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ABSTRACT 

MEDICAL IMAGE SEGMENTATION WITH DEEP LEARNING 

by 

Chuanbo Wang 

 

The University of Wisconsin-Milwaukee, 2016  

Under the Supervision of Zeyun Yu 

 

 Medical imaging is the technique and process of creating visual representations 

of the body of a patient for clinical analysis and medical intervention. Healthcare 

professionals rely heavily on medical images and image documentation for proper 

diagnosis and treatment. However, manual interpretation and analysis of medical 

images is time-consuming, and inaccurate when the interpreter is not well-trained. 

Fully automatic segmentation of the region of interest from medical images have 

been researched for years to enhance the efficiency and accuracy of understanding 

such images. With the advance of deep learning, various neural network models 

have gained great success in semantic segmentation and spark research interests in 

medical image segmentation using deep learning. We propose two convolutional 

frameworks to segment tissues from different types of medical images. 

Comprehensive experiments and analyses are conducted on various segmentation 

neural networks to demonstrate the effectiveness of our methods. Furthermore, 

datasets built for training our networks and full implementations are published. 
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Chapter 1: Introduction 

 For accurate diagnosis and proper treatment planning, healthcare professionals 

rely heavily on medical images, including computed tomography (CT) images, 

magnetic resonance imaging (MRI) scans, and natural images taken in clinical settings. 

Such images are further measured and analyzed to provide quantitative parameters 

in the diagnosis and treatment. Traditionally, this process is performed manually by 

specialists. However, this process is tedious and time-consuming given the large 

number of images involved for each patient. Furthermore, the shortage of medical 

resources and clinicians in primary and rural healthcare settings decreases the access 

and quality of care to millions of Americans. Consequently, research interests in 

automatic segmentation and measurement from medical images were captured, 

especially in the fields of intervertebral discs segmentation from 3D MRI scans and 

wound segmentation from 2D images. Such studies can be roughly categorized into 

two groups: traditional methods and deep learning methods. 

 Studies in the first group focus on combining computer vision techniques and 

traditional machine learning approaches. These studies apply manually designed 

feature extraction to build a dataset that is later used to support machine learning 

algorithms. [1] proposed an algorithm to segment the wound region from 2D images. 

49 features are extracted from a wound image using K-means clustering, edge 

detection, thresholding, and region growing in both grayscale and RGB. These 

features are filtered and prepared into a feature vector that is used to train a Multi-



2 

 

Layer Perceptron (MLP) and a Radial Basis Function (RBF) neural network to identify 

the region of a chronic wound. [2] proposed an intervertebral discs (IVD) segmentation 

method applied to chest MRI scans. The method solves an energy minimization 

problem by graph-cuts algorithms where the graph edges are divided into two types: 

terminal edges that connect the voxels and non-terminal edges that connect neighbor 

voxels. [3] proposed to generate a Red-Yellow-Black-White (RYKW) probability map 

of an input image with a modified hue-saturation-value (HSV) model. This map then 

guides the region of interest (ROI) segmentation process using either optimal 

thresholding or region growing. [4] and [5] applied an atlas-based method that first 

proposes atlas candidates as initialization and then utilize label fusion to combine IVD 

atlases to generate the segmentation mask. However, to generate the initialization, [4] 

registers IVD atlases to the localization obtained by integral channel features and a 

graphical parts model. Whereas [5] uses data-driven regression to create a probability 

map, which further defines an ROI as the initialization for segmentation. [6] 

demonstrated a wound segmentation method using an energy-minimizing discrete 

dynamic contour algorithm applied to the saturation plane of the image in its HSV color 

model. The wound area is then calculated from a flood fill inside the enclosed contour. 

Another regression-based IVD segmentation method [7] was proposed to address the 

segmentation of multiple anatomic structures in multiple anatomical planes from 

multiple imaging modalities with a sparse kernel machines-based regression. A 2D 

segmentation method proposed in [8] applied an Independent Component Analysis 
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(ICA) algorithm to the pre-processed RGB images to generate hemoglobin-based 

images, which are used as input of K-means clustering to segment the granulation 

tissue from the wound images. These segmented areas are utilized as an assessment 

of the early stages of ulcer healing by detecting the growth of granulation tissue on 

ulcer bed. [9] proposed a similar system to segment the burn wounds from 2D images. 

