, Fig. 6-3b. This shows the LB-LMC

solver is able to simulate CM currents and CM filters correctly.

Fig. 6-4a shows the path of current during an LG fault, and Fig. 6-4b shows the equivalent

circuit during the fault. The equivalent circuit forms an under-damped LC circuit with a resonant

frequency of (3.1). For this circuit, L is the sum of the cabling and fault inductance, 20 µH, and

C are the parasitic capacitance to ground, 0.1 µF. The value of this capacitance was derived by
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Table 6.2: VSR Parameters

Parameter Description Value Unit

Base Power Pb 1.5 MW
Vdc rated Vb 12 kV

Base Current, dc Ib 82.5 A
ac Source, VLL RMS Vabc 6 kV
ac Source, Frequency fe 60 Hz

Base Voltage, ac Line-to-Neutral peak Vdq 4899 V
Base Current, ac peak Idq 136 A
Switching Frequency fsw 6.25 kHz

Current Controller, Proportional Gain Idq Kp 0.8
Current Controller, Integral Gain Idq KI 50
Current Controller, Upper Limit - 1.15
Current Controller, Lower Limit - -1.15

Voltage Controller, Proportional Gain Vdc Kp 20
Voltage Controller, Integral Gain Vdc KI 40
Voltage Controller, Upper Limit - 10
Voltage Controller, Lower Limit - -10

3rd Harmonic Inject Coefficient - 1/
√

3
Feeder Cable, Resistance Rf 0.198 Ω
Feeder Cable, Inductance Lf 1.8 mH

CM Filter, Inductors Lcm 60 mH
CM Filter, Capacitors Ccm 0.1 µF
DM Filter, Inductor 1 Ldm1 0.955 mH
DM Filter, Inductor 2 Ldm2 5.6 mH
DM Filter, Capacitor Cdm 16 µF

DM Filter, Damping Resistor Rd−series 55 Ω
dc Link Capacitance Cdc 20 mF

Cable Inductance Lcable 10 µF
Resistive Load Rload 100 Ω

Floating Ground, Capacitance Cog 0.1 µF
Floating Ground, Resistance Rog 10 kΩ

Fault Inductance Lfault 10 µH
Fault Resistance Rfault 1 mΩ

taking a lumped sum of cabling capacitance and baseplate-to-heatsink capacitance. These values

do not match exactly those provide in Table 3.2, but showcase this approach of modeling ground

faults in IT systems, and the capabilities of the HiL platform. The parasitic capacitance and dc-link

capacitance are in series, but since the dc-link cap is many orders of magnitude larger than the

parasitic capacitance, it can be ignored. This gives a resonant frequency of 125.4 kHz or a period

of 8.89µs, or slightly less than 9 data points per period. This is a poor resolution for a simulation

that is trying to characterize fault transient to design protection schemes.
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(a) (b)

Figure 6-4: DC+ Line to Ground Fault (a) current path and (b) equivalent circuit during the fault.

Figure 6-5: VSR ramping up as diode bridge and then actively gated. +LG and -LG are applied. Data is
captured at 25 kHz. Left, Middle and Right Columns are MM, CM, and DM, respectively. Vabcg (a) MM
(b) DM (c) CM; Vpng (d) MM (e) DM (f) CM; ipn (g) MM (h) DM (j) CM.

Fig. 6-5 shows various measurement points while the VSR ramping up, and the circuit’s behavior

under +LG and -LG fault conditions. Fig. 6-6 zooms in on the +LG fault application. Both of these

figures’ rows are ac-side LG voltages (V abcg), dc-side LG voltages (V png), and dc-side currents

(ipn). These figures’ columns are broken down by MM, DM, and CM according to Table 6.1.

During an LG fault in an ungrounded system, the DM voltage remains constant while the CM

shifts [62]. In normal operation, positive Vdc rail-to-ground (V pg) is +6 kV, and negative Vdc
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6-6: +LG fault at 0.795 seconds. Data is captured at 50 kHz. Left, Middle and Right Columns
are MM, CM, and DM, respectively. Vabcg (a) MM (b) DM (c) CM; Vpng (d) MM (e) DM (f) CM; ipn (g)
MM (h) DM (j) CM.

rail-to-ground (V ng) is -6 kV, giving a DM voltage (V dcDM ) of 12 kV. Applying a +LG fault on

the positive dc rail forces the positive rail to zero volts. The ungrounded system will keep the

12 kV DM voltage, and shift the negative rail to -12 kV. When the fault is removed, the voltage

will return to nominal. All the non-electrically isolated parts of the distribution system will shift

voltages, including the ac-side voltages, as shown in Fig. 6-5a and Fig. 6-6a. Fig. 6-5e and Fig.

