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ABSTRACT 

COMPREHENSIVE SAFETY ANALYSIS OF VULNERABLE ROAD USER 
INVOLVED MOTOR VEHICLE CRASHES 

by 
Farah J. Al-Mahameed 

 
The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Xiao Qin 

 

   This dissertation explores, identifies, and evaluates a multitude of factors significantly 

affecting motor vehicle crashes involving pedestrians and bicyclists, commonly defined as 

vulnerable road users (VRUs). The methodologies are guided by the concept of safe behavior of 

different parties that are primary responsible for a crash, either a pedestrian, a bicyclist or a driver, 

pertaining to roadway design, traffic conditions, land use and built environment variables; and the 

findings are beneficial for recommending targeted and effective safety interventions.  

The topic is motivated by the fact that human factors contribute to over ninety percent of the 

crashes, especially the ones involving VRUs. Studying the effect of road users’ behavior, their 

responses to the dynamics of traveling environment, and compliance rate to traffic rules is 

instrumental to precisely measure and evaluate how each of the investigated variables changes the 

crash risk. To achieve this goal, an extensive database is established based on data collected from 

sources such as the linework from topologically integrated geographic encoding and referencing, 

Google maps, motor vehicle accident reports, Wisconsin Information System for Local Roads, and 

Smart Location Dataset from Environmental Protection Agency. The crosscutting datasets 

represent various aspects of motorist and non-motorists travel decisions and behaviors, as well as 

their safety status. With this comprehensive database, intrinsic relationships between pedestrian-

vehicle crashes and a broad range of socioeconomic and demographic factors, land use and built 
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environment, crime rate and traffic violations, road design, traffic control, and pedestrian-oriented 

design features are identified, analyzed, and evaluated. 

The comprehensive safety analysis begins with the structural equation model (SEM) that is 

employed to discover possible underlying factor structure connecting exogenous variables and 

crashes involving pedestrians. Informed by the SEM output, the analysis continues with the 

development of crash count models and responsible party choice models to respectively address 

factors relating to roles in a crash by pedestrians and drivers. As a result, factors contributing to 

crashes where a pedestrian is responsible, a driver is responsible, or both parties are responsible 

can be specified, categorized, and quantified. Moreover, targeted and appropriate safety 

countermeasures can be designed, recommended, and prioritized by engineers, planners, or 

enforcement agencies to jointly create a pedestrian-friendly environment.  

The second aspect of the analysis is to specify the crash party at-fault, which provides 

evidence about whether pedestrians, bicyclists or drivers are more likely to be involved in severe 

crashes and to identify the contributing factors that affect the fault of a specific road user group. 

An extensive investigation of the available information regarding the crash (i.e., issued citations, 

actions/circumstances that may have played a role in the crash occurrence, and crash scenario 

completed by the police officer) are considered. The goal is to recognize and measure the factors 

affecting a specific party at-fault. This provides information that is vital for proactive crisis 

management: to decrease and to prevent future crashes. As a part of the result, a guideline is 

proposed to assign the party at-fault through crash data fields and narratives. Statistical methods 

such as the extreme gradient boosting (XGboost) decision tree and the multinomial logit (MNL) 

model are used. Appealing conclusions have been found and suggestions are made for law 

enforcement, education, and roadway management to enhance the safety countermeasures. 
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The third aspect is to evaluate the enhancements of crash report form for its effectiveness of 

reporting VRU involved motor vehicle crashes. One of the State of Wisconsin projects aiming to 

develop crash report forms was to redesign the old MV4000 crash report form into the new 

DT4000 crash report form. The modification was applied from January 1, 2017, statewide. The 

reason behind this switch is to resolve some matters with the old MV4000 crash report form, 

including insufficient reporting in roadway-related data fields, lack of data fields describing driver 

distraction, intersection type, no specification of the exact traffic barrier, insufficient information 

regarding safety equipment usage by motorists and non-motorists, unclear information about the 

crash location, and inadequate evidence concerning non-motorists actions, circumstances and 

condition prior to the crash. Hence, the new DT4000 crash form modified some existing data fields 

incorporated new crash elements and more detailed attributes. The modified and new data fields, 

their associated attribute values have been thoroughly studied and the effectiveness of improved 

data collection in terms of a better understanding of factors associated with and contributing to 

VRU crashes has been comprehensively evaluated. The evaluation has confirmed that the DT4000 

crash form provided more specific, details, and useful about the crash circumstances. 
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 : Introduction 

 Pedestrian and Bicyclist Safety in Numbers 

Walking and cycling are unique modes of transportation that provide a wide range of benefits 

for individuals and the public, such as increasing physical and psychological health, reducing 

environmental pollution, and maintaining low-stress levels. Cities around the world are becoming 

more aware of the added value that walking and biking bring to their communities in terms of 

healthier, safer, and more sustainable communities. This awareness has been informing the 

policymaking of city authorities that help grow this group of road users. According to USA Today, 

pedestrians are the largest single traveler group; moreover, the bicyclist’s group is growing for 

different activities including work, commuting, and leisure during the past decade. In fact, the 

percentage of people biking to work has increased by 60% over the past decade, while the 

percentage of people walking to their jobs has remained the same. With the growth of the walking 

and biking population, non-motorists safety becomes a pressing issue. Pedestrians and bicyclists 

are commonly referred to as vulnerable road users (VRUs) since they cannot be protected by a seat 

belt or an airbag like a motor-vehicle driver, hence they are more likely to be severely injured 

when involved in a crash with a motor vehicle. In 2016, a total of 37,461 people lost their lives in 

car accidents, among which pedestrian and bicyclists’ fatalities accounted for 16 percent and 2 

percent, respectively (R. Retting and Consulting 2017). 

Although a large number of cities across the United States have been trying to provide VRUs 

with a safer road environment. Statistics show that crashes related to such road users remain a 

major concern. In 2009, 4,092 fatalities (which accounted for 12 percent of all traffic fatalities) 

and 59,000 injuries (which made up 3 percent of all the people injured in traffic crashes) were 

recorded among pedestrians. On average, a pedestrian was killed every two hours and injured 
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every nine minutes in traffic crashes. While in 2016, 5,900 traffic crashes occurred in the United 

States resulted in 6,080 deaths among pedestrians, showing that some of these crashes involved 

one or more pedestrian fatalities. A pedestrian was killed every 1.5 hours in traffic crashes. 

Fatalities among bicyclists accounted for 2.2 percent of all traffic fatalities in 2016 (“Fatality 

Analysis Reporting System (FARS) | NHTSA” 2016). Although VRUs reported crashes to 

represent low numbers, they make up most of the fatalities among all crashes. In Wisconsin, a 

pedestrian was injured/killed every 7.1 hours, and a bicyclist was injured/killed every 10.2 hours. 

According to the year 2016 crash statistics, 1,252 vehicle crashes involving pedestrians, resulted 

in 1,181 injuries and 49 fatalities among pedestrians. Whereas, 918 vehicle-crashes involved 

bicyclists, resulting in 849 injuries and 11 fatalities among bicyclists in the State of Wisconsin (R. 

Retting and Consulting 2017).  

Walking and cycling are active transportation modes that are believed to help our 

communities be less car dependence and increase the overall physical activity levels (Lindsay, 

Macmillan, and Woodward 2011). Those sustainable modes of transportation play a vital role in 

reducing vehicle crashes and traffic congestion. This research is motivated by reducing the 

increasing traffic causalities and injuries concerning to VRUs, pedestrians in particular because of 

the high fatality count, and by contributing to a safe walking environment through extensive data 

collection and rigorous safety analysis and evaluation. 

Speaking of pedestrian safety, pedestrians are more subject to certain risks and more 

vulnerable than occupants in a vehicle: i) unlike drivers, pedestrians lack physical protection which 

makes them unprotected from the vehicle’s mass and speed (Wegman, Aarts, and Bastiaans 2006), 

ii) the size of a pedestrian is very small compared to the size of a vehicle, hence, it is not surprising 

that drivers overlook pedestrians in the roadway (Langham and Moberly 2003), iii) pedestrians 
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vary in their knowledge level on traffic rules, thus, drivers may fail to predict their behavior which 

depends on their level of compliance with the roadway rules drivers (Zhou et al. 2013), iv) the 

dedicated space for both roadway users is different, for example a driver can only use specific 

lanes, whereas a pedestrian may use any chance to cross whether at marked/unmarked locations 

or any other convenient location (Hill 1984), v) pedestrians are more prone to misjudging cars’ 

velocities or distances (Hills 1980) and usually commit failure to perceive vehicles due to 

obstructions or failing to maintain a high level of attention (Schofer et al. 1995; DiMaggio and 

Durkin 2002), and vi) in order for drivers to spot pedestrians, a wide horizontal angle of vision is 

required to locate pedestrians that are usually standing on the side of the road (Nugter et al. 

2017;Shahar et al. 2010). Accordingly, research of factors affecting the behavioral errors or faults 

committed by both road users to support the development of targeted countermeasures designed 

for drivers, with focus also on pedestrians, is essential. Several pedestrians, roadway, driver, 

vehicle, temporal, and environmental-related factors are considered in this research.  

1.1.1 Pedestrian-Bicyclist Issues 

 

Commuters can be discouraged to use active transportation modes considering those modes 

are less safe than transporting by vehicles (R. J. Schneider 2013; Buehler and Dill 2016). If this 

situation continues, pedestrian/bicyclist facilities will be underutilized and investment decisions 

on non-motorists road users will become more difficult when competing with other demands. 

Numerous studies have been conducted to address the urgent need of accommodating safe travels 

for non-motorists, and despite the substantial progress made in the area of crash data analysis and 

evaluation, pedestrian crashes in the United States continue to increase at a steady pace. More 

studies are needed to fill the knowledge gaps, create new analytical frameworks, and generate new 
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strategies to inform decision-making for all types of safety stakeholders: legislators and 

policymakers, engineers, planners, law enforcement, and safety education communities.  

Several main gaps in pedestrian crash model development have been identified. Generally, 

conventional crash prediction models are too simplistic to handle complex relationships among 

variables related to pedestrian crashes. Past research has shown that crashes involving pedestrians 

are strongly attributable to various factors such as land use, built environment, roadway, traffic, 

weather, and human factors. Furthermore, factors contribute to crashes in different manners, i.e., 

directly (the direct relationship between variables), indirectly (a relationship that is mediated via 

intervening variables), or collectively (direct and indirect). Researchers have developed statistical 

regression models (i.e., multivariate regression, multinomial logistic regression (MLR), and 

negative binomial (NB) models) to explain and quantify the relationships between explanatory 

variables and crashes. However, conventional crash prediction models are limited in establishing 

and identifying relationships beyond direct effects. The underlying relationships among these 

variables are very complicated, especially in the presence of omitted variables and/or confounding 

variables. Likely, such models may produce conflicting or biased estimates that confuse the users 

and decision-makers. Moreover, roadway design and traffic variables are often correlated, creating 

difficulty in precisely measuring the contribution of individual variables to crashes.  

Furthermore, in most pedestrian crash analysis, there is no distinction between a primary 

responsible party and a non-primary responsible party. Nor the corresponding contributing factors 

have been analyzed separately. Not every factor contributes equally to a crash. Some factors are 

more relevant to crashes where the driver is the primary responsible party than crashes where the 

pedestrian is the primary responsible party or vice versa; while other factors may affect both types 

of crashes without discrimination. It is necessary to include all variables in a single model while 
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still addressing, comparing, and measuring their respective roles towards different parties 

involved. Due to strikingly different consequences of parties involving in a pedestrian crash, 

investigating the association between primary responsible parties in a crash and their covariates is 

the top priority of this dissertation. 

However, determining the primary responsible party in a crash can be tricky as such 

information is not available in a crash report. Although few studies have explicitly researched this 

subject, a pedestrian and bicycle crash analysis study (R. Schneider, Stefanich, and Corsi 2015) in 

which the primary responsible party in crashes was identified for the State of Wisconsin offers 

emerges to be a crucial reference. In the study, the authors stated that citations and police narratives 

provided a reliable source to assign primary responsibility. Their analysis provided details on the 

primary responsible party of a crash occurrence for fatal pedestrian/bicycle crashes, and for severe 

pedestrian/bicycle crashes. The authors also highlighted the crash types that attributed crash 

responsibility to the pedestrian as well as describing the faults committed. Only 31% of the issued 

citations were relevant to faults and errors committed and believed to cause the crash, suggesting 

underreporting might be an issue. It is also noted that citations in fatal crashes were not captured 

in the database, this might occur since details of the crash are still not ready by the time the police 

officer issues the citation because of the absence of the involved parties. Another key reference is 

the pedestrian laws that provide a legal basis for making the decision of a responsible party. 

Lastly, the absence of strong measures describing pedestrian exposure (e.g., walking trips, 

and bicycle kilometers traveled) at specific locations can be a challenge for accurately modeling 

the number of crashes. The common practice to handle the exposure issue is to use proxy variables 

such as built environment, land use, and socio-demographic variables. Whilst these variables 

represent the level of pedestrian activities, many of them do not always translate into reliable 
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exposure measures. In this study, a comprehensive dataset integrating both site and area-level 

variables were assembled with the aim to retrieve accurate information regarding pedestrian 

activities from intersection and corridor features. Variables such as the presence of a pedestrian 

signal, the presence of curb extensions, and intersection signage and lighting are considered. The 

site-level related analysis is anticipated to be useful for correcting design and operational 

deficiencies but offer limited help for the planning of pedestrian networks. Like a highway 

network, the pedestrian-friendly facilities need to be consistent, continuous and connected. 

Therefore, the corridor level analysis may provide a promising connection for developing models 

to identify elements that stretch beyond a specific location. Furthermore, in the context of spatial 

continuity, appropriate treatments can be effectively identified and implemented based on the 

corridor analysis, in support of a proactive instead of a reactive planning process.  

 

1.1.2  At-Fault Party 

The importance of determining the fault status of each of the parties emerged from the 

transportation professional’s need to understand the injury severity of traffic crashes where the 

driver is at-fault or not-at-fault. This knowledge may be used to educate at-fault drivers and at-

fault pedestrians about the possible risk produced to other not-at-fault pedestrians and drivers. 

Besides, comparing the injury severity of the at-fault party with injury severity of the not-at-fault 

party allows the identification of the major factors affecting both parties. In this study, fault 

investigation included four different outputs: pedestrian at-fault, driver at-fault, both parties at-

fault, and none of the parties are at fault.  

This study carries an investigation of whether pedestrians or drivers were more likely to be 

involved in severe crashes, identified the contributing factors that affect the fault of a specific road 

user group, using 2017 to 2018 Wisconsin crash data provided by the WisTransPortal system. To 
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fulfill a gap in previous research, broad considerations of multiple sources of information 

regarding with the crash (e.g., driver behavior, pedestrian violating traffic law, citations issued at 

the crash scene) are researched. Identifying and quantifying the influential factors on crash 

occurrence can benefit incident management to build proactive crisis management plans and 

therefore, lessen the impact of future accidents. While studying the effect of the responsible party 

on the severity of a crash, researchers have often encountered the problem of the lack of a reliable 

methodology to determine crash responsibility. Researchers considered different responsibility 

analysis methods, trying to overcome this problem and to allow for a good prediction of the reason 

behind severe crashes.  

Over the last 20 years, developments have led to the use of several methods that may be 

categorized into two groups. According to the first group, trained police officers were asked to 

investigate the responsibility through the narrative description of the pre-prepared crash report. 

The second group developed crash fault scoring guidelines to allow researchers to evaluate the 

crash responsible party based on several explanatory variables. A value of the total score was used 

to consider a road user to be at or not at fault. Both methods imply responsibility evaluation without 

taking into consideration vulnerable road user (VRU) laws, citations issued at the scene, 

observations, and descriptions provided by witnesses at the crash scene. The goal of the developed 

guideline is to show a summary of studies utilizing these two methods to highlight the slight 

differences, provide a new guideline to enhance both methods, and apply the new guideline in a 

comparative analysis for crash severity prediction using the extreme gradient boosting (XGboost) 

decision tree technique and the classical discrete choice model;  the multinomial logit (MNL) 

model. XGboost, a data mining technique, is known to inherit the advantages of artificial 

intelligence (AI) approaches and statistical models. Interesting conclusions have been founded by 
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comparing the variables affecting crash severity levels triggered by road user’s faults. Suggestions 

were also formulated from different perspectives such as law enforcement, education, and roadway 

management to enhance crash injury severity.  

In this part of the study, the aim is bridging the gap through analyzing the crash injury severity 

caused by drivers and pedestrians separately. The special contributing factors leading a specific 

road user to be at-fault of the crash would be identified while the importance of each contributing 

factor on both, the pedestrian and the driver faulty would be examined and discussed as well. 

One of the study objectives focused on identifying the primary responsible party in a crash by 

reviewing citations and the police narrative details in crash reports. The analysis focused on 

highlighting the primary responsible party in fatal and severe injury VRU crashes. For example, 

among 80 fatal crashes involving pedestrians, the analysis showed that the driver is the primary 

responsible party in 53% of crashes, in 29% of crashes it was the pedestrians’ responsibility, in 

7.5% of crashes it was both parties’ responsibility, and 11% of crashes did not suggest any 

responsible party. The authors recommended improvements in police crash reporting practices to 

record more details of the crash (e.g., existing crash reports shows alcohol involvement in a crash 

instead of showing the intoxicated party).  

 

  DT4000 Crash Form  

One of the safety initiatives to improve traffic safety is to reform/revise the crash reporting 

form (MV4000) into (DT4000). Some issues with the MV4000 crash form were regarding specific 

engineering fields such as poor reporting of roadway curvature, no data field indicating driver 

distraction, no specification of the exact traffic barrier, safety equipment used by the individual 

(motorist and non-motorists), imprecise location of the non-motorists at the time of the crash. The 
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change in the DT4000 crash form involved proposing new crash elements and more detailed 

attributes. It is clear that the DT4000 crash form captures more details about the crash 

circumstances. 

An understanding of the newly added data fields in the new driver crash report form 

(DT4000), and how they are differently identified from the Motor Vehicle (MV4000) accident 

report form, in addition to determining if the new attributes add significant value to the previously 

used data fields, is important to assess the benefit of the redesign of the crash report and is 

important to make the transportation system safer.  

 

  Dissertation Structure 

The organization of this dissertation is as follows: succeeding in this chapter, Chapter 2 

provides a salient review of relevant research conducted previously, including current issues in 

safety research of VRUs, especially pedestrians, the findings, and limitations. Chapter 3 attempts 

to summarize methodologies used in pedestrian and bicyclist-vehicle crash analysis. Chapter 4 

analyzes a large number of variables involving VRUs, especially pedestrians, based on a 

comprehensive dataset of socio-demographic, temporal, and environment-related variables, traffic 

and road characteristics, and human characteristics at the area wide-level using the SEM technique. 

Chapter 5 provides the comparison of crash patterns based on the primary responsible party for a 

crash. Finally, Chapter 6 provides an extensive search through the newly proposed and reorganized 

crash data fields of the DT4000 crash form.  
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 : Literature Review  

This chapter is provided to highlight issues in the literature conducted throughout the years 

for developing VRU crash prediction models. This section will discuss several exposure measures 

and risk factors associated with crashes involving VRUs. Considering the broad field of crash 

modeling, it briefly discusses two parts of the methodology (1) traditional crash prediction models 

(CPMs), (2) structural equation model (SEM). In the end, a reader, whether a policymaker, an 

engineer, or a planner will be more familiar with the gaps and challenges in crash modeling that 

are associated with the previous research. Lastly, this chapter serves as a base for the understanding 

of the current research framework. 

2.1 Exposure  

“Pedestrian exposure is defined as the exposure risk of pedestrians to collisions with motor 

vehicles (R. Schneider, Stefanich, and Corsi 2015)”. The definition is not prescriptive as exposure 

can be measured from different perspectives. One of them is the geographic scope and spatial unit 

of the study. The geographic scale has always been a crucial component of safety research. To 

select the suitable aggregation level for their safety problems, researchers needed to understand 

the effect of spatial aggregation on their analysis outcome. A wide range of exposure measures 

and corresponding risk factors have been used by researchers, such as site-level or micro-level 

(Elvik 2009), and area wide-level or macro-level (Wier et al. 2009). For instance, the site-level 

analysis is conducted at points (i.e., mid-blocks, road segments, and intersection street crossings), 

whereas, area wide-level analysis takes place at corridors, zones (i.e., TAZ, Census tract, and 

Census block group), and regions (i.e., city, county, and state). Regardless of the scale, VRU 

volume data is rarely available and difficult to measure and have always been one of the limitations 
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facing researchers. A summary of VRU proxy exposure measures used throughout prior studies at 

the site-level and areawide-level is as follows.   

2.1.1  Site-Level VRUs Related Exposure Measures 

Due to Radford and Ragland 2004, pedestrian exposure measured by pedestrian volume is the 

pedestrian’s rate of contact with potentially harmful vehicular traffic. Pedestrian exposure is 

expressed in pedestrians per hour (Dong et al. 2019; Sivasankaran and Balasubramanian 

2020)(Raford and Ragland 2004). Mainly, pedestrian volume data is derived from pedestrian travel 

demand models (Raford, Street, and Ragland 2006).  

Studies used proxy variables of VRU exposure due to its measurement difficulty, and the fact 

that the actual observation of the activity is not available. Such studies introduced proxy variables 

for pedestrian/bicycle volumes, intending to study the exposure effects of this group of road users 

by including several proxy variables. For example, some researchers used “population” and 

“percentage of people walking/biking to work” as a proxy of pedestrian/bicycle exposure due to 

lack of AADT data. Others used vehicle kilometers traveled (VKT), vehicle miles traveled (VMT), 

and the number of VRUs walking and biking to work. Other exposure measures that are exclusive 

for pedestrians are i) several trips, ii) traveled distance, iii) several pedestrians, and iv) time spent 

traveling. Sometimes, roadway characteristics such as (higher functional classes) might provide a 

general conclusion that the area of focus will attract more pedestrian and traffic exposure. Error! 

Reference source not found. provides a review of proxy exposure measures used at the site-level. 
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Table 2-1: A Review of Proxy Exposure Measures Used At the Site-Level. 

Author(s), (year) Exposure Measures 

J. Lee et al. (J. Lee et al. 2015); Y. Zhang et al. (J. Lee et 

al. 2015; Y. Zhang et al. 2015); Bu et al. (J. Lee et al. 

2015; Y. Zhang et al. 2015) 

Population 

Cameron (Cameron 1982); Tobey  (Tobey 1983); 

Papadimitriou et al. (Papadimitriou, Yannis, and Golias 

2012) 

Vehicles volume encountered 

while crossing 

Cameron (Cameron 1982); Tobey  (Tobey 1983) 

The product of Pedestrian and 

vehicle volumes 

 

(Strauss, Miranda-Moreno, and Morency 2013) a 

(Strauss, Miranda-Moreno, and Morency 2013); Strauss 

et al. b (Strauss, Miranda-Moreno, and Morency 2014) 

Million cyclists/pedestrians per 

unit of time  

 

Lindsey et al. (Lindsey, n.d.); (Hankey and Lindsey 

2016)(Hankey and Lindsey 2016)  

Bicyclist volumes  

 

Raford and Ragland (Raford and Ragland 2004) 
Average annual pedestrian volume  

 

Papadimitriou et al. (Papadimitriou, et al. 2012) 

The product of vehicle volume 

and pedestrian crossing time  

 

Amoh-Gyimah et al. (Amoh-Gyimah, Saberi, and Sarci 

2016) 

Roadway characteristics (i.e., 

higher functional classes), VKT, 



14 
  

VMT, and number of pedestrian 

and bicyclists walk and bike to 

work 

Hankey and Lindsey (Hankey and Lindsey 2016) Pedestrian volumes  

Liggett et al. (Liggett et al. 2016)    Average Number of Riders  

Qin and Ivan (Qin and Ivan 2001); Schneider et al. (R. J. 

Schneider et al. 2012); Schneider et al.   (R. J. Schneider, 

Grembek, and Braughton 2013); Radwan et al. (Radwan 

et al., 2016); Molino et al. (Molino et al. 2009); Radwan 

et al. (Radwan et al., 2016); Bu et al. (Bu et al. 2007); 

Greene-Roesel et al. (Greene-Roesel, Diogenes, and 

Ragland 2007) 

Number of VRUs, Time spent 

traveling, Number of trips, 

Traveled distance 

 

 

2.1.2  Area-Level VRUs Related Exposure Measures 

Area-level studies on the VRU crash used a different set of exposure measures. VMT, daily 

vehicle miles traveled (DMTV), vehicular traffic volume, employment data, parking signs density, 

traffic signal density, and population density have been used as both proxy bicycle and proxy 

pedestrian exposure measures. Explicitly, bike lane density and number of bicycle commuters are 

commonly used bicycle exposure measures. 

Table 2-2 provides a review of research analysis using exposure variables conducted at the 

areawide-level. According to Turner and colleagues (2017), the areawide-level includes several 

area scales, such as networks, neighborhoods, systems, regional, city, and state.  
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Table 2-2: Exposure Measures at the Area-Level 

Author(s), (year) Exposure Measures 

Chu (Chu 2009); Siddiqui et al. (Siddiqui, Abdel-Aty, 

and Choi 2012a); National Complete Streets Coalition 

2014; Schneider et al. (Schneider et al. 2015); Alluri 

(Alluri et al. 2015); Retting and Rothenberg (Retting 

and Rothenberg 2015); X. Wang et al. (X. Wang et al. 

2016); Cai et al. ((Siddiqui, Abdel-Aty, and Choi 

2012a; J. Lee, Abdel-Aty, and Jiang 2015; Cai et al. 

2017); Saha et al. (Siddiqui, Abdel-Aty, and Choi 

2012a; J. Lee, Abdel-Aty, and Jiang 2015; Cai et al. 

2017); Alliance for Biking and Walking 2016; Cai et 

al. (Cai et al. 2017); (J. Lee, Abdel-Aty, and Jiang 

2015)((J. Lee, Abdel-Aty, and Jiang 2015)  

Population Density 

(J. Lee, Abdel-Aty, and Jiang 2015) (Rasmussen, 

Rousseau, and Lyons 2013); Lyons et al. (Lyons et al. 

2013); Siddiqui et al. (Siddiqui, Abdel-Aty, and Choi 

2012a); Schneider et al. (Schneider et al. 2015); J. Lee 

et al. (J. Lee, Abdel-Aty, and Jiang 2015); Cai et al. 

((Siddiqui, Abdel-Aty, and Choi 2012a; J. Lee, 

Abdel-Aty, and Jiang 2015; Cai et al. 2017) 

VMT 

Siddiqui et al. (Siddiqui, Abdel-Aty, and Choi 2012a); 

(J. Lee, Abdel-Aty, and Jiang 2015) (J. Lee, Abdel-
Employment density  
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Aty, and Jiang 2015); Cai et al. ((Siddiqui, Abdel-

Aty, and Choi 2012a; J. Lee, Abdel-Aty, and Jiang 

2015; Cai et al. 2017) 

(Siddiqui, Abdel-Aty, and Choi 2012a; J. Lee, Abdel-

Aty, and Jiang 2015; Cai et al. 2017) (Rasmussen, 

Rousseau, and Lyons 2013); Lyons et al. (Lyons et al. 

2013); Blaizot et al. (Blaizot et al. 2013) 

Number of trips per mode 

Saha et al. (Saha et al. 2018); Cai et al. (Cai et al. 

2017); Schneider et al. (Schneider et al. 2015) 
Daily vehicle miles traveled (DMTV) 

Schneider et al. (Schneider et al. 2015); (J. Lee, 

Abdel-Aty, and Jiang 2015) (J. Lee, Abdel-Aty, and 

Jiang 2015); NACTO 2016; Alliance for Biking and 

Walking 2016; Saha et al. (J. Lee, Abdel-Aty, and 

Jiang 2015)  

Number of bike commuters 

Jacobsen (Jacobsen 2003); Chu (Chu 2009) 
A portion of walking/biking to work 

trips 

Chen (Chen 2015); J. Lee (Guler and Grembek 2016); 

Jacobsen (Jacobsen 2003); Blaizot et al. (Blaizot et al. 

2013); National Complete Streets Coalition 2014; 

Schneider et al. (Schneider et al. 2015); Chen (Chen 

(2015); Alluri et al. (Alluri et al. 2015); J. Lee et al. 

(Guler and Grembek 2016); Alliance for Biking and 

Walking 2016; Salon (Salon 2016) 

Number of total trips; Kilometers 

walked/biked; Distance traveled, time 

spent traveling; Number/percent of 

walk commuters; Traffic signals 

density, bike lane density, and 

parking signs density 
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2.1.3  Summary 

As clearly shown in Error! Reference source not found. and Table 2-2, there is a variety of 

proxy exposure measures, and that is regarding the fact that there is no uniform definition of 

exposure. For example, Greene-Roesel et al. (2007) expressed that “there is no single best 

definition of pedestrian exposure”, and this applies to bicycle exposure as well. 

Researchers have used exposure measures at the site-level such as population density, AADT, 

pedestrian/bicycle volume (AADP/AADB), VMT, as well as walking and bicycling distance 

which may be used as site-level proxy exposure measures for future research. At the area-level, 

commonly used proxy exposure measures are found to be population density, VMT, employment 

density, number of pedestrians/bicyclists, and number of trips per mode. VMT and population 

density are the most popular proxy exposure measures for VRUs. However, it is noted that studies 

that included VMT as a proxy exposure measure, showed that the performance did not show a 

level of efficiency as compared to studies conducted at a specific facility (site-level).  

 

2.2  Risk Factors  

This section briefly discusses various factors that showed an influence on the risk of VRUs 

crashes and crash frequencies and injuries. Basically, risk factors are classified into two categories: 

i) site-level risk factors that are linked to a certain facility, and ii) area-level risk factors that are 

linked within areawide geography.  

 

2.2.1  Site-Level VRUs-Related Risk Factors 

Varying risk factors have been used in different site-level VRU crash studies as presented in 

Table 2-3. In general, site-level risk factors can be categorized into three groups: i) 

design/infrastructure characteristics (e.g., speed limits, median type, and on/off-road bike lanes)  

ii) intersection and segment characteristics (e.g., bus stop density, sidewalk presence, 
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paved/unpaved shoulders, traffic control devices, and the number of lanes), iii) individual’s 

characteristics (e.g., visibility (fluorescent clothing), vehicle’s size and age, VRU age), and iv) 

demographic and socioeconomic characteristics (e.g., employment (Qin and Ivan 2001)and 

population density, and land use). Table 2-3 shows risk factors influencing VRU safety at the site-

level. Many site-level studies used population and employment density, posted speed limits, and 

bus stop density. 

Table 2-3: List of Site-level VRU Risk Factors 

Risk Factor 

Category 

Previous Studies Risk Factors 

Design/Infrastructure 

characteristics 

Strauss, Miranda-Moreno, and 

Morency (Strauss, Miranda-

Moreno, and Morency 2013; Wei 

and Lovegrove 2013); Miranda-

Moreno, Strauss, and Morency 

(Miranda-Moreno, Strauss, and 

Morency 2011; Y. Wang and 

Kockelman 2013); Wei and 

Lovegrove (Miranda-Moreno, 

Strauss, and Morency 2011; Y. 

Wang and Kockelman 2013); 

Karl Kim, Pant, and Yamashita 

(Karl Kim, Pant, and Yamashita 

2010); DaSilva, Smith, and Najm 

Bus-stop density; Posted speed 

limit; Off-road bike lanes; 

Paved/unpaved shoulders; 

Number of lanes; Roadway 

lighting conditions; Intersection 

density; Motorized traffic 

volume; Shoulder width; Median 

type; Work Zones; 

Paved/unpaved sidewalks; On-

street parking; Traffic control 

type; Marked/unmarked  

crosswalks; Total lane 

kilometers, Bicycle lane 
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(DaSilva, Smith, and Najm 

2003); Karen Dixon et al. (Karl 

Kim, Pant, and Yamashita 2010); 

Risley (Risley 1985); Marshall, 

Garrick, and Hansen (Marshall, 

Garrick, and Hansen 2008); 

Hamann and Peek-Asa (Hamann 

and Peek-Asa 2013; Teschke et 

al. 2012); McMahon et al. 

(McMahon et al. 1999; Karen 

Dixon, et al. 2015); Aziz, 

Ukkusuri, and Hasan (Aziz, 

Ukkusuri, and Hasan 2013); 

Zegeer et al. (Zegeer et al. 2001); 

(Ulfarsson, Kim, and Booth 

2010; Sullivan and Flannagan 

2002; Haleem, Alluri, and Gan 

2015); Karl Kim, Pant, and 

Yamashita (Karl Kim, Pant, and 

Yamashita 2010); Wei and 

Lovegrove (Karl Kim, Pant, and 

Yamashita 2010); Fitzpatrick, 

Avelar, and Turner (Fitzpatrick, 

kilometers; Arterial–local 

intersection percentage 
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Avelar, and Turner 2018); Karen 

Dixon et al. (Karen Dixon, et al. 

2015); Obaidat et al. (Obaidat et 

al. 2007); Shaw et al. (Shaw et al. 

2016); McMahon et al. 

(McMahon et al. 1999); Marshall, 

Garrick, and Hansen (Marshall, 

Garrick, and Hansen 2008); C. 

Lee and Abdel-Aty (C. Lee and 

Abdel-Aty 2005); Wei and 

Lovegrove (C. Lee and Abdel-

Aty 2005); Zegeer et al. (Zegeer 

et al. 2001); Wei and Lovegrove 

(Wei and Lovegrove 2013) 

Demographic and 

socioeconomic 

characteristics 

Siddiqui, Abdel-Aty, and Choi 

(Siddiqui, Abdel-Aty, and Choi 

2012a); J. Lee, Abdel-Aty, and 

Jiang (J. Lee, Abdel-Aty, and 

Jiang 2015; Ukkusuri, Hasan, and 

Aziz 2011); Karl Kim, Pant, and 

Yamashita (Karl Kim, Pant, and 

Yamashita 2010); Siddiqui, 

Abdel-Aty, and Choi (Siddiqui, 

Population; Employment density; 

Median household income; Land 

use; Non-motorized traffic 

volume; Living under the poverty 

level; Job count 
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Abdel-Aty, and Choi 2012a); 

Narayanamoorthy, Paleti, and 

Bhat (Siddiqui, Abdel-Aty, and 

Choi 2012a); Amoh-Gyimah, 

Saberi, and Sarvi (Amoh-

Gyimah, Saberi, and Sarvi 2016); 

Karl Kim, Pant, and Yamashita 

(Karl Kim, Pant, and Yamashita 

2010); DaSilva, Smith, and Najm 

(DaSilva, Smith, and Najm 

2003); Karl Kim, Pant, and 

Yamashita (Karl Kim, Pant, and 

Yamashita 2010) 

Individual’s 

characteristics 

(VRUs/drivers) 

Stoker et al. (Karl Kim, Pant, and 

Yamashita 2010); Rodgers 

(Rodgers 1995); Harruff, Avery, 

and Alter-Pandya (Harruff, 

Avery, and Alter-Pandya 1998); 

Luoma, Schumann, and Traube 

(Luoma, Schumann, and Traube 

1996; DiMaggio and Durkin 

2002); C. Lee and Abdel-Aty (C. 

Lee and Abdel-Aty 2005); 

Pedestrian distraction (using 

cellphone); VRU Age; Visibility 

(wearing visible clothing); Driver 

age; Driver gender; Driver 

distraction; VRU gender; Vehicle 

size; Number of vehicle 

occupants; Crossing from non-

crosswalk locations; VRU blood 

alcohol concentration (BAC) 
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DiMaggio and Durkin (C. Lee 

and Abdel-Aty 2005); Wiechel 

and Guenther (Wiechel and 

Guenther 1989); Atkins et al. 

(Atkins et al. 1988); Das and Sun 

(S. Das and Sun 2015); Ernst 

(Ernst 2004); C. Lee and Abdel-

Aty (C. Lee and Abdel-Aty 2005; 

Huemer 2018b; Öström and 

Eriksson 2001) 

 

2.2.2  Area-level VRUs Related Risk Factors 

Similar to site-level risk factors, a variety of risk factors have been studied regarding their 

effects on VRU crashes at the area-level. Error! Reference source not found. lists the area-

evel risk factors used in previous studies. It shows plenty of studies focused on the land use 

effect on VRU safety. Many other pedestrian and bicyclist risk factors were highlighted such as 

population density, VRU age, and lower-income. A considerable amount of the studies were 

conducted at the area-level to explore VRU crash-related features (Narayanamoorthy, Paleti, and 

Bhat 2013; Parkin, Wardman, and Page 2007; Wei and Lovegrove 2013; Abdel-Aty et al. 2013; 

(Gladhill and Monsere 2012) Chen 2015; Hamann and Peek-Asa 2013; Strauss, Miranda-

Moreno, and Morency 2013; Miranda-Moreno, Strauss, and Morency 2011; Siddiqui, Abdel-

Aty, and Choi 2012b; (Wei and Lovegrove 2013; P. Chen 2015) (Wei and Lovegrove 2013; P. 

Chen 2015). Many area-level studies (Narayanamoorthy, Paleti, and Bhat 2013; Parkin, 

Wardman, and Page 2007) use data aggregated at the census tract level, and some other studies 
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(M. Abdel-Aty et al. 2013; Wei and Lovegrove 2013) used TAZ-level aggregated data. Few 

studies (Gladhill and Monsere 2012) used the grid layout areas. Table 2-4 shows common risk 

factors influencing VRU safety at an aggregated level (area-level). 

Table 2-4: List of Area-level VRU Risk Factors 

Category Previous Studies Risk Factors 

Traffic characteristics 

Wier et al. (Wier et al. 2009; C. 

Lee and Abdel-Aty 2005; 

Loukaitou-Sideris, Liggett, and 

Sung 2007; M. Abdel-Aty et al. 

2013); Hamann and Peek-Asa 

(Wier et al. 2009; C. Lee and 

Abdel-Aty 2005; Loukaitou-

Sideris, Liggett, and Sung 

2007; Abdel-Aty et al. 2013); 

Kaplan and Giacomo Prato 

((Kaplan and Giacomo Prato 

2015)), Jacobsen (Jacobsen 

2003; Elvik 2009; Prato et al. 

2016); Abdel-Aty et al. (M. 

Abdel-Aty et al. 2013; J. Lee, 

Abdel-Aty, and Jiang 2015); 

Siddiqui, Abdel-Aty, and Choi 

(Siddiqui, Abdel-Aty, and Choi 

Vehicle traffic volume; Speed 

limit; Walking/biking trips; 

Truck percentage 
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2012a); Demetriades (Siddiqui, 

Abdel-Aty, and Choi 2012a); 

Abdel-Aty et al. (M. Abdel-Aty 

et al. 2013); Wier et al. (Wier et 

al. 2009); Karen Dixon, et al. 

(Karen Dixon, et al. 2015); 

Retting (R. A. Retting 1993) 

Landuse characteristics 

Amoh-Gyimah, Saberi, and 

Sarvi (R. A. Retting 1993); 

Ukkusuri, Hasan, and Aziz 

(Ukkusuri, Hasan, and Aziz 

2011; K Kim, Brunner, and 

Yamashita 1953); X. Wang et 

al.  (X. Wang et al. 2016); Wier 

et al. (Wier et al. 2009; 

Siddiqui, Abdel-Aty, and Choi 

2012a); Y. Wang and 

Kockelman (Y. Wang and 

Kockelman 2013); R. Noland 

and Quddus (R. Noland and 

Quddus 2004; LaScala, Gerber, 

and Gruenewald 2000; M. 

Mixed land use, Density of 

public schools, Income level 
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Abdel-Aty et al. 2013; Roberts, 

Norton, and Taua 1996) 

Demographic and 

socioeconomic 

characteristics 

LaScala, Gerber, and 

Gruenewald (R. Noland and 

Quddus 2004; LaScala, Gerber, 

and Gruenewald 2000; Abdel-

Aty et al. 2013; Roberts, 

Norton, and Taua 1996); 

Abdel-Aty et al. (M. Abdel-Aty 

et al. 2013; Greene-Roesel, 

Diogenes, and Ragland 2007; 

Miranda-Moreno, Strauss, and 

Morency 2011; Loukaitou-

Sideris, Liggett, and Sung 

2007); Loukaitou-Sideris, 

Liggett, and Sung (Loukaitou-

Sideris, Liggett, and Sung 

2007; Siddiqui, Abdel-Aty, and 

Choi 2012b; R. B. Noland, 

Klein, and Tulach 2013; J. Lee, 

Abdel-Aty, and Jiang 2015); J. 

Lee, Abdel-Aty, and Choi 

(Loukaitou-Sideris, Liggett, 

Population density; Number of 

licensed drivers; Density of 

minority households, Poor 

neighborhoods; Vehicle 

ownership; Unemployment rate; 

Household income; Percentage 

of the low-income population; 

Education percentage; Crime 

Density; Household size; 

Vehicle ownership 
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and Sung 2007; Siddiqui, 

Abdel-Aty, and Choi 2012b; R. 

B. Noland, Klein, and Tulach 

2013; J. Lee, Abdel-Aty, and 

Jiang 2015); (J. Lee et al. (J. 

Lee et al. 2015); Ukkusuri, 

Hasan, and Aziz (Ukkusuri, 

Hasan, and Aziz 2011); 

LaScala, Gerber, and 

Gruenewald (LaScala, Gerber, 

and Gruenewald 2000); Cottrill 

and Thakuriah (Cottrill and 

Thakuriah 2010); McMahon et 

al. (McMahon et al. 1999); 

(McMahon et al. 1999); Qin 

and Ivan (Qin and Ivan 2001) 

Roadway 

geometry/Infrastructure 

Jacobsen (Jacobsen 2003; Elvik 

2009; Prato et al. 2016); 

Pucher, Komanoff, and 

Schimek (Pucher, Komanoff, 

and Schimek 1999); Wei and 

Lovegrove (Wei and 

Lovegrove 2013; P. Chen 

Presence of bike paths; Traffic 

signal density; Number of  

pedestrian crossings; Off-arterial 

bicycle routes; Signal density; 

Presence of parking signs; 

Number of vehicle trips; Minor 

and major arterial length; Road 
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2015), Abdel-Aty et al. (M. 

Abdel-Aty et al. 2013; J. Lee, 

Abdel-Aty, and Jiang 2015); 

Chen ((P. Chen 2015); X. 

Wang et al. (X. Wang et al. 

2016); (Y. Wang and 

Kockelman 2013); 

Moeinaddini, Asadi-Shekari, 

and Zaly Shah (Moeinaddini, 

Asadi-Shekari, and Zaly Shah 

2014); Y. Zhang et al. (Y. 

Zhang et al. 2015); Dai and 

Jaworski (Dai and Jaworski 

2016); Cai et al. (Cai et al. 

2016); Guo et al. ((Guo et al. 

2017); Demetriades 

(Demetriades 2004); Abdel-Aty 

et al. (M. Abdel-Aty et al. 

2013); Wier et al. (Wier et al. 

2009). 

density, Percentage of 3-leg 

intersections; Average 

intersection spacing; Transit stop 

density; School access; Sidewalk 

density; Street network size; 

Roadway length; Density of 

major roads; Number of 

intersections; Clustered road 

networks; Segments with fixed 

gradients; Distance to transit 

trips, VRU and driver age; 

Signalized intersections density; 

Sidewalk length, Local road 

density; Network pattern 

(irregular, grid) 

 

2.2.3  Summary 

Studies mentioned in Table 2-3 and Table 2-4 involved a wide range of variables connected 

to site-level and area-level VRU crash risk. Many studies only used a limited number of risk factors 
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due to data unavailability and/or data collection complexity. As a result, concluding reliable 

inferences from the studied variables from both sites and areas becomes a challenging task. 

Besides, some site-level variables (i.e., median type, and work zone sites) and area-level variables 

(i.e., signalized intersections density, and several pedestrian crossings) have been tested in a few 

numbers of studies, recommending more intensive research to be conducted to reach more 

comprehensive conclusions, since contradicting results have been detected. Lastly, in view of the 

fact that pedestrian and bicycle crash-related variables are continuous in nature, for example, the 

percentage of bike lanes that provide continuous, shared side path density, and sidewalk density, 

such accurate variables can be conveniently defined and collected in area-level studies. 

2.3  Primary Responsible Party in VRU Crashes  

Safety policies are put together and translated into traffic safety rules by transportation 

officials. For instance, drivers are demanded to drive below or at speed limits and should maintain 

their vehicles at a complete stop at the stoplight. Such rules are set to assure safety for all users on 

the road. However, drivers violate these rules sometimes and are involved in crashes. For example, 

58% of traffic crash fatalities resulted from intoxicated driving and speeding (National Highway 

Traffic Safety Administration (NHTSA) 2016). To mitigate the frequency and severity of traffic 

crashes, there is an urgent need to understand the crash contributing factors. In fact, researchers 

have done a considerable amount of research on crash contributing factors. However, few have 

considered the human behavior factor in crashes and how it influences crash severity based on the 

primary responsible party. 

In light of research considering the pedestrian responsibility of crashes, pedestrians’ rule 

violations that were commonly found to be associated with crashes are as follows: i) failing to 

yield the right of way, ii) disobeying traffic signals, and iii) intoxicated pedestrians (Baltes 1998; 
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Preusser et al. 2002; Oxley et al. 2005; Stutts, Hunter, and Pein 1996). Wootton analyzed 

pedestrian crashes and stated that pedestrian behavior, alcohol use (by pedestrians and drivers), 

and poor pedestrian visibility at night coupled with violation of driver expectations were the most 

significant causes of pedestrian-vehicle crashes (Isaac Adam Wootton 2006). An interesting 

conclusion was driven by a study in Vancouver, Canada, which stated that the distribution of crash 

responsibility between the several parties (pedestrian, motorist, or both) varied with the 

enforcement laws and the local safety culture (Cinnamon, Schuurman, and Hameed 2011). 

Ulfarsson and colleagues conducted a study to predict the primary responsible party. The authors 

stated that parties found responsible were pedestrians (59%), drivers (32%), and both road users 

(9%) (Ulfarsson, Kim, and Booth 2010). Kim et al. concluded that when the pedestrian is 

responsible, a higher fatality risk occurs in the crash compared to crashes where the motor-vehicle 

driver is the primary responsible party (J.-K. Kim et al. 2008; 2010). Some studies concluded that 

commonly, pedestrians are more responsible party compared with drivers such as (Preusser et al. 

2002; C. Lee and Abdel-Aty 2005). However, other studies contradict such a statement (J.-K. Kim 

et al. 2008; Karl Kim, Brunner, and Yamashita 2008).   

Some other studies focused on analyzing crashes were only the primary responsible party is 

the non-motorized road user such as (Islam and Jones 2014). Salon and McIntyre (2018) have 

recently published a study where the factors related to pedestrian and bicyclist’s crash severity 

were dependent on the primary responsible party. It is hypothesized that the occurrence of one 

crash is more related to the characteristics of the primarily responsible party involved in that crash 

(C. Lee and Abdel-Aty 2005). Lee and Abdel-Aty (C. Lee and Abdel-Aty 2005) studied 

pedestrian-vehicle crashes at signal-controlled intersections in Florida and found that intoxicated 

pedestrians were more likely to get involved in nighttime crashes than intoxicated motor-vehicle 
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drivers. When in fact, motor-vehicle drivers were more correlated to crashes occurring at 

controlled intersections. Similarly, the severity outcome of one crash could also be associated with 

the characteristics of the primarily responsible party. However, in a study of pedestrian injury 

patterns, the authors concluded that more severe crashes happened when drivers violated speed 

limits compared to crashes where drivers were inattentive (Damsere-Derry et al. 2010). Factors 

influencing the crash severity of crashes where pedestrian are the primary responsible party, in 

urban and rural locations in the State of Alabama indicated that the studied variables had different 

influencing effects between rural and urban pedestrian responsible accidents (Islam and Jones 

2014).  

Regarding research in bicycle-vehicle crashes, many errors are highlighted for the different 

driver or bicyclist error types. 56% of bicycle-car crashes in Germany occurred when turning at 

an intersection or entering the road from a private property were found to occur because the motor-

vehicle driver is the primary responsible party (Schreck 2017). Rasanen & Summala (1998), 

showed that regarding crash statistics, bicyclists’ rule-violations is behind crashes involving 

bicyclists, and in 45% of those crashes with bicyclists as the primary responsible party, errors are 

common as follows: i) wrong path cycling (in 17.1% of crashes), ii) bicycling too fast for 

conditions (in 7.5% of crashes), and iii) errors while entering fluent traffic (in 6.9% of crashes). 

While in single-bike crashes, police reports have four main common errors; i) cycling too fast for 

conditions (in 17.0% of crashes), ii) alcohol usage (in 15.9% of crashes), iii) cycling on the wrong 

path (in 4.6% of crashes), and iv) cycling without using lights and other technical issues (in 3.6% 

of crashes). In a study by Huemer (2018), results showed that 55% of bicyclist related crashes 

occurred where bicyclists cycled on the wrong cycling path, and 29% of bicyclists did not use their 

light while cycling at night (Huemer 2018a). According to the modeling procedure, the primary 
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responsible party was used as the model’s dependent variable such in (C. Lee and Abdel-Aty 2005; 

Karl Kim, Brunner, and Yamashita 2008; Ulfarsson, Kim, and Booth 2010; G. Zhang, Yau, and 

Zhang 2014), and used as an explanatory variable such in (J.-K. Kim et al. 2008; G. Zhang, Yau, 

and Zhang 2014; Haleem, Alluri, and Gan 2015).  

For research focusing on the primary responsibility among both VRUs, a study (R. Schneider, 

Stefanich, and Corsi 2015) provided an analysis of VRUs crashes that occurred in Wisconsin.  

Previous studies of VRUs being the primary responsible party of the crash occurrence are 

limited. Furthermore, there is no noteworthy research explaining how an explanatory variable may 

affect responsible and non-responsible VRUs within the same crash. It is expected that the new 

knowledge of different crash severity outcomes pertaining to the responsible party may enhance 

the process of informing highly rewarding safety policies and fruitful pedestrian and bicyclist's 

awareness. 

 

2.4  Dominant Factors of VRU’s Crashes 

Many studies that shed light on dominant factors related to pedestrian and bicycle crashes 

have examined roadway geometric characteristics such as the number of lanes, median type, speed 

limits, and speed ratio (i.e., the ratio of speed from crash data over the posted speed limit). Morency 

et al. confirmed the association between wider roads and higher pedestrian-related crash 

frequency, since a wider road may encourage drivers to speed and jeopardize pedestrians. 

Designated right-turn lanes and nearby driveway crossings were associated with higher pedestrian 

crash risk, while median crossing refuges were associated with lower pedestrian crash risk at 

intersections (10). Quiet streets, gentle slopes, and the absence of streetcar tracks are some design 

features associated with lower bicyclist crash risk (11). Moreover, cycle tracks (11, 12), traffic 
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diverters, and local streets tend to separate cyclists from the moving traffic, leading to fewer 

crashes (11). Roads with more traffic signals, street parking signs, and automobile trips are 

associated with more frequent bicycle crashes. Roadways with a speed limit of 35 mph and 

intersection density are positively related to the likelihood of pedestrian and bicyclist crashes (11). 

Additionally, Cai et al. 2016 stated that traffic analysis zones (TAZs) with longer sidewalk 

lengths, more pedestrians, and more employment are more susceptible to have pedestrian crashes, 

while TAZs with longer sidewalk lengths, more employment, and higher population density are 

more likely to have bicyclist crashes (13). Road speed limit also found to be affecting bicycle crash 

frequency, as Siddiqui and colleagues, 2012 stated that highways with speed limit >35 mph are 

more likely to have bicyclist crashes. The density of signalized intersections, arterial, and local 

road proportion, sidewalk length, are positively correlated with pedestrian and/or bicyclist-motor 

vehicle crashes (14). While controlling for exposure variables, several studies have identified 

specific pedestrian facilities to be negatively associated with pedestrian crashes, including median 

refuge islands and rectangular rapid flashing beacons (4).  

 Some studies have explored how behaviors are related to pedestrian and bicyclist crashes. 

Helmet usage, travel programs such as routes to school, wearing reflective clothing, and education 

related to safety among bicyclists have been associated with fewer bicyclist fatalities. Pedestrians 

and bicyclists crossing a red-light signal or using mobile devices, and motor-vehicle drivers 

turning right on red without waiting for other road users to cross are some of the most important 

safety behaviors studied (15). Vehicle speed impact on pedestrian fatality risk reported that car 

speed positively and strongly affects fatality risk among pedestrians. Above 20 mph, small 

increases in speed produce relatively large increases in pedestrian injury severity (16, 17).   
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Other studies have identified exposure as an important variable associated with pedestrian 

and bicyclist crashes. There are a variety of exposure measures in the literature (i.e., using Census 

journey to work data as an exposure proxy variable (18)), but this concept is commonly 

represented using pedestrian, bicyclist, and automobile counts (19, 20). Several studies showed 

the relationship between the number of pedestrian and bicyclist crashes and pedestrian and 

bicyclist activity levels. Results confirm that the relationship is not linear (commonly referred to 

as “safety in numbers” effect): pedestrian or bicycle crash risk (e.g., crashes per crossing or per 

trip) decreases with the increase in walking or cycling (19 – 22). (21, 23). One challenge for using 

this important variable in safety analyses is that few jurisdictions have sufficient pedestrian or 

bicyclist count data, resulting in the use of proxy variables to represent exposure.  

Regarding economic, demographic, and social characteristics,  

Table 2-5 summarizes factors stated in some previous studies.  

Table 2-5: Summary of Economic, Demographic, and Social Characteristics 

Influencing Pedestrian and Bicycle Crash Frequency  

Author name, year  Economic, demographic, 

and social characteristics  

Emphasis  

Siddiqui et al., 2012 (24)  Total population, the 
proportion of the uneducated 
population, land use 
(presence of restaurants and 
bars), and park coverage  

Pedestrians  

Nashad, 2016 (25)  Number of dwelling units, 
population density, total 
employment and percentage 
of households with zero or 
one car ownership 
Vehicle-Miles Travelled 
(VMT), middle-aged (25-64) 
and male drivers, 
neighborhoods with large 
retail and residential land use, 

Pedestrians and bicyclists  
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high vehicular traffic 
movements, high 
employment and population 
density, low-income, and 
high minority environmental 
justice areas and races  

Lee and Abdel-Aty, 2005 
(26)  

Hotel room density, number 
of walking/biking, population 
density, and school 
enrollment density, the 
proportion of industrial 
employment, low- income, 
and high minority 
environmental justice areas 
and races  

Pedestrians  

Loukaitou et al., 2007 (27)  Age < 18 years old, 
neighborhoods with large 
retail and residential land 
uses, high vehicular traffic 
movements, and high 
employment and population 
density  

Pedestrians and bicyclists  

Nordback et al., 2014 (28)  Percentage of households 
without access to private 
vehicles  

Bicyclists  

Schneider et al., 2017 (22)  Economic, demographic, and 
social characteristics  

Pedestrians and bicyclists  

Morency et al., 2012 (10) Neighborhoods with large 
retail and residential land use, 
high vehicular traffic 
movements, and high 
employment and population 
density  

Pedestrians  

 

 

2.5  Road User Crash Fault Assessment 

Within the scope of injury severity analyses, huge efforts have discovered the relationships 

between crash injury severity and roadway characteristics, human factors, and traffic operation 

environments (Savolainen et al. 2011). In general, human factors are considered to be the most 
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prevalent factors contributing to crashes, followed by roadway environment and vehicle factors 

(H. Zhang 2010). many factors have been of interest since the analysis results enhanced the driver-

focused educational programs (M. A. Abdel-Aty and Abdelwahab 2000).  In addition to the 

commonly used personnel features (e.g., gender, age, driving experience, and blood alcohol 

concentration (BAC)), crashes were also identified to be related to the driver faults (Karl Kim and 

Li 1996; Ichikawa, Nakahara, and Taniguchi 2015; Walter and Studdert 2015; Islam, Jones, and 

Dye 2014; Zhao, Wang, and Jackson 2019; Penmetsa, Pulugurtha, and Duddu 2017; Duddu, 

Penmetsa, and Pulugurtha 2018; R. Schneider, Stefanich, and Corsi 2015). Limited research 

considered studying the effect of fault status on the injury severity level, and the factors affecting 

the fault of a road user.  

(Yu et al. 2019) investigated a variety of crash influencing factors of at-fault out-of-state 

drivers. It was identified that the influencing variables for crashes caused by out-of-state drivers 

are car ownership, speeding, and driving under the influence (DUI) for the intersection crashes 

and being an old driver, speeding, and dark roadway environment for roadway segment crashes. 

(J. Lee, Abdel-Aty, and Choi 2014) analyzed the relationship between the number of at-fault 

drivers and their residence zonal characteristics. It was concluded that not only roadway/traffic 

factors affect the crash occurrence, but also several demographic and socioeconomic 

characteristics of residence zones where the at-fault drivers live. Yet, there was no detailed 

exploration carried out for the specific influencing factors affecting a specific road user to be 

responsible for a crash, and no investigation directed to study if the crash injury severity is affected 

by a specific road user being at-fault. 

Concerning the analytical methodologies used for the analysis and taking into account the 

discrete outcomes besides the ordinal characteristics of the crash severity outcomes, ordered 
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logistic regression models (e.g., ordered logit/probit models) were used most commonly. For 

example, (Karl Kim, Brunner, and Yamashita 2008) utilized techniques of the logistic regression 

model to examine factors conjoined with severe and fatal crashes. (G. Zhang, Yau, and Zhang 

2014) formulated a stepwise logistic regression model to identify risk factors that impact 

pedestrian and driver fault status in pedestrian-motor vehicle crash analysis in China.  

Yet, the key assumption of the ordinal regression models called “parallel odds assumption” 

or “parallel regression assumption” is that explanatory variables have a persistent effect throughout 

different crash severity outcomes. Therefore, to relax this limitation, the partial proportional odds 

(PPO) models were developed ((Peterson and Harrell 1990) and were implemented to evaluate 

pedestrian injury severity by (Sasidharan and Menéndez 2014); fault status was studied together 

with other pedestrian and driver characteristics. The results show that the PPO models provide 

more detailed knowledge of the contributing factors than the MNL and the ordered logit models. 

Besides that, the PPO model outperformed the other models based on the information-theoretic 

approach. The same conclusion has been drawn by other researchers (Qin, Wang, and Cutler 

2013); the authors compare the performance of the MNL and the mixed logit (ML) models with 

the PPO model, to evaluate the effect of multiple determinants on the severity of crashes involving 

large trucks. (Penmetsa, Pulugurtha, and Duddu 2017) also utilized PPO models to investigate the 

injury severity of not-at-fault drivers in two-vehicle crashes. The study results showed that the data 

was ineffectual with the assumption of the ordered probit model; the proportional odds assumption, 

therefore the PPO model was adopted. The results were consistent with previous research about 

the influencing factors that affect the at-fault drivers’ injury severity. Table 2-6 shows different 

adopted techniques of crash responsibility assignment in previous research.  
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Table 2-6: A Summary of the Existing Methods Used for Assigning the Responsible 

Road User In A Crash In Previous Empirical Studies.* 

(Study 

author and 

year) 

Data source 

Summary of methods used in determining 

fault 

Kim, Brunner, 

and 

Yamashita 

(2008) 

Police-reported crash data. 

Based on law enforcement (i.e., pedestrian 

jaywalking laws), the fault is determined by 

deciding on the party that received a 

ticket/citation. 

Kim, Brunner, 

and 

Yamashita 

(2008) 

The fault is determined by specially trained 

investigators who are dispatched to the crash 

scene, and they typically search for the action or 

behavior of a certain party that caused the 

accident to occur. 

Ulfarsson, 

Kim, and 

Booth (2010) 

 

The police officer assigns the fault to the party 

based on who acted negligently or is in other 

ways found to have caused the crash. 

(Zhao, Wang, 

and Jackson 

2019) 

Drivers were considered ‘‘at-fault’’ if they were 

given any verbal/written warning, infraction, or 

arrest/summons. If no action was taken by the 

officer, the driver was considered not-at-fault. 
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Walter and 

Studdert 

(2015) 

The fault is determined based on citations 

issued for crash responsible drivers and 

recorded in the police report. 

Kim et al. 

(1998) 

 

Police officers assign the fault party and record 

the information in the crash report based on the 

officer’s narrative summary of the event. 

Kim and Li 

(1996) 

The fault is determined by investigating officers 

and then reported on crash report forms. Based 

on a logistic model that explains fault among 

motorists as a function of various. The crash 

report form is to ascertain who is at fault and 

that although individual fields such as driver’s 

license number, birth date, vehicle identification 

number, and so forth may be sources of error. 

Adanu et al. 

(2017) 

 

The fault is determined based on the 

investigation done by the officer who completed 

the crash report. 

Spainhour and 

Wootton 

(2007) 

Police-reported crash data 

and case review data 

stemmed from manual 

case reviews of multiple 

crash data sources. 

The fault is determined by the investigating 

officers which are then reported on crash report 

forms. Florida department of transportation 

(DOT) currently uses an algorithm to assign 

fault. FDOT thereby presumes that the 
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individual in the first section is at fault unless a 

citation was given to drivers or pedestrians in 

subsequent sections of the crash report, in 

which case fault is reassigned to the person 

receiving the citation. 

Lee, Abdel-

Aty, and Choi 

(2014) 

ZIP code information of 

road users involved in 

traffic crashes and police 

recorded data. 

The fault is determined based on the crash 

investigation done by police officers, who issue 

citations according to the investigation. 

Citations are then recorded in the police report 

which confirms the fault party. 

Goh et al. 

(2014) 

Pictures and video 

recordings captured from 

CCTV cameras. 

 

 

The fault is typically made with the aid of 

pictures and video recordings captured from 

CCTV installed and is done by police officers 

and adjusters from the insurance company 

before an at-fault assessment is made for the 

purpose of insurance claims. 

Russo et al. 

(2014) 

Michigan traffic crash 

facts (MTCF) data query 

tool. 

The fault is assigned to one driver based on the 

judgment of the investigating officer, who 

decides that the at-fault driver must have 

performed one or more hazardous actions (e.g. 

speeding, failing to yield, disregarding traffic 

control devices) that contributed to the crash. 
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Zhang, Yau, 

and Zhang 

(2014) 

Traffic accident data. 

The fault is determined by police officers, under 

the following two circumstances: (1) 

determined by police that he/she should bear the 

whole responsibility of the accident; (2) 

determined by police that he/she should bear the 

main responsibility of the accident. For 

instance, when crashes occur on roadways 

without pedestrian facilities, motor vehicles are 

typically held responsible because pedestrians 

are commonly considered as a vulnerable 

group. Conversely, pedestrians are mostly 

determined to be liable. 

Islam and 

Jones (2014) 

 

Police-reported crash data 

filtered using the critical 

analysis reporting 

environment (CARE) 

software system. 

Dataset already has the at-fault party assigned 

in the original police-reported crash database. 

Schneider, 

Stefanich, and 

Corsi (2015) 

“MV4000” Crash report 

forms. 

Since the police do not assign “fault” for 

crashes in Wisconsin, the study used the 

detailed narrative on the MV4000 forms, and 

the type of citation helped as well to interpret 

which party or parties the police officer viewed 

as being primarily responsible for the crash. 
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Ichikawa, 

Nakahara, and 

Taniguchi 

(2015) 

 

Police-reported crash data 

and driving exposure data. 

The fault is determined by police investigators 

at the scene of the motor vehicle crash. 

Ratrout et al. 

(2017) 

Police-reported crash data, 

as well as the crash, driver, 

and vehicle-related data 

collected from police 

stations. 

Drivers at fault and not at fault were separated 

and investigated through factor analysis for 19 

parameters related to their background and 

knowledge of traffic signs. 

 

Penmetsa, 

Pulugurtha, 

and Duddu 

(2017) 

 

 

Crash data obtained from 

the Highway Safety 

Information System 

(HSIS) which included 

information related to 

accident, roadway, vehicle, 

and occupant. 

For each vehicle involved in a crash, the crash 

reports provide three contributing factors 

(which indirectly explain the traffic rule the 

driver violated) that led to the crash. If the 

driver has not committed any traffic violation, a 

value of zero is provided under the contributing 

factor variable, implying that the driver is not at 

fault in the crash. 

Das et al. 

(2018) 

 

Police-reported crash data 

which contains crash, 

roadway geometry, and 

vehicle-related data. 

Based on the crash event investigated by the 

police officer who records the fault party in the 

report. 
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Yu et al. 

(2019) 

 

Police-reported crash data 

obtained from the FDOT 

Crash Analysis Reporting 

(CAR) system, driver 

information data extracted 

from the CAR system, and 

Traffic analysis zone 

(TAZ) shapefile obtained 

from the US Census 

Bureau. 

The fault is determined through using the 

license address state variable “ADRSTATE” for 

at-fault drivers, which is coded in the crash 

data. 

(Islam and 

Hossain 2019) 

Police reported crash 

database filtered using the 

(CARE) software system. 

Dataset already has the at-fault party assigned 

in the original police-reported crash database by 

the police officer who completed the report at 

the scene. 

*Note that the mentioned studies are ordered by the usage of the common data source. 
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 : Methodologies 

 

3.1  Traditional Crash Prediction Models (CPMs) 

Crash Predicting Models (CPMs) are an effective approach to exploring the relationship 

between crash frequency or crash severity and a set of predictors from the statistical perspective.  

