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ABSTRACT 

MULTIDECADAL CLIMATE VARIABILITY IN OBSERVED AND SIMULATED 

SURFACE AIR TEMPERATURE AND SEA-LEVEL PRESSURE 

 

by 

 

Andrew Westgate 

 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor Sergey Kravtsov 

 

Accurate estimates of multidecadal climate variability generated internally within the 

climate system are required to gauge anthropogenic contribution to warming trends and to 

develop efficient strategies to mitigate climate change. Previous analyses of historical surface air 

temperatures (SAT) showed that numerical climate prediction models lack a pronounced global 

mode of observed internal variability — the stadium wave (SW), — which represents a 

multidecadal undulation originating in the North Atlantic and propagating to other regions of the 

globe. The present study extends these analyses by exploring co-variability of SAT and sea-level 

pressure (SLP) within the SW. Addition of SLP data does not substantially affect the SAT 

component of SW, which is essentially identical to its SAT-only counterpart. The SW’s SLP 

features point to atmospheric teleconnections and dynamical mechanisms behind its global 

propagation. Finally, the climate model analogs of SW exhibit quasi-stationary, often smaller-

scale patterns relative to observations, and lack of global propagation. 

 

 

 



 
 

iii 
 

TABLE OF CONTENTS 

List of Figures                  iv 

Acknowledgements                  vi 

1.   Introduction                    1 

2.   Data and Methods                   6 

3.   Results                   11 

 3.1  Replicating the results of SAT-only Analysis             11 

 3.2  SLP component of the Stadium Wave              16 

 3.3  Model – Observation Comparison: CSIRO Run 2            19 

 3.4  Model – Observation Comparison: CSIRO Run 9            25 

4.   Discussion, Conclusions, and Future Work              28 

References                   31 

 

  

  



 
 

iv 
 

LIST OF FIGURES 

Figure 1. Spatial plot of observed SAT-only RC stadium wave (from Kravtsov et al. 2018).........4                    

Figure 2. Regional indices from PCA..............................................................................................7 

Figure 3. Regional time series of 17 estimates of the observed forced signal, mean forced  

 signal, and raw observations for SAT and SLP...................................................................8 

Figure 4. M-SSA variance spectra of internal variability for observations and models for a)   

 SAT/SLP analysis and b) SAT-only analysis (from Kravtsov et al. 2018).......................10 

Figure 5. Spatial plot of the observed SAT component of SAT/SLP RC stadium wave..............12 

Figure 6. Regional indices time series of observed SAT RC stadium wave for a) SAT/SLP 

 analysis and b) SAT-only analysis (from Kravtsov et al. 2018)........................................13 

Figure 7. Dimensional SAT standard deviations of the observed and simulated stadium wave...14  

Figure 8. Spatial plot of the observed SLP component of the SAT/SLP RC stadium wave.........15 

Figure 9. Regional indices time series of observed RC stadium wave for a) the SAT  

component of the SAT/SLP analysis and b) the SLP component of the SAT/SLP 

analysis...............................................................................................................................18 

Figure 10. Dimensional SLP standard deviations of the observed and simulated stadium  

wave...................................................................................................................................18 

Figure 11. Spatial plot of the simulated CSIRO run 2 SAT and SLP RC stadium wave from 

 the SAT/SLP analysis........................................................................................................20 



 
 

v 
 

Figure 12. Regional indices time series of RC stadium wave for a) observed SAT component 

 of the SAT/SLP analysis and b) the simulated CSIRO run 2 SAT component of 

 SAT/SLP analysis..............................................................................................................23 

Figure 13. Spatial plot of the simulated CSIRO run 9 SAT and SLP RC stadium wave from 

 the SAT/SLP analysis.......................................................................................................24 

Figure 14. Regional indices time series of RC stadium wave for a) observed SAT component  

 of the SAT/SLP analysis and b) the simulated CSIRO run 9 SAT component of  

 SAT/SLP analysis..............................................................................................................26  



 
 

vi 
 

ACKNOWLEDGEMENTS 

 

Thank you to Dr. Kravtsov for providing the instruction needed to complete this project. Not 

only was he receptive to questions but also guided me through many concepts I had not had 

exposure to during my undergraduate studies.  

 

Thank you to Dr. Evans and Dr. Roebber for serving on my committee alongside Dr. Kravtsov. 

 

Lastly, thank you to my family and friends who provided support in regard to this project and 

beyond.  

 

 

 

 

 

 

 



 
 

1 
 

1. Introduction 

 Understanding the observed decadal climate variability (DCV) is vital to gaining a better 

understanding of the earth’s climate system as a whole. With anthropogenic influences on 

climate, and the drastic increases in greenhouse gas concentrations and long-term global 

temperature, more significance is placed on this understanding (Cassou et al. 2018). Embedded 

within this increase in global temperature are “hiatuses” where the global temperature increase 

exhibits a slope of around 0 for roughly two decades (Lewandowsky et al. 2016; Barcikowska et 

al. 2017). In fact, it was the most recent hiatus that brought attention to the discrepancy between 

observations and climate models (Barcikowska et al. 2017; Kosaka and Xie 2013; England et al. 

2014).  