6-6e shows the dc DM voltage remaining constant at about 12 kV during the fault. Fig. 6-5b and

Fig. 6-6b shows this same behavior in the ac-side DM voltages. The voltage shifts during both

+LG and -LG faults can be seen in their CM counterparts for dc and ac for in Fig. 6-5c and 6-5f,

respectively. Fig.6-6c and Fig.6-6f zoom in on the +LG fault CM behavior during fault application.

This behavior is characteristic of an IT system during LG faults, and shows correct behavior in

real-time simulation.

The under-damped response of the LG fault causes a transient voltage on the dc bus, shown in

Fig. 6-7a via V pg and V ng. V pg’s overshoot peaks at about -5kV, and V ng’s overshoot peaks at

about -17 kV. This large swing in voltage could exceed the isolation rating of the power electronics

module and/or stress cable insulation; however, since this transient only lasts tens of µs, the energy
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(a) (b) (c)

Figure 6-7: +LG fault applied at 20 µs. Data is captured at 20 MHz. (a) Vpng, (b) idcCM , and (c) idcCM

zoomed.

content may be very low. This is an area for future research. Similar voltage transients can be

expected if an LG fault was applied to the negative dc rail, just in the opposite voltage direction.

The transient peaks in Fig. 6-6a and Fig. 6-6i are missed due to the lower sampling resolution of

the larger time capture.

The CM dc current (idcCM ) transient can be seen in Fig. 6-7b. This transient is also a function

of C and L. If the cable length increases, the transient will increase in period and decrease in

amplitude. The significance of the idcCM waveform is in a real implementation of power converters

in floating system. The LG voltage measurement may not be viable, leaving only the idcCM

transient for ground fault detection and location. For example, one could use high bandwidth

Rogowski coil spread through the network, paired with Wavelet analysis do help detection and

locate ground faults [63] [64], or other methods that require high-resolution simulation [65].

With LB-LMC’s 50 ns time step, this example can simulate the transient waveform with 177

data points. The resolution of the solver can be seen in Fig. 6-7c. This significantly increases the

resolution of the transient, allowing for accurate fault characterization of high-frequency transient,

and testing of fault detection and location algorithms for IT systems with short cable lengths.
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(a) (b) (c)

Figure 6-8: idcDM during LL fault on dc bus showing (a) whole current transient, (b) current transient at
fault inception comparing 50 ns resolution enabled by LB-LMC solver, and 1µs resolution if run on COTS,
and (c) zoomed.

6.2 Real Time Simulation of dc LL Fault with VSR Interfacing

Converter

Using the circuit shown in Fig. 6-1, an LL fault is applied on the dc bus. Analytical derivation

of VSR under LL faults can be found in [24, 66, 67]; Fig. 6-8a shows the idcDM transient during

an LL fault. The peak is very high and is a function of vdcDM at fault inception and impedance

in the fault path. In [26], a peak fault current of 280 A was reached with only a 17 Vdc bus.

In [24], LL faults were characterized for a 270 LVdc system for an aircraft applications. A peak

fault current of several kA was simulated. In [26], a peak fault current of 280 A was reached with

only a 17 Vdc bus, and in [27], a peak fault current of about 370 A was reached with a 20 Vdc

bus. In [36],a phase-controlled rectifier (PCR) provided power conversion for a 1 kV high power

shipboard distribution system. An LL fault was applied to test the fault detection, isolation, and

recovery scheme. The fault current reached a peak of 22 kA. For MVdc systems with a bus voltage

of tens of kV and fault impedance of mΩs, peak fault current of tens or hundreds of kA is possible.

Once the capacitor has discharged, the fault current will go through the anti-parallel diodes of the

VSR. Given that the magnitude of this current is 2-3 orders of magnitude greater than rated, most

likely, catastrophic failure will occur. For this reason, the VSR will most likely need to paired with

protection equipment containing current limiting or arresting capabilities to prevent such a failure.

The rise in fault current, di/dt, is a critical feature in LL faults, as coordination upstream and

downstream protection equipment must occur before the current exceeds the rating of the protection
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equipment. Therefore, it is vital to have sufficient resolution during this part of the fault transient

to enable fault characterization and coordination between different parts of the distribution system.

The di/dt is governed by vdcDM/L, where L is the fault path inductance. MVdc systems can have

tens of kV and µH of inductance, which leads to di/dt of hundreds to thousands of A/µs [34], [35].