Cr-Transformation and Luv-Transformation are applied to the input images to remove 

the background and highlight the wound region. The transformed images are 

segmented with a pixel-wise Fuzzy C-mean Clustering (FCM) algorithm. [10] proposes 

an automatic method using a conditional random field (CRF) based on super-voxels 

generated from a variant of simple linear iterative clustering (SLIC). A support vector 

machine (SVM) is then used to perform super-voxels classification, which is later 

integrated into the potential function of the CRF for final segmentation using graph 

cuts. [11] builds an automatic IVD segmentation framework that localizes the vertebral 

bodies using regression-forests-based landmark localization and optimizes the 

landmarks by a high-level Markov Random Field (MRF) model of global configurations. 

The IVD segmentation mask is then generated from an image processing pipeline that 

optimizes the convex geodesic active contour based on the geometrical similarity to 

IVDs. In [12], IVD segmentation is performed by iteratively deforming the 

corresponding average disc model towards the edge of each IVD, in which edge 

voxels are defined by a 26-dimension feature vector including intensity, gradient 

orientation and magnitude, self-similarity context (SSC) descriptor, and Canny edge 
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descriptor, etc. This group of methods suffers from at least one of the following 

limitations: 1) As in many traditional computer vision systems, the computation 

complexity is high in the segmentation pipeline, 2) They depend on manually tuned 

parameters and empirically handcrafted features which does not guarantee an optimal 

result. Additionally, they are not immune to severe pathologies and rare cases, which 

are very impractical from a clinical perspective, and 3) The performance is evaluated 

on a small biased dataset. 

 Since the achievements AlexNet [13] accomplished in the ImageNet large scale 

visual recognition challenge [14] in 2012, the success of deep learning in the domain 

of computer vision sparked interests in semantic segmentation [15] using deep 

convolutional neural networks (CNN) [16]. Traditional computer vision and machine 

learning methods typically make decisions based on feature extraction. Thus, to find 

the segmentation mask, one must guess which wound features are important and then 

design sophisticated algorithms that capture these features. However, in CNN, feature 

extraction and decision making are integrated. The features are extracted by 

convolutional kernels and their importance is determined by the network during the 

training process. A typical CNN architecture consists of convolutional layers and a fully 

connected layer as the output layer, which requires fixed-size inputs. One successful 

variant of CNN is fully convolutional neural networks (FCN) [17]. Networks of this type 

are composed of convolutional layers without any fully connected layer at the end of 

the network. This enables the network to take arbitrary input sizes and prevent the 
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loss of spatial information caused by the fully connected layers in CNNs. Several FCN-

based methods have been proposed to solve the wound segmentation problem. [18] 

estimated the wound area by segmenting wounds with the vanilla FCN architecture 

[17]. With time-series data consisting of the estimated wound areas and corresponding 

images, wound healing progress is predicted using a Gaussian process regression 

function model. However, the mean Dice accuracy of the segmentation is only 

evaluated to be 64.2%. [19] proposed to employ the FCN-16 architecture on the wound 

images in a pixel-wise manner that each pixel of an image is predicted to which class 

it belongs. The segmentation result is simply derived from the pixels classified as a 

wound. By testing different FCN architectures, they are able to achieve a Dice 

coefficient of 79.4% on their dataset. However, the network’s segmentation accuracy 

is limited in distinguishing small wounds and wounds with irregular borders as the 

tendency is to draw smooth contours. [20] proposed a new FCN architecture that 

replaces the decoder of the vanilla FCN with a skip-layer concatenation up-sampled 

with bilinear interpolation. A pixel-wise softmax layer is appended to the end of the 

network to produce a probability map, which is post-processed to be the final 

segmentation. A dice accuracy of 91.6% is achieved on their dataset with 950 images 

taken under an uncontrolled lighting environment with a complex background. 

However, images in their dataset are semi-automatically annotated using a watershed 

algorithm. This means that the deep learning model is learning how the watershed 

algorithm labels wounds as opposed to human specialists.  
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FCNs are also adopted to solve the IVD segmentation problem. [21] extends the 

2D FCN into a 3D version with end-to-end learning and inference. [22] proposes a 3D 

multi-scale FCN that expands the typical single-path FCN to three pathways where 

each pathway takes volumetric regions on a different scale. Features from three 

pathways are then concatenated to generate a probability map, from which the final 

3D segmentation mask is generated by simple thresholding. More recently, a modified 