Once the relationship is established, the mean crash count or the probability of an injury type can 

be estimated.  It is anticipated that the explanatory variables are not only statistically correlated 

but are logically related to crash occurrence. Such a regression method assumes the error as random 

noise, and the mean can be represented as the true value around which observations fluctuate.  A 

review is provided on two categories of CPMs: crash frequency models and crash severity models. 

Only widely implemented models are covered in the scope of this review. Additionally, a brief 

discussion regarding a limited number of studies, in which the crash count is predicted for a 

specific primary responsible party, is provided. Later, the deficiencies of the previous research are 

brought to light and the contribution to the existing literature is defined. 

3.1.1  Crash Frequency Models 

Crash frequency modeling focuses on establishing a quantitative relationship between crash 

count and contributing factors based on the statistical significance unveiled from the data. Due to 

the non-negative integer nature of crash count data, generalized linear models (GLMs) are used in 

place of linear regression models. Erlander et al. (Erlander, Gustavsson, and Lárusson 1969) were 

the first to apply a GLM, Poisson regression model, to predict crashes. After that, the Poisson 

regression model has been widely applied in crash frequency research.  

Although the Poisson model can model the crash frequency, its predicting performance 

usually compromises due to a variety of issues pertaining to the crash count data. Typical issues 

include over-dispersion, low sample mean, and injury-severity/crash-type correlation. Failure to 
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account for any of these issues would lead to biased coefficient estimates and inaccurate 

conclusions regarding the properties of the data population.  

Different issues may arise due to different characteristics of the crash count data. Over-

dispersion can be caused by the omitting of relevant variables. Over dispersed crash data admit 

more variance than expected under the assumed probabilistic distribution. The issue arises when 

the mean and variance components are defined by the same parameter of a model such as Poisson 

where the mean equals the variance.  The low-sample-mean issue occurs when some roadway 

facilities have few observed crashes, usually with excessive zero responses in the crash frequency 

data. The injury-severity/crash-type correlation could be present due to the fact that different types 

of crashes or injuries that happen at the same location are correlated because they are the collective 

outcomes of observed and unobserved effects. Modeling the correlated variables separately may 

prevent the revelation of crucial relationships, especially the understanding of how different crash 

types/severities relate to each other.   

Based on the Poisson model, various models have been developed and applied to handle these 

issues. Overall, popular crash frequencies models include Poisson, Poisson-Gamma regression 

(commonly known as the negative binomial (NB) model), Poisson-Lognormal, and zero-inflated 

NB model (Qin, Ivan, and Ravishanker 2004; Cheng et al. 2017; El-Basyouny and Sayed 2009; Y. 

Wang and Kockelman 2013; Lord and Miranda-Moreno 2008; Lord 2006; Park and Lord 2007; 

Mothafer, Yamamoto, and Shankar 2016; Wei and Lovegrove 2013; Dong et al. 2014; Raihan et 

al. 2019; Liu et al. 2018; Poch and Mannering 1996; Venkataraman et al. 2011; Lord, Washington, 

and Ivan 2005; Liu et al. 2018; V. Shankar and Mannering 1996; Prato et al. 2016; Kaplan and 

Giacomo Prato 2015; Lord and Mannering 2010; Miranda-Moreno, Strauss, and Morency 2011). 
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3.1.1.1 Base Model: Poisson Model 

The conventional base model for analyzing crash frequency is the Poisson model (Lord and 

Mannering 2010). The Poisson model assumes that the probability of having a specific integral 

number of crashes follows the Poisson distribution given the mean crash frequency, while the 

mean crash frequency is defined as a function of independent variables. The Poisson regression 

model is limited in that the variance of the data is restricted to be equal to the mean.  Since both 

the variance and mean are defined by the same parameter, the Poisson regression model cannot 

handle over-dispersion.  In 1953, a study (K Kim, Brunner, and Yamashita 1953), conducted to 

study the relationship between population, employment, land use, echometric outcome, and 

pedestrian-vehicle crashes. Both the Poisson model and the NB model were constructed, and the 

results of the study showed the preference of the NB model over the Poisson model when there is 

a need to control for the over-dispersion. Chen applied Poisson and NB models to study the safety 

effects of bike lanes. The author showed that the Poisson model was used for modeling bicycle 

crashes were no overdispersion was detected. The conclusion stated that the installation of bike 

lanes does not increase crash likelihood (L. Chen et al. 2012). In (J. Wang, Huang, and Zeng 2017), 

a study that aimed at exploring the effect of zonal factors on VRUs crash risk, authors showed that 

NB model is superior to the Poisson model since over-dispersion occurred in the data because of 

omission of important variables or due to measurement errors.  

Even though the Poisson model is useful for modeling crash outcomes, its assumption of the 

variance equal to the mean is usually violated when analyzing crash count data (Lord and 

Mannering 2010). Besides, Poisson and NB model are two models that are unable to account for 

the unobserved heterogeneity.  
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3.1.1.2 Models Addressing Over-Dispersion 

The Poisson model has been extended to handle the over-dispersion in the crash count data. 

Two such extended Poisson models that have been widely used are the negative binomial (NB) 

regression model and the Poisson-lognormal (PLN) regression model. Both models modify the 

error term of the Poisson model by making it follow some distributions, gamma distribution in the 

NB model, and normal distribution in the PLN model (Lord and Mannering 2010). Because of the 

modified error term, the variance of each model is greater than the corresponding mean. Hence, 

both models can account for over-dispersed crash count data. Schneider et al. adopted the NB 

model in (R. J. Schneider, Ryznar, and Khattak 2004) for pedestrian-vehicle crash prediction to 

account for the overdispersion in the crash data. Whereas in (Wei and Lovegrove 2013) the same 

model was considered to control for overdispersion in data analyzed for developing bicycle CPMs. 

Lee et al. proposed the use of the Poisson log-normal model as an alternative of the Poisson model 

for the over-dispersion in the crash data collected for modeling crashes for different transportation 

modes including VRUs (J. Lee, Abdel-Aty, and Jiang 2015).  

3.1.1.3 Models Addressing Low Sample Mean 

The low sample mean of the crash count data is usually characterized by the preponderance 

of an excess number of zero observed crashes in a dataset (Lord and Mannering 2010). Zero-

inflated models have been proposed to deal with this issue to improve the estimation accuracy. 

Zero-inflated models assume there are two types of zero observations: inherently safe conditions 

imply zero crashes by nature (structural zeros), while inherently unsafe conditions imply zero 

crashes by chance (sampling zeros) (4). The zero-inflated model inflates the number of zeros by 

adding zeros from the crash-free state with a count data process characterized by a Poisson or NB 

distribution, referred to as zero-inflated Poisson (ZIP) model or zero-inflated NB (ZINB) model. 
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Lord et al. support the fact that ZIP and ZINP models are suitable to account for the excess zeroes 

that researchers observe through analyzing crash counts (Lord, Washington, and Ivan 2005). Also, 

a study (Pour et al. 2012)studied the performance of NB, ZIP, and ZINB models on pedestrian-

vehicle crash with excess zeroes. The drawn conclusion is that the ZIP model outperformed the 

other models and is suitable for analyzing pedestrian crashes with a high number of zeroes 

resulting from sites without any pedestrian activity. Shankar and colleagues, presented a study (V. 

N. Shankar et al. 2003) on pedestrian-vehicle crash modeling, using models based on negative 

binomial and mixing distributions. The study results showed ZIP is preferred when modeling 

pedestrian-vehicle crashes.  

3.1.1.4 Models Addressing Injury-Severity/Crash-Type Correlation 

According to (Anastasopoulos et al. 2012), crashes must take into account the correlations 

among crash severity levels and among crash types (i.e., rear-end, Sideswipe) instead of solely 

modeling each crash category. El-Basyouny (El-Basyouny 2011) concluded that the failure to 

account for such correlations may be due to unobserved error terms or in the case the analysis 

resulted in omitted variables. Also, univariate modeling considering independent crash counts may 

lead to inaccurate results.  

Bivariate or multivariate models are applied when the issue of injury-severity and crash-type 

correlation arises.  The crash counts of different injury-severities or crash-types need to be modeled 

simultaneously, as they are not independent due to shared unobserved factors.  The correlation of 

different injury-severities or crash-types is explicitly modeled by the correlation matrix in the 

specification of bivariate/multivariate models.  By accounting for the correlation, the multivariate 

count models can provide more accurate estimation and therefore more accurate predictions. 

Bivariate models jointly model two injury-severities or crash-types, while multivariate models 
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model more than two at the same time.  In crash frequency studies, bivariate/multivariate models 

include bivariate/multivariate Poisson models (J. Ma and Kockelman 2006) (X. Ye et al. 2009) 

and bivariate/multivariate Poisson-lognormal models (MVPLN) (Park and Lord 2007; J. Ma and 

Kockelman 2006; J. Lee, Abdel-Aty, and Jiang 2015; Aguero-Valverde and Jovanis 2009; K. 

Wang et al. 2017). The MVPLN regression model could address overdispersion (where the 

variance is larger than the mean) in the data. 

Given this, crash data showed that crashes between vehicles and pedestrians and crashes 

between vehicles and bicyclists are highly correlated and have common significant variables 

affecting both road users equally. Recently, Cheng, Gill, Vo, et al. (Cheng et al. 2018) presented a 

comprehensive analysis for the estimation of pedestrian and bicyclist crash counts at the TAZ 

level. Their bivariate Dirichlet process mixture model accounts for the unobserved heterogeneity 

by combining the strengths of the bivariate specification to include the correlation among crash 

modes. 

Various issues related to the crash count data have been discussed along with models that can 

mitigate those issues. In summary, the nature of the data guides the selection of a model.  Crash 

frequency, for example, can be assumed to follow a Poisson distribution. When the variance of the 

crash count is larger than the mean, crash data are said to be over-dispersed.  Over-dispersed count 

data are usually modeled with a negative binomial or Poisson-lognormal distribution.  When a 

dataset includes an excessive number of sites with zero crashes, alternative models such as the 

zero-inflated models should be considered. When possible correlations between crash types or 

crash severities exist, bivariate/multivariate Poisson/Poisson-lognormal should be applied to 

account for such correlation.  
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3.1.2  Crash Severity Models 

Equally if not more important is the task of identifying the contributing factors and their 

impacts on crash injury severities. The methodologies and techniques for crash severity modeling, 

like its crash count modeling counterpart, are diverse. But unlike crash count which is a non-

negative integer that can change from zero to a large figure, the injury severity outcome has a finite 

number of alternatives (e.g., a KABCO scale). In economics, discrete choice models describe, 

explain, and predict choices between two or more discrete alternatives. Moving from simple to 

complex, from weak to robust, the methodological evolvement of crash severity modeling benefits 

tremendously from the development of econometrics and from travel demand models where 

highway route choice and transportation model choice are typical applications for a discrete choice 

model.   

Frequently used statistical methodologies for analyzing crash injury severity include (but not 

restricted to) multinomial logit (MNL) model (Tay et al. 2011; Ulfarsson and Mannering 2004), 

mixed logit (ML) model, and ordered logit (OL) or ordered probit (OP) models (Kockelman and 

Kweon 2002; C. Lee and Abdel-Aty 2005; Zahabi et al. 2011). Both the MNL and ML models 

assume that the severities are unordered, while the OL/OP models rely on the ordered-severity 

assumption.  

3.1.3.1 Multinomial Logit (MNL) Model 

The MNL model is one of the most applied discrete-outcome modeling approach used to 

estimate the impact of different variables on crash severities (Ulfarsson and Mannering 2004; J.-

K. Kim et al. 2007; V. Shankar and Mannering 1996; Tay et al. 2011; J. Lee et al. 2018). The MNL 

model was first used in the transportation field by McFadden (D. McFadden 1972). After that, 

many researchers applied this method to model crash severities due to its flexibility in allowing 
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variables to have a dual effect (concave and convex) which navigate to the upper and lower severity 

levels (J.-K. Kim et al. 2007; Ulfarsson and Mannering 2004).  

The MNL model has been extensively applied to model the severity of VRU crashes. Tay et 

al. (Tay et al. 2011) applied the MNL model to study how a series of factors influence pedestrian-

vehicle crash severities in Korea, such as roadway environment, traffic control devices, weather 

conditions, and pedestrian/driver and vehicle characteristics. Results showed that fatal and serious 

crashes were associated with crashes involving heavy vehicles, drivers who were under influence 

of alcohol, male drivers who are under 65 years, pedestrians who are 65 years or more or female 

pedestrians, roads with high posted speed limits, and inclement weather conditions are a set of 

factors influencing the probability of each pedestrian injury severity level. Çelik and Oktay  (Çelik 

and Oktay 2014) analyzed two years of pedestrian crash data in New Mexico using the MNL model 

and revealed that many factors increase the probability of a pedestrian to be involved in fatal 

crashes (e.g. presence of pedestrian crosswalks, drivers over the age of 65, primary-educated 

drivers). The finding is beneficial to the development of countermeasures from pedestrians’ side. 

In another study (Kane and Haile 2015), the authors explored the contributing factors that affect 

injury severity of pedestrian-rail and vehicle-rail crashes using the MNL model. The study showed 

that foggy weather, open space development areas, and the presence of trucks are factors that are 

more likely causatives of severe injury and fatal crashes.   

One advantage of the MNL model is that it allows the explanatory variables related to one 

injury severity, as well as their parameter estimations, to vary. The MNL model should be an 

appropriate model when possibilities of different injury severities are related to different 

contributing factors or are affected differently by the same factor. Yamamoto et al. (Yamamoto, 

Hashiji, and Shankar 2008) argued that non-ordinal models may offer unbiased estimates of the 
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parameters, especially in the situation of crash underreporting. Ye and Lord (F. Ye and Lord 2011) 

examined the influence of crash underreporting on the estimation of crash severities and found that 

the MNL model was not immune to this issue. The authors suggested setting fatal crashes as the 

baseline in the MNL model to minimize the bias (F. Ye and Lord 2011). 

3.1.3.2 Mixed Logit (ML) Model 

Similar to the MNL model, the ML model also assumes the severities are unordered. But 

unlike the MNL model, the ML model can handle unobserved data heterogeneity which suggests 

the parameters may vary across different observations. Disregarding data heterogeneity may lead 

to bias and inefficient statistical inferences (76). The mixed logistic (ML) model overcomes this 

limitation by allowing parameters to be random.   

The ML model can approximate any random utility model (Daniel McFadden and Train 

2000), though known of its high flexibility. Though the ML model was discovered a long time 

ago, it has been extensively used only over the last decade (Sebastien 2008). The model popularity 

increased due to its ability to address the limitations of the MNL model. The ML model allows for 

heterogeneous effects and correlation in unobserved factors (Heiss 2016).  

J.-K. Kim et al. (J.-K. Kim et al. 2010) applied the ML model to analyze pedestrian injury 

severity in pedestrian-vehicle crashes. The authors stated that the use of the ML model enhances 

the interpretation of the model results compared to the MNL model and heteroscedastic logistic 

model presented in (J.-K. Kim et al. 2008). Furthermore, the ML model predicts the mean and 

standard deviation values of the probabilities, which is not offered by the MNL model. In (Moore 

et al. 2011), the authors presented models of bicycle-vehicle injury severity at intersections. The 

study conducted a MNL model and ML model intending to compare the influence of each of the 

studied variables. Zhou et al. adopted the ML model to account for the potential unobserved 
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heterogeneity in the effects of the studied characteristics on the collision nature and the vehicles 

involved in the hit-and-run crashes.   

3.1.3.3 Ordered Logit (OL) Model 

In 1998, a study (Bhat and Pulugurta 1998) initiated the use of ordered logit to explore the 

contrast among vehicle ownership decisions. Afterward, researchers studying crash risk factors 

started applying ordered logit/probit (OL/OP) models, because like vehicle ownership decisions 

the pedestrian and bicycle injury severity is often reported as an ordered variable. That is, fatality 

is the highest order while property damage is the lowest. The OL/OP models distinguish the 

inherent ordering in severity outcomes, hence, become the workhorse for injury severity analysis 

through the literature. Note the OL model is different from the OP model only in the distribution 

of the error term. 

Given that injury severity levels are ordinal, the OL/OP models have been widely applied to 

study the relationship between contributing factors and the crash severity outcome. In (O’Donnell 

and Connor 1996), the authors applied OL/OP intending to predict the severity of motor-vehicle 

crashes. The conclusion stated that both models were found alike. Factors related to severe injuries 

among old drivers were explored in (Khattak Aemal J. et al. 2002) using the OL model. Zahabi et 

al. (Zahabi et al. 2011) applied the OL model to explore the effect of multiple factors (e.g. vehicle 

type, road connectivity, and vehicle movement) on pedestrian-vehicle injury severity. Conclusions 

drawn from the estimated model stated that crashes occurring at a signalized intersection resulted 

in higher injury severity levels to pedestrians compared to bicyclists. Besides, the through 

movement was found to be associated with sustaining an injury. An important assumption linked 

with the OL model is the assumption of an equal relationship between each pair of severity 

categories, commonly known as the proportional odds assumption. The OL model gained 
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popularity and was widely used since it can accommodate the ordered nature of crash severity. 

The OL model has also been used to model crash injury severity sustained on low-volume rural 

roads (Prato, Rasmussen, and Kaplan 2014) and pedestrian-rail crash injury severity (Khattak and 

Tung 2015). 

However, the stumbling block of the traditional ordered response model is that the model 

enforces intense restrains on the threshold parameters’ structure, for example, the traditional 

OL/OP model constrains the thresholds to have fixed values across crashes (Eluru, Bhat, and 

Hensher 2008). 

Three crash severity models have been discussed above. In summary, the MNL model is most 

widely recognized as an unordered discrete outcome model because it relaxes the effects of similar 

contributing factors across all injury severities. The ML model has been gaining ground due to its 

ability to account for unobserved heterogeneity. The OL/OP model is a widely popular ordered 

discrete outcome model due to its ability to account for the ordinal nature of crash injury severity 

and its easy estimation procedure.  

3.1.3.4 Critical Issues 

Previous research studies highlighted the key factors associated with crash frequency and 

severity. However, the interrelationships among the variables have not been well discovered and 

research still has not provided an efficient amount of information regarding the direction and 

strength of the causal effects. During the last three decades, SEM has been considered a valuable 

tool for researchers. SEM showed the capability to handle complex relationships between both 

exogenous and endogenous variables. Furthermore, SEM permits the exploration of the direction 

and strength of the causal effects between the exogenous and endogenous variables, plus it 

provides the ability to introduce latent variables with unobserved variables. It was previously 
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introduced in many research fields (e.g. travel behavior, natural science, transportation safety, and 

others (Kuppam and Pendyala 2001; Ulleberg and Rundmo 2003; Hayduk 1987; J.-Y. Lee, Chung, 

and Son 2008; Golob 2003).  

3.1.3  Structural Equation Model (SEM) 

Structural equation modeling (SEM) technique is well known in the academic literature due 

to its ability to capture complex relationships existed between variables, as well as its flexibility 

with introducing latent variables to accommodate for unobserved variables that are believed to be 

important in a study. However, the application of SEM in transportation studies is limited, though 

SEM has been applied in disciplines such as educational, psychological, and political science 

research (Golob 2003). Since 1980, SEM has been initially used to model travel behavior and was 

known as the flexible linear-in-parameter multivariate statistical modeling technique (Golob 

2003). This technique has not been widely adopted in road traffic safety-related research, 

especially in pedestrian and bicyclist crash modeling. 

SEM enables researchers to test their hypothesis through a hybrid technique involving factor 

analysis and path analysis (Weston and Gore 2006). The uniqueness of this modeling is 

considering not only measured variables, but also latent variables which are not directly measured. 

Mainly, SEM comprises two key elements: measurement and structural models. The measurement 

model shows the relationship between the observed variables and the latent constructs, whereas, 

the structural model shows the relationship between the latent constructs. So, when both elements 

are joined, the full structural equation model is obtained (Weston and Gore 2006). 

Following is a summary of studies conducting different models incorporated in SEM. 

Exploratory factor analysis (EFA) is a tool to investigate the variables incorporated in the dataset, 

mainly it is responsible for providing a factor structure and is beneficial to the researcher in terms 

of reducing the number of exploratory variables. Confirmatory factor analysis (CFA) confirms the 



63 
  

structure delivered by the EFA and goes beyond variable reduction, as it determines how the 

selected latent factors in the structural model are measured by the variables in the X-measurement 

model. More interesting results can be derived from the path analysis which is considered a special 

case of SEM. Path analysis contains path diagrams, covariates and correlations, and most 

importantly the direct, indirect, and total effects. It differs from SEM in that it only deals with 

observed variables with each variable having a single indicator. 

3.1.3.1 Exploratory Factor Analysis (EFA) 

Towards contributing in measuring transportation facilities’ safety level, a study adopted 

SEM technique to capture the interrelations between several variables (i.e., roadway geometry, 

driver, and vehicle type-related variables) and latent factor traffic accident size, which is an 

important index to measure safety level of transportation facilities and is created from the 

following observed variables: number of injuries, number of fatalities, number of involved 

vehicles and number of damaged vehicles. Initially, factor analysis was performed on the observed 

variables aiming at categorizing the variables under multiple factors depending on factor loadings, 

afterward, the observed variables’ correlation matrix was estimated to finally develop the SEM. 

This SEM suggested that among the three developed latent variables - road, environment, and 

driver-related latent factors - accident size was highly affected by road-related factors (J.-Y. Lee, 

Chung, and Son 2008). Schorr and Hamdar (2014) adopted the SEM technique with a plan to 

develop an intersection safety propensity index for signalized and unsignalized intersections. In 

this study, it was argued that developing a singular value index provides a better method for 

ranking intersection safety as compared with the use of multiple criteria such as several vehicles, 

total injuries, and total fatalities involved in an accident. Due to the absence of a priori knowledge 

about the factor structure, the authors used factor analysis as an initial step during the model 
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development process, then tested multiple SEMs having different structures and the best fit model 

according to the root mean square error of approximation (RMSEA) was carefully chosen among 

the statistically significant converging models (Schorr and Hamdar 2014). 

3.1.3.2 Confirmatory Factor Analysis (CFA) 

In a research on the relationship between land use and travel behavior, Van Acker and 

colleagues (2007) have used a priori model from previous literature as a base for creating multiple 

measurement models through CFA to verify the ability of the measured variables to correctly 

measure the constructed latent factors. Afterward, a structural regression model (SRM) is created 

to show the relationships among the latent variables and reach the final SEM with standardized 

regression weights of the tested variables in a relationship with travel behavior. The major 

conclusion drawn by the authors is that socio-economic characteristics are the most influential 

group of characteristics affecting travel behavior (Van Acker, Witlox, and Van Wee 2007). A study 

aiming to explore the relationship between road accessibility (measured by a latent factor 

influenced by bus route length, road length, number of intersections, and number of dead ends 

(Karl Kim, Pant, and Yamashita 2010)) and motor-vehicle crash severity, utilized CFA with a 

priori model to establish the structural equation model.  

The authors have also conducted their study based on a combination of two approaches, 

starting with CFA to develop the measurement model and following it by the structural model (or 

causal model) to expose the causal relationships among the studied latent variables (Hassan and 

Abdel-Aty 2013). In (2013), Hassan and Abdel-Aty adopted SEM to study driver’s behavior under 

reduced visibility conditions. The authors used a different approach to applying SEM in this study; 

EFA to determine the number and nature of underlying factors-latent factors are also constructed. 

Afterward, SEM was used to explain the intricate relationships among both variables: the manifest 
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and latent variables. Additionally, the SEM technique can handle a considerable number of 

exogenous and endogenous variables at once (Hassan and Abdel-Aty 2011).  

3.1.3.3 Hybrid of factor analysis and path analysis models 

An SEM may be a combination of three advanced statistical analysis techniques, namely: 

confirmatory factor analysis CFA, path analysis-using observed variables- or exploratory factor 

analysis EFA, and hybrid models-using path analysis along with latent variables- which in other 

words provides integration between factor analysis and path analysis (Asparouhov and Muthén 

2009). In a study in the traffic safety area, Wang and Qin (2014) adopted the SEM technique to 

study the influence of driver characteristics, highway geometry, roadway conditions, and 

environmental factors on single-vehicle crash severity. The influence of the abovementioned 

variables was tested through three latent variables: collision force, vehicle operating speed before 

collision occurrence, and severity index. The path analysis model was first conducted to serve as 

a point of reference with only observed variables since the authors argued that even with a priori 

assumption, the studied variables may have an indirect relationship with crash outcomes. Then, 

three SEMs were presented with one, two, and three latent variables, respectively (K. Wang and 

Qin 2014). The authors concluded that to predict the severity of single-vehicle crashes, using the 

two latent factors speed and collision force provides the most meaningful estimates.  

Hamdar et al., (2008) intended to develop aggressiveness propensity index (API), a latent 

quantity representing environmental, situational, and driving behavior variables, for intersections 

by adopting the SEM technique through three approaches. First, the measurement model was 

developed using CFA which confirmed five factors, instead of six factors that were built from the 

hypothesized model. Second, the SEM was built to illustrate each dimensions’ worth in 

increasing/decreasing the aggressive driving pattern and eventually the API. Third, after the 
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equations were developed from the SEM, an EFA was implemented and applied on 10 

intersections for validation. The major lesson from this study is that the final SEM reveals that the 

driver’s tendency to aggressive behavior during driving might be impacted by factors like several 

heavy vehicles, traffic volume, and several pedestrians in an intersection (Hamdar, Mahmassani, 

and Chen 2008).  

Najaf and colleagues (2018) utilized SEM to study the complex relationships between diverse 

urban form characteristics and roadway safety. Basically, the analysis was initiated by an EFA 

followed by a CFA to develop a model showing the interrelationships amidst the set of independent 

variables (exogenous variables) affected by other variables through the constructed latent factors 

and to reveal these variable’s covariance structure. Then, path analysis (PA) models were 

constructed to illustrate the relationship between the constructed latent factors, mediators (that 

mediate the indirect effect of independent variables on dependent variables), and dependent 

variables (endogenous variables). Urban traffic areas experienced a safer environment where there 

is a more job-housing balance, a more polycentric design, and less low-density sprawl among the 

area’s different tracts (Najaf et al. 2018). Choo and Mokhtarian (2007) studied causal relationships 

between travel, telecommunications, land use, economic activity, and sociodemographic 

characteristics, through conducting path analysis, followed by building an SEM. 

 

3.2  Summary 

Multiple crash count and severity models are discovered in the literature. It is understood that 

data and the purpose of the study affect the methodology selection. However, many critical issues 

may arise through the analyses of crash data (e.g., overdispersion, underreporting) that cannot be 

effectively handled by one method. Hence, triaging data issues and selecting the method for 
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achieving the ultimate research objectives will occur through the course of this dissertation. Also, 

research will consider incorporating econometric models that enable studying unobserved 

variables, due to the lack/difficulty of data collection or absence of important variables. For 

instance, the SEM model technique will be used for its flexibility and ability to detect the intricate 

relationships among exogenous and endogenous variables. 

3.3  References  

Aguero-Valverde, Jonathan, and Paul P. Jovanis. 2009. “Bayesian Multivariate Poisson 
Lognormal Models for Crash Severity Modeling and Site Ranking.” Transportation 

Research Record: Journal of the Transportation Research Board 2136 (1): 82–91. 
https://doi.org/10.3141/2136-10. 

Anastasopoulos, Panagiotis Ch., Venky N. Shankar, John E. Haddock, and Fred L. Mannering. 
2012. “A Multivariate Tobit Analysis of Highway Accident-Injury-Severity Rates.” 
Accident Analysis & Prevention 45 (March): 110–19. 
https://doi.org/10.1016/j.aap.2011.11.006. 

Asparouhov, Tihomir, and Bengt Muthén. 2009. “Exploratory Structural Equation Modeling.” 
Structural Equation Modeling: A Multidisciplinary Journal 16 (3): 397–438. 
https://doi.org/10.1080/10705510903008204. 

Bhat, Chandra R., and Vamsi Pulugurta. 1998. “A Comparison of Two Alternative Behavioral 
Choice Mechanisms for Household Auto Ownership Decisions.” Transportation 

Research Part B: Methodological 32 (1): 61–75. 
Çelik, Ali Kemal, and Erkan Oktay. 2014. “A Multinomial Logit Analysis of Risk Factors 

Influencing Road Traffic Injury Severities in the Erzurum and Kars Provinces of 
Turkey.” Accident Analysis & Prevention 72 (November): 66–77. 
https://doi.org/10.1016/j.aap.2014.06.010. 

Chen, Li, Cynthia Chen, Raghavan Srinivasan, Claire E. McKnight, Reid Ewing, and Matthew 
Roe. 2012. “Evaluating the Safety Effects of Bicycle Lanes in New York City.” 
American Journal of Public Health 102 (6): 1120–27. 
https://doi.org/10.2105/ajph.2011.300319. 

Cheng, Wen, Gurdiljot Singh Gill, Ravi Dasu, Meiquan Xie, Xudong Jia, and Jiao Zhou. 2017. 
“Comparison of Multivariate Poisson Lognormal Spatial and Temporal Crash Models to 
Identify Hot Spots of Intersections Based on Crash Types.” Accident Analysis & 

Prevention 99 (February): 330–41. https://doi.org/10.1016/j.aap.2016.11.022. 
Cheng, Wen, Gurdiljot Singh Gill, Tom Vo, Jiao Zhou, and Taha Sakrani. 2018. “Use of 

Bivariate Dirichlet Process Mixture Spatial Model to Estimate Active Transportation-
Related Crash Counts.” Transportation Research Record: Journal of the Transportation 

Research Board, July, 036119811878279. https://doi.org/10.1177/0361198118782797. 
Dong, Chunjiao, David B. Clarke, Xuedong Yan, Asad Khattak, and Baoshan Huang. 2014. 

“Multivariate Random-Parameters Zero-Inflated Negative Binomial Regression Model: 
An Application to Estimate Crash Frequencies at Intersections.” Accident Analysis & 

Prevention 70 (September): 320–29. https://doi.org/10.1016/j.aap.2014.04.018. 



68 
  

El-Basyouny, Karim. 2011. “New Techniques for Developing Safety Performance Functions.” 
University of British Columbia. https://doi.org/10.14288/1.0063049. 

El-Basyouny, Karim, and Tarek Sayed. 2009. “Collision Prediction Models Using Multivariate 
Poisson-Lognormal Regression.” Accident Analysis & Prevention 41 (4): 820–28. 
https://doi.org/10.1016/j.aap.2009.04.005. 

Eluru, Naveen, Chandra R. Bhat, and David A. Hensher. 2008. “A Mixed Generalized Ordered 
Response Model for Examining Pedestrian and Bicyclist Injury Severity Level in Traffic 
Crashes.” Accident Analysis & Prevention 40 (3): 1033–54. 
https://doi.org/10.1016/j.aap.2007.11.010. 

Erlander, S., J. Gustavsson, and E. Lárusson. 1969. “Some Investigations on the Relationship 
between Road Accidents and Estimated Traffic.” Accident Analysis & Prevention 1 (1): 
17–64. https://doi.org/10.1016/0001-4575(69)90004-9. 

Golob, Thomas F. 2003. “Structural Equation Modeling for Travel Behavior Research.” 
Transportation Research Part B: Methodological 37 (1): 1–25. 
https://doi.org/10.1016/s0191-2615(01)00046-7. 

Hamdar, Samer H., Hani S. Mahmassani, and Roger B. Chen. 2008. “Aggressiveness Propensity 
Index for Driving Behavior at Signalized Intersections.” Accident Analysis & Prevention 
40 (1): 315–26. https://doi.org/10.1016/j.aap.2007.06.013. 

Hassan, Hany M., and Mohamed A. Abdel-Aty. 2011. “Analysis of Drivers’ Behavior under 
Reduced Visibility Conditions Using a Structural Equation Modeling Approach.” 
Transportation Research Part F: Traffic Psychology and Behaviour 14 (6): 614–25. 
https://doi.org/10.1016/j.trf.2011.07.002. 

———. 2013. “Exploring the Safety Implications of Young Drivers’ Behavior, Attitudes and 
Perceptions.” Accident Analysis & Prevention 50 (January): 361–70. 
https://doi.org/10.1016/j.aap.2012.05.003. 

Hayduk, Leslie A. 1987. Structural Equation Modeling with LISREL: Essentials and Advances. 
JHU Press. 

Heiss, Florian. 2016. “Discrete Choice Methods with Simulation.” Econometric Reviews 35 (4): 
688–92. https://doi.org/10.1080/07474938.2014.975634. 

Kane, Martin R, and Elias Haile. 2015. “Analyzing Severity of Vehicle Crashes at Highway-Rail 
Grade Crossings: Multinomial Logit Modeling” 54 (2): 19. 

Kaplan, Sigal, and Carlo Giacomo Prato. 2015. “A Spatial Analysis of Land Use and Network 
Effects on Frequency and Severity of Cyclist–Motorist Crashes in the Copenhagen 
Region.” Traffic Injury Prevention 16 (7): 724–31. 
https://doi.org/10.1080/15389588.2014.1003818. 

Khattak Aemal J., Pawlovich Michael D., Souleyrette Reginald R., and Hallmark Shauna L. 
2002. “Factors Related to More Severe Older Driver Traffic Crash Injuries.” Journal of 

Transportation Engineering 128 (3): 243–49. https://doi.org/10.1061/(ASCE)0733-
947X(2002)128:3(243). 

Khattak, Aemal, and Li-Wei Tung. 2015. “Severity of Pedestrian Crashes at Highway-Rail 
Grade Crossings” 54 (2): 10. 

Kim, Joon-Ki, Sungyop Kim, Gudmundur F. Ulfarsson, and Luis A. Porrello. 2007. “Bicyclist 
Injury Severities in Bicycle–Motor Vehicle Accidents.” Accident Analysis & Prevention 
39 (2): 238–51. https://doi.org/10.1016/j.aap.2006.07.002. 

Kim, Joon-Ki, Gudmundur F. Ulfarsson, Venkataraman N. Shankar, and Sungyop Kim. 2008. 
“Age and Pedestrian Injury Severity in Motor-Vehicle Crashes: A Heteroskedastic Logit 



69 
  

Analysis.” Accident Analysis & Prevention 40 (5): 1695–1702. 
https://doi.org/10.1016/j.aap.2008.06.005. 

Kim, Joon-Ki, Gudmundur F. Ulfarsson, Venkataraman N. Shankar, and Fred L. Mannering. 
2010. “A Note on Modeling Pedestrian-Injury Severity in Motor-Vehicle Crashes with 
the Mixed Logit Model.” Accident Analysis & Prevention 42 (6): 1751–58. 
https://doi.org/10.1016/j.aap.2010.04.016. 

Kim, K, I M Brunner, and E Y Yamashita. 1953. “Influence of Land Use, Population, 
Employment, and Economic Activity on Accidents.” Transportation Research Record, 9. 

Kim, Karl, Pradip Pant, and Eric Yamashita. 2010. “Accidents and Accessibility: Measuring 
Influences of Demographic and Land Use Variables in Honolulu, Hawaii.” 
Transportation Research Record: Journal of the Transportation Research Board 2147 
(1): 9–17. https://doi.org/10.3141/2147-02. 

Kockelman, Kara Maria, and Young-Jun Kweon. 2002. “Driver Injury Severity: An Application 
of Ordered Probit Models.” Accident Analysis & Prevention 34 (3): 313–21. 
https://doi.org/10.1016/s0001-4575(01)00028-8. 

Kuppam, Arun R, and Ram M Pendyala. 2001. “A Structural Equations Analysis of Commuters’ 
Activity and Travel Patterns,” 22. 

Lee, Chris, and Mohamed Abdel-Aty. 2005. “Comprehensive Analysis of Vehicle–Pedestrian 
Crashes at Intersections in Florida.” Accident Analysis & Prevention 37 (4): 775–86. 
https://doi.org/10.1016/j.aap.2005.03.019. 

Lee, Jaeyoung, Mohamed Abdel-Aty, and Ximiao Jiang. 2015. “Multivariate Crash Modeling for 
Motor Vehicle and Non-Motorized Modes at the Macroscopic Level.” Accident Analysis 

& Prevention 78 (May): 146–54. https://doi.org/10.1016/j.aap.2015.03.003. 
Lee, Jaeyoung, Shamsunnahar Yasmin, Naveen Eluru, Mohamed Abdel-Aty, and Qing Cai. 

2018. “Analysis of Crash Proportion by Vehicle Type at Traffic Analysis Zone Level: A 
Mixed Fractional Split Multinomial Logit Modeling Approach with Spatial Effects.” 
Accident Analysis & Prevention 111 (February): 12–22. 
https://doi.org/10.1016/j.aap.2017.11.017. 

Lee, Ju-Yeon, Jin-Hyuk Chung, and Bongsoo Son. 2008. “Analysis of Traffic Accident Size for 
Korean Highway Using Structural Equation Models.” Accident Analysis & Prevention 40 
(6): 1955–63. https://doi.org/10.1016/j.aap.2008.08.006. 

Liu, Chenhui, Mo Zhao, Wei Li, and Anuj Sharma. 2018. “Multivariate Random Parameters 
Zero-Inflated Negative Binomial Regression for Analyzing Urban Midblock Crashes.” 
Analytic Methods in Accident Research 17 (March): 32–46. 
https://doi.org/10.1016/j.amar.2018.03.001. 

Lord, Dominique. 2006. “Modeling Motor Vehicle Crashes Using Poisson-Gamma Models: 
Examining the Effects of Low Sample Mean Values and Small Sample Size on the 
Estimation of the Fixed Dispersion Parameter.” Accident Analysis & Prevention 38 (4): 
751–66. https://doi.org/10.1016/j.aap.2006.02.001. 

Lord, Dominique, and Fred Mannering. 2010. “The Statistical Analysis of Crash-Frequency 
Data: A Review and Assessment of Methodological Alternatives.” Transportation 

Research Part A: Policy and Practice 44 (5): 291–305. 
https://doi.org/10.1016/j.tra.2010.02.001. 

Lord, Dominique, and Luis F. Miranda-Moreno. 2008. “Effects of Low Sample Mean Values 
and Small Sample Size on the Estimation of the Fixed Dispersion Parameter of Poisson-



70 
  

Gamma Models for Modeling Motor Vehicle Crashes: A Bayesian Perspective.” Safety 

Science 46 (5): 751–70. https://doi.org/10.1016/j.ssci.2007.03.005. 
Lord, Dominique, Simon P. Washington, and John N. Ivan. 2005. “Poisson, Poisson-Gamma and 

Zero-Inflated Regression Models of Motor Vehicle Crashes: Balancing Statistical Fit and 
Theory.” Accident Analysis & Prevention 37 (1): 35–46. 
https://doi.org/10.1016/j.aap.2004.02.004. 

Ma, Jianming, and Kara Kockelman. 2006. “Bayesian Multivariate Poisson Regression for 
Models of Injury Count, by Severity.” Transportation Research Record: Journal of the 

Transportation Research Board 1950 (January): 24–34. https://doi.org/10.3141/1950-04. 
McFadden, D. 1972. “CONDITIONAL LOGIT ANALYSIS OF QUALITATIVE CHOICE 

BEHAVIOR.” WORKING PAPER INSTITUTE OF URBAN AND REGIONAL, no. 199/. 
https://trid.trb.org/view.aspx?id=235187. 

McFadden, Daniel, and Kenneth Train. 2000. “Mixed MNL Models for Discrete Response.” 
Journal of Applied Econometrics 15 (5): 447–70. https://doi.org/10.1002/1099-
1255(200009/10)15:5<447::AID-JAE570>3.0.CO;2-1. 

Miranda-Moreno, Luis F., Jillian Strauss, and Patrick Morency. 2011. “Disaggregate Exposure 
Measures and Injury Frequency Models of Cyclist Safety at Signalized Intersections.” 
Transportation Research Record: Journal of the Transportation Research Board 2236 
(1): 74–82. https://doi.org/10.3141/2236-09. 

Moore, Darren N., William H. Schneider, Peter T. Savolainen, and Mohamadreza Farzaneh. 
2011. “Mixed Logit Analysis of Bicyclist Injury Severity Resulting from Motor Vehicle 
Crashes at Intersection and Non-Intersection Locations.” Accident Analysis & Prevention 
43 (3): 621–30. https://doi.org/10.1016/j.aap.2010.09.015. 

Mothafer, Ghasak I.M.A., Toshiyuki Yamamoto, and Venkataraman N. Shankar. 2016. 
“Evaluating Crash Type Covariances and Roadway Geometric Marginal Effects Using 
the Multivariate Poisson Gamma Mixture Model.” Analytic Methods in Accident 

Research 9 (March): 16–26. https://doi.org/10.1016/j.amar.2015.11.001. 
Najaf, Pooya, Jean-Claude Thill, Wenjia Zhang, and Milton Greg Fields. 2018. “City-Level 

Urban Form and Traffic Safety: A Structural Equation Modeling Analysis of Direct and 
Indirect Effects.” Journal of Transport Geography 69 (May): 257–70. 
https://doi.org/10.1016/j.jtrangeo.2018.05.003. 

O’Donnell, C.J., and D.H. Connor. 1996. “Predicting the Severity of Motor Vehicle Accident 
Injuries Using Models of Ordered Multiple Choice.” Accident Analysis & Prevention 28 
(6): 739–53. https://doi.org/10.1016/s0001-4575(96)00050-4. 

Park, Eun Sug, and Dominique Lord. 2007. “Multivariate Poisson-Lognormal Models for Jointly 
Modeling Crash Frequency by Severity.” Transportation Research Record: Journal of 

the Transportation Research Board 2019 (1): 1–6. https://doi.org/10.3141/2019-01. 
Poch, Mark, and Fred Mannering. 1996. “Negative Binomial Analysis of Intersection-Accident 

Frequencies.” Journal of Transportation Engineering 122 (2): 105–13. 
https://doi.org/10.1061/(ASCE)0733-947X(1996)122:2(105). 

Pour, Mehdi Hossein, Joewono Prasetijo, Ahmad Shukri Yahaya, and Seyed Mohammad Reza 
Ghadiri. 2012. “Modeling Vehicle-Pedestrian Crashes With Excess Zero Along Malaysia 
Federal Roads.” Procedia - Social and Behavioral Sciences, SIIV-5th International 
Congress - Sustainability of Road Infrastructures 2012, 53 (October): 1216–25. 
https://doi.org/10.1016/j.sbspro.2012.09.970. 



71 
  

Prato, Carlo Giacomo, Sigal Kaplan, Thomas Kjær Rasmussen, and Tove Hels. 2016. 
“Infrastructure and Spatial Effects on the Frequency of Cyclist-Motorist Collisions in the 
Copenhagen Region.” Journal of Transportation Safety & Security 8 (4): 346–60. 
https://doi.org/10.1080/19439962.2015.1055414. 

Prato, Carlo Giacomo, Thomas Kjær Rasmussen, and Sigal Kaplan. 2014. “Risk Factors 
Associated with Crash Severity on Low-Volume Rural Roads in Denmark.” Journal of 

Transportation Safety & Security 6 (1): 1–20. 
https://doi.org/10.1080/19439962.2013.796027. 

Qin, Xiao, John N. Ivan, and Nalini Ravishanker. 2004. “Selecting Exposure Measures in Crash 
Rate Prediction for Two-Lane Highway Segments.” Accident Analysis & Prevention 36 
(2): 183–91. https://doi.org/10.1016/S0001-4575(02)00148-3. 

Raihan, Md Asif, Priyanka Alluri, Wensong Wu, and Albert Gan. 2019. “Estimation of Bicycle 
Crash Modification Factors (CMFs) on Urban Facilities Using Zero Inflated Negative 
Binomial Models.” Accident Analysis & Prevention 123 (February): 303–13. 
https://doi.org/10.1016/j.aap.2018.12.009. 

Schneider, Robert J, Rhonda M Ryznar, and Asad J Khattak. 2004. “An Accident Waiting to 
Happen: A Spatial Approach to Proactive Pedestrian Planning.” Accident Analysis & 

Prevention 36 (2): 193–211. https://doi.org/10.1016/s0001-4575(02)00149-5. 
Schorr, Justin P., and Samer H. Hamdar. 2014. “Safety Propensity Index for Signalized and 

Unsignalized Intersections: Exploration and Assessment.” Accident Analysis & 

Prevention 71 (October): 93–105. https://doi.org/10.1016/j.aap.2014.05.008. 
Sebastien, Lecocq. 2008. “Variations in Choice Sets and Identification of Mixed Logit Models: 

Monte Carlo Evidence.” 2008. http://agris.fao.org/agris-
search/search.do?recordID=LV2016028261. 

Shankar, Venkataraman, and Fred Mannering. 1996. “An Exploratory Multinomial Logit 
Analysis of Single-Vehicle Motorcycle Accident Severity.” Journal of Safety Research 
27 (3): 183–94. https://doi.org/10.1016/0022-4375(96)00010-2. 

Shankar, Venkataraman N., Gudmundur F. Ulfarsson, Ram M. Pendyala, and MaryLou B. 
Nebergall. 2003. “Modeling Crashes Involving Pedestrians and Motorized Traffic.” 
Safety Science 41 (August): 627–40. https://doi.org/10.1016/s0925-7535(02)00017-6. 

Tay, Richard, Jaisung Choi, Lina Kattan, and Amjad Khan. 2011. “A Multinomial Logit Model 
of Pedestrian–Vehicle Crash Severity.” International Journal of Sustainable 

Transportation 5 (4): 233–49. https://doi.org/10.1080/15568318.2010.497547. 
Ulfarsson, Gudmundur F., and Fred L. Mannering. 2004. “Differences in Male and Female 

Injury Severities in Sport-Utility Vehicle, Minivan, Pickup and Passenger Car 
Accidents.” Accident Analysis & Prevention 36 (2): 135–47. 
https://doi.org/10.1016/s0001-4575(02)00135-5. 

Ulleberg, Pål, and Torbjørn Rundmo. 2003. “Personality, Attitudes and Risk Perception as 
Predictors of Risky Driving Behaviour among Young Drivers.” Safety Science 41 (5): 
427–43. https://doi.org/10.1016/S0925-7535(01)00077-7. 

Van Acker, Veronique, Frank Witlox, and Bert Van Wee. 2007. “The Effects of the Land Use 
System on Travel Behavior: A Structural Equation Modeling Approach.” Transportation 

Planning and Technology 30 (4): 331–53. https://doi.org/10.1080/03081060701461675. 
Venkataraman, Narayan S., Gudmundur F. Ulfarsson, Venky Shankar, Junseok Oh, and Minho 

Park. 2011. “Model of Relationship between Interstate Crash Occurrence and 
Geometrics: Exploratory Insights from Random Parameter Negative Binomial 



72 
  

Approach.” Transportation Research Record: Journal of the Transportation Research 

Board 2236 (1): 41–48. https://doi.org/10.3141/2236-05. 
Wang, Jie, Helai Huang, and Qiang Zeng. 2017. “The Effect of Zonal Factors in Estimating 

Crash Risks by Transportation Modes: Motor Vehicle, Bicycle and Pedestrian.” Accident 

Analysis & Prevention 98 (January): 223–31. https://doi.org/10.1016/j.aap.2016.10.018. 
Wang, Kai, John N. Ivan, Nalini Ravishanker, and Eric Jackson. 2017. “Multivariate Poisson 

Lognormal Modeling of Crashes by Type and Severity on Rural Two Lane Highways.” 
Accident Analysis & Prevention 99 (February): 6–19. 
https://doi.org/10.1016/j.aap.2016.11.006. 

Wang, Kai, and Xiao Qin. 2014. “Use of Structural Equation Modeling to Measure Severity of 
Single-Vehicle Crashes.” Transportation Research Record: Journal of the 

Transportation Research Board 2432 (1): 17–25. https://doi.org/10.3141/2432-03. 
Wang, Yiyi, and Kara M. Kockelman. 2013. “A Poisson-Lognormal Conditional-Autoregressive 

Model for Multivariate Spatial Analysis of Pedestrian Crash Counts across 
Neighborhoods.” Accident Analysis & Prevention 60 (November): 71–84. 
https://doi.org/10.1016/j.aap.2013.07.030. 

Wei, Feng, and Gordon Lovegrove. 2013. “An Empirical Tool to Evaluate the Safety of Cyclists: 
Community Based, Macro-Level Collision Prediction Models Using Negative Binomial 
Regression.” Accident Analysis & Prevention 61 (December): 129–37. 
https://doi.org/10.1016/j.aap.2012.05.018. 

Weston, Rebecca, and Paul A. Gore. 2006. “A Brief Guide to Structural Equation Modeling.” 
The Counseling Psychologist 34 (5): 719–51. 
https://doi.org/10.1177/0011000006286345. 

Yamamoto, Toshiyuki, Junpei Hashiji, and Venkataraman N. Shankar. 2008. “Underreporting in 
Traffic Accident Data, Bias in Parameters and the Structure of Injury Severity Models.” 
Accident Analysis & Prevention 40 (4): 1320–29. 
https://doi.org/10.1016/j.aap.2007.10.016. 

Ye, Fan, and Dominique Lord. 2011. “Investigation of Effects of Underreporting Crash Data on 
Three Commonly Used Traffic Crash Severity Models: Multinomial Logit, Ordered 
Probit, and Mixed Logit.” Transportation Research Record: Journal of the 

Transportation Research Board 2241 (1): 51–58. https://doi.org/10.3141/2241-06. 
Ye, Xin, Ram M. Pendyala, Simon P. Washington, Karthik Konduri, and Jutaek Oh. 2009. “A 

Simultaneous Equations Model of Crash Frequency by Collision Type for Rural 
Intersections.” Safety Science 47 (3): 443–52. https://doi.org/10.1016/j.ssci.2008.06.007. 

Zahabi, Seyed Amir H., Jillian Strauss, Kevin Manaugh, and Luis F. Miranda-Moreno. 2011. 
“Estimating Potential Effect of Speed Limits, Built Environment, and Other Factors on 
Severity of Pedestrian and Cyclist Injuries in Crashes.” Transportation Research Record: 

Journal of the Transportation Research Board 2247 (1): 81–90. 
https://doi.org/10.3141/2247-10. 

 

 



73 
  

 : Pedestrian and Bicyclist Corridor Crash 

Analysis 

4.1  Introduction 

This chapter focus is analyzing crashes involving pedestrians and bicyclists, -vulnerable 

roadway users (VRUs)-, that are negatively correlated with roadway factors, and positively 

correlated with environmental and socioeconomic factors. Specific variables representing these 

factors are often correlated, making it difficult to accurately characterize relationships between 

individual variables and pedestrian and bicyclist safety. The statistical methods previously used 

are aimed to construct models that represent the direct relationships between explanatory and 

dependent variables. However, the causes of crashes often involve intricate relationships among 

multiple variables, which may not be adequately captured. 

In this study, the SEM approach is adopted by integrating exploratory factor analysis (EFA) 

and confirmatory factor analysis (CFA) which is a special case of SEM to establish the relationship 

between pedestrian and bicyclist crashes and explanatory variables. Specifically, the following 

research questions were explored: what are the most important latent variables associated with the 

frequency of crashes involving VRUs? Among the key latent variables, what combinations of 

measurable variables provide the most significant representation of these key latent variables? The 

interrelationships among explanatory variables may be better understood by applying the 

structural equation model (SEM) technique, as SEM is generally viewed as a combination of factor 

analysis and path analysis. This highly flexible model structure is capable of representing the 

complex interrelationship among exogenous and endogenous variables through the inclusion of 

“unobserved” or latent variables. Specifically, SEM can handle correlations between explanatory 

variables that represent similar concepts and have overlapped impacts on the dependent 

variable(s). The benefits of this study may help community planners, transportation researchers, 
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and policymakers with a better understanding of the intricate interrelationship of the influential 

factors contributing to VRUs road crashes.  

 

4.2  Data and Corridor Selection Process 

This study follows Cai and colleagues' recommendation to further study the common 

unobserved factors affecting pedestrian and bicyclist crashes (Cai et al. 2016). In contrast to 

previous studies that primarily focused on predicting pedestrian and bicyclist crashes at specific 

locations (e.g., intersections), this study focuses on a sample of 200 one-mile-long highway 

corridors in Wisconsin. Figure 4-1 illustrates the corridor selection process. The corridors are in 

the areas with at least 100 residents per square mile, generally including cities, suburbs, and 

villages but excluding rural areas in Wisconsin. Although spatial diversity is desirable, the focus 

was on urbanized areas since these areas tend to have higher volumes of pedestrians and bicyclists 

and more pedestrian and bicyclist crashes. Among the 200 study corridors, most are located in 

Southeast Wisconsin; 115 had at least one reported pedestrian crash and 67 had at least one 

reported bicycle crash.  

 

Figure 4-1: Corridor Selection Process 

This study examined the frequency of pedestrian and bicyclist crashes reported to police 

between 2011 and 2015 in each study corridor. These data were gathered from the Wisconsin 

Department of Transportation (WisDOT) WisTransPortal Database and only included crash 
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records with latitude and longitude coordinates. Explanatory variables were collected from 

multiple databases including the WisDOT highway inventory, US Environmental Protection 

Agency (EPA) Smart Location Database, US Census Topologically Integrated Geographic 

Encoding and Referencing (TIGER/Line) dataset, and Google Maps and Google Street View 

imagery. Explanatory variables included exposure-related variables (e.g., annualized average daily 

traffic (AADT)), roadway segment characteristics (e.g., motor vehicle AADT, the average number 

of through lanes, and posted speed limit), roadway intersection characteristics (e.g., number of 

residential/non-residential driveways, number of signalized/un-signalized intersections, number of 

right-turn/left-turn lanes on state highway approaches to all intersections), and socioeconomic 

data from surrounding census tracts. None of the study corridors had pedestrian or bicyclist counts, 

so proxy variables were used to represent pedestrian and bicyclist exposure, such as the percentage 

of workers who regularly walked or bicycled to work, population density, and job density in the 

surrounding neighborhoods (based on census block groups). Table 4-1 caries summary statistics 

and description of the dataset.  

Table 4-1: Description and Summary Statistics of The Corridor Variables (N=200)  

Notation Description Coding 
Mean (Standard 

Deviation) or 

Percentage 

Wisconsin Information System for Local Roads (WISLR) 

Ped_1115 
Number of pedestrian crashes (2011-
2015) 

Continuous 1.91 (3.4) 

Bike_1115 Number of Bicyclist crashes (2011-2015) Continuous 0.85 (1.69) 

Google Maps and Google Street View Imagery 

High_Spd_Lmt Posted speed limit higher than 35 mph 
1 = Yes 

0 = No 

1 = 46% 

0 = 54% 
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Pav_Shoulder 
Percentage of corridor covered by paved 
shoulders on both sides (shoulder on only 
one side for full length = 0.5) 

1 = Yes 

0 = No 

1 = 72 % 

0 = 28 % 

Bike lanes 

Percentage of corridor covered by 
designated bike lanes on both sides (bike 
lane on only one side for full length = 
0.5) 

Continuous 0.09 (0.26) 

Sidewalk 
Percentage of corridor covered by 
sidewalks on both sides (sidewalk on 
only one side for full length = 0.5) 

Continuous 0.39 (0.44) 

Sidepath 
Percentage of corridor covered by side 
paths on both sides (side path on only 
one side for full length = 0.5) 

Continuous 0.05 (0.19) 

Unsignalized 
Unsignalized intersections along the 
corridor 

Continuous 5 (4) 

Mid_Block 
Marked midblock crosswalks across the 
state highway along the corridor 

Continuous 0.04 (0.24) 

TWLTL 
Percentage of corridor length with a two-
way left-turn lane 

Continuous 0.06 (0.16) 

US Census TIGER/Line dataset 

Log_AADT 

Natural log of the average of all 
Annualized Average Daily Traffic 
(AADT) volume counts along the 
corridor 

Continuous 9.359 (0.66) 

Walk Transportation mode used to travel to 
work (walking) 

Continuous 0.027 (0.030) 

Bike 
Transportation mode used to travel to 
work (biking) 

Continuous 0.006 (0.012) 

Employ_Density 
Gross employment density (jobs/acre) on 
unprotected land 

Continuous 2.18 (3.81) 

Edu_Less_H 
Percentage of educational attainment for 
the population 25 years and over: less 
than high school 

Continuous 0.09 (0.07) 

EPA/SLD 

Total_Veh0 
Percentage of population with zero car 
ownership 

Continuous 0.07 (0.07) 
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Low_Wage 
Percentage of workers earning 
$1250/month or less (home location), 
2010 decennial Census 

Continuous 0.28 (0.04) 

Poverty 

poverty status in the past 12 months by 
disability status by employment status for 
population 20 to 64 years for whom 
poverty status is determined (percentage) 

Continuous 0.12 (0.10) 

 

4.3  Methodology  

The primary interest of using SEM lies in the test of its theoretical construct which variables 

and their relationships. As shown in Figure 4-2 (31), an SEM model can be depicted in a path 

diagram consisting of boxes and circles, which are connected by arrows. Observed variables are 

usually represented by square or rectangular boxes (i.e., TWLTL), while unobserved or latent 

variables are usually represented by circles or eclipses (i.e., Low Social Status). A directional 

arrow (or path) in the model usually indicates a statistical dependence, in which the variable at the 

tail of the arrow causes the variable at the point. A double-headed arrow does not represent such a 

statistical dependence, but an indication of correlation between variables. Through the x-

measurement model for exogenous variables, a y-measurement model for endogenous variables, 

and the structural model between latent variables, SEM can differentiate between direct, indirect, 

and total effects between variables. By combining the structural model with measurement models, 

SEM expresses the regression effects of exogenous “independent” variables on the endogenous 

“dependent” ones, as well as, expressing autocorrelation “effects between endogenous variables.” 

For more details see (Schumacker and Lomax 2004).  
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Figure 4-2: Example of A Structural Equation Model (Variable Definitions are Shown 

In Table 4-2) 

The formulation of SEM in Equation 1 suggests a structure between the covariances between 

observed variables (36):  

��
�	 = 
�� 0

0 ��
� ��

�	 + ��
�	                                                                              Eq. 4-1 

Table 4-2: SEM elements 

Model Variable Variable Description  

Measurement  

x 
q x 1 column vector of observed exogenous variables  

y 
p x 1 column vector of observed endogenous variables  

� 
n x 1 column vector of latent exogenous variables  

� 
m x 1 column vector of latent endogenous variables  

� q x 1 column vector of measurement error terms for observed 
variables x 

� 
p x 1 column vector of measurement error terms for observed 

variables x 

�� The matrix (q x n) of structural coefficients for latent exogenous 
variables to their observed indicator variables 

�� The matrix (q x n) of structural coefficients for latent endogenous 
variables to their observed indicator variables 
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Structural  

Γ The matrix (m x n) of regression effects for exogenous latent 
variables to endogenous latent variables  

� The coefficient matrix (m x m) of direct effects between 
endogenous latent variables 

� 
m x 1 column vector of error terms  

The model goodness of fit can be measured by the comparative fit index (CFI) (Bentler 1990) in Eq. 
4-1  and the root mean square error of approximation (RMSEA) Browne and Cudeck 1992) in Eq. 4-
2.  

CFI = 1 - 
� ���.�����

�  !��".�����                    Eq. 4-2  

Where,  

τ indep. model = X�-./01.23/04  - df-./01.23/04 

τ est. model = X�089.23/04  - df089.23/04 

Estimated RMSEA = :� ���.�����
;/<=>?@A

                  Eq. 4-3 

Where,  

B : the degree of misspecification of the model  

X�: chi-square statistic  

df: the degree of freedom  

N: sample size  

CFI index is calculated using χ2 statistics for two models: the target and the baseline models; 

and measures how better the model fits with a comparison to the baseline model. The baseline 

model includes means and variances of the observed variables in addition to the covariances of the 

observed exogenous variables. Both indices (root mean square error of approximation (RMSEA) 

and comparative fit index (CFI)) assume that the target model is approximately correct, but CFI 

carries another assumption that the baseline model is also correct. CFI is based on the assumption 

that all latent variables are uncorrelated and performs well even when the sample size is small 
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(Tabachnick and Fidell 2006). Values for CFI range between 0 and 1, with a value closer to 1 

indicates a better fit. Root mean square error of approximation (RMSEA)-which is a function of 

chi-square and degree of freedom- measures the difference between the observed and predicted 

values (Tiadatara 2009). A value of less than 0.08 indicates a good fit model.  

4.3.1 SEM Model Specification, Estimation and Evaluation  

4.3.2  Exploratory Factor Analysis (EFA) 

A hypothesized model assessed the relative factors affecting pedestrian and bicyclist crash 

risk (Figure 4-3) and indicated that exposure, roadway, and socioeconomic should be used as 

latent variables that connect exogenous and endogenous variables. The behavioral-related latent 

variable is not included since the dataset lacks behavioral input variables. The three latent variables 

(oval shape) are predictors of the number of crashes that involve either pedestrians or bicyclists 

(square shape) taking place on the study segments. The latent variables are allowed to correlate. A 

substantive theoretical model does not exist, so the exploratory factor analysis (EFA) is used to 

obtain the empirical factor model and explore the structural portion of SEM. EFA assumes that 

every observed variable is an indication or a measurement of a latent variable (Figure 4-3a). EFA 

is usually performed as a precursor to confirmatory factor analysis (CFA) (Pett, Lackey, and 

Sullivan 2003) which confirms theoretically valid relationships (Figure 4-3b). Researchers vary 

in terms of sample size recommendations for factor analysis. A sample size of 200 and the sample-

to-variable ratio of 3:1 kept this study within the acceptable ranges for applying factor analysis 

(39).  

To test the ability to apply factor analysis using this study’s data, the Kaiser-Meyer-Olkin 

(KMO) measure of sampling adequacy was applied. It is hypothesized that the correlation matrix 

is an identity matrix so that Bartlett's Test of Sphericity to test this hypothesis (Hamdar, 

Mahmassani, and Chen 2008) was used. Bartlett’s test of sphericity resulted in a P-value of 0.02 
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(<0.5 is recommended), and a KMO index value of 0.8091 (>0.6 is recommended); both are 

considered meritorious (Costello and Osborne 2005). The strength of the linear relationship 

between two variables is crucial. Many variables in the study dataset were highly correlated (i.e., 

the correlation between the percentage of high wage and total vehicles of two or more is 0.79), and 

these variables were not used together in the same model. A threshold of 0.5 was accepted as a 

correlation coefficient between the set of variables chosen for the analysis (39, 40).  

 

(a) 
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(b) 

Figure 4-3: Illustration of the Conceptual Distinction Between EFA (a) and CFA (b)  

The number of latent variables can be evaluated using the visual tool called the Scree test. 

The Scree test showed a clear drop between the third and fourth components, meaning the most 

suitable number of factors lies between three and four factors. Additionally, goodness of fit indices 

in the three-factor EFA model show acceptable values (RMSEA = 0.000; CFI = 1.064).  

The estimation method for factor loading coefficients, which measure the strength between 

observed and latent variables, relies on data quality. The Maximum likelihood (ML) or principal 

axis factoring (PAF) method is recommended, depending on whether the data is normally or 

significantly non- normally distributed (Wier et al. 2009). The ML estimation method was chosen 

after variables were standardized through the “scale function” and the rotation method is variance 

maximizing (varimax) rotation. EFA was conducted using the first part of the sample size of 100 

corridors. Table 4-3 shows the results of the exploratory factor analysis. Despite the cross-loading 
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that appeared in the (High_Spd_Lmt) variable, the observed variables that are highly correlated 

with factors show distinctive characteristics. 

(High_Spd_Lmt), (Bikelane), (Pav_Shoulder), (Sidewalk), and (Unsignalized) are highly 

correlated with F1 which can be called pedestrian and bicycle-oriented roadway. (Walk), (Bike), 

(Employ_Density), and (log_AADT) are highly correlated with F2 which can be called exposure. 

(Edu_Less_H), (Total_Veh0), (Low_Wage), and (Poverty) are highly correlated with F3 which 

can be called low social status. Hence, three factors – exposure, social status, and pedestrian and 

bicycle-oriented roadway – were constructed from the observed variables in the data collection. 

Factor loadings >0.4 are in bold. 

Table 4-3: EFA Loadings for Measurement Models (N=100)  

Variable Factors 

 

Pedestrian and  

Bicycle-Oriented 

 Roadway (F1) 

Exposure (F2) Low Social Status (F3) 

High_Spd_Lmt -0.55 -0.40 -0.28 
Bikelane 0.41 0.11 0.11 

Pav_Shoulder 0.38 -0.11 -0.06 
Sidewalk 0.63 0.04 0.17 
Sidepath -0.06 0.01 0.01 

Unsignalized 0.74 0.14 0.09 
Mid_Block_ 0.03 0.02 0.00 

TWLTL -0.25 0.20 0.22 
Walk 0.10 0.69 -0.02 
Bike 0.12 0.65 0.17 

Employ_Density 0.14 0.54 0.26 
log_AADT 0.16 0.48 0.11 

Edu_Less_H -0.09 0.02 0.78 

Total_Veh0 0.1 0.16 0.86 

Low_Wage 0.15 0.27 0.71 

Poverty 0.14 0.32 0.90 
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4.3.2.1 Confirmatory factor analysis  

The CFA model was analyzed using the remaining observations. CFA is often used to evaluate 

a prior theory or hypothesis such as the number of factors, types of factors, whether or not the 

factors are correlated, and which observed variables are indicators of which factor. Now, given the 

EFA results, CFA helps cross-validate the structure as well as the factor loading since EFA is 

purely data-driven. Prior knowledge informs that the presence of ped/bike-friendly facilities, 

percent of the working population, AADT, walking/biking, and gross employment density are 

considered to be related to pedestrian and bicyclist exposure. However, the high score of factors 

loading in the EFA suggested that high-speed limit is also a strong indicator of exposure and thus, 

the high-speed limit was used as an indicator for the latent factor exposure in CFA. By contrast, 

EFA indicated paved shoulder has a low correlation with pedestrian and bicycle-oriented roadway 

or any of the three factors but it was kept in CFA because of prior knowledge.  