For this simulation, vdcDM is around 12 kV at fault inception, and L is 30 µH. Fig. 6-8b shows

idcDM reaching 4 kA in 10 µs, or 400 A/µs.

For MVdc systems with such high di/dt, the protection equipment must detect, coordinate, and

begin to arrest the fault current on the µs time scale. Dynamics this is close to the simulation time

steps of COTS platforms can be insufficient resolution during the early design stage and can lead

to sub-optimal protection system design.

Fig. 6-8b shows idcdm at fault inception and compares the 50 ns time steps of LB-LMC with

1 µs sampling if executed on COTS platforms. Fig. 6-8c shows the critical information missed

between the two platforms.
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Chapter 7

Conclusion and Future Work

In this thesis, the gap between the requirements for real-time HiL simulation of dc protection design

for LL and LG fault and COTS real-time simulation is demonstrated. A solution is proposed that

implements the HiL in a NI FPGA-based platform using a LB-LMC solver. This same platform is

easily expanded to a CHiL as control and protective relaying functions are added. While this CHiL

concept may be overkill for a final implementation, it is extremely useful as a means of determining

the protective system timing, latency requirements, and will be applied to this purpose in future

research. A detailed analysis is performed of a ungrounded (or floating ground) system where the

ground reference is established through LG capacitances. This system includes a 1.5 MW, 12 kV

NPC VSR and dc side cabling. It is shown the parasitic capacitance of the cabling contributes

more to the system’s aggregate LG capacitance than the LG capacitance of the NPC VSR. It is

also shown that the time step of the real-time simulator is sufficient for simulation of the impacts of

limited cable lengths during LG fault scenarios. The LB-LMC solver enables fault characterization

of much short cable lengths when compared with COTS real-time solvers. This capability will

enable real-time simulation with realistic cable length of emerging MVdc and LVdc applications,

such as dc microgrids, hybrid ac/dc microgrids, electrified shipboard distribution systems and MEA.

Additionally, CM voltage and current behaviors are simulated in real-time for the 12 kV VSR

in the ungrounded system. It should be noted that any grounding system can be applied. The

ungrounded system presents a challenging corner case scenario for real-time simulation. As LG fault

are applied, the approach emulates overvoltage stresses and CM current transients upon sudden

zero ohm fault applications with a sufficiently high resolution of 50ns–a level currently not present
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in the COTS real-time simulators. Due to the scalibility of LB-LMC and the capability of achieving

FPGA-to-FPGA communications using SFP-based protocols, such as Aurora from Xilinx, in plug

and play systems, such as the NI PXIe, much larger PEC-based networks can be simulated without

sacrificing the resolution necessary for accurate fault behavior.

Future work will demonstrate the application of this approach to shipboard MVdc systems where

there are contiguous MVdc and LVdc buses interconnected through medium frequency transformer

isolated dc-dc converters. The proposed approach is applicable to expandable FPGA-based systems

with low timing latency FPGA-to-FPGA communications where a host of present-day communica-

tion protocols can be tested. Since the LB-LMC simulation engine is an entity on the FPGA, any

logic can be added on the same FPGA, allowing testing logic without simulation platform induced

sensor bandwidth limitations or communication delays. This approach allows for the deliberate in-

troduction of delays representing a realistic analog sensing chain and even processor induced delays

associated with COTS equipment to demonstrate the impacts of system resiliency. The resultant

CHiL systems will enable the development of new protective schemes for dc systems where high

resolution data-capture upon fault incidence and subsequent high speed data processing and com-

munications are necessary. Such systems will be required for ground fault location in dc systems

and discrimination between pulsed loading and fault conditions. Moreover, superior resolution dur-

ing LL fault is demonstrated which will enable the design and coordination of LL fault protection

schemes in dc systems.

With this platform now established, the work on dc protection design for emerging applications

can be accelerated from concept, to design, to validation, and ultimately, transition to industry.
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Appendix

A.1 Derivation of State-Space Equations for Half-Bridge with Anti-

parallel Diodes

This Appendix derives the state space equations for the Half Bridge Converter with anti-parallel

diodes. Fig. A-1 shows the schematic of the half-bridge module with anti-parallel diodes. This

assumes ideals switches with a fixed on-state resistance (RSW ). The diodes are also assumed to be

ideal with a fixed on-state of the same RSW value.

A.2 Upper Switch/Diode Conducting

When the upper switch is on, and the lower switch is off, the equivalent circuit is shown in Fig.