FCN, U-Net [45] and its variants have outperformed the state-of-art in many 

biomedical image segmentation tasks. The pertinacious architecture and affluent data 

augmentation allow U-Net to quickly converge to the optimal model from a limited 

number of annotated samples. Comparing to CNN and vanilla FCN, U-Net uses skip 

connections between contraction and expansion and a concatenation operator instead 

of a sum, which could provide more local information to global information while 

expansion. Moreover, U-Net is symmetric such that feature maps in an expansive path 

facilitate to transfer more information. U-Net has been widely applied to the IVD 

segmentation problem. [23] applies a conventional 3D U-Net [24] on the IVD dataset 

provided by the 3rd MICCAI Challenge [25] of Intervertebral Discs Localization and 

Segmentation. [26] designs a new network architecture based on U-Net, boundary 

specific U-Net (BSU). The architecture consists of repeated application of BSU pooling 

layers and residual blocks, following the idea of residual neural networks (RNN). [27] 

extends the conventional U-Net by adding three identical pathways in the contracting 

path to process the multi-modality channels of the input. These pathways are 
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interconnected with hyper-dense connections to better model relationships between 

different modalities in the multi-modal input images. [28] proposes an IVD 

segmentation pipeline that first segments the vertebral bodies using a conventional 

2D U-Net to find the spine curve and IVD centers. Transverse 2D images and sagittal 

3D patches are cropped around the centers to train an RNN fusing both 2D and 3D 

convolutions. However, the effectiveness of data augmentation and multi-modality 

input images are not fully explored in these works. 

To better explore the capacity of deep learning on the wound segmentation and 

IVD segmentation problem, we propose two frameworks to automatically segment ROI 

from medical images. The first framework is built above a 2D network, MobileNetsV2 

[29], to tackle the wound segmentation problem. This network is light-weight and 

computationally efficient since significantly fewer parameters are used during the 

training process. We built a large dataset of wound images with segmentation 

annotations done by wound specialists. This is by far the largest dataset focused on 

wound segmentation to the best of our knowledge. The second framework proposed 

is built upon a 3D network, 3D U-Net [24], to segment IVD from MRI scans. We 

adopted a two-stage pipeline: localizing the IVDs followed by segmenting IVDs based 

on the localization. To examine the effectiveness of different combinations of 

modalities, various modalities are analyzed with respect to image properties of the 

input data based on our analysis in the conducted experiments. 
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Chapter 2: Dataset 

2.1 The Wound Dataset 

2.1.1 Dataset Construction 

 There is currently no public dataset large enough for training deep-learning-based 

models for wound segmentation. To explore the effectiveness of wound segmentation 

using deep learning models, we collaborated with the Advancing the Zenith of 

Healthcare (AZH) Wound and Vascular Center, Milwaukee, WI. Our chronic wound 

dataset was collected over 2 years at the center and includes 1,109 foot ulcer images 

taken from 889 patients during multiple clinical visits. The raw images were taken by 

digital single-lens reflex cameras and iPads under uncontrolled illumination conditions, 

with various backgrounds. Fig. 1 shows some sample images in our dataset. 

The raw images collected are of various sizes and cannot be fed into our deep 

learning model directly since our model requires fixed-size input images. To unify the 

size of images in our dataset, we first localize the wound by placing bounding boxes 

around the wound using an object localization model we trained de novo, YOLOv3 

[31]. Our localization dataset contains 1,010 images, which are also collected from the 

AZH Wound and Vascular Center. We augmented the images and built a training set 

Figure 1. An illustration of images in our dataset. The first row contains the raw images collected. The 

second row consists of segmentation mask annotations we create with the AZH wound and vascular 

center. 
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containing 3645 images and a testing set containing 405 images. For training our 

model we have used LabelImg [32] to manually label all the data (both for training and 

testing). The YOLO format has been used for image labeling. The model has been 

trained with a batch size of 8 for 273 epochs. With an intersection over union (IoU) 

rate of 0.5 and non-maximum suppression of 1.00, we get the mean Average Precision 

(mAP) value of 0.939. In the next step, image patches are cropped based on the 

bounding boxes result from the localization model. We unify the image size (224 pixels 

by 224 pixels) by applying zero-padding to these images, which are regarded in our 

dataset data points. 

