Asynchronous Monad for Reactive IoT Programming

Adam Bertrand Berger
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Computer Sciences Commons

Recommended Citation
https://dc.uwm.edu/etd/2457

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.
ASYNCHRONOUS MONAD FOR REACTIVE IOT PROGRAMMING

by

Adam Bertrand Berger

A Thesis Submitted in
Partial Fulfillment of the
Requirements for the Degree of

Master of Science

in Computer Science

at

The University of Wisconsin-Milwaukee

August 2020
ABSTRACT

ASYNCHRONOUS MONAD FOR REACTIVE IOT PROGRAMMING

by

Adam Bertrand Berger

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Tian Zhao

The widespread adoption of Internet of Things (IoT) has given rise to systems which must reactively process signal data, while maintaining latency and throughput constraints. While the reactive programming paradigm partially addresses this problem, it does not offer a complete solution. We propose a design for a monad, AsyncM, and apply it to implement push-pull functional reactive programming (FRP) where side-effect bound events are performed in low-latency push streams, and time-series computations are performed in demand-driven pull streams. The design uses implicitly threaded cancellation tokens and continuation passing style to allow for implementations in languages which have single-threaded event-loops as well as languages which have multi-threading.
We present our abstractions Stream, Signal, and Behavior and their functor, applicative, and (when applicable) monadic instances. We demonstrate how push streams (Stream) can be converted to pull streams (Signal) (and visa versa) to apply our model to practical use cases. We give a use case of a real-time IoT data analytics platform to demonstrate our design’s industrial significance where signal sample rates can change dynamically based on unknown factors such as network speed and processor resources. Application of the design to dynamic languages is shown throughout the paper in a reference JavaScript implementation.
TABLE OF CONTENTS

Abstract ii

List of Figures vii

1 Introduction 1

2 Background 5

2.1 Classic FRP . 5
2.2 Push-Pull FRP . 7
2.3 Problems with FRP . 8
2.4 Monadic Interface . 12
2.4.1 Monadic Laws . 13
2.4.2 A Time Function Monad 15

3 AsyncM 19

3.1 Progress . 19
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3 Point-wise KPIs</td>
<td>70</td>
</tr>
<tr>
<td>6.4 Windowed KPIs</td>
<td>73</td>
</tr>
<tr>
<td>6.5 Scaling Sampling Rate</td>
<td>74</td>
</tr>
<tr>
<td>6.6 External Sinks</td>
<td>77</td>
</tr>
<tr>
<td>7 Related Work</td>
<td>79</td>
</tr>
<tr>
<td>8 Conclusion</td>
<td>85</td>
</tr>
<tr>
<td>Bibliography</td>
<td>87</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

3.1 Progress value C with two child Progress values 21
3.2 Progress C after cancelling Progress B 21
6.1 Block diagram of the IoT analytics system environment 64
6.2 Block diagram of a power KPI 65
6.3 Block diagram of a THD KPI 66
6.4 Sending KPIs to a database and visualization 66

vii
ACKNOWLEDGMENTS

Thank you to Professor Tian Zhao for supporting me and giving me the direction that I needed for this undertaking over the last three years. You kept me engaged in our work together, you taught me what it means to do research, and gave me a lifetime’s worth of inspiration for learning and discovery. Also, to all the friends I have made along the way in school, I appreciate all the late nights studying and the way we motivated each other. It is this collective will to succeed that gives me ambition not only for the good of research, but for all that I do.

I am forever grateful for my parents. Thank you dad for buying me a website domain and teaching me how to use a website editor when I was in grade school. Thank you mom for keeping me organized and finding creative ways to keep me engaged in school early on. You have given me more than enough to succeed in life. There’s simply no way to thank you enough.

To my wife, Allie, I am grateful for how patient you were with me while I was slogging away with research. Thank you for being your loving, and selfless self. I love you, and I always will.

To everyone in my life who has supported me: My brothers (who keep me laughing), the Braza family (who taught me what it means to support someone in the first place), all my friends, and even my dog, Chloe. Thank you.
1 Introduction

The Internet of Things (IoT) has grown to popularity in the last decade, connecting an ever-increasing number of devices to networks. IoT devices range from consumer IoT devices, to robust industrial electrical systems which demand for monitor and control capabilities. For those mission-critical electrical systems, it is important to perform real-time system diagnostics to have visibility into the system to avoid system failure. We refer to these diagnostics as key performance indicators (KPIs). KPIs are computations performed on signals which characterize a system’s health. For example, a solar panel manufacturer may specify that a panel has 20% efficiency (converts 20% of the sun’s energy into electricity). To ensure the panel is performing according to the rated efficiency, a KPI could be computed that takes the sun’s energy and the panel’s output power as input signals, and computes the efficiency as an output signal. The signal could be stored to a database and visualized on a dashboard. A user could monitor the efficiency KPI (along with many others) to know when components of their system need maintenance.

The efficiency KPI is a simple example, as it is a point-wise calculation (applied to one sample at a time) which can be run at a low resolution (as calculating efficiency even more than once per second could be redundant).
However, there exist KPIs which require high frequency signals at rates of 10KHz or above (depending on the input signal), such as total harmonic distortion (THD). Calculating THD of a signal requires performing a Fourier transform. This requirement means the sample rate must be high enough to reproduce the real continuous signal using discrete samples. The requirement for high sample rate puts a burden on the system, forcing it to either scale or fail. If high speed data is coming at a rate in which the KPI calculation can not keep up with, it accrues unprocessed data (called back-pressure) and must decide to buffer the data, or discard it. Neither are complete solutions as buffering could consume the entire system’s memory, and discarding loses information. A robust solution is to have built-in measures to communicate (via events) in the system, so that sample rates could be reduced. This way, the system will not crash over lack of memory, and batches of data will not be lost. The problem will have been addressed at the source. A complete IoT monitoring system could capture, run KPI computations, store data, and visualize data all at once.

We propose a model for reactive programming that provides asynchronous computations for events with side-effects, synchronous computation for pure KPI calculations, composability via a monadic interface, and compatibility with dynamic languages such as JavaScript. Our design, inspired by Elliott’s Push-Pull FRP [9], combines push-streams and pull-streams to provide low
latency for responding to events (such as receiving batches of data), and pull-streams for composability of KPI calculations. These push and pull streams can be composed using the push2pull and reactimate combinators to convert from push streams to pull streams and back. We improve on Elliott’s design by providing the AsyncM monad which provides a more efficient and event-loop compatible design for Elliott’s unambiguous choice (unamb) operator, which represents a future computation that may or may not happen depending on the progress of other asynchronous computations.

Roadmap For the rest of the thesis we will explain the background of Classic FRP, Push-Pull FRP, and related problems of functional reactive programming (FRP) in Chapter 2, where we also give a brief introduction to monads, the monad laws, and an example of a simple monad to provide intuition. Chapter 3 introduces AsyncM our abstraction for asynchronous computation. We describe our cancellation tokens, Progress, the monadic instance for AsyncM, present several AsyncM primitives, and provide a real-world use case for AsyncM. We present our design of push-streams (called Streams), along with its components (Emitter and Channel) in Chapter 4. We also present Stream primitives, the monadic instance of Stream, and show how Stream satisfies the monad laws. Chapter 5 introduces our design of pull-streams (called Signals and Behaviors), and their primitives. We
apply our design to a real-world use case in Chapter 6, show related work in Chapter 7, and finally conclude with Chapter 8.
2 Background

2.1 Classic FRP

Classic FRP (the original design of functional reactive programming, first defined in FRAN [10]) was a source of motivation for our design. It uses an entirely pull-based approach featuring two fundamental abstractions Behaviors and Events which represent time-varying values and time-value pairs respectively. A Behavior is a function from time to value (Time -> a) that is used for representing continuous signals where at any time, the signal value can vary.

\[t \rightarrow \sin(t) \] is a simple Behavior, as every time \(t \) yields some value.

The most primitive Behavior is Time defined as the identity function \(t \rightarrow t \).

Events are discrete occurrences of some action that are either internal to the program (which can be created via the predicate operator) or external (which the library provides a default set of – such as lbp for a left mouse button press). The \(\mathtt{at} \) operator is defined as a means of getting a Behavior’s value at an absolute time and the \(\mathtt{occ} \) operator provides means of accessing the time and value of an event occurrence.
This approach is pure. Behaviors and Events have no side-effects, which allows them to be composed without interference. Functions can be lifted into Behavior combinators through lift functions (lift0, lift1, and so on for different arities). Listing 2.1 defines \(\text{efficiencyB} \), the efficiency of a solar panel over time, provided a Behavior of the sun’s energy \(\text{sunB} \) and of the solar panel’s output power \(\text{powerB} \). It uses \(\text{lift2} \) to create a division combinator for Behaviors.

\[
\text{divB} = \text{lift2} (/) \\
\text{efficiencyB} = \text{divB} \ \text{sunB} \ \text{powerB}
\]

Listing 2.1: FRP-style definition of solar array efficiency

Part of the novelty of FRP is its reactivity. Behaviors can be combined to create more Behaviors. A graph can be constructed (known as a “signal graph”) to represent the connections between Behaviors. Unlike previous designs, such as in synchronous data-flow programming, this graph is dynamic. Edges in the graph (control flow to different Behaviors) can change while the program is running. This is done through the \(\text{untilB} \) operator. This functionality is known as “switching”.

\[
\text{untilB} :: \text{Behavior a} \to \text{Event (Behavior a)} \to \text{Behavior a}
\]
untilB produces a Behavior that uses an initial Behavior until some event occurs that contains another Behavior, in which case it “switches” to that Behavior. This concept is powerful, as it enables the signal graph to be dynamic instead of fixed. This concept enables our Streams to scale device sample rates to the system’s throughput dynamically.