A-2. Starting off with KCL:

iRin − iCp − iL = 0

Figure A-1: Schematic of half bridge VSC with anti-parallel diodes
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Figure A-2: VSC half-bridge equivalent circuit with upper switch on

Plugging in voltages for iRin and iCp:

1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp − iL = 0

Solving for ˙vcp:

˙vcp =
1

RinCp

(
vp − vcp − vg

)
− 1

Cp
iL (A.1)

For the negative side, icn =iRin, so doing KVL:

0 = −vn + vRin + vcn + vg

0 = −vn + icnRin + vcn + vg

0 = −vn + Cn ˙vcnRin + vcn + vg

Solving for ˙vcn:

˙vcn =
1

CnRin

(
vn − vcn − vg

)
(A.2)

(A.2) is similar to (A.1), but without the inductor contribution term, since the inductor is connected

via the upper switch being off. Now doing KVL:

vg + vcp − vRsw − vL − vR − va = 0

Plugging in currents:

vg + vcp −Rsw · iL − L · ˙iL −R · iL − va = 0
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Figure A-3: VSC half-bridge equivalent circuit with lower switch on

And solving for ˙iL:

˙iL =
1

L

(
vg + vcp − va

)
−
(
Rsw +R

L

)
iL (A.3)

(A.1), (A.2), and (A.3) are the differential equations for this switch configuration. Putting this into

state space form:


˙vcp

˙vcn

˙iL

 =


− 1
RinCp

0 − 1
Cp

0 − 1
RinCp

0

1
L 0 −Rsw+R

L



vcp

vcn

iL

+


1

RinCp
0 − 1

RinCp
0

0 1
RinCp

− 1
RinCp

0

0 0 1
L − 1

L





vp

vn

vg

va


(A.4)

For Forward Euler integration x[n] = x[n − 1] + DT · ˙x[n− 1], where DT is the solver time step,

x[n] is the state space variables of the current time step, x[n− 1] is the state space variables of the

previous time step. The state space equations discretized with Forward Euler are then:

vcp[n] = vcp[n− 1] +DT

[
1

RinCp

(
vp[n− 1]− vcp[n− 1]− vg[n− 1]

)
− 1

Cp
iL[n− 1]

]
(A.5)

vcn[n] = vcn[n− 1] +DT

[
1

CnRin

(
vn[n− 1]− vcn[n− 1]− vg[n− 1]

)]
(A.6)

iL[n] = iL[n− 1] +DT

[
1

L

(
vg[n− 1] + vcp[n− 1]− va[n− 1]

)
−
(
Rsw +R

L

)
iL[n− 1]

]
(A.7)
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A.3 Lower Switch/Diode Conducting

When the upper switch is off, and the lower switch is on, the equivalent circuit is shown in Fig.

A-3. For this switching states, the state space equations are the essentially the same, just with

using lower side n components and voltages, instead of the upper side p. Thus, the state space

equations are:

˙vcp =
1

RinCp

(
vp − vcp − vg

)
(A.8)

˙vcn =
1

RinCn

(
vn − vcn − vg

)
− 1

Cn
iL (A.9)

˙iL =
1

L

(
vg + vcn − va

)
−
(
Rsw +R

L

)
iL (A.10)

Putting (A.8), (A.9), and (A.10) into state space form:


˙vcp

˙vcn

˙iL

 =


− 1
RinCp

0 0

0 − 1
RinCp

− 1
Cp

0 1
L −Rsw+R

L



vcp

vcn

iL

+


1

RinCp
0 − 1

RinCp
0

0 1
RinCp

− 1
RinCp

0

0 0 1
L − 1

L





vp

vn

vg

va


(A.11)

The discritized with Forward Euler:

vcp[n] = vcp[n− 1] +DT

[
1

RinCp

(
vp[n− 1]− vcp[n− 1]− vg[n− 1]

)]
(A.12)

vcn[n] = vcn[n− 1] +DT

[
1

RinCn

(
vn[n− 1]− vcn[n− 1]− vg[n− 1]

)
− 1

Cn
iL[n− 1]

]
(A.13)

iL[n] = iL[n− 1] +DT

[
1

L

(
vg[n− 1] + vcn[n− 1]− va[n− 1]

)
−
(
Rsw +R

L

)
iL[n− 1]

]
(A.14)

84



A.4 Both Switches/Diodes Conducting

A.4.1 Using v∗ at the midpoint

When both switches are on due to a ”shoot-through” conditions, or when both diodes are force

to conduct, such as during a Line-to-Line (LL) fault on the between vp and vn, the equivalent

circuit is shown in Fig. A-4.To simply the calculations we can use the midpoint, v∗, where v∗ =

1
2

(
vcp + vcn

)
+ vg − Rsw

2 iL. Finding the differential equation for ˙vcp:

0 = iin − icp − iRsw (A.15)

Capacitor current is:

icp = Cp ˙vcp (A.16)

Input current is:

iin =
vp − vcp − vg

Rin
(A.17)

Current though the on-state switch is:

iRsw =
vg + vcp − v∗

Rsw
(A.18)

Plugging in (A.16), (A.17), and (A.18) into (A.15).