The key issue with DCV is the large number of processes that contribute to its phases and 

signals. For example, it is understood that the Atlantic meridional overturning circulation 

(AMOC) heavily contributes to the Atlantic Multidecadal Variability (AMV, equivalent to 

Atlantic Multidecadal Oscillation), as well as several other climate modes, such as the Pacific 

Decadal Variability (PDV) (Zhang et al. 2019). Studies have speculated from observations that 

PDV lags behind AMV by approximately 10 years (Chylek et al. 2014; d’Orgeville and Peltier 

2007). It has been shown, through both observations and a simulation, that a positive phase in 

AMV is connected to warming over the western tropical Pacific and North Pacific via 

teleconnections (Barcikowska et al. 2017). It was also shown that this multidecadal mode is 

linked to AMOC (Barcikowska et al. 2017; Yeager and Robson 2017). Essentially, despite these 

oceanic basins being largely separated by land masses, all are connected through atmospheric 

circulations (Cai et al. 2019; McGregor et al. 2014; Li et al. 2016) 
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Another key observation is the anticorrelated eastern Pacific in regard to the North 

Atlantic (Barcikowska et al. 2017). Much like the AMV, multidecadal modes in the Pacific are 

known to be present but the characteristics and causes are still open for interpretation (Mestas-

Nunez and Miller 2006; Newman et al. 2016). Mestas-Nunez and Miller (2006) speculated that 

the eastern Pacific shows little evidence of multidecadal variability, although this conclusion is 

subject to a large amount of uncertainty intrinsic to methodologies associated with detection of 

multidecadal climate signals. Therefore, advanced statistical methods are key when attempting to 

isolate multidecadal signals in the background of unpredictable climate noise.   

The complex nature of the observed climate systems mentioned above, and all of its 

unknowns, are complicated further by imperfect climate models. While the understanding of 

observed DCV is limited by a short climate record and limited observations in some regions 

(Deser and Phillips 2017), models tend to lack the ability to replicate many features that 

contribute to multidecadal modes (Meehl et al. 2014). Climate prediction efforts are coordinated 

via the Coupled Model Intercomparison Project (CMIP). Phase 5 of this project (CMIP5: Taylor 

et al. 2012) is a collection of models used to predict future climate. However, it also includes 

historical runs, as well as runs that replicate past climates referred to as preindustrial control 

runs. Historical runs include external forcing factors that occur both naturally, such as volcanic 

eruptions and solar events, and anthropogenic forces, such as aerosols and greenhouse gas 

emissions through the combustion of fossil fuels. The control runs also include external forcing, 

but these are held constant at preindustrial levels. Multiple historical realizations (an ensemble of 

simulations) are typically available for each model; these realizations are obtained by initializing 

the model from independent states taken from pre-industrial control runs and running the 

historical simulation under the identical variable forcing. In this study, we used ensembles of 
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historical runs to infer both the internal variability and forced signal components of climate 

variability; the latter component includes the anthropogenic influence. The key element of this 

procedure (see, for example, Kravtsov and Callicutt 2017) invokes taking an ensemble average 

of historical simulations to estimate the forced signal, which tends to remove internal variability 

uncorrelated in the independent realizations of historical climate change (see section 2 for 

details).  

Kravtsov (2017) and Kravtsov et al. (2018) showed, among other studies, that CMIP5 

models underestimate the magnitude of internal multidecadal internal variability in surface air 

temperature (SAT), leaving the forced signal as a dominant component of the CMIP5 simulated 

20th century climate change. Kravtsov et al. (2018) used advanced spatiotemporal filtering 

methods to highlight the disparities between observed and simulated internal variability in SAT. 

These authors formed the differences between filtered SAT signals based on observations and 

individual CMIP5 simulations (optimally rescaled to reflect the observed climate sensitivity) to 

estimate the observed internal variability. The differences between the individual simulations of 

each model with respect to this model’s ensemble-mean SAT time series served as estimates of 

the internal variability in CMIP5 models. Via multidecadal signal detection methodology, the 

authors showed that not only do the models contain a significantly smaller amount of internal 

variability than observations, but that the dominant space–time features of observed multidecadal 

variability are not present in the model simulations (see section 3). In particular, the dominant 

multidecadal signal in observations is characterized by the global oscillation-like mode termed 

the stadium wave (SW; Wyatt et al. 2012), which originates in the North Atlantic and propagates 

into other oceanic basins through atmospheric teleconnections, ‘moving’ into the North Pacific,  
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Figure 1: Kravtsov et al. (2018) Figure 4, SAT-only RC SW: Spatial plot showing the propagation of observed stadium wave 
with origins in the North Atlantic present in observed reconstructed SAT data. Stippling indicates statistically significant 
points. Positive values are warm colors and negative values are cool colors.  
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followed by the southwest Pacific, Antarctica, South Atlantic, and lastly the Arctic, upon which 

the opposite phase of the oscillation begins (Fig. 1).  

In an effort to visualize and analyze the atmospheric teleconnections linking the features 

found in SAT-based SW, this study extends the analysis in Kravtsov et al. (2018) to include, in 

addition to SAT, observed and simulated sea level pressure (SLP) data. Instead of optimal 

filtering employed in Kravtsov et al. (2018), we use here a simpler method based on regional 

averaging to filter out some of the higher-frequency noise and thus increase signal-to-noise ratio, 

while obtaining essentially identical to SAT-only SW results. In conjunction with adding SLP 

data, we seek to 1) replicate the SAT structure of SW features found using the SAT-only 

analysis; 2) analyze key SLP features that highlight particular teleconnections that could cause 

the propagation of the SW; and 3) compare, in detail, the simulated SAT–SLP data to 

observations.  
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2. Data and methods 

In lieu of climate ‘observations,’ we used annual surface air temperature (SAT) and sea 

level pressure (SLP) data (1880–2005) based on the National Oceanic and Atmospheric 

Administration (NOAA) Twentieth Century Reanalysis (20CR) dataset (Compo et al. 2011), 

version 2c. We also used annual SAT and SLP model data over the same time period from the 

ensemble of 111 historical simulations within the CMIP5 ensemble (Taylor et al. 2012), 

provided by the World Climate Research Program (WCRP) Working Group on Coupled 

Modeling (WGCM). These simulations came from a total of 17 different climate models and are 

the same simulations analyzed in Kravtsov and Callicutt (2017), Kravtsov (2017) and Kravtsov 

et al. (2018). All of these data were interpolated to a 2° uniform grid covering the globe prior to 

further analysis.   