The exploratory factor structure suggests that a CFA is fitted based on three latent variables 

in the X measurement model (Figure 4-3b). The fourth latent variable was added following the 

similar concepts in (32, 33). The fourth latent variable in the Y measurement model (Figure 4-3b) 

is the endogenous latent variable, so-called “Crash Index”, which is measured by pedestrian 

crashes and bicyclist crashes. Figure 4-4 illustrates the resulting SEM with all latent variables. All 

variables were significant at a 5% level, and non- significant variables were removed (e.g., 

Mid_Block and Sidepath).  
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Figure 4-4: Final Structural Equation Model 

The overall fit of the model and the significance of some model parameters were evaluated. 

Both the RMSEA and CFI indices are within the cut-off values of (0.064) and (0.930), respectively. 

Hence, the model does fit despite the result of the chi-square test.  

 

4.4  Results  

The SEM technique enhances safety studies with its ability to build a structure among 

variables (e.g., pedestrian and bicyclist safety studies at intersections). The ability to include 

multiple endogenous measures (e.g., pedestrian crashes, bicyclist crashes) is a benefit because it 

results in a more informative framework. SEM also guides with safety-related data collection, and 
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it highlights pertinent variables that can be gathered to represent important latent variables. Several 

models were tested to identify a statistically significant model.  

 The final SEM displays standardized parameters for all coefficients. The structural model 

which can be viewed as a standard regression equation using standardized parameters include 

latent exogenous variables bicycle/pedestrian-oriented roadway, exposure, and low social status 

and latent endogenous variable crash index. The regression coefficients show that the crash index 

is strongly and positively influenced by exposure latent variable (coefficient = 0.51), moderately 

and negatively affected by bicycle/pedestrian-oriented roadway (coefficient = -0.35), and weakly 

and positively affected by the low social status (coefficient = 0.19). Regarding the measurement 

models, the x-measurement model implies that sidewalk coverage along the corridor, bike lane, 

and paved shoulder coverage are good features of a bicycle/pedestrian-oriented roadway. Bike 

lanes, paved shoulders, and sidewalks may lead to higher exposure for pedestrians and bicyclists, 

but they also provide designated space for these VRUs and may decrease the likelihood of crashes. 

The y-measurement model implies pedestrian and bicycle crash count is strong and positive 

measures of the crash index. 

The low social status latent variable was positively and highly influenced by many variables 

(e.g., low educational level, and low wage). The results show a positive effect between lower 

educational level and crash frequency: well-educated residents may have had more driver 

education training and may be more aware of road safety and the consequences of crashes. People 

who live in lower-income neighborhoods may travel more by walking and bicycling due to limited 

resources for automobile travel. Lower rates of car ownership may be positively related to crash 

frequency through increased pedestrian and bicyclist exposure. It is also possible that areas with 
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higher-income residents may have environments that are more conducive to biking and walking 

(e.g., more high-quality pedestrian and bicycle infrastructure).  

Looking at the exposure latent variable, walking or biking as a transportation mode, in 

addition to employment density and log_AADT positively affect the pedestrian and bicyclist’s 

exposure to traffic, hence, lead to more crashes. The high-speed variable was having dual 

citizenship, meaning that it was correlated to both the bicycle/pedestrian-oriented roadway and the 

latent exposure variable. However, the results show that it is positively related to the exposure 

variable (0.55), but negatively related to a bicycle/pedestrian-oriented roadway latent variable. As 

speed increases, pedestrian and bicycle crashes may be more likely because drivers may not detect 

pedestrians and bicyclists on the sides of the road as well and longer stopping distances are needed 

to avoid collisions. In contrast, high traffic volumes may increase traffic congestion and reduce 

motor vehicle speeds, leading to an overall reduction in crash frequency.  

 The results contain similar conclusions from previous studies. Exceeding the speed limit 

showed an increase in the probability of being involved in a crash (32, 33). It was significant in 

bicycle/pedestrian-oriented roadway (-0.13) and exposure latent variables (0.55) but had a higher 

impact on exposure latent variables. This underscores the value of SEM since it can clarify 

complex relationships between variables. A unique conclusion is derived from the correlation 

between two exogenous latent variables, showing the high positive correlation between low social 

status and exposure. Owning zero vehicles (shows a low social status) will increase the individual’s 

exposure and therefore increase his/her crash index leading to more crash involvement. Also, the 

presence of paved shoulders tends to decrease the crash index (indirectly) by improving the road 

design for pedestrians and bicyclists. Paved shoulders provide additional space for pedestrians and 
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bicyclists outside of travel lanes, even the elevation between the shoulder and the roadway, and 

reduce the presence of gravel or sand that may contribute to bicyclist crashes.  
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 : Party At-Fault Assignment And Analysis 

5.1  Introduction 

Pedestrian and bicyclist safety emerge as the top safety concerns with the increase in mass 

motorization of our society, as vulnerable road users (VRU) are more likely to suffer from serious 

injuries and fatalities when involved in a crash. For each trip, pedestrians are 1.5 times more likely 

to be killed in a crash than vehicle occupants (CDC, 2019). Identifying important risk factors of 

pedestrian-vehicle crashes will help address the existing safety deficiencies and facilitate the 

development of proactive countermeasures. However, crashes are complex events in which each 

party involved could share different responsibilities: a driver, a VRU, or both parties can be at 

fault. The term “fault”, or alternative terms such as “primarily responsible” (R. Schneider, 

Stefanich, and Corsi 2015; Young and Salmon 2015; Romano, Voas, and Camp 2017), 

“culpability” (Dorn and af Wåhlberg 2019), is commonly used in this line of research to describe 

which party is liable for a traffic crash. Determining who is at-fault and identifying the underlying 

factors are tremendously beneficial for understanding the possible crash circumstances and causes 

and thus, instrumental to the design of appropriate safety solutions. 

One of the primary sources regarding the possible fault party is the police crash report, in 

addition to roadways, environmental, personal, and crash-related factors. In this chapter, the first 

objective is to explore appropriate crash characteristics and contents in the crash report that assist 

in determining the fault party and to propose procedural guidance on investigating and assigning 

a certain party to be at-fault. The second objective is to examine the association between the at-

fault party and the crash injury risk and by quantifying the effect of the roadway, environmental, 

personal, and crash-related factors on the judgment and decision-making of the at-fault party.  
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Specifically, the investigation of crash reports contains two parts: first, data fields and 

narrative section in a crash report are carefully screened for the indication of the party at fault; 

second, machine learning and statistical models (e.g. Z-test, XGboost, and multinomial logistic 

(MNL)) are employed to quantify the effect of certain factors on a party at-fault and corresponding 

crash injury severities. The findings are anticipated to provide crucial input for developing and 

deploying effective enforcement, education, and engineering solutions that target to improve safety 

behavior and actions of drivers, VRUs, or both. 

 

5.2  Literature Review 

The literature review is divided into three major sections: 1) methods for assigning fault party, 

2) relevant methods for classifying crash injury severity, and 3) relevant and key findings from 

previous studies for the at-fault parties. 

5.2.1  Methods for Assigning Party At-Fault 

Several studies used crash reports where the at-fault party is assigned by the police officer at 

crash time, the process involved referring back to the crash report as the target data source (i.e., 

(Islam and Jones 2014; Islam and Hossain 2019).  

A few research obtained the needed information for fault assignment from the police narrative 

(R. Schneider, Stefanich, and Corsi 2015). The authors stated that since the police do not assign 

“fault” for crashes in Wisconsin, the study utilized the detailed narrative on the MV4000 crash 

forms, along with the type of citation issued at the time of the crash. This method helped to interpret 

which party or parties the police officer viewed as being primarily responsible for the crash. 

 While other researchers used the available data fields in the crash report for gathering the key 

factors (C. Lee and Abdel-Aty 2005). Lee and Abdel-Aty (2005), investigated the effects of 
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average traffic volume at intersections (that is not readily available in crash reports) on pedestrian 

crashes. In their study, the authors assigned the fault party based on personal characteristics. 

Pedestrian crashes were classified into two types: 1) crashes at driver’s fault, and 2) crashes at 

pedestrian’s fault. The premise of this classification is that crashes at driver’s fault are more 

associated with driver characteristics whereas crashes at pedestrian’s fault are more associated 

with pedestrian characteristics. In crashes where the driver received a traffic violation citation, the 

crash was classified as crashes at the driver’s fault. Else, crashes were classified as crashes at 

pedestrian’s fault (C. Lee and Abdel-Aty 2005).  

Regarding the research based on obtaining evidence on the fault party from the picture and 

video recording. Currie and Logan (2014), took into account key driver, vehicle, roadway, and 

environmental characteristics that are hypothesized to influence the probability of bus drivers 

being deemed at-fault in bus-involved accidents, and excluded certain driver-specific details (e.g., 

risk perception, and educational level). The methodology used is considered to be less biased 

compared to police records and self-reported data (Goh et al. 2014).  

Researchers also utilized crash tools to gather information about the crash circumstances such 

as the PBCAT tool. Das and colleagues (2020), associated the PBCAT tool with a framework 

developed for applying ML models to classify pedestrian crash types and assign the fault to 

different parties (i.e., drivers, pedestrians, both, none/undefined) (Das, le, and Dai 2020).  

In summary, different State department of transportation (DOT’s) assign the fault party within 

the crash report at the time of the crash, based on the issued citation in case the citation is relevant 

to the crash occurrence and any action that is associated with the crash.  

Police narrative included in the crash form, together with the type of citation to decide which 

party is primarily responsible for the crash, the pedestrian and bicycle crash analysis (PBCAT) 
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tool, pictures and video recordings captured by closed-circuit television (CCTV) cameras have 

been used by researchers to enhance the process of determining the fault party in a crash. Table 5-

1 summarizes the existing methods for assigning an at-fault party in a crash.  

Table 5-1: A summary of the existing methods used for assigning the responsible road 

user in a crash by previous empirical studies. 

Study 

Author and 

(Year) 

Data Source 
Summary of Methods Used in 

Determining Fault 

Kim, 

Brunner, and 

Yamashita 

(2008) 

Police-reported crash data. 

Based on law enforcement (i.e., pedestrian 

jaywalking laws), the fault is determined 

by deciding on the party that received a 

ticket/citation. 

Kim, 

Brunner, and 

Yamashita 

(2008) 

The fault is determined by specially trained 

investigators who are dispatched to the 

crash scene, and they typically search for 

the action or behavior of a certain party 

that caused the accident to occur. 

Ulfarsson, 

Kim, and 

Booth (2010) 

The police officer assigns the fault to the 

party based on who acted negligently or is 

in other ways found to have caused the 

crash. 

(Zhao, Wang, 

and Jackson 

2019) 

Drivers were considered ‘‘at-fault’’ if they 

were given any verbal/written warning, 

infraction, or arrest/summons. If no action 

was taken by the officer, the driver was 

considered not-at-fault. 

Walter and 

Studdert 

(2015) 

The fault is determined based on citations 

issued for crash responsible drivers and 

recorded in the police report. 
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Kim et al. 

(1998) 

 

Police officers assign the fault party and 

record the information in the crash report 

based on the officer’s narrative summary 

of the event. 

Kim and Li 

(1996) 

The fault is determined by investigating 

officers and then reported on crash report 

forms. Based on a logistic model that 

explains fault among motorists as a 

function of various variables. The crash 

report form is to ascertain who is at fault 

and that although individual fields such as 

driver’s license number, birth date, vehicle 

identification number, and so forth may be 

sources of error. 

Adanu et al. 

(2017) 

The fault is determined based on the 

investigation done by the officer who 

completed the crash report. 

Spainhour 

and Wootton 

(2007) 

Police-reported crash data and 

case review data stemmed from 

manual case reviews of multiple 

crash data sources. 

The fault is determined by the 

investigating officers which are then 

reported on crash report forms. Florida 

department of transportation (DOT) 

currently uses an algorithm to assign fault. 

FDOT thereby presumes that the individual 

in the first section is at fault unless a 

citation was given to drivers or pedestrians 

in subsequent sections of the crash report, 

in which case fault is reassigned to the 

person receiving the citation. 

Lee, Abdel-

Aty, and Choi 

(2014) 

ZIP code information of road 

users involved in traffic crashes 

and police recorded data. 

The fault is determined based on the crash 

investigation done by police officers, who 

issue citations according to the 
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investigation. Citations are then recorded 

in the police report which confirms the 

fault party. 

Goh et al. 

(2014) 

Pictures and video recordings 

captured from CCTV cameras. 

 

 

The fault is typically made with the aid of 

pictures and video recordings captured 

from CCTV installed and is done by police 

officers and adjusters from the insurance 

company before an at-fault assignment is 

made for insurance claims. 

Russo et al. 

(2014) 

Michigan traffic crash facts 

(MTCF) data query tool. 

The fault is assigned to one driver based on 

the judgment of the investigating officer, 

who decides that the at-fault driver must 

have performed one or more hazardous 

actions (e.g. speeding, failing to yield, 

disregarding traffic control devices) that 

contributed to the crash. 

Zhang, Yau, 

and Zhang 

(2014) 

Traffic accident data. 

The fault is determined by police officers, 

under the following two circumstances: (1) 

determined by police that he/she should 

bear the whole responsibility of the 

accident; (2) determined by police that 

he/she should bear the main responsibility 

of the accident. For instance, when crashes 

occur on roadways without pedestrian 

facilities, motor vehicles are typically held 

responsible because pedestrians are 

commonly considered as a vulnerable 

group. Conversely, pedestrians are mostly 

determined to be liable. 
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Islam and 

Jones (2014) 

 

Police-reported crash data 

filtered using the critical 

analysis reporting environment 

(CARE) software system. 

Dataset already has the at-fault party 

assigned in the original police-reported 

crash database. 

Schneider, 

Stefanich, 

and Corsi 

(2015) 

MV4000 Crash report forms. 

Since the police do not assign “fault” for 

crashes in Wisconsin, the study used the 

detailed narrative on the MV4000 forms, 

and the type of citation helped as well to 

interpret which party or parties the police 

officer viewed as being primarily 

responsible for the crash. 

Ichikawa, 

Nakahara, 

and 

Taniguchi 

(2015) 

Police-reported crash data and 

driving exposure data. 

The fault is determined by police 

investigators at the scene of the motor 

vehicle crash. 

Ratrout et al. 

(2017) 

Police-reported crash data, as 

well as the crash, driver, and 

vehicle-related data collected 

from police stations. 

Drivers at fault and not at fault were 

separated and investigated through factor 

and principal component analysis (PCA) 

for 19 parameters related to their 

background and knowledge of traffic signs. 

Penmetsa, 

Pulugurtha, 

and Duddu 

(2017) 

Crash data obtained from the 

Highway Safety Information 

System (HSIS) which included 

information related to accident, 

roadway, vehicle, and occupant. 

For each vehicle involved in a crash, the 

crash reports provide three contributing 

factors (which indirectly explain the traffic 

rule the driver violated) that led to the 

crash. If the driver has not committed any 

traffic violation, a value of zero is provided 

under the contributing factor variable, 

implying that the driver is not at fault in 

the crash. 
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Das et al. 

(2018) 

 

Police-reported crash data 

which contains crash, roadway 

geometry, and vehicle-related 

data. 

Based on the crash event investigated by 

the police officer who records the fault 

party in the report. 

Yu et al. 

(2019) 

 

Police-reported crash data 

obtained from the FDOT Crash 

Analysis Reporting (CAR) 

system, driver information data 

extracted from the CAR system, 

and traffic analysis zone (TAZ) 

shapefile obtained from the US 

Census Bureau. 

The fault is determined through using the 

license address state variable 

“ADRSTATE” for at-fault drivers, which 

is coded in the crash data. 

Islam and 

Hossain 

(2019) 

Police reported crash database 

filtered using the (CARE) 

software system. 

Dataset already has the at-fault party 

assigned in the original police-reported 

crash database by the police officer who 

completed the report at the scene. 

Das, le, and 

Dai (2020) 

Pedestrian and bicycle crash 

analysis tool(PBCAT). 

PBCAT tool was associated with a 

framework developed for applying ML 

models to classify pedestrian crash types 

and assign the fault to different parties 

(i.e., drivers, pedestrians, both, 

none/undefined). 

Note: Studies are ordered by the common data source. 

5.2.2  Methods for Classification 

Diverse methods were applied for predicting the probabilities of being one of the multiple 

categories of fault parties. Zhang and colleagues (2014) analyzed pedestrian-vehicle crash reports 

to identify significant risk factors connected with pedestrian and driver liability/fault in a crash 

using logistic regression models. The authors identified risk factors that impact pedestrian and 

driver fault status in pedestrian-motor vehicle crashes. The results showed that traffic crashes in 
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which pedestrians were deemed at fault, resulted in serious and fatal injuries. Regarding 

pedestrians’ liability,  individual characteristics such as being manufacturing workers and farmers, 

vehicle features such as being in a crash that involved general use vehicles, road conditions such 

as pedestrian separation structures, and roadways with traffic lights or signs, and during rush hour, 

are all risk factor associated with the pedestrian being more likely to be at-fault in pedestrian-

vehicle crashes (G. Zhang, Yau, and Zhang 2014). 

Penmetsa, Pulugurtha, and Duddu (2017) utilized the partial proportional odds (PPO) model 

for the analysis of the severity outcome of not-at-fault drivers in two-vehicle crashes. Exceeding 

the speed limit, reckless driving, and going the wrong way are the three traffic rule violations of 

at-fault drives that are more likely to result in severe injuries to not-at-fault drivers compared to 

disregarding traffic signals/signs/markings. Additionally, crashes involving two and three traffic 

violations are 68% and 186% more likely to result in severe injuries compared to crashes involving 

at-fault drivers with only one traffic rule violation (Penmetsa, Pulugurtha, and Duddu 2017).  

Few studies have adopted artificial intelligence (AI) approaches. For an instant, Das et. al. 

evaluated three machine learning algorithms, including support vector machine (SVM), random 

forest (RF), and the extreme gradient boosting (XGBoost) algorithm which is an implementation 

of the gradient boosted decision tree (GBDT) technique.  

The authors aimed at investigating at-fault motorcycle riders, to classify crash types from 

pedestrian crash typing data and identify factors associated with the driver, pedestrian, both, or no-

fault in a crash (Das, le, and Dai 2020). The analysis results showed that 45% and 42% of the 

crashes involved drivers and pedestrians at-fault, respectively. Furthermore, the results highlighted 

that if a pedestrian was crossing the roadway and was struck by a turning vehicle, the driver was 

most likely (79%) to be at-fault; if the vehicle was not turning, the pedestrian was at-fault in (81%) 
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of the crashes. Pedestrians darting out into the roadway were deemed at fault in 100% of the 

crashes.  

Classification and regression trees (CART) have also been used in the research investigating 

the categorization of the at-fault party. Mohaymany et. al. (2010) adopted the CART method 

combined with the quasi-induced exposure concept, to study the target variable; driver status. 

Driver status involved two classes; at-fault drivers, and not-at-fault drivers. The results showed 

that drivers who are younger than 28 years old, whose driving license is type 2 -a driving license 

that is for driving with passenger car and light vehicles -and whose driving experience is less than 

two years are most probably responsible for overtaking crashes (Mohaymany, Kashani, and 

Ranjbari 2010). Yan and Radwan (2006), also adopted the same methodology. The analysis results 

showed that the youngest driver group (< 21 years) shows the largest crash propensity, and the 32–

75 years drivers driving large size vehicles have a larger crash propensity compared to those 

driving passenger vehicles (Yan and Radwan 2006). 

Other researchers implemented Factor analysis (FA) and principal component analysis (PCA) 

to analyze crash variables linked with at-fault and not-at-fault drivers. The authors implemented 

logit models to quantify the effects of the influencing variables.  

The results revealed that driver’s experience and knowledge of traffic signs for chauffeurs 

have a positive impact on reducing fault behavior of drivers (Ratrout et al. 2017).  

Multiple correspondence analysis (MCA) technique, which is an extension of the 

correspondence analysis (CA) was adopted by Jalayer et. al. (2016) to identify 

roadway/environmental, motorcycle and motorcycle related variables influencing motorcycle-

involved crashes with motorcyclists being at fault. According to the obtained results, the main 
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contributing factors to at-fault motorcycle-involved crashes are light conditions, time of day, driver 

condition, roadway curvature and grade, and weather conditions (Jalayer and Zhou 2016). 

5.2.3  Findings from Previous Studies for the Party At-Fault 

Researchers used crash reports that assigned the fault party, to conduct research concerning 

factors associated with the frequency and severity of crashes involving at-fault and not-at-fault 

parties (i.e., (Kim et al. 1998; Spainhour and Wootton 2007; Kim, Brunner, and Yamashita 2008; 

Ulfarsson, Kim, and Booth 2010; G. Zhang, Yau, and Zhang 2014; Islam, Jones, and Dye 2014; 

Ichikawa, Nakahara, and Taniguchi 2015; Das et al. 2018; Yu et al. 2019; Islam and Hossain 2019). 

In general, human factors are considered to be the most prevalent factors contributing to crashes, 

followed by roadway environment and vehicle factors (H. Zhang 2010). Many factors have been 

of interest since the analysis results enhanced the driver-focused educational programs (Abdel-Aty 

and Abdelwahab 2000).  

 In addition to the commonly used personnel features (e.g., gender, age, driving experience, 

and blood alcohol concentration (BAC)), crashes were also identified to be related to the driver 

faults (Kim and Li 1996; Ichikawa, Nakahara, and Taniguchi 2015; Walter and Studdert 2015; 

Islam, Jones, and Dye 2014; Zhao, Wang, and Jackson 2019; Penmetsa, Pulugurtha, and Duddu 

2017; Duddu, Penmetsa, and Pulugurtha 2018; R. Schneider, Stefanich, and Corsi 2015).  

Limited research considered studying the effect of fault status on the injury severity level, and 

the factors affecting the fault of a road user. (Yu et al. 2019) investigated a variety of crash 

influencing factors of at-fault out-of-state drivers. It was identified that the influencing variables 

for crashes caused by out-of-state drivers are car ownership, speeding, and driving under the 

influence (DUI) for the intersection crashes and being an old driver, speeding, and dark roadway 

environment for roadway segment crashes.  
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(J. Lee, Abdel-Aty, and Choi 2014) analyzed the relationship between the number of at-fault 

drivers and their residence zonal characteristics. It was concluded that not only roadway/traffic 

factors affect the crash occurrence, but also several demographic and socioeconomic 

characteristics of residence zones where the at-fault drivers live. Yet, there was no detailed 

exploration carried out for the specific influencing factors affecting a specific road user to be 

responsible for a crash, and no investigation directed to study if the crash injury severity is affected 

by a specific road user being at-fault. Hence, this study aims at bridging the gap by analyzing the 

crash injury severity caused by drivers and VRUs separately. The special contributing factors 

leading a specific road user to be at-fault of the crash would be identified while the importance of 

each contributing factor on both, the pedestrian and the driver's fault would be examined and 

discussed as well. 

The study of Lee and colleagues (2005) analyzed vehicle-pedestrian crashes at intersections 

in Florida over 4 years, 1999–2002, and considered using an ordered probit model to investigate 

the likelihood of pedestrian injury severity. The results highlighted findings categorized regarding 

the fault party.  

For instance, the authors concluded that middle-age (25–64) and male drivers are more 

involved in crashes as causers than other driver groups and that crashes occur more frequently at 

the intersections with other traffic control (e.g. stop signs, yield signs, etc.) in urban areas when 

non-intoxicated drivers are driving passenger cars at night. Additionally, the proportion of fatal 

vehicle-pedestrian crashes was higher when the driver was normal in condition.  

Whereas, In the case of crashes at pedestrian’s fault, the crashes occur more frequently under 

similar conditions to crashes at driver’s fault, but also the undivided and wide (i.e. a greater number 

of lanes) intersections (C. Lee and Abdel-Aty 2005). Also, an interesting finding showed that the 
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condition of the pedestrian involved in fatal crashes was mostly unknown which is mainly due to 

the lack of input on that category in the police report. 

 

5.3  Methodologies 

In this study, Z-test, XGboost, and multinomial logistic regression are used to serve the 

primary goal which is to understand if the crash severity is affected by the fault status, as well as 

investigating the risk factors affecting the crash severity outcome for at-fault and no-fault parties. 

Selecting the suitable method relies on the underlying objectives of the study, which as far as the 

study goals were descriptive and predictive mining to distinguish the severe crashes-related factors 

and obtain the highest potential accuracy. Below is a summary of the methodologies. 

5.3.1  Z-Test Concerning Injury Severity Proportion 

In this analysis, the Z-test for proportions was selected as the statistical test to indicate if a 

particular variable of the newly created roadway, driver, pedestrian, and bicyclist-related 

pedestrian and bicyclist-related variables has higher (fatal (K) and severe (A) injury) proportion is 

significantly different than the proportion of (fatal (K) and severe (A) injury) injuries for the 

population. The test was conducted in RStudio using the “prop. test” function at a 95% confidence 

level. Note that the formula of the Z-test statistics Z =  Ĉ − C﷩ ﷩CG/I                    

Eq. 5-1                        is valid when sample size (n) is large enough; np, nq should be ≥ 5. In case 

of a small sample size (such in “NMTSFQ.REFL.LTNG.HLMT” variable in Error! Reference 

ource not found. to Error! Reference source not found., the Fisher Exact probability test is used 

for comparing the two proportions.  

Z = 
"KL"

M"N/!                    Eq. 5-1                        

Where: 
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- pK: sample proportion; 

- p: population proportion; 

- G: 1-p; 

- I: sample size. 

5.3.2  Gradient Boosting Decision Tree (GBDT)  

GBDT is an iterative decision tree algorithm, proposed by Friedman (Breiman 1984) at 

Stanford University. It includes multiple additive trees (MATs), where each tree is considered a 

weak learner, and the following tree is trained based on the error of the former tree (Friedman 

2001). The algorithm can conquer the over-fitting problem of an individual tree by merging 

hundreds of weak decision trees. In the GBT model, a basis function OP�) describes a response 

variable y in a function of summation of weighted basis functions for individual trees as follows: 

OP�) = ∑ �!SP�; U!)�!VW      Eq. 5-2 

Where: 

- SP�; U!) is the basis function for individual tree n; m is the total number of trees; 

- U! is the split variable; and  �! is the estimated parameter that minimizes the loss 

function, L(y, f(x)). 

Hence, the output is constructed by cumulating the conclusions from all trees from this 

algorithm. GBDT owns a few advantages, including the ability to find non-linear transformations, 

the ability to handle skewed variables without requiring transformations, computational 

robustness, and high scalability (Industrial Networks and Intelligent Systems 2018). Also, the 

strength of the GBDT algorithm arises from its ability to recognize feature combinations. It is one 

of the most powerful techniques for classification and producing prediction models -generalized 

by allowing an arbitrary distinguishable loss function- a form of an ensemble of weak prediction 
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models (Haroon 2017). For further details on the thorough description of gradient boosting trees 

from a statistical learning point of view, refer to the paper by Guelman (Guelman 2012).  

5.3.3  Extreme Gradient Boosting Decision Tree (XGboost) 

The analysis in this study attempted the extreme gradient boosting decision tree technique 

(XGboost). XGboost is one of the four common tree-based ensemble learning techniques; random 

forest (RF), GBDT, and Adaboost with a decision tree (C. Wang et al. 2019). XGboost is an 

extreme Gradient Boosting technique in applied machine learning which encapsulates the high 

performance and better speed over the other classification and regression models (Kandan et al. 

2019).  

Gradient boosting methods are found to help in classification and regression models, via 

predicting errors of previous trees using ensemble learning to boost both, model performance and 

accuracy. The data was split into training and test datasets, where our model was trained in the 

assigned trained dataset and then tested in the test dataset to obtain the prediction accuracy. R 

software was used to build the model in the “xgboost” package. Regarding accuracy validation, 

the k-fold cross-validation technique was used. The final model had (1000) trees.  

5.3.4  Multinomial Logit (MNL) Model 

Even though each model used in the crash severity-related literature has its advantages, it is 

noted that MNL models are the most widely used approach used to identify the relationship 

between the dependent and independent variables (Chen and Fan 2018). Shankar and Mannering 

(1996) provided a detailed discussion of MNL models. The MNL model is a discrete choice model 

which deals with three or more levels of the response variable, without taking into consideration 

the order of the levels.  It is common to categorize crash severity level into five discrete categories: 

a) property damage only, b) possible injury, c) evident injury, d) disabling injury, and e) fatality.  
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Using these five discrete crash severity categories, one can develop a statistical model that 

may be used to predict the crash likelihood of a specific severity level. Eq. 5-3 displays the 

probability of a crash n with an i severity level: 

X! (i) = P (Y ! ≥ YZ!) ∀ j ≠ i                                  Eq. 5-3  

Where: 

- X! (i): the probability of crash n to occur with a severity level of i; 

- P: probability; 

- Y !: function to determine the utility of a crash n to occur resulting severity level of i.  

The linear function of Y ! maybe demonstrated as in Eq. 5-4. 

Y ! =  � \! +  � !             Eq. 5-4 

Where: 

- X.: explanatory variable’s vector which determines the crash severity; 

- β-: estimable coefficient vector for the injury outcome i, using the standard maximum 

likelihood methods (Shankar and Mannering 1996; Tay et al. 2011); 

- β-X.: is an observable component; 

- ε-.: error term, unobserved component, and is assumed to be independently distributed -

accounts for the unobserved factors affecting crash severity-. 

Combining Eq. 5-3 and Eq. 5-4, Eq. 5-5 may be formed as: 

X! P�) = X`� \! −  �Z\!  ≥  �Z! −  � !a ∀ j ≠ i                          Eq. 5-5 

Replacing the error term by a generalized extreme value (GEV) form. Assuming the GEV, 

the MNL severity model can be obtained as in Eq. 5-6. 

X! P�) = b�CP� \!)/ ∑ b�C P�Z\!)cZ                                  Eq. 5-6 
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5.4  VRU Crash Data Collection and Processing  

The analysis involves crash reports in the DT4000 form, generated in the State of Wisconsin 

for the years 2017 and 2018. Furthermore, especially regarding the crash risk, the effects of the 

party at fault on the crash severity outcome were investigated. 

5.4.1  Data Collection 

Data for this study were provided by the Traffic Operations and Safety (TOPS) Laboratory at 

the University of Wisconsin–Madison through the WisTransportal system (“The WisTransPortal 

System” n.d.). The data was generated form crash reports in the DT4000 form and represents 

pedestrian and bicyclist-vehicle crashes which occurred in the State of Wisconsin between 2017 

and 2018.  

Pedestrian/bicyclist-vehicle traffic crashes were identified via a pedestrian flag and a bicycle 

flag assigned by the Wisconsin Department of Motor vehicle (DMV). Overall, the dataset contains 

(4,025) crashes, of these, (60) crashes did not include any VRU (pedestrians and bicyclists only), 

and (324) crashes recorded with the motorist sustaining more severe injury than the non-motorist. 

The remaining sample size is (N=3,641) crashes involving at least one VRU. In this study, the 

analysis considers pedestrian and bicyclist’s Injury severity. Among the total number of (3,641) 

crashes, 948 (26.03%) were injury type C; 1,992 (54.71%) were injury Type B; 581 (15.95%) were 

injury Type A, and 120 (3.29%) were fatal injury crashes. To collect sufficient observations for all 

levels of crash severity, crash severity levels were recategorized into three classes as follows: fatal 

injury which is type (K), type (A); severe injury, and type (B) and type (C) are combined in a new 

category; evident and possible injury (B+C). 

In a crash involving non-motorists, the non-motorists can be either unit 1 or 2. According to 

the crash data user guide, “[1,2] Denotes unit-level information, where a unit is any vehicle, 



106 
  

bicycle, pedestrian, or equipment involved in a crash.  Unit level element names in the data file 

are appended with “1” or “2”, representing the first or second unit involved in the crash”. 

 When more than two units are involved including non-motorists, a non-motorist may be 

coded as neither unit 1 or 2. However, the study is limited to analyzing the actions and behavior 

of the first two units. There are often more than one crash contributing factor in data fields such as 

circumstances, driver actions, behavior, so-called multi-valued elements, and denoted as [A, B, 

C]. [1,2][A,B] denotes combined unit level and multi-valued elements. For example, DRVRPC1A 

and DRVRPC1B describe the first two contributing factors listed for the driver of the first unit on 

the DT4000 crash report.  

Therefore, when necessary, the CONCATENATE function is used in the analysis to join data 

from Unit 1 and 2 -a unit is a driver, a pedestrian, or a bicyclist-, as well as from A, B, C, etc. For 

the same data types (i.e., DRVRDOIN 1 and DRVRDOIN 2), concatenation is done to join the 

two text strings into one text string (DRVRDOIN 1,2) and to reduce the resulted values of a 

specific data field. A filter may be used to filter values of the DRVRDOIN 1 data field when Role 

1 is a driver, and the same way when Role 2 is a driver, values of DRVRDOIN 2 data field are 

filtered, creating (DRVRDOIN 1,2) data field. A string can be a text, number, or a Boolean value.  

Whereas, for data fields that take multiple values (i.e., ROADCOND A, ROADCOND B, 

ROADCOND C), direct concatenation separated by a comma is approached to create 

(ROADCOND A, B, C) data field. Note that the number of attributes provided in each element 

varies and is based on the minimum set of data elements recommended by the Model Minimum 

Uniform Crash Criteria (MMUCC) standard (National Highway Traffic Safety Administration 

2017).  After concatenation, attributes with small percentage values (e.g., <1%) are not analyzed 

or presented and displayed separately as one category through the total percentage value (i.e., Total 
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including other combinations). Note that multi-value attributes (i.e., BIKE, UT TRK) are a result 

of applying the concatenation function to the data field attributes.  

A few of the most important data sources in crash reports are the citation field (STATNM [1, 

2] [A, B, C, D], action and circumstances-related fields (i.e., NMTACT, DRVRPC, DNMFTR, 

DRVRDOIN), and the crash description box where the police officer provide a narrative that 

indicates the units and the circumstances of the crash, with the eyewitness testimony if available 

continued to be used in the DT4000 form. The focus of this chapter is directed towards the fault 

party assignment; whereas, data accuracy is handled later on in Chapter 6.  

5.4.2  Data Processing 

Based on the empirical results of the existing literature the variables are chosen, while any 

record with missing information is dropped. Data processing, cleaning, and missing values 

detection were completed by using the “tidyr” and “dplyr” packages from the “Tidyverse” 

collection of R packages designed for data science, after assembling the data. Components of the 

crash dataset were categorized under four factors that were later used in the analysis: a) Driver-

related factors, such as age, gender, safety equipment used, impairment; b) Pedestrian and 

bicyclist-related factors, such as age, gender, safety equipment used, impairment; c) Roadway-

related factors, such as intersection type, available traffic control device (TCD), horizontal and 

vertical road terrain, roadway surface type and condition, trafficway division, light condition; d) 

Crash/vehicle-related factors, such as posted speed limit, vehicle type; and e) environmental-

related factors, such as weather, light condition, etc. Table 5-2 to Table 5-6 provide summary 

statistics of the possible contributing factors based on 3,614 VRU-involved motor vehicle crashes. 
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Table 5-2: Summary statistics of possible driver-related factors influencing the injury severity 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

DNMFTR [1, 2] 

[A, B] 

Any relevant condition of the individual (motorist or non-motorists) that is directly related to the crash. 

NORM 9 0.25% 249 6.84% 1269 34.85% 544 14.94% 2071 56.88% 

NO OBS 42 1.15% 128 3.52% 428 11.76% 237 6.51% 835 22.93% 

UI MDA 7 0.19% 33 0.91% 41 1.13% 25 0.69% 106 2.91% 

Other values 62 1.70% 171 4.70% 254 6.98% 142 3.90% 629 17.28% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

DRVRPC [1, 2] 

[A, B] 

The actions by the driver that may have contributed to the crash, based on the judgment of the law enforcement 

officer investigating the crash. 

FTY 8 0.22% 109 2.99% 562 15.44% 243 6.67% 922 25.32% 

NO 61 1.68% 249 6.84% 790 21.70% 362 9.94% 1462 40.15% 

ID 3 0.08% 16 0.44% 55 1.51% 33 0.91% 107 2.94% 

Other values 48 1.32% 207 5.69% 585 16.06% 310 8.52% 1150 31.59% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

DRVRDOIN [1, 

2] 

The controlled maneuver for this motor vehicle prior to the beginning of the sequence of events.  

GO STR 70 1.92% 302 8.29% 663 18.21% 249 6.84% 1284 35.27% 

LT TRN 5 0.14% 65 1.79% 339 9.31% 171 4.70% 580 15.93% 
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RT TRN 3 0.08% 25 0.69% 243 6.67% 151 4.15% 422 11.59% 

BACKING 1 0.03% 9 0.25% 44 1.21% 21 0.58% 75 2.06% 

Other values 41 1.13% 180 4.94% 703 19.31% 356 9.77% 1280 35.15% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SFTYEQP[1,2] 

The restraint equipment in use at the time of the crash.  

NONE 6 0.16% 29 0.80% 137 3.76% 53 1.46% 225 6.18% 

SH/LP 81 2.22% 372 10.22% 1294 35.54% 622 17.08% 2369 65.06% 

UNKN 16 0.44% 102 2.80% 352 9.67% 153 4% 623 17.11% 

UNTYPE 0 0.00% 4 0.11% 22 0.60% 9 5% 35 5.71% 

Other values 1 0.03% 7 0.19% 20 0.55% 13 0.36% 41 1.13% 

348 (9.56%) blank values 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ALCFLAG 

Indicates whether law enforcement suspected that at least one driver or non-motorists involved in the crash had 

used alcohol. This includes both alcohol use under the legal limit and at or over the legal limit. 

UNKN 13 0.36% 81 2.22% 309 8.49% 180 4.94% 583 16.01% 

Y 35 0.96% 106 2.91% 113 3.10% 45 1.24% 299 8.21% 

N 72 1.98% 394 10.82% 1570 43.12% 723 19.86% 2759 75.78% 

2759 (75.78%) blanks 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

DRUGLFAG* 

Indicates whether law enforcement suspected that at least one driver or non-motorists involved in the crash had 

used drugs (Y/N/UNKN). 

UNKN  19 0.52% 95 2.61% 336 9.23% 194 5.33% 644 17.69% 
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Y 11 0.30% 14 0.38% 11 0.30% 8 0.22% 44 1.21% 

2953 (81.10%) blanks 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

Sex [1, 2] 

The sex of the non-motorists involved in a crash. 

F 25 0.69% 190 5.22% 749 20.57% 359 9.86% 1323 36.34% 

M 80 2.20% 307 8.43% 947 26.01% 409 11.23% 1743 47.87% 

UNKN 15 0.41% 84 2.31% 296 8.13% 180 4.94% 575 15.79% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

Age [1, 2] 

The age of the non-motorists involved in a crash in years. 

<30 48 1.32% 254 6.98% 807 22.16% 424 11.65% 1533 42.10% 

30-64 57 1.57% 253 6.95% 913 25.08% 412 11.32% 1635 44.91% 

≥65 15 0.41% 74 2.03% 272 7.47% 112 3.08% 473 12.99% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

Table 5-3: Summary statistics of possible pedestrian and bicyclist/VRU-related factors influencing the injury severity 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

DNMFTR [1, 

2] [A, B] 

Any relevant condition of the individual (motorist or non-motorists) that is directly related to the crash. 

PHY IMP 10 0.27% 21 0.56% 38 1.04% 24 0.65% 92 2.53% 
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NORM 5 0.12% 125 3.42% 636 17.45% 272 7.47% 1037 28.47% 

NO OBS 20 0.54% 41 1.13% 128 3.52% 65 1.79% 254 6.96% 

OTHR 86 2.36% 395 10.85% 1191 32.70% 588 16.14% 2259 62.04% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTLOC [1, 

2] 

The location of the non-motorists with respect to the roadway at the time of the crash. 

ATI MX 15 0.41% 170 4.67% 779 21.40% 456 12.52% 1420 39.00% 

ATI NX 10 0.27% 78 2.14% 244 6.70% 103 2.83% 435 11.95% 

ATI UM 4 0.11% 45 1.24% 171 4.70% 86 2.36% 306 8.40% 

BIKE LN 0 0.00% 4 0.11% 44 1.21% 14 0.38% 62 1.70% 

NAI NX 65 1.79% 202 5.55% 454 12.47% 162 4.45% 883 24.25% 

SHLDR 10 0.27% 21 0.58% 67 1.84% 31 0.85% 129 3.54% 

Other values  16 0.44% 61 1.68% 233 6.40% 96 2.64% 406 11.15% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTACT [1, 

2] 

The actions/circumstances of the non-motorists that may have contributed to the crash, based on the judgment of 

the law enforcement officer investigating the crash. 

NF TRFC, DK CLTH, 

DISREG, FC TRFC, 

 IM XING, SUDDEN 

31 0.85% 163 4.48% 487 13.38% 265 7.27% 946 25.98% 

NO IMPR  21 0.58% 155 4.26% 751 20.63% 348 9.56% 1275 35.02% 

Other values 68 1.87% 263 7.22% 754 20.71% 335 9.20% 1420 39.00% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

The action of a non-motorist immediately prior to a crash. 
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NMTPRIOR 

[1, 2] 

A TRFC 0 0.00% 8 0.22% 46 1.26% 16 0.44% 70 1.92% 

RDWY OT 17 0.47% 5 0.14% 23 0.63% 8 0.22% 37 1.46% 

SIDE WK 0 0.00% 0 0.00% 11 0.30% 1 0.03% 12 0.33% 

W TRFC 1 0.03% 4 0.11% 19 0.52% 7 0.19% 30 0.85% 

XING 6 0.16% 62 1.70% 180 4.94% 72 1.98% 331 8.79% 

WAITING 3 0.08% 37 1.02% 70 1.92% 35 0.96% 147 3.98% 

Other values  93 2.55% 465 12.77% 1643 45.12% 809 22.22% 3014 82.67% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTSFQ [1, 

2] [A, B]* 

The safety equipment in use by the operator non-motorist at the time of the crash.  

NONE  95 2.61% 453 12.44% 1483 40.73% 714 19.61% 2745 75.39% 

LTNG/REFL, HLMT 3 0.08% 52 1.43% 244 6.70% 75 2.06% 374 10.27% 

Other values 22 0.60% 76 2.09% 265 7.28% 159 4.37% 522 14.34% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

Sex [1, 2] 

The sex of the non-motorists involved in a crash. 

F 33 0.91% 217 5.96% 681 18.70% 343 9.42% 1274 34.99% 

M 87 2.39% 360 9.89% 1305 35.84% 595 16.34% 2347 64.46% 

UNKN 0 0.00% 4 0.11% 6 0.16% 10 0.27% 20 0.55% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

Age [1, 2] 

The age of the non-motorists involved in a crash in years. 

<30 24 0.66% 240 6.59% 1095 30.07% 500 13.73% 1859 51.06% 

30-64 61 1.68% 266 7.31% 735 20.19% 364 10.00% 1426 39.17% 

≥65 35 0.96% 75 2.06% 162 4.45% 84 2.31% 356 9.78% 
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Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

Table 5-4: Summary statistics of possible roadway-related factors influencing the injury severity 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

TRFCWAY [1, 

2] 

Indication of whether or not the trafficway for this vehicle is divided and whether it serves one-way or two-way 

traffic. 

UNDIV 65 1.79% 402 11.04% 1393 38.26% 621 17.06% 2481 68.14% 

DIV NO 31 0.85% 55 1.51% 184 5.05% 70 1.92% 340 9.34% 

OW 1 0.03% 13 0.36% 50 1.37% 22 0.60% 86 2.36% 

Other values  23 0.63% 111 3.05% 365 10.02% 235 6.45% 734 20.16% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

TOTLANES [1, 

2] 

1 Lane 1 0.03% 17 0.47% 139 3.82% 63 1.73% 220 6.04% 

2 Lanes 69 1.90% 394 10.82% 1311 36.01% 634 17.41% 2408 66.14% 

3 Lanes 8 0.22% 27 0.74% 101 2.77% 43 1.18% 179 4.92% 

>3 Lanes 42 1.15% 143 3.93% 441 12.11% 208 5.71% 834 22.91% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RDWYPC [A, 

B, C] 

Factors of the road which may have contributed to the crash. 

NONE   114 3.13% 549 15.08% 1884 51.74% 904 24.83% 3451 94.78% 
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RSC   3 0.08% 6 0.16% 29 0.80% 17 0.47% 55 1.51% 

OTHR  3 0.08% 26 0.71% 79 2.17% 27 0.74% 135 3.71% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RDCOND [A, 

B, C] 

The roadway surface condition at the time and place of a crash. 

DRY 97 2.66% 476 13.07% 1699 46.66% 784 21.53% 3056 83.93% 

WET 16 0.44% 81 2.22% 252 6.92% 133 3.65% 482 13.24% 

OTHR 7 0.19% 24 0.66% 41 1.13% 31 0.85% 103 2.83% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ROADHOR [1, 

2] 

The horizontal road terrain at the point of impact. 

LT 2 0.05% 9 0.25% 29 0.80% 8 0.22% 48 1.32% 

RT 6 0.16% 6 0.16% 22 0.60% 11 0.30% 45 1.24% 

ST 109 2.99% 544 14.94% 1830 50.26% 864 23.73% 3347 91.93% 

Other values  3 0.08% 22 0.60% 111 3.05% 65 1.79% 201 5.52% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ROADVERT [1, 

2] 

The vertical road terrain at the point of impact. 

DN 14 0.38% 38 1.04% 43 1.18% 22 0.60% 117 3.21% 

CST 0 0.00% 4 0.11% 21 0.58% 3 0.08% 28 0.77% 

LVL 14 0.38% 42 1.15% 64 1.76% 25 0.69% 145 3.98% 

SAG  28 0.77% 84 2.31% 128 3.52% 50 1.37% 290 7.96% 

UP 42 1.15% 126 3.46% 192 5.27% 75 2.06% 435 11.95% 

Other values  22 0.62% 287 7.89% 1544 42.40% 773 21.24% 2626 72.13% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 
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INTTYPE 

The type of intersection in which a crash occurred. An intersection consists of two or more roadways that 

intersect at the same level. 

5 1 0.03% 2 0.05% 2 0.30% 13 0.36% 27 0.74% 

4 WAY 25 0.69% 222 6.10% 222 23.29% 426 11.70% 1521 41.77% 

L 0 0.00% 1 0.03% 1 0.11% 2 0.05% 7 0.19% 

RAB 0 0.00% 1 0.03% 1 0.36% 5 0.14% 19 0.52% 

T 7 0.19% 48 1.32% 48 6.59% 132 3.63% 427 11.73% 

Y 0 0.00% 4 0.11% 4 0.14% 3 0.08% 12 0.33% 

Other values  87 2.39% 303 8.32% 1714 23.92% 367 10.08% 1628 44.72% 

NA 1590 (43.67%) 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

TRFCCNTL [1, 

2] 

The type of TCD applicable to this motor vehicle at the crash location. 

NONE  89 2.44% 335 9.20% 878 24.11% 327 8.98% 1629 44.74% 

STOP  7 0.19% 65 1.79% 387 10.63% 210 5.77% 669 18.37% 

TS OP  3 0.08% 39 1.07% 265 7.28% 127 3.49% 434 11.92% 

Other values  21 0.59% 142 3.90% 462 12.69% 284 7.80% 909 24.97% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

LOCTYPE 

The type of location at which a crash occurred. 

I 33 0.91% 286 7.85% 1143 31.39% 589 16.18% 2051 56.33% 

N 87 2.39% 295 8.10% 849 23.32% 359 9.86% 1590 43.67% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 
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Table 5-5: Summary statistics of possible significant crash/vehicle-related factors influencing the injury severity 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

VEHTYPE [1, 

2] 

Specific category for the type of vehicle which was involved in a crash. 

CAR  58 1.59% 291 7.99% 746 20.49% 396 10.88% 1491 40.95% 

SUV  20 0.55% 71 1.95% 138 3.79% 87 2.39% 316 8.68% 

UT TRK 17 0.47% 48 1.32% 75 2.06% 35 0.96% 175 4.81% 

P VAN  4 0.11% 13 0.36% 42 1.15% 21 0.58% 80 2.20% 

Other values  21 0.58% 158 4.34% 991 27.22% 409 11.23% 1579 43.36% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SPEEDFLAG 

Flag indicating whether speed was a factor in a crash. 

Y 8 0.22% 36 0.99% 29 0.80% 11 0.30% 84 2.31% 

3557 (97.69%) blanks 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

POSTSPD[1,2] 

The posted/statutory speed limit for a motor vehicle at the time of the crash. A value of 77 indicates not 

Applicable.  

<35 mph  51 1.40% 422 11.59% 1541 42.32% 769 21.12% 2783 76.44% 

35 to 50 mph 32 0.88% 107 2.94% 319 8.76% 115 3.16% 573 15.74% 

>50 mph  37 1.02% 52 1.43% 132 3.63% 64 1.76% 285 7.83% 
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Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SCHZONE 

Flag indicating whether a crash occurred in an active school zone. 

Y 2 0.05% 10 0.27% 46 1.26% 30 0.82% 88 2.42% 

3553 (97.58%) blanks 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

CONSZONE 

Y 3 0.08% 6 0.16% 17 0.47% 6 0.16% 32 0.88% 

3553 (97.58%) blanks 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

Table 5-6: Summary Statistics of Possible Significant environmental-related Factors Influencing the injury severity 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Environmental-Related Factors 

WTCOND 

The prevailing atmospheric conditions that existed at the time of the crash. 

CLDY  36 0.99% 139 3.82% 502 13.79% 243 6.67% 920 25.27% 

CLEAR  68 1.87% 367 10.08% 1272 34.94% 590 16.20% 2297 63.09% 

RAIN  9 0.25% 42 1.15% 141 3.87% 72 1.98% 264 7.25% 

Other values  7 0.19% 33 0.91% 77 2.11% 43 1.18% 160 4.39% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

LGTCOND The type/level of light that existed at the time of the motor vehicle crash. 
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DAWN 37 1.02% 55 1.51% 84 2.31% 20 0.55% 196 5.38% 

DUSK 6 0.16% 12 0.33% 55 1.51% 19 0.52% 92 2.53% 

DAY 35 0.96% 298 8.18% 1381 37.93% 666 18.29% 2380 65.37% 

DARK 7 0.19% 18 0.49% 60 1.65% 27 0.74% 112 3.08% 

LITE 35 0.96% 197 5.41% 403 11.07% 210 5.77% 845 23.21% 

DK/UN 0 0.00% 1 0.03% 9 0.25% 6 0.16% 16 0.44% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ENVPC[A,B,C] 

Environmental conditions which may have contributed to the crash. 

GLARE   3 0.08% 18 0.49% 54 1.48% 18 0.49% 93 2.55% 

NONE   106 2.91% 503 13.81% 1769 48.59% 845 23.21% 3223 88.52% 

OBSTR   0 0.00% 13 0.36% 39 1.07% 15 0.41% 67 1.84% 

WTHR   10 0.27% 40 1.10% 110 3.02% 61 1.68% 221 6.07% 

Other values  1 0.03% 7 0.19% 18 0.49% 9 0.25% 35 0.96% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 
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Table 5-2 to  

Variable 
Indicati

on 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

12

0 
3.3% 

58

1 

16.0

% 

199

2 

54.7

% 

94

8 
26% 

364

1 

100.00

% 

VEHTYPE 

[1, 2] 

Specific category for the type of vehicle which was involved in a crash. 

CAR  58 
1.59

% 

29

1 

7.99

% 
746 

20.49

% 

39

6 

10.88

% 

149

1 

40.95

% 

SUV  20 
0.55

% 
71 

1.95

% 
138 

3.79

% 
87 

2.39

% 
316 8.68% 

UT 

TRK 
17 

0.47

% 
48 

1.32

% 
75 

2.06

% 
35 

0.96

% 
175 4.81% 

P VAN  4 
0.11

% 
13 

0.36

% 
42 

1.15

% 
21 

0.58

% 
80 2.20% 

Other 

values  
21 

0.58

% 

15

8 

4.34

% 
991 

27.22

% 

40

9 

11.23

% 

157

9 

43.36

% 

Subtotal  
12

0 

3.30

% 

58

1 

15.96

% 

199

2 

54.71

% 

94

8 

26.04

% 

364

1 

100.00

% 

SPEEDFLA

G 

Flag indicating whether speed was a factor in a crash. 

Y 8 
0.22

% 
36 

0.99

% 
29 

0.80

% 
11 

0.30

% 
84 2.31% 

3557 (97.69%) blanks 

Subtotal  
12

0 

3.30

% 

58

1 

15.96

% 

199

2 

54.71

% 

94

8 

26.04

% 

364

1 

100.00

% 

POSTSPD[

1,2] 

The posted/statutory speed limit for a motor vehicle at the time of the crash. A 

value of 77 indicates not Applicable.  

<35 

mph  
51 

1.40

% 

42

2 

11.59

% 

154

1 

42.32

% 

76

9 

21.12

% 

278

3 

76.44

% 
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35 to 50 

mph 
32 

0.88

% 

10

7 

2.94

% 
319 

8.76

% 

11

5 

3.16

% 
573 

15.74

% 

>50 

mph  
37 

1.02

% 
52 

1.43

% 
132 

3.63

% 
64 

1.76

% 
285 7.83% 

Subtotal 
12

0 

3.30

% 

58

1 

15.96

% 

199

2 

54.71

% 

94

8 

26.04

% 

364

1 

100.00

% 

SCHZONE 

Flag indicating whether a crash occurred in an active school zone. 

Y 2 
0.05

% 
10 

0.27

% 
46 

1.26

% 
30 

0.82

% 
88 2.42% 

3553 (97.58%) blanks 

Subtotal  
12

0 

3.30

% 

58

1 

15.96

% 

199

2 

54.71

% 

94

8 

26.04

% 

364

1 

100.00

% 

CONSZON

E 

Y 3 
0.08

% 
6 

0.16

% 
17 

0.47

% 
6 

0.16

% 
32 0.88% 

3553 (97.58%) blanks 

Subtotal 
12

0 

3.30

% 

58

1 

15.96

% 

199

2 

54.71

% 

94

8 

26.04

% 

364

1 

100.00

% 

 

Table 5-6 described the selected crash variables. Mostly, (44.91%) of drivers are between 30-

64 years old, a fair part (47.87%) of them are males, 65.06% of them used shoulder and lap belt, 

8.21% of them are drunk drivers, and 25.32% of them failed to yield the ROW. Regarding the 

vehicles involved in the pedestrian-vehicle crashes, the table indicates that (40.95%) of them are 

passenger vehicles.  

Whereas, for the pedestrians and bicyclists engaged in vehicle crashes, more than half (51.06 

%) of them are < 30 years. Concerning the locations were the pedestrian and bicycle-vehicle 

crashes occurred, the surface of most of them (83.93%) are dry, most of them (55.26%) are 

controlled intersections and a vast majority (91.93%) of them are straight road. Concerning the 

environmental conditions accompanied by the pedestrian and bicycle-vehicle crashes, (63.09%) of 
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the crashes happened under clear weather conditions. The largest part (99.12%) and (97.58%) of 

crashes did not occur in working areas and around school zones, respectively.  

5.4.3  Data Sources for Assigning Party At-fault 

The assignment of the party at-fault is based on three main sources: i) pedestrian and bicycle 

law violation and driver citation, ii) conditions/circumstance contributing to a crash (for both 

drivers, and pedestrians and bicyclists) that strongly suggest responsibilities for an undesirable 

event, mistake, or defective, and iii) police narrative including eyewitness statement if available. 

 

5.4.3.1 Citations 

Wisconsin State legislations (“Wisconsin State Legislations"), which includes comprehensive 

rules of the right of way (ROW) were followed. For instance, rules regarding pedestrians’ crossing 

location, pedestrian signal status and walk/no walk actions, and vehicle drivers stopping or leave 

standing any vehicle in places such as within an intersection or on a crosswalk.  

R. J. Schneider and Sanders (2015) stated that studies examining public understanding of 

crosswalk laws suggested that crosswalk laws may be confusing, counterintuitive, or possibly 

inappropriate for the local driving culture. The authors stated that there is an essential need for 

enhanced education and a need to build enforcement strategies that will complement and support 

the conducted engineering treatments. It is vital to learn how non-motorists’ law differs from the 

social norm. For instance, any pedestrian, bicyclist, or electric mobility device rider crossing not 

at the crosswalk shall yield the ROW to vehicles upon the roadway.  

Crash reports record the issued citations which helped in suggesting but not yet determining 

the responsible party. Types of citations were reviewed (related or unrelated to the crash) issued 

for the drivers. Unrelated citations are excluded from the considered citations. Crash-related 
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citations were issued in 25 crashes (30%). R. Schneider, Stefanich, and Corsi (2015) expressed 

that the low number of crash relevant stations maybe because citations are not given to fatally 

wounded pedestrians. 

 Citations issued for the crash varied in types, such as Failure to signal when changing lanes 

or turning, Failure to drive within a specified lane/driving in between two lanes, speeding, and 

running a red light/a stop sign. Some observations record other citation types issued even without 

being related to the crash scene such as citations for an expired license. Additionally, in some crash 

reports police narrative indicate that the driver violated a traffic law, but the driver was not issued 

a citation for the violation. Error! Reference source not found. describes the reviewed citations 

from the data field “STATNM [1, 2] [A, B, C, D] ordered by their relevancy.   

5.4.3.2 Conditions, Circumstances, and Actions Contributing to A Crash 5.4.3.2 Conditions, Circumstances, and Actions Contributing to A Crash 

Driver behavioral data is a rich source of information that gained the interest of many 

researchers. Wang and Qin (2015) stated that driver characteristics and behavior appear to have a 

great influence on the error severity outcome. Moreover, the authors concluded that male drivers 

(≤ 25) as against other age groups except for women (≥ 55) have a significantly higher probability 

of making severe mistakes.  

The key driver and non-motorists’ behavior factors are reported on the crash report by police 

officers at the crash scene. For drivers, those behaviors may be viewed as risky, 

careless/inattentive, and reckless driver behavior, red light violation, and uncertain driving. 

Whereas, non-motorists’ behavior examples are failing to obey the traffic control device, darting 

into the roadway, wearing dark clothes, disobeying a traffic control person. driver behavioral data 

are used to make decisions to allocate crash prevention resources at the local, state, and national 

levels (National Safety Council (NSC), 2017).  
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5.4.3.3 Police Narrative  

The language used by the police officer to provide valuable data in the report is referred to as 

the police narrative. It is a formal story-telling process necessary to focus investigative strategy. 

Mostly, it is joined with a diagram that sketches the crash scene. Multiple information may be 

extracted from police narrative reports, such as the location of the unit at the time of the crash, and 

a not to scale sketch of the roadway/intersection/curve showing the entire crash scene. Such details 

assist the police officer to elaborate on how the crash may occur. Regarding information extraction 

from police narrative reports, the process must be done manually since narrative reports are very 

noisy compared to other types of text data, due to spelling errors and typos (Chau, Xu, and Chen 

2002).  Note that police narrative includes eyewitness testimony if available.  

Recent studies of eyewitnesses and human memory have suggested that eyewitness evidence 

is much like trace evidence left at a crime scene (“Eyewitness-Public-20091105.Pdf” n.d.). 

Further, according to the crash investigation regulations, the police officer investigating the crash 

should preserve statements from drivers and eyewitnesses for each crash. Eyewitnesses review is 

supplied within the narrative dedicated space in the police crash report, provides some extra details 

about the crash occurrence. In some cases, the individual (driver or pedestrian) confesses a 

statement about his/her fault leading to the crash occurrence.  

The following is an example of a police narrative with eyewitness testimony: “On January 

11th, 2017 I was dispatched to a car vs pedestrian accident just south of the xxx-traffic circle. 

Upon contact with the pedestrian, he stated that he was walking westbound across xxx St in the 

crosswalk when he was struck by a vehicle. When we made contact with unit #1 driver, she stated 

that she was traveling southbound on xxx St in the outside lane when the vehicle also traveling 

southbound in the inside lane stopped. She did not know why it stopped and only slowed down to 
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see the pedestrian right before she struck him with her veh. damage is to the right front hood. 

Several individuals witnessed this incident and stated that same story as both the pedestrian and 

the unit #1 driver. All individuals were identified via WI photo dl. The pedestrian was looked at by 

OFD and received treatment on the scene but refused medical transport and was given a ride home 

by another officer. No citations were issued”.  

Also, an example for a police narrative without an eyewitness testimony: “Unit 1 was n/b on 

xxx.  The pedestrian was returning from getting the newspaper from the box across the street from 

his house.  It appears the pedestrian was right at the edge of the road when he was struck by unit 

1.  The pedestrian was wearing blue clothing.  It was dark outside and there were no street or yard 

lights.  Driver unit 1 said he never saw the pedestrian even after striking him.  He pulled over a 

few houses up and turned around to see what he struck.  he did not see anything.  He turned around 

and went back to the area and still did not see anything.  He continued down the road to a business 

that had a lit parking lot.” 

5.5  Analysis and Assignment of Party At-fault 

5.5.1  Crash data fields-based query and results 

The analysis was initiated by querying data fields in the dataset of 2017-2018 pedestrian 

and bicycle crashes and considering specific attributes that showed a relation to a driver or a VRU 

being at-fault in a crash. This query resulted in creating four data fields; driver citation, VRU 

citation, driver actions/circumstances, and VRU actions/circumstances, that were extracted from 

two data sources; “citations” and “actions, conditions, and circumstances” shown in Table 5-7. 

Table 5-7: Crash data fields involved in the party at fault assignment. 

Data Source 
Extracted 

information 
The specific information 
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Citations 

The field name and 

citation types 

considered in 

suggesting the fault 

party. 

STATNM [1, 2] [A, B, C, D]: the 

statute number of the violation for 

which a driver was cited. 

Driver citations (e.g., 341.04 (3), 

343.05, 344.62 (1)), and VRU 

citations (e.g., 346.804, 347.489(1), 

347.489 (2)). Check Error! Reference 

source not found. for a full list of 

citations considered for driver and 

VRU violations that may be related 

to crashes. 

Actions, 

Conditions, and 

Circumstances 

Actions 

NMTACT [1, 2]: the 

actions/circumstances 

of the non-motorists 

that may have 

contributed to the 

crash, based on the 

judgment of the law 

enforcement officer 

investigating the crash. 

FTY (failing to yield the ROW); 

SUDDEN (sudden movement into 

traffic); 

IM XING (improper crossing of the 

roadway); 

INATTV (inattentive driving); 

DISREG (disregarding traffic control 

device); 

DK CLTH (wearing dark clothes); 

IM XING (improper crossing of 

roadway/jaywalking).  

DRVRDOIN [1, 2]: the 

controlled maneuver 

for this motor vehicle 

prior to the beginning 

of the sequence of 

events, such as turn on 

red. 

RTOR (turn on red); 

NO PASS (violating no passing 

zone). 

Conditions and 

Circumstances 

DNMFTR [1, 2] [A, 

B]: any relevant 

condition of the 

individual (motorist or 

PHY IMP (physical impairment); 

UI MDA (being under the influence 

of medications/alcohol/drugs). 
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non-motorists) that is 

directly related to the 

crash. 

 

5.5.2  Narrative Text Classification of Party at-Fault 

Machine learning techniques such as random forests (RF) can extract features and rank 

their importance from unstructured text data such as crash narrative. In Figure 5-1, the most 20 

important features extracted along with the (text length) feature are illustrated. The RF model 

found that the following keywords best describe the driver at-fault crashes and VRU at-fault 

crashes: fail, back, left, shoulder, jump, legal_cross, run, crosswalk, infront, shoulder, dark, red, 

sudden, no_see, fled, dart, path, walk, and run_across. The “textlength” keyword is also considered 

important because it is an engineered feature that was considered a good feature in differentiating 

between driver at-fault and VRU at-fault crashes. 
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Figure 5-1: Variable importance plot of the RF model’s frequently used words 

 

The words fled_scene and “not_see” were considered important for categorizing driver at-

fault crashes because they reflect the actions related to the driver being responsible of the crash, 

as they often appear in phrases such as “fled the scene without rendering aid”, and “stated she 

did not see/was blinded by the sun”. Likewise, “backing”, “turn_red”, “rate” indicated a possible 

cause of driver at-fault crashes due to the driver’s responsibility of paying attention to VRU in a 

crosswalk or on the sidewalk in front of a driveway, such in “backing out of his driveway”, “make 

a right turn on red onto xxx ave and struck the bicycle”, and “at a high rate of speed when it struck 

unit 2 who was walking”. The keyword “backing” was excluded from word normalization so that 

it is not consolidated with “back” into back since the later gives a different meaning compared to 
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“backing”. “back” appeared to be associated with the VRU as in “back pain and did seek medical 

attention”, and “it struck the back of the bicyclist”. “driveway” indicated a possible fault of the 

driver in a crash due to crashes occurring with VRUs while exiting/entering the driveway. This 

keyword occurred through the narratives as: “backing E/B out of the driveway”, and “left turn into 

the driveway”. 