2.2 Push-Pull FRP

Push-Pull FRP [9] is a modernization and re-work of Classic FRP that gives lower latency responses to events where it is desirable, and keeps Behaviors for demand driven values. A core realization was there are two types of Behaviors: time functions, and reactive values. Time functions are absolute functions which don’t depend on events. They are well suited to be pull-based, unlike reactive values which rely on events (which make them change discretely). In Classic FRP, all Behaviors are pulled at some interval, meaning each Behavior has a latency which at worst could be equal to the polling interval. This is the cost paid for the composability of pull-streams. Reactive values maintain their composability, but don’t pay the penalty of latency from the poll interval. Our reactive programming model adopts the hybrid push-pull model of Push-Pull FRP, while improving upon
the switching mechanism (known as the unamb operator) by supporting non-
multi-threaded environments such as JavaScript.

2.3 Problems with FRP

FRP has some intrinsic issues to its design which can make some implementa-
tions inconsistent, and dangerous to run. Most issues have known solutions,
for example by reducing the expressiveness (limiting the first-class nature of
Behaviors).

Space-Time Leaks Classic FRP’s design was too permissive to be safe. Rec-
Call the at operator which takes a Time and Behavior and returns a
value. The Time parameter refers to an absolute time. This means any
time in the past, present, or future. Knowing the value of a Behavior in
the past that depends on events requires caching events, and knowing the
future value is impossible (without delaying the computation until that time
becomes the present time). The issue of accessing future times causes another
fundamental problem in FRP called causality which we discuss in the section
below.

The ability to reference arbitrary times in the past for Behaviors which
use Events requires storing every Behavior’s complete history since the
program began (if the Behavior is not a simple time function relies on
events). Moreover, Behaviors can be defined recursively where each recursion runs a computation on a previous time value until the beginning of time (a problem that affects both time functions and event dependent Behaviors). Additionally, a computation could consume non-linear time or space, escalating the problem where performance space and time usage increase over time. Listing 2.2 defines past, a time transformer which looks one time-step into the past. Looking backwards by a constant amount can be manageable (requires some constant sized buffer). Then past_ is defined, a time transformer which looks into the past an arbitrary amount requires an infinite buffer. Finally, average a recursively defined Behavior which samples a Behavior once per time-step to compute the sum of some Behavior then dividing by the number of elapsed time-steps. The helper function sum results in a linear space-time leak.

```
1 past b = \t -> b `at` (t - 1)
2 past_ b n = \t -> b `at` (t - n)
3 sum t0 step b = \t ->
   4 if t0 <= t then
   5   (sum (t0 + step) b) + (b `at` t)
   6   else 0
7 average t0 b = \t -> (sum t0 1 b) / (lift0 t0-t)
```

Listing 2.2: Three progressively larger space-time leaks

Space-time leaks must be addressed to ensure program safety. Arrowized
FRP (AFRP) [21] uses signal functions \((SF \ a \ b)\), abstracts functions from \(Behavior \ a\) to \(Behavior \ b\), which are composed using Hughes's Arrow abstraction [11] which is a point-free style that doesn't expose \(Behaviors\) as first class values. Liu and Haduk demonstrated how AFRP prevents the class of space-time leak described above from occurring by using arrows as the base abstraction instead of first-class \(Behaviors\) [18]. Another approach is to allow first-class \(Behaviors\), but redefine the semantics of FRP such that first-class \(Behavior\) can be used, but the time parameter is not persisted indefinitely over time [13]. Our model restricts access to continuous time (seen in Section 4.3.2 with the \texttt{fold} operator), and therefore prevents space-time leaks of this kind.

Causality The \texttt{at} operator causes another issue, which is the ability to depend on future or past values in the present. Unguarded access to an absolute time parameter allows for \(Behaviors\) which request values in the future. For example, Listing 2.3 defines a time transformer \texttt{futureB} which takes a \(Behavior\) and returns that \(Behavior\) which looks one time step into the future.

```hs
futureB b = \t -> b `at` (t + 1)
```

Listing 2.3: A behavior who’s current value is always in the future

Supporting a look-ahead \(Behavior\) this way, would require delaying
evaluation of Behaviors until their times have actually arrived (in which case the future will have become the present). This causes a space-time leak and requires some initial values to be used until the Behavior actually has a value.

Glitches The order in which the signal graph is updated can cause an issue called a “glitch”. For example, Listing 2.4 shows a computation (in a language with JavaScript syntax and reactive evaluation semantics) which could cause glitches in reactive programming implementations which don’t explicitly handle them. \(c \) depends on the values \(a \) and \(b \). If \(a \) is updated (via an event), the signal graph could update in two orders: \(a \), then \(c \) or \(c \) then \(a \). In the first case, \(c \) will correctly equal \(2 \) \((3 - 1)\). In the second case, \(c \) will incorrectly equal \(0 \) \((1 - 1)\).

```javascript
1 var a = 1;
2 var b = a - 1;
3 var c = a + b;
4 b = 3;
```

Listing 2.4: Definition of a glitch-prone signal graph

Reactive programming models solve this problem by having a global scheduler that topologically sorts the signal graph before it updates the graph (ensuring the graph is updated in the correct order). Other designs have glitches, but provide some ad-hoc means of ignoring the updates of
glitches. Our model allows for glitches to occur in push-streams (due to their asynchronous nature), but prohibits them in pull-streams (Signals and Behaviors). This is sufficient in preventing unexpected errors in the computation.

2.4 Monadic Interface

Our reactive design features a monadic interface for AsyncM, the driving force for our push-streams (known in Push-Pull FRP as reactive values). Monads are a concept from category theory that was imported into functional programming by Phillip Walder [29] as a way of structuring computations in a consistent way which isolate a computation into two parts: the potentially side-effect bound code hidden behind the interface, and the code that utilizes the interface.

Monads abstract a common pattern of computation in which some type \(m \) (which represents a computational context) wraps another computation \(a \) which can be composed \((m \ a \rightarrow m \ b)\) using functions of type \(a \rightarrow m \ b \) where wrapped computations are returned in functions (called Klesli arrows). An example of this pattern is the use of flatMap for lists (the relation is obvious in the type signature \(\text{list} \ a \rightarrow (a \rightarrow \text{list} \ b) \rightarrow \text{list} \ b \)), or in the context of reactive programming switchMap (seen in RxJS to
switch between push-streams [2]).

2.4.1 Monadic Laws

Utilizing a monadic interface ensures that if the monad’s definition is sound (if it obeys a set of laws), computations are guaranteed to be correct when they are composed. This cannot be said about arbitrarily defined interfaces in imperative code. To get the compositability guarantees, monads must obey the following three laws.

Left Identity The first law, left identity, requires that a monad must provide an operator, \texttt{return}, which produces an identity value such that

\[
\text{return } x \gg= \lambda y. f \equiv f[x/y]
\]

The notation used is analogous to Walder’s original laws [29], but with Haskell syntax. \(\gg= \) applies a Klesli arrow to a monad with the type \(m \text{ a} \rightarrow (\text{a} \rightarrow m \text{ b}) \rightarrow m \text{ b} \), where \([x/y]\) means “\(x\) is bound to \(y\)”. Left identity implies that some binding occurs of the value inside the monad on the left side of the \(\gg=\) operator to the Klesli arrow on the right. Left identity requires that lifting \(x\) to a monad and applying the \(\gg=\) operator to a function \(\lambda y. f\) is equivalent to just binding \(x\) to \(y\) in the function \(\lambda y. f\).
Right Identity The second law, right identity, requires the same concept, but a `return` on the opposite side. That is, some monad `m` bound `(≫)` with some function that returns a value `x` is the same as just the original monad `m`.

\[m ≫= \lambda x.\text{return } x \equiv m \]

Associativity Associativity requires the ordering of parentheses with the `≫=` operator to be irrelevant. Note that on the left, `x` is bound in `g` and on the right `x` is free in `g`.

\[m ≫= (\lambda x.f ≫= \lambda y.g) \equiv (m ≫= \lambda x.f) ≫= \lambda y.g \]

In practice, monads can be defined which break these rules. Because there are no means of statically proving if a monad respects the rules, it is the responsibility of the implementer to ensure the rules are followed. Following the monad laws ensures that the monad’s behavior is consistent, and that simple transformations to the code do not result in unexpected differences in the computation.
2.4.2 A Time Function Monad

To demonstrate the usefulness of a monadic interface, Listing 2.5 shows a Haskell implementation of a time function monad. Time functions are Behaviors that don’t use Events. Without a monadic approach, time parameters would be scattered around the code which is both cumbersome to write, and allows for unprotected modification of the time parameter (leading to issues that arise from time transformations such as non-causal Behaviors and space-time leaks).

In this example, an animation is considered (inspired by FRAN [10]). A circular motion can be created by animating an object over time using \(\cos \) and \(\sin \) for the \(x \) and \(y \) coordinates. \texttt{circleB} demonstrates how a Behavior can be created only by composing pre-defined Behavior monads (\texttt{sinB} and \texttt{cosB}) to produce a Behavior \texttt{Vec2} (a two dimensional vector that can be indexed based on continuous time). \texttt{scaleB} defines a combinator which scales the \(x \) and \(y \) coordinates by some factor \(\texttt{amt} \) which can stretch the motion of any Behavior \texttt{Vec2}.