2.1.2 Data Annotation 

 During training, a deep learning model is learning the annotations of the training 

dataset. Thus, the quality of annotations is essential. Automatic annotation generated 

with computer vision algorithms is not ideal when deep learning models are trained to 

learn how human experts recognize the wound region. In our dataset, the images were 

manually annotated with segmentation masks that were further reviewed and verified 

by wound care specialists from the collaborating wound clinic. Initially only foot ulcer 

images were annotated and included in the dataset as these wounds tend to be 

smaller than other types of chronic wounds, which makes it easier and less time-

consuming to manually annotate the pixel-wise segmentation masks. In the future we 

plan to create larger image libraries to include all types of chronic wounds, such as 

venous leg ulcers, pressure ulcers, and surgery wounds as well as non-wound 

reference images. The AZH Wound and Vascular Center, Milwaukee, WI, had 

consented to make our dataset publicly available. 
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2.2 The IVD Dataset 

 The IVD dataset [30], by courtesy of Prof. Guoyan Zheng from the University of 

Bern, consists of 8 sets of 3D multi-modality MRI spine images collected from 8 

patients in 2 different stages of prolonged bed test. Each spine image contains at least 

7 IVDs of the lower spine (T1-L5) and four modalities following Dixon protocol: in-

phase (inn), opposed-phase (opp), fat and water (wat) images. In detail, water images 

are spin echo images acquired from water signals. fat images are spin echo images 

acquired from water signals. In-phase images are the sum of water images and fat 

images. Opposed-phase images are the difference between water images and fat 

images. In total, there are 32 3D single-modality volumes and 66 IVDs. For each IVD, 

segmentation ground truth is composed of binary masks manually labeled by three 

trained raters under the guidance of clinicians. 

 

Figure 2. The encoder-decoder architecture of MobilenetV2. 
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Chapter 3: Methods 

3.1 Wound Segmentation 

In this section we describe our method with the architecture of the deep learning 

model for wound segmentation. The transfer learning used during the training of our 

model and the post-processing methods including hole filling and removal of small 

noises are also described. 

3.1.1 Model Architecture Overview 

 A convolutional neural network (CNN), MobileNetV2 [29], is adopted to segment 

the wound from the images. Compared with conventional CNNs, this network 

substitutes the fundamental convolutional layers with depth-wise separable 

convolutional layers [33] where each layer can be separated into a depth-wise 

convolution layer and a point-wise convolution layer. A depth-wise convolution 

performs lightweight filtering by applying a convolutional filter per input channel. A 

point-wise convolution is a 1 × 1 convolution responsible for building new features 

through linear combinations of the input channels. This substitution reduces the 

computational cost compared to traditional convolution layers by almost a factor of k2 

where k is the convolutional kernel size. Thus, depth-wise separable convolutions are 

much more computationally efficient than conventional convolutions suitable for 

mobile or embedded applications where computing resource is limited. For example, 

the mobility of MobileNetV2 could benefit medical professionals and patients by 
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allowing instant wound segmentation and wound area measurement immediately after 

the photo is taken using mobile devices like smartphones and tablets. An example of 

a depth-wise separable convolution layer is shown in Figure 3(c), compared to a 

traditional convolutional layer shown in Figure 3(b). 

The model has an encoder-decoder architecture as shown in Figure 2. The 

encoder is built by repeatedly applying the depth-separable convolution block (marked 

with diagonal lines in Figure 2). Each block, illustrated in Figure 3(a), consists of six 

layers: a 3 × 3 depth-wise convolutional layer followed by batch normalization and 

rectified linear unit (Relu) activation [34], and a 1 × 1 point-wise convolution layer 

followed again by batch normalization and Relu activation. To be more specific, Relu6 

(a) (b) 

(c) 

Figure 3. (a) A depth-separable convolution block. The block contains a 3 × 3 depth-wise 

convolutional layer and a 1 × 1 point-wise convolution layer. Each convolutional layer is followed by 

batch normalization and Relu6 activation. (b) An example of a convolution layer with a 3 × 3 × 3 

kernel. (c) An example of a depth-wise separable convolution layer equivalent to (b). 
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[35] was used as the activation function. In the decoder, shown in Figure 2, the 

encoded features are captured in multiscale with a spatial pyramid pooling block, and 

then concatenated with higher-level features generated from a pooling layer and a 

bilinear up-sampling layer. After the concatenation, we apply a few 3 × 3 convolutions 

to refine the features followed by another simple bilinear up-sampling by a factor of 4 

to generate the final output. A batch normalization layer is inserted into each bottleneck 

block and a dropout layer is inserted right before the output layer. In MobileNetV2, a 

width multiplier α is introduced to deal with various dimensions of input images. we let 

α = 1 thus the input image size is set to 224 pixels × 224 pixels in our model 

3.1.2 Transfer Learning 

 To make the training more efficient, we used transfer learning for our deep learning 

model. Instead of randomly initializing the weights in our model, the MobileNetV2 

model, pre-trained on the Pascal VOC segmentation dataset [36] is loaded before the 

model is trained on our dataset. Transfer learning with the pre-trained model is 

beneficial to the training process in the sense that the weights converge faster and 

better. 