The variable importance plot in Figure 5-1 also presented the most important keywords 

implying the VRU’s fault in a crash. The keyword “run_into” appeared to be the most important 

in terms of predicting a VRU fault crash, due to the improper action by the VRU as reported by 

the police officer. It has appeared through the narrative as “pedestrian ran into traffic chasing 

after”, and as ” pedestrian crossed in front of the parked vehicle and ran into the side of”.  Having 

a have clear view on how terms/keywords appear throughout the corpus of narratives aided in the 

process of narrative text processing.  

Such as in this case, where the term “out” is removed so that the phrase “run out into” is 

converted to “run_into” after stemming and using the bigrams and calculated together with the 

“run_into” keyword when it appears in the narrative such “unit 2 (pedestrian) that crossed in 

between parked traffic and running into the roadway”.   

Figure 5-1 also presented that the engineered feature “textlength” indicated crashes that 

occurred due to VRU fault. With looking into this feature through the narrative and counting the 

characters of the narratives, this feature showed a relationship with VRU at-fault crash narratives. 

“sudden” as appeared in ”suddenly went into traffic”, “run” as appeared in “unit 2 (pedestrian) 

was running sb and ran into the street mid block”, “infront” as appeared in “ran infront of unit 

one agaist the traffic light”, and “dart” as appeared in “unit two which is a pedestrian. unit two 

darted into traffic crossing”, indicated VRU at-fault crashes. Such crashes occurred due to 
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unexpected and quick movement of the VRU, which is considered in most cases to trigger an 

immediate and hurried reaction by the driver leading to a crash. “stand” and “not_in” reflected the 

VRU location of first responders in secondary crashes. At the first glance, both keywords do not 

show an association with the VRU location; however, the following are examples of how these 

two location-related keywords appeared in the narratives: “was standing in the roadway in the 

middle of the street”, and “pedestrian was not in a crosswalk”. “dark_cloth” immediately seems 

to characterize a VRU at-fault crash, as it was in almost all cases associated with “clothes/clothing” 

in crash narratives where the VRU is decided at-fault. For instance, “in dark clothing and he didn't 

see him”, and “didn't see unit #2 because she was wearing dark clothing”. 

Through the manual narrative revision, some scenarios were found to be confusing due to 

the lack of a specific definition of a driver and VRU at-fault crash, especially when a narrative 

involves an eyewitness testimony that leans towards showing that the driver is at-fault even if not.  

Hence, a specific standard was followed in determining the fault party manually to determine a 

crash was a result of the fault of a specific party. For instance, a driver violating a specific traffic 

rule that was not included in the field attributes mentioned in Error! Reference source not found. 

(i.e., failure to yield the ROW), was considered a driver at-fault crash. Otherwise, if the narrative 

did not involve such violation even if a citation related to the crash was issued, it will not be 

considered a driver at-fault crash since the citation is considered in the fault assignment as a sperate 

data source.  

The following narratives do not indicate any of the two fault parties were responsible for The following narratives do not indicate any of the two fault parties were responsible for 

the crash, and therefore may be debated not to be deemed as a driver at-fault crash and VRU at-

fault crash, respectively. 
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- “unit 2 was riding her bike in the crosswalk on xxx st at w. xxx ave.  unit 1 was 

traveling eastbound on x and struck unit 2.  driver of unit 1 said he was unable to stop 

in enough time”. 

- “operator of unit two is a bicycle. operator does not remember which direction he was 

riding his bike prior to the accident. operator does not remember which direction the 

striking vehicle was coming from. based on the location of the bicycle and operator 

after the crash the vehicle could possibly have been traveling northbound on n xxx St.  

it is still unknown which direction the bicyclist was riding.”. 

Such scenarios express how challenging is the task of correctly classifying the crash’s 

responsible fault party crashes for a human being, let alone machines. Even so, the fact that the 

model classified these crashes reveals its sensitivity.  

 

5.5.3  Party at-Fault Analysis and Assignment 

The analysis was initiated by querying data fields in the dataset of 2017-2018 pedestrian 

and bicycle crashes and considering specific attributes that showed a relation to a driver or a VRU 

being at-fault in a crash. This query resulted in creating four data fields; driver citation, VRU 

citation, driver actions/circumstances, and VRU actions/circumstances, that were extracted from 

two data sources; “citations” and “actions, conditions, and circumstances” shown in Table 5-7. 

Regarding the police narrative part in a crash report, a manual review was performed to 

classify the crash party at fault. It is noted that the text data in the narrative can be very noisy due 

to spelling errors and typos in police scenarios, which lowers the data quality and make the text 

less applicable to be used in automated processing techniques such as natural language processing 

(NLP). The hand-labeled data have two purposes: i) establishing gold labels that represent reliable 

ground-truth values, and ii) creating manually annotating training examples to train a classifier.  
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After collecting the information from the explanatory variables from the abovementioned 

data sources. Regarding the dummy coding, each of the explanatory variables from the three data 

sources was coded as follows:  

- Citations: coded (1) if a citation related to the crash is issued for any party and coded (0) if 

no citation was issued. Check Error! Reference source not found. for the types of citations 

issued for VRUs and drivers that are believed to be related to the studied crashes; 

- Conditions (i.e., physical impairment, being under influence of medications/alcohol/drugs, - Conditions (i.e., physical impairment, being under influence of medications/alcohol/drugs, 

wearing dark clothes); circumstances and actions  (i.e., failing to yield the ROW, inattentive 

driving, improper crossing by a pedestrian/bicyclist) contributing to a Crash: coded as 1 if 

any party has a condition that might have contributed to the crash issued for any party and 

coded as 0 if no citation was issued.  

- Police Narrative: coded (1) if the narrative deems the party to be at fault, and coded (0) if 

not. Here are some example keywords which influence Police narrative fault party decision, 

such as “crosswalk, fail, path, walk, fled, back, no_see, left, legal_cross, dart, run, 

run_across, infront, shoulder, scene, inattentive, jump, dark, sudden”. 

The query based on the appropriate attributes of two crash data fields citations” and “actions, 

conditions, and circumstances” return four possible categories: DRVR at-fault, VRU at-fault, 

BOTH at-fault and NONE at-fault for all 3,641 crash cases. Similarly, the manual review of crash 

narratives assigned these cases to one of the four categories. Table 5-8 shows the confusion matrix 

of the results between the crash data fields-based query and manual review of narratives.  
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Table 5-8: Classification confusion matrix of the crash data fields and narratives. 

 Crash Narrative Metrics 

Data Field 
DRVR  

at-fault 

VRU  

at-fault 

BOTH  

at-fault 

NONE  

at-fault 
Grand  

Total 
Consistency 

NONE 

cases 
Complementary 

DRVR at-fault 587 198 5 555 1345 0.743  

0.936 
VRU at-fault 85 335  1145 1565 0.797  

BOTH at-fault 55 4  30 89   

NONE at-fault 601   41 642  0.176 

Grand Total 1328 537 5 1771 3641    

Metrics         

Consistency 0.807 0.623       

NONE cases  0.486     

Complementary 0.988     

 

It is clear from the confusion matrix in Table 5-8 that the crash party at-fault assignment 

may not be the same between data fields-based query and manual annotation. The discrepancies 

are plausibly caused by 1) the inconsistencies in documenting the crash scenarios. For example, 

relevant circumstances or actions were checked in the crash data fields but not documented or not 

properly documented in the narratives, or vice versa; and 2) the inconsistencies between the 

judgment of the reviewers who assigned crash party at-fault and the relevant data fields that 

indicate the crash party at-fault. 

Table 5-8 also shows a few metrics that enhance the knowledge about how crash data fields 

are considered complementary to the manual narrative and shows the consistency of each 

technique. Regarding consistency, more than 80% of driver at-fault cases based on the manual 

review were identified using data fields. Also, for the VRU at-fault 62.3% of manually reviewed 

VRU at-fault cases were classified correctly by using data fields. Looking at data fields, 74.3% of 

the cases confirmed by data field query as driver at-fault cases were also classified correctly by 

the manual review, also 79.7% of VRU at-fault casers were classified by data field were correctly 

classified by manual review.  
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For NONE at-fault cases, if narratives were manually reviewed, only 48.6% can be 

classified correctly. In other words, 1771 NONE observations cannot be decided by the manual 

review. Whereas, using data fields, only 17.6% of NONE cases cannot be decided as NONE 

through data fields. To understand how data fields, complement to manual narrative review and 

vice versa, the complementary metric was calculated. Table 5-8 shows that 98.8% of manually 

reviewed cases can be confirmed by data fields. Whereas, cases that cannot be confirmed by data 

fields but can be defined by manual narrative are 93.6%. Hence, among 642 cases that cannot be 

confirmed by data fields, the manual review almost classified 100% as a driver at fault. This 

analysis supports the use of “at least” for the three sources for assigning party at-fault; it also 

confirms that data field and narrative can complement each other, enhancing the proposal of using 

them together not separately as inconsistency still exists.  

To consolidate the inconsistent information from the citation, actions/circumstances, and 

crash narrative, it is determined that if at least “Yes” is checked for one party and no “Yes” from 

the other, the party is considered the Party at-fault. If “Yes” is checked for both parties, then both 

parties are at fault. If none of the parties are checked with “Yes”, then, no party is at fault or the 

party at-fault is unknown. Afterward, the fault party assignment process illustrated in Figure 5-2. 

For text mining results and discussion, refer to Appendix B: Police Narrative Text Mining Process. 

Results of the final fault assignment which involved other data field attributes and following the 

proposed guideline in  Figure B1 are shown in Table 5-9. 

Table 5-9: Fault assignment results  

 Driver at-Fault VRU at-Fault Unknown Fault Both Parties at-Fault Total 

N 1743 1481 40 378 3641 

% 47.87% 40.65% 1.10% 10.38% 100% 
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Figure 5-2: An illustration of the designed “party at-fault assignment” guideline 
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5.6  Crash Injury Severity Analysis by Party at-Fault 

In this section, the results of the Z-test and XGboost analysis of variable importance for 

predicting driver at-fault crashes and VRU at-fault crashes are discussed. Moreover, the MNL 

model analysis results of variables influencing each specific injury severity will be discussed, for 

both types of crashes; driver at-fault crashes and VRU at-fault crashes. 

5.6.1  Z-test analysis  

The results of the z analysis can be found in Table 5-10 to  Table 5-11. These results show 

the proportion of fatal and severe injury crashes, and evident and possible injury crashes (non-

severe) by each of the driver-related, VRU-related, roadway-related, crash-related, and 

environmental-related variables. The table identifies the crash variable that has a significantly 

different proportion of fatal and severe injury versus non-severe injury crashes using the z-test for 

proportions. The classification of the VRU injury severity level is determined based on the 

hypothesis that each variable influence different severity levels in different crash types (driver at-

fault crashes, VRU at-fault crashes, both at-fault crashes, none/unknown at-fault crashes) which 

helps in determining the models created later for the different crash types. A (−) symbol implies 

crash variables with a significantly lower proportion of fatal and severe injuries at a 95% 

confidence level. Whereas, a P+ +) symbol implies crash variables with a significantly higher 

proportion of fatal and severe injuries at a 95% confidence level. 
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Table 5-10: Summary of the Z-test results for driver at-fault crashes  

Variable indication Variable symbol 

Fatal and 

severe 

injury 

(K+A) 

crash% 

Evident 

and 

possible 

injury 

crash 

(B+C) % 

Sig. 

result 

of the 

z-test 

* 

Sample 

size % 

Driver-related factors 

Driver action (failed 

to yield ROW) 
DRVRPC.FTY 1.54% 5.41%   49.13% 

Driver action (other)  DRVRPC.OTHER 5.58% 24.69% − 46.26% 

Driver age (<30) DRVRAGE.LESS.30 3.95% 16.51% − 51.10% 

Driver age (30-64) DRVRAGE.BETWEEN.30.64 4.04% 17.39%  44.98% 

Driver age (≥65) DRVRAGE.MORE.THAN.65 2.77% 0.85% ++ 60.55% 

Driver sex (male) DRVR.SEX.M 2.94% 9.70% − 50.55% 

Driver sex (female) DRVR.SEX.F 3.08% 13.90%  50.82% 

Driver safety 

equipment 

(shoulder/lap belt) 

DRVR.SFTYEQP.SH.LP 5.22% 23.51%  47.37% 

Non-motorist/VRU-related factors 

Non-motorist Safety 

equipment (NONE) 
NMTSFQ.NONE 6.98% 29.47% − 78.52% 

Non-motorist Safety 

equipment (lights, 

reflectors, helmet) 

NMTSFQ.REFL.LTNG.HLMT 

 
0.14% 0.38%   39.58% 

Non-motorist action 

prior crash (no 

improper action) 

NMTACT.NO.IMPR 0.60% 1.59%   4.97% 

Non-motorist age 

(<30) 
NMT.AGE.LESS.30 2.64% 10.13%   49.26% 

Non-motorist age (30 

to 64) 
NMT.AGE.30.64 2.55% 10.82%   52.42% 

Non-motorist age 

(≥65) 
NMT.AGE.65.MORE 2.77% 0.85% ++ 49.81% 

Roadway-related factors 

Vertical road terrain 

(level) 

  

ROADVERT.LVL 

 

5.36% 20.82% − 50.18% 

Trafficway division 

(divided with barrier) 

  

TRFCWAY.DIV.BAR 
4.23% 18.98% − 71.49% 

Vehicle type (Utility 

truck) 

  

VEHTYPE.UT.TRK 
0.44% 1.73%   45.40% 
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Vehicle type (car) VEHTYPE.CAR 4.15% 16.81%  51.35% 

Vehicle type (sport 

utility vehicle-SUV) 
VEHTYPE.SUV 0.88% 3.49%   50.48% 

Total number of 

lanes (>3) 

  

TOTLANES.MORE.3 

 

2.36% 10.02%   49.56% 

Total number of 

lanes (two)  
TOTLANES.2 5.66% 24.11% − 48.07% 

Horizontal road 

terrain (straight) 
ROADHOR.ST 5.60% 21.72% − 50.23% 

Traffic control 

(traffic signal) 
TRFCCNTL.TS.OP 1.79% 7.25%   50.85% 

Traffic control (stop 

sign) 
TRFCCNTL.STOP 0.69% 2.44%   51.12% 

Road condition (dry) RDCOND.DRY 4.89% 18.54% − 50.96% 

Intersection type (4-

way) 
INTTYPE.4WAY 2.42% 9.45%   50.88% 

Intersection type (T) INTTYPE.T.PED.DT 0.63% 2.33%   55.96% 

Road surface 

(black/bituminous) 
SURFTYPE.BLACK.PED.DT 3.90% 14.64% − 51.61% 

Crash/vehicle-related factors 

Controlled maneuver 

(going straight) 
DRVRDOIN.GO.STR 2.00% 8.21%   49.60% 

Speed limit (<35) 

mph 
POSTSPD.LESS.35 6.07% 30.60% − 48.56% 

Speed limit (30-50) POSTSPD.35.TO.50 1.90% 5.16%   45.25% 

Speed limit (≥50) 

mph  
POSTSPD.MORE.50 2.88% 1.24% ++ 52.63% 

Environmental-related factors 

Light condition 

(light) 
LGTCOND.LITE 1.59% 7.80%   51.43% 

Light condition (day) LGTCOND.DAY 3.38% 12.58% − 49.87% 

Light condition 

(dawn) 
LGTCOND.DAWN 0.14% 0.63%   27.18% 

Weather condition 

(rain) 
WTCOND.RAIN 0.55% 2.47%   52.88% 

Weather condition 

(clear) 
WTCOND.CLEAR 3.57% 14.12%   51.27% 

Weather condition 

(cloudy) 
WTCOND.CLDY 1.51% 5.99%   49.91% 

Total Crashes including other variable attributes 335 1408  1743 
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Table 5-11: Summary of the Z-test results for VRU at-fault crashes  

Variable indication Variable symbol 

Fatal and 

severe 

injury 

(K+A) 

crash% 

Evident 

and 

possible 

injury 

crash 

(B+C) % 

Sig. 

result 

of the 

z-test 

* 

Sample 

size % 

Driver-related factors 

Driver action (failed 

to yield ROW) 
DRVRPC.FTY 1.04% 3.95%   35.34% 

Driver action (other)  DRVRPC.OTHER 5.69% 23.37% − 44.42% 

Driver age (<30) DRVRAGE.LESS.30 1.54% 8.10%   24.07% 

Driver age (30-64) DRVRAGE.BETWEEN.30.64 4.23% 17.80% − 46.25% 

Driver age (≥65) DRVRAGE.MORE.THAN.65 0.44% 1.92%   39.45% 

Driver sex (male) DRVR.SEX.M 1.48% 6.34%   31.32% 

Driver sex (female) DRVR.SEX.F 2.00% 9.06%   33.14% 

Driver safety 

equipment 

(shoulder/lap belt) 

DRVR.SFTYEQP.SH.LP 4.89% 10.30%  41.53% 

 Non-motorist/VRU-related factors 

Non-motorist Safety 

equipment (NONE) 
NMTSFQ.NONE 0.58% 1.40%   4.26% 

Non-motorist Safety 

equipment (lights, 

reflectors, helmet) 

NMTSFQ.REFL.LTNG.HLMT 

 
0.14% 0.33%   35.42% 

Non-motorist action 

prior crash (no 

improper action) 

NMTACT.NO.IMPR 6.26% 26.20% − 73.42% 

Non-motorist age 

(<30) 
NMT.AGE.LESS.30 1.57% 7.09%   33.37% 

Non-motorist age (30 

to 64) 
NMT.AGE.30.64 1.51% 6.45%   31.22% 

Non-motorist age 

(≥65) 
NMT.AGE.65.MORE 0.44% 1.92%   32.45% 

Roadway-related factors 

Vertical road terrain 

(level) 

  

ROADVERT.LVL 

 

3.16% 14.03%   32.96% 

Trafficway division 

(divided with barrier) 

  

TRFCWAY.DIV.BAR 
0.47% 0.00%   1.44% 
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Vehicle type (Utility 

truck) 

  

VEHTYPE.UT.TRK 
0.33% 1.37%   35.63% 

Vehicle type (car) VEHTYPE.CAR 2.20% 10.60%   31.36% 

Vehicle type (sport 

utility vehicle-SUV) 
VEHTYPE.SUV 0.66% 2.22%   33.33% 

Total number of 

lanes (>3) 

  

TOTLANES.MORE.3 

 

2.09% 8.16%   40.99% 

Total number of 

lanes (two)  
TOTLANES.2 5.03% 20.57% − 41.33% 

Horizontal road 

terrain (straight) 
ROADHOR.ST 3.32% 14.50%   32.76% 

Traffic control 

(traffic signal) 
TRFCCNTL.TS.OP 1.18% 4.67%   32.92% 

Traffic control (stop 

sign) 
TRFCCNTL.STOP 0.33% 1.73%   33.63% 

Road condition (dry) RDCOND.DRY 2.80% 11.65%   31.42% 

Intersection type (4-

way) 
INTTYPE.4WAY 1.57% 6.23%   33.45% 

Intersection type (T) INTTYPE.T 0.27% 1.29%   29.53% 

Road surface 

(black/bituminous) 
SURFTYPE.BLACK 2.31% 9.09%   31.73% 

Crash/vehicle-related factors 

Controlled maneuver 

(going straight) 
DRVRDOIN.GO.STR 1.26% 5.38%   32.27% 

Speed limit (<35) 

mph 
POSTSPD.LESS.35 5.36% 25.60% − 41.00% 

Speed limit (30-50) POSTSPD.35.TO.50 1.70% 5.30%   44.89% 

Speed limit (≥50) 

mph  
POSTSPD.MORE.50 0.82% 1.90%   34.74% 

Environmental-related factors 

Light condition 

(light) 
LGTCOND.LITE 0.88% 5.27%   33.68% 

Light condition (day) LGTCOND.DAY 2.25% 7.94%   31.85% 

Light condition 

(dawn) 
LGTCOND.DAWN 0.99% 0.22%  42.72% 

Weather condition 

(rain) 
WTCOND.RAIN 0.30% 1.37%   29.33% 

Weather condition 

(clear) 
WTCOND.CLEAR 2.09% 8.98%   32.09% 

Weather condition 

(cloudy) 
WTCOND.CLDY 0.85% 4.04%   32.54% 

Total Crashes including other variable attributes 288 1193  1481 
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In summary, Table 5-10 to Table 5-11 presents crash circumstances by prevalence and 

shows sample sizes and percentage of injury severity levels for each variable’s attribute. For driver 

at-fault crash results showed in Table 5-10, crashes involving drivers acted in actions other than 

failure to yield the ROW, drivers younger than 30 years, male drivers, non-motorists negligence 

of using safety equipment, straight and level road terrains, traffic ways divided with a barrier, two-

lane roadways, dry-surface and roadways, bituminous roadways, and roadways with speed limits 

(<35) mph showed a significantly lower percentage of severe versus non-severe injuries. Whereas, 

crashes involving drivers and pedestrians/bicyclists (≥65) years, and those crashes occurred on 

roadways with speed limits of (≥50) mph showed a significantly higher percentage of severe 

versus non-severe injuries. Such variables are of a high influence on driver at-fault crashes.   

While for VRU at-fault crashes, the results in Error! Reference source not found. showed 

hat the following variables showed a significantly lower percentage of severe versus non-severe 

injuries, highlighting the importance of capturing the effects of these variables on VRU at-fault 

crashes: crashes involving drivers acted in actions other than failure to yield the ROW, drivers 

aged between 30 and 64 years, VRUs involved in crashes with no improper actions, crashes 

occurred on two-lane roadways, and those occurred on roadways with a speed limit of (<35) mph.  

5.6.2  XGboost Decision Tree Results 

The raw Wisconsin pedestrian-vehicle crash data is randomly split into training and test 

sets, and the crash injury severity of driver fault crashes and VRU fault crashes are fit into the 

XGboost model. Seventy-three explanatory variables are checked for influencing crash severity. 

Twenty variables were found to significantly influencing variables of the crash type severity were 
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found, and the most important twenty contributing variables to the severity level of a crash type 

are summarized. Table 5-12 and Table 5-13 present the variable ranking in ascending order.  
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Table 5-12: Variable Level of Importance for Each Severity Level for Driver Fault Crash Types 

P (Fatal (K) Crash) P (Severe Injury (A) Crash) P (Evident and Possible Injury (B+C) Crash) 

Variable Score Cumulative % Variable Score 
Cumulative 

% 
Variable Score Cumulative% 

Speed limit (35 to50 

mph) 
100.00 37 

Speed limit (35 to50 

mph) 
100.0 17 

Speed limit (35 to50 

mph) 
100.00 38 

Trafficway division 

(divided with no 

traffic barrier) 

31.56 49 Driver age (<30) 68.7 29 

Trafficway division 

(divided with no 

traffic barrier) 

29.36 49 

Driver action (other) 14.12 54 Driver action (other) 42.1 37 Driver action (other) 15.62 54 

Driver age (<30) 12.82 59 

Trafficway division 

(divided with no traffic 

barrier) 

37.7 43 
Total number of lanes 

(3) 
14.00 60 

Total number of lanes 

(3) 
12.07 63 

Total number of 

lanes (3) 
32.6 49 Driver age (<30) 13.78 65 

Light condition (day) 11.62 68 Driver age (≥65) 32.4 54 
Horizontal road terrain 

(straight) 
12.64 70 

Traffic control (traffic 

signal) 
11.59 72 Light condition (day) 26.1 59 Driver age (≥65) 12.02 74 

Vertical road terrain 

(level) 
9.72 76 

Total number of lanes 

(one) 
25.6 63 Road condition (dry) 9.62 78 

Traffic control (stop 

sign) 
8.84 79 

Traffic control (traffic 

signal) 
24.6 68 Light condition (day) 9.24 81 

Driver age (≥65) 7.98 82 
Weather condition 

(cloudy) 
22.2 72 

Vertical road terrain 

(level) 
8.06 84 
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Road condition (dry) 7.25 85 Road condition (dry) 21.3 75 
Driver action (failed to 

yield ROW) 
7.43 87 

Controlled maneuver 

(going straight) 
7.13 87 

Horizontal road terrain 

(straight) 
18.4 78 

Traffic control (traffic 

signal) 
6.28 89 

Driver action (failed to 

yield ROW) 
5.51 89 

Vertical road terrain 

(level) 
16.4 81 

Total number of lanes 

(one) 
5.25 91 

Intersection type (4 

way) 
5.29 91 

Light condition 

(dark) 
16.3 84 

Light condition 

(dark) 
4.42 93 

Driver sex (male) 4.46 93 
Controlled maneuver 

(going straight) 
16.1 87 

Controlled maneuver 

(going straight) 
4.40 95 

Total number of lanes 

(one) 
4.40 95 

Driver action (failed to 

yield ROW) 
15.8 90 

Weather condition 

(cloudy) 
3.78 96 

Light condition (dark) 4.34 96 Driver sex (male) 15.5 92 
Intersection type (4 

way) 
3.49 97 

Weather condition 

(cloudy) 
4.17 98 

Traffic control (stop 

sign) 
15.0 95 

Traffic control (stop 

sign) 
2.35 98 

Horizontal road terrain 

(straight) 
3.85 99 

Intersection type (4 

way) 
14.5 98 Driver sex (male) 2.32 99 

Road surface type 

(black/bituminous) 
2.19 100 

Road surface type 

(black/bituminous) 
14.2 100 

Road surface type 

(black/bituminous) 
2.19 100 
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Table 5-13: Variable Level of Importance for Each Severity Level for VRU Fault Crash Types 

P (Fatal (K) Crash) P (Severe Injury (A) Crash) P (Evident and Possible Injury (B+C) Crash) 

Variable Score Cumulative % Variable Score 
Cumulative 

% 
Variable Score Cumulative% 

Safety equipment 

(lights, reflectors, 

helmet) 

100.00 45 

Safety equipment 

(lights, reflectors, 

helmet) 

100.00 44 

Safety equipment 

(lights, reflectors, 

helmet) 

100.00 36 

Total number of lanes 

(one) 
13.23 51 

Trafficway (divided 

with barrier) 
16.40 51 

Trafficway (divided 

with barrier) 
26.04 45 

Trafficway (divided 

with barrier) 
12.95 56 

Non-motorist action 

prior crash (no 

improper action) 

12.21 56 

Non-motorist action 

prior crash (no 

improper action) 

18.27 52 

Non-motorist age 

(30 to 64) 
10.26 61 

Non-motorist age (30 

to 64) 
10.01 60 

Non-motorist age (30 

to 64) 
15.31 58 

Speed limit (35 to 50) 

mph 
10.11 66 

Total number of lanes 

(one) 
9.52 65 Light condition (light) 14.65 63 

Vehicle type (Utility 

truck) 
9.93 70 

Speed limit (35 to 50) 

mph 
8.89 68 

Speed limit (35 to 50) 

mph 
14.13 68 

Light condition (light) 8.81 74 
Vehicle type (sport 

utility vehicle-SUV) 
8.77 72 

Vehicle type (sport 

utility vehicle-SUV) 
11.39 72 

Non-motorist action 

prior crash (no 

improper action) 

8.71 78 
Non-motorist age 

(≥65) 
8.74 76 

Traffic control (stop 

sign) 
10.54 76 

Non-motorist age 

(≥65) 
7.14 81 

Non-motorist age 

(<30) 
7.08 79 

Intersection type (4 

way) 
10.41 80 
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Weather condition 

(rain) 
6.69 84 

Weather condition 

(rain) 
6.53 82 

Horizontal road terrain 

(straight) 
9.95 83 

Traffic control (stop 

sign) 
6.37 87 

Horizontal road terrain 

(straight) 
6.01 85 

Total number of lanes 

(one) 
7.75 86 

Horizontal road 

terrain (straight) 
4.53 89 Light condition (light) 5.88 87 

Weather condition 

(rain) 
6.98 89 

Non-motorist age 

(<30) 
4.13 91 

Vertical road terrain 

(level) 
5.00 89 

Weather condition 

(clear) 
6.89 91 

Vertical road terrain 

(level) 
4.07 93 

Weather condition 

(clear) 
4.62 91 

Non-motorist age 

(≥65) 
5.63 93 

Vehicle type (car) 3.33 94 
Safety equipment 

(none) 
4.13 93 

Safety equipment 

(none) 
4.34 95 

Weather condition 

(clear) 
3.22 96 

Speed limit (>50) 

mph 
3.94 95 

Speed limit (>50) 

mph 
3.26 96 

Speed limit (>50) 

mph 
2.70 97 

Intersection type (4 

way) 
3.53 96 

Non-motorist action 

prior crash (in 

roadway-other) 

3.13 97 

Safety equipment 

(none) 
2.55 98 

Traffic control (stop 

sign) 
3.30 98 Vehicle type (car) 3.13 98 

Intersection type (4 

way) 
2.48 99 Vehicle type (car) 2.51 99 

Non-motorist age 

(<30) 
2.96 99 

Non-motorist action 

prior crash (in 

roadway-other) 

2.18 100 

Non-motorist action 

prior crash (in 

roadway-other) 

2.45 100 
Vertical road terrain 

(level) 
2.41 100 
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Table 5-12 and Table 5-13 represented variable importance scores for both driver at-fault 

crashes and VRU at-fault crashes. Variable importance in a tree is estimated by a score that reflects 

the contribution this variable makes in predicting the crash severity in the predictor variable and 

measured based on the several instances the variable is used as a splitter, and the enhancement this 

tree provides for the mean squared error by the splits of the variable. Then, the importance score 

is accumulated and calculated for a single tree over the ensemble of trees, and the average 

summation value is scaled to obtain a score of (100) for the most important variable. Accordingly, 

the scaled average value for each variable reflects the variable’s importance. A variable with a 

high importance value denotes that the variable contributes significantly to the prediction 

(Friedman 2001). It is noted from the driver fault section of the table, that the first six variables’ 

contribution to the injury severity prediction in driver fault crashes reached as high as 70%. For 

fatal injury and (evident and possible injury) levels of crash severity, the variable with the great 

emphasis is “Trafficway division (divided with no traffic barrier)”, meaning that trafficway 

division with no barrier at the crash scene compared with the remaining variables provides the 

greatest participation in the explanation of fatal and (evident and possible injury) crashes.  

Also, “Driver action (other)“is the third variable with the greatest emphasis on all levels of 

crash severity, accounting for 54%, 42.1%, and 15.62% of the emphasis that driver action 

participates too, respectively. The absolute cumulative participation of the variables is labeled 

“Cumulative %” in Table 5-12 and Table 5-13, denoting the collective contribution of each of 

the variables. Whereas, in crashes resulting in severe injuries, the second most contributing factor 

is” driver age <30”, being responsible for 29% in explaining injury crashes. Table 5-12 and Table 

5-13 also show that variables are different in describing and affecting the crash outcome. 
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Additionally, a variable demonstrating high importance for a level of crash severity may be 

less essential for another. For example, “Horizontal road terrain (straight)” is the six most essential 

variable in predicting crashes that were evident and possible injuries occurred yet is less essential 

in predicting fatal and severe injury crashes. Even though, “speed limit (30 to 50 mph)” is the most 

effectual variable in all crash severity levels. “Trafficway division (divided with no traffic barrier) 

and Driver action (other)” contribute significantly in predicting crash severity of all levels.  

Other interesting findings include a) “Driver age (<30)” provide higher contribution when 

explaining crashes resulting in severe injuries but less contribution when clarifying evident and 

possible injury (B+C) crashes; b) “Light condition (day)” provides a great contribution in 

explaining fatal and severe crashes but slight contribution for explaining evident and possible 

injury (B+C) crashes; c) “Trafficway division (divided with no traffic barrier)” provides a great 

contribution in explaining fatal and evident and possible injury (B+C) crashes compared to 

explaining severe injury crashes; and d) “Speed limit (35 to 50 mph)”, “Trafficway division 

(divided with no traffic barrier)”, “Driver action (other)”, “Driver age (<30)”, and “Total number 

of lanes (>3)”, significantly influence all crash severity levels. It is clear that the XGboost 

technique efficiently pointed out the variables that significantly influence crash severity levels and 

ranked them per their degree of significance.  

5.6.3  Crash Variables in the Injury Severity Models 

The following analysis carries out injury severity models for VRUs involved in driver fault 

crashes and VRU crashes, provide a comprehensive marginal effect analysis for the most 

significant and highly important variables. The marginal effect analysis offers a supplementary 

detailed explanation of how every variable participates in all crash severity levels. Table 5-14 and 

Table 5-16 show the estimated coefficients of each variable involved in the MNL model using for 

driver at-fault crash variables, and VRU at-fault crash variables, respectively. The marginal effects 
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of each significant factor on the likelihood of each injury-severity class are reported in Table 5-15 

and Table 5-17. 

Table 5-14: Injury Severity Model of Driver At-Fault Crash Variables 

Variable 

 
Code 

Severe Injury 

(A) Crash 

Evident and Possible 

Injury (B+C) Crash 

Coef.  P-value Coef.  P-value 

Intercept 3.05 0.02 4.89 0.00 

Speed limit (35 to50 

mph) 
POSTSPD.30.TO.50 -3.76 0.01 -4.38 0.00 

Total number of lanes 

(>3) 
TOTLANES.MORE.3 -2.31 0.09 -2.31 0.07 

Driver age (<30 mph) DRVR.AGE.UNDER.30 -2.93 0.08 -2.24 0.09 

Driver action (other) DRVRPC.ID 2.88 0.06 2.86 0.05 

Trafficway division 

(divided with no traffic 

barrier) 

TRFCWAY.DIV.NO -2.40 0.19 -3.54 0.04 

 

Table 5-15: Marginal Effects of Injury Severity Variables for Driver At-Fault Crashes 

Variable 

 

P (Fatal (K) 

Crash) 

P (Severe Injury 

(A) Crash) 

P (Evident and Possible 

Injury (B+C) Crash) 

Speed limit (35 to50 mph) 0.9169 -0.1346 -0.7822 

Total number of lanes (>3) 0.5001 -0.1136 -0.3864 

Driver age (<30) 0.5198 -0.2015 -0.3183 

Driver action (other) -0.6207 0.1432 0.4775 

Trafficway division (divided 

with no traffic barrier) 
0.7095 -0.0245 -0.684 
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The analysis in both Table 5-14 and Table 5-15 Error! Reference source not found.showed 

the variables selected for VRU severity rate prediction in driver fault crash type.  

Crashes occurred on roadways with a speed limit of (35 to 50 mph) among the other two 

groups of speed limit considered for the study (i.e., <35 and >50 mph) showed that pedestrians 

and bicyclists are less likely to sustain severe injuries.  

The same finding applies to crashes that occurred on roadways with more than three lanes. 

Driver age and actions showed an influence as well on VRU severity rate prediction in driver fault 

crash type. Both Table 5-14 and Table 5-15 showed that pedestrians and bicyclists are less likely 

to sustain severe injuries when the driver is younger than 30 years old (<30).  

Whereas, if the driver is inattentive, careless, or acted erratically, pedestrians and bicyclists 

are more likely to sustain severe injuries. Pedestrian and bicyclist actions immediately before the 

crash showed an influence on their injury severity rate in Table 5-14 and Table 5-15 showed that 

pedestrians and bicyclists are less likely to sustain severe injuries if they were crossing a roadway 

divided with no traffic barrier, compared to other traffic division levels considered in this study 

such as two-way undivided trafficways, and one-way traffic roadways. 

Table 5-16: Injury Severity Model for VRU At-Fault Crash Variables 

Variable 

 
Code 

Severe Injury 

(A) Crash 

Evident and Possible 

Injury (B+C) Crash 

Coef.  P-value Coef.  P-value 

Intercept 2.59 0.00 4.26 0.00 

Light condition (light) LGTCOND.LITE --- --- -1.22 0.02 

Trafficway (divided with 

barrier) 
TRFCWAY.DIV.BAR -1.61 0.01 -1.66 0.00 

Speed limit (35 to 50) mph POSTSPD.35.TO.50 -0.76 0.08 -1.05 0.01 

Safety equipment (lights 

and reflectors) 
NMTSFQ.REFL.LGT -1.67 0.00 -2.09 0.00 
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Non-motorist age (30 to 64) NMT.AGE.30.TO.64 -0.93 0.22 -1.27 0.06 

Vehicle type (sport utility 

vehicle-SUV) 
VEHTYPE.SUV 0.76 0.05 0.63 0.09 

Non-motorist action prior 

crash (no improper action) 
NMTPRIOR.NO.IMPR -1.38 0.01 -1.38 0.00 

Total number of lanes (two) TOTLANES.2 -0.90 0.03 -0.64 0.11 

 

Table 5-17: Marginal Effects of Injury Severity Variables for VRU At-Fault Crashes 

Variable 

 

P (Fatal (K) 

Crash) 

P (Severe Injury 

(A) Crash) 

P (Evident and Possible 

Injury (B+C) Crash) 

Light condition (light) 0.0108 0.0419 -0.0527 

Trafficway (divided with 

barrier) 
0.0153 -0.0191 0.0037 

Speed limit (35 to 50) mph 0.0093 -0.0466 0.0372 

Safety equipment (lights and 

reflectors) 
0.0187 -0.0713  0.0525 

Non-motorist age (30 to 64) 0.0113 -0.0542  0.0429 

Vehicle type (sport utility 

vehicle-SUV) 
0.0063 -0.0361 0.0298 

Non-motorist action prior crash 

(no improper action) 
-0.0015  0.0128 -0.0113 

Total number of lanes (two) 0.0175   -0.0060 0.0114 

 

The analysis in both Table 5-16 and Table 5-17 showed the variables selected for VRU 

severity rate prediction in driver fault crash type, where: 

 i) Four variables are roadway-related; light condition (light), trafficway division (divided 

with a traffic barrier), posted speed limit 35 to 50), and a total number of lanes (two). Table 5-16 

presents that crashes occurred during the night on street lit roadways did not show an influence on 

severely injured pedestrians and bicyclists; however, Table 5-17 shows that pedestrians and 
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bicyclists involved in crashes in such roadway circumstances are more likely to sustain severe 

injuries. This can be because those groups of VRU may feel more confident while crossing a street 

lit roadway, even in dark conditions.  

Regarding roadways divided with a traffic barrier and roadways with speed limits of 35 to 50 

mph, both Table 5-16 and Table 5-17 showed that pedestrians and bicyclists involved in crashes 

on such roadways are more likely to sustain severe injuries, compared to other traffic way division 

categories (i.e., divided with a painted median, undivided, divided with no barrier) and speed limit 

categories (<35 mph and >50 mph) considered in this study. Considering the total number of lanes 

dedicated to traffic in the roadway, VRU involved in crashes on roadways with two through lane 

are less likely to be severely injured, as shown in Table 5-16 and Table 5-17.  

ii) Three variables are VRU-related; safety equipment usage (lights, reflectors, helmet), age 

(30 to 64 years), and action before the crash (no improper action). Safety equipment usage was 

studied in two categories (whether equipment such as lights, reflectors, helmet are used, and 

whether not), also another main category of non-motorist action was considered; (no improper 

action). Table 5-16 and Table 5-17 showed that all three VRU-related variables lower the crash 

injury severity. In other words, pedestrians and bicyclists of age between 30 to 64, those who did 

not act improperly, and those who use a type of safety equipment are less likely to sustain severe 

injuries in VRU fault crash types.  

iii) Vehicle type (sport utility vehicle-SUV) also showed an influence. Both, Table 5-16 and 

Table 5-17 presented that pedestrians and bicyclists involved in crashes with drivers driving an 

SUV are more likely to be severely injured.  
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 : Evaluating Data Quality for Pedestrian & 

Bike Crashes  

6.1  Background  

Traffic safety continues to be considered a major public issue as the number of motor vehicle 

crash injuries and deaths increase. Based on statistics shared by the World Health Organization 

(WHO), traffic accidents result in 1.35 million deaths yearly worldwide. Data also showed that 

37,133 deaths occurred from motor vehicle crashes in the year 2017 (National Highway Traffic 

Safety Administration, 2017). With yearly increases in travel and no improvement over the current 

safety performance, fatalities and injuries could increase by 50 percent by 2020 (NHTSA, 2020). 

Unfortunately, among these crashes, vehicle crashes involving pedestrians/bicyclists are a source 

of serious concern as such crashes have a high severity level and a unique inevitability. In 2017 

there were 5,977 pedestrians and 783 bicyclists killed in crashes with motor vehicles in the United 

States. This group of vulnerable road users (VRUs) account for a growing share of total US traffic 

fatalities. In 2017, pedestrians and bicyclists represented 18.2% of total traffic 

fatalities. Pedestrian and bicyclist fatalities increased by 32 percent in the ten years between 2009 

and 2018.  

Data from Wisconsin DMV shows that between the years 2017 and 2018, an average of 879 

bicycle crashes occurred, 5 bicyclists were killed, and 792 bicyclists were injured. Moreover, 1519 

pedestrian crashes occurred, 56 pedestrians were killed, and 1425 pedestrians were injured on 

average during the same period. (“Wisconsin DMV Official Government Site - Final Year-End 

Crash Statistics” 2018).  

One of the initiatives to improve traffic safety in Wisconsin was to revise the previous 

MV4000 crash reporting form into a new DT4000 form.  
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The forms were switched statewide on January 1, 2017. Some issues with the previous 

MV4000 crash form included poor reporting of roadway curvature, no data field indicating driver 

distraction, no specification of the exact traffic barrier, safety equipment used by the individual 

(motorist and non-motorists), limited information about non-motorist characteristics, and 

imprecise location of the non-motorists at the time of the crash. The new DT4000 crash form 

incorporated new crash elements and more detailed attributes. It is clear that the DT4000 crash 

form captures more details about the crash circumstances. This study examines the value of the 

newly added data fields in the DT4000 driver crash report form. The question is, in what ways do 

these new attributes add significant value to the previously used data fields?  

There were three major goals for this study: (i) investigate how completely new DT4000 crash 

form data fields were filled out by law enforcement, with a focus on pedestrian/bicycle-vehicle 

crash-related data fields to enhance the knowledge about the conditions/circumstances that may 

have contributed to these crashes; (ii) assess the changes in attributes of the common data fields 

that are recategorized in the DT4000 crash form to acknowledge the enhancements accompanied 

in the DT4000 crash form of the common data fields, and (iii) examine if new and recategorized 

data fields in the DT4000 crash form enhances the pedestrian/bicycle injury severity model 

accuracy. This information can provide examples of how the new DT4000 crash data can 

ultimately be applied to make the Wisconsin transportation system safer, especially for pedestrians 

and bicyclists.  
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6.2  Data Collection and Processing  

In Wisconsin, 284,082 crashes occurred during the two-year (2017-2018) period. The 

distribution of pedestrians, bicyclists, and drivers involved, are listed based on the injury severity 

resulted from the crash in Table 6-1 below. 

Table 6-1: Injury severity distribution of road users involved in crashes between 2017-2018  

              Road User 

 

Injury Severity 

Drivers only 
At least a 

Pedestrian 

At least a 

bicyclist 
Subtotal 

 N (%) N (%) N (%) N (%) 

K (fatal injury) 898 0.36% 110 0.04% 12 0.00% 1020 0.41% 

A (suspected serious 
injury) 

4692 1.88% 458 0.18% 149 0.06% 5299 2.12% 

B (suspected minor 
injury) 

22574 9.05% 1080 0.43% 958 0.38% 24612 9.86% 

C (possible injury) 26505 10.62% 579 0.23% 392 0.16% 27476 11.01% 

O (no apparent 
injury) 

190798 76.47% 141 0.06% 148 0.06% 191087 76.59% 

Subtotal 245467 98.39% 2368 0.95% 1659 0.66% 249494 100.00% 

 

Crashes involving pedestrians and bicyclists in Wisconsin have been used for this study. The 

crash data were downloaded from WisTransportal Crash Retrieval Facility in the old MV4000 

crash report format and new DT4000 crash report format. Comparing the same crash data coded 

in different forms allows us to determine if the new or expanded data elements in DV4000 provide 

value-added information for gaining a better understanding of pedestrian/bike crashes in 

Wisconsin. A total of 4,025 crashes were retrieved after applying the following query:  
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“SELECT * FROM DTCRPRD.SUMMARY_COMBINED C WHERE C.CRSHDATE 

BETWEEN TO_DATE('2017-JAN','YYYY-MM') AND LAST_DAY(TO_DATE('2018-

DEC','YYYY-MM')) AND (C.DEERFLAG IS NULL OR UPPER(C.DEERFLAG) != 'Y') AND 

(C.BIKEFLAG = 'Y' OR C.PEDFLAG = 'Y') AND C.LOCTYPE IN ('I','N') ORDER BY 

C.DOCTNMBR” 

In a crash involving a non-motorist, the non-motorists can be either unit 1 or 2. According to 

the crash data user guide, “[1,2] Denotes unit-level information, where a unit is any vehicle, 

bicycle, pedestrian, or equipment involved in a crash.  Unit level element names in the data file 

are appended with “1” or “2”, representing the first or second unit involved in the crash”. When 

more than two units are involved including non-motorists, a non-motorist may be coded as neither 

unit 1 or 2. Table 6-2 shows how the data fields are processed and analyzed, by referring to the 

ROLE [1, 2] data field indicating driver, pedestrian, and bicyclist roles in a crash. 

Table 6-2: Types of Person Involved in A Crash 

ROLE2-DT 

 

ROLE1-DT 

 

Bicyclist Driver Pedestrian Total 

N % N % N % N % 

Bicyclist   1152 31.64%   1152 31.64% 

Driver 344 9.45%   121 3.32% 465 12.77% 

Pedestrian   2024 55.59%   2024 55.59% 

Total 344 9.45% 3176 87.23% 121 3.32% 3641 100.00% 

 

 The data shows that: 

- The bicyclist involved in a crash with a driver is entered as unit 1 in 344 (9.45%) cases, 

and as unit 2 in 1152 (31.64%) cases in a total of 1496 (41.08%) bicyclist crashes. 
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- The driver involved in a crash with non-motorists is entered as unit 1 in 3176 (87.23%) 

cases and as unit 2 in 465 (12.77%) cases. 

- The pedestrian involved in a crash with a driver is entered as unit 1 in 121 (3.32%) cases, 

and as unit 2 in 2024 (55.59%) cases in a total of 2145 (58.91%) pedestrian crashes. 

The results presented in Table 6-2 showed the importance of analyzing the pedestrian crash 

dataset separately from the bicyclist crash dataset since there is no obvious rule followed to report 

a pedestrian, a bicyclist, a driver as unit 1, or unit 2. It might be the fact that a road user (driver, 

pedestrian, or bicyclist) is entered as unit 1 when he/she is at fault. This study is limited to 

analyzing the actions and behavior of the first two units one of which is a non-motorist. Also, some 

crashes involve more than two units and pedestrians/bicyclists were also reported in units other 

than unit 1 and unit 2. However, in this study the analyzed crashes are pedestrian and bicyclist 

crashes that include two units only. 

Distinguishing the role of unit 1 and unit 2 as a driver or a non-motorist is also essential for 

us to determine the level of injury severity sustained by a non-motorist during a motor vehicle 

crash. For any analysis regarding injury severity, the primary interest is in the ones that a non-

motorist sustained a more severe injury, which excludes 324 crashes where the motorist sustained 

more severe injury than the non-motorist and 60 crashes where both units are drivers-vehicle to 

vehicle crashes. 

The selected data fields, their indication, and whether they include more detailed attributes 

or are a new addition to the DT4000 crash form, are shown in  

Table 6-3. Note that (blank) value denotes that the field was left blank/missed and was not 

filled with any value, whereas; BLANK value denotes that the field involves an option to report 

a blank value if the field is not related to the situation (i.e., VEHDMG [1, 2] is a field in the 
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MV4000 crash form dataset which involves several attributes identifying the extent to which the 

damage affects the vehicles’ operability, and a BLNK attribute that can be filled when the 

vehicle damage was not investigated). 

 

Table 6-3: A List of the Selected Data Fields for the Analysis 

MV4000 Crash 

Form 

DT4000 Crash 

Form 
Indication 

Description of the 

Change 

Roadway Level 

ROADHOR ROADHOR [1,2] Horizontal Road Terrain 

More detailed 

attributes 

ROADVERT ROADVERT [1,2] Vertical Road Terrain 

ROADCOND RDCOND [A,B,C] Road Surface Condition 

TRFCWAY TRFCWAY [1,2] Trafficway Description 

RLTNRDWY RLTNRDWY Location Of First Harmful Event 

ACCDLOC LOCTYPE Crash Location Type 

TRFCNTL [1,2] TRFCCNTL [1,2] 
Traffic Control Device (TCD) In 

Effect 

--- SURFTYPE [1,2] Road Surface Type 

A New data field 

--- TOTLANES [1,2] Total Number Of Lanes 

--- RLTNTRWY 
Crash Location With Respect To 

Trafficway 

--- INTTYPE 
Intersection Type Where The Crash 

Occurred 

--- TRFCINOP [1,2] Status Of The TCD 

--- RLTNJNIC 
Crash Occurrence Within An 

Interchange Area 

--- RLTNJNLC 
Crash Occurrence In A 

Junction/Interchange Area 

Environmental Level 

WTHRCOND WTCOND [A, B] Prevailing Atmospheric Conditions More detailed 

attributes LGTCOND LGTCOND Light Conditions 
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HWYPC [1,2] 
RDWYPC [A, B, 

C] 

Apparent Factors Of The Road/ 

Highway 

--- ENVPC[A,B,C] 
Contributing Environmental 

Conditions 
A New data field 

Driver Level 

DRVRPC [1,2] 
DRVRPC [1,2] 

[A,B,C,D] 

Driver Contributing 

Actions/Circumstances More detailed 

attributes DRVRDO [1,2] DRVRDOIN [1,2] Controlled Maneuver By The Driver 

SAFETY [1,2] SFTYEQP [1, 2] Safety Equipment Used By The Driver 

--- RACE [1,2] Driver Race 

A New data field 

--- TEENDRVR Teen Driver 

--- DISTFLAG Distraction/Inattentive Driving Flag 

--- 
DNMFTR [1,2] 

[A,B] 

Individual Condition Relevant To The 

Crash 

Pedestrian Level 

NMTACT [1,2] 

[A,B] 

NMTACT [1,2] 

[A,B] 

Pedestrian Actions/Circumstances 

Contributing To The Crash More detailed 

attributes 
NMTLOC [1,2] NMTLOC [1,2] 

Pedestrian Location With Respect To 

The Roadway 

--- 

NMTSFQ [1,2] 

[A,B] 

Safety Equipment Used By The 

Pedestrian 

A New data field 
DNMFTR [1,2] 

[A,B] 

Individual Condition Relevant To The 

Crash 

NMTPRIOR [1,2] 
Pedestrian Actions Immediately Prior 

To The Crash 

Bicyclist Level 

NMTACT [1,2] 

[A,B] 

NMTACT [1,2] 

[A,B] 

Bicyclist Actions/Circumstances 

Contributing To The Crash More detailed 

attributes NMTLOC [1,2] 

 
NMTLOC [1,2] 

Bicyclist Location With Respect To 

The Roadway 

  

--- 

NMTSFQ [1,2] 

[A,B] 

Safety Equipment Used By The 

Bicyclist 
A New data field 
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DNMFTR [1,2] 

[A,B] 

Individual Condition Relevant To The 

Crash 

NMTPRIOR [1,2] 
Bicyclist Actions Immediately Prior 

To The Crash 

Crash Level 

ACCDTYPE MOSTHARM [1,2] 
Events Resulting In The Most Severe 

Injury More detailed 

attributes SPEEDFLAG SPEEDFLAG Vehicle Speeding Status 

HITRUN HITRUN Hit And Run 

--- SCHZONE School Zone A New data field 

Vehicle Level 

VEHTYPE [1,2] VEHTYPE [1,2] Vehicle Type Involved In The Crash More detailed 

attributes VEHDMG [1,2] VEHDMG [1,2] Extent Of Vehicle Damage 

 

Often times, there is more than one crash contributing factor in data fields such as 

circumstances, driver actions, behavior, so-called multi-valued elements, and denoted as [A, B, 

C]. [1,2][A,B] denotes combined unit level and multi-valued elements. For example, DRVRPC1A 

and DRVRPC1B describe the first two contributing factors listed for the driver of the first unit on 

the DT4000 crash report. Therefore, when necessary, the “concatenate” function in Excel is used 

in the analysis to join data from Unit 1 and 2 -a unit is a driver, a pedestrian, or a bicyclist, as well 

as from A, B, C, etc. Concatenation is the operation of joining character strings end-to-end and a 

string can be a text, number, or a Boolean value. 

For the same data types (i.e., DRVRDOIN 1 and DRVRDOIN 2), concatenation is done to 

join the two text strings into one text string (DRVRDOIN 1,2). A filter may be used to filter values 

of the DRVRDOIN 1 data field when Role 1 is a driver, and the same way when Role 2 is a driver, 

values of DRVRDOIN 2 data field are filtered, creating (DRVRDOIN 1,2) data field. Whereas, 

for data fields that take multiple values (i.e., ROADCOND A, ROADCOND B, ROADCOND C), 
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direct concatenation separated by a comma is approached to create (ROADCOND A, B, C) data 

field. Note that the number of attributes provided in each element varies and is based on the 

minimum set of data elements recommended by the Model Minimum Uniform Crash Criteria 

(MMUCC) standard (National Highway Traffic Safety Administration 2017).  

After concatenation, many new attribute values may be created due to the combination of 

strings; thus, attributes with small percentage values (e.g., <1%) are not analyzed separately but 

as one category (i.e., Total including other combinations). Note that multi-value attributes (i.e., 

BIKE, UT TRK) are a result of applying the concatenation function to the data field attributes.  

6.3  Exploratory Data Analysis 

This section presents exploratory data analysis, including the Univariate and Multi-variate 

analysis of a selected list of MV4000 and DT4000 crash form data fields. The Uni-variate analysis 

involves all the data fields that are hypothesized to carry useful information and compare 

informative data fields in both crash forms. The descriptive statistics based on the Uni-variate 

analysis highlight the attribute values that are overrepresented in the crash data. Subsequently, 

Multi-variate analysis is carried out following the cross-classification method.  

6.3.1  Univariate and Multi-variate Analysis 

This section involves preliminary data analysis, including a comprehensiveness comparison 

between a selected list of MV4000 and DT4000 crash form data fields. This analysis involves all 

the data fields that are hypothesized to carry useful information and compare informative data 

fields in both crash forms. Followed by descriptive statistics that highlight the attribute values that 

are overrepresented in the crash data. Subsequently, supplementary analysis is carried out 

following the cross-classification method. The percentage of combined values from two or more 

attributes in the crash data is presented and the dependence and association between different 
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attributes are explored. For the definition of data fields and their corresponding attributes in 

MV4000 and DT4000 refer to Appendix C: . 

6.3.1.1A Comparison Between MV4000 and DT4000 Crash Form Data Fields 

This section analyses and discusses single variables/data fields, or univariate analysis, that are 

identified as the most relevant fields to pedestrian and bicycle-related crashes and are believed to 

help with understanding the circumstances associated with such crashes.  

Descriptive statistics were generated for the new data fields in the DT4000 form, to check the 

completion and the distribution of field attributes. In case data fields exist in both MV4000 and 

DT4000 but with different attributes, attributes were mapped between the two forms, and then 

separate descriptive statistics for each was generated. In some cases, a contingency table is 

generated with rows being MV4000 attributes and columns being DT4000 or vice versa. 

Descriptive statistics are expected to display different distribution and patterns of a data field if 

the attributes have been changed. The changes will lead to the identification of new and extra 

specific patterns, conditions, and circumstances contributing to a crash. Also, it includes studying 

data fields that are roadway, environment, driver, pedestrian, bicyclist, crash, and vehicle-related. 

Error! Reference source not found. illustrates the analysis process of the MV4000 and DT4000 

rash forms data fields.  

 

Figure 6-1: Analysis Process of MV4000 and DT4000 Crash Form Data Fields 
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Observing the comprehensive comparative analysis of the selected crash variables, the 

potential significant data fields are discussed below.  

For road surface conditions, 13.24% of the crashes occurred in wet roadway surface 

conditions. Viewing the type of trafficway division, 68.14%, and 9.59% of the crashes occurred in 

two-way undivided highways (UNDIV), and divided highways without a traffic barrier (DIV NO), 

respectively. Concerning the total number of lanes in a roadway where a crash took place, 

roadways with two and four total number of lanes contribute together to 80.31% of the total 

number of crashes.  

Reporting the location type in MV4000 and DT4000 crash forms is consistent. 56.33% of 

crashes occurred at intersections, whereas, 43.67% of them occurred at non-intersection/midblock 

locations. Taking into account the intersection type in which the crash occurred, 41.77% and 

11.73% of the crashes occurred at 4-way stop intersections and T intersections, respectively. For 

the traffic control device (TCD) in effect at the time of the crash, 16.11% ((59.78% locations 

lacking a TCD (NONE) excluding 43.67% non-intersection locations (N)) of the crashes are 

reported as lacking a TCD (NONE). 23.85% and 12.55% of the crashes occurred at traffic signal 

controlled (TS OP) and at stop sign-controlled (STOP/SS) locations, respectively. 

6.3.1.2 Enhanced analysis of selected MV & DT variables 

This section focuses on the multi-variate analysis (MVA) or so-called correspondence 

modeling, which is used to account for confounding effects and detect the presence of significant 

association through allowing for the association between two or more categorical data fields. 

Selected attributes of each data field are listed for each data field as rows and columns, and the 

joint cell of each row and column value is tested. The lower right-hand corner value contains the 

sum of either the row or column marginal frequencies, which both must be equal to N.
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This type of analysis can be used to test hypothetical frameworks to decide whether or not 

effects are present and can be further used to create new data fields based on useful relationships 

defined between row and column data fields. This section analyses and discusses a selection of 

two or more data fields presented in a 2X3 or more format adopted from the MV4000 and DT4000 

crash forms, that were found useful - during the comprehensiveness comparison analysis process 

- for understanding the circumstances associated with vehicle crashes involving pedestrians and 

bicyclists. The following relationships are investigated using data fields that were found to provide 

constructive evidence of an effect on crashes through the Uni-variate analysis. 

6.3.1.2.1 Action-Location Relationships 

This relationship may reveal the common actions of drivers and how they are affected by the 

pedestrians’ location. The non-motorist location affects the decision-making process of the driver, 

which influences the drivers’ actions. Many researchers studied pedestrian location, and driver 

actions separately, however, the aim is testing if a certain non-motorist location accompanied with 

a certain driver action increases the odds of a more severely injured non-motorist involved in a 

vehicle crash (Mitman, Ragland, and Zegeer 2008; Schneider and Stefanich 2016; Kemnitzer et 

al. 2019). (C. Lee and Abdel-Aty 2005) studied drivers’ behaviors and proposed more intensive 

driver education and restrictive traffic regulations targeted at middle-aged male drivers in an 

intention to reduce pedestrian crashes. Adding to that, as the authors examined pedestrian 

behaviors and location, they highlighted the value of improving pedestrian designated areas for 

travel, as a result of recognizing that a high percentage of crashes occur at marked and unmarked 

crosswalks.  
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Referring to Table 6-4 to Table 6-9, both behavior and non-behavior related data fields were 

studied. Considering pedestrians’ actions, darting into roads seen to be pedestrians’ most common 

action before the crash. Hence, education messages specifically designed for pedestrians may be 

proposed to minimize such behavioral actions. The studied variable combinations shown in this 

section may be categorized as i) non-behavior (e.g., driver movement and pedestrian/bicyclist 

location); and ii) behavior and non-behavior (e.g., pedestrian/bicyclist action with 

pedestrian/bicyclist location). Finding driver movements associated with pedestrian/bicyclist 

location may be addressed by restricting a specific turn, adding dedicated left-turn signal phases, 

enhancing intersection lighting, and reconfiguring lanes. 

6.3.1.2.2  Roadway Characteristics Relationships 

Studying the separate effect of roadway characteristics on VRUs’ injury severity is common 

among researchers (i.e., Dong et al. 2019; Chen and Fan 2018). Roadway characteristics (such as 

interstate, junction, and roadway profile), and environmental characteristics (such as light 

condition and weather condition) have significant effects on the injury severities of VRU involved 

crashes (Dong et al. 2019). However, studying the effect of a combination of roadway 

characteristics may enhance the knowledge about the crash circumstances. 

 Table 6-10 to  

Table 6-14 shows multiple studied combinations of roadway characteristics, which help in 

recommending different actions to help minimize their effect on crashes. For instance, findings 

linked to poor roadway lighting provide an opportunity to suggest different roadway visibility 

enhancement actions or installing tools that provide drivers with a better vision that help in 

recognizing pedestrians and bicyclists at different roadway locations.    
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6.3.1.2.3  Driver Actions-Roadway Characteristics Relationships  

Researchers have attempted to explain drivers’ actions/behavior at signalized crosswalks as 

roadway-related characteristics (i.e., Hunter, Srinivasan, and Martell 2012; Kutela and Teng 2019). 

Hence, it pleads for another question to be asked about how driver action may be affected by 

different roadway characteristics. Table 6-15 to  

 

 

 

 

 

Table 6-17, show drivers’ contributing actions associated with crashes occurred within and 

at a specific location of an interchange area. Roadway characteristics can be a source of 

information for studying drivers’ actions at the time of the crash. 

 Crashes occurring at small exit angles indicate driver fatigue issues (Wootton and Spainhour 

2004). Downgrades and two-way divided roads can be associated with drivers tend to speed, and 

drivers are likely to take less effective avoidance maneuvers when driving in dark roadways with 

and without streetlights. (J.-K. Kim et al. 2008). Significant increase in the frequency of looking 

for pedestrians when they encountered advance yield markings (Fisher and Garay-Vega 2012). A 

very strong inverse correlation, with low yield rates on high-speed roadways, suggests that drivers, 

tend not to give pedestrians’ right-of-way on marked crosswalks (Bertulis and Dulaski 2014).  
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6.3.1.2.4  Driver Actions-Pedestrian/Bicyclist Actions Relationships 

An analysis of driver and pedestrian actions in pedestrian crashes also found that the most pr

evalent combination of driver and pedestrian maneuvers in both fatal and injury crashes is Drivin

g Straight Ahead (driver action) and Crossing Not at Intersection (pedestrian action).  

Making a left 

turn (driver action) and Crossing at the Intersection (pedestrian action) was the second most com

mon combination of driver and pedestrian action(“VDOT_Pedestrians_Crash_Assessment_2014-

2018.Pdf” n.d.; Sheykhfard and Haghighi 2019). Hence, these findings support the need to study 

driver-non-motorist actions related to the crash. 

 Table 6-18 and  

 

Table 6-21, show the relationship between driver condition and pedestrian/bicyclist action, 

as well as, driver movement relationship with pedestrian/bicyclist actions. Drivers tend to slow 

down when pedestrians are not looking at the approaching drivers, also drivers were also found to 

stop more often when approach velocity was low (Katz, Zaidel, and Elgrishi 1975).  

Drivers’ behavior in proximity of pedestrians is likely to be statistically significantly less 

aggressive when the approach velocity is lower, curbside parking is not allowed, when a crosswalk 

exists, and when the street involves a higher number of pedestrians crossing (Obeid et al. 2017). 

Hence, the aim is to study the driver-pedestrian interaction to propose and evaluate safety measures 

and traffic calming techniques.  

6.3.1.2.5 Pedestrian/Bicyclist Location-Roadway Characteristics Relationships 

Roadway characteristics and their association with pedestrian/bicycle-vehicle crashes have 

long been studied by researchers (i.e., (Schneider et al. 2010; Schneider, Grembek, and Braughton 
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2013; Kim 2019; Morrison et al. 2019). The use of knowledge on the non-motorists location at the 

time of the crash in the company of different roadway characteristics may enrich the investigation 

of pedestrian/bicycle-vehicle crashes. 

  

 

 

Table 6-22 and  

 

 

Table 6-23 examine pedestrian and bicyclist locations at different types of intersections. 

Engineering decisions can be informed by the non-motorists location. For instance, if crashes 

occurred not at crosswalk locations at a 4-way intersection, road marking and signs could be added 

at that location. Also, education messages to motorists, pedestrians, and bicyclists can emphasize 

looking for pedestrians located in the minor road which is one of the intersection arms before 

making a left turn. Other education messages to motorists, can be focused on yielding the ROW 

when located in the minor road of a 4-way intersection.  

6.3.1.2.6 Pedestrian/Bicyclist Action-Roadway Characteristics Relationships 

To effectively reduce pedestrian/bicycle-vehicle crashes and improve non-motorist safety, it 

is important to identify why, where, and how these crashes occurred. Hence, the work of past 

researchers in identifying non-motorist actions at the time of the crash (i.e., (Brewer et al. 2006; 

Shi et al. 2007; Sun, Sun, and Shan 2019; Pelé, Deneubourg, and Sueur 2019; Yue et al. 2020) 

was followed, which is influenced by roadway characteristics. The pedestrian speed at an 
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unsignalized crosswalk in a roadway is higher than that of a signalized crossing because the former 

conflicts are more intense (Shi et al. 2007).  

 and Error! Reference source not found., show pedestrian and bicyclist actions associated 

with the TCD type.  

Engineering decisions can be applied after examining pedestrian and bicyclist actions 

associated with specific roadway characteristics. For instance, if crash locations without any TCD, 

showed that pedestrians or bicyclists suddenly moved in the roadway, median island, markings, or 

a TCD could be added at such locations.  