The Behavior monad implicitly threads a \texttt{Time} parameter throughout the entire computation. The \texttt{Time} can be retrieved by an identity function Behavior called \texttt{time}. This is similar to a Reader monad. A Reader monad is one of many standard monads (such as Maybe, List, Either, Writer and State) that define some well-understood behavior. In the
case of Reader it is for providing an implicitly threaded value which can be asked for, and also can be locally set. The Behavior monad in Listing 2.5 isn’t a complete Reader monad because there is no way to locally set the Time (doing so would make it possible to implement time transformations which are a source of many problems, and a source of the ultimate flexibility that FRAN provided). The effects of the standard monads can be layered on top of each other without re-implementing their behavior by use of monad transformers. We will use this idea as a model for understanding the AsyncM implementation later.

```haskell
1 type Time = Float;
2 data Behavior a = Behavior (Time -> a)
3
4 at :: Behavior a -> Time -> a
5 at (Behavior f) t = f t
6
7 instance Functor Behavior where
8   fmap f b = Behavior $ \t -> f $ b `at` t
9 instance Applicative Behavior where
10   pure x = Behavior $ \t -> x
11   mf <*> mx = Behavior $ \t -> (mf `at` t) (mx `at` t)
12 instance Monad Behavior where
13   return = pure
14   b >>= f = Behavior $ \t -> (f $ (b `at` t)) `at` t
```
time = Behavior $ \ t \rightarrow t$

\[
\sinB = do \\
\ t <- time \\
\ return \ $ \sin t
\]

\[
\cosB = do \\
\ t <- time \\
\ return \ $ \cos t
\]

\[
\textbf{type} \ \text{Vec2} = (\text{Float}, \text{Float})
\]

circleB :: Behavior Vec2

circleB = do
\[
\ x <- \cosB \\
\ y <- \sinB \\
\ return \ $ \ (x, \ y)
\]

\[
\text{scaleB} :: \text{Float} \rightarrow \text{Behavior Vec2} \rightarrow \text{Behavior Vec2}
\]

\[
\text{scaleB} \ \text{amtB} \ \text{b} = do \\
\ (x, \ y) <- \text{b} \\
\ z <- \text{amtB} \\
\ return \ $ \ (x * z, \ y * z)
\]

Listing 2.5: Time Function Monad Definition

The \text{scaleB} combinator can be used as \text{scaleB} \ (\text{return} \ 2) \ \text{circleB}
to increase the circle’s motion radius by two. A variable scaling can be
achieved by $\text{scale}_B \ (\text{abs}_B \ \cos_B) \ \text{circle}_B$ (assuming some absolute value combinator abs_B).
3 AsyncM

Our design builds on Push-Pull FRP [9] by providing a monad, AsyncM, which uses continuation-passing style (CPS), to create a concurrency model agnostic means of implementing futures (the concept behind reactive values in Push-Pull FRP). AsyncM uses nested Progress values to control the cancellation of composed AsyncM monads, which allows for expressing asynchronous operations that race against each other (raceM), wait for all to complete (allM), wait for any to complete (anyM), run in parallel without merging progress (forkM).

3.1 Progress

Progress of asynchronous computation is monitored in a nested fashion. These progress values (known as “cancellation tokens”) are constructed as a cons list where each Progress has a head value indicating if the Progress has been cancelled, and optionally a tail (which is another Progress value). Progress values can either be a ConsP where the cell has a head value (which is true if the Progress is cancelled) and a tail value, or a NilP where there is only a head value.

Checking if a progress value is alive is a recursive algorithm (seen in
Listing 3.1) where the current progress value's head is checked, then its tail is checked recursively. If the head is true for any Progress value (including the nested ones), this indicates cancellation.

```java
1 class ConsP extends Progress {
2     isAliveP () {
3         if (!this.head) { return this.tail.isAliveP(); } // Listing 3.1: Recursive liveliness check for Progress values
4         else return false;
5     }
6 }
7 class NilP extends Progress {
8     isAliveP () {
9         return !this.head;
10     }
11 }
```

The significance of this design is that cancellation bubbles up from the inside out. For example, consider three Progress objects (A, B, and C) which are all alive (head is false) in Figure 3.1.

However in Figure 3.2, Progress B is cancelled. This cancellation automatically causes Progress C to be cancelled too. Even though the outer Progress is cancelled, Progress A will continue to be alive. This
Figure 3.1: Progress value C with two child Progress values.

property is useful for AsyncM where we want to create a nested asynchronous computation who’s cancellation is not affected by its outer scope (e.g. scopeM).

Figure 3.2: Progress C after cancelling Progress B.

3.2 AsyncM

3.2.1 Monadic Stack

AsyncM is a combination of two monad transformers (ReaderT and ContT) with a base IO monad that can be created with a type of Progress \(\rightarrow (a \rightarrow IO()) \rightarrow IO() \). That is, a function which takes an initial Progress value, a continuation Progress (the next computation),
and performs some side-effect. As mentioned in the monad section, monads can be combined using *monad transformers*. Transformers can be used directly in languages that support them (e.g. Haskell), otherwise writing a new monad with the effects of both is necessary. To understand AsyncM it is important to first consider the effects of the two monads Reader and Continuation and imagine stacking their effects on top of each other to create a single monad.

Reader Monad A Reader monad (as discussed in the Time Function Monad section) provides a $\gg=$ operator definition, return definition, and two helper functions ask and local. First consider the type signature of a Reader type: $e \to a$ (where e is an environment and a is some output type). The $\gg=$ operator ($\text{Reader} \ e \ a \to (a \to \text{Reader} \ e \ b) \to \text{Reader} \ e \ b$) implicitly threads the environment e throughout functions. Note how the Klesli arrow takes a value of the output type a (e is hidden). return lifts some value into the monad by creating a function which takes e (which it ignores) and returns a constant value. The monad would be useless if it didn’t have a means of accessing the environment e. ask serves this purpose by creating a Reader using an identity function ($e \to e$). ask has type $\text{Reader} \ e \ a \to \text{Reader} \ e \ e$. Although the monad is called “reader” there is a way of writing a new value (at least for any
child readers). `local (type (e -> e) -> Reader e a -> Reader e a)` can be used to map over the environment `e` so that a child reader is run with a modified environment.

Listing 3.2 shows a definition for `≫=` for a `Reader e a` type. This reveals the implicit threading of the environment value which is hidden to code that uses the monad.

```
1 >>= :: Reader e a -> (a -> Reader e b) -> Reader e b
2 m >>= f = Reader \e -> runReader (f (runReader m e)) e
```

Listing 3.2: Reader monad interface

Continuation Monad A continuation monad uses a monadic interface to implement continuations via continuation passing style (CPS). Continuations are a way to represent computations (along with all their state) that have yet to happen. Some languages implement continuations as first-class values (e.g. Scheme, Ruby). Languages with first-class functions can emulate continuations using CPS. This involves passing an additional function parameter to each participating function, and optionally calling that function with the result of the function when the computation completes. This style replaces `return` statements with function calls, giving the program more access to modify control-flow. However, CPS is cumbersome to write manually. Using a monad for this task is ideal, because the continuation parameter can be
passed implicitly (through the >>= operator).

A continuation monad instance has the type of \((a \to r) \to r\) where \(r\) is some return type, and \(a\) is some input type. Often in Haskell, this will be presented as a monad transformer \(\text{ContT}\) which adds a monad parameter into the type signature \((a \to m r) \to m r\). We are concerned with when the monad is \(\text{IO}\) (such as \((a \to \text{IO} r) \to \text{IO} r\)). The difference isn’t necessary to distinguish in languages such as JavaScript where types are not checked statically. The first argument of the continuation type is called the “continuation” (that is \((a \to r)\)). This is the continuation function which is implicitly propagated via >>= operator.

A continuation monad should provide three definitions: \text{return} which simply calls the continuation with a constant value, \(\gg= \) :: \(\text{Cont} r a \to (a \to \text{Cont} r b) \to \text{Cont} r b\) which creates a new continuation that runs its first argument \(\text{Cont} r a\) and with the value it yields, calls the Klesli arrow with it (producing an inner continuation). Listing 3.3 shows the definition for \(\gg=\) for a continuation type \(\text{Cont}\) whose type is \((a \to r) \to r\).

```
1 \gg= :: \text{Cont} r a \to (a \to \text{Cont} r b) \to \text{Cont} r b
2 m \gg= f = \text{Cont} (\lambda k \to \text{runCont} m (\lambda x \to \text{runCont} (f x) k))
```

Listing 3.3: Continuation monad interface
3.2.2 Monadic Definition

Having understood the Reader and Continuation monad, the AsyncM monad can be understood by layering their effects on top of each other. Listing 3.4 shows the monadic definition for AsyncM. The definition includes the functions `fmap` and `app` which correspond with AsyncM’s functor and applicative instances respectively. `fmap` can be used to create an AsyncM who’s asynchronous result (that depends some hidden Progress value) has been applied to a function. `app` can be used to apply a function wrapped in some asynchronous computation to another asynchronous value. `pure` corresponds with AsyncM’s monadic return operator (also required for applicative instances).

```java
1 class AsyncM {
2     // new :: (Progress -> (a -> IO ()) -> IO()) -> AsyncM a
3     constructor = run => { this.run = run; }
4     // fmap :: AsyncM a -> (a -> b) -> AsyncM b
5     fmap = f => new AsyncM (p => k => this.run(p)(x => k(f(x))));
6     // pure :: a -> AsyncM a
7     static pure = x => new AsyncM (p => k => k(x))
8     // app :: AsyncM (a -> b) -> AsyncM a -> AsyncM b
9     app = mx => this.bind(f => mx.bind(x => AsyncM.pure(f(x))));
10    // bind :: AsyncM a -> (a -> AsyncM b) -> AsyncM b
11    bind = f => new AsyncM (p => k =>
12        this.run(p)(x => f(x).run(p)(k)));
```
Listing 3.4: The definition of AsyncM

The bind implementation (≫=) merges the definitions of Reader and Continuation that we saw in the previous section. The run method serves the purpose as both runReader and runCont did in the previous section (it is a curried function where the first application has the same semantics as runReader and the second of runCont). In our Haskell implementation this monad can be expressed without any custom code by stacking the ReaderT and ContT monad transformers. The usefulness of this bind definition will be apparent after the definition of several utility functions.