 We first formed anomalies by subtracting, from each field, its 1880–2005 climatology. 

The forced signals in the 17 individual-model ensembles were estimated as the ensemble-mean 

SAT or SLP smoothed by an 11-yr boxcar running average filter (Kravtsov and Callicutt 2017); 

subtracting these forced signals from individual simulations of the corresponding model results 

in 111 estimates of the internal variability in CMIP5 simulations. The 17 forced-signal estimates 

above (whose spread encompasses model uncertainty) were also used as estimates of the forced 

signal to be used in conjunction with observation. To do so, however, we rescaled these signals 

using linear regression, to best match the observed time series at each grid point. Subtracting the 

17 rescaled forced signals from observed time series at each grid point gives 17 estimates of the 

observed internal variability. 

 The SAT and SLP data at each grid point are heavily contaminated by smaller-scale noise 

and have a low signal-to-noise ratio with respect to multidecadal variability, making it difficult  
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to discern the signal. To reduce noise and increase the signal-to-noise ratio, we worked with, 

instead of the data at grid-point level, the regional averages of SAT and SLP data over 20 regions 

subjectively chosen to represent centers of action found in the SAT and SLP internal variability 

(Fig. 2). This method (similar to the one used in Kravtsov and Spannagle 2008) is much simpler 

than a fairly involved spatiotemporal optimal filtering method used in Kravtsov et al. (2018) but 

turns out to produce essentially identical results with respect to the SAT-only SW (section 3).  

Fig. 3 shows 17 (CMIP5-based) estimates of the forced signal in observed SAT and SLP 

data (smoothed rescaled SMEM) with superimposed raw annual SAT and SLP data from the 

North Atlantic and North Pacific (obtained by averaging over two original boxes within the 

North Atlantic and four original boxes within the North Pacific region in Fig. 2). The difference 

between the 17 estimates and the raw observations represent our 17 estimates of the internal 

climate variability in observations. These plots visually represent the long-term trend and the 

uncertainty of the forced signal (and hence, also, the uncertainty of internal variability) in a given  

Figure 2: Resulting regional indices based on SAT and SLP PCA 
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region. Note the pronounced multidecadal deviations of raw observations from the estimated 

forced signals visually apparent in each figure panel. In SAT field, these are regional 

manifestations of the global SW found in Kravtsov et al. (2018). Interestingly, such deviations 

are also present in the SLP data (for example, in Fig. 3b for the North Atlantic region), 

suggesting a substantial reflection of SW in the SLP fields as well. Characterizing the SLP 

branch of the SW is the main focus of this thesis. 

 To identify the dominant multidecadal signals in our multivariate regional data, we use 

classical signal detection methods. Principal Component analysis (PCA), also known as 

Empirical Orthogonal Function (EOF) analysis (Wilks 2011), finds linear combinations of 

Figure 3: Decomposition of the observed variability into forced and internal components. Time series of 
17 CMIP5-based estimates of the observed forced signal (thin colored lines), the ensemble mean of the 
forced signal over these estimates  (heavy black line), and raw observations (heavy red line) for: (a) SAT 
in the North Atlantic; (b) SAT in the North Pacific; (c) SLP in the North Atlantic; and (d) North Pacific 
(bottom right).  

c d 

a b 
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original multi-variate time series (in our case regionally averaged SAT or SLP data) with spatial 

weights (EOF patterns) that maximize the variance of the resulting weighted time series 

(principal components, PCs). The leading EOF corresponds to the PC with largest variance, the 

second EOF/PC pair has second largest variance and so forth. These variances are typically 

presented together in the EOF variance ‘spectrum’ plot and are usually expressed in units of a 

fraction of the total variance. The EOFs can be found as eigenfunctions of the original data’s 

covariance matrix, with the corresponding eigenvalues equal to the variance of their PCs. The 

sum of all EOF modes reconstructs the original data exactly, but, typically a limited number of 

EOFs and PCs is sufficient to describe most of the variability in the data set; hence, EOFs are 

most frequently used for data compression.  

M-SSA (Ghil et al. 2002) is an EOF analysis applied to an extended set of the original 

data and lagged copies thereof. This adds an additional (temporal) dimension to the original EOF 

analysis that allows for the detection of structures in both space and time; M-SSA can transcend 

an EOF analysis in the sense that a single M-SSA mode can capture variability of several EOF 

modes. The EOF ‘patterns’ from M-SSA analysis are referred to space–time EOFs (ST-EOFs) 

and its PCs as space–time PCs (ST-PCs). The variability associated with a single M-SSA mode 

or a sum of M-SSA modes can be reconstructed in the original physical space and visualized in 

the same way as the original data (observed throughout time as a progression of spatial maps). 