6.3.1.2.7 Environmental Conditions - Roadway Characteristics Relationships 

Fountas and colleagues concluded that the effect of lighting characteristics on driving 

behavior depends on other environmental factors, in particular weather conditions. Also, the 

authors stated that it should be noted that the most pronounced effect of the pedestrian involvement 

indicator on serious and fatal injuries is identified in the model reflecting darkness and poor 

weather on unlighted roadways, whereas the least pronounced effect is observed in the model 

reflecting daylight and poor weather (Fountas et al. 2020).  

 

 

Per the collected data, a non-negligible percentage of pedestrian/bicycle crashes occurred 

under certain weather and light conditions (roadway-related condition). Also, previous research 

studied the relationship between crashes and environmental conditions associated with specific 

roadway characteristics.  

For instance, the effect of road shoulder and weather conditions on crashes was studied by 

(Kordani, Shirini, and Yazdani 2019). Table 6-24 to  
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Table 6-26 shows multiple relationships, from prevailing atmospheric conditions-type/level 

of light to prevailing atmospheric conditions-trafficway division, and lastly road surface type with 

the condition. Discovering that bicyclist crashes are more likely to occur in rainy weather 

conditions on undivided roadways can lead to roadway division modifications.
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Table 6-4: Driver Movement and Pedestrian Location 

 
 

DRVRDO [1, 

2]-MV 

 

NMTLOC [1, 2]-PED-MV 

 

(1) in 
crosswalk 

(2) in roadway (blank) 
Total, including 
other location 
combination 

N % N % N % N % 

GO STR 176 4.83% 483 
13.27

% 
560 15.38% 1291 35.46% 

LT TRN 300 8.24% 71 1.95% 195 5.36% 579 15.90% 

RT TRN 144 3.95% 35 0.96% 295 8.10% 481 13.21% 

Total, 
including other 
driver action 
combinations 

895 24.58% 1005 27.60% 1529 41.99% 3641 100.00% 

 

DRVRDOIN [1, 

2]-DT 

 

NMTLOC [1, 2]-PED-DT 

 

ATI MX NAI NX (blank) 
Total, including 
other location 
combination 

N % N % N % N % 

GO STR 176 4.83% 369 
10.14

% 
521 14.31% 1271 34.91% 

LT TRN 300 8.24%   193 5.30% 579 15.90% 

RT TRN 144 3.95%   293 8.05 % 497 13.16% 

Total, 
including other 
driver action 
combinations 

895 24.58% 663 18.21% 1496 
41.09

% 
3641 100.00% 

 
DT4000 form dataset is more detailed in terms of addressing the non-motorists location (i.e., crosswalk marking associated with 

the intersection). Table 6-4 showed consistent information between both crash forms. For instance, a total of 15.90% of the crashes 

occurred while the driver was making a left turn and the pedestrian is in a crosswalk, and (4.83%, 8.24%, and 3.95%) of crashes occurred 

in a crosswalk, were associated with the driver going straight, taking a left turn, and taking right turn, respectively.  

MV4000 database showed that (4.83%) of crashes occurred while the driver was going straight and the non-motorists located in 

a crosswalk, regardless of the crosswalk marking status. Whereas the DT4000 dataset showed that this percentage of these crashes 

occurred while the driver was going straight, and the pedestrian located at an intersection with marked crosswalk. According to the State 

of Wisconsin’s law (Wisconsin State, 2020), the driver(s) must yield the right-of-way (ROW) to the pedestrian(s) who already started 

crossing an intersection on a “walk” signal or a green light if there is no walk signal.  
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Also, the driver(s) must yield the ROW to the pedestrian(s) who started crossing within a marked/unmarked crosswalk at an 

intersection where there are no traffic lights or traffic control signals. The MV4000 dataset showed that 13.27% of the crashes occurred 

while the driver was going straight, and the pedestrian was located in the roadway/at a midblock. Though, the DT4000 dataset showed 

that 10.14% of these crashes involved pedestrians located on the roadway, not in a marked crosswalk. The percentage of crashes occurred 

in the roadway (based on MV4000) was recategorized under different “in roadway” categories in (DT4000 dataset); (Not At Intersection-

On Roadway, Not In Marked Crosswalk, NAI NX), (Not At Intersection-On Roadway, Crosswalk Availability Unknown, NAI UN), 

and (Not At Intersection-In Marked Crosswalk, NAI MX).  

Table 6-5: Driver Movement and Bicyclist Location 

 

DRVRDO [1, 
2]-MV 

 
NMTLOC [1, 2]-BIKE-MV 
 

(1) in 
crosswalk 

(2) in roadway (blank) 
Total, including 
other bicyclist 
locations 

N % N %   N % 

GO STR 251 6.90% 471 12.97% 454 12.57% 1291 35.61% 

LT TRN 126 3.47% 151 4.15% 233 6.49% 579 16.01% 

RT TRN 208 5.73% 113 3.12% 113 3.14% 481 13.28% 

Total, 
including 
other driver 
action 
combinations 

870 23.82% 1096 30.05% 1260 34.75% 3641 100.00% 

DRVRDOIN 
[1, 2]-DT 

 
NMTLOC [1, 2]-BIKE-DT 
 

ATI MX ATI NX NAI NX (blank) 
Total, including 
other bicyclist 
locations 

N % N % N % N % N % 

GO STR 125 3.76% 137 3.76% 120 3.30% 750 20.60% 1271 34.90% 

LT TRN 67 1.84%     386 10.60% 579 15.90% 

RT TRN 179 4.91% 28 0.77% 9 0.24% 186 5.11% 479 13.16% 

Total, 
including other 
driver action 
combinations 

525 14.42% 279 7.66% 220 6.04% 2145 58.91% 3641 100.00% 
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5.73% of the crashes occurred while drivers were taking a right turn (RT TRN), and while 

the bicyclist is in a crosswalk (1) regardless if the crosswalk is marked or not. The DT4000 form 

showed that 4.91% of this percentage of crashes occurred while the bicyclist was located at an 

intersection and in a marked crosswalk (ATI MX). Referring to Wisconsin Statute 346.23, at a 

controlled intersection with a “stop” signal, the driver must yield the ROW to the bicyclist(s) 

crossing at a crosswalk when the bicyclist(s) has started crossing the crosswalk with a green light 

or a “walk” signal.  

12.97% of the crashes occurred while the driver was going straight (GO STR), and the 

bicyclist was crossing the roadway from the right where there is no intersection (2). The DT4000 

form specified that 3.30% of this percentage of crashes occurred while the bicyclist was not located 

in an intersection and was not in a marked crosswalk (NAI NX). Regarding the ROW, according 

to Wisconsin Statute (Wisconsin State, 2020) bicycles operate under the same laws as other legal 

vehicles on the road. The percentage of crashes occurred in the roadway (based on MV4000) was 

recategorized under different “in roadway” categories in (DT4000 dataset); (Not At Intersection-

On Roadway, Not In Marked Crosswalk, NAI NX), (Not At Intersection-On Roadway, Crosswalk 

Availability Unknown, NAI UN), and (Not At Intersection-In Marked Crosswalk, NAI MX). 
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Table 6-6: Pedestrian Action and Pedestrian Location  

 
 

NMTACT [1, 2]-PED-MV 

 

NMTLOC [1, 2]-PED-MV 

 

(1) in 
crosswalk 

(2) in roadway 
TOTAL 
Including other 
pedestrian locations 

N % N % N % 

Actions other than walking facing/not 
facing traffic, disregarding signal, 
darting in the road, and wearing dark 
clothes (6) 

58 1.61% 79 2.17% 262 7.24% 

Darting into roadway (3) 277 7.63% 289 7.96% 1108 30.50% 

TOTAL 
Including other pedestrian action 
combinations 

895 24.58% 1005 27.62% 3641 100.00% 

 

 

NMTACT [1, 2]-PED-DT 

 

NMTLOC [1, 2]-PED-DT 

 

ATI MX NAI NX 
TOTAL 
Including other pedestrian 
locations 

N % N % N % 

DISREG 50 1.37%   58 1.59% 

IM XING   72 1.98% 99 2.72% 

NF TRFC 75 2.06%   155 4.26% 

NO IMPR 453 12.44%   969 19.12% 

SUDDEN   174 4.78% 270 7.42% 

TOTAL 
Including other pedestrian action 
combinations 

895 24.58% 663 18.21% 3641 100.00% 

 

 

The DT4000 form showed more specific information regarding the pedestrian location; (24.58%) of crashes occurred at 

intersections specifies that the pedestrian was located in marked crosswalks (ATI MX). Whereas, the same percentage was presented in 

the MV4000 form as crashes occurring at crosswalks (1), regardless of the marking status. The DT4000 form lays down an option for 

no improper action by the pedestrian (NO IMPR) which is more useful than a blank field in the MV4000 field which may mean that the 

crash does not involve pedestrians or indicate that there is no specific action to be reported. 
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Table 6-7: Bicyclist Action and Bicyclist Location 

 

NMTACT 

[1, 2]-BIKE-

MV 

 

NMTLOC [1, 2]-BIKE-MV 

(1) in 
crosswalk 

(2) in roadway 
(3) not in 
roadway 

Total, including 
other bicyclist 
locations 

N % N % N % N % 
Actions other 
than walking 
facing/not 
facing traffic, 
disregarding 
signal, 
darting in the 
road, and 
wearing dark 
clothes (6) 

364 10.00% 469 12.88% 167 4.59% 1056 29.00% 

Darting into 
roadway (3) 

60 1.65% 87 2.39% 17 0.47% 172 4.72% 

Total, 
including 
other 
bicyclist 
action 
combinations 

870 23.89% 1096 30.10% 295 8.10% 3641 100.00% 

 

NMTACT 

[1, 2]-

BIKE-DT 

 

NMTLOC [1, 2]-BIKE-DT 

ATI MX ATI NX ATI UM NAI NX 
Total, including 
other bicyclist 
locations 

N % N % N % N % N % 

NO IMPR 
22
0 

6.04% 68 
1.87
% 

62 
1.70
% 

72 
1.98
% 

579 15.90% 

SUDDEN 60 1.65%       164 4.50% 

TOTAL 
Including 
other 
bicyclist 
action 
combination
s 

52
5 

14.42
% 

27
9 

7.66
% 

16
0 

4.39
% 

22
0 

6.04
% 

364
1 

100.00
% 

 

 

The MV4000 form presents that within 29.00% of the crashes, bicyclists involved in these crashes acted with improper actions 

other than darting into road, disregarding signal, or walking facing/not facing traffic. Such actions involve but are not limited to wearing 

dark clothes (DK CLTH), crossing improperly/jaywalking (IM XING), failed to yield (F YIELD), and passing improperly (IM PASS). 

Also, it shows that 4.72% of the crashes involved bicyclists who darted in the roadway (3). In 12.88% and 10.00% of these crashes, 

bicyclists were located in the roadway and the crosswalk, respectively. As discussed previously, the DT4000 form enhanced the location 

and action data fields.  
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Table 6-8: Pedestrian Prior Action and Pedestrian Location 

NMTLOC [1, 2]-PED-DT 

 

NMTPRIOR [1, 2]-PED-DT 

 

RDWY OT WAITING XING 
Total, including other 
 pedestrian action combinations 

N % N % N % N % 
ATI MX   81 2.22% 760 20.87% 895 24.58% 
ATI NX     93 2.55% 156 4.28% 
ATI UM     115 3.16% 146 4.01% 
NAI NX 129 3.54%   315 8.65% 663 18.21% 
Total, including other  

pedestrian location combinations 
195 5.36%   1352 37.13% 3641 100% 

 
In 20.87% of the crashes, the pedestrian was crossing the roadway while located at an intersection with a marked crosswalk (ATI 

MX). Whereas in 8.65% of all crashes, the pedestrian was not located at an intersection, in a roadway but not in a marked crosswalk 

(NAI NX). Totally, 37.13% of the crashes involved pedestrians crossing the roadway at different locations. 

Table 6-9: Bicyclist Prior Action and Bicyclist Location 

NMTLOC [1, 2]-BIKE-DT 

 

NMTPRIOR [1, 2]-BIKE-DT 

 

SIDE WK W TRFC XING 
Total, including other  
bicyclist action combinations 
 

N  % N % N % N % 
ATI MX 110 3.02%   337 9.26% 525 14.42% 

ATI NX   87 2.39% 98 2.69% 279 7.66% 

ATI UM     83 2.28% 160 4.39% 
NAI NX   82 2.25%   220 6.04% 
Total, including other  

bicyclist location combinations 
248 6.81% 306 8.40% 612 16.81% 3641 100% 
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Regarding bicyclist’s locations and actions prior to the crash; 

- 14.42% of the crashes involved bicyclists located at intersections in marked crosswalks (ATI MX), were 9.26% of this percentage 

was crossing the roadway (XING), 

- 7.66% of crashes occurred while bicyclists were crossing at intersections but no in crosswalks (ATI NX), 

Table 6-10: Whether a Crash Occurred Within an Interchange/Junction Area and the Specific Location 

RLTNJNLC-DT 

 

RLTNJNIC-DT 

 

N Y 
TOTAL 
including unknown and blank values for if the crash occurred in an 
interchange area 

N % N % N % 

INR 343 9.42% 61 1.68% 405 11.12% 

INT 1341 36.83% 297 8.16% 1657 45.51% 

NJ 1379 37.87% 28 0.77% 1417 38.92% 

TOTAL 
including other location areas related to a 
junction/interchange 

3183 87.42% 411 11.29% 3641 100.00% 

 
The first harmful event leading to crashes occurring at non-interchange areas-or, not interchange related- add up to 87.42%, 

where 36.83% and 37.87% of these crashes located at intersections and non-junction locations. A non-interchange-related crash means 

that the location of the crash was not next to an interchange and did not result from an action related to the movement of traffic units 

through an interchange.  
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Table 6-11: Types of TCD and Intersection in the Roadway 

TRFCCNTL 

[1, 2]-MV 

 
INTTYPE-DT 

 

4 WAY T 

Total, including 
other intersection 
type and total lane 
combinations 

N % N % N % 
NONE 239 6.56% 149 4.09% 1629 44.74% 
SS 198 5.44% 90 2.47% 342 9.39% 
TS OP 792 21.75%   1016 27.90% 
Total, including 
other TCD type 
combinations 

1521 41.77% 427 11.73% 3641 100.00% 

 

TRFCCNTL 

[1, 2]-DT 

 
INTTYPE-DT 

 

4 WAY T 

Total, including 
other intersection 
type and total lane 
combinations 

N % N % N % 
NONE 239 6.56% 149 4.09% 1629 44.75% 
STOP 198 5.44%   342 9.39% 
TS OP 792 21.75%   1016 27.90% 
Total, including 
other TCD type 
combinations 

1521 41.77% 427 11.73% 3641 100.00% 

 

  

Knowing that 56.33% of crashes occurred at intersection locations (refer to Error! Reference source not found.) and looking at 

the type of TCD at the intersection along with the intersection type, completes that information gathered about these intersection-related 

crashes. 41.77% of these crashes occurred at 4-way intersections. Among these 41.77% crashes, 21.75% occurred at 4-way traffic signal-

controlled intersections. Consistent information may be gathered from the MV4000 data fields. the data shows that studying crashes at 

4-way traffic signal-controlled intersections may provide useful information regarding intersection-related crashes.  
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Table 6-12: Type of TCD, Intersection Type, and Total Number of Lanes  

TRFCCNTL [1, 2]-DT 

 
INTTYPE-DT, TOTLANES [1, 2]-DT 
 

4 WAY, 2 4 WAY, 4 T, 2 
Total, including other intersection 
 type and total lane combinations 

N % N % N % N % 
NONE 153 4.34%   107 2.94% 1629 44.75% 
STOP 156 4.28%     333 9.14% 
TS OP 322 8.84% 245 6.73%   982 26.97% 
Total, including other TCD  
type combinations 

846 23.24% 349 9.59% 278 7.64% 3641 100.00% 

 
Investigating the number of lanes with the intersection type, in conjunction with the type of TCD available at the intersection 

offers extra information about the intersection environment. The relationship indicates that 8.84% of crashes occurred at 4-way, two-

lane, traffic signal-controlled intersections. 

Table 6-13: Types of Intersection and TCD, and Total Number of Lanes in the Roadway 

INTTYPE-DT & TRFCCNTL [1, 2]-DT 

 
TOTLANES [1, 2]-DT 
 

2 4 
Total, including other  
total lane combinations 

N % N % N % 
4 WAY, STOP 158 4.34%   191 5.24% 
4 WAY, TS OP 350 9.61% 270 7.42% 763 20.96% 
Total, including other intersection  

type and TCD type combinations 
2289 62.87% 686 18.84% 3641 100.00% 
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Investigating the number of lanes with the intersection type, in conjunction with the type of TCD available at the intersection 

offers extra information about the intersection environment. The above relationship indicates that 7.42% and 9.61% of crashes occurred 

at 4-way (4-WAY), traffic signal-controlled intersections (TS OP) with four-lane (4) and two-lane (2) roadways, respectively. 

Table 6-14: Roadway Curvature and Grade in the Direction of Vehicle Travel 

ROADVERT [1, 2]-

MV 

 
ROADHOR [1, 2]-MV 

 
C (blank) Total 

N % N % N % 

H 32 0.88% 269 7.39% 301 8.27% 

(blank) 109 2.99% 3231 88.74% 3340 91.73% 

Total 141 3.87% 3500 96.13% 3641 100.00% 
 

ROADVERT [1, 2]-DT 

 
ROADHOR [1, 2]-DT 

 

ST 
Total, including other 
horizontal road terrain 
combinations 

N % N % 

LVL 3035 83.36% 3151 86.55% 

DN 88 2.42% 100 2.75% 

UP 99 2.06% 82 2.25% 

TOTAL 
including other vertical 
road terrain 
combinations 

3222 87.84% 3641 100.00% 

 

 
DT4000 form data fields show that the vast majority (83.36%) of crashes occurred on straight (ST) and level (LVL) roads in the 

travel direction of the vehicle involved in the crash. Also, the rest of the crashes occurring on straight roadways (ST) were almost equally 

distributed between uphill/upgrade (UP) and downhill/downgrade (DN); 2.06% and 2.42%, respectively. Crashes on curves comprised 

slightly more than 10% (all crashes excluding crashes on straight roadway curvature) of all crashes. Clearly, the new attributes enhance 

the knowledge about the type of curve, instead of the roadway curvature data field in MV4000 form which generally states that a curve 

is identified at the crash location (c). 
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Table 6-15: Driver Contributing Actions and Intersection Type  

DRVRPC [1, 

2] [A, B, C, 

D]-MV 

 
INTTYPE-DT 

 

4 WAY T 
Total, including 
other intersection 
type combinations 

N % N % N % 

BLANK 775 21.29% 196 5.38% 2035 55.89% 

FTY 547 15.02% 159 4.37% 963 26.45% 

Total, 
including other 
driver action 
combinations 

1521 41.77% 427 11.73% 3641 100.00% 

 

DRVRPC [1, 2] 

[A, B, C, D]-DT 

 

INTTYPE-DT 

 

4 WAY T 
Total, including 
other intersection 
type combinations 

N % N % N % 

NO 558 15.32% 147 4.03% 1462 40.15% 

FTY 527 14.45% 151 4.14% 922 25.29% 

Total, including 
other driver 
action 
combinations 

1521 41.76% 427 11.71% 3641 100.00% 

 

 
Although attributes of the driver contributing circumstances have been enhanced in the DT4000 form such as the direction of 

the improper overtaking, the data showed for the most common two driver circumstances were consistent between MV4000 and DT4000 

forms.  Around 25% of crashes involved a driver who failed to yield the ROW (FTY), and around 4.00% and 14.00% of these crashes 

occurred at T intersections (T) and 4-way intersections (4 WAY), respectively. Generally, a driver coming to a 4-way stop without 

traffic signal control must yield the ROW to the person on the right. 
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Table 6-16: Driver Contributing Actions and Whether A Crash Occurred within an Interchange/Junction Area  

DRVRPC [1, 2] 

[A, B, C, D]-MV 

 

RLTNJNIC-DT 

 

N Y Total 
 

N % N % N % 

BLANK 1814 49.82% 195 5.36% 2035 55.89% 

FTY 798 21.92% 151 4.15% 963 26.45% 

ID 104 2.86%   114 3.13% 

OTHR 119 3.27%   132 3.63% 

Total, including 
other driver action 
combinations 

3183 87.42% 411 11.29% 3641 100% 

 

DRVRPC [1, 2] [A, 

B, C, D]-DT 

 

RLTNJNIC-DT 

 

N Y 
Total 
 

N % N % N % 

FTY 759 20.83% 150 4.11% 922 25.29% 

NO 1305 35.84% 140 3.84% 1462 40.15% 

OTR 87 2.04% 6 0.17% 97 2.67% 

ID 97 2.67% 10 0.27% 107 2.94% 

Total, including other 
driver action 
combinations 

3183 87.45% 411 11.27% 3641 100% 

 

 
An interesting variable to study is presented consistently between MV4000 and DT4000 form. 20.83% and 21.92% of crashes 

occurred away from an interchange-related area (N) where the driver failed to yield the ROW (FTY), in DT4000 and MV4000 forms 

respectively. 
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Table 6-17: Driver Contributing Actions and the Specific Location within an Interchange/Junction Area 

DRVRPC 

[1, 2] [A, B, 

C, D]-MV 

 

RLTNJNLC-DT 

 

INR INT NJ 

Total, including 
other junction 
/interchange 
location 
combinations 

N % N % N % N % 
BLANK 211 5.80% 822 22.58% 930 25.54% 2035 55.89% 
FTY 149 4.09% 675 18.54% 182 5.00% 1070 29.38% 
ID     63 1.73% 126 3.46% 
OTHER     88 2.41% 148 4.07% 
Total, 
including 
other driver 
action 
combinations 

405 11.12% 1657 45.51% 1417 38.92% 3641 100% 

 

DRVRPC 

[1, 2] [A, B, 

C, D]-DT 

 

RLTNJNLC-DT 

 

INR INT NJ Total, including 
other junction 
/interchange 
location 
combinations 

N % N % N % N % 

NO 156 4.28% 596 7.41% 660 18.13% 1462 40.15% 

FTY 132 3.62% 581 15.96% 152 4.17% 922 25.33% 

Total, 
including 
other driver 
action 
combinations 

405 11.12% 1657 45.51% 1417 38.92% 3641 100% 

 

 
Interesting variables to study are presented approximately consistently between MV4000 and DT4000 form. Around 5.00%, 

16.00%, and 4.00% of crashes occurred at non-junction (NJ), an intersection (INT), and in an intersection-related location (INR), while 

the driver failed to yield the ROW (FTY), respectively. The values shown in the table showed consistent pattern regarding the location 

of the first harmful event leading to the crash while the driver did not have any contributing action that may have contributed to the 

crash (BLANK/NO). 
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Table 6-18: Driver Condition and Pedestrian Action 

DRVRPC 

[1, 2] [A, B, 

C, D]-MV 

 
NMTACT [1, 2] [A, B]-PED-MV 

 

6 BLANK 

Total, including 
other pedestrian 
action 
combinations 

N % N % N % 

BLANK 636 
17.47

% 
894 

24.55

% 

203
5 

55.89% 

FTY 301 8.27% 408 11.21% 963 26.45% 

Total, 
including 
other driver 
action 
combination
s 

115
5 

31.72% 
157
4 

43.23% 
364
1 

100.00
% 

 

DRVRPC [1, 

2] [A, B, C, 

D]-DT 

 
NMTACT [1, 2] [A, B]-PED-DT 

 

DISREG IM XING NO IMPR SUDDEN NF TRFC 

Total, including 
other pedestrian 
action 
combinations 

N % N % N % N % N % N % 

NO 48 1.32% 44 1.20% 61 1.67% 227 6.23% 42 1.16% 1462 40.15% 

FTY     330 9.07%   47 1.29% 922 25.33% 

Total, 
including 
other driver 
action 
combinations 

58 1.59% 99 2.72% 696 19.12% 270 7.42% 155 4.26% 3641 100.00% 

 

 
The MV4000 form displays that 24.55% and 17.47% of crashes involved a pedestrian that acted in different actions other than 

darting into road/disregarding traffic signal/walking facing/not facing traffic (6), and a pedestrian with no exact contributing action 

(BLANK), respectively. however, this information is not useful since it doesn’t provide a specific action by the driver and the pedestrian 

that might be affecting the crash occurrence. Whereas, the DT4000 form data field shows that is more thorough in terms of pedestrian 

and driver actions. 9.07% of crashes didn’t include any pedestrian action while the driver didn’t yield the ROW (FTY).  
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Table 6-19: Driver condition and bicyclist action 

DRVRPC [1, 2] 

[A, B, C, D]-MV 

 

NMTACT [1, 2] [A, B]-BIKE-MV 

 

6 BLANK 
Total, including other 
bicyclist action 
combinations 

N % N % N % 

BLANK 599 16.45% 1184 32.52% 2035 55.89% 

FTY 272 7.47% 578 15.87% 963 26.45% 

Total, including 
other driver action 
combinations 

1056 29.00% 2150 59.05% 3641 100.00% 

 

DRVRPC [1, 2] [A, 

B, C, D]-DT 

 
NMTACT [1, 2] [A, B]-BIKE-DT 

 

NO IMPR SUDDEN 
Total, including other 
bicyclist action 
combinations 

N % N % N % 

NO 76 2.09% 128 3.51% 1462 40.15% 

FTY 302 8.30%   922 25.33% 

Total, including other 
driver action 
combinations 

579 15.90% 164 4.50% 3641 100.00% 

 

 
With the bicycle-vehicle crashes, the same pattern is spotted. The MV4000 form displays that 16.45% and 32.52% of crashes 

involved a bicyclist that acted in different actions other than darting into road/disregarding traffic signal/walking facing/not facing traffic 

(6), and a bicyclist with no exact contributing action (BLANK), respectively. However, this information is not useful since it doesn’t 

provide a specific action by the driver and the pedestrian that might be affecting the crash occurrence. Whereas, the DT4000 form data 

field shows that is more thorough in terms of pedestrian and driver actions. 8.30% of crashes didn’t include any bicyclist action while 

the driver didn’t yield the ROW (FTY). 
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Table 6-20: Driver Movement and Pedestrian Action 

DRVRDO [1, 2]-

MV 

 

NMTACT [1, 2] [A, B]-PED-MV 

3 6 
Total, including other 
pedestrian action 
combinations 

N % N % N % 

GO STR 89 2.44% 402 11.04% 1291 35.46% 

LT TRN 42 1.15% 177 4.86% 579 15.90% 

RT TRN 32 0.88% 154 4.23% 481 13.21% 

Total, including 
other driver action 
combinations 
 

262 7.20% 1108 30.43% 3641 100.00% 

 

DRVRDOIN [1, 2]-

DT 

 
NMTACT [1, 2] [A, B]-PED-DT 

 

NO IMPR SUDDEN 
Total, including other 
pedestrian action 
combinations 

N % N % N % 

GO STR 118 3.24% 175 4.81% 1284 35.26% 

LT TRN 207 5.69%   579 15.90% 

RT TRN 86 2.36%   422 11.59% 

Total, including 
other driver action 
combinations 
 

696 19.12% 270 7.42% 3641 100.00% 

 

 
Actions of non-motorists together with the driver’s maneuver prior to the beginning of the sequence of crash events are studied. 

The DT4000 form shows that more than a quarter of the crashes involving no improper action by the pedestrian, occurred while the 

driver was making a left turn (NO IMPR-LT TRN, 5.69%). Whereas more than half of the crashes that involved a pedestrian who 

darted/suddenly moved into the roadway (7.42%), occurred while the driver was going straight and not turning a left/right turn 

(SUDDEN-GO STR, 4.81%). The MV4000 form presents that 30.43% of crashes reported that the pedestrian acted in different actions 

(6), other than darting into road, walking facing/not facing traffic, wearing dark clothes, and disregarding a traffic signal. Such actions 

are improperly standing/working in the roadway, failing to have lights on while walking, wrong way walking, etc. 
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Table 6-21: Driver Movement and Bicyclist Action 

DRVRDO [1, 2]-

MV 

 
NMTACT [1, 2] [A, B]-BIKE-MV 

 

6 3 

Total, including other 
bicyclist action 
combinations 
 

N % N % N % 

GO STR 347 9.53% 57 1.57% 1291 35.46% 

LT TRN 163 4.48%   579 15.90% 

RT TRN 134 3.68%   481 13.21% 

Total, including 
other driver action 
combinations 
 

1056 29.00% 172 4.72% 3641 100.00% 

 

DRVRDOIN [1, 2]-

DT 

 
NMTACT [1, 2] [A, B]-BIKE-DT 

 

NO IMPR SUDDEN 

Total, including other 
bicyclist action 
combinations 
 

N % N % N % 

GO STR 119 3.26% 86 2.36% 1284 35.26% 

LT TRN 112 3.07%   579 15.90% 

RT TRN 138 3.79%   479 13.16% 

Total, including other 
driver action 
combinations 
 

579 15.90% 164 4.50% 3641 100.00% 

 

 
The DT4000 form presents that bicyclists who did not act in any improper action at the time of the crash, were encountered 

almost equally with drivers going straight (NO IMPR-GO STR, 3.26%), taking a left turn (NO IMPR-LT TRN, 3.07%), and taking a 

right turn (NO IMPR-RT TRN, 3.79%). Whereas, the MV4000 form shows that approximately 30% of the crashes involved reported 

actions (6) other than darting into road, biking facing/not facing traffic, wearing dark clothes, and disregarding traffic signals. Such 

actions are improperly standing/working in the roadway, failing to have lights on while biking, wrong-way biking, etc.   
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Table 6-22: Pedestrian Location and Intersection Type  

NMTLOC [1, 2]-

PED-MV 

 
INTTYPE-DT 

 

4 WAY T 

Total, including other 
intersection type 
combinations 
 

N % N % N % 

(1 ) in crosswalk 630 17.30% 113 3.10% 895 24.58% 

(2) in roadway 208 5.71% 78 2.14% 1005 27.60% 

Total, including 
other pedestrian 
location 
combinations 
 

1521 41.77% 427 11.73% 3641 100.00% 

 

NMTLOC [1, 2]-

PED-DT 

 
INTTYPE-DT 

 

4 WAY T 

Total, including other 
intersection type 
combinations 
 

N % N % N % 

ATI MX 630 17.30% 113 3.10% 895 24.58% 

ATI NX 82 2.25%   156 4.28% 

ATI UM 90 2.47%   146 4.01% 

Total, including 
other pedestrian 
location 
combinations 
 

1521 41.77% 427 11.73% 3641 100.00% 

 

 
- The DT4000 form shows that the greatest percentage of crashes occurring at 4-way intersections (4 WAY), reported that the 

pedestrian was at an intersection, in a marked crosswalk (4-WAY-ATI MX, 17.30%), 

- Overall, 24.58% of reported crashes showed that the pedestrian was located at an intersection, in a marked crosswalk (ATI MX), 

and pedestrians were equally located at intersections but not in the crosswalk (ATI NX), and at intersections with 

unmarked/unknown if marked crosswalks (ATI UM). It is clear that in MV4000 form, the same percentage (24.58%) of crashes 

reported that the pedestrian was located in a crosswalk. However, the information provided doesn’t give the same level of detail 

for the pedestrian location.  
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Table 6-23: Bicyclist Location and Intersection Type  

NMTLOC [1, 2]-

BIKE-MV 

 
INTTYPE-DT 

 

4 WAY T 

Total, including other 
intersection type 
combinations 
 

N % N % N % 

(1 ) in crosswalk 475 13.05% 114 3.13% 870 23.89% 

(2) in roadway 455 12.50% 161 4.42% 1096 30.10% 

(3) not in roadway 73 2.00%   295 8.10% 

Total, including 
other bicyclist 
location 
combinations 
 

1521 41.77% 427 11.73% 3641 100.00% 

 

NMTLOC [1, 2]-

BIKE-DT 

 
INTTYPE-DT 

 

4 WAY T 

Total, including other 
intersection type 
combinations 
 

N % N % N % 

ATI MX 339 9.31% 88 2.42% 525 14.42% 

ATI NX 181 4.97%   279 7.66% 

ATI UM 84 2.31% 54 1.48% 160 4.39% 

Total, including 
other bicyclist 
location 
combinations 
 

1521 41.77% 427 11.73% 3641 100.00% 

 

 
Bicyclists showed the same trend as pedestrians in terms of their location in a 4-way intersection, at the time of the crash. In 

9.31% of crashes, the bicyclist was located at an intersection in a marked crosswalk (4-WAY-ATI MX). However, 4.97% of 4-way 

intersection crashes appeared to be associated with bicyclists located at intersections but not in the crosswalk (4-WAY-ATI NX). It is 

clear that in MV4000 form, the percentage (13.05%%) of crashes reported that the pedestrian was located in a crosswalk (1) doesn’t 

provide the same level of detail for the bicyclist location as in DT4000 form.  
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Table 6-24: Prevailing Atmospheric Conditions and Type/Level of Light  

WTHRCOND 

-MV 

 

LGTCOND-MV 

DARK LIGT (blank) 

Total, including 
other light 
condition 
combinations 

N % N % N % N % 

CLDY 71 1.95% 205 5.63% 655 17.99% 985 27.05% 

CLR 99 2.72% 462 12.69% 1601 43.97% 2297 63.09% 

RAIN   147 4.04% 96 2.64% 270 7.42% 

Total, 
including other 
weather 
condition 
combinations 

196 5.38% 845 23.21% 2389 65.61% 3641 100.00% 

 

WTCOND 

[A, B]-DT 

 

LGTCOND-DT  

DARK DAY LITE 

Total, including 
other light 
condition 
combinations 

N % N % N % N % 

CLDY   625 17.71% 184 5.05% 920 25.27% 

CLEAR 99 2.72% 1594 43.78% 462 12.69% 2297 63.09% 

RAIN   95 2.61% 141 3.87% 264 7.25% 

Total, 
including 
other 
weather 
condition 
combinations 

196 5.38% 2380 65.37% 845 23.21% 3641 100.00% 

 

 
Studying the effect of adverse weather conditions accompanied by poor light conditions, other factors such as driver’s cautiousness 

and non-motorists obeying traffic signs, signals, and police officers appear to be the reason behind noticing fewer crashes with such 

circumstances. It is clear from examining the relationship between adverse weather conditions accompanied with poor light conditions 

that in the DT4000 form, 43.78% among 65.37% of crashes occurred during the daylight, were associated with clear weather conditions 

existing at the time of the crash (DAY-CLEAR). The information is considered consistent in the MV4000 form, as 43.97% of crashes 

occurred during the daylight, and was associated with clear weather conditions existing at the time of the crash (blank-CLR). 

Additionally, in both crash forms, the attributes consistently describe the weather and light conditions in the roadway where the crash 

occurred, i.e., 12.69% of crashes occurred in dark/lighted roadways (LIGT/LITE) and during clear (CLR/CLEAR) weather conditions. 
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Table 6-25: Trafficway Divided/Undivided with Type of Division and Prevailing Atmospheric Conditions 

TRFCWAY -

MV 

 
WTHRCOND -MV 

 

CLOUDY CLEAR RAIN 

Total, including 
other weather 
condition 
combinations 

N % N % N % N % 

D/WO 134 3.68% 218 5.99%   387 10.63% 

ND 688 18.90% 1669 45.84% 181 4.97% 2600 71.41% 

OW   110 3.02%   167 4.59% 

Total, including 
other values 
describing 
trafficway 
division 

985  2297  270  3641 100.00% 

 

TRFCWAY [1, 

2]-DT 

 
WTCOND [A, B]-DT 

 

CLOUDY CLEAR RAIN 

Total, including 
other weather 
condition 
combinations 

N % N % N % N % 

DIV NO 121 3.32% 192 5.28%   349 9.59% 

OW   84 2.30%   138 3.78% 

UNDIV 602 16.52% 1596 43.84% 168 4.62% 2481 68.14% 

Total, including 
other values 
describing 
trafficway 
division 

920 25.22% 2297 63.13% 264 7.23% 3641 100.00% 

 

 
Both crash forms showed consistent information. For instance, undivided roadway sections showed to be more crash-prone 

(almost 70%) than other divided roadway sections (UNDIV/ND). Whereas, more than half of them (around 44%) occurred at clear 

atmospheric conditions (CLEAR). The DT4000 form provides information, showing that 16.52% of crashes occurred under cloudy 

atmospheric conditions (CLOUDY-UNDIV). 
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Table 6-26: Road Surface Type and Condition  

SURFTYPE [1, 2] 

 

RDCOND [A, B, C] 

 

DRY WET 
Total, including other roadway surface  

condition combinations 

N % N % N % 

BLACK 1843 50.62% 294 8.07% 2194 60.26% 

CONC 1018 27.96% 164 4.50% 1217 33.42% 

Total, including other roadway surface  
type combinations 

3056 83.93% 482 13.24% 3641 100.00%% 

 
A major part -50.62%- of crashes that took place on dry (DRY) roadway surface conditions (83.93%), occurred on bituminous 

road surfaces (BLACK) more than concrete surfaces (CONC). Darker asphalt pavement warms up and helps melt away any snow left 

on the road surface; hence it is interesting to investigate the reason behind the high percentage of crash rates on dry bituminous roadways.  
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6.3.1.3 Summary of Multi-variate Analysis of Selected Crash Variables 

Regarding the preliminary analysis, for horizontal road terrain, 1.32% and 1.24% of the 

crashes occurred on roadways curved to the left (LT) and the right (RT), respectively. For vertical 

road terrain, 2.83% of the crashes occurred on downgrade (DN), 2.25% of the crashes occurred on 

upgrade roadways (UP), 0.77% of them occurred on hillcrest sections, and 0.19% of them occurred 

on sag/bottom sections. For road surface conditions, 13.24% of the crashes occurred in wet 

roadway surface conditions.  

Viewing the type of trafficway division, two-way divided and unprotected (painted > 4 feet) 

median (DIV PNT) 2.36%, divided highway with traffic barrier (DIV BAR) 0.80%, and divided 

highway median with a barrier (DIV MBR) 1.84%. 68.14%, 9.59%, and 3.79% of the crashes 

occurred in two-way undivided highways (UNDIV), Divided highways without a traffic barrier 

(DIV NO), and on highways serving one-way traffic only (OW), respectively. Concerning the total 

number of lanes in a roadway where a crash took place, roadways with two and four total number 

of lanes contribute together to 80.31% of the total number of crashes.  

Concerning the location of the first harmful event concerning the roadway, 94.04% of the 

crashes occurred on the roadway (ON), and 2.11% of them occurred on the roadside (R SIDE) 

occurred on the shoulder as described by the MV4000 crash form. For the specific location of the 

crash concerning the trafficway, most of the crashes (96.46%) occurred on the trafficway. 

Reporting the location type in MV4000 and DT4000 crash forms is consistent. 56.33% of crashes 

occurred at intersections, whereas, 43.67% of them occurred at non-intersection/midblock 

locations. 

 Taking into account the intersection type in which the crash occurred, 41.77% and 11.73% 

of the crashes occurred at 4-way stop intersections and T intersections, respectively. For the traffic 
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control device (TCD) in effect at the time of the crash, 16.11% ((59.78% locations lacking a TCD 

(NONE) excluding 43.67% non-intersection locations (N)) of the crashes are reported as lacking 

a TCD (NONE). 23.85% and 12.55% of the crashes occurred at traffic signal controlled (TS OP) 

and at stop sign-controlled (STOP/SS) locations, respectively.  

6.3.2  Injury Severity Distribution by Crash Characteristics 

Following is a summary of potential crash variables distributed by injury severity level in 

Table 6-24 to Error! Reference source not found.. Moreover, after interpreting the Multi-variate 

analysis results, a group of new variables that showed a significant relationship are chosen for 

inclusion in the statistical analysis and are analyzed per injury severity level in Table 6-38 are as 

follows: 
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Table 6-27: Descriptive Statistics of the Potential Contributing Driver-Related Crash Variables 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Driver-Related Factors 

DNMFTR [1, 2] [A, 

B] 

Any relevant condition of the individual (motorist or non-motorists) that is directly related to the crash. 

NORM 9 0.25% 249 6.84% 1269 34.85% 544 14.94% 2071 56.88% 

NO OBS 42 1.15% 128 3.52% 428 11.76% 237 6.51% 835 22.93% 

UI MDA 7 0.19% 33 0.91% 41 1.13% 25 0.69% 106 2.91% 

Other values 62 1.70% 171 4.70% 254 6.98% 142 3.90% 629 17.28% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

DRVRPC [1, 2] [A, 

B] 

The actions by the driver that may have contributed to the crash, based on the judgment of the law enforcement officer 

investigating the crash 

FTY 8 0.22% 109 2.99% 562 15.44% 243 6.67% 922 25.32% 

NO 61 1.68% 249 6.84% 790 21.70% 362 9.94% 1462 40.15% 

ID 3 0.08% 16 0.44% 55 1.51% 33 0.91% 107 2.94% 

Other values 48 1.32% 207 5.69% 585 16.06% 310 8.52% 1150 31.59% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

DRVRDOIN [1, 2] 

The controlled maneuver for this motor vehicle prior to the beginning of the sequence of events 

GO STR 70 1.92% 302 8.29% 663 18.21% 249 6.84% 1284 35.27% 

LT TRN 5 0.14% 65 1.79% 339 9.31% 171 4.70% 580 15.93% 

RT TRN 3 0.08% 25 0.69% 243 6.67% 151 4.15% 422 11.59% 

BACKING 1 0.03% 9 0.25% 44 1.21% 21 0.58% 75 2.06% 

Other values 41 1.13% 180 4.94% 703 19.31% 356 9.77% 1280 35.15% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SFTYEQP [1,2]  

The restraint equipment in use at the time of the crash (excluding motorcyclists) 

NONE 6 0.16% 29 0.80% 137 3.76% 53 1.46% 225 6.18% 

SH/LP 81 2.22% 372 10.22% 1294 35.54% 622 17.08% 2369 65.06% 

UNKN 16 0.44% 102 2.80% 352 9.67% 153 4% 623 17.11% 
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UNTYPE 0 0.00% 4 0.11% 22 0.60% 9 5% 35 5.71% 

Other values 1 0.03% 7 0.19% 20 0.55% 13 0.36% 41 1.13% 

348 (9.56%) blank values 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

It can be observed from Table 6-27 that 56.88% and 25.32% of crashes involved drivers who appeared normal (NORM) and failed 

to yield the ROW (FTY) at the time of the crash, respectively. Regarding the driver’s actions that may have contributed to the crash, 

35.27%, 15.93%, and 11.59% of drivers involved in crashes were going straight (GO STR), taking a left turn (LT TRN), and taking 

right turn (RT TRN), respectively. Additionally, 65.06% of drivers used the shoulder and lap belt as a safety constraint at the time of 

the crash. 

Table 6-28: Descriptive Statistics of the Potential Contributing Pedestrian-Related Crash Variables 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Pedestrian-Related Factors 

DNMFTR [1, 2] 

[A, B] 

Any relevant condition of the individual (motorist or non-motorists) that is directly related to the crash. 

NO OBS 20 0.55% 41 1.13% 76 2.09% 47 1.29% 184 5.05% 

NORM 7 0.19% 163 4.48% 526 14.45% 263 7.22% 959 26.34% 

NORM NO OBS 34 0.93% 58 1.59% 116 3.19% 68 1.87% 276 7.58% 

OTHR 59 1.62% 319 8.76% 1274 34.99% 570 15.66% 2222 61.03% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTLOC [1, 2] 

The location of the non-motorists concerning the roadway at the time of the crash. 

ATI MX 14 0.38% 138 3.79% 457 12.55% 286 7.85% 895 24.58% 

ATI NX 8 0.22% 39 1.07% 66 1.81% 43 1.18% 156 4.28% 
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ATI UM 4 0.11% 30 0.82% 71 1.95% 41 1.13% 146 4.01% 

NAI NX 61 1.68% 170 4.67% 311 8.54% 121 3.32% 663 18.21% 

SHLDR 9 0.25% 14 0.38% 37 1.02% 18 0.49% 78 2.14% 

Other values  13 0.36% 45 1.24% 97 2.67% 52 1.43% 207 5.68% 

1496 (41.09%) blank values/not pedestrian crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTACT [1, 2] 

The actions/circumstances of the non-motorists that may have contributed to the crash, based on the judgment of the law 

enforcement officer investigating the crash. 

NF TRFC 8 0.22% 21 0.58% 73 2.00% 54 1.48% 156 0.03% 

DISREG  1 0.03% 15 0.41% 25 0.69% 17 0.47% 58 1.59% 

DK CLTH  4 0.11% 8 0.22% 26 0.71% 14 0.38% 52 1.43% 

FC TRFC  3 0.08% 12 0.33% 33 0.91% 23 0.63% 71 1.95% 

IM XING  4 0.11% 23 0.63% 49 1.35% 23 0.63% 99 2.72% 

NO IMPR  17 0.47% 110 3.02% 366 10.05% 203 5.58% 696 19.12% 

SUDDEN  10 0.27% 60 1.65% 128 3.52% 72 1.98% 270 7.42% 

Other values 62 1.71% 187 5.14% 339 9.31% 155 4.26% 743 24.65% 

1496 (41.09%) blank values/not pedestrian crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTPRIOR [1, 

2] 

The action of a non-motorist immediately prior to a crash. 

JOGGING 0 0.00% 18 0.49% 38 1.04% 18 0.49% 74 2.03% 

RDWY OT 16 0.00% 3 0.08% 11 0.30% 5 0.14% 19 0.52% 

WAITING 3 0.14% 19 0.52% 32 0.88% 17 0.47% 73 2.00% 

XING 1 0.44% 49 1.35% 91 2.50% 39 1.07% 195 5.36% 

Other values 89 2.42% 347 9.54% 867 23.82% 482 13.24% 1784 49.00% 

1496 (41.09%) blank values/not pedestrian crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTSFQ [1, 2] 

[A, B]* 

The safety equipment in use by the operator non-motorist at the time of the crash. 

NONE  88 2.42% 369 10.13% 871 23.92% 446 12.25% 1774 48.72% 

HLMT 0 0.00% 3 0.08% 5 0.14% 3 0.08% 11 0.30%* 

LTNG/REFL 0 0.00% 3 0.08% 5 0.14% 3 0.08% 11 0.30% 

Other values 17 0.47% 57 1.58% 149 4.10% 100 2.75% 323 8.87% 
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1496 (41.09%) blank values/not pedestrian crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

PEDSEX 

The sex of the non-motorists involved in a crash. 

F 30 0.82% 183 5.03% 451 12.39% 249 6.84% 913 25.08% 

M 79 2.17% 251 6.89% 585 16.07% 306 8.40% 1221 33.53% 

UNKN 0 0.00% 2 0.05% 3 0.08% 6 0.16% 11 0.30% 

1496 (41.09%) blank values/not pedestrian crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

PEDAGE 

The age of the non-motorists involved in a crash in years. 

<30 20 0.55% 176 4.83% 496 11.84% 256 7.03% 948 26.04% 

30-64 56 1.54% 203 5.58% 431 14.17% 242 6.65% 932 7.28% 

≥65 33 0.91% 57 1.57% 112 3.08% 63 1.73% 265 25.30% 

1496 (41.09%) blank values/not pedestrian crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

As shown in Table 6-28, 26.34% of pedestrians involved in vehicle crashes appeared normal (NORM), 24.58% of them were 

located at intersections with marked crosswalks (ATI MX), 7.42% suddenly darted into the roadway at the time of the crash (SUDDEN), 

and 5.36% crossing the roadway immediately before the crash (XING). Regarding the used safety equipment, 48.72% did not use any 

(NONE). *DT4000 crash form database mistakenly reported 11 observations, showing that the pedestrian used a helmet as a piece of 

safety equipment (HLMT). Personal characteristics of involved pedestrians showed that 33.35% are male (M) pedestrians and 26.04% 

age <30. 
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Table 6-29: Descriptive Statistics of the Potential Contributing Bicyclist-Related Crash Variables  

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Bicycle-Related Factors 

DNMFTR [1, 2] 

[A, B] 

NORM  2 0.05% 86 2.36% 745 20.46% 281 7.72% 1114 30.60% 

NORM NO OBS 5 0.14% 24 0.66% 140 3.85% 62 1.70% 231 6.34% 

OTHR 113 3.10% 471 12.94% 1107 30.40% 605 16.62% 2296 63.06% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTLOC [1, 2] 

The location of the non-motorists with respect to the roadway at the time of the crash. 

ATI MX 1 0.03% 32 0.88% 322 8.84% 170 4.67% 525 14.42% 

ATI NX 2 0.05% 39 1.07% 178 4.89% 60 1.65% 279 7.66% 

ATI UM 0 0.00% 15 0.41% 100 2.75% 45 1.24% 160 4.39% 

BIKE LN 0 0.00% 4 0.11% 44 1.21% 14 0.38% 62 1.70% 

NAI NX 4 0.11% 32 0.88% 143 3.93% 41 1.13% 220 6.04% 

SHLDR 1 0.03% 7 0.19% 30 0.82% 13 0.36% 51 1.40% 

Other values  3 0.09% 16 0.44% 136 3.73% 44 1.21% 199 5.47% 

2145 (58.91%) blank values/not bicyclist crashes 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTPRIOR [1, 

2] 

The action of a non-motorist immediately prior to a crash. 

A TRFC 0 0.00% 8 0.22% 46 1.26% 16 0.44% 70 1.92% 

RDWY OT 1 0.03% 2 0.05% 12 0.33% 3 0.08% 18 0.49% 

SIDE WK 0 0.00% 0 0.00% 11 0.30% 1 0.03% 12 0.33% 

W TRFC 1 0.00% 4 0.11% 19 0.52% 7 0.19% 30 0.82% 

XING 5 0.03% 13 0.36% 89 2.44% 33 0.91% 136 3.74% 
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Other values  4 0.25% 118 3.25% 776 21.32% 327 8.98% 1230 33.79% 

2145 (58.91%) blank values/not bicyclist crashes 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTACT [1, 2] 

The actions/circumstances of the non-motorists that may have contributed to the crash, based on the judgment of the law 

enforcement officer investigating the crash. 

DISREG  0 0.00% 9 0.25% 51 1.40% 16 0.44% 76 2.09% 

NO IMPR 4 0.11% 45 1.24% 385 10.57% 145 3.98% 579 15.90% 

SUDDEN  1 0.03% 15 0.41% 102 2.80% 46 1.26% 164 4.50% 

Other values 11 0.31% 0 3.99% 953 26.17% 387 10.63% 1496 41.09% 

2145 (58.91%) blank values/not bicyclist crashes 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

NMTSFQ [1, 2] 

[A, B] 

The safety equipment in use by the operator non-motorist at the time of the crash. 

REFL/LTNG 0 0.00% 5 0.14% 6 0.16% 5 0.14% 16 0.44% 

NONE 7 0.19% 84 2.31% 612 16.81% 268 7.36% 971 26.67% 

HLMT 3 0.08% 41 1.13% 228 6.26% 64 1.76% 336 9.23% 

Other values  110 3.03% 451 12.38% 1146 31.48% 611 16.78% 2318 63.66% 

2145 (58.91%) blank values/not bicyclist crashes 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

BIKESEX 

The sex of the non-motorists involved in a crash. 

F 3 0.08% 34 0.93% 230 6.32% 94 2.58% 361 9.91% 

M 8 0.22% 109 2.99% 720 19.77% 289 7.94% 1126 30.93% 

UNKN 0 0.00% 2 0.05% 3 0.08% 4 0.11% 9 0.25% 

2145 (58.91%) blank values/not bicyclist crashes 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

BIKEAGE 

The age of the non-motorists involved in a crash in years. 

<30 4 0.11% 64 1.76% 599 16.45% 244 6.70% 911 25.02% 

30-64 5 0.14% 63 1.73% 304 92.97% 122 3.35% 494 13.57% 

≥65 2 0.05% 18 0.49% 50 1.37% 21 0.58% 91 2.50% 

2145 (58.91%) blank values/not bicyclist crashes 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 
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Table 6-29 shows that 30.60% of bicyclists involved in vehicle crashes appeared normal (NORM), 14.42% of them were located 

at intersections with marked crosswalks (ATI MX), 4.50% suddenly darted into the roadway at the time of the crash (SUDDEN), and 

3.74% crossing the roadway immediately before the crash (XING). Regarding the used safety equipment, 26.67%% did not use any 

(NONE), and 9.23% used helmet (HLMT). Personal characteristics of involved bicyclists showed that 30.93% are male (M) pedestrians 

and 25.02% age <30. 

Table 6-30: Descriptive Statistics of the Potential Contributing Roadway-Related Crash Variables 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Roadway Level Factors 

 

TRFCWAY 

[1, 2] 

Indication of whether or not the trafficway for this vehicle is divided and whether it serves one-way or two-way traffic. 

UNDIV 65 1.79% 402 11.04% 1393 38.26% 621 17.06% 2481 68.14% 

DIV NO 31 0.85% 55 1.51% 184 5.05% 70 1.92% 340 9.34% 

OW 1 0.03% 13 0.36% 50 1.37% 22 0.60% 86 2.36% 

DIV BAR 23 0.63% 111 3.05% 365 10.02% 235 6.45% 734 20.16% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RDWYPC [A, 

B, C] 

Factors of the road which may have contributed to the crash. 

NONE   114 3.13% 549 15.08% 1884 51.74% 904 24.83% 3451 94.78% 

RSC   3 0.08% 6 0.16% 29 0.80% 17 0.47% 55 1.51% 

OTHR  3 0.08% 26 0.71% 79 2.17% 27 0.74% 135 3.71% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

TOTLANES 

[1, 2] 

1 Lane 1 0.03% 17 0.47% 139 3.82% 63 1.73% 220 6.04% 

2 Lanes 69 1.90% 394 10.82% 1311 36.01% 634 17.41% 2408 66.14% 

3 Lanes 8 0.22% 27 0.74% 101 2.77% 43 1.18% 179 4.92% 
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>3 Lanes 42 1.15% 143 3.93% 441 12.11% 208 5.71% 834 22.91% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RDCOND [A, 

B, C] 

The roadway surface condition at the time and place of a crash. 

DRY 97 2.66% 476 13.07% 1699 46.66% 784 21.53% 3056 83.93% 

WET 16 0.44% 81 2.22% 252 6.92% 133 3.65% 482 13.24% 

OTHR 7 0.19% 24 0.66% 41 1.13% 31 0.85% 103 2.83% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RLTNRDWY 

The location of the first harmful event as it relates to its position within or outside the trafficway. 

ON  109 2.99% 551 15.13% 1877 51.55% 899 24.69% 3436 94.37% 

R SIDE  4 0.11% 11 0.30% 41 1.13% 21 0.58% 77 2.11% 

OTHR  7 0.19% 19 0.52% 74 2.03% 28 0.77% 128 3.52% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RLTNTRWY 

Identifies the location of a crash with respect to it's relation to a trafficway. 

OFF 6 0.16% 12 0.33% 54 1.48% 27 0.74% 99 2.72% 

ON 114 3.13% 567 15.57% 1917 52.65% 914 25.10% 3512 96.46% 

OTHR 0 0.00% 2 0.05% 21 0.58% 7 0.19% 30 0.82% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RLTNJNLC 

The location of the first harmful event of the crash. It identifies the crash's location with respect to the presence in a junction or 

proximity to components typically in a junction or an interchange area. This field identifies the specific location in a junction or 

interchange. 

INR 9 0.25% 61 1.68% 230 6.30% 105 2.88% 405 11.10% 

INT 25 0.68% 228 6.28% 920 25.27% 484 13.29% 1657 45.52% 

NJ 84 2.31% 274 7.51% 736 20.23% 323 8.88% 1417 38.94% 

OTHR  2 0.05% 16 0.44% 97 2.65% 41 0.91% 148 4.05% 

14 (0.39%) blank values 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

RLTNJNIC 

The location of the first harmful event of the crash. It identifies the crash's location concerning the presence in a junction or 

proximity to components typically in a junction or an interchange area. This field identifies if a crash occurred within the 

Interchange area. (Y/N/UNKN). 

N 112 3.08% 514 14.12% 1740 47.79% 817 22.44% 3183 87.42% 

UNKN 0 0.00% 5 0.14% 18 0.49% 10 0.27% 33 0.91% 
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Y 8 0.22% 60 1.65% 225 6.18% 118 3.24% 411 11.29% 

14 (0.39%) blank values 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ROADHOR 

[1, 2] 

The horizontal road terrain at the point of impact. 

LT 2 0.05% 9 0.25% 29 0.80% 8 0.22% 48 1.32% 

RT 6 0.16% 6 0.16% 22 0.60% 11 0.30% 45 1.24% 

ST 109 2.99% 544 14.94% 1830 50.26% 864 23.73% 3347 91.93% 

Other values  3 0.08% 22 0.60% 111 3.05% 65 1.79% 201 5.52% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ROADVERT 

[1, 2] 

The vertical road terrain at the point of impact. 

DN 14 0.38% 38 1.04% 43 1.18% 22 0.60% 117 3.21% 

CST 0 0.00% 4 0.11% 21 0.58% 3 0.08% 28 0.77% 

LVL 14 0.38% 42 1.15% 64 1.76% 25 0.69% 145 3.98% 

SAG  28 0.77% 84 2.31% 128 3.52% 50 1.37% 290 7.96% 

UP 42 1.15% 126 3.46% 192 5.27% 75 2.06% 435 11.95% 

Other values  22 0.62% 287 7.89% 1544 42.40% 773 21.24% 2626 72.13% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

INTTYPE 

The type of intersection in which a crash occurred. An intersection consists of two or more roadways that intersect at the same 

level. 

5 1 0.03% 2 0.05% 2 0.30% 13 0.36% 27 0.74% 

4 WAY 25 0.69% 222 6.10% 222 23.29% 426 11.70% 1521 41.77% 

L 0 0.00% 1 0.03% 1 0.11% 2 0.05% 7 0.19% 

RAB 0 0.00% 1 0.03% 1 0.36% 5 0.14% 19 0.52% 

T 7 0.19% 48 1.32% 48 6.59% 132 3.63% 427 11.73% 

Y 0 0.00% 4 0.11% 4 0.14% 3 0.08% 12 0.33% 

Other values  87 2.39% 303 8.32% 1714 23.92% 367 10.08% 1628 44.72% 

NA 1590 (43.67%) 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

TRFCCNTL 

[1, 2] 

The type of traffic control device (TCD) applicable to this motor vehicle at the crash location. 

NONE  89 2.44% 335 9.20% 878 24.11% 327 8.98% 1629 44.74% 

STOP  7 0.19% 65 1.79% 387 10.63% 210 5.77% 669 18.37% 
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TS OP  3 0.08% 39 1.07% 265 7.28% 127 3.49% 434 11.92% 

Other values  21 0.59% 142 3.90% 462 12.69% 284 7.80% 909 24.97% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

TRFCINOP 

Indicates whether a traffic control device was inoperable or missing at the time of the crash (Y/N/UNKN). 

N 117 3.21% 558 15.33% 1900 52.18% 888 24.39% 3463 95.11% 

UNKN 2 0.05% 16 0.44% 47 1.29% 37 1.02% 102 2.80% 

Y 0 0.00% 0 0.00% 6 0.16% 4 0.11% 10 0.27% 

Other values  1 0.04% 7 0.19% 39 1.08% 19 0.52% 66 1.82% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

LOCTYPE 

The type of location at which a crash occurred. 

I 33 0.91% 286 7.85% 1143 31.39% 589 16.18% 2051 56.33% 

N 87 2.39% 295 8.10% 849 23.32% 359 9.86% 1590 43.67% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SURFTYPE [1, 

2] 

CONC 23 0.63% 105 2.88% 357 9.80% 170 4.67% 220 6.04% 

BLACK 34 0.93% 180 4.94% 666 18.29% 318 8.73% 2408 66.14% 

OTHR 63 1.73% 296 8.13% 969 26.61% 460 12.63% 1013 27.82% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

Concerning Table 6-30 implies that 68.14% of trafficways involving vehicle crashes with pedestrians and bicyclists are two-way 

undivided, 13.24% of the roadways’ surface is wet, and 91.93% occurred on straight roadways. 56.33% of crashes occurred at 

intersection locations, 41.77% of them occurred at 4-way intersections, 44.74% of the crash locations did not involve TCD, with 95.11% 

of these locations did not indicate inoperable TCD. 
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Table 6-31: Descriptive Statistics of the Potential Contributing Crash/Vehicle-Related Crash Variables 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Crash/Vehicle Level Factors 

 

VEHTYPE [1, 

2] 

Specific category for the type of vehicle which was involved in a crash. 

CAR  58 1.59% 291 7.99% 746 20.49% 396 10.88% 1491 40.95% 

SUV  20 0.55% 71 1.95% 138 3.79% 87 2.39% 316 8.68% 

UT TRK 17 0.47% 48 1.32% 75 2.06% 35 0.96% 175 4.81% 

P VAN  4 0.11% 13 0.36% 42 1.15% 21 0.58% 80 2.20% 

Other values  21 0.58% 158 4.34% 991 27.22% 409 11.23% 1579 43.36% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

VEHDMG [1, 

2] 

Identifies the extent to which the damage affects the vehicles operability rather than the cost to repair.  

DISABL 4 0.11% 5 0.14% 2 0.05%   0.00% 11 0.30% 

FUNC 10 0.27% 16 0.44% 18 0.49% 1 0.03% 45 1.24% 

MINOR 7 0.19% 35 0.96% 98 2.69% 33 0.91% 173 4.75% 

NO 4 0.11% 31 0.85% 135 3.71% 102 2.80% 272 7.47% 

UNKN 2 0.05% 19 0.52% 50 1.37% 38 1.04% 109 2.99% 

Other Values 1 0.03% 23 0.63% 130 3.57% 58 1.59% 212 5.82% 

2819 (77.42%) blank values 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ALCFLAG 

Indicates whether law enforcement suspected that at least one driver or non-motorist involved in the crash had used alcohol. This 

includes both alcohol use under the legal limit and at or over the legal limit. 

UNKN 13 0.36% 81 2.22% 309 8.49% 180 4.94% 583 16.01% 

Y 35 0.96% 106 2.91% 113 3.10% 45 1.24% 299 8.21% 

N 72 1.98% 394 10.82% 1570 43.12% 723 19.86% 2759 75.78% 

2759 (75.78%) blank values 
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Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

DRUGLFAG* 

Indicates whether law enforcement suspected that at least one driver or non-motorist involved in the crash had used drugs 

(Y/N/UNKN). 

UNKN  19 0.52% 95 2.61% 336 9.23% 194 5.33% 644 17.69% 

Y 11 0.30% 14 0.38% 11 0.30% 8 0.22% 44 1.21% 

2953 (81.10%) blank values 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SPEEDFLAG 

Flag indicating whether speed was a factor in a crash. 

Y 8 0.22% 36 0.99% 29 0.80% 11 0.30% 84 2.31% 

3557 (97.69%) blank values 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

SCHZONE 

Flag indicating whether a crash occurred in an active school zone. 

Y 2 0.05% 10 0.27% 46 1.26% 30 0.82% 88 2.42% 

3553 (97.58%) blank values 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

CONSZONE  

Flag indicating whether a crash occurred in construction, maintenance, or utility work zone or was related to activity within a 

work zone. 

Y 3 0.08% 6 0.16% 17 0.47% 6 0.16% 32 0.88% 

3609 (99.12%) blank values 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

 

Regarding vehicle and crash-related variables, Table 6-31 shows that 40.95% of the vehicles involved in crashes are passenger cars 

(CAR), 4.75% of involved vehicles’ damage extent is minor damage (MINOR). For toxicity, 8.21% of crashes involved alcohol-

impaired person (Y).   
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Table 6-32: Descriptive Statistics of the Potential Contributing environmental-related Crash Variables 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Environmental Factors 

 

WTCOND 

The prevailing atmospheric conditions that existed at the time of the crash. 

CLDY  36 0.99% 139 3.82% 502 13.79% 243 6.67% 920 25.27% 

CLEAR  68 1.87% 367 10.08% 1272 34.94% 590 16.20% 2297 63.09% 

RAIN  9 0.25% 42 1.15% 141 3.87% 72 1.98% 264 7.25% 

Other values  7 0.19% 33 0.91% 77 2.11% 43 1.18% 160 4.39% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

LGTCOND 

The type/level of light that existed at the time of the motor vehicle crash. 

DUSK 37 1.02% 55 1.51% 84 2.31% 20 0.55% 196 5.38% 

LITE 6 0.16% 12 0.33% 55 1.51% 19 0.52% 92 2.53% 

DUSK 35 0.96% 298 8.18% 1381 37.93% 666 18.29% 2380 65.37% 

LITE 7 0.19% 18 0.49% 60 1.65% 27 0.74% 112 3.08% 

DUSK 35 0.96% 197 5.41% 403 11.07% 210 5.77% 845 23.21% 

LITE 0 0.00% 1 0.03% 9 0.25% 6 0.16% 16 0.44% 

Subtotal  120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

ENVPC[A,B,C] 

Environmental conditions which may have contributed to the crash. 

GLARE   3 0.08% 18 0.49% 54 1.48% 18 0.49% 93 2.55% 

NONE   106 2.91% 503 13.81% 1769 48.59% 845 23.21% 3223 88.52% 

OBSTR   0 0.00% 13 0.36% 39 1.07% 15 0.41% 67 1.84% 

WTHR   10 0.27% 40 1.10% 110 3.02% 61 1.68% 221 6.07% 
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Other values  1 0.03% 7 0.19% 18 0.49% 9 0.25% 35 0.96% 

Subtotal 120 3.30% 581 15.96% 1992 54.71% 948 26.04% 3641 100.00% 

Concerning environmental factors shown in Table 6-32, 63.09% and 25.27% of crashes occurred in clear and cloudy weather 

conditions, respectively. Additionally, 65.37% occurred during the dusk time of the day.  