3.2.3 Primitives

\texttt{scopeM} \quad \texttt{scopeM} (similar to a Reader monad’s local function) creates a new AsyncM with a modified Progress value. The Progress value is extended via adding to the Progress cons list. This way, cancelling the returned AsyncM will not cancel any child AsyncM. As explain in the Progress Section, the AsyncM will be cancelled whenever any child is cancelled.

\begin{verbatim}
const scopeM = m => new AsyncM(p => k => this.run(p.cons())(k));
\end{verbatim}
unscopeM unscopeM performs the opposite of scopeM. That is, it creates a new AsyncM which has a modified Progress value that uses the tail of the Progress cons list.

```javascript
const unscopeM = m =>
    new AsyncM(p => k => this.run(p.tail ? p.tail : p)(k));
```

forkM forkM runs the AsyncM and the continuation k with a new Progress value which is cancelled if the parent is ever cancelled. The AsyncM’s side-effects are run in parallel along with the continuation’s side-effects. This is a race; however, the Progress values are not linked which makes forkM distinct from raceM. An identity function is used for when running the AsyncM as the final continuation, as we are running it for its side-effects (has type IO ()). Note the the Progress value of the forked AsyncM is exposed as a means of cancelling the forked computation.

```javascript
const forkM = scopeM(m => new AsyncM (p => k => {
    m.run(p)(x => x);
    k(p);
})));
```

ifAliveM ifAliveM creates a checkpoint where Progress of the given AsyncM is checked. If the AsyncM has been cancelled (using the recursive condition specified in the Progress Section), the AsyncM’s continuation is
not called. This causes the computation to terminate immediately after the checkpoint.

```javascript
const ifAliveM = new AsyncM(p => k => p.ifAliveP(k));
```

cancelM
cancelM cancels the current Progress and continues the computation (calls the continuation k). This primitive is used for indicating cancellation to parent or racing AsyncM, but continuing the current computation.

```javascript
const cancelM = new AsyncM(p => k => { if (p.cancelP()) k(); });
```

commitM
commitM combines ifAliveM and cancelM to only continue the computation if the Progress is alive, and then cancelling the Progress. This is primitive is useful in cases, such as just after an raceM, to ensure the continuation is only called once.

```javascript
const commitM = ifAliveM.bind(_ => cancelM);
```

timeout
timeout run calls the AsyncM’s continuation in n milliseconds. This function forms the base for reactimateing pull-streams (Signals) into push-streams Streams. The JavaScript implementation uses setTimeout, but the concept works with any form of concurrency (event-loop based or multi-threading for example).

```javascript
const timeout = n => new AsyncM(p => k => setTimeout(k, n));
```
raceM raceM runs two AsyncMs in parallel with a newly scoped Progress value. Scoping the Progress allows child AsyncMs to use either commitM or cancelM directly to cancel itself to allow for only one to continue after the race. If no cancellation is made, the continuation k will be called twice.

```javascript
const raceM = m1 => m2 => scopeM(new AsyncM(p => k => {
    m1.run(p)(k);
    m2.run(p)(k);
}));
```

anyM anyM runs two AsyncMs that race with each other, where if the first m1 succeeds, the computation continues with a Either value of Left x1 otherwise it continues with a value of Right x2. commitM is used so that the continuation of raceM is only called once (by the AsyncM that won the race). Using Either allows the succeeding computation to know which AsyncM completed.

```javascript
const anyM = m1 => m2 => raceM
  (m1.bind(x1 => commitM.bind(_ => AsyncM.pure(Left(x1)))))
  (m2.bind(x2 => commitM.bind(_ => AsyncM.pure(Right(x2)))))
```

allM allM runs two AsyncM in parallel, joins their return values together, and continues when both AsyncM have completed.

```javascript
const allM = m1 => m2 => new AsyncM(p => k => {
```
let count = 0, r = [];

const k1 = x => {
 r[0] = x;
 if (++count >= 2) k(r);
};

const k2 = x => {
 r[1] = x;
 if (++count >= 2) k(r);
};

m1.run(p)(k1);

m2.run(p)(k2);

3.2.4 Monad Laws

Section 2.4.1 presented the monad laws which were three laws which monads are to follow to ensure consistent behavior. AsyncM should obey these laws if we claim it to be a monad. Our monadic definition of AsyncM utilized the concept of monad transformers, where conceptually two monad transformers ReaderT and ContT are “stacked” on top of an IO monad to create AsyncM. It is well-established that stacking monad transformers on top of a monad such as IO monad results in another monad [17], which means that AsyncM obeys the monad laws.
3.2.5 Use Case: Cancelable Web Requests

AsyncM primitives can be combined for general purpose asynchronous computations. The code that interfaces with AsyncM can be written in a declarative style (in Haskell using do-notation, in JavaScript through bind), but represents complex relationships between cancelable asynchronous processes.

Consider an example where some data is being loaded from an API, and the user has a cancel button which stops the loading from happening. The HTTP request could be sent with some delay (timeout), and if the cancel button was not pressed before the delay, the resources would be loaded. Listing 3.5 shows an example of this where a list of URLs is loaded in five seconds, unless the user clicks a button. Not only is this effect achieved, but the resulting AsyncM, cancelableFetchM, is composable. Code that uses the example can bind cancelableFetchM. If the value is a Left, the button cancelled the data from being loaded, otherwise a Right value that contains the result of the web requests is received.

definem that fetches a JSON via a HTTP request (using the JavaScript fetch API), and continues the computation with the JSON value. clickM is an AsyncM which continues when a button is pressed (given some DOM node).

```javascript
1 const getM = url => new AsyncM(p => k =>
2     fetch(url).then(r => r.json().then(k)));
3 const clickM = el => new AsyncM(p => k =>
```
el.addEventListener('click', k, { once: true });

const fetchDataM = allM(getM('/user/1'))(getM('/user/2'));

const cancelableFetchM = anyM(
 clickM(document.querySelector('#cancel'))
 (timeout(5000).bind(_ =>
 ifAliveM().bind(_ => fetchDataM)));

Listing 3.5: An AsyncM which fetches data unless a cancel button is pressed.
4 Streams

AsyncM can be used as the foundation for creating a push-pull model of FRP. This model of FRP will inherit the benefits of using AsyncM. AsyncM’s usage of CPS will enable the FRP system to support implementations in languages regardless of their concurrency strategy (e.g. multi-threading, single-threaded event loops), and AsyncM’s cancellation semantics will enable the FRP system to create exit checkpoints where asynchronous computations can exit safely and reliably.

The new FRP design must not only be equipped with AsyncM, but also have several new primitive objects. For implementation of an IoT analytics system (as we demonstrate in Chapter 6), it is important to have switching (for adjusting the computation to dynamic factors), a hybrid push-pull approach (where data which should be low latency is pushed, and composable time-series computations are pulled), and a means of converting between push and pull streams. To accomplish this, we layer several objects on top of AsyncM: Emitter, Channel, Stream, Signal, and Behavior.
4.1 Emitter

An Emitter is a stateful class which implements the core of push-streams. Emitters maintain a list of listeners (which are AsyncM continuations to call upon emission), and the last emitted value. Emitters have three basic primitive methods: emit, listen, and wait. listen creates a new AsyncM who registers itself to the emitter (the continuation is called during emission), emit calls each continuation (stored in listeners) with a given value, wait creates an AsyncM which either continues with the latest value of the emitter (if it has one), otherwise, registers the continuation with the emitter.

```javascript
class Emitter {
    constructor() {
        this.now = null;
        this.listeners = [];
    }
    emit = x => {
        this.now = x;
        const listeners = this.listeners;
        this.listeners = [];
        for (const listener of listeners) listener(x);
    }
    listen = () => new AsyncM(p => k => this.listeners.push(k))
    wait = () => new AsyncM(p => k => {
```
if (this.now !== null) k(this.now);

else this.listeners = [k];

}};

Listing 4.1: Emitter class definition

Emitter objects are used to propagate values throughout the signal graph via pushing. The latency of Emitter objects is low, as the listeners are called immediately after an event is emitted. Pull-based models could have delay that is at worst case as long as the sample rate; while this push-based approach doesn’t introduce any additional latency.

An AsyncM utility function spawnM is defined that uses Emitter (found in Listing 4.2). spawnM creates a new AsyncM which yields an inner AsyncM, who continues whenever the parameter AsyncM, m, continues. The synchronization between AsyncM is done via a shared Emitter object. This becomes useful for our definition of switching for push-streams, when we need to refer the next continuation of an AsyncM as an AsyncM value.

Listing 4.2: Definition of spawnM
4.2 Channel

Channel is a stateful class which implements the core of pull-streams. Channels have a list of data (called the “buffer”), and a list of continuations (called “listeners”). The purpose of a Channel is to provide a queue (FIFO) of buffered values which are written asynchronously (an AsyncM would continue immediately) and read synchronously (an AsyncM will not continue until there is a value). Channels have two primitive operators: read and write. read takes a continuation, and if the Channel has data, dequeues an item from the buffer, and calls the continuation with that item. If there is no data, the continuation is added as a listener, so that it is called immediately when a write occurs. write adds an item to the buffer (if there are no listeners), otherwise immediately dequeues the next listener and calls it with the item.

```javascript
class Channel {
  constructor() {
    this.data = [];
    this.listeners = [];
  }

  // read :: (a -> IO()) -> IO()
  read = k => this.data.length > 0 ?
    k(this.data.shift()) :
    this.listeners.push(k);
```

36
As consecutive calls to `write` occur, items accumulate indefinitely in the buffer. This accumulation is called back-pressure. Back-pressure is essential in systems which must process data at rates that are dynamic or could exceed the processing limits of some computation. While back-pressure enables such computations to occur, it can also be the source of a memory-leak in programs who can not process buffered data at a rate greater than the rate of incoming data. In our IoT Analytics use case we address this problem by measuring the data rate, and altering the sampling rate to match the computation’s throughput. Maintaining a safe amount of back-pressure is a matter of ensuring that writes from channels occur at less than or equal to the rate that reads occur.

4.3 Stream

Stream is our implementation of push-streams (in the spirit of Push-Pull FRP) which is comprised of a cons list of `Next` values linked together by `AsyncMs`, and terminated with an `End` value. The head value of each item
in the list is a Maybe type where there can either be Just some value, or Nothing. The use of a Maybe type is due to streams of IoT data having no reasonable initialization value (the data is only known after the data is received). To illustrate why Maybe is necessary, imagine a Stream of voltage signals, and a KPI which divides by voltage. Now the most reasonable of initialization values, zero, causes division by zero. To avoid this, there must be some way of skipping a computation when there is no value (to not force an initial value). This way a Stream can be initialized with a nothing value, until data comes in. The tail of a Next type is an AsyncM of Stream (a Stream which occurs in the future). This cons list structure where the tail is an asynchronous computation can continue indefinitely (by always yielding Next values), or can terminate via a End value (which has no tail).