These reconstructions are referred to as Reconstructed Components (RCs) and represent, in 

effect, an objectively filtered versions of the original multivariate input time series. The M-SSA 

modes can be succinctly characterized by their variance spectrum, which is analogous to the 

variance spectrum of the ordinary EOF analysis. 
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 To utilize M-SSA, we first computed combined (or common) SAT/SLP EOFs of a given 

observed or simulated realization being considered. To do so, we started with computing the 

individual-field EOFs based on our 20 regional time series weighted by the size of the 

corresponding region to achieve area-weighted contributions from each region to the global-

mean variance. The resulting 20 PCs for each field were normalized by the standard deviation of 

the corresponding PC-1, concatenated and decomposed into its own EOF modes and PCs 

(common EOFs and PCs). The physical-space patterns associated with each common EOF were 

obtained by regressing the original fields on the original grid onto the common PCs, which 

allowed us to visualize the climate variability over the globe at a grid point level despite the EOF 

(and M-SSA) analysis were performed using a limited number of regional time series. All 40 

common PCs were then used as inputs to M-SSA with the maximum lag (also known as 

embedding dimension) M=65 (yr), chosen to maximize the separation between the leading and 

trailing M-SSA modes in observations (Kravtsov et al. 2018). We visualized M-SSA results by 

plotting M-SSA variance spectra and RCs associated with the leading pair of M-SSA modes 

[which, in observations, represents the Kravtsov et al.’s (2018) SW]. 

 

 

 

 

 

 

 

 

 

 

Figure 4: M-SSA variance spectra visualizing the difference in internal variability between models and observations. Spectra 
based on observations are  in black, the CMIP5 spectra are in blue, with the error bar showing the 95% spread around the 
ensemble-mean values in each case;  the 97th percentile of the CMIP5 ensemble mean (dashed blue), and the 99.99th percentile 
of the CMIP5  data projected onto the observed ST-EOFs (red). (a) The present SAT/SLP analysis; (b) SAT-only analysis (Kravtsov 
et al. 2018).  

a b 
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3. Results 

3.1 Replicating the results of SAT-only Analysis 

 Fig. 4 shows observed and simulated M-SSA spectra based on the present SAT/SLP 

analysis and Kravtsov et al. (2018) SAT-only analysis. In both studies, observations have a 

majority of their variance contained within the first pair of M-SSA modes, whereas the M-SSA 

spectrum is much flatter in the models. Also, the stark difference in variance between the 

reanalysis and CMIP5 data shows that estimated observed internal variability is much higher 

than simulated internal variability. Lastly, the variance associated with projection of CMIP5 

model data onto the leading ST-EOFs of reanalysis is negligibly small (the 99th percentile of 

these variance is shown in Fig. 4). This signifies the absence, in the models, of space-time 

structures replicating the observed multidecadal variability.  

In the combined SAT–SLP plot, the total variance percentage is lower than that in 

Kravtsov et al. (2018). This is due to their filtering methodology removing more of the high 

frequency variability than the regional analysis, leaving the low-frequency SW to account for a 

larger fraction of the remaining low-frequency variability. A second distinction is the error bars 

(that is, the spread of variances between individual estimates of the observed or CMIP5 

simulated internal variability) being much smaller in the combined SAT–SLP analysis compared 

to SAT-only case. This is the result of PC normalization in the combined SAT analysis, which 

removes some of the variance associated with the uncertainty in the intensity of the leading PC 

across the individual realization, leading to a smaller spread of M-SSA modal variances. Indeed, 

our SAT-only analysis of regional averages (not shown) replicates the SAT/SLP M-SSA 

ensemble-mean variance spectrum in Fig. 4a but indicates a larger uncertainty of M-SSA modal 

variances consistent with Kravtsov et al. (2018); Fig. 4b. Hence, the M-SSA variances based on  



 
 

12 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Observed SAT/SLP RC SW: Spatial plot showing the propagation of observed stadium wave with origins in the North 
Atlantic present in observed reconstructed SAT (shaded) and SLP (contours) data. Positive SLP data are denoted by solid black 
contours, negative by dashed contours, and 0 by green contours. Contours are spaced by 0.25. Stippling indicates statistically 
significant points. Positive values are warm colors and negative values are cool colors. 
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the combined SAT/SLP analysis do not reflect the actual magnitudes of M-SSA modes due to 

normalization, but assess, instead, the shape of the M-SSA variance spectrum (flatter in models, 

more peaked, with the dominant leading pair, in reanalysis). A way to bring in the actual 

magnitude of M-SSA modes to the M-SSA variance plot would be to normalize the SAT and 

SLP PCs in each model simulation by the standard deviation of the leading PC of the ensemble- 

mean observed internal variability, rather than by the standard deviations of their own PC-1.  

The SAT evolution associated with the leading M-SSA pair of the reanalysis data (Fig. 5, 

shading) show the same SW feature as in Kravtsov et al. (2018) (compare with Fig. 1 here). A 

positive phase of the SW in SAT anomalies originates in the North Atlantic around 1921 and 

continues to expand. This eventually moves into the North Pacific basin, followed by the 

southwest Pacific, Antarctic, South Atlantic, and Arctic regions.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Regional Indices time series of observed RC SAT data for North Atlantic (NA), North Pacific (NP), southwest Pacific 
(SWP), Antarctic (AA), South Atlantic (SA), Arctic (A), and the global mean (GMO). (a) SAT-SLP combined analysis and (b) 
SAT-only analysis (Kravtsov et al. 2018). 

b a 
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The SW propagation apparent in the RC 2-D graphs can also be visualized by plotting the 

regional time series, which exhibit identical structure in the present analysis and that of Kravtsov 

et al. (2018) (compare Figs. 6a and 6b), perhaps with a very slight differences in the relative 

amplitudes of the SW regional indices.  