0 =
vp − vcp − vg

Rin
− Cp ˙vcp −

vg + vcp − v∗
Rsw

(A.19)

Figure A-4: VSC half-bridge equivalent circuit with both switches on
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solving for ˙vcp:

˙vcp =
1

RinCp

(
vp − vcp − vg

)
− 1

RswCp

(
vg + vcp − v∗

)
(A.20)

Similarly for ˙vcn:

˙vcn =
1

RinCn

(
vn − vcn − vg

)
− 1

RswCn

(
vg + vcn − v∗

)
(A.21)

Assuming we know v∗, we can do KVL with the inductor part of the circuit:

0 = v∗ − vL − vR − va

Plugging in terms for inductor voltage, vL = L ˙iL, and resistor voltage, vr = RiL:

0 = v∗ − L ˙iL −RiL − va (A.22)

Solving for ˙iL:

˙iL =
1

L

(
v∗ −RiL − va

)
(A.23)

A.4.2 Without using v∗ at the midpoint

Right now it is not obvious to me how, v∗ is derived, so let come up with the state space equations

without it. For this, the subscript p denotes the ”positive side” currents, voltages, and parameters,

and n for the ”negative side.”

0 = iinp − icp − iRswp (A.24)

0 = iinn − icn − iRswn (A.25)

icp = Cp ˙vcp (A.26)

icn = Cn ˙vcn (A.27)
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iinp =
1

Rinp

(
vp − vcp − vg

)
(A.28)

iinn =
1

Rinn

(
vn − vcn − vg

)
(A.29)

iRswp =
1

Rswp

[
vcp + vg − (vL + vR + va)

]
(A.30)

iRswn =
1

Rswn

[
vcn + vg − (vL + vR + va)

]
(A.31)

iRswp =
1

Rswp

(
vcp + vg

)
− L

Rswp
˙iL −

R

Rswp
iL −

1

Rswp
va (A.32)

iRswn =
1

Rswn

(
vcn + vg

)
− L

Rswn
˙iL −

R

Rswn
iL −

1

Rswn
va (A.33)

iRswp + iRswn = iL (A.34)

We can add (A.32) and (A.33) to get inductor current, iL, (A.34). It is assumed that Rswp = Rswp,

and Rinp = Rinn.

iL =
1

Rsw

(
vcp + vcn

)
+

2

Rsw
vg −

2L

Rsw
˙iL −

2R

Rsw
iL −

2

Rsw
va (A.35)

0 =
1

Rsw

(
vcp + vcn

)
+

2

Rsw
vg −

2L

Rsw
˙iL −

2R

Rsw
iL − iL −

2

Rsw
va (A.36)

0 =
1

Rsw

(
vcp + vcn

)
+

2

Rsw
vg −

2L

Rsw
˙iL −

(
2R

Rsw
− 1

)
iL −

2

Rsw
va (A.37)

2L

Rsw
˙iL =

1

Rsw

(
vcp + vcn

)
+

2

Rsw
vg −

(
2R

Rsw
− 1

)
iL −

2

Rsw
va (A.38)

L

Rsw
˙iL =

1

2Rsw

(
vcp + vcn

)
+

1

Rsw
vg −

(
R

Rsw
− 1

2

)
iL −

1

Rsw
va (A.39)

˙iL =
1

2L

(
vcp + vcn

)
+

1

L
vg −

(
R

L
− Rsw

2L

)
iL −

1

L
va (A.40)

Plugging in v∗ into (A.23) gives

˙iL =
1

L

(
v∗ −RiL − va

)
v∗ =

1

2

(
vcp + vcn

)
+ vg −

Rsw
2
iL

˙iL =
1

L

(
1

2

(
vcp + vcn

)
+ vg −

Rsw
2
iL −RiL − va

)
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Which is the same as (A.40). For the capacitor voltage derivative equations, we can plug in (A.26),