Table 6-33: Descriptive Statistics of the Potential Newly Created Crash Variables (N=3641)** 

Variable Indication 

Injury severity 

K A B C Subtotal 

N % N % N % N % N % 

120 3.3% 581 16.0% 1992 54.7% 948 26% 3641 100.00% 

Roadway Characteristics Relationships 

TOTLANES_2 – INTTYPE_4 WAY – TRFCCNTL_TS 

OP 

Two-lane 4-way traffic signal-controlled intersection 

4 0.11% 43 1.18% 180 4.94% 109 2.99% 336 9.23% 

TOTLANES_4 – TRFCWAY_UNDIV 
Four-lane undivided trafficway 

14 0.38% 62 1.70% 193 5.30% 105 2.88% 374 10.27% 

TOTLANES_2 – TRFCWAY-UNDIV 
Two-traffic lanes without a physical division 

46 1.26% 229 6.29% 563 15.46% 283 7.77% 1121 30.79% 

INTTYPE_4 WAY – TRFCCNTL_TS OP 
4-way traffic signal-controlled intersection 

10 0.27% 109 2.99% 430 11.81% 243 6.67% 792 21.75% 

ROADHOR_ST – ROADVERT_LVL 
Straight and level graded roadway section 

97 2.66% 485 13.32% 1644 45.15% 809 22.22% 3035 83.36% 

WTCOND_CLEAR – TRFCWAY_UNDIV 
Clear weather condition at two-way undivided trafficway 

40 1.10% 263 7.22% 895 24.58% 398 10.93% 1596 43.83% 

RDCOND_DRY – SURFTYPE_BLACK 
Dry roadway surface condition with blacktop (bituminous) surface type 

69 1.90% 313 8.60% 1017 27.93% 444 12.19% 1843 50.62% 

LGTCOND_LITE – WTCOND_CLEAR 
The dark and lighted roadway at the time of the crash with the clear weather condition 

19 0.52% 114 3.13% 220 6.04% 109 2.99% 462 12.69% 

WTCOND_CLDY – TRFCWAY_UNDIV 
Occurred on a two-way undivided trafficway under cloudy weather conditions 

19 0.52% 86 2.36% 343 9.42% 154 4.23% 602 16.53% 
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 Driver Actions-Roadway Characteristics Relationships  

INTTYPE_4 WAY – DRVRPC_FTY 
The crash occurred at a 4-way intersection while the driver failed to yield the ROW 

3 0.08% 62 1.70% 320 8.79% 142 3.90% 527 14.47% 

RLTNJNIC_N – DRVRPC_FTY 
Crash first harmful event is not within an interchange area and the driver failed to yield 

7 0.19% 93 2.55% 460 12.63% 199 5.47% 759 20.85% 

Pedestrian Action and Location Relationships 

NMTACT_PED_NO IMPR – DRVRPC_FTY 

 

Pedestrian did not act improperly but the driver failed to yield the ROW 

3 0.08% 47 1.29% 193 5.30% 87 2.39% 330 9.06% 

NMTPRIOR_PED_XING– NMTLOC_PED_ATI MX 
Pedestrian crossing roadway immediately before the crash at an intersection in a marked crosswalk 

13 0.36% 110 3.02% 396 10.88% 241 6.62% 760 20.87% 

INTTYPE_4 WAY – NMTLOC_PED_ATI MX 
4-way intersection with a pedestrian located at the intersection in a marked crosswalk 

10 0.27% 109 2.99% 430 11.81% 243 6.67% 792 21.75% 

NMTLOC_ PED_NAI NX – DRVRDOIN_GO STR 

Pedestrian not located in an intersection and not in a marked crosswalk with the driver going 

straight 

33 0.91% 117 3.21% 159 4.37% 60 1.65% 369 10.13% 

Bicyclist Action and Location Relationships 

NMTPRIOR_BIKE_XING – NMTLOC_BIKE_ATI 

MX 

Bicyclist crossing the roadway at an intersection in a marked crosswalk 

1 0.03% 18 0.49% 206 5.66% 112 3.08% 337 9.26% 

INTTYPE_4 WAY – NMTLOC_BIKE_ATI MX 

 

Bicyclist located at the intersection in a marked crosswalk in a 4-way intersection 

1 0.03% 26 0.71% 214 5.88% 98 2.69% 339 9.31% 

 

Table 6-33 shows that the 16.53% of crashes occurred on a two-way undivided trafficway under cloudy weather conditions 

(WTCOND_CLDY – TRFCWAY_UNDIV), whereas 43.83% of them occurred on two-way undivided trafficway under clear weather 

conditions (WTCOND_CLEAR – TRFCWAY_UNDIV). 30.79% of crashes occurred on two-traffic lanes without a physical division, 

and 83.36% occurred on straight and level graded roadway section (ROADHOR_ST – ROADVERT_LVL). Crashes occurred on a 4-
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way traffic signal-controlled intersection, with the pedestrian and bicyclist located at the intersection in a marked crosswalk 

(INTTYPE_4 WAY – NMTLOC_PED_ATI MX; 21.75%), (INTTYPE_4 WAY – NMTLOC_BIKE_ATI MX, 9.31%), respectively. 

** A total of 4025 crashes, excluding 324 crashes where the motorist sustained more severe injury than the non-motorists as the 

interest is in the severity of injuries sustained by non-motorists involved in a motor vehicle crash. Also, because the analysis is limited 

to the first two units involved in a crash. There are 60 crashes where the first two units are both drivers; and therefore, their injury 

severity levels are not counted towards the descriptive statistics of pedestrian/bicycle-vehicle crashes.
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6.4  Statistical Tests Concerning Injury Severity Proportion 

In this analysis, the Z-test for proportions was selected as the statistical test to indicate if a 

particular variable of the newly created roadway, driver, pedestrian, and bicyclist-related 

pedestrian and bicyclist-related variables has higher (fatal (K) and severe (A) injury) proportion is 

significantly different than the proportion of (fatal (K) and severe (A) injury) injuries for the 

population. The test was conducted in RStudio using the prop.test () function at a 95% confidence 

level. Note that the formula of the Z-test statistics Eq. 6-2 is valid when sample size (n) is large 

enough; np, nq should be ≥ 5. In the case of small sample size (such in the “ROADHOR_C- 

ROADVERT_H” variable in Table 6-34, the Fisher Exact probability test is used for comparing 

the two proportions.  

z=
"KL"

M"N/!             Eq. 6-1                           

                               

Where: 

pK: sample proportion; 

p: population proportion; 

G: 1-p; 

I: sample size; 

The results of this analysis can be found in Table 6-34 and Table 6-37. These results show 

the proportion of fatal injury, severe injury, and non-severe injury including evident and possible 

injury crashes by each of the newly created variables. The table identifies the crash variable that 

has a significantly different proportion of fatal and severe injury versus non-severe injury crashes 

using the z-test for proportions. A P+ +) symbol implies crash variables with a significantly lower 

proportion of fatalities and severe injuries at a 95% confidence level, and a (−) symbol implies 
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crash variables with a significantly lower proportion of fatalities and severe injuries at a 95% 

confidence level. 

6.4.1  Pedestrian Crash Variables Using MV4000 Dataset  

Table 6-34: Summary of the Z-test for Proportion Results for the Newly Created 

Pedestrian Crash Variables 

Variable Symbol 
Variable 

Indication 

Fatal 

Injury 

Crash 

(K) 

Severe 

Injury 

Crash 

(A) 

Fatal 

and 

Severe 

Injury 

(K+A) 

Crash 

Evident 

and 

Possible 

Injury 

Crash 

(B+C) 

Sig. 

Result 

of the 

Z-Test 

* 

Sample 

Size 

Roadway-Environmental-Related 

 

 

LGTCOND_LIGT-
TRFCWAY_D_WO 

Streetlight is 
available at time 
of the crash in a 
divided trafficway 
without a traffic 
barrier 

0.51% 1.12% 1.63% 2.56%  7.11% 

LGTCOND_LIGT-
TRFCWAY_ND 

Streetlight is 
available at time 
of the crash in 
undivided 
trafficway 

0.75% 5.17% 5.92% 14.78% − 35.14% 

LGTCOND_DARK-
WTHRCOND_CLDY 

No light (dark) is 
available at time 
of crash under 
cloudy weather 

0.70% 0.98% 1.68% 1.54%  5.47% 

LGTCOND_DARK-
WTHRCOND_CLR 

No light (dark) is 
available at time 
of crash under 
clear weather 

0.79% 1.21% 2.00% 1.59%  6.09% 

ROADHOR_C- 
ROADVERT_H 

Curve (not 
straight) and hill 
(not level) road 
terrain 

1.72% 8.21% 9.93% 31.70%  70.66% 

Driver-Weather Related 

 

 

LGTCOND_LIGT-
DRVRDO_GO_STR 

Streetlight is 
available at time 
of crash and driver 
going straight 

0.84% 4.29% 5.13% 6.25% − 19.32% 

DRVRDOIN_GO_STR-
NMTLOC_2 

A driver going 
straight and 
pedestrian located 
in the roadway 

2.05% 7.09% 9.14% 13.38% − 38.23% 

LGTCOND_DARK-
DRVRDO_GO_STR 

No light (dark) is 
available at time 

1.07% 1.63% 2.70% 1.35%  6.87% 
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of crash and driver 
going straight 

Pedestrian-Weather Related 

 

 

LGTCOND_DARK-
NMTLOC_2 

No light (dark) is 
available at time 
of crash and 
pedestrian located 
in the roadway 

1.35% 1.82% 3.17% 2.52%  9.66% 

WTHRCOND_CLR-
NMTLOC_2 

The crash 
occurred under 
clear weather and 
pedestrian located 
in the roadway 

1.82% 6.57% 8.39% 20.47% − 48.99% 

Pedestrian-Driver Related 

 

 

DRVRDO_GO_STR-
NMTACT_1 

A driver going 
straight and 
pedestrian walking 
not facing traffic 

0.28% 1.21% 1.49% 2.52%  6.81% 

DRVRDO_GO_STR-
NMTACT_6 

A driver going 
straight and 
pedestrian acting 
other than 
disregarding 
signal, walking not 
facing traffic, 
wearing dark 
clothes, and 
darting into the 
roadway. 

1.59% 5.64% 7.23% 10.96% − 30.88% 

Pedestrian-Specific   

NMTLOC_1-
NMTACT_6 

Pedestrian located 
in the roadway and 
acting other than 
disregarding 
signal, walking not 
facing traffic, 
wearing dark 
clothes, and 
darting into the 
roadway.  

0.09% 0.51% 0.61% 2.89%  
5.94% 
 

Total Cashes (N=2145) 110 434 544 1601   

* The significant value (Sig. Result of the Z-Test) is a result of the Z-test of the Difference Between Two 

Proportions; the proportion of crashes resulting in a fatal (K) and sever (A) injury versus the proportion of crashes 

resulting in an evident (B) and possible (C) injury for each new variable resulting from a multi-variable analysis, 

where; − = proportion of crashes resulting in a fatal (K) and sever (A) injury is significantly lower at 95% 

confidence level, + + = proportion of crashes resulting in a fatal (K) and sever (A) injury is significantly higher 

at 95% confidence level. 
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6.4.2  Bicyclist Crash Variables Using MV4000 Dataset  

Table 6-35: Summary of the Z-test for Proportion Results for the Newly Created Bicyclist 

Crash Variables 

Variable Symbol 
Variable 

Indication 

Fatal 

Injury 

Crash 

(K) 

Severe 

Injury 

Crash 

(A) 

Fatal 

and 

Severe 

Injury 

(K+A) 

Crash 

Evident 

and 

Possible 

Injury 

Crash 

(B+C) 

Sig. 

Result 

of the 

Z-Test 

* 

Sample 

Size 

Roadway-Environmental-Related 

 
 

LGTCOND_LIGT-
TRFCWAY_D_WO 

Streetlight is 
available at time 
of the crash in a 
divided trafficway 
without a traffic 
barrier 

0.00% 0.13% 0.13% 1.20%  3.24% 

LGTCOND_LIGT-
TRFCWAY_ND 

Streetlight is 
available at time 
of the crash in 
undivided 
trafficway 

0.07% 0.94% 1.00% 6.42% − 18.06% 

LGTCOND_DARK-
WTHRCOND_CLDY 

No light (dark) is 
available at time 
of crash under 
cloudy weather 

0.33% 0.00% 0.33% 0.00%  0.80% 

LGTCOND_DARK-
WTHRCOND_CLR 

No light (dark) is 
available at time 
of crash under 
clear weather 

1.47% 0.00% 1.47% 0.00%  3.58% 

ROADHOR_C- 
ROADVERT _H 

Curve (not 
straight) and hill 
(not level) road 
terrain 

0.00% 0.00% 0.00% 1.27%  3.09% 

Driver-Weather Related 

 
 

LGTCOND_LIGT-
DRVRDO_GO_STR 

Streetlight is 
available at time 
of crash and driver 
going straight 

0.07% 0.53% 0.60% 3.88%  10.90% 

DRVRDOIN_GO_STR-
NMTLOC_2 

A driver going 
straight and 
pedestrian located 
in the roadway 

0.27% 2.14% 2.41% 19.79%  54.03% 

LGTCOND_DARK-
DRVRDO_GO_STR 

No light (dark) is 
available at time 
of crash and driver 
going straight 

0.00% 0.13% 0.13% 0.74%  2.12% 

Bicyclist -Weather Related 

 
 

LGTCOND_DARK-
NMTLOC_2 

No light (dark) is 
available at time 

0.00% 0.27% 0.27% 0.94%  2.94% 
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of crash and 
pedestrian located 
in the roadway 

WTHRCOND_CLR-
NMTLOC_2 

The crash 
occurred under 
clear weather and 
pedestrian located 
in the roadway 

0.53% 3.28% 3.81% 29.08%  80.05% 

Bicyclist -Driver Related 

 
 

DRVRDO_GO_STR-
NMTACT_1 

A driver going 
straight and 
pedestrian walking 
not facing traffic 

0.00% 0.00% 0.00% 0.07%  0.17% 

DRVRDO_GO_STR-
NMTACT_6 

A driver going 
straight and 
pedestrian acting 
other than 
disregarding 
signal, walking 
not facing traffic, 
wearing dark 
clothes, and 
darting into the 
roadway. 

0.07% 0.80% 0.87% 8.36%  22.46% 

Bicyclist -Specific   

NMTLOC_1-
NMTACT_6 

Pedestrian located 
in the roadway 
and acting other 
than disregarding 
signal, walking 
not facing traffic, 
wearing dark 
clothes, and 
darting into the 
roadway.  

0.00% 0.60% 0.60% 9.56%  
24.73% 
 

Total Cashes (N=1496) 11 145 156 1340   

 

As demonstrated in Table 6-34, the most common roadway environmental-related variable 

that yielded severe fatal and severe pedestrian crashes was when crashes occur on the curve (not 

straight) and hill (not level) road terrain (ROADHOR_C- ROADVERT_H; 9.93%). The next most 

crash variable that yielded fatal and severe pedestrian crashes was when a streetlight is available 

at the time of the crash in an undivided trafficway (LGTCOND_LIGT-TRFCWAY_ND; 5.92%). 

Drivers going straight while pedestrians are located in the roadway (DRVRDOIN_GO_STR-

NMTLOC_2), and when a streetlight is available at the time of crash while drivers going straight 
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(LGTCOND_LIGT-DRVRDO_GO_STR) were the two most driver weather-related variables that 

are associated with 9.14%, and 5.13% fatal and severe pedestrian crashes, respectively. 

Additionally, crashes occurred under clear weather while pedestrians located in the roadway 

(WTHRCOND_CLR-NMTLOC_2), and crashes occurred on roadways with no available light 

(dark) and while pedestrians located in the roadway (LGTCOND_DARK-NMTLOC_2), were two 

most common pedestrian weather-related variables that were responsible for 8.39%, and 3.17% 

fatal and severe injury pedestrian crashes, respectively. Drivers going straight while pedestrians 

acting other than disregarding signal, walking not facing traffic, wearing dark clothes, and darting 

into the roadway at the time of the crash (DRVRDO_GO_STR-NMTACT_6), were responsible 

for 7.23% of the fatal and severe pedestrian crashes. For instance, being In Roadway Improperly 

(Standing, Lying, Working, Playing), wrong-way walking (W WAY), failure to obey traffic signs, 

signals, or officer, and being inattentive (talking, eating, Etc.). 

 However, note that among the aforementioned variables, five crash variables have 

significantly lower percentages of fatal and severe versus non-severe injury pedestrian crashes;  

(LGTCOND_LIGT-TRFCWAY_ND), (LGTCOND_LIGT-DRVRDO_GO_STR), 

(DRVRDOIN_GO_STR-NMTLOC_2), (WTHRCOND_CLR-NMTLOC_2) and 

(DRVRDO_GO_STR-NMTACT_6) at the 95% confidence level. 

While for bicyclist crashes, percentages shown in Table 6-35 showed a different pattern. 

Bicyclist crashes contribute with a lower percentage of the total crashes (41.08%), compared to 

pedestrian crashes. The most common roadway environmental-related variable that yielded severe 

fatal and severe bicyclist crashes are associated with no available light (dark) in roadways at the 

time of crash under clear weather conditions (LGTCOND_DARK-WTHRCOND_CLR; 1.47%). 

Also, crashes occurred when drivers going straight while bicyclists were located in the roadway 
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(DRVRDOIN_GO_STR-NMTLOC_2), were responsible for 2.41% of fatal and severe bicyclist 

crashes. Furthermore, concerning bicyclist weather-related variables, 3.81% of crashes that 

produced fatal and severe injuries occurred under clear weather while bicyclists located in the 

roadway (WTHRCOND_CLR-NMTLOC_2). Note that among the aforementioned variables, one 

crash variable has significantly lower percentages of fatal and severe versus non-severe injury 

bicyclist crashes; available streetlight at time of the crash in an undivided trafficway 

(LGTCOND_LIGT-TRFCWAY_ND) at the 95% confidence level. 

6.4.3  Pedestrian Crash Variables Using DT4000 Dataset 

Table 6-36: Summary of the Z-test for Proportion Results for the Newly Created Pedestrian 

Crash Variables 

Variable Symbol 
Variable 

Indication 

Fatal 

Injury 

Crash 

(K) 

Severe 

Injury 

Crash 

(A) 

Fatal 

and 

Severe 

Injury 

(K+A) 

Crash 

Evident 

and 

Possible 

Injury 

Crash 

(B+C) 

Sig. 

Result 

of the 

Z-

Test * 

Sample 

Size 

Roadway-Environmental-Related 

 

 

LGTCOND_LITE-
TRFCWAY_DIV_NO 

Streetlight is 
available at 
time of the 
crash in a 
divided 
trafficway 
without a 
traffic barrier 

0.47% 1.12% 1.59% 2.56%  7.04% 

LGTCOND_LITE-
TRFCWAY_UNDIV 

Streetlight is 
available at 
time of the 
crash in 
undivided 
trafficway 

0.70% 4.99% 5.69% 14.41% − 34.12% 

LGTCOND_DARK-
WTCOND_CLDY 

No light 
(dark) is 
available at 
time of crash 
under cloudy 
weather 

0.61% 0.84% 1.45% 1.40%  4.84% 

LGTCOND_DARK-
WTCOND_CLEAR 

No light 
(dark) is 
available at 
time of crash 

0.79% 1.21% 2.00% 1.59%  6.09% 
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under clear 
weather 

ROADHOR_LT_RT_CU-
ROADVERT_CST_UP_DN_SAG 

Curve (not 
straight) and 
hill (not 
level) road 
terrain 

1.72% 8.21% 9.93% 31.70%  70.66% 

Driver-Weather Related 

 

 

LGTCOND_LITE-
DRVRDOIN_GO_STR 

Streetlight is 
available at 
time of crash 
and driver 
going 
straight 

0.84% 4.29% 5.13% 6.25% − 19.32% 

DRVRDOIN_GO_STR-
NMTLOC_ATI_NX-ATI_UL-
NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

A driver 
going 
straight and 
pedestrian 
located in the 
roadway 

1.54% 5.45% 6.99% 10.21% − 38.23% 

LGTCOND_DARK-
DRVRDOIN_GO_STR 

No light 
(dark) is 
available at 
time of crash 
and driver 
going 
straight 

1.07% 1.63% 2.70% 1.35%  6.87% 

Pedestrian-Weather Related 

 

 

LGTCOND_DARK- 
NMTLOC_ATI_NX-ATI_UL-
NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

No light 
(dark) is 
available at 
time of crash 
and 
pedestrian 
located in the 
roadway 

1.26% 1.59% 2.84% 2.10% + + 9.66% 

WTCOND_CLEAR- 
NMTLOC_ATI_NX-ATI_UL-
NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

The crash 
occurred 
under clear 
weather and 
pedestrian 
located in the 
roadway 

1.31% 4.62% 5.92% 13.01% − 48.99% 

Pedestrian-Driver Related 

 

 

DRVRDOIN_GO_STR-
NMTACT_NF_TRFC 

A driver 
going 
straight and 
pedestrian 
walking not 
facing traffic 

0.19% 0.37% 0.56% 1.59%  6.81% 

DRVRDOIN_GO_STR- 
NMTACT_OTHER_NF_TRFC-

The driver 
going 

2.98% 9.98% 12.96% 20.89% − 30.88% 
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DISREG-SUDDEN-DK_CLTH-
FC_TRFC 

straight and 
pedestrian 
acting other 
than 
disregarding 
signal, 
walking not 
facing 
traffic, 
wearing dark 
clothes, and 
darting into 
the roadway. 

Pedestrian-Specific   

NMTLOC_ATI_MX-NAI_MX- 
NMTACT_OTHER_NF_TRFC-
DISREG-SUDDEN-DK_CLTH-
FC_TRFC 

Pedestrian 
located in the 
roadway and 
acting other 
than 
disregarding 
signal, 
walking not 
facing 
traffic, 
wearing dark 
clothes, and 
darting into 
the roadway.  

0.00% 0.47% 0.47% 2.75%  
5.94% 
 

Total Cashes (N=2145) 110 434 544 1601   

 

6.4.4  Bicyclist Crash Variables Using DT4000 Dataset 

Table 6-37: Summary of the Z-test for Proportion Results for the Newly Created Bicyclist 

Crash Variables 

Variable Symbol 
Variable 

Indication 

Fatal 

Injury 

Crash 

(K) 

Severe 

Injury 

Crash 

(A) 

Fatal 

and 

Severe 

Injury 

(K+A) 

Crash 

Evident 

and 

Possible 

Injury 

Crash 

(B+C) 

Sig. 

Result 

of the 

Z-

Test * 

Sample 

Size 

Roadway-Environmental-Related 

 

 

LGTCOND_LITE-
TRFCWAY_DIV_NO 

Streetlight is 
available at 
time of the 
crash in a 
divided 
trafficway 
without a 
traffic barrier 

0.07% 0.07% 0.13% 1.34%  3.58% 
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LGTCOND_LITE-
TRFCWAY_UNDIV 

Streetlight is 
available at 
time of the 
crash in 
undivided 
trafficway 

0.07% 1.47% 1.54% 6.68%  20.01% 

LGTCOND_DARK-
WTCOND_CLDY 

No light 
(dark) is 
available at 
time of crash 
under cloudy 
weather 

0.00% 0.00% 0.00% 0.27%  0.66% 

LGTCOND_DARK-
WTCOND_CLEAR 

No light 
(dark) is 
available at 
time of crash 
under clear 
weather 

0.13% 0.07% 0.20% 0.33%  1.29% 

ROADHOR_LT_RT_CU-
ROADVERT_CST_UP_DN_SAG 

Curve (not 
straight) and 
hill (not 
level) road 
terrain 

0.13% 0.33% 0.47% 4.61%  12.36% 

Driver-Weather Related 

 

 

LGTCOND_LITE-
DRVRDOIN_GO_STR 

Streetlight is 
available at 
time of crash 
and driver 
going straight 

0.07% 1.07% 1.14% 3.14%  10.42% 

DRVRDOIN_GO_STR- 
NMTLOC_ATI_NX-ATI_UL-
NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

A driver 
going straight 
and 
pedestrian 
located in the 
roadway 

0.27% 1.54% 1.80% 6.22%  19.52% 

LGTCOND_DARK-
DRVRDOIN_GO_STR 

No light 
(dark) is 
available at 
time of crash 
and driver 
going straight 

0.00% 0.13% 0.13% 0.74%  2.12% 

Bicyclist -Weather Related 

 

 

LGTCOND_DARK- 
NMTLOC_ATI_NX-ATI_UL-
NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

No light 
(dark) is 
available at 
time of crash 
and 
pedestrian 
located in the 
roadway 

0.00% 0.13% 0.13% 0.60%  1.78% 

WTCOND_CLEAR- 
NMTLOC_ATI_NX-ATI_UL-

The crash 
occurred 
under clear 

0.13% 0.53% 0.67% 4.48%  12.53% 
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NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

weather and 
pedestrian 
located in the 
roadway 

Bicyclist -Driver Related 

 

 

DRVRDOIN_GO_STR- 
NMTACT_NF_TRFC 

A driver 
going straight 
and 
pedestrian 
walking not 
facing traffic 

0.00% 0.13% 0.13% 0.40%  1.29% 

DRVRDOIN_GO_STR-
NMTACT_OTHER_NF_TRFC-
DISREG-SUDDEN-DK_CLTH-
FC_TRFC 

A driver 
going straight 
and 
pedestrian 
acting other 
than 
disregarding 
signal, 
walking not 
facing traffic, 
wearing dark 
clothes, and 
darting into 
the roadway. 

0.40% 4.75% 5.15% 21.86% − 65.74% 

Bicyclist -Specific   

NMTLOC_ATI_MX-NAI_MX- 
NMTACT_OTHER_NF_TRFC-
DISREG-SUDDEN-DK_CLTH-
FC_TRFC 

Pedestrian 
located in the 
roadway and 
acting other 
than 
disregarding 
signal, 
walking not 
facing traffic, 
wearing dark 
clothes, and 
darting into 
the roadway.  

0.07% 2.14% 2.21% 32.55%  
84.60% 
 

Total Cashes (N=1496) 11 145 156 1340   

 

The same variables were also examined using the DT4000 dataset, basically, since many 

variables related to roadway, weather, environment, vehicle, crash, and person involved in the 

crash have been recategorized and some have different meanings. Percentages presented in Table 

6-36 revealed that the most common roadway environmental-related variable that yielded fatal and 

severe pedestrian crashes is associated with crashes occurred on the curve (not straight) and hill 
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(not level) road terrain (ROADHOR_LT_RT_CU-ROADVERT_CST_UP_DN_SAG; 9.93%). 

The next most crash variable that yielded fatal and severe pedestrian crashes was when a streetlight 

is available at the time of the crash in an undivided trafficway (LGTCOND_LITE-

TRFCWAY_UNDIV; 5.69%). This result is consistent with the results gained from analyzing the 

MV4000 dataset. 

Crashes occurred when drivers are going straight while pedestrians are located in the roadway 

(DRVRDOIN_GO_STR-NMTLOC_ATI_NX-ATI_UL-NAI_MX-NAI_NX-NAI_UN-PK_LN-

BIKE_LN-SHLDR), and when a streetlight is available at time of crash while drivers going 

straight (LGTCOND_LITE-DRVRDOIN_GO_STR) were the two most driver weather-related 

variables that are associated with 6.99%, and 5.13% fatal and severe pedestrian crashes, 

respectively. Additionally, crashes occurred under clear weather while pedestrians located in the 

roadway (WTCOND_CLEAR-NMTLOC_ATI_NX-ATI_UL-NAI_MX-NAI_NX-NAI_UN-

PK_LN-BIKE_LN-SHLDR), and crashes occurred on roadways with no available light (dark) and 

while pedestrians located in the roadway (LGTCOND_DARK- NMTLOC_ATI_NX-ATI_UL-

NAI_MX-NAI_NX-NAI_UN-PK_LN-BIKE_LN-SHLDR), were two most common pedestrian 

weather-related variables that were responsible for 5.92%, and 2.84% fatal and severe injury 

pedestrian crashes, respectively. Drivers going straight while pedestrians acting other than 

disregarding signal, walking not facing traffic, wearing dark clothes, and darting into the roadway 

at the time of the crash (DRVRDOIN_GO_STR-NMTACT_OTHER_NF_TRFC-DISREG-

SUDDEN-DK_CLTH-FC_TRFC), were responsible for 12.96% of the fatal and severe pedestrian 

crashes.  

It is also observed that five crash variables have significantly lower percentages of fatal and 

severe versus non-severe injury pedestrian crashes;  (LGTCOND_LITE-TRFCWAY_UNDIV), 
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(LGTCOND_LITE-DRVRDOIN_GO_STR), (DRVRDOIN_GO_STR-NMTLOC_ATI_NX-

ATI_UL-NAI_MX-NAI_NX-NAI_UN-PK_LN-BIKE_LN-SHLDR), (WTCOND_CLEAR- 

NMTLOC_ATI_NX-ATI_UL-NAI_MX-NAI_NX-NAI_UN-PK_LN-BIKE_LN-SHLDR) and 

(DRVRDOIN_GO_STR-NMTACT_OTHER_NF_TRFC-DISREG-SUDDEN-DK_CLTH-

FC_TRFC) at the 95% confidence level. Whereas, one variable showed a significantly higher 

percentage of fatal and severe versus non-severe injury pedestrian crashes; (LGTCOND_DARK- 

NMTLOC_ATI_NX-ATI_UL-NAI_MX-NAI_NX-NAI_UN-PK_LN-BIKE_LN-SHLDR).  

While for bicyclist crashes, percentages shown in Table 6-37 displayed that the most common 

roadway environmental-related variable that yielded severe fatal and severe bicyclist crashes is 

associated with streetlight available light at the time of the crash and in an undivided trafficway 

(LGTCOND_LITE-TRFCWAY_UNDIV; 1.54%). Also, crashes occurred when drivers going 

straight while bicyclists were located in the roadway (DRVRDOIN_GO_STR- 

NMTLOC_ATI_NX-ATI_UL-NAI_MX-NAI_NX-NAI_UN-PK_LN-BIKE_LN-SHLDR), were 

responsible for 1.80% of fatal and severe bicyclist crashes.  

Furthermore, concerning bicyclist driver-related variables, 5.15% of crashes that produced 

fatal and severe injuries occurred while drivers were going straight and bicyclists acting other than 

disregarding signal, walking not facing traffic, wearing dark clothes, and darting into the roadway   

(DRVRDOIN_GO_STR-NMTACT_OTHER_NF_TRFC-DISREG-SUDDEN-DK_CLTH-

FC_TRFC). For instance, failure to have lights on when required, Operating without required 

equipment (bicycle reflectors), failure to obey traffic signs, signals, or officer, and being inattentive 

(talking, eating, Etc.). The percentages suggest that the (DRVRDOIN_GO_STR-

NMTACT_OTHER_NF_TRFC-DISREG-SUDDEN-DK_CLTH-FC_TRFC) crash variable has 
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significantly lower percentages of fatal and severe versus non-severe injury bicyclist crashes; at 

the 95% confidence level. 

6.5  Crash Variable Selection Using CHAID  

This section shows the results of the CHAID analysis applied to vehicle crashes involving 

pedestrians and bicyclists. In Table 6-38, variables used by the CHAID decision tree technique 

for analyzing pedestrian crashes are shown. Crash severity is the dependent variable used in the 

analysis. Crash severity was calculated through excluding any observation where the driver 

sustained more severe injury than the non-motorists, then the ROLE1, ROLE2 data fields were 

used to determine injury severity of pedestrians and bicyclists separately. Finally, the injury 

severity for the crash is calculated using the most severe injury sustained among the crash 

participants or within 30 days to the involved pedestrian or bicyclist. Any crash where the driver 

sustained a higher injury severity, is excluded. Also, three injury severity levels have been used to 

study the effect of variables on each level; K (fatal crash), A (severe injury crash), and B+C 

(evident/possible injury crash), following the path of many researchers who studied crash injury 

severity of pedestrians and bicyclists involved in vehicle crashes (i.e., (Kemnitzer et al. 2019)). 

The distribution of crash severity levels is (K 3.30%, A 16.00%, and B+C 80.7%), hence, the crash 

severity was reported as fatal and severe injury crash as opposed to evident/possible injury crash 

is 19.30%. 

6.5.1  CHAID Decision Tree of MV4000 Dataset 

Table 6-38: Dependent and Independent Variables Including Pedestrian-Related Variable 

Used to Create the Pedestrian Model Using MV4000 Dataset 

Dependent Variable 

(Abbreviation) 
Attributes 

Crash injury severity 
(INJSVR) 

Fatality (K) 
Severe Injury (A) 
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Evident and Possible (B+C) 
Independent Variables  
ROADHOR [1,2] Horizontal road terrain 
ROADVERT [1,2] Vertical road terrain 
RDCOND [A,B,C] Road surface condition 
TRFCWAY [1,2] Trafficway description 
RLTNRDWY Location of the first harmful event 
LOCTYPE Crash location type 
TRFCCNTL [1,2] The traffic control device (TCD) in effect 
SURFTYPE [1,2] Road surface type 
TOTLANES [1,2] Total number of lanes 
RLTNTRWY Crash location with respect to trafficway 
INTTYPE Intersection type where the crash occurred 
TRFCINOP [1,2] Status of the TCD 
WTCOND [A, B] Prevailing atmospheric conditions 
LGTCOND Light conditions 
RDWYPC [A, B, C] Apparent factors of the road/ highway 
ENVPC [A,B,C] Contributing environmental conditions 
DRVRPC [1,2] [A,B,C,D] Driver contributing actions/circumstances 
DRVRDOIN [1,2] Controlled Maneuver by The Driver 
NMTSFQ [1,2] [A,B] Safety Equipment Used by the Driver 
RACE [1,2] Driver race 
TEENDRVR Teen driver 
NMTACT [1,2] [A,B] Pedestrian actions/circumstances contributing to the crash 
NMTLOC [1,2] Pedestrian location with respect to the roadway 
NMTSFQ [1,2] [A,B] Safety equipment used by the pedestrian 
DNMFTR [1,2] [A,B] Individual condition relevant to the crash 
NMTPRIOR [1,2] Pedestrian actions immediately prior to the crash 
PEDAGE The age of the non-motorists involved in a crash in years. 
PEDSEX The sex of the non-motorists involved in a crash. 
MOSTHARM [1,2] Events resulting in the most severe injury 
SPEEDFLAG Vehicle speeding status 
HITRUN Hit and run 
VEHTYPE [1,2] Vehicle type involved in the crash 
LGTCOND_LIGT-
TRFCWAY_D_WO 

Streetlight is available at time of the crash in a divided 
trafficway without a traffic barrier 

LGTCOND_LIGT-
TRFCWAY_ND 

Streetlight is available at time of the crash in undivided 
trafficway 

LGTCOND_DARK-
WTHRCOND_CLDY 

No light (dark) is available at time of crash under cloudy 
weather 

LGTCOND_DARK-
WTHRCOND_CLR 

No light (dark) is available at time of crash under clear 
weather 

ROADHOR_C- 
ROADVERT_H 

Curve (not straight) and hill (not level) road terrain 
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LGTCOND_LIGT-
DRVRDO_GO_STR 

Streetlight is available at time of crash and driver going 
straight 

DRVRDOIN_GO_STR-
NMTLOC_2 

A driver going straight and pedestrian located in the roadway 

LGTCOND_DARK-
DRVRDO_GO_STR 

No light (dark) is available at time of crash and driver going 
straight 

LGTCOND_DARK-
NMTLOC_2 

No light (dark) is available at time of crash and pedestrian 
located in the roadway 

WTHRCOND_CLR-
NMTLOC_2 

The crash occurred under clear weather and pedestrian 
located in the roadway 

DRVRDO_GO_STR-
NMTACT_1 

A driver going straight and pedestrian walking not facing 
traffic 

DRVRDO_GO_STR-
NMTACT_6 

A driver going straight and pedestrian acting other than 
disregarding signal, walking not facing traffic, wearing dark 
clothes, and darting into the roadway. 

NMTLOC_1-NMTACT_6 
Pedestrian located in the roadway and acting other than 
disregarding signal, walking not facing traffic, wearing dark 
clothes, and darting into the roadway.  
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Figure 6-2: CHAID Analysis to Determine Variables that Affect Pedestrians Crash Severity Level Using MV4000 Dataset 
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The CHAID decision tree for pedestrian crashes is displayed in Figure 6-2. Pedestrian crashes 

resulting in fatal (K), severe injury (A), and evident and possible injury (B+C) were divided into 

13 nodes, and 8 terminal nodes. The decision tree structure involves the following five splitting 

variables: 

o A driver going straight with the pedestrian in the roadway 

(DRVRDOIN.GO.DTR.NMTLOC2) 

o Light condition (LGTCOND.PED.MV) 

o Driver’s action (DRVRDO.PED.MV) 

o Trafficway division type (TRFCWAY.PED.MV) 

o Pedestrian location (NMTLOC.PED.PED.MV) 

The first and top node in the CHAID decision tree output in Figure 6-2 is 

“DRVRDOIN.GO.DTR.NMTLOC2”, and based on the model, if the driver was going straight and 

the pedestrian location in the roadway (1.0), the tree predicts 9.1% of fatality crashes and 31.5% 

of severe injury crashes; if the driver was not going straight and the pedestrian located not in the 

roadway (0.0), the tree predicts 3.9% of fatality crashes and 17.1% of severe injury crashes. 

In the second level of the decision tree, the group including driver was going straight and the 

pedestrian location in the roadway (1.0) directed to another split in the tree based on the light 

conditions at the time of the crash. If the crash occurred within the nighttime while streetlights 

were available (LIGT), the percentage of fatality crash and severe injury crash was 7.5% and 

41.5%, respectively. If light conditions were dark and unlit (DARK), the percentage of fatality 

crash and severe injury crash was 26.6% and 40.5%, respectively. Whereas, if the crash occurred 

during the daytime (DAY), the percentage of fatality crash and severe injury crash was 4.7% and 

23%, respectively.  
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At the same level, driver action branched from the “DRVRDOIN.GO.DTR.NMTLOC2” 

node, suggesting the following categorization; first category: slowing/stopped (SL/ST),  changing 

lanes (CHG LN), and overtaking on the left (OVT LT); second category: overtaking on the right 

(OVT RT), going straight (GO STR), negotiating curve (NEGCRV), and legally parked (LG 

PRK); third category: making a left turn (LT TRN), making a right turn (RT TRN), backing up 

(BACKING), stopped in traffic (STOPED), right turn on red (RTOR); U-turn (UTURN), parking 

maneuver (PARKING), and merging into traffic (MERGING). If the driver’s action involved 

slowing/stopped (SL/ST), changing lanes (CHG LN), or overtaking on the left (OVT LT); the 

percentage of fatality crash and severe injury crash was 4.9% and 18.2%, respectively. If the 

driver’s action involved overtaking on the right (OVT RT), going straight (GO STR), negotiating 

curve (NEGCRV), or legally parked (LG PRK), the percentage of fatality crash and severe injury 

crash was 7.7% and 25.9%, respectively. Whereas, if the driver was making a left turn (LT TRN), 

making a right turn (RT TRN), backing up (BACKING), stopped in traffic (STOPED), right turn 

on red (RTOR); U-turn (UTURN), parking maneuver (PARKING), or merging into traffic 

(MERGING), the percentage of fatality crash and severe injury crash was 1.1% and 11.8%, 

respectively. 

 In the third level of the tree, for the group of driver’s actions involving overtaking on the 

right (OVT RT), going straight (GO STR), negotiating curve (NEGCRV), or legally parked (LG 

PRK), type of trafficway division describing areas designed for motor vehicle operation divided 

the data into two subgroups: in case of a divided highway with traffic barrier (D/B) and divided 

highway without traffic barrier (D/WO), the percentages of fatality crash and severe injury crash 

were 16.7% and 30.6%, respectively. Whereas, in the case of no physical division (ND), or one-
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way traffic (OW), the percentage of fatality crash and severe injury crash was 4.9% and 24.4%, 

respectively. 

In the same level of the tree, the group of driver’s actions involving slowing/stopped (SL/ST), 

changing lanes (CHG LN), or overtaking on the left (OVT LT) directed to another split in the tree 

based on pedestrian location. If the pedestrian was located in the roadway (2.0) or not in the 

roadway (3.0), the percentage of fatality crash and severe injury crash was 7.7% and 21.4%, 

respectively. Whereas this percentage among pedestrians who were located in a crosswalk (1.0) or 

on the sidewalk (4.0), dropped down to 1.0% and 13.9% for fatal and severe injury crashes, 

respectively. 

Table 6-39: Dependent and Independent Variables Including Bicyclist-Related Variable 

Used to Create the Model Using MV4000 Dataset 

Dependent Variable 

(Abbreviation) 
Attributes 

Crash injury severity 
(INJSVR) 

Fatality (K) 
Severe Injury (A) 
Evident and Possible (B+C) 

Independent Variables  
ROADHOR [1,2] Horizontal road terrain 
ROADVERT [1,2] Vertical road terrain 
RDCOND A, B, C] Road surface condition 
TRFCWAY [1,2] Trafficway description 
RLTNRDWY Location of a first harmful event 
LOCTYPE Crash location type 
TRFCCNTL [1,2] The traffic control device (TCD) in effect 
SURFTYPE [1,2] Road surface type 
TOTLANES [1,2] Total number of lanes 
RLTNTRWY Crash location with respect to trafficway 
INTTYPE Intersection type where the crash occurred 
TRFCINOP [1,2] Status of the TCD 
WTCOND [A, B] Prevailing atmospheric conditions 
LGTCOND Light conditions 
RDWYPC [A, B, C] Apparent factors of the road/ highway 
ENVPC [A,B,C] Contributing environmental conditions 
DRVRPC [1,2] [A,B,C,D] Driver contributing actions/circumstances 
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DRVRDOIN [1,2] Controlled Maneuver by The Driver 
NMTSFQ [1,2] [A,B] Safety Equipment Used by the Driver 
RACE [1,2] Driver race 
TEENDRVR Teen driver 
NMTACT[1,2] [A,B] Bicyclist actions/circumstances contributing to the crash 
NMTLOC [1,2] Bicyclist location with respect to the roadway 
NMTSFQ [1,2] [A,B] Safety equipment used by the bicyclist 
DNMFTR [1,2] [A,B] Individual condition relevant to the crash 
NMTPRIOR [1,2] Bicyclist actions immediately prior to the crash 
BIKESEX The sex of the non-motorists involved in a crash. 
BIKEAGE The age of the non-motorists involved in a crash in years. 
MOSTHARM [1,2] Events resulting in the most severe injury 
SPEEDFLAG Vehicle speeding status 

HITRUN 
Hit and run 
 

VEHTYPE [1,2] Vehicle type involved in the crash 
LGTCOND_LIGT-
TRFCWAY_D_WO 

Streetlight is available at time of the crash in a divided 
trafficway without a traffic barrier 

LGTCOND_LIGT-
TRFCWAY_ND 

Streetlight is available at time of the crash in undivided 
trafficway 

LGTCOND_DARK-
WTHRCOND_CLDY 

No light (dark) is available at time of crash under cloudy 
weather 

LGTCOND_DARK-
WTHRCOND_CLR 

No light (dark) is available at time of crash under clear 
weather 

ROADHOR_C- ROADVERT 
_H 

Curve (not straight) and hill (not level) road terrain 

LGTCOND_LIGT-
DRVRDO_GO_STR 

Streetlight is available at time of crash and driver going 
straight 

DRVRDOIN_GO_STR-
NMTLOC_2 

A driver going straight and pedestrian located in the roadway 

LGTCOND_DARK-
DRVRDO_GO_STR 

No light (dark) is available at time of crash and driver going 
straight 

LGTCOND_DARK-
NMTLOC_2 

No light (dark) is available at time of crash and pedestrian 
located in the roadway 

WTHRCOND_CLR-
NMTLOC_2 

The crash occurred under clear weather and pedestrian 
located in the roadway 

DRVRDO_GO_STR-
NMTACT_1 

A driver going straight and pedestrian walking not facing 
traffic 

DRVRDO_GO_STR-
NMTACT_6 

A driver going straight and pedestrian acting other than 
disregarding signal, walking not facing traffic, wearing dark 
clothes, and darting into the roadway. 

NMTLOC_1-NMTACT_6 
Pedestrian located in the roadway and acting other than 
disregarding signal, walking not facing traffic, wearing dark 
clothes, and darting into the roadway.  
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Figure 6-3:  CHAID Analysis to Determine Variables that Affect Bicyclists Crash Severity Level Using MV4000 Dataset 
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The CHAID decision tree for bicyclist crashes is displayed in Figure 6-3. Bicyclist crashes 

resulting in fatal (K), severe injury (A), and evident and possible injury (B+C) were divided into 

9 nodes, and 6 terminal nodes. The decision tree structure involves the following three splitting 

variables: 

o Light condition is nighttime with streetlights and trafficway is not physically divided 

(LGTCOND.LIGT.TRFCWAY.ND) 

o Traffic control in effect (TRFCNTL.BIKE.MV) 

o Light condition (LGTCOND.BIKE.MV) 

The first and top node in the CHAID decision tree output in Figure 6-3 is 

“LGTCOND.LIGT.TRFCWAY.ND”, and based on the model, if the crash occurred during the 

nighttime in a location where the light condition involved streetlights and the trafficway is not 

physically divided (1.0), the tree predicts a percentage of 0.6% and 37.8% of fatal and severe injury 

crashes, respectively. in the second level, at node 2 “LGTCOND.BIKE.MV”, the tree branches to 

two categories; daytime (DAY), and nighttime/unlit (DARK) and nighttime/with streetlights 

(LIGT). If the crash occurred during the daytime where the daylight is effective (DAY), the tree 

predicts 0.9% of fatality crashes and 14.2% of severe injury crashes; if the crash occurred during 

the nighttime/unlit (DARK) or nighttime/with streetlights (LIGT), the tree predicts 100% of severe 

injury crashes. 

At the same level of the decision tree, the group that did not include crashes occurred during 

the nighttime in a location where the light condition involved streetlights and the trafficway is not 

physically divided (0.0), split in the tree based on the traffic control in effect 

(TRFCNTL.BIKE.MV). If the traffic control device (TCD) in effect includes traffic signal flashing 

(TS/FL), yield sign (YIELD), or other devices (i.e., RR-xing signal (RRSIG), stop sign with flasher 
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(SS FL), warning sign (WS)), the percentage of predicted severe injury crashes was 27.7%; if the 

TCD in effect includes warning sign with flasher (WS FL), a traffic control person was available 

at the crash location (TC PR), or the filed was left blank, the tree predicts 0.0% of fatality and 

severe injury crashes; if the TCD involves stop sign (SS), or no TCD available (NONE), the tree 

predicts 5.1% of severe injury crashes. Whereas, in the case of a traffic signal operating in the 

crash location (TS OP), the percentage of fatality crash and severe injury crash was 1.7% and 

7.8%, respectively. 

6.5.2  CHAID Decision Tree of DT4000 Dataset 

Table 6-40: Dependent and Independent Variables Including Pedestrian-Related Variable 

Used to Create the Pedestrian Model Using DT4000 Dataset 

Dependent Variable (Abbreviation) Attributes 

Crash injury severity (INJSVR) 
Fatality (K) 
Severe Injury (A) 
Evident and Possible (B+C) 

Independent Variables  
ROADHOR [1,2] Horizontal road terrain 
ROADVERT [1,2] Vertical road terrain 
RDCOND [A,B,C] Road surface condition 
TRFCWAY [1,2] Trafficway description 
RLTNRDWY Location of the first harmful event 
LOCTYPE Crash location type 
TRFCCNTL [1,2] The traffic control device (TCD) in effect 
SURFTYPE [1,2] Road surface type 
TOTLANES [1,2] Total number of lanes 
RLTNTRWY Crash location with respect to trafficway 
INTTYPE Intersection type where the crash occurred 
TRFCINOP [1,2] Status of the TCD 
WTCOND [A, B] Prevailing atmospheric conditions 
LGTCOND Light conditions 
RDWYPC [A, B, C] Apparent factors of the road/ highway 
ENVPC [A,B,C] Contributing environmental conditions 
DRVRPC [1,2] [A,B,C,D] Driver contributing actions/circumstances 
DRVRDOIN [1,2] Controlled Maneuver by The Driver 
NMTSFQ [1,2] [A,B] Safety Equipment Used by the Driver 
RACE [1,2] Driver race 
TEENDRVR Teen driver 
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NMTACT [1,2] [A,B] 
Pedestrian actions/circumstances 
contributing to the crash 

NMTLOC [1,2] 
Pedestrian location with respect to the 
roadway 

NMTSFQ [1,2] [A,B] Safety equipment used by the pedestrian 
DNMFTR [1,2] [A,B] Individual condition relevant to the crash 

NMTPRIOR [1,2] 
Pedestrian actions immediately prior to the 
crash 

PEDAGE 
The age of the non-motorists involved in a 
crash in years. 

PEDSEX 
The sex of the non-motorists involved in a 
crash 

MOSTHARM [1,2] Events resulting in the most severe injury 
SPEEDFLAG Vehicle speeding status 
HITRUN Hit and run 
VEHTYPE [1,2] Vehicle type involved in the crash 

LGTCOND_LITE-TRFCWAY_DIV_NO 
Streetlight is available at time of the crash 
in a divided trafficway without a traffic 
barrier 

LGTCOND_LITE-TRFCWAY_UNDIV 
Streetlight is available at time of the crash 
in undivided trafficway 

LGTCOND_DARK-WTCOND_CLDY 
No light (dark) is available at time of crash 
under cloudy weather 

LGTCOND_DARK-WTCOND_CLEAR 
No light (dark) is available at time of crash 
under clear weather 

ROADHOR_LT_RT_CU-
ROADVERT_CST_UP_DN_SAG 

Curve (not straight) and hill (not level) road 
terrain 

LGTCOND_LITE-DRVRDOIN_GO_STR 
Streetlight is available at time of crash and 
driver going straight 

DRVRDOIN_GO_STR-NMTLOC_ATI_NX-
ATI_UL-NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

A driver going straight and pedestrian 
located in the roadway 

LGTCOND_DARK-DRVRDOIN_GO_STR 
No light (dark) is available at time of crash 
and driver going straight 

LGTCOND_DARK- NMTLOC_ATI_NX-
ATI_UL-NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

No light (dark) is available at time of crash 
and pedestrian located in the roadway 

WTCOND_CLEAR- NMTLOC_ATI_NX-
ATI_UL-NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

The crash occurred under clear weather and 
pedestrian located in the roadway 

DRVRDOIN_GO_STR-NMTACT_NF_TRFC 
A driver going straight and pedestrian 
walking not facing traffic 

DRVRDOIN_GO_STR- 
NMTACT_OTHER_NF_TRFC-DISREG-
SUDDEN-DK_CLTH-FC_TRFC 

A driver going straight and pedestrian 
acting other than disregarding signal, 
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walking not facing traffic, wearing dark 
clothes, and darting into roadway 

NMTLOC_ATI_MX-NAI_MX- 
NMTACT_OTHER_NF_TRFC-DISREG-
SUDDEN-DK_CLTH-FC_TRFC 

Pedestrian located in the roadway and 
acting other than disregarding signal, 
walking not facing traffic, wearing dark 
clothes, and darting into roadway 

 

 

 

  



 

 
 

241 

 

Figure 6-4: CHAID Analysis to Determine Variables that Affect Pedestrians Crash Severity Level Using DT4000 Dataset 
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The CHAID decision tree for pedestrian crashes is displayed in Figure 6-4. Pedestrian crashes 

resulting in fatal (K), severe injury (A), and evident and possible injury (B+C) were divided into 

25 nodes, and 14 terminal nodes. The decision tree structure involves the following seven splitting 

variables: 

o Pedestrian condition relevant to the crash (DNMFTR.PED.DT) 

o Light condition (LGTCOND.PED.DT) 

o Pedestrian location (NMTLOC.PED.PED.DT) 

o Speed flag (SPEEDFLAG.PED.DT) 

o Light condition is streetlight at nighttime and trafficway is undivided 

(LGTCOND.LITE.TRFCWAY.UNDIV) 

o Safety equipment used by the pedestrian (NMTSFQ.PED.DT) 

o Vehicle controlled maneuver prior to the beginning of the sequence of events 

(DRVRDOIN.PED.DT)  

o Trafficway division (TRFCWAY.PED.DT) 

The first and top node in the CHAID decision tree output in Figure 6-4 is 

“DNMFTR.PED.DT”, and based on the model, it is best to categorize the “DNMFTR.PED.DT” 

data field in the following categories: pedestrian appeared in normal condition (NORM) in a 

category, not observed condition (NO OBS) in a category, and involved other combinations 

(OTHER COMB) such as under influence of medication/drugs/alcohol (UI MDA), physically 

impaired (PHY IMP), emotional, i.e., depressed, angry, disturbed (EMO), ill/sick/fainted (SICK), 

confused/disoriented (CONF), paraplegic/restricted to a wheelchair (WCHAIR), blind (BLIND), 

uses cane/crutches (CANE), or the field is left blank (blank) in another category. If the pedestrian 

appeared in normal condition (NORM), the tree predicts 0.7% of fatality crashes and 16.5% of 
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severe injury crashes; if the pedestrian condition was not observed (NO OBS), the tree predicts 

higher percentages of fatality and severe injury crashes; 15.4% and 22.6%, respectively. Whereas, 

if the pedestrian condition involved other combinations (OTHER COMB.) such as being under 

influence of medication/drugs/alcohol (UI MDA), physically impaired (PHY IMP), emotional, i.e., 

depressed, angry, disturbed (EMO), ill/sick/fainted (SICK), confused/disoriented (CONF), 

paraplegic/restricted to a wheelchair (WCHAIR), blind (BLIND), uses cane/crutches (CANE), or 

the field is left blank (blank), the tree predicts 7.4% of fatality crashes and the highest percentage 

of severe injury crashes; 28.2%. 

In the first level of the decision tree, the group including other combinations (OTHER 

COMB.) such as (UI MDA, PHY IMP, EMO, SICK, CONF, WCHAIR, BLIND, CANE), or the 

field is left blank (blank), directed to another split in the tree based on the light condition existed 

at the time of the crash. If the crash occurred during the dark time with the lighted roadway (LITE), 

the percentage of predicted fatality crashes is the least (2.7%) but the predicted severe injury 

crashes were 34.6%; if the light condition was dark/unlit (DARK) or dawn (DAWN), ), the 

percentage of predicted fatality crashes is the highest (23.3%), and the percentage of predicted 

severe injury crashes was 35.6%; if the light condition involved daylight (DAY), dusk (DUSK), 

or dark/unknown lighting (DK/UN), the percentage of predicted fatality crash and severe injury 

crash was 23.3% and 35.6%, respectively. In the same level of the tree, under the unobserved 

pedestrian condition (NO OBS) group, the tree split based on the pedestrian location into two 

categories; pedestrian location involving being at intersection-in marked crosswalk (ATI MX), at 

intersection-unmarked / unknown if marked crosswalk (ATI UM), or not at intersection-in marked 

crosswalk (NAI MX) category, and Not At Intersection-On Roadway, Not In Marked Crosswalk 

(NAI NX), At Intersection-Not In Crosswalk (ATI NX), shoulder/roadside (SHLDR), and other 
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locations (OTHR) such as parking lane/zone (PK LN), bicycle lane (BIKE LN), sidewalk 

(SDWLK), median/crossing island (MEDIAN), Driveway Access (DRWAY), etc. in another 

category. 

The third node in the first level (NORM) splits based on whether speed was a factor in the 

crash (SPEEDFLAG). The group including a speed flag (Y) predicts half of the severe injury 

crashes, whereas, the group not including a speed flag (N) splits based on the vehicle-controlled 

maneuver, into two categories; drivers going straight (GO STR), and another category involving 

other maneuvers such as turning left (LT TRN), right turn (RT TRN), and backing (BACKING). 

The (GO STR) group predicts that the percentage of the fatality and severe injury crashes is 1.1% 

and 23.7%, respectively. Whereas, the group involving other maneuvers (LT TRN, RT TRN, 

BACKING) predicts that the percentage of the fatality and severe injury crashes is 0.6% and 

12.1%, respectively. At the same level, the light condition group of (LITE) splits based on the 

crashes occurred when the light condition is streetlight at nighttime and the trafficway is undivided. 

If the crash occurred in the dark where streetlights are available and trafficway is undivided (Y), 

the tree predicts 1.9% and 16.7% of the fatality and severe injury crashes, respectively. otherwise, 

it predicts a slightly higher percentage of fatality and severe injury crashes, 1.9%, and 16.7%, 

respectively. The light condition group involving (DAY, DUSK, DK/UN) splits also based on the 

(LGTCOND.LITE.TRFCWAY.UNDIV) and predicts 1.6% and 12.9% of fatal and severe injury 

crashes in case of crashes involving occurred while streetlight at nighttime is available and 

trafficway is undivided (1.0). 

In the third level, two categories of safety equipment usage split from the group of the 

(N.AI.NX, ATI.NX, SHLDR, OTHR) group into two categories; the first includes crashes 

occurred while the pedestrian was not using any safety equipment (NONE), using reflective 
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clothing (REFL), or other equipment (OTHR), and the second involves unknown safety equipment 

(UNKN).  Both groups predict a close percentage of severe injury crashes, 23.7%, and 25.5%, for 

the first and second groups, respectively. However; the first group (REFL, NONE, OTHR) predicts 

a high percentage of fatal crashes compared to the second group (UNKN), 35.2%, and 6.5%, 

respectively. 

In the fourth level of the tree, the controlled maneuver segmented the data regarding the 

trafficway division (TRFCWAY.PED.DT) into two groups. If the trafficway was two-way, not 

divided, with a continuous left-turn lane (TWLTL), two-way, not divided (UNDIV), or trafficway 

division is unknown (UNKN), the percentage of fatality crash and severe injury crash was 25.2% 

and 24.3%, respectively. Whereas, if the trafficway was divided highway without a traffic barrier 

(DIV NO),  two-way, divided, unprotected (painted > 4 feet) median (DIV PNT), divided highway 

with traffic barrier (DIV BAR), divided highway median with a barrier (DIV MBR ), one-way 

traffic (OW), parking lot or private property (PL/PP), or entrance/exit ramp (RAMP), the 

percentage of fatality crash and severe injury crash was 61.4% and 27.3%, respectively. 

Additionally, in the fourth level, the (GO STR, OTHR) group of controlled maneuvers, led to 

another split among the group of pedestrians using safety equipment: if the pedestrian was wearing 

reflective clothing/backpack, or if the equipment used was unknown (UNKN), the percentage 

predicted for fatality crash severe injury crashes is 3.2% and 9.7%. Whereas, if the pedestrian was 

using other equipment (OTHR) or not using safety equipment (NONE), the percentage of fatality 

crash and severe injury crash rise to 9.4% and 62.5%, respectively. 
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Table 6-41: Dependent and Independent Variables Including Bicyclist-Related Variable 

Used to Create the Model Using DT4000 Dataset 

Dependent Variable (Abbreviation) Attributes 

Crash injury severity (INJSVR) Fatality (K) 
Severe Injury (A) 
Evident and Possible (B+C) 

Independent Variables  
ROADHOR [1,2] Horizontal road terrain 
ROADVERT [1,2] Vertical road terrain 
RDCOND [A,B,C] Road surface condition 
TRFCWAY [1,2] Trafficway description 
RLTNRDWY Location of a first harmful event 
LOCTYPE Crash location type 
TRFCCNTL [1,2] The traffic control device (TCD) in effect 
SURFTYPE [1,2] Road surface type 
TOTLANES [1,2] Total number of lanes 
RLTNTRWY Crash location with respect to trafficway 
INTTYPE Intersection type where the crash occurred 
TRFCINOP [1,2] Status of the TCD 
WTCOND [A, B] Prevailing atmospheric conditions 
LGTCOND Light conditions 
RDWYPC [A, B, C] Apparent factors of the road/ highway 
ENVPC [A,B,C] Contributing environmental conditions 
DRVRPC [1,2] [A,B,C,D] Driver contributing actions/circumstances 
DRVRDOIN [1,2] Controlled Maneuver by The Driver 
NMTSFQ [1,2] [A,B] Safety Equipment Used by the Driver 
RACE [1,2] Driver race 
TEENDRVR Teen driver 
NMTACT [1,2] [A,B] Pedestrian actions/circumstances 

contributing to the crash 
NMTLOC [1,2] Pedestrian location with respect to the 

roadway 
NMTSFQ [1,2] [A,B] Safety equipment used by the pedestrian 
DNMFTR [1,2] [A,B] Individual condition relevant to the crash 
NMTPRIOR [1,2] Pedestrian actions immediately prior to the 

crash 
PEDAGE The age of the non-motorists involved in a 

crash in years. 
PEDSEX The sex of the non-motorists involved in a 

crash. 
MOSTHARM [1,2] Events resulting in the most severe injury 
SPEEDFLAG Vehicle speeding status 
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HITRUN Hit and run 
VEHTYPE [1,2] Vehicle type involved in the crash 
LGTCOND_LITE-TRFCWAY_DIV_NO Streetlight is available at time of the crash 

in a divided trafficway without a traffic 
barrier 

LGTCOND_LITE-TRFCWAY_UNDIV Streetlight is available at time of the crash 
in undivided trafficway 

LGTCOND_DARK-WTCOND_CLDY No light (dark) is available at time of crash 
under cloudy weather 

LGTCOND_DARK-WTCOND_CLEAR No light (dark) is available at time of crash 
under clear weather 

ROADHOR_LT_RT_CU-
ROADVERT_CST_UP_DN_SAG 

Curve (not straight) and hill (not level) road 
terrain 

LGTCOND_LITE-DRVRDOIN_GO_STR Streetlight is available at time of crash and 
driver going straight 

DRVRDOIN_GO_STR- NMTLOC_ATI_NX-
ATI_UL-NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

A driver going straight and pedestrian 
located in the roadway 

LGTCOND_DARK-DRVRDOIN_GO_STR No light (dark) is available at time of crash 
and driver going straight 

LGTCOND_DARK- NMTLOC_ATI_NX-
ATI_UL-NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

No light (dark) is available at time of crash 
and pedestrian located in the roadway 

WTCOND_CLEAR- NMTLOC_ATI_NX-
ATI_UL-NAI_MX-NAI_NX-NAI_UN-
PK_LN-BIKE_LN-SHLDR 

The crash occurred under clear weather and 
pedestrian located in the roadway 

DRVRDOIN_GO_STR- NMTACT_NF_TRFC A driver going straight and pedestrian 
walking not facing traffic 

DRVRDOIN_GO_STR-
NMTACT_OTHER_NF_TRFC-DISREG-
SUDDEN-DK_CLTH-FC_TRFC 

A driver going straight and pedestrian 
acting other than disregarding signal, 
walking not facing traffic, wearing dark 
clothes, and darting into the roadway. 

NMTLOC_ATI_MX-NAI_MX- 
NMTACT_OTHER_NF_TRFC-DISREG-
SUDDEN-DK_CLTH-FC_TRFC 

Pedestrian located in the roadway and 
acting other than disregarding signal, 
walking not facing traffic, wearing dark 
clothes, and darting into the roadway.  
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Figure 6-5: CHAID Analysis to Determine Variables that Affect Bicyclist Crash Severity Level Using DT4000 Dataset 
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The CHAID decision tree for bicyclist crashes is displayed in Figure 6-5 Bicyclist crashes 

resulting in fatal (K), severe injury (A), and evident and possible injury (B+C) were divided into 

13 nodes, and 8 terminal nodes. The decision tree structure involves the following four splitting 

variables: 

o The age of the bicyclist involved in a crash (BIKE.AGE.DT) 

o Vehicle controlled maneuver prior to the beginning of the sequence of events 

(DRVRDOIN.BIKE.DT)  

o Bicyclist location (NMTLOC.BIKE.BIKE.DT) 

o Bicyclist action (NMTACT.BIKE.DT) 

o Bicyclist condition relevant to the crash (DNMFTR.BIKE.DT) 

The first and top node in the CHAID decision tree output in Figure 6-5 is “BIKE.AGE.DT”, 

and based on the model, if the bicyclist is younger than 30 years (UNDER), the tree predicts 0.4% 

of fatality crashes and 4.0% of severe injury crashes; if the bicyclist age is between 30 and 64 (30 

TO 64), the tree predicts a higher percentage of fatality crashes (1.1%) and severe injury crashes 

(10.9%); if the bicyclist is older than 65 years, the tree predicts the highest percentage of fatal and 

severe injury crashes among the other two groups, 2.2%, and 19.8%, respectively. 

In the second level of the decision tree, the group including bicyclists age between 30 and 64 

(30 TO 64), directs to another split in the tree based on vehicle-controlled maneuver prior to the 

beginning of the sequence of events (DRVRDOIN.BIKE.DT). if the driver was going straight (GO 

STR), making a left turn (LT TRN), backing (BACKING), changing lanes (CHG LN), or entering 

traffic lane (ENT LN), the tree predicts 1.3% and 21.2% of fatal and severe injury crashes. 