 

 

 

 

 

 

 

 

 

It is important to note that the patterns shown in Fig. 5 (and all subsequent spatial plots) 

and the time series in Fig. 6 have normalized data and do not show the magnitude of SAT 

anomalies, only spatial patterns or standardized regional indices. The dimensional standard 

deviations of the SW regional indices (Fig. 7) indicate the value of around 0.1ºC for ocean 

indices and higher standard deviations of 0.2–0.3ºC for the Arctic and Antarctic regions.  The 

SW magnitudes based on SAT-only and SAT–SLP analysis of observations (reanalysis data) are 

virtually identical in all regions (with some small differences in the Arctic). 

Figure 7: Dimensional standard deviations of the SW, standard deviations of SAT reconstructed 
data for the SAT-only analysis observations (blue line), SAT-SLP analysis observations (red line), 
CSIRO run 2 (yellow line), and CSIRO run 9 (purple line) for selected regions (see Figure 6 caption). 
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Figure 8: Observed SAT/SLP RC SW: Spatial plot showing the propagation of observed stadium wave with origins in the North 
Atlantic present in observed RC SLP. Stippling indicates statistically significant points. Positive values are warm colors and 
negative values are cool colors. 
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Overall, despite the addition of SLP data, which used an alternative filter through 

regional averaging and required the utilization of common EOF analysis to pre-process M-SSA 

input data, the present analysis successfully reproduces the SAT component of the observed 

stadium wave found in Kravtsov et al. (2018).  

3.2 SLP component of the Stadium Wave 

In addition to replicating the SAT-only spatial plots and time series, the inclusion of SLP 

data allows for an atmospheric (SLP) component of the observed stadium wave to be analyzed 

(Fig. 8). We discuss the progression of SLP anomalies within the stadium wave starting, 

arbitrarily, with the phase at which the global SAT associated with the SW is minimum (Figs. 1, 

5 and 6), which happens around year 1920. At this time, global-scale high-pressure anomaly 

prevalent south of 40ºS also extends well into the Southern Hemisphere over the Atlantic and 

Indian Ocean sectors, accompanied by near-neutral (slightly negative) SLP anomalies in the 

tropical Pacific and North Pacific high — Aleutian low type of dipole in the North Pacific. The 

SLP pattern over the North Atlantic is also dipolar, reminiscent of the positive phase of the North 

Atlantic Oscillation (NAO), with negative SLP anomalies over the Arctic and positive SLP 

anomalies over the tropical Atlantic; the latter positive anomalies signify a large-scale east–west 

pressure gradient between tropical Atlantic and tropical Pacific. By 1930, all these features still 

prevail, but keep losing their intensity, further leading to structural changes in the regional SLP 

anomalies which appears to be initiated from the tropics. In particular, the SLP gradient between 

the tropical Atlantic and Pacific flattens out at 1930 and flips sign shortly thereafter, with the 

lobes of east-west oriented tropical SLP Atlantic/Pacific dipole merging with the remnants of the 

northern lobe of the NAO and an expanding North Pacific high, respectively, thereby leading to 

basin-wide positive SLP anomalies over most of the Pacific Ocean (with the exception of 
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negative SLP anomalies along its western coastal boundary) and negative SLP anomalies over 

most of the Atlantic Ocean (except for positive SLP anomalies between 20º and 60ºS) by 1940. 

At the same time, the positive SLP anomalies over northern Eurasia progress into the Arctic, 

while the Indian Ocean SLP anomalies decay to near-zero values. Further evolution of the SLP 

component of SW mainly involves intensification and expansion of negative SLP anomalies over 

Southeastern Pacific and the Indian ocean to the entirety of the region south of 40ºS, as well as 

the development of dipolar features in the North Atlantic and Pacific Oceans representing, 

roughly, the negative SW phase by year 1963 (compare with 1921 panel of Fig. 8). 

The superimposed SLP contours allows for a direct comparison to the features in the SAT 

data (Fig. 5). Many areas around the globe exhibit SLP phases that are opposite of the SAT data, 

indicating that warming phases are coupled with lower SLP and cooling phases with higher SLP. 

This indicates that either 1) warmer SATs force SLP to fall or 2) low SLP brings conditions, 

such as clouds and precipitation, that forces SAT. This behavior does not appear to be unique to 

oceans as patterns are not consistently defined by land and ocean regions, but rather transcend 

over both land and water. This is not the case in the Northern Pacific and Arctic regions, 

however, where a large portion of each region appears to be in the same phase (positive or 

negative) as the SAT anomalies.  Regions with persistent SAT structures, such as the central 

Indian ocean, have persistent SLP features as well. The SLP phases in the Indian Ocean lag the 

SAT phases. The dipoles mentioned in the previous paragraph appear to be co-located with 

smaller SAT features over Greenland – North Atlantic and Japan – northwest Pacific. 
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Figure 9: Regional Indices time series of observed RC SAT data for North Atlantic (NA), North Pacific (NP), southwest Pacific 
(SWP), Antarctic (AA), South Atlantic (SA), Arctic (A), and the global mean (GMO).(a) SAT component of SAT-SLP combined 
analysis and (b) SLP component of SAT-SLP combined analysis 

Figure 10: Dimensional standard deviations of the SW, standard deviations of SAT 
reconstructed data for the SAT-SLP analysis observations (blue line), CSIRO run 2 (red line), 
and CSIRO run 9 (yellow line) for selected regions (see Figure 6 caption). 
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The normalized, area averaged reconstructed SAT data (Fig. 9a) were compared to the 

area averaged reconstructed SLP data (Fig. 9b) utilizing the same regional indices as in Figure 6. 