Similar to AsyncM, Stream has a monadic interface, but unlike AsyncM, the monad is not comprised of monadic transformers. Listing 4.3 defines the monadic interface for Stream (along with fmap, and app for functor and applicative instances). fmap applies a function to each head of the cons list recursively. Next’s fmap implementation can continue indefinitely, as this.next is an AsyncM value. This is desired behavior to support Streams which never terminate (e.g. background processing, real-time visualizations). maybe_a represents the Maybe type, which is a separate monad consisting of the current value of the Stream. This means Maybe’s
The `fmap` function will not apply the function parameter to `Stream` values who are a `Nothing` value (it only applies the function to `Just` values). Maybe’s `maybe` method takes two arguments (curried), the first being the value if the `maybe` is a `Nothing` type, the second being the value if the `maybe` is a `Just` type.

`bind` is implemented in a similar fashion to a `List` monad where the monad is applied to `fmap`, then flattened (with `join`). To “flatten” is to take some type `T` of `T` and yield a type of just `T`. For example, taking a `Stream` of `Streams` (a `Stream` which produces `Streams`), and create a single `Stream`. While the concept is simple, the way that the flattening occurs determines the semantics of the monad. In this case, the flattening determines the semantics of push-stream switching. The `switchS` function is discussed in Section 4.3.1 which is omitted in this listing, and is responsible for the majority of the `bind` implementation. Finally, the `app` function uses `bind` to apply a `Stream` of functions to a `Stream` of any value.

```java
class Stream {
    constructor(a) { this.maybe_a = a; }
    static next = (a, m) => new Next(a, m)
    static end = a => new End(a)
    app = sx => this.bind(f => sx.bind(x => Stream.pure(f(x))))
    static pure = x => Stream.end(Maybe.just(x))
}
```
class Next extends Stream {
 constructor (a, m) { super(a); this.next = m; }
 fmap = f => Stream.next(
 this.maybe_a.fmap(f),
 this.next.fmap(s => s.fmap(f)))
 bind = k => this.fmap(k).join()
 join = () => this.maybe_a.maybe
 (Stream.next(Maybe.nothing, this.next.fmap(ss => ss.join())))
 run = k => ifAliveM.bind(_ =>
 AsyncM.liftIO(k1 => k1(this.maybe_a.maybe(unit) (k)))
 .bind(_ => this.next.bind(s => s.run(k))))
}

class End extends Stream {
 constructor (a) { super(a); }
 fmap = f => Stream.end(this.maybe_a.fmap(f))
 bind = k => this.maybe_a.maybe (this) (k)
 join = () => this.maybe_a.maybe (this) (s => s)
 run = k => ifAliveM.bind(_ =>
 AsyncM.liftIO(k1 => k1(this.maybe_a.maybe(unit) (k))))
}

Listing 4.3: Monadic instance for Stream

The run method can be used to recursively call the Stream for its values, calling each value with the continuation k. This way, values in the Stream
can be exposed to functions which perform side-effects.

4.3.1 Switching

In Listing 4.3, we presented the monadic instance for `Stream`. However, it omitted the implementation of `switchS`. Listing 4.4 shows extensions to the `Stream` classes to provide switching (separated from Listing 4.3 for clarity). Note `either` is a method of an `Either` object where the first function parameter is called if the `Either` value is of type `Left`, and calls the second function parameter if the value is of type `Right`. `switchS` is the final interface function (seen in its usage in `bind`), while the other functions are utility functions.

```javascript
class Stream {
    static _switchA = ms => mss => {
        const f = choice =>
            choice.either(ss => ss.join()) (s => s._switch(mss));
        return anyM(mss)(ms.unscopeM()).fmap(f);
    }
}

class Next extends Stream {
    switchS = mss1 => Stream
        .next(this.maybe_a,
            mss1.spawnM()
                .bind(mss2 => Stream._switchA(this.next)(mss2)))
```
Listing 4.4: Extensions to Stream classes for switching

Switching decides which Stream in the Stream of Streams to use by racing the first Stream with the Stream of Streams. If the initial Stream wins, that Stream produces values for the parent Stream. Otherwise, if the Stream of Streams wins, the next value of that Stream is used as the next initial value, and the racing continues in this manner until an End value is reached.

spawnM is used in Next’s switchS method to create a reference to the next AsyncM that will occur after the given one (not as a continuation function as usual, but as another AsyncM object). _switchA must call unscopeM to use the inner Progress object of ms, as anyM would otherwise cause it to be cancelled via commitM (as seen in the anyM definition).
4.3.2 Primitives

receive receive takes an Emitter, and creates a Stream of values which are continuously pushed by the Emitter. The effect can be conceptualized as a converter from Emitter to a Stream.

```javascript
const receive = e => {
  const h = _ => e
  .listen()
  .bind(a => ifAliveM.bind(_ =>
    AsyncM.pure(Stream.next(Maybe.just(a), h()))));
  return Stream.next(Maybe.nothing, h());
}
```

repeatS repeatS takes a AsyncM and creates a Stream which continuously runs that AsyncM. Between each run of the AsyncM, the Progress value is checked. If the AsyncM has been cancelled, the computation does not continue. The utility function repeatA recursively constructs the Stream, and repeatS initializes the Stream with a Nothing value.

```javascript
const repeatS = m => Stream.next(Maybe.nothing, repeatA(m))
const repeatA = m => m.bind(a =>
  ifAliveM.bind(_ =>
    AsyncM.pure(Stream.next(Maybe.just(a), repeatA(m))))
```

43
broadcast broadcast runs a Stream \(s \) and emits all values from the Stream into a new Emitter object. Emission does not block, as it is run in parallel with forkM. The resulting Emitter object (along with its Progress) is exposed in the resulting AsyncM, to be listened to by another AsyncM (or converted to a Stream by receive). Note that the Stream \(s \) will run indefinitely. To allow cancellation, forkM exposes the Progress value and passes on in the result (AsyncM \([a, \text{Progress}]\)).

```
const broadcast = s => AsyncM.liftIO(k => k(new Emitter()))
  .bind(e => s.run(x => e.emit(x))
  .forkM()
  .bind(p => AsyncM.pure([e,p])))
```

multicast multicast enables multiple Streams to be constructed which have the values of a single Emitter. It uses receive to create a Stream from an Emitter and yields a Stream \([\text{Stream} a, \text{Progress}]\). The Progress value of the input Stream is exposed, similar to broadcast, as the Stream is run indefinitely until the Progress is cancelled, or the Stream reaches an End.

```
const multicast = s => Stream.next(Maybe.nothing,
  broadcast(s).bind(([e,p]) =>
    AsyncM.pure(Stream.pure([e.receive(), p])))))
```
fetch fetch Streams to be buffered, which allows asynchronous actions which have variable running times (such as network requests) to be buffered in a Channel so that AsyncM can be executed in parallel and buffered, instead of waiting for each AsyncM to complete. In practice this means network requests which take two seconds to capture one second of IoT data (due to a one second latency in the network) could be made in parallel so that every second requests are made instead of every two seconds.

fetch uses a Channel to write a Stream of asynchronous results (AsyncM), and yields a new Stream which reads the results continuously. fetch provides clean integration between AsyncM based computations and Streams. For example, fetch can take batched HTTP requests represented as a Stream (AsyncM Request) and provide a more natural type of Stream Request.

```javascript
// fetch :: Stream (AsyncM a) -> Stream a
const fetch = s => {
  const m = AsyncM.liftIO (k => k(new Channel())).bind(c => {
    const w = s.bind(m => m.spawnM()
      .liftS()).run(m1 => c.write(m1)).forkM();
    return w.bind(p =>
      repeatA(AsyncM.liftIO(k => c.read(k)).join()));
  })
  return Stream.next(Maybe.nothing, m)
}
```

45
fold fold, similar to the reduce or fold functions commonly seen in functional languages, accumulates some value over a list. In our case, the list is a Stream of functions (a -> a). This way, a Stream can persist some state over the course of its lifetime. When the Stream ends, a final accumulated value is provided.

Recall two of the issues common in FRP: non-causality and space-time leaks. Our implementation of fold avoids one important class of space-time leak by only persisting the current value of the accumulator, instead of persisting all events emitted (this is similar to how AFRP avoids this space-time leak). Also, our function is causal, as you cannot refer to times in the future directly. You can directly refer to future values by using `timeout` to delay computation; however, that will resolve when the future time has become the present.

```java
1 class Stream {
2     // fold :: Int -> a -> Stream (a -> a) -> AsyncM a
3     fold = n => c =>
4         this.accumulate(c).last(timeout(n)).fmap(r => r.fromJust())
5     last = m => m.spawnM().bind(m1 => this._last(m1))
6 }
```

```java
7 class Next extends Stream {
8     accumulate = a => {
9         const a1 = this.maybe_a.maybe(a)(f => f(a));
10    }
```

46
```
return Stream
    .next(Maybe.just(a1),
          this.next.fmap(s => s.accumulate(a1)));
}
_last = m => anyM(this.next)(m)
    .bind(r => r.either
               (s => s._last(m))
               (_, => AsyncM.pure(this.maybe_a)))
}

class End extends Stream {
    accumulate = a =>
        Stream.end(Maybe.just(this.maybe_a.maybe(a)(f => f(a))))
    _last = m => m.fmap(_ => this.maybe_a)
}
```

Listing 4.5: Extensions to Stream class to provide fold

fold uses a utility function, accumulate, which is specialized for Next and End types, where Next recursively accumulates and End accumulates once and terminates. last returns either the last event of a Stream, or if some given AsyncM m completes first, returns the last event that was emitted before the race was won.

fold’s integer parameter corresponds with how many milliseconds to accumulate a value before providing the final value. For example, Listing 4.6 defines count which yields an AsyncM of how many events occurred in n
milliseconds.

```javascript
const count = s => n => s.fmap(_ => c => c+1).fold(n)(0);
```