Whereas, if the driver was negotiating curve (NEGCRV), overtaking right (OVT RT),  overtaking 

left (OVT LT), making a right turn (RT TRN), making U-turn (U TRN), slowing/stopping 
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(SLOWING), legally parked (LG PRK), stopped in traffic (STOPED), turning on red (RTOR), 

merging (MERGING), accelerating in the road (ACCEL), or starting in the road (STARTING), 

the tree predicts fewer percentages; 0.8% of fatal crashes and 5.1% of severe injury crashes.  In 

the same level (level two) of the tree, the (UNDER 30) group divide the data into three groups 

based on the bicyclist’s location with respect to the roadway: the first includes bicyclists who are 

located at intersection-unmarked / unknown if marked crosswalk (ATI UM), at intersection-not in 

the crosswalk (ATI NX), and not at the intersection-on roadway, not in a marked crosswalk (NAI 

NX); the second includes bicyclists located at intersection-in marked crosswalk (ATI MX), at the 

intersection-unknown location (ATI UL), not at intersection-in marked crosswalk (NAI MX), 

parking lane/zone (PK LN), shared-use path (SHARED), bicycle lane (BIKE LN), on a sidewalk 

(SDWLK), median/crossing island (MEDIAN), in driveway access (DRWAY), or other locations 

(OTHR); and the third includes bicyclists located in a non-traffic area (NON TRF), 

shoulder/roadside (SHLDR), and not at the intersection-on roadway, crosswalk availability 

unknown (NAI UN). For fatal crashes, the first group (ATI UM, ATI NX, N.AI.NX), the second 

(ATI MX, ATI UL, NAI MX, PK LN, SHARED, BIKE LN, SDWLK, DRWAY, OTHR), and the 

third (NON TRF, SHLDR, NAI UN) predict 0.5%, 0.00%, and 8.3%, respectively. Whereas, first, 

the second and third group predicts 10.1%, 4.1%, and 16.7% of the severe injury crashes, 

respectively. 

In the third level of the tree, for the (NEGCRV, OVT RT, OVT LT, RT TRN, U TRN, 

SLOWING, LG PRK, STOPED, RTOR, MERGING, ACCEL, STARTING) group of drivers, 

bicyclist action divides the data into two subgroups: in case the bicyclist disregarded signal 

(DISREG), failed to yield the ROW (F YIELD), or failed to obey traffic signs/signals/officer (F 

OBEY), the percentage of fatality crash and severe injury crash was 5.3% and 26.3%, respectively. 
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Whereas in the case of bicyclists who improperly cross the roadway/jaywalking (IM XING), in 

roadway improperly standing/playing (IM RDWY), improper turn/merge (IM TURN), wrong-way 

riding (W WAY), failing to have lights on when bicycling (F LGTS), sudden movement into traffic 

(SUDDEN), operating in other erratic, reckless or careless manner (RECKLSS), cycling not facing 

traffic (NF TRFC), making improper entry to or exit from trafficway (IM ENTR), or did not act 

improperly (NO IMPR), the percentage of fatality crash and severe injury crash was 0.4% and 

3.4%, respectively. 

In the fourth level of the tree, bicyclists’ actions (IM XING, IM RDWY, IM TURN, W WAY, 

F LGTS, SUDDEN, RECKLSS, NF TRFC, IM ENTR, NO IMPR) directed to another split in the 

tree based on the bicyclist condition. If the condition includes appeared normal (NORM) or 

involved other conditions (OTHR) such as being sick or physically impaired (PHY IMP), the 

percentage of severe injury crashes was to 2.5%. Whereas, if there is no observation regarding the 

bicyclists’ condition (NO OBS), the percentage of fatal and severe injury crashes was 2.9% and 

8.8%, respectively. 

 

6.6  Crash Variable Importance Ranking Using Random Forests  

Random forests (RF) are a scheme proposed by Leo Breiman in the 2000s for building a 

predictor ensemble with a set of decision trees that grow in randomly selected subspaces of data 

(Biau 2012). This technique has been commonly used to label important variables in splitting 

response variables such as (Jiang et al. 2016; Hong Han, Xiaoling Guo, and Hua Yu 2016; J. Lee, 

Abdel-Aty, and Shah 2018; Dai 2020). In general, a random forest model combines a set of 

unpruned decision trees (DT) (i.e., CART). Readers who are interested in understanding the CART 

procedure may refer to Das et al. (A. Das, Abdel-Aty, and Pande 2009) and Hossain and 
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Muromachi (Hossain and Muromachi 2013) as they present an extensive description of the CART 

algorithm. Classification trees are used to classify observations thru recursively partitioning the 

predictor space. As the number of trees in an RF increases, the misclassification rate converges to 

a limit. Hence, RF models with too many trees are free of the overfitting problem. As the forest 

building improves, RF uses an internal mechanism that achieves the unbiased generalization error 

estimate.  

Through the forest building process, two datasets are generated from the complete dataset; a 

training dataset and a test dataset. On average, about one-third of observations are in the test 

dataset, which is named Out-of-Bag (OOB) samples by Breiman (Breiman 2001) which are used 

to estimate the RF classifier generalization error. The OOB is an RF measurement method for 

prediction error. The rest forms the training dataset, where each tree is trained on bootstrap samples 

of this dataset. The RF model performance may be enhanced by decreasing the bias of each tree 

by growing each tree to the maximum depth. Also, by decreasing the correlations between trees 

through applying two sources of randomization in each tree: a) Each tree is grown on a bootstrap 

sample of the training dataset (randomly drawn, with replacement) b) At each node of a tree, a 

certain number of variables “mtry” are randomly selected from the complete explanatory variables 

to compete for the best split. “mtry” is the number of input variables randomly chosen at each split, 

and it can be tuned by increasing or decreasing from an initial value until the minimized error rate 

is obtained (Jiang et al. 2016). 

In this study, the two datasets (MV4000 and DT4000) with a total of 90 predictor variables 

were imported for variable importance analysis. The important explanatory variables in the crash 

model were determined by an RF model, starting with fitting an RF to the data. At that point, the 

OOB is recorded for each data point. This error is then averaged over the forest. To measure the 
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importance score of the importance of a variable after training, the values are permuted among the 

training dataset and the OOB error is recorded. Then, the difference in before and after permutation 

OOB error is averaged among all trees, showing the importance score of the variable. Afterward, 

the standard deviation of the difference values is used to normalize the importance score. 

Variables with higher importance score values are ranked as more important than other 

variables (Breiman 2001). In this study, the RF technique is constructed in the RStudio (V 

1.2.1335) “randomForest” package, and “mtry” is used as a tuning model parameter. Regarding 

the number of trees in the forest (ntree), 500 trees were run for each model to obtain relatively 

consistent variable importance measures. Concerning the importance, the OOB error was used, but 

for variable impurity, two indices were used: the Mean Decrease Accuracy (MDA) and the Mean 

Decrease Gini (MDG) indices.  

The two indices; MDA and MDG are used to evaluate the importance of each variable since 

the Gini index is suitable for classification, both indices are default output of the RF procedure, 

and using both indices is more robust than using one index (Hong Han, Xiaoling Guo, and Hua 

Yu 2016). As the MDA value gets larger, the variable importance increase. Whereas, MDG shows 

the total decrease in node impurities averaged for all trees.  

Figure 6-6 to Error! Reference source not found. shows RF variable importance ranking for 

pedestrian and bicyclist-related variables using MV4000 and DT4000 datasets. The importance 

score of variables in the prediction of pedestrian and bicyclist’s injury severity was carried out 

using the Random Forests method for each dataset; MV4000 and DT4000 crash forms. The method 

was implemented with 500 trees, using a training dataset of 70% of the crash observations, and 

using “mtry” of (Mp) where p is the number of studied variables. Also, the newly created variables 

from the DT4000 dataset were included in the importance ranking process for variables adopted 
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from the DT4000 crash form dataset. Note that common pedestrian and bicyclist variables in 

MV4000 and DT4000 datasets are used as well as the newly created variables showed in Table 

6-38 to  

 

 

Table 6-41 for a more consistent comparison. 

6.6.1  MV4000 Pedestrian/Bicyclist-Vehicle Crash Variables 

Generally, many variables showed strong effects on injury severity of pedestrians and 

bicyclists involved in vehicle crashes. The most important variables are highlighted as follows: 

The newly created variable (DRVRDOIN.GO.STR.NMTLOC2) which refers to crashes involving 

the driver going straight while the pedestrian located in the roadway, light condition at the time of 

the crash (LGTCOND.PED.MV), vehicle-controlled maneuver prior to the event leading to the 

crash (DRVRDO.PED.MV), and the traffic control device (TCD) in effect at the crash location 

(TRFCNTL.PED.MV), were important for injury severity in pedestrian-vehicles crashes. Other 

variables showed a level of importance, such as the newly created variable 

(LGTCOND.LIGT.DRVRDOIN.GO.STR) which refers to dark/streetlight crash location with the 

driver going straight, roadway surface condition (ROADCOND.PED.MV), pedestrian location 

concerning the roadway were also important factors affecting pedestrian injury severity in 

pedestrian-vehicle crashes (NMTLOC.PED.MV).  

As for bicyclist injury severity, three variables showed a strong effect; the newly created 

variable (LGTCOND.LIGT.TRFCWAY.ND) which refers to the crashes occurred in the dark but 

with streetlights available on an undivided roadway, light condition at the crash location 

(LGTCOND.BIKE.MV), and the trafficway type and level of division if available 
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(TRFCWAY.BIKE.MV). Bicyclist’s location concerning the roadway (NMTLOC.BIKE.MV) had 

a significant influence on bicyclist injury severity, but not among the most important variables.  

 

It is observed from the results shown in Figure 6-6 and Figure 6-7, that light condition at the time 

of the crash (LGTCOND.PED.MV and LGTCOND.BIKE.MV),  and the non-motorist location 

concerning the roadway (NMTLOC.PED.MV and NMTLOC.BIKE.MV) had a common 

significant effect on pedestrian and bicyclist injury severity. As for pedestrian and bicyclist injury 

severity, the light condition variable had an equal importance ranking for both non-motorists 

involved in vehicle crashes. It is noted that trafficway division type and level had a higher 

importance ranking for bicyclist crashes than pedestrian crashes. This finding is because a bicycle 

is considered a vehicle and mainly follows traffic rules and have an interaction with the roadway 

geometry more than a pedestrian. 
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Figure 6-6: RF for MV4000 Crash Form Variable Importance 

Ranking for Pedestrian Crashes 
Figure 6-7: RF for MV4000 Crash Form Variable Importance 

Ranking for Bicyclist Crashes 
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6.6.2  DT4000 Pedestrian/Bicyclist-Vehicle Crash Variables 

More variables showed strong effects on injury severity of pedestrians and bicyclists involved 

in vehicle crashes using the DT4000 dataset. This conclusion is obtained from the recategorization 

process that was applied to a various number of variables, as well as the adding new variables 

which enhance the information gathered from the crash reports. The most important variables are 

highlighted as follows:  

  Error! Reference source not found. displayed that pedestrian condition at the time of the 

crash (DNMFTR.PED.DT), pedestrian location with respect to the roadway 

(NMTLOC.PED.PED.DT), whether speed was a factor in a crash (SPEEDFLAG), and the type of 

traffic control device (TCD) available at the crash location (TRFCCNTL.PED.DT), were the most 

important factors for injury severity in pedestrian-vehicles crashes. 

Other variables showed a level of importance, such as the newly created variables; Other variables showed a level of importance, such as the newly created variables; 

(LGTCOND.DARK.DRVRDOIN.GO.STR) which refers to dark/unlit crash location with the 

driver going straight, (LGTCOND.LIGT.DRVRDOIN.GO.STR) which refers to dark/streetlight 

crash location with the driver going straight, light condition at the crash location 

(LGTCOND.PED.DT), driver actions that may have contributed to the crash (DRVRPC.PED.DT), 

and the safety equipment in use by the pedestrian at the time of the crash 

(NMTSFQ.PED.PED.DT).  

Whereas, for bicyclist injury severity, it is observed in Error! Reference source not found. 

hat two variables showed a strong effect. First, the bicyclist age (BIKE.AGE.DT). This relates to 

the fact that bicyclist’s age plays a role in the comprehension level of traffic rules and 

understanding the ROW. Second, the vehicle-controlled maneuver prior to the beginning of the 

sequence of events (DRVRDOIN.BIKE.DT), which relates to the consistent interaction between 
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the driver and the bicyclist, implying that drivers’ actions greatly affect the bicyclist’s riding 

experience. 

Additional variables also showed the importance in affecting the bicyclist injury severity, such 

as the vertical terrain of the roadway (ROADVERT.BIKE.DT), bicyclist condition at the time of 

the crash (DNMFTR.BIKE.DT), the safety equipment used by the bicyclist (NMTSFQ.BIKE.DT), 

bicyclist action that may have contributed to the crash (NMTACT.BIKE.DT), the horizontal road 

terrain (ROADHOR.BIKE.DT), and the bicyclist location with respect to the roadway 

(NMTLOC.BIKE.DT). Trafficway division type and level (TRFCWAY.BIKE.DT) had a 

significant influence on bicyclist injury severity, but not among the most important variables.  

It is observed from the results shown in Error! Reference source not found. and Error! 

ference source not found., that the non-motorists condition (DNMFTR.PED.DT and 

DNMFTR.BIKE.DT), and the non-motorist location (NMTLOC.PED.DT and 

NMTLOC.BIKE.DT) are two common important variables that are related to pedestrian and 

bicyclist crash severity. 

Even though the RF method is capable to detect variable’s importance score, obtaining the 

knowledge about whether a change in the value or category of the specific variable will increase 

or decrease the pedestrian or bicyclist’s injury severity is deemed challenging.  
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Figure 6-8: RF for DT4000 Crash Form Variable Importance 

Ranking for Pedestrian Crashes 
Figure 6-9: RF for DT4000 Crash Form Variable Importance 

Ranking for Bicyclist Crashes 
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6.6.3  Discussion of Variable Selection and Ranking 

The principal objective of the pedestrian and bicyclist-crash variable selection and ranking 

was to set apart the main predictors of pedestrian and bicyclist crash severity in vehicle traffic 

crashes via a data mining approach. Results from the CHAID decision tree and random forests 

analysis in line with previous studies ((Sullivan and Flannagan 2001; Gårder 2004; Fu, Miranda-

Moreno, and Saunier 2016)) revealed that for pedestrian-vehicle crashes, light condition of the 

roadway at the time of the crash, pedestrian location and speed were the most important predictors 

of the severity of pedestrian crashes. Results revealed that the majority of the fatalities and severely 

injured crashes occurred within the nighttime or with pedestrians located at midblock with no 

marked crosswalks and at intersections but not in crosswalks. Lower visibility level and drivers’ 

failure to yield could be an explanation for this specific type of crashes ((Sullivan and Flannagan 

2001)). For bicyclist-vehicle crashes, vehicles controlled maneuver, bicyclists’ age, and location 

with respect to the roadway were the most important predictors of the severity of bicyclist crashes. 

These results in line with previous research (Johnson et al. 2010; Boufous et al. 2011). 

The most common variables influencing pedestrian and bicyclist injury severity in vehicle 

crashes are pedestrian and bicyclist location with respect to the roadway, and their condition and 

circumstances that might have contributed to the crash. Previous research presented that crashes 

involving vulnerable road users (VRUs) at signalized intersections are less severe than crashes 

occurred elsewhere (Zegeer et al. 2010; Rifaat, Tay, and de Barros 2011; Haleem, Alluri, and Gan 

2015).  

However, the decision tree distinguished between crash severity predictors that are associated 

with specific groups of VRUs. For pedestrians, the second level of the decision tree revealed that 

the predicted percentage of fatal and severe injury crashes was higher for pedestrians if the crash 

occurs at a non-intersection location and not during daylight. This finding was in line with previous 
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research (Mohamed et al. 2013; Hezaveh, AzadDisfany, and Cherry 2017) which pointed out the 

lower severity of pedestrian crossing accidents that occur at intersections.  

Whereas, for bicyclists, it has been displayed in the first and third levels of the decision tree 

that the bicyclist age, drivers controlled maneuver, and bicyclist action at the time of the crash is 

significant influencing severity rate predictors. Older age bicyclists had more severe injuries, 

driver’s controlled maneuvers including accelerating, taking right turn, and bicyclists’ actions such 

as cycling on the wrong way/side of the road which was in line with previous studies (Kaplan and 

Prato 2013; Cripton et al. 2015; Behnood and Mannering 2017).  

Overall, the results of the employed CHAID decision tree were steady and found to be 

consistent with previous research that used other statistical techniques. This implies that the use of 

this technique in crash severity analysis is valid. Unlike regression models, the personal judgment 

does not influence the model specification, which is the advantage of using the CHAID technique. 

Additionally, the technique is not confined to binary splits, which yields a wider decision tree in 

comparison to the other decision tree and helps to show the non-linear relation between dependent 

variables and crashes (Hezaveh, AzadDisfany, and Cherry 2017).  

CHAID representation is easy to comprehend, and able to distinguish between a complex 

structure of many severity factors. Therefore, it is beneficial to be implemented in studying 

pedestrian and bicyclist crash severity factors. A drawback of CHAID is the instability issue; the 

random procedure of choosing training and test samples which depends on the seed number, 

produce different trees. Yet, in this study the tree variation was trivial, and the common important 

predictors presented resulted were presented. A summary of variables providing enhanced 

information from the DT4000 dataset over the MV4000 dataset is shown in Table 6-42. 
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Table 6-42: A summary of variables providing enhanced information from the DT4000 

dataset over the MV4000 dataset 

Variable  Pedestrian crashes  Bicyclist crashes   

MV4000 

Crashes involving the driver going 

straight while the pedestrian located in 

the roadway 

(DRVRDOIN.GO.STR.NMTLOC.2) 

crashes occurred in the dark but with 

streetlights available on an undivided 

roadway 

(LGTCOND.LIGT.TRFCWAY.new.ND) 

 

 
Light condition at the time of the crash 

(LGTCOND.PED.MV)  

light condition at the crash location 

(LGTCOND.BIKE.MV) 
 

 

vehicle-controlled maneuver prior to the 

event leading to the crash 

(DRVRDO.PED.MV) 

Trafficway type a level of division if 

available (TRFCWAY.BIKE.MV) 
 

 

The traffic control device (TCD) in 

effect at the crash location 

(TRFCNTL.PED.MV) 

Bicyclist’s location with respect to the 

roadway (NMTLOC.BIKE.MV) 
 

 

Dark/streetlight crash location with the 

driver going straight 

(LGTCOND.LIGT.DRVRDOIN.GO.STR) 

Bicyclist age (AGE.BIKE.MV)  

DT4000 

Pedestrian condition at the time of the crash 

(DNMFTR.PED.DT) 
Bicyclist age (BIKE.AGE.DT)  

Pedestrian location with respect to the 

roadway (NMTLOC.PED.PED.DT) 

Vehicle-controlled maneuver prior to the 

begging of the sequence of events 

(DRVRDOIN.BIKE.DT) 

 

Speed factor in a crash 

(SPEEDFLAG.PED.DT)  

Vertical terrain of the roadway 

(ROADVERT.BIKE) 
 

Type of traffic control device (TCD) 

available at the crash location 

(TRFCCNTL.PED.DT) 

Bicyclist condition at the time of the 

crash (DNMFTR.BIKE.DT) 
 

dark/unlit crash location with the driver 

going straight 

(LGTCOND.DARK.DRVRDOIN.GO.STR) 

Safety equipment used by the bicyclist 

(NMTSFQ.BIKE.DT) 
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6.7  Statistical Analysis Using the MNL Model 

The MNL model was implemented using the “mlogit” package in RStudio. Also, the variable 

correlation was tested by the “GoodmanKruskal” package in R (Pearson R. 2016) using the 

“GKtauMatrix” function. Many variables from the MV4000 and DT4000 datasets are selected in 

the (MNL) model development. However, based on the results obtained by implementing the MNL 

using RStudio, the p-values of some of the variables are larger than 0.1, which means that these 

variables are found to be insignificant and hence are removed from the list of significant variables. 

Table 6-43 and Table 6-45 show the estimated coefficients of each variable involved in the 

MNL model using the MV4000 dataset for pedestrian and bicyclist crashes, respectively. The 

marginal effect analysis could help evaluate how the significant variables estimated in the MNL 

model impact the pedestrian injury outcome probabilities (Long and Freese 2001). The marginal 

effects of each significant factor on the likelihood of each injury-severity class are reported in 

Table 6-44 and  

Table 6-46 for the pedestrian and bicyclist crash models, respectively. 

Table 6-43: Estimated Coefficients of Variables Included in the Pedestrian Injury Severity 

Model  

Variable 

 
Code 

Severe Injury 

(A) Crash 

Evident and 

Possible Injury 

(B+C) Crash 

Coef.  
P-
value 

Coef.  P-value 

Intercept 1.25 0.00 2.70 0.00 

Light condition (dark) LGTCOND.DARK.PED.MV -1.00 0.00 -1.65 0.00 
Pedestrian location (in 
crosswalk) 

NMTLOC.PED.PED.MV 0.79 0.00 1.03 0.00 

Driver action (going 
straight) 

DRVRDO.GO.STR.PED.MV --- --- -1.44 0.00 

Traffic control (none) TRFCNTL.NONE.PED.MV --- --- -0.58 0.04 
Driver action (going 
straight) and 
pedestrian location (in 
the roadway) 

DRVRDO.GO.STR.NMTLOC.2 0.97 0.00 1.27 0.00 
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Trafficway 
(undivided) 

TRFCWAY.ND.PED.MV  0.64 0.06 0.66 0.04 

Light condition (light) 
and driver action 
(going straight) 

LGTCOND.LIGT.DRVRDO.GO.STR --- --- 1.44 0.00 

Pedestrian age (above 
65) 

PED.AGE.MV 1.18  0.08 -0.98 0.09 

 
Table 6-44: Marginal Effects Results for Pedestrian Crash Variables Using MV4000 

Dataset for Pedestrian Crash Variables Using MV4000 Dataset 

 

Variable 

 

P (Fatal (K) 

Crash) 

P (Severe Injury 

(A) Crash) 

P (Evident and Possible 

Injury (B+C) Crash) 

Light condition (dark) 0.0156 0.0722 -0.0879 

Pedestrian location (in crosswalk) -0.0124 -0.0337 0.0461 

Driver action (going straight) 0.0132 0.1038 -0.1170 

Traffic control (none) 0.0056 0.0163 -0.0220 
Driver action (going straight) and 
pedestrian location (in roadway) 

-0.0087 0.0087 -0.0066 

Trafficway (undivided) 0.0100 0.0268 -0.0368 
Light condition (light) and driver 
action (going straight) 

-0.0129 -0.1298 0.1428 

Pedestrian age (65 and above) 0.0101 -0.0243  0.0141 

The analysis of the MV4000 dataset for pedestrian crashes in Table 6-43 showed that eight 

variables tested by the MNL model based on their significance value and the model’s overall 

Akaike information criterion (AIC), are selected for pedestrian severity rate prediction.  

i) Three are roadway-related; light condition (dark), trafficway (undivided), and traffic control 

(none). Regarding the light conditions, three light conditions categories (ranged from daylight to 

dark) are considered in studying pedestrian crash severity with the MV4000 dataset. Pedestrians 

are more likely to be involved in severe injury crashes if the crash occurred in dark/unlit roadways, 

compared to crashes occurred in the daylight or dark/lit roadways. Additionally, the marginal 

effect results in Table 6-44 indicates that the probability of severe injury crashes will increase 

when the pedestrian is involved in a crash in dark/unlit roadways. Many researchers highlighted 

the effect of wearing reflective clothes in decreasing the likelihood of being involved in a vehicle 

crash (i.e., (Shinar 1985; Tyrrell et al. 2016)). Four trafficway areas designed for motor vehicle 
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operation categories (not physically divided, divided with a traffic barrier, divided without traffic 

barrier, and one-way traffic) are considered in this study. Table 6-43 showed that pedestrians are 

more likely to be involved in severe crashes if the crash occurred in undivided roadways. The 

marginal effect results in Table 6-44 indicates that undivided trafficways increases the likelihood 

of severe crashes. This result is in line with previous research (i.e., (LaValley et al. 2003)). With 

respect to traffic control in effect at the time of the crash, no traffic control availability at the crash 

location decrease evident and possible injury severity crashes. Table 6-44 also indicates that no 

traffic control in effect at the crash location decreases the likelihood of evident and possible injury 

severity crashes.  

ii) One is driver-related; driver action (going straight). Table 6-43 showed that crashes 

involving the driver going straight do not significantly affect severe injury pedestrian crashes but 

are less likely to produce fatal injury severity crashes. Table 6-44 also indicates that when the 

driver involved in the crash is going straight, the likelihood of evident and possible injury 

decreases.  

 iii) Two are pedestrian-related; pedestrian location (in crosswalk), and pedestrian age (above 

65). For the pedestrian location, pedestrians located in a crosswalk (no information about the 

crosswalk marking in MV4000 dataset) showed a significant effect on decreasing the likelihood 

of fatal severity crashes. Regarding pedestrian age, three age groups are used in this study as 

previous studies divided ages (i.e., (Chakravarthy, Lotfipour, and Vaca 2007)); (pedestrians under 

30 years old, pedestrians between 30-64 years old, and age 65 and above). For the pedestrian age 

65 and above group, the estimation results in Table 6-43 and the marginal effect result in Table 

6-44 both indicate that this age group increases the likelihood of severe crashes compared with 

younger pedestrians. This finding is supported by findings from previous research ((Chakravarthy, 
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Lotfipour, and Vaca 2007; J.-K. Kim et al. 2008; Tay et al. 2011; Chen and Fan 2018)) and can be 

supported by the fact that Older adult pedestrians, those 65 years and older, have their own 

limitations that make them susceptible to collisions. As adults age, gradual losses in hearing, 

vision, and flexibility put them at a higher risk, in addition to their need for longer reaction times 

while in the roadway. Furthermore, once the older adult pedestrian is struck, their co-morbid 

conditions and limited physical reserves contribute to a higher percentage of death and disability 

when compared to other pedestrian age groups (Chakravarthy, Lotfipour, and Vaca 2007). 

Finally, iv) two are driver action-related; “driver action (going straight) and pedestrian 

location (in the roadway)”, and “light condition (light) and driver action (going straight)”. These 

are newly created variables that were found to have a significant effect on pedestrian injury 

severity. For crashes involving a driver going straight while the pedestrian is located in the 

roadway (no information about the crosswalk marking in MV4000 dataset), the results showed a 

significant effect on severe injuries. Table 6-43 and the marginal effect results in Table 6-44 

showed that pedestrians are more likely to be involved in severe crashes if the crash involved a 

driver going straight while the pedestrian is located in the roadway. Studying the controlled 

maneuver (going straight) separately, and with the non-motorist location showed that the later has 

a greater effect on severe injury crashes. Regarding crashes occurred in dark/streetlight roadways 

while the driver is going straight did not show a significant effect on severe injury crashes. 

However, results in Table 6-43 and Table 6-44 both show that pedestrians are more likely to 

sustain an evident and possible injury if involved in crashes of such conditions. 

Table 6-45: Estimated Coefficients of Variables Included in the Bicyclist Injury Severity 

Model for Bicyclist Crash Variables Using MV4000 Dataset 

Variable 

 
Code 

Severe Injury 

(A) crash 

Evident and 

Possible Injury 

(B+C) Crash 
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Coef.  
P-
value 

Coef.  P-value 

Intercept  2.76 0.00 5.63 0.00 
Bicyclist location (in 
the roadway) 

NMTLOC.BIKE.MV -1.74 0.02 -1.75 0.01 

Light condition (light) LGTCOND.LIGT.BIKE.MV -5.77 0.00 -1.85 0.03 

Vertical terrain (hill) ROADVERT.BIKE.MV 1.64 0.025 1.42 0.03 
Bicyclist age (< 30 
years) 

BIKE.AGE.MV -2.33 0.02 -2.53 0.00 

Light condition (light) 
and trafficway division 
(undivided) 

LGTCOND.LIGT.TRFCWAY.ND 6.53 0.00 --- --- 

Driver action (turning 
right) 

DRVRDO.BIKE.MV -1.29 0.06 --- --- 

Traffic control in 
effect (stop sign and 
no TCD) 

TRFCNTL.BIKE.MV 1.41 0.07 1.58 0.03 

 
 

Table 6-46: Marginal Effects Results for Bicyclist Crash Variables Using MV4000 Dataset 

 

Variable 
P (Fatal (K) 

Crash) 

P (Severe Injury 

(A) Crash) 

P (Evident and Possible 

Injury (B+C) Crash) 

Bicyclist location (in roadway) 0.0281 -0.0016 -0.0265 

Light condition (light) 0.0347 -0.2777 0.2425 

Vertical terrain (hill) 0.0206 0.0094 -0.0300 

Bicyclist age (above 65) 0.0406 0.0112 -0.0518 
Light condition (light) and 
trafficway division (undivided) 

-0.0311 0.3513 -0.3202 

Driver action (turning right) 0.0174 -0.0231 0.0057 
Traffic control in effect (stop sign 
and no TCD) 

0.0252 0.0093 -0.0345 

The analysis of the MV4000 dataset for bicyclist crashes in Table 6-45 showed that seven 

variables are selected for bicyclist severity rate prediction.  

i) Four are roadway-related; light condition (dark), traffic control in effect (stop sign and no 

TCD), and vertical terrain (hill). Regarding the light conditions, three light conditions categories 

(ranged from daylight to dark) are considered in studying bicyclist crash severity with the MV4000 

dataset. Bicyclists are less likely to be involved in severe injury crashes if the crash occurred in 
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nighttime/streetlight roadways, compared to crashes occurred in nighttime/unlit roadways. 

Additionally, the marginal effect results in  

Table 6-46 indicates that the probability of severe injury crashes will decrease when the 

bicyclist is involved in a crash in nighttime/streetlight roadways. Previous research is in line with 

this finding; bicyclist injury severity level could be elevated by specific crash patterns and risk 

factors including night without streetlight (Yan et al. 2011).  

For traffic control in effect at the time of the crash,  Table 6-45 and  

Table 6-46 both show that bicyclists are more likely to sustain a severe injury if involved in 

crashes at stop sign-controlled/or no TCD intersections. (Rash-ha Wahi et al. 2018) concludes that 

most bicycle–motor vehicle (BMV) crashes occurred on wet road surfaces were associated with 

an increased cyclist injury severity at Stop/Give-way intersections. Concerning the hill road 

terrain, Table 6-45 and  

Table 6-46 both show that bicyclists are more likely to sustain a severe injury if involved in 

crashes on roadways which are hilly. Also, researchers agreed that bottoms of hills can result in 

severe injury crashes since both drivers and bicyclists tend to speed on such locations. For instance,  

(Haworth and Debnath 2013) agreed that most BMV crashes occurred in city areas which are 

generally hilly, resulting in poor visibility because drivers and cyclists cannot be sure whether or 

not there is an oncoming vehicle hidden beyond the rise. Also, (Robartes and Chen 2017) 

concluded that when the automobile driver has his/her vision obscured by hill crests and is in a 

crash with a bicyclist, the bicyclist’s severe injury and fatality risks increase by (63.4%) and 

(25.5%), respectively.  

Finally, for bicyclists involved in crashes occurred at nighttime with streetlights in an 

undivided trafficway, Table 6-45 show that bicyclists are more likely to sustain a severe injury if 
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involved in crashes under these conditions, but has shown an insignificant effect on evident and 

possible injury severity. The marginal effect results in  

Table 6-46 indicates that crashes occurred at nighttime with streetlights in an undivided 

trafficway increase the likelihood of severe crashes sustained by the bicyclist. This finding is in 

line with previous research. Yan and colleagues concluded that among the geometric 

characteristics, the presence of median and/or division was found to significantly reduce the 

probability of severe injuries to bicyclists on road segments (Yan et al. 2011). (J.-K. Kim et al. 

2007) also found that medians can help to reduce bicyclist injury severity.  

ii) One is driver-related; driver action (turning right). Table 6-43 showed that crashes 

involving the driver turning right compared to drivers turning left were found to be insignificant 

in the prediction of evident and possible injury severity crashes, however, they were found less 

likely to produce severe injury crashes. Table 6-44 also indicates that when the driver involved in 

the crash is turning right, the likelihood of severe injury decreases. This finding is in line with 

previous research (i.e., (Abdel-Aty and Keller 2005). Most common BMV collisions results when 

the driver looks left for oncoming vehicles when they should also be looking right for cyclists. 

This situation creates a lack of driver expectations about bicyclists’ location and behavior 

(Räsänen and Summala 1998).  

iii) Two are bicyclist-related; bicyclists located in the roadway (no information about the 

crosswalk marking in MV4000 dataset), and bicyclist age (above 65). Regarding bicyclist age, 

three age groups are used in this study as used for pedestrian age groups; (bicyclists under 30 years 

old, bicyclists between 30-64 years old, and age 65 and above). For bicyclists under 30 years old 

group, the estimation results in Table 6-45 and  
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Table 6-46, both showed that young bicyclists (<30 years) are less likely to sustain a severe 

injury if involved in motor-vehicle crashes. Older pedestrians and cyclists are over-involved in 

serious injury and fatal crashes and under-represented in crashes of minor severity, compared to 

younger adult pedestrians and cyclists (Oxley et al. 2004). Additionally, numerous studies have 

cited bicyclists of old age as a risk factor (Yan et al. 2011; Moore et al. 2011; Eluru, Bhat, and 

Hensher 2008). J.-K. Kim et al. 2007, concluded that bicyclists’ age group of over 55 years could 

double the risk of a fatality. Concerning bicyclist location at the time of the crash,  the estimation 

results in Table 6-45 and  

Table 6-46, both showed that bicyclists located at intersections in the roadway (no specific 

information about the specific location of the non-motorists) are less likely to sustain severe injury 

when involved in motor-vehicle crashes.  

Table 6-47 and Table 6-49 show the estimated coefficients of each variable involved in the 

MNL model using the DT4000 dataset for pedestrian and bicyclist crashes, respectively. The 

marginal effects of each significant factor on the likelihood of each injury-severity class are 

reported in Table 6-48 and  

Table 6-50 for the pedestrian and bicyclist crash models, respectively. 

Table 6-47: Estimated Coefficients of Variables Included in the Bicyclist Injury Severity 

Model 

Variable Code  

P (Severe 

Injury (A) 

crash) 

P (Evident 

and Possible 

Injury (B+C) 

Crash) 

Coef. 
P-
Value 

Coef. 
P-
Value 

Intercept  1.39 0.00 2.31 0.00 
Pedestrian condition 
(appeared normal) 

DNMFTR.PED.DT --- --- -1.52 0.00 



 

271 
 

Pedestrian location (not at 
intersection/on roadway-
not in marked crosswalk ) 

NMTLOC.PED.DT 0.72 0.00 1.01 0.00 

Trafficway division 
(divided with traffic 
barrier) 

TRFCWAY.PED.DT -0.91 0.09 -1.23 0.02 

Trafficway division 
(divided without traffic 
barrier) 

TRFCWAY.PED.DT -1.33 0.00 1.05 0.08 

Pedestrian usage of safety 
equipment  

NMTSFQ.PED.DT -0.75 0.00 -1.95 0.00 

Pedestrian location (not at 
intersection/on roadway-
not in marked crosswalk ) 
and vehicles controlled 
maneuver (going straight) 

NMTLOC.NAI.NX. 
DRVRDOIN.GO.STR.PED.DT 

0.97 0.00 --- --- 

Type/level of light 
(dark/lighted) 

LGTCOND.PED.DT -0.85 0.00 -1.45 0.00 

Driver’s controlled 
maneuver (left turn)  

DRVRDOIN.PED.DT --- --- 1.15 0.03 

Pedestrian action (improper 
crossing of the 
roadway/jaywalking 

NMTACT.PED.DT 2.53 0.00 3.21 0.00 

Pedestrian location 
(shoulder/roadside) 

NMTLOC.PED.DT -1.51 0.00 -1.41 0.00 

Pedestrian condition (under 
the influence of 
medication/drugs/alcohol) 

DNMFTR.PED.DT 1.44 0.00 1.24 0.01 

Pedestrian age (≥ 65 
Years) 

PED.AGE.DT -1.30 0.00 -1.64 0.00 

Vehicle type (passenger 
car) 

VEHTYPE.PED.DT -1.31 0.00 -1.24 0.00 

Type of traffic control 
device –TCD (other than a 
stop sign, or a traffic 
signal). 

TRFCCNTL.PED.DT 1.25 0.00 1.72 0.00 

 

Table 6-48: Marginal Effects Results for Pedestrian Crash Variables Using DT4000 

Dataset 

 

Variable 

P (Fatal 

(K) 

Crash) 

P (Severe 

Injury (A) 

Crash) 

P (Evident and 

Possible Injury 

(B+C) Crash) 

Pedestrian condition (appeared normal) -0.0081 -0.0261 0.0343 
Pedestrian location (not at intersection/on 
roadway-not in marked crosswalk) 

0.0091 -0.0438 0.0346 
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Trafficway division (divided with traffic 
barrier) 

0.0884 -0.0089 -0.0795 

Trafficway division (divided without traffic 
barrier) 

0.0554 -0.0115 -0.0439 

Pedestrian usage of a safety equipment (e.g., 
reflective lighting) 

-0.0121 -0.1009 0.1131 

Pedestrian location (not at intersection/on 
roadway-not in marked crosswalk) and 
vehicle’s-controlled maneuver (going straight) 

-0.0044 0.1500 -0.1456 

Type/level of light (dark/lighted) 0.1368 -0.0095 -0.1273 
Driver’s controlled maneuver (left turn)  -0.0069 -0.0990 0.1060 
Pedestrian action (improper crossing of the 
roadway/jaywalking 

-0.0232 0.1686 -0.1454 

Pedestrian location (shoulder/roadside) 0.0106 -0.0534 0.0428 
Pedestrian condition (under the influence of 
medication/drugs/alcohol) 

-0.0099 0.0578 -0.0478 

Pedestrian age (≥ 65 
Years) 

0.011 -0.0895 0.0775 

Vehicle type (passenger car) -7.0417 -0.0619 0.0689 
Type of traffic control device –TCD (other 
than a stop sign, or a traffic signal). 

0.01195 0.2640 -0.2759 

The analysis of the DT4000 dataset for pedestrian crashes in Table 6-47 showed that 

fourteen variables are selected for pedestrian severity rate prediction.  

 

i) Four are roadway-related; trafficway division (divided with traffic barrier), trafficway 

division (divided without traffic barrier), type/level of light (dark and unlit), type of the TCD (other 

than a stop sign, or a traffic signal). Regarding trafficway division, results in Table 6-47 suggest 

that pedestrians are less likely to be involved in severe injury crashes if the crash occurred in 

trafficways divided with a traffic barrier. Also, the marginal effect results in Table 6-48 indicates 

that the probability of severe injury crashes will decrease when the pedestrian is involved in a crash 

in a trafficway divided with a traffic barrier. Similarly, for trafficways divided without traffic 

barriers, Table 6-47 and Table 6-48 both show that pedestrians are less likely to sustain a severe 

injury if involved in crashes that occurred in trafficways divided without traffic barriers.  
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Regarding the light conditions, six-light conditions categories (daylight-DAY-, dawn-

DAWN-, dusk-DUSK, dark/lighted-LITE-, dark/unlit-DARK-, dark-unknown lighting-DK/UN) 

are considered in studying pedestrian crash severity with the DT4000 dataset. The categories of 

light condition tested are; lite, dark and dawn, and daylight, dusk,  dark-unknown lighting) as 

proposed by the CHAID tree in  Figure 6-4. Results in Table 6-47 and Table 6-48 both show that 

pedestrians are less likely to sustain a severe injury if involved in crashes occurred in dark/lighted 

trafficways (LITE). Concerning the type of TCD applicable to the involved motor-vehicle at the 

time of the crash, results found in Table 6-47 and Table 6-48 both show that pedestrians are less 

likely to sustain a severe injury if involved in crashes occurred at intersections with a stop sign or 

a traffic signal. For instance, no traffic control, traffic signal/stop sign with flashing, and traffic 

control person. Table 6-47 and Table 6-48 both show that pedestrians are more likely to sustain a 

severe injury if involved in crashes occurred at intersections without traffic control, with traffic 

signal/stop sign with flashing, or a traffic control person.  

 ii) Seven are pedestrian-related; pedestrian condition (appeared normal), pedestrian location 

(not at intersection/on roadway-not in marked crosswalk), pedestrian usage of safety equipment, 

pedestrian action (improper crossing of the roadway/jaywalking, pedestrian location 

(shoulder/roadside), pedestrian condition (under the influence of medication/drugs/alcohol), 

pedestrian age (≥ 65 years). Table 6-47 and Table 6-48 both show that pedestrians are less likely 

to sustain a severe injury if involved in crashes occurred while the pedestrian is using safety 

equipment compared to not using any safety equipment; the pedestrian is located on the roadside 

compared to being located in an intersection with/without a marked crosswalk, or located in a 

midblock (not at an intersection) with/without marked crosswalk; and if the pedestrian age group 

is ≥ 65 years compared to being a young pedestrian or among pedestrians aged 30-64. 
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For pedestrian action/circumstances at the time of the crash, pedestrian under the influence of 

medication/drugs/alcohol, and pedestrians who appeared normal, showed opposing results in 

Table 6-47 and Table 6-48. The results display that pedestrians are more likely to sustain a severe 

injury if they are under the influence of medication/drugs/alcohol. Whereas, if a pedestrian 

appeared to be normal, he/she is less likely to sustain an evident and possible injury (was 

insignificant in affecting severe crashes). Lastly, results of pedestrian improper crossing of the 

roadway/jaywalking showed in Table 6-47 and Table 6-48, revealed that a pedestrian is more 

likely to sustain a severe injury if he/she was crossing the roadway improperly. 

iii) One is vehicle-related; Vehicle type (passenger car). For vehicle-related variables, Table 

6-47 and Table 6-48 both show that pedestrians are less likely to sustain a severe injury if involved 

in crashes where the vehicle is a passenger car, compared to other groups of a vehicle type that are 

used in this study; i.e., passenger van, utility truck, sport utility vehicle, etc. 

Finally, iv) two are driver-related; driver action (going straight). For the vehicle’s controlled 

maneuver (left turn), results presented in Table 6-44 indicate that when the driver involved in the 

crash is making a left turn, the likelihood of severe injury decreases. Moreover, results displayed 

in Table 6-47 and Table 6-48, both revealed that a pedestrian is more likely to sustain a severe 

injury if he/she was located not at intersection/on roadway-not in marked crosswalk ) while the 

driver was going straight at the time of the crash. 

Table 6-49: Estimated Coefficients of Each Variable Involved in the Bicyclist Injury 

Severity Model 

Variable Code  

P (Severe 

injury (A) 

Crash) 

P (Evident and 

Possible Injury 

(B+C) Crash) 

Coef. 
P-
value 

Coef. P-value 

Intercept  3.05 0.07 5.57 0.00 

Intersection type (4-way) INTTYPE.BIKE.DT --- --- 2.47 0.00 
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Intersection type (T) INTTYPE.BIKE.DT -1.76 0.09 -2.38 0.02 

Horizontal road terrain (straight) ROADHOR.BIKE.DT -1.83 0.04 -2.01 0.02 
Bicyclist Action (Sudden 
Movement Into Traffic) 

NMTACT.BIKE.DT 2.15 0.01 -2.58 0.00 

Bicyclist Age (< 30 
Years) 

BIKE.AGE.DT --- --- 1.80 0.01 

Vehicle’s controlled maneuver 
(going straight) 

DRVRDOIN.BIKE.DT -1.34 0.07 -2.69 0.00 

Vehicle’s controlled maneuver 
(going straight) and bicyclist’s 
action Immediately Prior to the 
Crash (walking facing traffic) 

DRVRDOIN.GO.STR. 
NMTPRIOR.BIKE.DT 

2.56 0.00 2.06 0.02 

Vertical road terrain (level) ROADVERT.BIKE.DT --- --- -1.92 0.08 
Bicyclist Condition (at an 
intersection in marked crosswalk) 

DNMFTR.BIKE.DT --- --- -1.55 0.04 

Safety Equipment Used By the 
Bicyclist (none) 

NMTSFQ.BIKE.DT --- --- 2.38 0.03 

 

 

Table 6-50: Marginal Effects Results for Bicyclist Crash Variables Using DT4000 Dataset 

 

Variable 
P (Fatal 

(K) Crash) 

P (Severe 

Injury (A) 

Crash) 

P (Evident and 

Possible Injury 

(B+C) Crash) 

Intersection type (4-way) -0.3586 0.0086 0.3500 

Intersection type (T) 0.4352 -0.1707 -0.2644 

Horizontal road terrain (straight) 0.4149 -0.2283 -0.1865 
Bicyclist Action (Sudden Movement Into 
Traffic) 

0.5054 -0.2444 -0.2609 

Bicyclist Age (< 30 
Years) 

-0.2651 -0.0132 0.2783 

Vehicle’s controlled maneuver (going straight) 0.4045 -0.0352 -0.3693 
Vehicle’s controlled maneuver (going straight) 
and bicyclist’s action Immediately Prior to the 
Crash (walking facing traffic) 

0.4002 -0.5172 0.1170 

Vertical road terrain (level) 0.1917 0.1492 -0.3410 
Bicyclist Condition (at intersection in marked 
crosswalk) 

0.1832 -0.2534 0.0701 

Safety Equipment Used By the Bicyclist (none) 0.0272 0.3287 -0.3560 

 

The analysis of the DT4000 dataset for bicyclist crashes in  Table 6-49 showed that ten 

variables are selected for bicyclist severity rate prediction.  

i) Four are roadway-related; intersection type (4-way), intersection type (T), horizontal road 

terrain (straight), vertical road terrain (level). Regarding the intersection type; two types showed 
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significant influence on bicyclist’s severity rate; 4-way intersection and T intersection among six 

intersection type categories (4-way intersection, T intersection, Y intersection, L intersection, five-

point intersection, and roundabouts). Opposing results were displayed in Table 6-49 and  

Table 6-50 for the two intersection types; crashes occurred at 4-way intersection showed that 

the bicyclist is more likely to sustain a severe injury, while bicyclists struck at T-intersections are 

less likely to sustain a severe injury.  

Vertical and horizontal road terrain, both appeared to be significant to the evident and possible 

injury severity level. However, level road terrain appeared insignificant in affecting severe crashes. 

Consistent results were displayed in  

Table 6-50, which provides that crashes that occurred on straight and level graded roadways 

showed that the bicyclist is less likely to sustain severe injury.  

ii) Two are driver-related; vehicle-controlled maneuver (going straight), and vehicles 

controlled maneuver (going straight) while bicyclist’s actions immediately prior to the crash 

(walking facing traffic).  For drivers going straight, the estimation and marginal effect results 

showed in Table 6-49 and  

Table 6-50, reveal that when the driver is going straight, he/she is less likely to severely injure 

a bicyclist compared to making other maneuvers such as taking a left/right turn. Whereas, 

considering the case when the driver is going straight while the bicyclist walking facing traffic 

immediately prior to the crash (a newly created variable), the bicyclists are more likely to sustain 

a severe injury.  

Finally, iii) four are bicyclist-related; bicyclist action (sudden movement into traffic), bicyclist 

age (< 30 years), bicyclist condition (at an intersection in marked crosswalk), safety equipment 
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used by the bicyclist (none). Regarding bicyclist's location with respect to the roadway, results 

displayed in Table 6-49 and  

Table 6-50, reveal that the bicyclist is less likely to sustain a severe injury if he/she is located 

at an intersection and in a marked crosswalk. For the safety equipment used by the bicyclist, the 

results showed in Table 6-49 and  

Table 6-50, both imply that if the bicyclist has no type of safety equipment at the time of 

crash then he/she is more like to sustain a severe injury when struck by the motor vehicle. Bicyclist 

age has always been considered a risk factor in injury severity studies ((Kaplan and Giacomo Prato 

2015; Behnood and Mannering 2017; S. Das et al. 2019), the results showed in Table 6-49 implies 

that bicyclists of age group under 30 years, showed an insignificant effect on fatal injury severity, 

but the marginal effect results in  

Table 6-50 indicates that bicyclists under 30 years are less likely to sustain a severe injury, 

compared to the other age groups of bicyclists between 30-64 years and bicyclists older than 65 

years. For the bicyclist action that might have contributed to the crash, the results showed in Table 

6-49 and  

Table 6-50, both imply that if the bicyclist suddenly moved/darted into traffic, then he/she is 

more likely to sustain a severe injury.  
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 Conclusions and Future Work 

Recommendations 

7.1  Research Conclusions 

In this research, exploration, and evaluation of a variety of factors significantly affecting 

motor vehicle crashes involving pedestrians and bicyclists, commonly defined as vulnerable road 

users (VRUs), is applied.  

The comprehensive safety analysis in this study covered the following main points:  

• Discover possible underlying factor structure connecting exogenous variables and 

crashes involving pedestrians based on the corridor level, using the SEM technique. 

• Developing crash count models and responsible party choice models to respectively 

address factors relating to roles in a crash by pedestrians and drivers.  
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• Identify, categorize, and quantify the factors contributing to crashes where a 

pedestrian is responsible, a driver is responsible, or both parties are responsible. 

• specify the crash party at-fault, which provides evidence about whether pedestrians, 

bicyclists or drivers are more likely to be involved in severe crashes, and to identify 

the contributing factors that affect the fault of a specific road user group. 

• An extensive investigation of the available information regarding the crash (i.e., issued 

citations, actions/circumstances that may have played a role in the crash occurrence, 

and crash scenario completed by the police officer) are considered.  

• evaluate the enhancements of crash report form for its effectiveness of reporting VRU 

involved motor vehicle crashes. 

• Thoroughly study the modified and new data fields, and their associated attribute 

values. 

• Comprehensively evaluate the effectiveness of improved data collection in terms of a 

better understanding of factors associated with and contributing to VRU crashes.  

7.1.1 Conclusions of the Corridor Crash Analysis Study 

The study applies SEM to develop a conjectured structure that provides a clear portrait 

between a large number of highway corridor specific variables and VRU crashes. The structure is 

featured by the relationship between three exogenous latent variables representing bicyclist and 

pedestrian-oriented roadway design, exposure and surrounding social status, and one endogenous 

variable representing a single value VRU safety quantification for both pedestrian and bicyclist 

crashes. The relationship between latent and observed variables can also be conveniently 

established by using the measurement model. Combining both the structural and measurement 

models in a single modeling process enables the effective distinction between direct, indirect, and 
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synergic effects between variables and thus more accurately captures the physical underpinning 

for VRU crashes. Hence, the notable findings from this highway corridor based VRU study are as 

follows: 

• The model suggests that bicycle/pedestrian-oriented roadway, exposure, and low 

social status are strongly related to VRUs’ crash frequency.  

• SEM helps to explain the potentially conflicting information such that an observed 

variable may affect more than one latent variable in different ways (i.e., 

High_Spd_Limit), and the results show that high-speed limit positively influences 

pedestrian and bicyclist’s exposure to traffic leading to an increase in crash frequency. 

• It is noted that some significant variables in the models were not significant in previous 

research.  

 

7.1.2 Conclusions of Party At-Fault Assignment Study 

The importance of determining the at-fault status of each of the parties emerged from the 

transportation professional’s need to understand the injury severity of traffic crashes where the 

driver is at-fault or not-at-fault. This knowledge may be used to educate at-fault drivers and at-

fault VRUs about the possible risk produced to other not-at-fault drivers and VRUs. Besides, 

comparing the injury severity of the VRUs at-fault party with injury severity of the not-at-fault 

party allows the identification of the major factors affecting both parties. In this study, fault 

investigation included three different outputs: driver at-fault, VRU at-fault, and unknown party at-

fault, as shown in Figure 5-2. Police crash reports from 2017-2018 were reviewed in the DT4000 

form. Moreover, a case review was performed for every particular traffic crash by using all 

possible data sources, namely police narrative construction including eyewitness 
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statement/testimony, issued VRU and driver traffic citations including violated pedestrian/bicycle 

laws, toxic driver and VRU behavior/actions and any contributing circumstances to crash 

occurrence. Hence, the notable findings from this fault party study are as follows: 

• The data sources of information served as the foundation to help us assign the final 

score that will contribute to the fault assignment of each party. 

Conditions/circumstances are useful in terms of proposing preventive actions. 

• This fault assignment guideline is designed for the Milwaukee area since results of 

previous research on fault assignment concluded that the fault assignment results are 

not necessarily uniform with distant geographic locations (Ulfarsson, Kim, and Booth 

2010), hence a comprehensive and unique guideline to assign the fault to pedestrians 

and drivers was developed. 

• The analysis using Z-test and XGboost as statistical modeling techniques helps to rank 

variables’ importance in terms of predicting driver at-fault and VRU at-fault crashes. 

Subsequently, the MNL models quantified the effect of the variables on injury severity 

prediction.  

• The manual review of the crash narrative is time-consuming and labor-intensive, 

which may be subject to the reviewer’s experience and judgment. Some efforts have 

been made to automate manual review through text-mining techniques and the results 

are described in detail in Appendix B.
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7.1.3 Conclusions of the Data Quality Evaluation Study 

Regarding the investigation on the level of completion of the DT4000 crash form data fields, 

major upgrades were applied to the DT4000 data fields and their completeness throughout the 

crash report. For instance, horizontal road terrain (ROADHOR [1,2]), vertical road terrain 

(ROADVERT [1,2]), road surface condition (RDCOND [A,B,C]), controlled maneuver by the 

driver (DRVRDOIN [1,2]), trafficway description (TRFCWAY [1, 2]), apparent factors of the 

road/highway (RDWYPC [A, B, C]), driver contributing actions/circumstances (DRVRPC [1,2] 

[A,B,C,D]), non-motorists actions/circumstances contributing to the crash (NMTACT [1,2] 

[A,B]), and non-motorist location with respect to the roadway (NMTLOC [1,2]), showed 

significant detailing in the DT4000 dataset compared to the MV4000 dataset. The formerly 

mentioned data fields also showed prominent contributions based on their sample size -this reflects 

the data field completion level-. Not only these data fields were more detailed, but also provided 

extra information and enhanced the information regarding the crash circumstances and boosted the 

understanding of the police narrative scenario. Additionally, several data fields were added to the 

DT4000 dataset and supplemented information missing from the MV4000 dataset such as a total 

number of lanes (TOTLANES [1,2]), the status of the TCD (TRFCINOP [1,2]), individual 

condition relevant to the crash (DNMFTR [1,2] [A, B]), and non-motorist actions immediately 

prior to the crash (NMTPRIOR [1,2]). After assessing the changes in the attributes of new and 

common data fields, conclusions concerning the examination of the new and recategorized and 

enhancement of the injury severity model ‘s accuracy. The importance of DT4000 over MV4000 

is stated as follows:  

• Regarding pedestrian-vehicle injury severity prediction, pedestrian condition at the 

time of the crash (DNMFTR.PED.DT), pedestrian location with respect to the 
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roadway (NMTLOC.PED.PED.DT), whether speed was a factor in a crash 

(SPEEDFLAG), vehicle type (VEHTYPE), the type of traffic control device (TCD) 

available at the crash location (TRFCCNTL.PED.DT), driver actions that may have 

contributed to the crash (DRVRPC.PED.DT), and the safety equipment in use by the 

pedestrian at the time of the crash (NMTSFQ.PED.PED.DT) were the most important 

and significant factors for pedestrian-vehicle crash injury severity. In addition to the 

following newly created variables; (LGTCOND.DARK.DRVRDOIN.GO.STR) 

which refers to dark/unlit crash location with the driver going straight, 

(LGTCOND.LIGT.DRVRDOIN.GO.STR) which refers to dark/streetlight crash 

location with the driver going straight.  

• Whereas, for bicyclist-vehicle injury severity prediction, the DT4000 dataset provided 

better attributes -in terms of the variable estimated coefficient- and variables that 

enhance the prediction of the injury severity compared to the MV4000 dataset through 

the inclusion of the new data fields and added attributes. Intersection type (INTTYPE), 

safety equipment usage by the bicyclist (NMTSFQ.BIKE.DT) provided more insights, 

specifically to the severe injury level of crash severity, which was not well studied 

using only the MV4000 crash form data fields. Furthermore, vehicle-controlled 

maneuver prior to the beginning of the sequence of events (DRVRDOIN.BIKE.DT), 

the vertical terrain of the roadway (ROADVERT.BIKE.DT), bicyclist condition at the 

time of the crash (DNMFTR.BIKE.DT), bicyclist action that may have contributed to 

the crash (NMTACT.BIKE.DT), the horizontal road terrain (ROADHOR.BIKE.DT), 

and the bicyclist location with respect to the roadway (NMTLOC.BIKE.DT). 

furthermore, trafficway division level and type (TRFCWAY.BIKE.DT) had a 
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significant influence on bicyclist injury severity but were not considered among the 

most important variables. Hence, DT4000 crash form data fields provided additional 

insights beyond the MV4000 crash form data fields.  

• Few variables showed common effects on both pedestrian and bicyclist crash severity 

prediction, i.e., the non-motorists condition (DNMFTR.PED.DT and 

DNMFTR.BIKE.DT), and the non-motorist location (NMTLOC.PED.DT and 

NMTLOC.BIKE.DT).  

7.2 Future Work Recommendations 

Based on the findings of the study in hand, future work is recommended as follows: 

• The SEM study was limited by not having direct pedestrian and bicyclist volume 

counts; there may be other land-use variables beyond those considered in this study 

that contributes to increased pedestrian and bicycle exposure. Future studies should 

try to use more refined pedestrian and bicyclist exposure data. Pedestrian and bicyclist 

counts will be helpful to improve the accuracy of latent variable exposure.  

• Additionally, crashes were not analyzed if they were not reported to police, or not 

geocoded in the crash database. The ten-year time period provides more crash data for 

analysis, but it also increases the chance that a particular corridor had different 

characteristics when the earliest crashes occurred. The database contained crashes 

with motor vehicles only, as they appeared to be the most severe, but they have been 

found to represent only a fraction of total pedestrian and bicycle crashes.  

•  Although the sample size of 200 corridors is adequate, more sites are desirable to 

improve the model fit and significance of the input variables. Further work should also 
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use behavioral data to ensure that these factors are well studied and reduce the 

potential for omitted variable bias.  

• To improve the results of the fault party study, there is room to enhance the text 

mining classification results for efficiency and accuracy. For example, other features 

could be engineered, other than the “textlength” generalizable feature which 

performed well in this study.  

• Also, trying different combinations of n-grams might increase the classification 

accuracy, such as testing trigrams with 4-grams, bigrams with trigrams, bi-grams, 

and 4-grams, or maybe testing bi grams separately not combined with uni-grams as 

in this study.  

• Concerning the classification models, the RF algorithm was used and performed 

better than the CART model. RF model is easy to tune and is considered a good 

general-purpose algorithm. However, other models such as boosted decision trees, or 

support vector machines (SVMs) may perform better and can be tested. 

• For the data quality study, using a larger sample size may provide a chance to study 

other newly added DT4000 crash form data fields, that did not show a significance to 

the crash severity models. Also, combining attributes that serve for the same meaning 

in a future study, is believed to add more value to such new data fields. As an example, 

the data field describing the relevant condition of the individual (DNMFTR) contains 

(11) attributes that may distract the police officer while filling the right description of 

the individual condition. For instance, the attribute “appeared normal” may be 

confused with “under the influence of medication/drugs/alcohol” especially in cases 

where the consumption is minimal and does not show clear symptoms yet. Another 
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example is the data field describing actions/circumstances of the non-motorists that 

may have contributed to the crash (NMTACT). The attribute “sudden movement into 

traffic” and “improper passing”, also the attributes “dark clothing” and “not visible 

(dark clothing, no lighting, etc.)” may be mis-filled through the crash report because 

of the similarity these attributes carry to each other.  
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Appendices 

Appendix A: Citations for drivers and non-motorists 

STATNM 

[1, 2] [A, B, 

C, D]Code 

Citation Indication  Driver 

Violation 

VRU 

Violation 

341.04 (3) Penalty for operating the unregistered or improperly 

registered vehicle. 

✓ 

 

 

343.05 Operators to be licensed. ✓  

344.62 (1) Motor vehicle liability insurance required ✓  

346.03 Applicability of rules of the road to authorized emergency 

vehicles 
✓ 

 

 

346.04  Obedience to traffic officers, signs, and signals; fleeing from 

an officer. 
✓ 

 

✓ 

 

346.04 (2), 

346.04 (3) 

No operator of a vehicle shall disobey the instructions of any 

official traffic sign or signal unless otherwise directed by a 

traffic officer. 

✓ 

 

 

346.05 Vehicles to be driven on the right side of the roadway. ✓ 

 

 

346.06 Operators of vehicles proceeding in opposite directions shall 

pass each other to the right, and upon roadways having 

width for not more than one line of traffic in each direction 

each operator shall give to the other at least one-half of the 

main traveled portion of the roadway as nearly as possible. 

✓ 

 

✓ 

 

346.07 Overtaking and passing on the left.  ✓  

346.072 Passing stopped emergency or roadside service vehicles. ✓ ✓ 

346.075 Overtaking certain vehicles and devices. ✓ ✓ 

346.13 Driving on roadways laned for traffic. ✓  

346.14  Distance between vehicles. ✓  

346.15 Driving on a divided highway. Whenever any highway has 

been divided into 2 roadways by an intervening unpaved or 

otherwise clearly indicated dividing space or by a physical 

barrier constructed to substantially impede crossing by 

vehicular traffic, the operator of a vehicle shall drive only to 

the right of the space or barrier and no operator of a vehicle 

shall drive over, across, or within the space or barrier except 

through an opening or at a crossover or intersection 

established by the authority in charge of the maintenance of 

the highway, except that the operator of a vehicle when 

making a left turn to or from a private driveway, alley, or 

highway or making a U-turn may drive across a paved 

✓  
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dividing space or a physical barrier not constructed to 

impede crossing by vehicular traffic unless the crossing is 

prohibited by signs erected by the authority in charge of the 

maintenance of the highway. 

346.18 (2) General rules of right-of-way. Turning left or making a U-

turn at the intersection.  
✓ ✓ 

346.19 (1) General rules of right-of-way. Upon the approach of any 

authorized emergency vehicle giving an audible signal by 

siren, the operator of a vehicle shall yield the ROW. 

✓ 

 

✓ 

 

346.23 (1) Crossing controlled intersection or crosswalk.  ✓ 

346.24 Crossing at uncontrolled intersection or crosswalk.  ✓ 

346.24 (3) Whenever any vehicle is stopped at an intersection or 

crosswalk to permit a pedestrian, personal delivery device, 

bicyclist, or rider of an electric scooter or an electric 

personal assistive mobility device to cross the roadway, the 

operator of any other vehicle approaching from the rear may 

not overtake and pass the stopped vehicle. 

✓ 

 

 

346.25 Every pedestrian, bicyclist, or rider of an electric scooter or 

an electric personal assistive mobility device crossing a 

roadway at any point other than within a marked or 

unmarked crosswalk shall yield the right-of-way to all 

vehicles upon the roadway. 

 ✓ 

 

346.26 Blind pedestrian on highway.  ✓ 

346.27 The operator of a vehicle shall yield the right-of-way to 

persons engaged in maintenance or construction work on a 

highway whenever the operator is notified of their presence 

by flagmen or warning signs. 

✓ 

 

 

346.31 Required position and method of turning at intersections. ✓  

346.32 Required position for turning into a private road or 

driveway. 
✓  

346.35 Method of giving signals on turning and stopping. ✓ ✓ 

346.37 (1) Vehicular traffic facing a green signal may proceed straight 

through, make a U-turn, or turn right or left unless a sign at 

such place prohibits the turning maneuver, but vehicular 

traffic shall yield the right-of-way to other vehicles and 

pedestrians lawfully within the intersection or an adjacent 

crosswalk at the time the signal is exhibited. 

✓  

347.48 Safety belts and child safety restraint. ✓  

346.78 Play vehicles not to be used on the roadway. No person 

riding upon any play vehicle. 

 ✓ 

346.80 (3)(b) Persons riding bicycles upon a roadway may not ride more 

than 2 abreast except upon any path, trail, lane or other way 

 ✓ 
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set aside for the exclusive use of bicycles, electric scooters, 

and electric personal assistive mobility devices. 

346.804 Riding a bicycle on the sidewalk.   ✓ 

346.87 Limitations on backing. The operator of a vehicle shall not 

back the same unless such movement can be made with 

reasonable safety. 

✓  

346.89(1) Inattentive driving. No person while driving a motor vehicle 

may be engaged or occupied with an activity, other than 

driving the vehicle, that interferes or reasonably appears to 

interfere with the person's ability to drive the vehicle safely. 

✓  

346.94 (2) RACING. No operator of a motor vehicle shall participate in 

any race or speed or endurance contest upon any highway. 
✓  

347.489(1) A bicycle, motor bicycle, personal delivery device, electric 

scooter, or electric personal assistive mobility device shall 

also be equipped with a red reflector that has a diameter of at 

least 2 inches. 

 ✓ 

347.489 (2) No person may operate a bicycle, motor bicycle, electric 

scooter, or electric personal assistive mobility device upon a 

highway, bicycle lane, or bicycle way unless it is equipped 

with a brake in good working condition, adequate to control 

the movement of and to stop the bicycle, motor bicycle, 

electric scooter, or electric personal assistive mobility device 

whenever necessary. 