These emphasize the features present in the spatial plots; all regions exhibit opposite phases from 

the SAT time series, with the exception of the North Pacific and the Arctic regions. Further, for 

the regions that exhibit an opposite SLP phase from the SAT SW, peaks in phases occur at the 

same time as peaks in the SAT SW.  

Standardized regional indices for SLP are shown in Fig. 10. Magnitudes over ocean 

indices range between approximately 0.1 and 0.2, with the Arctic and Antarctic regions being 

around 0.5 and 0.6, respectively. SLP magnitudes exhibit higher values over polar regions and 

lower values over the oceans, similar to SAT.  

3.3 Model – Observation Comparison: CSIRO Run 2 

M-SSA analysis of section 3.1 suggests that the space-time patterns characterizing the 

observed SW are not reproduced in any of the CMIP5 model simulations we considered (see 

projection of the simulated climates onto the observed ST-EOFs in Fig. 4). What does this result 

based on automated identification of space–time patterns really mean? How exactly are the 

leading internal modes of CMIP5 models different from the observed SW? The three distinct 

possibilities in characterization of model-observation differences include the differences in the 

timescale, the differences in characteristic patterns and the differences in the sequence of patterns 

between the observed and model simulated internal modes. To address this question, we consider 

select simulations of the Commonwealth Scientific and Industrial Research Organization 

(CSIRO) Mk3 model. Barcikowska et al. (2017) showed that CSIRO control simulations 

reproduced realistic connections between the Atlantic and Pacific multidecadal variability similar 

to that in observations. Furthermore, Kravtsov et al. (2018) found the CSIRO model to have the  
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Figure 11: CSIRO Run 2 SAT/SLP RC SW: Simulated reconstructed SAT and SLP data from CSIRO run 2. Positive SLP data are 
denoted by solid black contours, negative by dashed contours, and 0 by green contours. Contours are spaced by 0.25. Stippling 
indicates statistically significant points. Positive values are warm colors and negative values are cool colors. 
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strongest “stadium wave” analogs in terms of the intensity of the leading M-SSA pair. Out of 10 

available CSIRO simulations, we chose runs 2 and 9 since they are dominated by a multidecadal 

signal akin to the observed stadium wave in terms of the time scale. Run 3 exhibits similar 

connections between the Atlantic and Pacific variability and is briefly discussed later in Section 

3.4.  

Despite the similarity of the time scale, the SW structure of the CSIRO model defined by 

its leading M-SSA pair is different from the observed SW structure. Furthermore, since the 

CSIRO signal-to-noise ratio is higher than in observations, we smoothed CSIRO time series 

using 15-yr boxcar running-mean filter. To ensure a level playing field, we also repeated our M-

SSA analysis for observations using 15-yr low-pass filtered data and obtained the stadium wave 

essentially identical to the one identified from unsmoothed, raw data (not shown). 

 Fig. 11 shows the CSIRO SW maps from run 2, analogous to the observed maps in Fig. 

5. SAT and SLP spatial patterns found in models have structures that are more heterogeneous 

than in observations. Most of the North Atlantic and Arctic has anomalously warm temperatures, 

while most of the South Atlantic, Southern Ocean, and Indian Ocean have anomalously low 

temperatures. The Pacific has several small regions of positive and negative SAT anomalies. By 

1930, an east-west SAT dipole forms in the Indian Ocean and North Pacific. Antarctica is 

predominately experiencing negative SAT anomalies, and the North Atlantic remains unchanged. 

While the spatial patterns remain fairly consistent, up through 1950 sees a weakening of the 

positive SAT anomalies in the Arctic and eventual transition to negative anomalies, 

strengthening of negative SAT anomalies in the equatorial Pacific, and strengthening of positive 

SAT anomalies in the South Atlantic and southwest Pacific extending down to the Southern 

Ocean. By 1963, the negative anomalies strengthen in the Arctic and weaken in the Antarctic, 
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positive phases weaken in the Atlantic, the South Pacific positive anomaly regions lessen, 

whereas most of the other smaller features remain relatively consistent.  

   SLP structures are not as diverse and exhibit negative anomalies in much of the polar 

regions, North Atlantic, and North Pacific. Positive Anomalies exist much throughout the Indian 

Ocean, South Pacific, and South Atlantic. These features remain relatively consistent until 

roughly 1950, where a strong dipole feature is established in the central North Pacific and North 

Atlantic. While negative SLP anomalies persist in the Antarctic region, positive anomalies begin 

to strengthen near Greenland. By 1963, smaller positive and negative anomalies appear in 

virtually all regional indices, removing the dipole structure in the North Pacific and Atlantic.   