Listing 4.6: Definition of count using fold

4.3.3 Monad Laws

Wadler defines that there are seven laws that when satisfied, are equivalent to the three monad laws we defined earlier [29]. These laws are better suited for monads which define a `fmap` and `join` function, as our `Stream` monad does, so long as the `≫=` operator is defined as:

```javascript
m >>= f = join (fmap f m)
```

The seven laws are as follows:

1. \(\text{fmap id = id} \)

2. \(\text{fmap } (f \circ g) = \text{fmap f } \circ \text{fmap g} \)

3. \(\text{fmap f } \circ \text{return = return } \circ f \)

4. \(\text{fmap f } \circ \text{join = join } \circ \text{fmap (fmap f)} \)

5. \(\text{join } \circ \text{return = id} \)

6. \(\text{join } \circ \text{fmap return = id} \)

7. \(\text{join } \circ \text{fmap join = join } \circ \text{join} \)
Law one, law two, and law three The first three laws deal primarily with the behavior of \(\text{fmap} \). Proving the first will provide the intuition that the next two laws follow. Recall \(\text{fmap} \) applies some function \(f \) recursively to a Stream. We can substitute \(f \) for the identity function \(\text{id} \), as seen in Listing 4.7.

\[
\begin{align*}
1 \quad & \text{fmap id (Next a ms)} = \text{Next (fmap id a) (fmap id ms)} \\
2 \quad & \text{fmap id (End a)} = \text{End (fmap id a)}
\end{align*}
\]

Listing 4.7: Substitution of identity function in \(\text{fmap} \)

When \(\text{fmap} \) is applied with the identity function \((a \to a) \), we can derive that \(\text{fmap id} \) on a Stream applies the inner Maybe value with an identity function, which is equivalent to just \(\text{id} \) of the Stream itself. Notice that \(\text{fmap} \) is only ever applied to either a Maybe type or recursively (which results in an \(\text{fmap} \) to a Maybe type). Because Maybe upholds the monad laws and all recursive calls use Maybe \(\text{fmap} \), it follows that our monad upholds the monad laws for \(\text{fmap} \). The third law needs one more clarification, which is that \(\text{return x} \) simply creates an End stream of Just \(x \) (which reduces it again to \(\text{fmaps} \) of Maybe).

Law four Law four requires applying \(\text{fmap} \) to a nested monad (in our case Stream (Stream \(a \))), then applying \(\text{fmap} \) once more is the same as joining the nested monad, then applying \(\text{fmap} \). This law is implied
by the type of \(\text{join} \ (\text{Stream} \ (\text{Stream} \ a)) \rightarrow \text{Stream} \ a \), which is parametric to the type variable of the monad [28].

Law five Law five says that the joined return of some Stream is equivalent to the identity function. To prove this, we need a concrete representation of the join operator. The join operator is represented in a more algebraic form than our previous JavaScript formulation in Listing 4.8.

1. \(\text{join} :: \text{Stream} \ (\text{Stream} \ a) \rightarrow \text{Stream} \ a \)
2. \(\text{join} \ (\text{Next} \ (\text{Nothing}) \ \text{mss}) = (\text{Next} \ (\text{Nothing}) \ (\text{fmap} \ \text{join} \ \text{mss})) \)
3. \(\text{join} \ (\text{Next} \ (\text{Just} \ s) \ \text{mss}) = \text{switch} \ s \ \text{mss} \)
4. \(\text{join} \ (\text{End} \ (\text{Just} \ s)) = s \)

Listing 4.8: Definition of join for Stream

Because \(\text{return} \ x \) creates a \(\text{End} \ (\text{Just} \ x) \) Stream, it is equivalent to \(\text{join} \ (\text{End} \ (\text{Just} \ x)) = \text{id} \ x \). As seen in Listing 4.8, join of an End Stream equals the value of the Just type. This reduces join to be an identity function when applied with an End Stream, and therefore, satisfies the law.

Law Six Law six holds for a similar reason as law five. \(\text{fmap} \ \text{return} \) is applied to a Stream, which produces a Stream of End Streams. As seen in Listing 4.9, join of an End Stream constructs a Next Stream where the value is equivalent to the End Stream.
Law Seven The final law says that joining the resulting Stream of fmap join (with a Stream of Stream of Stream) is equivalent to joining twice. In words, this says that the ordering in which join occurs has no importance (fmap first joins the inner Streams first). This is *associativity* for the join operator.

To prove this, we must first understand the complete definition of join. join uses switch (which was ommitted from Listing 4.8) to implement flattening of the nested Stream. switch is represented in Listing 4.9 in a more algebraic form.

```haskell
1 switch :: Stream a -> AsyncM (Stream (Stream a)) -> Stream a
2 switch (Next a ms) mss = Next a (h ms =<< spawnM mss)
3     where h ms mss =
4           let
5             f (Left ss) = join ss
6             f (Right (Next a ms')) = Next a (h ms' mss)
7           in
8             fmap f (anyM mss (unscopeM ms))
9 switch (End a) mss = Next a (fmap join mss)
```

Listing 4.9: Definition of switch for Stream

The semantics of switch are to race Stream s (using anyM) until an event occurs on the nested Stream of Streams mss. switch reduces to calls of anyM where a Stream is raced against a Stream of Streams. If
anyM holds this property (where the order of races is arbitrary), then join too has this property.

\[\text{anyM} (\text{anyM}\ m_1\ m_2)\ m_3 \equiv \text{anyM}\ m_1\ (\text{anyM}\ m_2\ m_3) \]

Our \text{anyM} primitive is associative. Racing a nested race with an AsyncM is the same as racing an AsyncM with some nested race (it has no preference for order). This is because all three AsyncM (m1, m2, or m3) are raced simultaneously, instead of racing the nested race, then racing that against the next AsyncM in some order. Because anyM is associative, and \text{join} is defined in terms of anyM, \text{join} is associative and satisfies the seventh law.
5 Signals and Behaviors

Push streams are ideal for applications which must be low latency and asynchronous such as requesting batches of IoT data, visualizing data, and pushing data to a database. However, they are not a well suited abstraction for synchronous time-series computations such as KPIs. KPI computations fall into two categories: point-wise computations and windowed computations. Point-wise computations operate on single samples at a time, for example efficiency (input power divided by output power) or power calculations (voltage times current). Windowed computations operate on many samples at a time, and include windowed averages and THD calculations.

Data can be requested from web-servers using the `fetch` primitive of a `Stream` in batches. `Streams` cannot reliably be used for KPI computations, as multiple `Streams` may be combined for a single KPI (for example power uses both voltage and current). Each request of data batches will take a different amount of time to resolve leading to another problem. Moreover, time-series KPI computations are concerned with the data’s sample time, instead of the system time of `Stream` events. The solution is to buffer batches into a `Channel`, using some demand driven interface (which can be composed), and coordinate related samples based off sample time. We
call this solution Signals. Signals are optimal for point-wise computations; however, we will find that Signals are not flexible enough to express signals with variable sampling rates and another abstraction is necessary. The signals with variable sampling rates can be represented as Behaviors which are related to Signal, but have a time parameter which allows for re-sampling.

5.1 Signal

Signal is an applicative functor which implements demand-driven computations. Signals can be composed with others using an app operator (Signal (a -> b) -> Signal a -> Signal b). They can be created from Streams via a push2pull offering interoperability between push-streams and pull-streams. Signals represent the real signals from IoT devices, or the resulting computations based on signals or other computations. Listing 5.1 defines Signal and the applicative instance (via pure and app).

```java
class Signal {
    // run :: (a -> IO()) -> IO()
    constructor(run) { this.run = run; }
    fmap = f => new Signal(k => this.run(x => k(f(x))));
    static pure = a => new Signal(k => k(a))
}
```
app = gx => new Signal(k => this.run(f => gx.run(x => k(f(x)))))

Listing 5.1: Definition of Signal

app is used to apply a Signal of \(a \rightarrow b\) to another Signal of \(a\). This operator is more powerful than \(\text{fmap}\) because it allows a mapping to occur that within the Signal type. Signals themselves can be composed with \(\text{app}\) which gives Signals enough power to express point-wise KPI computations. Listing 5.2 shows an example power KPI calculation with two input Signals \(\text{voltageS}\) and \(\text{currentS}\). A curried multiplication function is lifted into the applicative, and applied twice to the Signals.

```javascript
const power = Signal.pure(x => y => zip(x, y).map([x, y] => x * y)).app(voltageS).app(currentS);
```

Listing 5.2: Example power KPI using applicative interface

Streams can be converted to Signals via the \(\text{push2pull}\) operator. The conversion uses a Channel to buffer events from the Stream. This causes a source of back-pressure. If the Signal does not pull data at a rate on average equal to the Stream’s push rate, data will consume memory until the Signal’s rate increases or the Stream’s rate decreases. This issue is addressed in the next section on Behaviors.

```javascript
const push2pull = s =>
```

55
Streams can be converted to Signals via the `reactimate` operator. `reactimate` takes an amount of delay to wait between pulling from the input `Signal`, and produces a `Stream` who samples the `Signal` at that rate.

5.1.1 Event Signals

Signals are concerned with the timing of the data instead of the timing of events themselves. Events can be defined as `Signals` of time-value pairs (`Signal (Time, a)`) where time is the sampling period. `fetchE` takes a sample period `dt`, and a request, creates a `Stream` of values paired with the sampling period, and finally converts that `Stream` to a `Signal`.