3.1.3 Post-processing 

 Post Processing, including hole filling and removal of small regions, is performed 

to improve the segmentation results as shown in Figure 4. We notice that abnormal 

tissue like fibrinous tissue within chronic wounds could be identified as non-wound and 
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cause holes in the segmented wound regions. Such holes are detected by finding 

small connected components in the segmentation results and filled to improve the true 

positive rate using connected component labeling (CCL) [37]. The small noises are 

removed in the same way. The images in the dataset are cropped from the raw image 

for each wound. So, we simply remove noises in the results by removing the connected 

component small enough based on adaptive thresholds. To be more specific, a 

connected region is removed when the number of pixels within the region is less than 

a threshold, which is adaptively calculated based on the total number of pixels 

segmented as wound pixels in the image. 

Figure 4. An illustration of the segmentation result and the post processing method. The first row illustrates 

images in the testing dataset. The second row shows the segmentation results predicted by our model 

without any post processing. The holes are marked with red boxes and the noises are marked with yellow 

boxes. The third row shows the final segmentation masks generated by the post processing method. 
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3.2 IVD Segmentation 

 In our proposed 3D method, a two-stage coarse-to-fine strategy is used to tackle 

the segmentation problem directly on 3D volumes. The general workflow is illustrated 

in Fig. 3. In the first stage, each IVD is localized and a voxel is assigned as its center. 

These centers are used to divide the volume into small 3D patches, each of which 

contains a single IVD. In the second stage, a multimodal deep learning model is trained 

on the patches for precise segmentation.  

Medical images are often complex and noisy in nature where ROI is relatively 

small comparing to the background. We first localize the IVDs in the image and then 

crop 3D patches based on the localization. This not only gets rid of some background 

but simplifies the problem for the segmentation stage and reduces the computational 

cost as well. It has been shown that 3D U-Net achieves the best localization result but 

not the best segmentation result [25] We use this two-stage strategy to work around 

this problem. In the end, post-processing is performed to generate the final 

segmentation. 

3.2.1 Localization Network 

 For the localization of IVDs, we train a localization network, which is a conventional 

3D U-net, on the IVD dataset to roughly locate the IVDs from the volume. From this 

segmentation, we have a good estimate of IVD centers by finding the center of each 

connected component after removing small regions. 
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From our observation, IVDs are generally sparsely located in 3D space with a 

distance from each other and share a common disc-like morphological profile. Thus, 

we simply put a 35*35*25 bounding box around each estimated center to crop a 3D 

patch. Then we zero-pad the patches to 36*36*28 so they can be nicely fed into the 

segmentation network in the next stage described below. 

3.2.2 Segmentation Network 

 For IVD segmentation from the 3D patches, we employ a modified 3D U-Net 

architecture that essentially looks at IVD segmentation as a regression problem. This 

network takes 3D patches as input and predicts 3D patches where the intensity value 

on each voxel stands for how confident is the network in the voxel belonging to an IVD. 

Figure 5 presents an overview of the architecture of our 3D segmentation network. 

Each step in the contracting path consists of repeated application of two 3x3x3 

unpadded 3D convolutions followed by a Relu. A dropout operation is inserted between 

Figure 5. An overview of the model architecture of the 3D segmentation network 
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the two convolutions to reduce the dependence on the training dataset and increase 

the accuracy. A dropout rate of 0.2 is used following the analysis [38] on the dropout 

effect in CNN. We also apply batch normalization to speed up and stabilize the training 

process and a 2x2x2 max pooling layer with stride 2 for down-sampling after every two 

convolutional layers. At each down-sampling step, we double the number of feature 

channels. Every step in the expansive path consists of an up-sampling of the feature 

map followed by a 2x2x2 up convolution that halves the number of feature channels, 

a concatenation with the corresponding feature map from the contracting path, and 

two 3x3x3 convolutions, each followed by a Relu. The output layer is a 1x1x1 

convolution layer with sigmoid activation used to generate the segmentation mask for 

each modality. In total the network has 12 convolutional layers and 1.4 million 

parameters. 