 From the simulated SAT and spatial plots, smaller, more regional features emerge. These 

smaller features make it more difficult to identify a clear sequence of patterns. For example, 

when the Pacific contains several regions with positive and negative anomalies, the origin of a 

phase change is difficult to identify. These features sometimes coincide with features in the 

observed plot, however, since this is a simulated internal variability, they are expected to be 

different and any synchronization is accidental. For the SLP data, most of the regions do not 

contain structures that match observations. Since features in the SLP anomalies also become 

small and diverse, they often do not exhibit the broad features present in observation data where 

a sequence of patterns is obvious. For example, dipole features are present in the North and 

South Pacific in the simulated data, but they are often not in the same location as observations. 
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 Comparing the observed regional indices time series plot (Fig. 12a) to the simulated time 

series (Fig. 12b) helps determine the SAT timescale and sequence of patterns for the widely 

diverse spatial patterns in the 2D plots. First, an 80-year mode is present, similar to observations. 

Second, The Antarctic mode leads the North Pacific and Arctic modes, which are virtually 

synced, by ~30 years. This is different from observations, were the Arctic lags significantly 

behind the North Pacific and the observed variability originated in the North Atlantic. Lastly, the 

North Atlantic mode lags behind the North Pacific and Arctic by approximately 5 years, 

followed by the southwest Pacific and South Atlantic by approximately 30 years.  

 The magnitude of the stadium wave in the CSIRO run 2 for SAT and SLP is shown in 

Figs. 7 and 10 respectively. In Fig. 5, the magnitude of the stadium wave for CSIRO run 2 

(yellow line) is smaller than observations. This indicates that less variance exists in all analyzed 

regions in CSIRO run 2. In Fig. 9, the magnitude of the stadium wave for CSIRO run 2 (yellow 

line) is smaller than observations in all regions except for the North Atlantic, where it is  

Figure 12: Regional Indices time series of observed RC SAT data for North Atlantic (NA), North Pacific (NP), southwest Pacific 
(SWP), Antarctic (AA), South Atlantic (SA), Arctic (A), and the global mean (GMO). (a) observed RC SAT data (b) CSIRO run 2 RC 
SAT data  

a b 
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Figure 13: CSIRO Run 9 SAT/SLP RC SW: Simulated reconstructed SAT and SLP data from CSIRO run 9. Positive SLP data are 
denoted by solid black contours, negative by dashed contours, and 0 by green contours. Contours are spaced by 0.25. Stippling 
indicates statistically significant points. Positive values are warm colors and negative values are cool colors. 
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comparable to observations. A key feature in this plot is the significant lack of variance in the 

Arctic compared to observations. This may indicate different dynamics present in this region in 

the model and not in observations. Noise in the internal variability would reduce the variability 

in the Arctic for CSIRO run 2, resulting in reduced magnitudes.   

3.4 Model – Observation Comparison: CSIRO Run 9 

 The same analysis in the previous section was repeated for run 9 of the CSIRO model, 

including the spatial plot (Fig. 13). Positive SAT regions include the South Atlantic, southern 

Indian Ocean, between 20 and 40°S for the western Pacific, and between 40 and 60°N for a 

portion of the North Pacific. A majority of other regions contain negative SAT anomalies. 

Structurally, these features are persistent through 1940 with the exception of the positive region 

in the North Pacific, which weakens to near-zero values and a small region in eastern Antarctica, 

which transitions to positive anomalies. The anomalies in all other regions, positive and negative, 

also appear to weaken. By 1950, positive SAT anomalies emerge in the tropical Pacific and 

North America. These regions degrade the larger structures present in the 1921 panel. 

Simultaneously, weaker positive regions and regions with near-zero values, like the extreme 

South Atlantic and Australian continent, exhibit a transition to a negative phase. By 1963, 

portions of the North Atlantic and Arctic transition to positive SAT anomalies.  

 Negative SLP Anomalies exist everywhere below 50°S (although weak), most of the 

Indian Ocean, and most of the South Atlantic. Positive anomalies exist over the entire Arctic, a 

majority of the southeast, tropical, and North Pacific, and a region along 40°S that stretches from 

the Cape of Good Hope to Australia. Up through 1940, most features remain intact, with the 

exception of the Arctic positive anomalies expanding south and a region in the South Atlantic 

converting to positive anomalies. Up through 1963, most of the spatial features remain, both in 
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relative shape and sign, except for the Arctic (becomes positive) and Indian Ocean (becomes 

negative).  

 SAT and SLP show that there is little agreement between CSIRO run 9 and observations. 

Features in this simulation are broader than in CSIRO run 2, covering roughly the same size 

areas as in observations (but not the same areas themselves), however the shape and phase are 

often in disagreement. Throughout a majority of the simulation, either the Arctic or Antarctic 

tend to be in opposite phase from observations.  

 

 

 

 

 

 

 

 

 Regional indices plots show the timescale and sequence of pattern in CSIRO run 9 (Fig. 

14a). Most indices have a timescale of ~90 years. This is slightly longer than those in 

observations (Fig. 14b). Four regions, and the global mean, experience two positive phases. The 

first has the Arctic before the North Pacific and the North Atlantic slightly trailing both, contrary 

to observations. Antarctica, although much weaker, is relatively in phase with the regions 

mentioned thus far. The southwest Pacific and South Atlantic occur approximately 60 years after 

Figure 14: Regional Indices time series of observed RC SAT data for North Atlantic (NA), North Pacific (NP), southwest 
Pacific (SWP), Antarctic (AA), South Atlantic (SA), Arctic (A), and the global mean (GMO). (a) observed RC SAT data (b) 
simulated RC SAT data from CSIRO run 9 

a b 
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the former regions, with the South Atlantic slightly trailing the South Pacific. This is also not in 

observations. The second positive phase has the Antarctic signal first, followed by the North 

Atlantic, North Pacific, and Arctic. Lastly, the North Atlantic and Pacific, as well as the Arctic, 

are almost exactly phased in the model, which is not the case in observations.  