Listing 5.3: Definition of `fetchE`

```
// fetchE :: Time -> (Time -> Stream (AsyncM a)) -> AsyncM (Event a)
const fetchE = dt => reqFun => fetchES(dt)(reqFun).push2pull()

// fetchES :: Time -> (Time -> Stream (AsyncM a)) -> Stream (Time, a)
const fetchES = dt => reqFun => reqFun(dt).fetch().fmap(x => [dt, x])
```

Using `fetchE` allows computations to be conscious of how much time
a sample represents. However, the data returned by `fetchE` could be improved by unbatching it. If `fetchE`’s request function returns a batch of samples, it should be converted into an Event Signal of samples instead of batches (Signal (Time, a) instead of Signal (Time, [a])). This allows the data to use the applicative interface completely, and to make re-sampling data easier.

```javascript
class Signal {
  // unbatch :: Signal (Time, [a]) -> Signal (Time, a)
  unbatch = () => new Signal(
    k => {
      this._run(([dt, lst]) => {
        const a = lst.shift();
        if (lst.length > 0) this.cache = [dt, lst];
        k([dt, a])
      })
    }
  )

  _run = k => {
    const cache = this.cache;
    if (cache) {
      this.cache = null;
      k(cache)
    } else this.run(k);
  }
}
```
Listing 5.4: Extensions to Signal class to implement unbatch

unbatch takes a batched Event Signal, and creates an unbatched Event Signal by iterating over the batch in order. The _run utility function keeps a stateful cache of batch values which have not yet been processed. In our pure functional version, Signal is made pure by returning (a, Signal a). That is, running a Signal returns the value along with a new Signal which continues the computation. In JavaScript, creating so many additional object would be wasteful (for memory and garbage collection) which is why we chose a stateful approach. Notice how the sample period of the input Event Signal is propagated to the output Event Signal (each value is wrapped with the same sample period as the batch).

5.2 Behavior

Behaviors, similar to Signals, are applicative functors which represent KPI computations. They differ from Signals in the way that they can adjust the sampling period \(dt \) for windowing and re-sampling. Listing 5.5 shows the definition of the applicative instance for Behavior.

```
// run :: Time -> (a -> IO()) -> IO()
constructor(run) { this.run = run; }
fmap = f => new Behavior(dt => k => this.run(dt)(x => k(f(x))))
static pure = a => new Behavior(_ => k => k(a))
app = bx => new Behavior(dt => k =>
  this.run(dt)(f => bx.run(dt)(x => k(f(x)))))
}

Listing 5.5: Definition of Behavior

Computations can be expressed in terms of the Behavior’s app and pure functions. Listing 5.6 shows the same power calculation seen in Listing 6.4, except with Behaviors. Notice how Behaviors are not concerned with batches of data, so no zip is necessary on data before processing it, which makes the code clearer.

const power = pure(x => y => x * y)
  .app(voltageB)
  .app(currentB);

Listing 5.6: A power calculation using Behavior

Behavior can be created by using a stepper function to summarize an unbatched Event Stream (Signal (Time, a)) via a summary function [(Time, a)] -> a. Listing 5.7 shows an implementation of stepper. Note that Signal uses a shared state between unbatch and stepper with the signal.cache list. This list propagates the remaining items to process
in the Signal, which makes Signals not reusable (must be instantiated for each use). This is a trade-off between performance and usability which had to be made for JavaScript, but can be avoided in languages which have cheaper costs for recursively constructing objects (such as Haskell). Also note that the recursion of \( h \) requires an implementation of JavaScript which optimizes recursive tail calls. Otherwise, an implementation could be written which uses trampolining.

```plaintext
// stepper :: Signal (Time, a) -> ([(Time, a)] -> a) -> Behavior a
const stepper = signal => summary => {
 const f = lst => (lst.length == 1) ? lst[0][1] : summary(lst);
 const h = lst => dt1 => k => signal._run(([dt2, a]) => {
 if (dt1 == dt2) k(f(lst.concat([[dt1,a]])))
 else if (dt1 < dt2) {
 k(f(lst.concat([[dt1,a]])));
 signal.cache = [dt2-dt1, a];
 } else h(lst.concat([[dt2,a]]))(dt1-dt2)(k);
 });
 return new Behavior (h([]));
}
```

Listing 5.7: Definition of stepper

Behaviors can be converted to Streams via the `reactimate` operator. `reactimate` uses a `Behavior`, a delay (in which the resulting Stream should pull data from the `Behavior`), and a sampling period `dt`. 
The result is a Stream of the sampling period with the value \( \text{Stream} \) \((\text{Time}, a)\). In an IoT system, reactimate is used for taking a KPI computation (as a Behavior) and sending it to a visualization, or to a database. The sampling period can be chosen which gives reactimate the ability to choose the resolution of data to receive. Signals also have a reactimate operator which provides a conversion into a Stream; however, it does not allow for a sampling period parameter, as it is fixed.

```haskell
// reactimate :: Behavior a -> Int -> Time -> Stream (Time, a)
const reactimate = b => delay => dt => {
 const h = timeout(delay).bind(_ =>
 ifAliveM.bind(_ =>
 AsyncM.liftIO(k => b.run(dt)(k)).bind(a =>
 AsyncM.pure(Stream.next(Maybe.just([dt, a]), h)))));

 return Stream.next(Maybe.nothing, h)
}
```

Behaviors can be upsamled, downsamled, and windowed. upsample allows for a Behavior's sample rate to be increased by some factor. Upsampling at a higher resolution than the Stream provides can only provide artificial values (e.g. repeating previous values) as seen in the behavior of list \((\text{Behavior} \ [a])\) output type where the length is equal to the number of repeated samples. To achieve higher sample rates of authentic data, a Stream could be used which sends web-requests to devices to provide data.
at a higher rate (Section 6 handles this case). `downsample` decreases the
Behavior's sample period by a factor. It uses a summary function (similar to `stepper`) to implement the logic of down sampling, as some use cases may require an averaging of values while others could take the first or last sample. `window` uses a Behavior to create an Event Signal of batches with the given size (first parameter), and stride (second parameter). The stride indicates how many samples to skip between each window. `window` is useful for computing a THD KPI or moving averages where an exact time window is necessary. Listing 5.8 provides the type signatures (implementations are omitted for brevity) for the `upsample`, `downsample`, and `window` operators.

```haskell
1 upsample :: Behavior a -> Int -> Behavior [a]
2 downsample :: Behavior a -> Int -> ([(Int, a)] -> a) -> Behavior a
3 window :: Behavior a -> Int -> Int -> Time -> Event [a]
```

Listing 5.8: Type signatures for `upsample`, `downsample`, and `window`

Behavior's allow for the sampling period of computations to be separate from the sampling period of the captured data itself. This provides a layer of abstraction where Streams are concerned with getting the appropriate data at the devices full resolution, then Behaviors can re-sample the data at a rate in which the KPI computations can handle without producing excessive back-pressure in Channels. This re-sampling can be dynamic. For example,
it could be based off of the throughput of data by counting the number of incoming events of a Stream. We will see in the next section a design for an IoT analytics system which implements this method of scaling.
6 Use Case: IoT Analytics

Equipped with AsyncM, Stream, Signal, and Behavior we can address the use case of an IoT analytics system, where remote IoT devices provide access to their signals which can be accessed via web-requests. Those signals, which are to be captured in parallel, should support multiple KPI computations (e.g. to check each device’s health). The resulting KPIs are then stored in a database for archival, and visualized on a dashboard for real-time display. Figure 6.1 shows the environment in which our IoT analytics system will be placed in. There is a web-server which provides a /capture endpoint which gives access to captured signals on several devices.

Figure 6.1: Block diagram of the IoT analytics system environment

We will use all of the components defined in this paper to pull data from
the web-server via a buffered Stream (a Stream which uses a Channel). Figure 6.2 shows a block diagram of the components involved of making a request to the web-server, converting the request to a Stream, then to a Signal, and using the applicative interface to compute the power of the signal. We use a new function request to make requests to a web-server, fetch to buffer requests in a Channel, push2pull to convert a Stream to a Signal, and app to compute KPIs.

We demonstrate the composability of Signals by computing the THD of a current signal and joining it with the power KPI Signal to create a stream consisting of all our KPIs Stream (Power, THD). The current Signal is converted to a Behavior by using a stepper function. A windowed computation is run on the current Behavior to produce a Behavior of THD. The Behavior THD is then converted to a Signal THD by batch, where it can be combined into a single Signal with the power calculation (Signal (Power, THD)). Finally, the Signal of KPIs can be reactimated into a Stream.

A Stream of KPIs is the ideal abstraction to use when sending KPIs to...
a database and visualization. A function `send` could be constructed which produces a `Stream` that performs the side-effect of sending the data.

As expressed in the introduction, there is an issue of back-pressure where if the incoming sampling rate of signals is too high for a system to handle, the KPI computations (specifically THD) may not be able to keep up with the devices. Recall that the average of the output samples must be equal to or less than the number of input samples. Otherwise memory usage grows indefinitely. We address this problem with another primitive `control` which drives the input `Stream` to ensure our system can scale back device sample rates.
6.1 Web Server

Our web server has one end-point `/capture` which accepts JSON requests with a `device_name`, `signal_name`, `sample_period`, and `window_size`. The `device_name` specifies which devices the server should capture a signal from, `signal_name` specifies which signal to capture (e.g. voltage or current), `sample_period` is the inverse of the sample rate, and `window_size` is how many milliseconds of data to capture. Listing 6.1 shows an example request (the details of the `request` function will be examined later) which asks for the voltage of device “a” where the signal should be captured once every ten milliseconds, over the course of a second. Once the capture is complete, the server replies with one hundred samples worth of data.

```
// Request
request({
 device_name: 'a',
 signal_names: ['voltage', 'current'],
 sample_period: 10,
 window_size: 1000,
}, k);

// Response
{ "voltage": <100 item list>, "current": <100 item list> }
```

Listing 6.1: An example request and response
Our example server is presented in Python using the minimal web framework, Flask, in Listing 6.2. The server simply accepts JSON requests, and directs their parameters to a `caputure` function. In a simulation system, `calculate` could run an electrical system simulation to generate signals. In a testing system, `calculate` could read previously captured electrical signals from a file (or database). In a real-time system, `calculate` could either have direct access to signals via hardware or have an additional software layer which buffers real signal data. In any case, the interface to `calculate` could remain the same. Depending on the robustness requirements of the capturing processes, a request identifier (or timestamp) could be present with each request which allows for the server to cache samples for the client in the event that the client missed samples due to errors (e.g. client crashed, network link disconnected).