3.2.3 Post-processing 

 The prediction from the segmentation stage contains 3D patches with continuous 

voxel intensity values that representing how confident is the network in the voxel 

belonging to an IVD. The final segmentation mask for each patch is obtained by binary 

thresholding with a threshold of 0.5, which means voxels that are predicted more likely 

to be IVD voxels than background voxels are included in the segmentation mask. Then 

the mask patches are assembled back to a 3D volume of the lower spine, with the 

same size of the IVD dataset, using the IVD center locations from the localization stage 

and zero-padding. 
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Chapter 4: Results 

4.1 Wound Segmentation Results 

 We describe the evaluation metrics and compare the segmentation performance 

of our method with several popular and state-of-the-art methods. Our deep learning 

model is trained with data augmentation and preprocessing. Extensive experiments 

were conducted to investigate the effectiveness of our network. FCN-VGG-16 is a 

popular network architecture for wound image segmentation [19] [39]. Thus, we 

trained this network on our dataset as the baseline model. For fairness of comparison, 

we used the same training strategies and data augmentation strategies throughout the 

experiments. 

4.1.1 2D Evaluation Metrics 

 To evaluate the segmentation performance, Precision, Recall, and the Dice 

coefficient are adopted as the evaluation metrics [40]: 

Precision: Precision shows the accuracy of segmentation. More specifically, Precision 

measures the percentage of correctly segmented pixels in the segmentation and is 

computed by: 

Precision =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Recall: Recall also shows the accuracy of segmentation. More specifically, it measures 

the percentage of correctly segmented pixels in the ground truth and is computed by: 

Recall =
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑡𝑖𝑣𝑒𝑠
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Dice coefficient (Dice): Dice shows the similarity between the segmentation and the 

ground truth. Dice is also called F1 score as a measurement balancing Precision and 

Recall. More specifically, Dice is computed by the harmonic mean of Precision and 

Recall: 

Dice =
2 ×  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

2 ×  𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

4.1.2 Experiment setup 

 The deep learning model in the presented work was implemented in python with 

Keras [41] and TensorFlow [42] backend. To speed up the training, the models were 

trained on a 64-bit Ubuntu PC with an 8-core 3.4GHz CPU and a single NVIDIA RTX 

2080Ti GPU. For updating the parameters in the network, we employed the Adam 

optimization algorithm [43], which has been popularized in the field of stochastic 

optimization due to its fast convergence compared to other optimization functions. 

Binary cross entropy was used as the loss function and we also monitored Precision, 

Recall and the Dice score as the evaluation matrices. The initial learning rate was set 

to 0.0001 and each minibatch contained only 2 images for balancing the training 

accuracy and efficiency. The convolutional kernels of our network were initialized with 

HE initialization [44] to speed up the training process and the training time of a single 

epoch took about 77 seconds. We used early stopping to terminate the training so that 

the best result was saved when there was no improvement for more than 100 epochs 

in terms of Dice score. Eventually, our deep learning model was trained for around 

1000 epochs before overfitting. 
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To evaluate the performance of the proposed method, we compared the 

segmentation results achieved by our methods with those by FCN-VGG-16 [19] [39] 

and SegNet [18]. We also added 2D U-Net [45] to the comparison due to its 

outstanding segmentation performance on biomedical images with a relatively small 

training dataset. The segmentation results predicted by our model are demonstrated 

in Figure 4 along with the illustration of our post-processing method. Quantitative 

results evaluated with the different networks are presented in Table 1 where bold 

numbers indicate the best results among all four models. To better demonstrate the 

accuracy of the models, the numbers shown in the table are the highest possible 

number reached among various trainings. 

Table 1. Evaluation on our dataset. 

Model VGG16 SegNet U-Net MobileNetV2 MobileNetV2+CCL 

Precision 83.91% 83.66% 89.04% 90.86% 91.01% 

Recall 78.35% 86.49% 91.29% 89.76% 89.97% 

Dice 81.03% 85.05% 90.15% 90.30% 90.47% 

 

4.1.3 Comparing our method to the others 

 In the performance measures, the highest Dice score was obtained by our 

MobileNetV2+CCL model. VGG16 was shown to have the worst performance among 

all the other CNN architectures. Our model also had the highest Precision of 94.76%, 

which indicates that MobileNetV2 can segment the region with most true positive 

pixels. The Recall of our model tested to be the second highest among all models, at 
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89.97%. This was 1.32% behind the highest Recall, 91.29%, which was achieved by 

VGG16. Finally, the results show that our model achieves the highest overall accuracy 

with a mean Dice score of 90.47%. Our accuracy was slightly better than the U-Net 

architecture and significantly higher than SegNet and VGG16. 