(A.28), and (A.32) into (A.24), and (A.27), (A.29), and (A.33) into (A.25):

0 =
1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp −

[
1

Rsw

(
vcp + vg

)
− L

Rsw
˙iL −

R

Rsw
iL −

1

Rsw
va

]
(A.41)

0 =
1

Rin

(
vn − vcn − vg

)
− Cn ˙vcn −

[
1

Rsw

(
vcn + vg

)
− L

Rsw
˙iL +

R

Rsw
iL −

1

Rsw
va

]
(A.42)

0 =
1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp −

1

Rsw

(
vcp + vg

)
+

L

Rsw
˙iL +

R

Rsw
iL +

1

Rsw
va (A.43)

0 =
1

Rin

(
vn − vcn − vg

)
− Cn ˙vcn −

1

Rsw

(
vcn + vg

)
+

L

Rsw
˙iL +

R

Rsw
iL +

1

Rsw
va (A.44)

Now, we should be able to solve for ˙vcp, and ˙vcn, expect we have another derivative term, L/Rsw · ˙iL,

in the equation. To get rid of this term, we can plug in (A.39) into both (A.43), and (A.44) and

simplifing.

0 =
1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp −

1

Rsw

(
vcp + vg

)
+

1

2Rsw

(
vcp + vcn

)
+

1

Rsw
vg (A.45)

−
(

R

Rsw
− 1

2

)
iL −

1

Rsw
va +

R

Rsw
iL +

1

Rsw
va (A.46)

0 =
1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp −

1

Rsw
vcp −

1

Rsw
vg +

1

2Rsw
vcp +

1

2Rsw
vcn +

1

Rsw
vg (A.47)

− R

Rsw
iL +

1

2
iL −

1

Rsw
va +

R

Rsw
iL +

1

Rsw
va (A.48)

0 =
1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp −

1

2Rsw
vcp +

1

2Rsw
vcn +

1

2
iL (A.49)

0 =
1

Rin

(
vp − vcp − vg

)
− Cp ˙vcp +

1

Rsw

[
1

2

(
− vcp + vcn

)
+
Rsw

2
iL

]
(A.50)

Solving for ˙vcp:

˙vcp =
1

RinCp

(
vp − vcp − vg

)
+

1

RswCp

[
1

2

(
− vcp + vcn

)
+
Rsw

2
iL

]
(A.51)

˙vcp =
1

RinCp

(
vp − vcp − vg

)
+

1

2RswCp

(
− vcp + vcn

)
+

1

2Cp
iL (A.52)

˙vcn =
1

RinCn

(
vn − vcn − vg

)
+

1

2RswCn

(
vcp − vcn

)
+

1

2Cn
iL (A.53)

88



Figure A-5: VSC half-bridge equivalent circuit with both switches off

A.5 Both Switches/Diodes Off

Fig. A-5 shows the equivalent circuit for when both switches are off. An interesting questions is

what is the voltage between a half bridge when both switches are off? With both switches off, there

should be not current through the inductor, so the voltage midpoint of the leg would be equal to

va. Also, with no current flowing through inductor, the di/dt is zero as well. The equations for

capacitor voltage are the same for the open switches during upper or lower switch commutation,

as in (A.2), and (A.8).

A.6 VSR Example using Command Line Interface Tool

Below the code used for the command line interface tool. The tool takes the inputted parameters

and netlist and generators the circuit in the LB-LMC simulation engine using C++ code. The tool

and code generation library are available at [68].

Listing A.1: VSR netlist file used for the CLI tool

1 %12 kV Voltage Source rectifier VSR03d with LL and LG fault

2 %LCL DM and LC CM filter.

3

4 #name VSR03d_anti_parallel_diodes_dt50ns_10uH

5

6 %Time Step

7 #const DT 50.0e-9

8

9 %Feeder cable

10 #const RF 0.198

11 #const LF 1.8e-3

12

13 %Common Mode Filter
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14 #const LCM 60.0e-3