 Lastly, Figures 5 and 9 can once again be used to compare the magnitudes of different 

regions. With SAT data, CSIRO 9 magnitudes are lower for all regions except the Arctic, where 

variance is marginally higher. With SLP data, magnitudes are lower for all regions except in the 

Pacific. Since the Arctic and southwest Pacific is a relatively small region, overall variance is 

less globally in CSIRO 9 than observations.  

 We felt it was important to note that, once again, these two runs were chosen based off of 

the similar timescale of variability to observations. However, the sequence of events is often 

different. There are runs of CSIRO, such as run 3, that exhibits variability on a timescale of 40 

years, but also contain a similar sequence of patterns. For example, the SW moves from the 

North Atlantic to the North Pacific. Barcikowska et al. (2017) analyzed this mode for this reason. 

Therefore, the selection of a particular model run is dependent on which features the observer 

wishes to isolate; the timescale at which the variability occurs (such as this study), the resulting 

spatial patterns, or the sequence of patterns (such as Barsikowska et al. 2017).  
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4. Discussion, Conclusions, and Future Work  

 This study found that the addition of SLP data not only replicates the same features when 

performing an SAT-only analysis but also allows for the analysis of the atmospheric component 

of the observed stadium wave.  

 By performing regional analysis, the high frequency variability present was partially 

filtered out and signal-to-noise ratio increased. This allowed for low-frequency signals to be 

isolated in the data and highlighted that simpler methods can be used to increase the signal-to-

noise ratio. It also results in less variance being captured in the M-SSA plots, however most of 

the variance observed in the M-SSA modes are contained within the leading pair.   

The leading pair was used to reconstruct the SAT and SLP data necessary to spatially and 

temporally observe the multidecadal features contained within the internal variability. The SAT 

plots showed that using combined PCA still generates the same spatial and temporal SAT 

patterns. More specifically, the observed SW from the SAT-only analysis is virtually identical to 

the one observed in the SAT/SLP analysis. SW magnitudes were also virtually the same, with the 

exception of the Arctic.  

The SLP plots showed the atmospheric component of the global stadium wave and some 

key features. A dipole with striking similarity to the positive NAO phase was present in the 

North Atlantic. Another feature was observed in the North Pacific that resembled a North Pacific 

high — Aleutian Low dipole. With time, an Atlantic — Pacific gradient weakens, and a majority 

of the Pacific shifts to positive anomalies. The Arctic and North Pacific were the only two 

locations that showed anomalies with the same sign as SAT.  
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Several modes are present in these regions, all being characterized by distinctive spatial 

patterns and operating over a range of time scales, yet potentially influencing one another. We 

speculate that these modes and interactions between them contribute to generation and 

maintenance of the observed SAT/SLP SW in observations. For example, the SAT and SLP SW 

often exhibits opposite phases between the tropical Atlantic and eastern Pacific. Barcikowska et 

al. (2017), who performed M-SSA on linearly detrended and smoothed SAT, SLP, and surface 

wind observations and CMIP5 pre-industrial control run, showed similar features. They, among 

others (Li et al. 2016; McGregor et al. 2014) postulate that an “atmospheric bridge” exists 

between the Atlantic and Pacific oceans, more specifically between the tropical regions of these 

two basins. Warming in the tropical Atlantic SATs forces a displacement in SLP features, 

strengthening the Walker circulation and leading to cooling in the eastern Pacific. However, 

more analysis is needed to determine what processes are responsible for the above features.  

Simulated data from CSIRO runs 2 and 9 were analyzed spatially and temporally to 

highlight their timescale, spatial patterns, and sequence of patterns to contrast them with 

observed features. These runs were chosen because they have a similar timescale of variability 

(~80-year mode). However, in both runs, spatial patterns and sequence of patterns were not 

similar to the observed SW. Most often, spatial patterns were smaller and had positive and 

negative anomalies contained within a small area, making it difficult to observe a sequence of 

events as well defined as the observed SW. When using the regional indices plots, it was 

apparent that the sequence of events was different. Regional variability did not show the SW 

originate in the North Atlantic, propagate to the North Pacific, etc.  

In the future, it would be advantageous to analyze different models from the CMIP5 

suite. The selection of model run is dependent on what analysis the observer wishes to perform. 



 
 

30 
 

With SAT-only observation, it was found that CSIRO had the highest amount of internal 

variability. This is not the case for combined SAT-SLP analysis, and it would be interesting to 

investigate how other runs from different models compare. Also, we based our decision to 

analyze these particular CSIRO runs because their variability has a similar timescale to 

observations. Pursuing runs with a similar sequence of patterns (such as Barcikowska et al. 

2017), or perhaps spatial patterns, would be interesting. Also, a portion of the variance was 

removed from the common EOF analysis. Reintroducing this variance, by normalizing the SAT 

and SLP data in each model run by the standard deviation of the first PC of the ensemble mean 

of internal observations, rather than the standard deviation of the particular model run, is a 

potential fix to this problem. Lastly, and probably the most interesting future direction, would be 

to isolate and describe what teleconnections aid in the propagation of the stadium wave.  
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