 Comparing our model to VGG16, the Dice score is boosted from 81.03% to 90.47% 

tested on our dataset. Based on the appearance of chronic wounds, we know that 

wound segmentation is complicated by various shapes, colors and the presence of 

different types of tissue. The patient images captured in clinic settings also suffer from 

various lighting conditions and perspectives. In MobileNetV2, the deeper architecture 

has more convolutional layers than VGG16, which makes MobileNetV2 more capable 

to understand and solve these variables. MobileNetV2 utilizes residual blocks with skip 

connections instead of the conventional convolution layers in VGG16 to build a deeper 

network. These skip connections bridging the beginning and the end of a convolutional 

block allows the network to access earlier activations that weren’t modified in the 

convolutional block and enhance the capacity of the network.  

Another comparison between U-Net and SegNet indicates that the former model 

is significantly better in terms of mean Dice score. Similar to the previous comparison, 

U-Net also introduces skip connections between convolutional layers to replace the 

pooling indices operation in the architecture of SegNet. These skip connections 

concatenate the output of the transposed convolution layers with the feature maps 

from the encoder at the same level. Thus, the expansion section which consists of a 
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large number of feature channels allows the network to propagate localization 

combined with contextual information from the contraction section to higher resolution 

layers. Intuitively, in the expansion section or “decoder” of the U-Net architecture, the 

segmentation results are reconstructed with the structural features that are learned in 

the contraction section or the “decoder”. This allows the U-Net to make predictions at 

more precise locations. 

Besides the performance, our method is also efficient and lightweight. As shown 

in Table 2, the total number of trainable parameters in MobileNetV2 was only a fraction 

of the number in U-Net and VGG16. Thus, the network took less time during training 

and could be applied to devices with less memory and limited computational power. 

Alternatively, higher-resolution input images could be fed into MobileNetV2 with less 

memory size and computational power comparing to the other models. 

Table 2. Comparison of total numbers of trainable parameters. 

Model VGG16 SegNet U-Net MobileNetV2 

Number of 

parameters 
134,264,641 902,561 4,834,839 2,141,505 

4.1.4 Comparison within the Medetec Dataset 

 Apart from our dataset, we also conducted experiments on the Medetec Wound 

Dataset [46] and compared the segmentation performance of these methods. The 

results are shown in Table 3. We directly applied our model, trained on our dataset, to 

perform segmentation on the Medetec dataset as the testing dataset. The highest Dice 

score is evaluated to 86.95% using MobileNetV2+CCL. This performance evaluation 
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agrees with our conclusion drawn from the testing on our dataset. MobileNetV2 

outperforms the other models regardless of which chronic wound segmentation 

dataset is used, thereby demonstrating that our model is robust and unbiased. 

Table 3. Evaluation on the Medetec dataset. 

Model VGG16 SegNet U-Net MobileNetV2 MobileNetV2+CCL 

Precision 81.95% 74.39% 84.70% 84.25% 84.40% 

Recall 85.41% 76.90% 86.40% 90.44% 90.65% 

Dice 83.65% 75.62% 85.54% 87.23% 87.40% 

 

4.2: IVD Segmentation Results 

4.2.1 3D Evaluation Metrics 

 To evaluate the segmentation performance, two metrics are adopted from the 

2015 MICCAI Challenge [25]. In addition to Dice coefficient mentioned in section 4.1.1, 

we also calculated the Hausdorff distance (HD) that measures the distance between 

two surface meshes. We compute HD for surfaces reconstructed from the ground true 

segmentation mask and our segmentation result. Surfaces are generated using 

Iso2mesh [47] from binary segmentation masks. The closest distance from each 

vertex on the source surface mesh to the target surface mesh is found and HD is then 

computed. A smaller HD value indicates better segmentation performance. 

4.2.2 Effectiveness of the multi-modality data 

The results show that the segmentation results achieved by excluding the in-phase 
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images from the training dataset are more accurate and less noisy near the lower IVDs 

than that by the original full-modality data. Moreover, using the training dataset without 

in-phase images, our localization network is able to learn more details and make much 

more accurate predictions about the IVD centers. This makes the localization of 

centers more stable and allows us to simply remove small regions (marked by yellow 

boxes) and then crop a fix-size 3D patch for each IVD in the volume to train the 

segmentation network.  