15 #const CCM 0.1e-6

16 #const LCM_and_LDM1 61.01494e-3

17

18 %Differential Mode Filter

19 #const LDM1 0.95494e-3

20 #const LDM2 5.6e-3

21 #const CDM 16.652e-6

22 #const RDSERIES 55.1822

23

24 %Voltage Source Rectifier

25 #const LDM2_ESR 0.001

26 #const CDC2 20e-3

27 #const DiodeThresholdVoltage 1.5

28

29 %DC Bus

30 #const LCABLE 10.0e-6

31 #const RLOAD 100.0

32

33 %Floating Ground

34 #const CNG 0.1e-6

35 #const RNG 10.0e3

36 #const COG 0.1e-6

37 #const ROG 10.0e3

38

39 %Fault Switches

40 #const LFAULT_1uH 1.0e-6

41 #const LFAULT_10uH 10.0e-6

42 #const RFAULT_1mOhms 1.0e-3

43

44 %High resistance path to ground

45 #const ROPEN 100.0 e3

46

47 %%%%%%%%%%%%%%%%%%%%%

48 %%% Build Netlist %%%

49 %%%%%%%%%%%%%%%%%%%%%

50

51 %AC Voltage Inputs with feeder Resistor

52 FunctionalVoltageSource va (RF) {2,1}

53 FunctionalVoltageSource vb (RF) {4,1}

54 FunctionalVoltageSource vc (RF) {6,1}

55

56 %Feeder cable inductance

57 Inductor lfa (DT, LF) {2,3}

58 Inductor lfb (DT, LF) {4,5}

59 Inductor lfc (DT, LF) {6,7}

60

61 %Common Mode Cap filter

62 Capacitor ccma (DT , CCM) {3,0}

63 Capacitor ccmb (DT , CCM) {5,0}

64 Capacitor ccmc (DT , CCM) {7,0}

65

66 %Common Mode Inductor Filter

67 MutualInductance3 lcm_ldm1 (DT, LCM_and_LDM1 , LCM_and_LDM1 ,

68 LCM_and_LDM1 , LCM , LCM , LCM) {3, 8, 5, 9, 7, 10}

69

70 %Resistor to Ground to prevent solver instability

71 Resistor rcmopena (ROPEN) {8, 0}

72 Resistor rcmopenb (ROPEN) {9, 0}
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73 Resistor rcmopenc (ROPEN) {10, 0}

74

75 %Differential Model Filters

76 Capacitor cdmab (DT , CDM) {8, 11}

77 Capacitor cdmbc (DT , CDM) {9, 12}

78 Capacitor cdmca (DT , CDM) {10, 13}

79 Resistor rdsab (RDSERIES) {11, 9}

80 Resistor rdsbc (RDSERIES) {12, 10}

81 Resistor rdsca (RDSERIES) {13, 8}

82

83 %3 phase 2 level converter

84 BridgeConverter_3LegIdealSwitchesAntiParallelDiodes VSR (DT, CDC2 , LDM2 ,

85 LDM2_ESR , DiodeThresholdVoltage) {15, 14, 18, 8, 9, 10}

86

87 %Cabling

88 Inductor lcablep (DT, LCABLE) {15, 16}

89 Inductor lcablen (DT, LCABLE) {18, 19}

90

91 %Resistive Load

92 Resistor rloadp (RLOAD) {16, 17}

93 Resistor rloadn (RLOAD) {19, 17}

94

95 %Floating Ground Connection Points

96 Capacitor cng (DT , CNG) {1,0}

97 Resistor rng (RNG) {1, 0}

98

99 Capacitor cog (DT , COG) {14,0}

100 Resistor rog (ROG) {14, 0}

101

102 Capacitor cog2 (DT , COG) {17,0}

103 Resistor rog2 (ROG) {17, 0}

104

105 %Fault Switches

106 SeriesRLIdealSwitch ll_fault (DT , LFAULT_10uH , RFAULT_1mOhms) {16, 19}

107 SeriesRLIdealSwitch lgp_fault (DT , LFAULT_10uH , RFAULT_1mOhms) {16, 0}

108 SeriesRLIdealSwitch lgn_fault (DT , LFAULT_10uH , RFAULT_1mOhms) {19, 0}

A.7 Xivado HLS directives

Listing A.2: Example of HLS directives and port signal adjustments for LabVIEW FPGA CLIP core

1 #include "vsr_FullSwitching_solver_core.hpp"

2

3 void vsr_FullSwitching_solver_core

4 (

5 // outputs

6 port_real x_out [19],

7 port_real* l_current_lfa ,

8 port_real* l_current_lfb ,

9 port_real* l_current_lfc ,

10 port_real& positive_capacitor_voltage_VSR ,

11 port_real& negative_capacitor_voltage_VSR ,

12 port_real& leg_a_inductor_current_VSR ,

13 port_real& leg_b_inductor_current_VSR ,

14 port_real& leg_c_inductor_current_VSR ,

15 port_real* l_current_lcablep ,
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16 port_real* l_current_lcablen ,