 ✓ 

940.09 Homicide by intoxicated use of vehicle or firearm. ✓  

Note: Citations showed in italic refer to violations related to vehicle registration and license availability 
which were excluded from being considered since they do not indicate the party is at-fault. 
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Appendix B: Police Narrative Text Mining Process 

Since a manual review of the crash narrative is a time-consuming and labor-intensive 

process, text mining techniques will be exploited as an alternative means of enhancing the 

efficiency of the case review. The reason is that crash narratives in crash reports are unstructured 

and can be fed directly into machine learning algorithms to perform data mining tasks; and the aim 

is to test if the algorithms can automatically discover information from the 3,641 crash scenarios 

in the dataset.  

Text mining of the police narratives 

Police narrative includes dates, numbers, and many unnecessary link words that need to be 

processed as an input text data first, and then patterns, rules, and information are extracted from 

the text to later be interpreted and used as a judgment for initial fault assignment. Zhang et al. 

(2019) evaluated various methods of processing crash narratives and compared several 

classification models to determine an optimal approach for secondary crash identification. Figure 

B1 illustrates the process of mining police narrative keywords. As illustrated in Figure B1, the 

process consists of five steps. These steps were implemented in several RStudio packages (i.e., 

qdap, dplyr, tm, wordcloud, dendextend, RWeka, caret, irlba, lsa, and quanteda). 
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 Step 1: Text extraction and creating a corpus. Using “tm” package, the column where 

the narrative is located in Excel is converted into “Corpus”; a collection of text documents.  

Step 2: Pre-processing (tokenization, stemming, and N-grams), and creating DTM 

and TDM. The objective of text mining using the “bag-of-words” approach, is to convert the text 

to a data frame that includes the words and their frequencies; referred to as document term matrix 

(DTM) and term-document matrix (TDM).  

This step deals with removing sparsity which is related to terms frequency. In DTM, terms 

form columns, and several columns may represent the same term. In text mining, it is 

 

Figure B1: The process generated for text mining the police narratives 

Step 1
• Text extraction and creating a corpus

Step 2

• Pre-processing (tokenization, stemming, and N-grams), and creating DTM 
and TDM

Step 3
• Vectorization of tokenized narratives

Step 4
• Normalization of N-grams TF-IDF

Step 5

• Representing narratives as vectors of numbers using VSM and extracting 
relatoinships between narratives and terms using LSA

Step 6

• Training classification models using textual data, and evaluating the 
accuracy of the trianed models
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recommended to treat sparsity. In feature extraction, the goal is to use the corpus as a predictor to 

predict whether the narrative deems a specific party to be at-fault. Next, is tokenization.  

This process includes breaking each narrative text into individual terms, represented by n-

consecutive words, leading to converting the text into a numerical vector where each word is 

assigned a special index. The process is also referred to as “bag-of-words”. When tokenization is 

complete, each row represents a document, each column represents a definite token, and each cell 

provides the token count for a document (G. Lee 2017; Nayak, Piyatrapoomi, and Weligamage 

2010).  

Even though this step takes some time; however, it is very important to make sure that 

DTM and TDM are clean to achieve valuable results. A general scan of the narrative identifies the 

potential elements that need to be eliminated from the text-called “noise”, and the main cause of 

this noise is because of the inconsistency in the narrative writing which generated from the fact 

that different police officers are assigned to write this piece of text in every police report.  

Also, common phrases such as “right of way” and “roundabout” are concatenated to appear 

as the same word and not being counted as a new word. This ensures that only root words appear 

in the DTM and TDM. Since the corpus is pre-processed, the next step is creating the DTM and 

TDM. DTM refers to the mathematical matrix which describes terms frequencies, in which rows 

correspond to documents and columns correspond to terms. Whereas, TDM is the transpose of 

DTM, and is used for language analysis. Next, exploratory analysis can be performed, and 

frequently used words may be viewed from the TDM. 

Step 3: Vectorization of tokenized narratives. Vectorization is applied after the 

narratives are tokenized (where each narrative is broken into tokens). This process involves 

assigning a unique integer index to each unique term, where narratives are represented by a vector 
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where each column represents the frequency of a specific term in a narrative. There are several 

methods to do vectorization, such as dot product which is implemented as a proxy for correlation 

between two vectors in this study.  

Step 4: Normalization of N-grams TF-IDF. The constructed distributional vectors are 

evaluated using the oldest method; term-frequency-inverse document frequency (TF-IDF).  

TF-IDF is one of the oldest approaches to measure term significance in the document from 

a corpus of documents -the corpus of narratives in this study-, developed by (Gerard Salton and 

Buckley 1988). Terms are given different weights than simple frequencies: TF-IDF measures of 

relevance or TF-IDF scores, depending on term frequency in the document (the more gives a higher 

score of TF), and in the corpus (the more it appears in various documents the less relevant became 

IDF) (Vrbanec and Meštrović 2020). TF is calculated as: 

TF(t, d) = 
lm�N P�,�)

∑ lm�N P�o,p)qo
     Eq.  B-1 

Where: 

- TF(r, s): the proportion of the count of the term of interest r in narrative s; 

- OtbG Pr, s): count of instances of the term of interest r in narrative s; 

- n: number of distinct terms in narrative s. 

IDF measures if the term is common or rare across all the narratives (corpus) and is calculated 

as:  

IDF Pr) = logx y
z3{.9 P�)|    Eq. B-2 

Where:  

- N: count distinct narratives in the corpus; 

- count Pr): count of narratives in the corpus in which the term if interest t is present. 

Then, TF and IDF are combined to enhance the document-term frequency matrix as:  
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TF-IDF (r, s): TF(r, d) * ��� Pr)                      Eq. B-3 

The TF-IDF analysis results in one TF-IDF value for each word in each narrative, then the 

TF-IDF values are normalized using the “weightTfIdf” function.  

Step 5: Representing narratives as vectors of numbers using VSM and extracting 

relationships between narratives and terms using LSA. One of the first approaches in 

measuring semantic similarity/paraphrase detection between documents namely the vector space 

model (VSM), which was originally proposed by (G. Salton, Wong, and Yang 1975) for 

information retrieval is examined. The purpose of examining the VSM is to represent each entity 

in the collection (letters in words, words in sentences, sentences in documents, documents in the 

corpus of documents) as a point in n-dimensional space; i.e., as a vector in VSM (Turney and 

Pantel 2010). The closer the points in this space are, the more semantically similar they are and 

vice versa. In VSM, each dimension corresponds to one term or word from the narrative set. 

Weights may be determined by using various weighting schemes; TF-IDF is commonly used in 

VSM. The main drawbacks of the similarity model are high dimensionality, sparseness, and 

vocabulary problems. Therefore, there are various modifications and generalizations of this 

classical version of the VSM. (Vrbanec and Meštrović 2020). 

Another approach considered for examination is the latent semantic analysis (LSA) model 

proposed by (Landauer, Foltz, and Laham 1998). LSA model is carried out to generate word 

vectors leveraging indirect cooccurrence statistics since similar words are likely to appear in the 

same context. 

For instance, the word “suddenly” is more likely to cooccur with the word “in the roadway” 

than with the word “in crosswalk”. Through the literature, LSA has been successfully implemented 

for developing several applications in natural language processing (NLP) such as (Turney and 
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Pantel 2010; Rao and Kak 2011; Šarić et al. 2012; Patra et al. 2020). It also utilizes the vector space 

model but uses a dimension reduction technique identified by singular value decomposition (SVD) 

of the initial matrix. LSA is known to overcome the high dimensionality and sparseness of the 

standard VSM model. Table B1 shows the chosen text models for comparison and their 

corresponding similarity metrics. Among the deterministic approaches, VSM would be considered 

to be the simplest way to represent documents for information retrieval. The deterministic models 

use the cosine similarity measure on the normalized representation of the documents and the 

queries (Ruthven and Lalmas 2003). 

Table B1: Deterministic models used in the comparative evaluation 

Model  Representation  Similarity  

VSM Frequency vector  
Cosine similarity  

LSA K dimensional vector in the eigenspace  

 

The similarity between two narratives is calculated as a cosine similarity as in the following 

equation:  

Sim (��, ���) =  �� � ��� 
∥��∥∥���∥ = ��� � = 

 � .�
∥�∥� ∥�∥� = 

 ∑ �oqo�� �o
: ∑ �o�qo�� : ∑ �o�qo��

     Eq. B-4 

 Where:  

- �� �Is ��� are binary vectors that represent each narrative; 

- W is the semantic similarity matrix which comprises the similarity of each word 

pairs;         

- �: Angle between vector A and vector B; 

- � . �: dot product of A and B; 
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- ∥ � ∥� ∥ � ∥�: length of A times length of B. 

Step 6: Training classification models using textual data and evaluating the accuracy 

of the trained models. Steps 1 through 5 are considered a preparation for building the 

classification model for the crash party at fault.  

Text Mining Results and Discussion  

In this section, the classification algorithms used are single decision trees (i.e., CART), and 

the random forest (RF) models. Random forest (RF) is an ensemble learning method that consists 

of several decision tree classifiers.  Each tree in the random forest uses only a subset of the selected 

features for classification; to make sure that the results of different trees are uncorrelated. RF is 

known to generate classification results based on the majority rule. The standard performance 

metric for the RF is the out-of-bag (OOB) estimate of the error (Franklin 2005). The RF method 

is recognized for reducing overfitting and accurate prediction compared to single decision trees 

(i.e., classification and regression trees (CART)). To achieve optimum performance, the main 

hyperparameters should also be tuned. In this study, the hyperparameters comprise of: i) the 

number of decision trees in the forest, ii) the number of influencing features considered in each 

split, and iii) the minimum number of samples required for internal and leaf nodes.  

The Classification and Regression Trees (CART) method is a non-parametric statistical 

algorithm developed by Leo Breiman et al. (Breiman 1984). It builds both classifications and 

regression trees. CART is based on a binary splitting of the attributes. CART methodology 

comprises three main stages: growing or splitting decision trees, pruning, and selection of the 

optimal tree as follows: i) splitting; the process of tree building starting with splitting the root node 

into two child nodes, ii) pruning; develops an optimal tree via shedding off the large tree’s 

branches, and iii) optimal tree selection; a tree with the smallest prediction error for new samples 

-test data-. In this study, the prediction error is measured by using cross-validation.  
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First, missing cases were checked via the “complete.cases” function, and then completed 

before data exploration. The most obvious observation about the collected crash narratives is the 

large variance in narratives’ text length. Therefore, a new feature of our data frame is created and 

named “text length”, where the length of characters for every narrative is calculated using the 

“nchar” function. The illustration of the text length summary for our data is shown in Figure B2, 

where we see a lot of variance in the data. The summary showed that the max number of characters 

is (2266) characters, and a minimum of (2) characters-such narratives were later excluded since 

they are incomplete. The median value or the 50th percentile; the value at which half of the narrative 

text is shorter and longer than this value is (353) characters. The 3rd quartile value showed that 

75% of the narrative text is (590) characters or less. 

While processing the calculations of classification models over the corpus through the text 

mining process, it became obvious that the models’ results could not be highly accurate and 

informative while using the four at-fault party categories; driver at-fault (DRVR), VRU at-fault 

(VRU), both parties at-fault (BOTH), no or unknown party at-fault (NO/UNKN), as intended while 

planning the experiments. It was necessary to determine the best combination of fault categories 

for every model and corpus. Fault categories considered for the text mining analysis were decided 

from running the classification models using the training part of the dataset and evaluated on the 

testing parts through the 3-cross validation method because there are three categories in it; driver 

at-fault “DRVR”, VRU at-fault “VRU”, no party at-fault “NONE”.  



 

303 
 

 

 

Figure B2:  An illustration of the propensity of the four at-fault categories based on 

the “textlength” feature engineered in the initial stages of the narrative mining process. 

 

In machine learning (ML), the goal is to create models that can generalize and perform 

well on new data, called “generalization”. Hence, the dataset is split between training and test 

datasets with a ratio of (3:1) using the “createDataPartition” function from the “caret” package to 
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make a stratified split. This function randomly samples the data and ensures that the split is 

stratified meaning that the proportions are maintained across the splits. Narratives are then 

tokenized, meaning that their text is decomposed into distinct pieces.  

Next, narratives were pre-processed; punctuation (such as |*~”`#$%^_=-;/<:.{}) which 

appeared to deliver no information and therefore was omitted and replaced by spaces. Stop words 

(such as “I”, “they”, “was”, “having”, “isn’t”, “don’t”, “but”, “each”, “very”) and broken words 

which generated from removing the punctuation and adding spaces instead, are both removed to 

obtain more accurate results from mining the remaining text. The “quanteda” package’s built-in 

stop-word list for English was used after being inspected to make sure it applies to the mining 

problem tackled in this study as every stop-ward list is different among different packages. Some 

words are added to the set of stop words predefined by R, are words that are appeared differently 

throughout the records, such as Unit1, U1, Unit 1, unit 1. Additionally, words that are differently 

abbreviated, those with spelling mistakes, and words with an upper case were converted to lower 

case using “tokens_tolower” function. The text is then ready for the stemming process, meaning 

that inflected/derived words are reduced to their word stem using the “tokens_wordstem” function. 

For instance, “turned”, “turning”, “turns” are reduced to “turn”.  

Next, the document-frequency matrix (DFM) is constructed where each row represents a 

specific narrative using the “dfm” function; each column represents a distinct token; and each cell 

contains the count of that token for a particular narrative. Since word order is not preserved, the 

“bag-of-words” approach is used throughout this police narrative mining process. It is noted that 

after constructing the DFM, the matrix suffers from the dimensionality or sparsity problem, and 

feature engineering is proposed to contribute to solving this issue.  
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Cross-validation is performed after pre-processing is applied to the narratives, to create the 

first bag-of-words model. However, “make. names” function is used before training the model to 

clean column names.  

Using the “caret” package, stratified folds are created for 10-fold cross-validation (k=10) 

repeated 3 times, meaning that 30 random stratified samples were created to get more accurate 

estimates through the “createMultiFolds” function. The first trained model is a single decision tree 

model; classification and regression tree (CART) model. Hyperparameter tuning is used via the 

“rpart” package by trying 7 different configurations (tuneLength=7) of the CART algorithm. 

Accuracy was used to select the optimal model which resulted in 81.75% at a complexity parameter 

(CP) value -the tuning parameter for “rpart”- of (0.0411449). 

However, longer narratives were observed to have higher term counts, and terms that 

appear more frequently across the corpus do not necessarily reflect their significant importance. 

To improve the accuracy result of the CART model, a TF-IDF is used to adjust the DFM and 

normalize the term counts across the narrative based on the text length. Matrix adjustment is 

needed to accommodate these two issues. Hence, TF-IDF is calculated. TF -which is document-

centric meaning rows are normalized- is calculated for each narrative using “term.frequency” 

function, and IDF -which is corpus centric meaning columns are normalized - is calculated using 

“inverse.doc.freq” function. Then, TF and IDF are combined into TF-IDF. Using the TF-IDF data, 

the CART model is applied to check for any improvement in the model accuracy. Results showed 

that accuracy has improved slightly to reach 82.84%. 

The original data representation was the document term frequency matrix DFM, each row 

represented a document and each column was a term as a result of data preprocessing (tokenization, 

stop-word removal, lower casing, removing certain numbers, and stemming). Then, the data is 
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transformed using the TF-IDF. Next, the N-grams are used to augment the representation which 

involves single terms; called unigrams or 1-grams and bigrams.  

N-grams allows the extension of the bag-of-words model to include word order to provide 

more signal to the machine learning model. Tri grams are added at this stage of analysis to enrich 

the current feature matrix using the “tokens_ngrams” function provided by the “quanteda” 

package. However, we’ve more than doubled the total size of the matrix (dimensionality problem). 

To check if adding tri grams improve the model effectiveness, the CART model was re-run, with 

stratified folds created for 10-fold cross-validation (k=10) repeated 3 times. The results showed 

that the model’s accuracy declined, hence, the addition of trigrams appeared to negatively impact 

the single decision tree model; CART. 

However, issues with document-term matrix (i.e., a wide number of columns), document-

term matrices sparsity (i.e., sparse features), and the scalability issue (i.e., huge computation 

amount), lead to the dimensionality problem which resulted from the aforementioned issues. So, 

to solve these issues, VSM and LSA may be utilized. The vector space model (VSM) is utilized 

which allows us to address these problems. 

VSM represents documents (i.e., narratives) as vectors of numbers, allowing working with 

document geometrically “i.e., dot product”.  Also, other tools may be implemented (e.g., latent 

semantic analysis (LSA)) which extracts relationships between the narratives via the matrix 

factorization technique; singular value decomposition (SVD).  

SVD allows implementing feature reduction/extraction to improve the data representation 

while simultaneously allowing for more robust models (i.e., random forest) to improve the 

classification accuracy. However, the reduced factorization matrices are approximations, and new 
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data need to be projected into the matrix, but the information loss is negligible compared to a loss 

of information from. Modeling results of the CART and RF models are reported in Table B2. 

Table B2: modeling results throughout the narrative mining process N=3,642 

Model  Samples  CP Accuracy  

1st CART model, with 

simple document term frequency 

matrix 

2551 0.0411449 0.8174607=81.75% 

2nd CART with TF-IDF 2551 0.04472272 0.8284448=82.84% 

4th CART with SVD 2551 0.04472272 0.8955932=89.56% 

Model  Samples  mtry Accuracy  

RF model with LSA SVD 2551 2 0.9938598=99.38% 

RF model results with (text 

length) feature aggregation 
2551 251 0.9942504=99.42% 

Note: accuracy was used to select the optimal model using the largest value. 

 

The process of projecting new data consists of the following: i) using “term. frequency” 

function to normalize the document vector; ii) using “tf.idf” function to complete TF-IDF 

projection; and iii) applying SVD projection to the document vector.  

Using the “irlba” package, which uses truncated SVD to assign a certain number of the 

most important extracted features. The CART model is implemented after using the LSA 

technique, and the results showed a significant increase in models’ accuracy (89.56%). From the 

perspective of single decision trees, we gained accuracy by adding bigrams, and then by adding 

SVD to bigrams, the increase is more than (7%). To approve that the LSA technique increases the 

information density of each feature, the random forest (RF) model is considered. 

 Results showed that using the RF model increased the model’s accuracy to (%). The 

“mtry” parameter controls how much data is used in building the individual tree, and by default 
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RF in R builds 500 trees. The results also showed that the best RF model was built using 

approximately half of the data being available for each tree of the RF (250), and this is (9.8%) 

accuracy higher than the accuracy of a single decision tree model.  

Hence, the RF performed better and showed more ability in making use of the data 

preprocessing pipeline. In particular, it can make better use of the LSA SVD matrix factorization 

than single decision trees. More informative results were acquired by using the “confusion matrix” 

function from the “caret” package. Obtained accuracy is slightly higher as the model worked on 

all of the data as opposed to cross-validation where the testing data was not included.   

The “confusionMatrix” function also provides several performance metrics (i.e., 

sensitivity, specificity, Pos Pred Value, Neg Pred Value) that are useful in interpreting the results. 

While accuracy is considered intuitive and common in deciding the optimal model, it is not the 

only metric to be used.  

Hence, using other metrics such as sensitivity and specificity provides help in building the 

most effective machine learning model. The results showed that the model is better at predicting 

VRUs at-fault than drivers at-fault. Sensitivity (0.9979) and specificity (0.9885). In this study, the 

preference is to be able to correctly predict both, VRUs and drivers’ fault through police narratives. 

Therefore, engineered features may provide an enhancement to the model’s accuracy and that is 

discussed next.  

Revisiting the (text length) feature; count of the number of characters in narratives, this 

feature appeared to be predictive through inspection provided earlier. Hence, the (text length) 

feature was aggregated into the training data and the RF model was examined. Results of the RF 

model with the aggregation of the (text length) feature, showed that accuracy has increased slightly 

(0.05%) from 99.37% to 99.42%, and that sensitivity and specificity increased reaching (0.9958) 
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and (0.9902), respectively. These results denote a reduction in DRVR errors 13 wrong to 11 wrong. 

These results indicate that the (text length) is a promising feature, therefore it is next tested in the 

production of unseen data (test data).  

Given that there is some room for enhancing the model’s performance, cosine similarity 

was implemented to engineer a new feature using the “lsa” package. The similarity in vector space 

is using the cosine between document vectors and is considered an improvement over the dot 

product and works well in high dimensional spaces (which suffers from high dimensionality). 

Thus, the cosine similarity was examined next. The results showed an increase in accuracy and 

sensitivity; whereas, specificity has decreased.  

The results showed that both the DRVR and VRU’s similarities are important features, and 

this may be indicative of overfitting since it didn’t increase both measures simultaneously. When 

(text length) feature raised both sensitivity and specificity at the same time, it was considered a 

good feature. Hence, the similarity feature is opted out.   

Finally, the test data is transformed into vector space, and the RF model is tested with all 

the (300) features engineered/extracted using the SVD LSA including the (text length) feature. 

Preprocessing was applied to the test data (i.e., tokenizing, converting to a lower case, removing 

stop words, stemming, adding bigrams, and converting to document term frequency matrix).  

The results showed that the accuracy has been decreased slightly by (0.34%) using the test 

data (from 99.33% to 98.99%) than using the training dataset, and sensitivity reached a 100% value 

(1) for the DRVR denoting that the model predicts all DRVR at-fault correctly. Nevertheless, 

specificity was slightly reduced from 0.9902 to 0.9770, meaning that 97.70% of VRU were 

correctly predicted, so this is a tradeoff and is acceptable. Also, note that with the training data 

(measured by cross-validation which is an estimate of generalization) the reported accuracy was a 
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little over 0.3% better than with test data.  Note that stratified samples were created for both 

training and test datasets, so we know that the proportion of DRVR, NONE/UNKN, and VRU in 

the test dataset mimics that of the training dataset.  

Table B3: Confusion matrix of Rf on test data without similarity 

Confusion matrix of the Rf model using test data and excluding the similarity 

feature 

 Reference  

Prediction DRVR NONE/UNKN VRU 

DRVR 613 0 11 

NONE/UNKN 0 7 0 

VRU 6 0 460 

Statistics 

Class DRVR NONE/UNKN VRU 

Accuracy  0.9899 

Sensitivity  1.0000 1.0000 0.9766 

Specificity  0.9770 1.0000 1.0000 

 

Formerly, Figure B2 showed the propensity of the three at-fault categories based on the 

“textlength” engineered feature which highlighted a significant number of VRU at-fault crashes 

that were associated with a high number of characters in the police narratives.  

This feature was tested statistically through the RF model and showed an improvement in 

the model’s accuracy when included with other features extracted from the text of the narratives. 

For instance, the following narrative shows that the police officer used a large number of words to 

describe a VRU at-fault crash: “unit 1 driver identified by xxx. unit 2 operator identified by xxx.  

unit 1 driver was driving north on xxx in the city of xxx.  unit 2 was riding his bicycle north on the 

right side of xxx unit 2 driver stated he was listening to music with earbud headphones.  unit 2 
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driver turned across traffic way to reach a path on the opposite side of the road. unit 2 driver 

stated he did not see unit 1.  this caused unit 2 to strike unit 1. witness verified this account of 

course of events.  minor injuries reported by hospital staff on operator of unit 2. unit 1 occupants 

uninjured.  there was prior damage to unit 1 front passenger area”. 

Regarding false positive classifications, they can result from the presence of the formerly 

mentioned keywords in the crash narrative, which then dominate the narrative vector and result in 

a higher probability of the crash being falsely classified as driver or VRU at-fault crash. Two crash 

narratives are provided below showing incorrectly classified crashes as a driver at-fault crash and 

VRU at-fault crash clarifies this point. The location and identifiable information in the following 

narratives were redacted for information protection purposes. 

- Narrative example of false-positive driver at-fault crash: “unit # 1 was backing from 

being parked when unit #2 the pedestrian entered the roadway not at a crosswalk to 

cross the street westbound. unit #2 was jaywalking”.  

- Narrative example of false-positive VRU at-fault crash: “unit 1 was traveling SB on 

xxx ave then proceeded to turn left or EB on xxx ave/hwy. a pedestrian was walking 

southbound in crosswalk. it is unknown if the pedestrian walk button was showing 

walk or dont walk at the time of the collision. The driver of unit 1 stated that he could 

not see the pedestrian. note that it was dark and rainy, and visibility was fairly poor. 

the pedestrian was wearing dark clothing.  pedestrian claimed possible injury. 

nothing further”.  

Moreover, some keywords are not related to a specific party being at-fault appeared less 

frequently, maybe assigned high TF-IDF values. This intensifies the influence of such keywords 

on the classification result; for instance: “on the above date and time I responded to the 
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intersection of xxx ave at xxx dr for a crash.  upon arrival I made contact with unit 1 who explained 

to me that prior to the collision she was on south bound xxx dr in the right turn lane to turn onto 

west bound xxx ave.  unit 1 explained that when she approached the right turn lane she had a red 

traffic signal.  she stopped and did not see any pedestrian traffic in the cross walk.  unit 1 began 

to look to her left to watch for traffic on west bound xxx ave.  when she saw traffic was clear she 

began to make the right turn.  as unit 1 accelerated she collided with unit 2 who was east bound 

on the sidewalk and entered the intersection on his bicycle. unit 1 told me that she was 

approximately 10 feet south of the crosswalk where she collided with unit 2.  I made contact with 

unit 2 who explained to me that prior to the collision he was east bound on the sidewalk off of xxx 

ave.  as he approached xxx dr he was going to continue east through the intersection.  unit 2 told 

me that he had a signal for pedestrians to proceed through the cross walk and as he entered the 

intersection unit 1 accelerated to make a right turn onto xxx ave and they collided. A witness”. 

The keyword “accelerated” occasionally appeared in the corpus of crash narratives. 

Hence, its TF-IDF value was relatively high (0.09985466), and it was assigned as the fourth most 

important keyword for classifying driver at-fault crashes, after “fled_scene”, “not_see”, and 

“backing”. Conversely, “speeding” was among the least important words for identifying driver at-

fault crashes, with a low TF-IDF value of (0.001891378).  

This designates that the bag-of-word representation is incapable to consider the exact word 

meaning. Word normalization must be improved in further analysis to lessen this issue. None of 

the important keywords appeared in false-negative narratives. For instance, in driver at-fault crash 

false negative narratives, no presence of the defined important keywords. The following narrative 

explains this point and shows an example that was not classified as driver at-fault crash: “unit #2 

was crossing n. xxx st on his bicycle and heading eastbound on w. xxx. unit #2 had the right of way 
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to cross at the cross walk on n. xxx. unit #1 failed to yield for the bicyclist to cross the street fully. 

unit #1 made a right turn from w. xxx on to n. xxx and crashed into unit #2 crossing the street in 

the crosswalk. unit #1 did not stay on scene after crashing into unit #2. NFA city of xxx police 

department”.     

Another observed result concerning the false-negative classification of driver at-fault 

crashes is that even with using a stratified split to split the training and test datasets, some keywords 

that appear in the test dataset may not appear in the training dataset leading to the model’s inability 

to detect such keywords. This point is illustrated in the following narrative: “unit #1 struck unit 

#2 after an argument and fled the scene n/b on n. xxx st. unit #2 suffered a broken leg and several 

abrasions. unit #2 was transported by med #5 to xxx hospital and admitted at 1832. operator of 

unit #1 was located and arrested for recklessly endangering safety. MPD case # xxx”. This 

scenario described that the driver was recklessly driving, making it a driver at-fault crash. Despite 

this, “reckless” did not appear in the training set, hence, was not detected by the model. Extra 

narratives can enhance the model’s ability and lessen the effect of this issue.   

Through the manual narrative revision, some scenarios were found to be confusing due to 

the lack of a specific definition of a driver and VRU at-fault crash, especially when a narrative 

involves an eyewitness testimony that leans towards showing that the driver is at-fault even if not.  

Hence, a specific standard was followed in determining the fault party manually to determine a 

crash was a result of the fault of a specific party. For instance, a driver violating a specific traffic 

rule that was not included in the field attributes mentioned in Table 5-7 (i.e., failure to yield the 

ROW), was considered a driver at-fault crash. Otherwise, if the narrative did not involve such 

violation even if a citation related to the crash was issued, it will not be considered a driver at-fault 

crash since the citation is considered in the fault assignment as a sperate data source.  



 

314 
 

The following narratives do not indicate any of the two fault parties were responsible for 

the crash, and therefore may be debated not to be deemed as a driver at-fault crash and VRU at-

fault crash, respectively. 

- “unit 2 was riding her bike in the crosswalk on xxx st at w. xxx ave.  unit 1 was 

traveling eastbound on x and struck unit 2.  driver of unit 1 said he was unable to stop 

in enough time”. 

- “operator of unit two is a bicycle. operator does not remember which direction he was 

riding his bike prior to the accident. operator does not remember which direction the 

striking vehicle was coming from. based on the location of the bicycle and operator 

after the crash the vehicle could possibly have been traveling northbound on n xxx St.  

it is still unknown which direction the bicyclist was riding. Milwaukee fire 

department”. 

Such scenarios express how challenging is the task of correctly classifying the crash’s 

responsible fault party crashes for a human being, let alone machines. Even so, the fact that the 

model classified these crashes reveals its sensitivity. 
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Appendix C: Definition and Attribute of Data Fields 

Variable and Attribute 

Codes 
Variable and attribute Code Indication 

Roadway Level 

Horizontal Road Terrain 

ROADHOR-MV 
The horizontal road terrain at the point of impact. The options for this field are either straight or 
curve. The field will only be filled in on this summary if curve (C) was indicated.  

ROADHOR [1,2]-DT 

The curvature of the roadway in the direction of travel for the vehicle.  
ST Straight 
LT Curve Left 
RT Curve Right 
CU Curve-Unknown Direction 
UNKN Unknown 

Vertical Road Terrain 

ROADVERT-MV 
The vertical road terrain at the point of impact. The options for this field are either flat or hill. 
The field will only be filed in on this summary if hill H was indicated.  

ROADVERT[1,2]-DT 

The grade of the roadway in the direction of travel for this vehicle.  
LVL Level 
CST Hillcrest 
UP Uphill 
DN Downhill 
SAG Sag (Bottom) 
UNKN Unknown 

Road Surface Condition 

ROADCOND-MV 
The surface condition of the road at the point of origin for the unit apparently most at fault. If 
blank the road condition is DRY.  
 

RDCOND [A,B,C]-DT 

The roadway surface condition at the time and place of a crash.  
DRY Dry 
WET Wet 
SNOW Snow 
SLUSH Slush 
ICE Ice 
WATER Water (Standing/Moving) 
SAND Sand 
MUD Mud/Dirt 
GRAVL Gravel 
OIL Oil 
UNKN Unknown 

Trafficway Description 

TRFCWAY-MV 

Text describing areas designed for motor vehicle operation. 
BLNK Blank 
ND Not physically divided 
D/WO Divided highway without traffic barrier 
D/B Divided highway with a traffic barrier 
OW One-way traffic 
OTHR Parking lot or private property 

TRFCWAY[1,2]-DT 

Indication of whether or not the trafficway for this vehicle is divided and whether it serves one-
way or two-way traffic. 
UNDIV Two-Way-Not Divided 
TWLTL Two-Way, Not Divided, With A Continuous Left Turn Lane 
DIV NO Divided Hwy W/O Traffic Barrier 
DIV PNT Two-Way, Divided, Unprotected (Painted > 4 Feet) Median 
DIV BAR Divided Hwy W/Traffic Barrier 
DIV MBR Divided Hwy Median W/Barrier 
OW One-Way Traffic 
PL/PP Parking Lot or Private Property 
RAMP Entrance/Exit Ramp 
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UNKN Unknown 
Total Number of Lanes 

TOTLANES[1,2]-DT 

The total number of lanes in the roadway on which this motor vehicle was traveling. For 
undivided highways - total through lanes in both directions, excluding designated turn lanes. For 
divided highways - total through lanes for roadway the motor vehicle under consideration was 
traveling. This is a new variable suggested in the DT4000 crash form.  

Location of First Harmful Event 

RLTNRDWY-MV 

Location of the first harmful event in relation to a roadway. 
GORE Gore 
LTSH Outside should-left 
MED Median 
OFF Off roadway - location unknown 
ON On roadway 
PLOT Private lot or private prop 
RAMP On ramp 
RTSH Outside shoulder-right 
SHLD Shoulder 

RLTNRDWY-DT 

The location of the first harmful event as it relates to its position within or outside the trafficway 
ON  On Roadway 
LTSH Shoulder Left 
RTSH Shoulder Right 
MED B Median Barrier 
R SIDE Roadside 
GORE Gore 
SEP Separator 
PARK In Parking Lane or Zone 
OFF Off Roadway, Location Unknown 
O ROW Outside Right-Of-Way (Trafficway) 

CTLT Continuous Left Turn Lane 

Crash Location with Respect to Trafficway 

RLTNTRWY-DT 

Identifies the location of a crash with respect it's relation to a trafficway. This is a new variable 
included in the DT4000 crash form. 
ON  Trafficway - On Road 
OFF Trafficway - Not On Road 
P LOT Non-Trafficway - Parking Lot 
OTHR Non Trafficway-Other 

Crash Location Type 

ACCDLOC-MV 

The type of location at which a crash occurred. Types I and N are public roadway crashes.  
I Intersection related 
N Non intersection related 
PL Parking lot 
PP Private property 

LOCTYPE-DT 

The location type of a crash.  
I  Intersection (public roadway), 
N  Non-intersection (public roadway) 
PL Parking lot 
PP Private Property 

Intersection Type 

INTTYPE-DT 

The type of intersection in which a crash occurred. An intersection consists of two or more 
roadways that intersect at the same level. This is a new variable included in the DT4000 crash 
form.  
NA Not At Intersection 
4 WAY Four-Way Intersection, 
T T-Intersection 
L L-Intersection 
RAB Roundabout 
5 Five-Point or More 

Status of the TCD 
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TRFCINOP[1,2]-DT 
Indicates whether a traffic control device was inoperable or missing at the time of the crash 
(Y/N/UNKN). This is a new variable included in the DT4000 crash form. 

Crash Occurrence Within an Interchange Area 

RLTNJNIC-DT 

The coding of this data element is based on the location of the first harmful event of the crash. It 
identifies the crash's location with respect to presence in a junction or proximity to components 
typically in junction or interchange areas. This field identifies if a crash occurred within the 
Interchange area. (Y/N/UNKN). This is a new variable included in the DT4000 crash form. 

Environmental Level 

Prevailing Atmospheric Conditions 

WTHRCOND-MV 

A code which identifies the weather condition at the time of a crash.  
BLNK Blank 
CLR Clear 
CLDY Cloudy 
RAIN Rain 
RAIN Rain 
SNOW Snow 
FOG Fog / smog / smoke 
SLET Sleet / hail 
WIND Blowing sand / dirt / snow 
XWIND Severe crosswinds 

WTCOND[A,B]-DT 

The prevailing atmospheric conditions that existed at the time of the crash. 
CLEAR Clear 
CLDY Cloudy 
RAIN Rain 
SNOW Snow 
SLEET Sleet/Hail 
WIND Severe Winds 
FRZ RN Freezing Rain or Freezing Drizzle 
FOG Fog 
B SNOW Blowing Snow 
SMOG Smog/Smoke 
B DIRT Blowing Sand, Soil, Dirt 

Light Conditions 

LGTCOND-MV 
Light condition at time of crash. If blank the light condition is DAY.  
DARK Nighttime-Unlit 
LIGT Nighttime–Street Lights 

LGTCOND-DT 

The type/level of light that existed at the time of the motor vehicle crash.  
DAY Daylight 
DAWN Dawn 
DUSK Dusk 
LITE Dark/Lighted 
DARK Dark/Unlit 
DK/UN Dark-Unknown Lighting 

Contributing environmental Conditions 

ENVPC[A,B,C]-DT 

Apparent environmental conditions which may have contributed to the crash. This is a new 
variable included in the DT4000 crash form.  
NONE None 
WTHR Weather Conditions 
OBSTR Visual Obstruction(s) 
GLARE Glare 
ANML Animal(s) In Roadway 

Driver Level 

The Driver Condition Relevant to the Crash 

DNMFTR [1,2] [A,B]-
DRVR-DT 

Any relevant condition of the individual (motorist or non-motorist) that is directly related to the 
crash. 
NORM Appeared Normal 
PHY IMP Physically Impaired 
EMO Emotional (Depressed, Angry, Disturbed, Etc.) 
SICK Ill (Sick)- Fainted 
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SLEEP Asleep or Fatigued 
UI MDA Under the Influence of Medication/Drugs/Alcohol 
WCHAIR Paraplegic or Restricted to Wheelchair 
CONF Confused or Disoriented (Non-Lucid) 
BLIND Blind 
CANE Using Cane or Crutches 
NO OBS Not Observed 

Distraction/Inattentive Driving 
DISTFLAG-DT Flag indicating whether a crash involved distracting or inattentive driving. 
Driver Contributing Actions/Circumstances 

DRVRPC[1,2]-MV 

Lists the possible driver contributing circumstances (driver factors) in a collision.  
DC Driver condition 
DIS Physically disabled 
DTC Disregard traffic control 
FTC Following too close 
FTY Failure to yield 
FVC Failure to keep vehicle under control 
IC In conflict 
ID Inattentive driving 
IO Improper overtake 
IT Improper turn 
LOC Left of center 
OTR Other 
SPD Exceed speed limit 
TFC Too fast for conditions 
UB Unsafe backing 

DRVRPC[1,2][A,B,C,D]-
DT 

The actions by the driver that may have contributed to the crash, based on the judgment of the 
law enforcement officer investigating the crash. 
SPD Exceed Speed Limit 
TFC Speed Too Fast/Cond 
FTY Failed To Yield Right-Of-Way 
FTC Following Too Close 
IT Improper Turn 
UB Unsafe Backing 
FVC Failure To Control 
ROR Ran Off Roadway 
DRED Disregarded Red Light 
DSS Disregarded Stop Sign 
DTC Disregarded Other Traffic Control 
DRM Disregarded Other Road Markings 
IOR Improper Overtaking / Passing Right 
IOL Improper Overtaking / Passing Left 
WW Wrong Side or Wrong Way 
FDL Failed To Keep In Designated Lane 
AR Operated Motor Vehicle In Aggressive/Reckless Manner 
ID Operated Motor Vehicle In Inattentive, Careless or Erratic Manner 

IC 
Swerved or Avoided Due To Wind, Slippery Surface, Motor Vehicle, 
Object, Non-Motorist In Roadway, etc. 

OVR Over-Correcting/Over-Steering 
RAC Racing 
NO No Contributing Action 
NOT SEE Looked But Did Not See 

Controlled Maneuver by the Driver 

DRVRDO[1,2]-MV 

What the driver of unit was doing at the time of the crash. 
BACKING Backing up 
CHG LN Changing lanes 
GO STR Going straight 
IL PRK Illegally parked 
LG PRK Legally parked 
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LT TRN Making left turn 
MERGING Merging into traffic 
NEGCRV Negotiating curve 
NPASZN Violate no pass zone 
OVT LT Overtaking on the left 
OVT RT Overtaking on right 
PARKNG Parking maneuver 
RT TRN Right turn 
RTOR Right turn on red 
SL/ST Slowing or stopped 
STOPED Stopped in traffic 
UTURN U turn 

DRVRDOIN[1,2]-DT 

The controlled maneuver for this motor vehicle prior to the beginning of the sequence of events. 
GO STR Going Straight 
NEGCRV Negotiating Curve 

BACKING Backing 

CHG LN Changing Lanes 

OVT RT Overtake Right 
OVT LT Overtake Left 
RT TRN Right Turn 

LT TRN Left Turn 

UTRN U Turn 

LVG LN Leaving Traffic Lane 

ENT LN Entering Traffic Lane 

SLOWNG Slow/Stopping 

LG PRK Legally Parked 

STOPED Stop in Traffic 
NO PASS Viol No Pass Zn 
PARKNG Park Maneuver 
RTOR Turn on Red 
MERGING Merging 
ACCEL Accelerating in Road 
STARTNG Starting in Road 

Safety Equipment Used by the Driver 

SAFETY[1,2]-DR-MV 

The type of safety equipment, if any, that was used by a driver, bicyclist or pedestrian involved 
in a crash.  
SH/LP Shoulder & lap belt 
LAP Lap belt only 
SHLD Shoulder belt only 
CHILD Child safety seat 
HT/EY Helmet & eye protection 
EYE No helmet / eye protection only 
NA Not applicable-non-motorist 
HLMT Helmet 

SFTYWQP [1, 2]-DR-DT 

The restraint equipment in use at the time of the crash (excluding motorcyclists).  
SH/LP Shoulder & Lap Belt 
LAP Lap Belt Only 

SHLD Shoulder Belt Only 

UNTYPE Restraint Used - Type Unknown 

CH/FF Child Restraint System - Forward Facing 

CH/RF Child Restraint System - Rear Facing 

BOOST Booster Seat 
CH/UN Child Restraint - Type Unknown 

Driver Race 

RACE[1,2]-DT 
The race of the driver per the Wisconsin Uniform Traffic Citation. This is a new variable 
included in the DT4000 crash form. 

 A Asian 
 B Black 
 I Indian 
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 H Hispanic 
 W White 
Teen Drivers 

TEENDRVR-DT 
Flag indicating whether a crash involved a driver between the age of 16 and 19. This is a new 
variable included in the DT4000 crash form. 

Pedestrian Level 

The Pedestrian Condition Relevant to the Crash 

DNMFTR[1,2][A,B]-
PED-DT 

Any relevant condition of the individual (motorist or non-motorist) that is directly related to the 
crash.  
NORM Appeared Normal 
PHY IMP Physically Impaired 
EMO Emotional (Depressed, Angry, Disturbed, Etc.) 
SICK - Ill Ill (Sick), Fainted 
SLEEP Asleep or Fatigued 
UI MDA Under the Influence of Medication/Drugs/Alcohol 
CONF Confused or Disoriented (Non-Lucid) 
WCHAIR Paraplegic or Restricted to Wheelchair 
BLIND Blind 
CANE Using Cane or Crutches 
NO OBS Not Observed 

Pedestrian Actions/Circumstances Contributing to the Crash 

NMTACT[1,2][A,B]-
PED-MV 

This data field was retrieved from “NMTACT[1,2][A,B]” in the DT4000 crash from using the 
SAS code translation Excel file provided through the WisTransportal website. Attribute “6” was 
created to combine other actions and was named “OTHR”. 
0 BLANK 
1 WALKING NOT FACING TRAFFIC 
2 DISREGARDED SIGNAL 
3 DARTING INTO ROAD 
4 DARK CLOTHING 
5 WALKING FACING TRAFFIC 

NMTACT[1,2][A,B]-
PED-DT 

The actions/circumstances of the non-motorist that may have contributed to the crash, based on 
the judgement of the law enforcement officer investigating the crash. 
NF TRFC Walking Not Facing Traffic 

DISREG Disregarded Signal 
SUDDEN Sudden, Movement into Traffic 

DK CLTH Dark Clothing 

FC TRFC Walking Facing Traffic 

NO IMPR No Improper Action 

IM XING Improper Crossing of Roadway (Jaywalking) 
F YIELD Failure to Yield Right-Of-Way 

F OBEY Failure to Obey Traffic Signs, Signals, or Officer 
IM RDWY In Roadway Improperly (Standing, Lying, Working, Playing) 
DISABLD Disabled Vehicle Related (Working On, Pushing, Leaving/Approaching) 
STOPPED Entering/Exiting Parked/Standing Vehicle 

INATTV Inattentive (Talking, Eating, Etc.) 
NOT VIS Not Visible (Dark Clothing, No Lighting, Etc.) 
IM TURN Improper Turn/Merge 

IM PASS Improper Passing 

W WAY Wrong-Way Riding or Walking 

F LGTS Failing to Have Lights on When Required (Bicycling) 
NO EQIP Operation Without Required Equipment (Bicycle Reflectors) 
IM CHNG Improper or Erratic Lane Changing 

F LANE Failure to Keep in Proper Lane or Running Off Road 

IM ENTR Making Improper Entry to or Exit from Trafficway 

RECKLSS Operating in Other Erratic, Reckless or Careless Manner 

PASSNG 
Passing with Insufficient Distance or Inadequate Visibility or Failing to 
Yield to Overtaking Vehicle 

Pedestrian Actions Immediately Prior to the Crash 
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NMTPRIOR[1,2]-PED-
DT 

The action of a non-motorist immediately prior to a crash. No such data field in MV4000 crash 
form. This is a new variable included in the DT4000 crash form. 
XING Crossing Roadway 
WAITING Waiting to Cross Roadway 

W TRFC 
Walking / Cycling Along Roadway with Traffic (In or Adjacent to Travel 
Lane) 

A TRFC 
Walking / Cycling Along Roadway Against Traffic (In or Adjacent to 
Travel Lane) 

SIDE WK Walking / Cycling on Sidewalk 
RDWY OT In Roadway - Other 
ADJACNT Adjacent to Roadway (E.G., Shoulder, Median) 
NONE None 
JOGGING Jogging / Running 
STOPPED Entering/Exiting Parked or Stopped Motor Vehicle 
DISABLD Disabled Vehicle Related 

Pedestrian Location with Respect to the Roadway 

NMTLOC [1,2]-PED-MV 

This data field was retrieved from “NMTLOC [1,2]-PED-DT“ in the DT4000 crash from using 
the SAS code translation Excel file provided through the WisTransportal website. 
0 BLANK 
1 IN CROSSWALK 
2 IN ROADWAY 
3 NOT IN ROADWAY 
4 ON SIDEWALK 

NMTLOC[1,2]-PED-DT 

The location of the non-motorist with respect to the roadway at the time of the crash.  
ATI MX At Intersection-In Marked Crosswalk 
ATI UM At Intersection-Unmarked / Unknown If Marked Crosswalk 
ATI NX At Intersection-Not in Crosswalk 
ATI UL At Intersection-Unknown Location 
NAI MX Not at Intersection-In Marked Crosswalk 
NAI NX Not at Intersection-On Roadway, Not in Marked Crosswalk 
NAI UN Not at Intersection-On Roadway, Crosswalk Availability Unknown 
PK LN Parking Lane/Zone 
BIKE LN Bicycle Lane 
SHLDR Shoulder / Roadside 
SDWLK Sidewalk 
MEDIAN Median / Crossing Island 
DRWAY Driveway Access 
SHARED Shared-Use Path 
NON TRF Non-Trafficway Area 
NOT RPT Not Reported 

Safety Equipment Used by the Pedestrian  

NMTSFQ[1,2][A,B]-PED-
DT 

The safety equipment in use by the operator non-motorist at the time of the crash (excluding 
motorcyclists). Note that the SAFETY [1, 2] data field in the MV4000 crash dataset indicates 
that the field shows the type of safety equipment that was used by a driver, bicyclist or 
pedestrian involved in the crash, while the data. did not show that this field was filled for 
pedestrians nor bicyclists. Hence, the NMTSFQ data field is a new filed included in the DT4000 
crash form. 
NONE None 
HLMT Helmet 
PADS Protective Pads Used (Elbow, Knees, Shin, etc.) 
REFL Reflective Clothing (Jacket, Backpack, etc.) 
LTNG Lighting 

Bicyclist Level 

The bicyclist condition relevant to the crash 

DNMFTR [1,2] [A,B]-
BIKE-DT 

Any relevant condition of the individual (motorist or non-motorist) that is directly related to the 
crash.  
NORM Appeared Normal 
PHY IMP Physically Impaired 
EMO Emotional (Depressed, Angry, Disturbed, Etc.) 
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SICK Ill (Sick), Fainted 
SLEEP Asleep or Fatigued 
UI MDA Under the Influence of Medication/Drugs/Alcohol 
CONF Confused or Disoriented (Non-Lucid) 
WCHAIR Paraplegic or Restricted to Wheelchair 
BLIND Blind 
CANE Using Cane or Crutches 
NO OBS Not Observed 

Bicyclist Actions/Circumstances Contributing to the Crash 

NMTACT [1,2] [A,B]-
BIKE-MV 

This data field was retrieved from “NMTACT[1,2][A,B]” in the DT4000 crash from using the 
SAS code translation Excel file provided through the WisTransportal website. Attribute “6” was 
created to combine other actions and was named “OTHR”. 
0 BLANK 
1 WALKING NOT FACING TRAFFIC 
2 DISREGARDED SIGNAL 
3 DARTING INTO ROAD 
4 DARK CLOTHING 
5 WALKING FACING TRAFFIC 

NMTACT [1,2] [A,B]-
BIKE-DT 

The actions/circumstances of the non-motorist that may have contributed to the crash, based on 
the judgement of the law enforcement officer investigating the crash.  
NF TRFC Walking Not Facing Traffic 
DISREG Disregarded Signal 
SUDDEN Sudden, Movement into Traffic 
DK CLTH Dark Clothing 
FC TRFC Walking Facing Traffic 
NO IMPR No Improper Action 
IM XING Improper Crossing of Roadway (Jaywalking) 
F YIELD Failure to Yield Right-Of-Way 
F OBEY Failure to Obey Traffic Signs, Signals, or Officer 
IM RDWY In Roadway Improperly (Standing, Lying, Working, Playing) 
DISABLD Disabled Vehicle Related (Working On, Pushing, Leaving/Approaching) 
STOPPED Entering/Exiting Parked/Standing Vehicle 
INATTV Inattentive (Talking, Eating, Etc.) 
NOT VIS Not Visible (Dark Clothing, No Lighting, Etc.) 
IM TURN Improper Turn/Merge 
IM PASS Improper Passing 
W WAY Wrong-Way Riding or Walking 
F LGTS Failing to Have Lights on When Required (Bicycling) 
NO EQIP Operation Without Required Equipment (Bicycle Reflectors) 
IM CHNG Improper or Erratic Lane Changing 
F LANE Failure to Keep in Proper Lane or Running Off Road 
IM ENTR Making Improper Entry to or Exit from Trafficway 
RECKLSS Operating in Other Erratic, Reckless or Careless Manner 

PASSNG 
Passing with Insufficient Distance or Inadequate Visibility or Failing to 
Yield to Overtaking Vehicle 

Bicyclist Actions Immediately Prior to the Crash 

NMTPRIOR[1,2]-BIKE-
DT 

The action of a non-motorist immediately prior to a crash. No such data field in MV4000 crash 
form. This is a new variable included in the DT4000 crash form.  
XING Crossing Roadway 
WAITING Waiting to Cross Roadway 

W TRFC 
Walking/Cycling Along Roadway with Traffic (In or Adjacent to Travel 
Lane) 

A TRFC 
Walking/Cycling Along Roadway Against Traffic (In or Adjacent to 
Travel Lane) 

SIDE WK Walking/Cycling on Sidewalk 
RDWY OT In Roadway - Other 
ADJACNT Adjacent to Roadway (E.G., Shoulder, Median) 
WORKING Working in Trafficway (Incident Response) 
NONE None 
JOGGING Jogging/Running 
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STOPPED Entering/Exiting Parked or Stopped Motor Vehicle 
DISABLD Disabled Vehicle Related 

Bicyclist Location with Respect to the Roadway 

NMTLOC [1,2]-BIKE-
MV 

This data field was retrieved from “NMTLOC[1,2]- BIKE -DT“ in the DT4000 crash from 
using the SAS code translation Excel file provided through the WisTransportal website.  
0 BLANK 
1 IN CROSSWALK 
2 IN ROADWAY 
3 NOT IN ROADWAY 
4 ON SIDEWALK 

NMTLOC[1,2]- BIKE -
DT 

The location of the non-motorist with respect to the roadway at the time of the crash.  
ATI MX At Intersection-In Marked Crosswalk 
ATI UM At Intersection-Unmarked / Unknown If Marked Crosswalk 
ATI NX At Intersection-Not in Crosswalk 
ATI UL At Intersection-Unknown Location 
NAI MX Not at Intersection-In Marked Crosswalk 
NAI NX Not at Intersection-On Roadway, Not in Marked Crosswalk 
NAI UN Not at Intersection-On Roadway, Crosswalk Availability Unknown 
PK LN Parking Lane/Zone 
BIKE LN Bicycle Lane 
SHLDR Shoulder / Roadside 
SDWLK Sidewalk 
MEDIAN Median / Crossing Island 
DRWAY Driveway Access 
SHARED Shared-Use Path 
NON TRF Non-Trafficway Area 
NOT RPT Not Reported 
Safety Equipment Used by the Bicyclist  

NMTSFQ[1,2][A,B]-
BIKE-DT 

The safety equipment in use by the operator non-motorist at the time of the crash (excluding 
motorcyclists). Note that the SAFETY [1, 2] data field in the MV4000 crash dataset indicates 
that the field shows the type of safety equipment that was used by a driver, bicyclist or 
pedestrian involved in the crash, while the data. did not show that this field was filled for 
pedestrians nor bicyclists. Hence, the NMTSFQ data field is a new filed included in the DT4000 
crash form.  
NONE None 
HLMT Helmet 
PADS Protective Pads Used (Elbow, Knees, Shin, etc.) 
REFL Reflective Clothing (Jacket, Backpack, etc.) 
LTNG Lighting 

Crash Level 

Events Resulting in the Most Severe Injury  

ACCDTYPE-MV 

Description of type of crash based on the first harmful event. *MVIT - Motor Vehicle in Transit 
involves moving vehicles. This field appears blank. 
ATTEN Impact attenuator 
BIKE Bicycle 
BRP AR Bridge parapet 
BRPIER Bridge/pier/abutment 
BRRAIL Bridge rail 
CULVRT Culvert 
CURB Curb 
DEER Deer 
DITCH Ditch 
EMBKMT Embankment 
FENCE Fence 
FIRE Fire / Explosion 
GR END   Guardrail end 
GR FAC Guardrail face 
IMMER Immersion 
JKNIF Jackknife 
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LTPOLE Lum light support 
MAILBOX Mailbox 
MED B Median barrier 
MVIT* Vehicle in transit 
OBNFX Object not fixed 
SIGN Overhead signpost 
OTH FX Other object fixed 
OTH NC Other non-collision 
OT ANL Other animal 
OT RDY Veh trans other rdwy 
OT PST Other post 
OVRTRN Overturned vehicle 
PED Pedestrian 
PKVEH Parked vehicle 
TFSIGN Traffic sign 
TF SIG Traffic signal 
TRAIN Train 
TREE Tree 
UT PL Utility Pole 

MOSTHARM[1,2]-DT 

Event that resulted in the most severe injury or, if no injury, the greatest property damage 
involving this motor vehicle.  
MVIT Motor Vehicle in Transport 
PKVEH Parked Motor Vehicle 
BIKE Pedal cycle 
PED Pedestrian 
TRAIN Railway Vehicle (Train, Engine) 

Vehicle Level 

Vehicle Type Involved in the Crash  

VEHTYPE [1,2]-MV 

The type of vehicle that was involved in a crash.  
ATV Snowmobile 
ATV, BIKE Bicycle 
BLNK Blank 
BUS Passenger bus 
CAR Passenger car 
CYCLE Motorcycle 
EM AMB Ambulance on emergency 
EM FIRE Fire truck / fire fighter on emergency 
EM POL Police on emergency 
FARM Farm tractor / self-propelled 
HOME Motor home 
HRSDRWN* Horse drawn implement (carriage, wagon, buggy) 
MISC Miscellaneous 
MOPED Moped 
OTHR Other working machine 
PED Pedestrian 
PLOW Snowplow 
SBS School bus / pupil transport 
TRAIN Railway train 
TRK DB Truck tractor (double bottom) 
TRK NA Truck tractor (not attached) 
TRK SA Truck tractor (semi attached) 
TRK ST Straight truck (insert truck) 
TRK UT Utility truck 

VEHTYPE [1,2]-DT 

Specific category for the type of vehicle which was involved in a crash.  
CAR Passenger Car 
SUV (Sport) Utility Vehicle 
P VAN Passenger Van 
C VAN Cargo Van (10,000 Lbs. or Less) 
UT TRK Utility Truck/Pickup Truck 
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HOME Motor Home 
S BUS School Bus 
PT BUS Pupil Transportation School Bus 
T BUS Passenger Bus/Transit Bus 
COACH Motor Coach 
OT BUS Other Bus 
CYCLE Motorcycle 
MOPED Moped 
LSPD Low Speed Vehicle 
GOLF Golf Cart 
ATV ATV/UTV (Utility Terrain Vehicle) 
SNOW Snowmobile 
EM POL Police on Emergency 
ST TRK Straight Truck 
TRK NA Truck Tractor (Trailer Not Attached) 
TRK TA Truck Tractor (Trailer Attached) 
TRK DB Truck Tractor (More Than One Trailer) 
AMB EM Ambulance on Emergency 
FIRE EM Fire Truck on Emergency 
FARM Farm Tractor/Self Propelled 
AGCMV AgCMV (Ag Commercial Motor Vehicle) 
OTHR Other Working Machine 
TRAIN Railway Train 
PLOW Snowplow 
MISC Miscellaneous 
BIKE Bicycle 
FIREF EM Fire Fighter on Emergency 
TRAILER Trailer 
HRSDRWN Horse and Buggy 
MINI Minibike/Dirt Bike 
ACYCLE Autocycle 
ATV ATV 
UTV UTV (Utility Terrain Vehicle) 

Extent of Vehicle Damage 

VEHDMG [1,2]-MV 

The extent of vehicle damage.  
BLNK Blank 
V MNR Very Minor 
MNR Minor 
MOD Moderate 
SVR Severe 
V SVR Very Severe 

VEHDMG [1,2]-DT 

Identifies the extent to which the damage affects the vehicles operability rather than the cost to 
repair.  
NO No Damage 
MINOR Minor Damage 
FUNC Functional Damage 
DISABL Disabling Damage 
NAS Not at Scene 
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Curriculum Vitae 

Objective 

 

A Hard-working, highly motivated Transportation Engineer focusing on the areas of 
highway safety, statistical data analysis, and data mining, and GIS applications in Transportation. 
Interested in fundamental research in Transportation data analysis with a focus on Transportation 
safety. Experienced in data visualization, predictive modeling, causal analysis, and quantitative 
analysis. 

 
Experience 
 
January 2016-present |Graduate Research and Teaching Assistant 

University of Wisconsin-Milwaukee | Milwaukee-Wisconsin, USA 

• Prepared deliverables (reports, presentations, research papers, and grant proposals) 
• Worked on WisDOT funded projects:  
• Identifying Highly Correlated Variables Relating to the Potential Causes of Reportable 

Wisconsin Traffic Crashes. 
• Comprehensive Evaluation of DT4000 Data Quality for Pedestrian and Bicycle Crashes  
• Worked on Driver Yield data collection in Milwaukee project: Collected field driver 

yielding data. 
• Worked on evaluating data quality for pedestrian and bicyclist crashes project: Collected, 

analyzed, and summarized crash data from the MV4000 and DT4000 crash report forms.  
• Taught the following courses: CIV ENG 201 Statics, CIV ENG 202 Dynamics, CIV ENG 

280 Computer-Based Engineering Analysis-Statistics.  
 
June 2018-August 2019 | Civil Engineering Intern 

City of Milwaukee  |  Milwaukee, Wisconsin, USA 

• Assist engineers with plan reviews, field inspections, and stormwater management charge 
calculations. 

• Designed permeable parking lots. 
• Prepared sketches for sewer rehabilitation and maintenance projects. 
• Prepare engineering designs and plans using the MicroStation drawing tool.  
• Reviewed and prepared responses to Stormwater Management Plans and Building Permits,    
• ensured submittals are compliant with environmental, safety, and other governmental 

regulations.  
• Inspectedprojectsitestomonitorprogressandensureconformancetodesignspecifications.  
• Estimated quantities and cost of materials, equipment, and labor and prepared cost estimates. 

 
March 2012-October 2014 | Design Engineer and Quantity Surveyor 

Ministry Of Public Works & Housing |  Amman, Jordan  

• Road design using AutoCAD Civil3D for Irbid Ring Road project, Irbid, Jordan 
• Provided training for a group of 20 employees in the Geographic Information Department 

in the ministry. 
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• Highway engineer and quantity surveyor for the study: “A monitoring study of an 
underground quarry loaded by fill materials for the construction of airport street”.  
 
Education 

January 2016-present | Ph.D. in Civil Engineering (GPA 3.70) 

University of Wisconsin- Milwaukee, Milwaukee-Wisconsin, USA  

Major: Transportation Engineering.  
Minor: Urban Planning University of Wisconsin-Milwaukee, Milwaukee, Wisconsin  
Dissertation Topic: Pedestrian and Bicycle Safety Analysis.  

• Served as the president for the Wisconsin chapter of the Arab American Association 
of Engineers and Architects (AAAEA) at UW-Milwaukee, 2017-2019.  

• Course work: CIV ENG 592 Traffic Control | CIV ENG 794 Traffic Planning and 
Operations | CIV ENG 700 Graduation Seminar-Technical Writing | IND ENG 455 
Operations Research I | CIV ENG 596 Transportation Facilities Design | CIV ENG 
792 Methods of Transportation Analysis |URBPLAN 793 Applies Projects in Urban 
GIS | URBPLAN 772 Pedestrian/Bicyclist Transport |IND ENG 716 Engineering 
Statistical Analysis. 
 

January 2013-April 2015 | M.Sc. in Civil Engineering (GPA 3.70) 

University of Jordan | Amman, Jordan 

Major: Transportation Engineering 
Thesis Topic: Traveler’s revealed and stated preference analysis for the proposed bus rapid 
transit service in   Jordan.  
 

September 2008-August 2012 | B.Sc. in Civil Engineering 

Al-Balqa’ Applied University | Amman, Jordan 

Major: Highway and Bridges Engineering 
Senior Design/Graduation Project Topic: Green and Sustainable Restaurant Design 
 
Skills 

• Traffic and Planning: VISSIM, Synchro, ArcMap GIS  
• Structural Analysis: PROKON, ETABS, STAAD.Pro  
• Programming: C++  
• Statistical Software Tools: R, RStudio, SAS, Biogeme, SPSS, STATA, Minitab, 

MATLAB  
• Stormwater Quality and Quantity Analysis Tools: HydroCAD, WinSLAMM  
• Drawing Software: MicroStation, AutoCAD Civil 3D  
• Technical writing and presentation skills 
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Journal papers: 

1. Farah Al-Mahameed, Xiao Qin, Robert Schneider, Mohammad Razaur Shaon, 
“Analyzing Pedestrian And Bicyclist Crashes At The Corridor Level: A Structural Equation 
Modeling Approach” Transportation Research Record: Journal of the Transportation 
Research Board (IF=1.029), May 2019, Vol. 2673, No.7, pp. 308-318.  
https://doi.org/10.1177/0361198119845353 
2. Farah Al-Mahameed, Xiao Qin, Robert Schneider, “A Comprehensive Review and  
Evaluation of the DT4000 Crash Form Data Quality for Pedestrian and Bicycle Crash 
Analysis”, to be Submitted 
3. Farah Al-Mahameed, Xiao Qin, Robert Schneider, “A Guideline for Determining Road 
User Fault Status - An Application to Pedestrian/Bicyclist-Vehicle Crashes in Wisconsin”, 
to be Submitted 
 
Conference Presentations: 

1) Analyzing Pedestrian and Bicyclist Crashes at the Corridor Level: A Structural Equation 

Modeling Approach (19-03034), Transportation Research Board (TRB) annual meeting 
2019, January 13-17, 2019 Washington DC, USA 

2) Identifying Vulnerable Road Users Safety Issues Along Street Corridors, 
Lifesavers National Conference on Highway Safety Priorities 2019, March 31-April 2, 
2019 Louisville, Kentucky, USA.  

3) Integrating Exploratory Factor Analysis And Confirmatory Factor Analysis To Find 

Robust Predictors Of Pedestrian/Bicyclist Crashes, Association of Transportation Safety 
Information Professionals’ (ATSIP) 2018 Traffic Records Forum, September 6, 2018, 
Milwaukee, WI, USA  

 
Awards 

• Nominated among the finalists in the Three-Minute Thesis Competition during the 
TRB Annual Meeting held in Washington, D.C., January 2019.  

• Received A ($1000) scholarship from the Lifesavers Traffic Safety Scholars (TSS) 
Program to attend and present a research paper during the Lifesavers conference held 
in Louisville, KY, March 31-April 2, 2019 and presented my university as a traffic 
safety scholar.  

• Received the Chancellor’s Graduate Student Award, University of Wisconsin-
Milwaukee, Spring 2018.  

•  
Certificates 

• ArcGIS 1 & 2 (16 Hours) | September 1, 2013 – September 5, 2013  
               InfoGraph | Amman, Jordan 

• Primavera V.3 (21 Hours) February | 12, 2012 – February 23, 2012  
              Jordan Engineers Association | Amman, Jordan 
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• Application of Software Analysis & Design of High-rise Buildings-ETABS (21 
Hours) | September 4, 2011 – September 22, 2011  

              Jordan Engineers Association | Amman, Jordan 
• Design of Concrete Structures (21 Hours) | June 15, 2011 – July 6, 2011  

              Jordan Engineers Association | Amman, Jordan 
 
Leadership involvements  

• TRB Bicycle and Pedestrian Data Subcommittee (ABJ35)  
• TRB Transportation Data and Information Systems Committee (ABJ20)  
• Arab American Association of Engineers and Architects (AAAEA) Wisconsin 

chapter president, 2017-2019  
• Jordan Green Building Council (JGBC) active member, 2013-2015  
• Jordan Engineers Association (JEA) member, 2012-present  

 
Languages 

English: IELTS overall score of 7.0  

Arabic: Native or bilingual proficiency 
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