 From the multi-modality analysis, we found that the fat and in-phase images have 

a significantly lower contrast among all the modalities. To analyze the effectiveness of 

the multi-modality input data, we train our 3D network on 4 different combinations of 

input modalities: 1) we train the network on full-modality images as the baseline, 2) we 

exclude the fat images from all 4 modalities to build the second training dataset, 3) the 

fat images are excluded from all 4 modalities, and 4) we only include oppose-phase 

and water images in the last training dataset. The mean Dice scores of the 

segmentation results predicted by the network trained on each dataset are presented 

in Table 4. Among all the different training settings, the network trained on full-modality 

images shows the worst segmentation performance. The reason is that the fat and in-

phase images have a lower contrast, which means that the input values of the network 

are closer to each other and make it more difficult for the convolutional kernels to 

distinguish between them. It is worthy of pointing out that input normalization does not 

help with this situation because it is performed over the values of all the modalities. In 
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other words, if we treat these 4 types of images equally during the training process, 

the fat and in-phase images confuse the network with their low image contrast. 

Table 4. Segmentation performance of our 3D method using different combinations of modalities as 

the training dataset 

4.2.3 Comparison of our methods and state-of-the-art methods 

 To evaluate the performance of the proposed methods, we compare the 

segmentation results achieved by our methods with those by 3D U-Net[15], the CNN-

based team UNICHK [23] and the winning team UNIJLU [12] in the test1 dataset of 

the 2015 MICCAI Challenge [25]. Quantitative results evaluated with the different 

architectures are presented in Table 5. The mean Dice score obtained by our 3D 

method is 89.0% with a standard deviation (SD) of 1.4%. We bring a 1.5% boost 

comparing to the conventional 3D U-Net by training our network on 3D image patches 

extracted from opposed-phase, water, and fat images. This result is still 2.5% behind 

the state-of-the-art performance achieved by UNIJLU. The Mean HD of our 3D method 

reached 0.8 mm with an SD of 0.3 mm, which indicates that our method is slightly 

better when the segmentation results are reconstructed to 3D models. The strength of 

deep learning methods is the computation time. The Theano-based implementation of 

Training dataset Combination Mean Dice ± SD 

1) opp, wat, fat, and inn 87.9 ± 1.7 

2) opp, wat, and fat 89.0 ± 1.4 

3) opp, wat, and inn 88.0 ± 1.6 

4) opp, and wat 88.5 ± 1.6 
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3D U-Net from UNICHK takes 3.1s to process one 40 × 512 × 512 volume. Our 

network is implemented based on TensorFlow and it takes about 0.5s to segment all 

the IVDs in a 36 × 256 × 256 input volume. Overall, the computation time of our end-

to-end segmentation is about 10s including localization, preprocessing, segmentation 

and postprocessing. Whereas it takes 5 min on average to segment all IVDs for a 

patient by UNIJLU. It is also worth mentioning that the training dataset used in our 

study only contains data from 6 patients while UNICHK and UNIJLU have access to a 

training dataset from 16 patients i.e. our network is able to learn the 3D geometric 

morphometrics of IVDs with much fewer data to learn from.  

Table 5. Segmentation result evaluation of the conventional 3D U-Net, UNICHK, UNIJLU and our 

method. 

Methods Mean Dice ± SD Mean HD ± SD 

3D U-Net 87.5 ± 0.9 1.1 ± 0.2 

UNICHK 88.4 ± 3.7 1.3 ± 0.2 

UNIJLU 91.5 ± 2.3 1.1 ± 0.2 

Our method 89.0 ± 1.4 0.8 ± 0.3 

Chapter 5: Conclusions 

 We attempted to solve two problems using deep learning: 1) the automated 

segmentation of chronic foot ulcers in a dataset we built on our own. 2) The automated 

segmentation of IVDs from 3D MRI scans. For evaluating the performance, we 

conducted comprehensive experiments and analyses on SegNet, VGG16, 2D U-Net, 

3D U-Net and our model based on modified 3D U-Net and another proposed model 

based on MobileNetV2 and CCL. In the comparison of various neural networks, our 
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methods have demonstrated their effectiveness and in the field of medical image 

segmentation due to their fully convolutional architectures. We also demonstrated the 

robustness of our models by testing it on publicly available datasets where our model 

still achieves the highest Dice score. In the future, we plan to improve our work by 

extracting the shape features separately from the pixel-wise convolution in the deep 

learning model. Also, we will include more data in the dataset to improve the 

robustness and prediction accuracy of our method. 
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