17 port_real* l_current_ll_fault ,

18 port_real* l_current_lgp_fault ,

19 port_real* l_current_lgn_fault ,

20

21 // inputs

22 port_real v_in_va ,

23 port_real v_in_vb ,

24 port_real v_in_vc ,

25 bool switch_gates_VSR [6],

26 bool sw_ll_fault ,

27 bool sw_lgp_fault ,

28 bool sw_lgn_fault

29 )

30 {

31

32 // Xilinx Vivado HLS Settings

33

34 // partition array ports to be like individual element ports;

35 //to avoid ap_memory interface which has undesired latency to read/write

36 #pragma HLS array_partition variable=x_out dim=0

37 #pragma HLS array_partition variable=sw_ctrl_converter1 dim=0

38

39 // inline all code recursively to remove logic boundaries for optimization

40 #pragma HLS inline recursive

41

42 //set execution latency to be 0 clock cycles (execute in single cycle)

43 #pragma HLS latency min=0 max=0

44

45 // =============================================================================

46 // internal output signals

47

48 real x_out_inner [19];

49 real l_current_lfa_inner;

50 real l_current_lfb_inner;

51 real l_current_lfc_inner;

52 real positive_capacitor_voltage_VSR_inner;

53 real negative_capacitor_voltage_VSR_inner;

54 real leg_a_inductor_current_VSR_inner;

55 real leg_b_inductor_current_VSR_inner;

56 real leg_c_inductor_current_VSR_inner;

57 real l_current_lcablep_inner;

58 real l_current_lcablen_inner;

59 real l_current_ll_fault_inner;

60 real l_current_lgp_fault_inner;

61 real l_current_lgn_fault_inner;

62

63

64 // =============================================================================

65 // update inner inputs from external input ports

66

67 real v_in_va_inner = convertFromPortReal(v_in_va );

68 real v_in_vb_inner = convertFromPortReal(v_in_vb );

69 real v_in_vc_inner = convertFromPortReal(v_in_vc );

70 //bool inputs are left alone

71

72 // =============================================================================

73 // update simulation solver

74
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75 VSR_FullSwitching_50ns_LBLMC_SimEngine_solver <0,real >

76 (

77 x_out_inner ,

78 &l_current_lfa_inner ,

79 &l_current_lfb_inner ,

80 &l_current_lfc_inner ,

81 positive_capacitor_voltage_VSR_inner ,

82 negative_capacitor_voltage_VSR_inner ,

83 leg_a_inductor_current_VSR_inner ,

84 leg_b_inductor_current_VSR_inner ,

85 leg_c_inductor_current_VSR_inner ,

86 &l_current_lcablep_inner ,

87 &l_current_lcablen_inner ,

88 &l_current_ll_fault_inner ,

89 &l_current_lgp_fault_inner ,

90 &l_current_lgn_fault_inner ,

91 v_in_va_inner ,

92 v_in_vb_inner ,

93 v_in_vc_inner ,

94 switch_gates_VSR ,

95 sw_ll_fault ,

96 sw_lgp_fault ,

97 sw_lgn_fault

98 );

99

100 // =============================================================================

101 // update external output ports

102

103 for(int i = 0; i < 19; i++)

104 {

105 #pragma HLS unroll

106 x_out[i] = convertToPortReal(x_out_inner[i]);

107 }

108

109 *l_current_lfa = convertToPortReal(l_current_lfa_inner );

110 *l_current_lfb = convertToPortReal(l_current_lfb_inner );

111 *l_current_lfc = convertToPortReal(l_current_lfc_inner );

112 positive_capacitor_voltage_VSR =

113 convertToPortReal(positive_capacitor_voltage_VSR_inner );

114 negative_capacitor_voltage_VSR =

115 convertToPortReal(negative_capacitor_voltage_VSR_inner );

116 leg_a_inductor_current_VSR = convertToPortReal(leg_a_inductor_current_VSR_inner );

117 leg_b_inductor_current_VSR = convertToPortReal(leg_b_inductor_current_VSR_inner );

118 leg_c_inductor_current_VSR = convertToPortReal(leg_c_inductor_current_VSR_inner );

119 *l_current_lcablep = convertToPortReal(l_current_lcablep_inner );

120 *l_current_lcablen = convertToPortReal(l_current_lcablen_inner );

121 *l_current_ll_fault = convertToPortReal(l_current_ll_fault_inner );

122 *l_current_lgp_fault = convertToPortReal(l_current_lgp_fault_inner );

123 *l_current_lgn_fault = convertToPortReal(l_current_lgn_fault_inner );
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