```python
from flask import Flask, request, jsonify
from iot import calculate

app = Flask(__name__)

@app.route('/calculate', methods=['POST'])
def signals():
 jo = request.json
 device_name = jo['device_name']
 signal_names = jo['signal_names']
```
Application of our system requires that we define several new utility functions which will act as a bridge between our library and external sources (the web server, database, and visualization). `post`, defined in Listing 6.3, uses the JavaScript `fetch` API (an HTTP client) to make JSON requests a web-server. Specializations are made for `request` which sends data to our web server (as defined above), and two more for sending to the database and visualization. It is expected that `body` has the appropriate fields that the web server accepts. `k` is a continuation to call once a JSON response is received which contains the signal data.

```javascript
const post = url => body => k => {
 fetch(url, {
 method: 'POST',
 headers: {
```

Listing 6.2: Web server which captures IoT signals

6.2 External Sources

```javascript
const post = url => body => k => {
 fetch(url, {
 method: 'POST',
 headers: {
```
6.3 Point-wise KPIs

Point-wise KPI calculations can be computed by creating a Stream of requests (which return batches of data), converting them to either Signals or Behaviors, then applying the computation with the app operator. In our case, each request can contain more than one signal. For example, requesting two signal names for voltage and current will yield two signals in a signal request (of type Stream ([Voltage], [Current])). When converted to a pull-stream, this format does not allow the applicative instance of Signal or Behavior to express the computation, so a utility function push2pullN is defined in Listing 6.4. push2pullN takes a list of signal names, a request (which returns some object who’s fields match the given signal names), and returns an AsyncM of list of Signal. Now with two Signals, the applicative instance regains its composability (as Signal
Voltage and Signal Current can be combined naturally, while Signal ([Voltage], [Current]) cannot).

```javascript
const powerKPI = req_stream =>
 push2pullN(['voltage', 'current'])(req_stream)
 .bind(([voltageS, currentS]) =>
 AsyncM.pure(Signal.pure(x => y =>
 zip(x)(y).map(([x, y]) => x * y))
 .app(voltageS)
 .app(currentS)));

// push2pullN :: [String] -> Stream Object -> AsyncM ([Signal a])
const push2pullN = names => s =>
 AsyncM.liftIO(k =>
 k(range(names.length)
 .map(_ => new Channel())))
 .bind(channels =>
 s.run(x => zip(names)(channels)
 .map(([n, c]) => c.write(x[n]))
).forkM().bind(p =>
 AsyncM.pure(channels.map(c => new Signal(k => c.read(k))))))
const zip = a1 => a2 => a1.map((k, i) => [k, a2[i]]);
const range = n => {
 let xs = [];
 for (let i=0; i < n; ++i) xs.push(i);
 return xs;
```
Listing 6.4: Definition of powerKPI

powerKPI takes a request stream to the /capture endpoint, converts the response to two Signals (a Signal Voltage and a Signal Current), applies the Signals together using app (with a zipped multiplication function on the entire batch at a time), and finally returns a Signal Power.

Figure 6.5 defines driver code which uses powerKPI to compute the power of device “a” by fetching requests with a AsyncM requestM (a wrapper around request). A clock sends requests to the web server for batches of one second long data (with a sampling period of ten milliseconds). fetch is used on the request Stream for its buffering capabilities, so if the request takes longer than one second to complete due to network latency, requests are run simultaneously to save time. powerA is a Signal Power, which can be reactimated into a Stream, and sent to an external source (e.g. database) to complete the end-to-end process of this KPI.

```javascript
const requestM =

 device_name => signal_names =>
 sample_period => window_size =>
 new AsyncM(p => k =>
 request({ device_name, signal_names,
const clock = timeout(1000).repeatS();
const requestS = req => clock.fmap(x => req);
const deviceS = req => requestS(req).fetch();
const requestA = requestM('a')(['voltage', 'current'])(10)(1000);
const powerA = powerKPI(deviceS(requestA));

Listing 6.5: Computing a power KPI using powerKPI

6.4 Windowed KPIs

Windowed computations be expressed with either Signals or Behaviors using their applicative interfaces. Behaviors have an advantage that when driven by a clock, it can produce batches with variable sample period (seen in Listing 6.7), contrasted with Signals which operate directly on batches of data. Signals can be more optimal for computations which strictly require fixed batch sizes (which don’t scale with the system’s performance) or do not rely on operating on time windows.

Listing 6.6 defines thdE, an AsyncM (Signal (Time, THD)) which performs a THD calculation over a window of 1000 samples, which skips 1000 samples per window (due to the stride value), with a sampling period of 100 microseconds. A utility function requestCurrent is defined which converts a request to retrieve the current signal from the /capture endpoint.
to a simple Signal Current. This example uses a fixed driver which has a sampling period of 100 microseconds. We will see in Section 6.5 an approach to make the sampling-period a variable.

```javascript
const requestCurrent = dt =>
  requestS(requestM('b')(['current'])(dt)(1000))
    .fmap(m => m.fmap(o => o['current']));

const driver = Stream.fetchE(0.1)(requestCurrent);

const currentB = driver.fmap(s =>
  s.unbatch().stepper(x => x[0]));

const thdE = currentB.fmap(b =>
  b.window(1000)(1000)(0.1).fmap(thd))
```

Listing 6.6: Definition of thdE

6.5 Scaling Sampling Rate

Using Behaviors allows for expressing computations over variable sampling periods. This enables for windowed computations to remain consistent even when the input Event Signal changes its sampling rate. speedControl is a Stream primitive which allows a Stream to scale its output rate based on the Stream's performance. It uses another primitive, speed, to fold over an Event Stream's time, to compute the amount of time an Event Stream has processed. A time parameter n is accepted which represents
how much time the Stream should process. A data rate is computed by dividing the amount of time processed by \(n \).

With the data rate provided by `speed`, `speedControl` can be defined which takes an additional function `Double -> Int` to determine if the rate is too slow, too fast, or acceptable. The function parameter takes the data rate, and returns \(-1\) if the rate is too slow, \(1\) if too fast, or \(0\) if it is acceptable. `speedControl` uses this function to create a `AsyncM Bool` which is `true` when the Stream is operating too fast, and `false` when it is too slow. As long as the Stream is operating at an acceptable rate, the `AsyncM` won’t continue as no action must be taken. The `AsyncM Bool` can be used in the system to modify the amount of input data or the resolution of the data (depending on which effect is desired).

A more automatic, but less powerful primitive, `control`, can be used for monitoring the speed of web requests and responses, and adjust sampling periods to reach a stable throughput. The request and response Streams are folded to count the number of events emitted from the input and output over some time window. Based on this mechanism, Streams can dynamically alter their sampling periods when performance is not sustainable because `control` has access to a request function which parameterizes the sampling period.

`control` takes a request function `(Time -> (Stream (AsyncM a)))`,
a duration, an initial sampling period, an adjustment function (Bool \rightarrow Time \rightarrow Time), and returns a Stream which automatically adjusts its own sampling period based off the input throughput and output throughput. Adjustments are made based off of the given adjust function, which receives a boolean indicating if the output rate is less than the input rate (which means an unsustainable request rate is taking place), the current sampling period, and returns a new sampling period. A simple adjust function is to multiply or divide the sample period by some constant factor (in this case 1.1), so that incrementally the sampling period moves towards a sustainable value. The duration tells control how long to measure throughput until adjusting. The new driver function can be used to replace the previous THD KPI driver from Listing 6.6 to provide a scalable computation.

```javascript
const driver = dt0 => Stream.fetchES(dt0)(requestCurrent)
  .multicast().bind(([s1, p1]) => {
    return s1.push2pull().liftS().bind(g => {
      const b = g.unbatch().stepper(avg);
      const f = dt => {
        const thdS = b.windowing(1000)(1000)(dt).fmap(thd).reactimate(dt);
        return thdS.multicast().bind(([s2, p2]) => {
          return Stream.next(Maybe.just(s2),
            s2.speedControl(dt)(x => x < 1.0 ? -1 : 0).bind(_ => {
              p2.cancelP();
              return AsyncM.pure(f(dt * 1.5));
```
6.6 External Sinks

The final step of the IoT analytics platform is to send data to its external sinks (e.g. databases, or visualizations). Listing 6.8 defines `kpiS`, a function which combines the KPIs we defined in the previous sections (power and THD) into a single JavaScript object to create a Stream Object. Notice how the Signals are first combined using the `app` function, and then converted into a Stream using `reactimate`. `sendKPIs` is the final interface function which takes a `send` function of type `Object -> IO()`, which receives each processed batch of KPIs and sends it to the relevant external sinks.

```
const kpiS = powerA.bind(power =>
  thdE.bind(thd =>
    AsyncM.pure(
      ...)
    return f(dt0).join();
  )
);
```

Listing 6.7: Alternate driver for thdS that scales to Stream performance
Signal.pure(x => y => { 'power': x, 'thd': y })
 .app(power)
 .app(thd)
 .reactimate(1000));

function sendKPIs(send) {
 kpiS.run(Progress.nil())(send)
}

Listing 6.8: Definition of kpiS and sendKPIs
7 Related Work

FRP [10] is a general framework for continuously changing behaviors. The power of FRP roots in its precise treatment of time, but unmitigated access to time leads to practical problems such as space/time leaks, violation of causality, and the difficulties in interacting with the outside world. A value in the present cannot depend on events of the future or have arbitrary memory of the past. The precise timing of events also limits concurrency, where asynchronous events occur in uncertain orders. Time is also relative depending the frame of reference. For IoT applications, the data time when the sensor signals are captured is different from the system time when the signals are analyzed. The proposed model avoids some of the problems in the treatment of time by separating data time from system time. Our push-stream handles asynchronous events in system time but it cannot access time like a behavior, has no arbitrary memory of the past, or depends on events of the future. The primary function of push-stream is to push IoT data to a buffer from which a pull-signal can pull data. The pull-signal has access to data time like a behavior, but it is first order and does not interact with asynchronous events. Pull-signals using the same data time are driven by the same clock to pull data synchronously from their respective buffers. Space
leaks may occur in the buffers, though it can be controlled through dynamic switching of the push-streams to ensure that the IoT data is processed in real-time.

Push vs Pull Classic FRP is pull-based, which detects events through polling in discrete time steps with the implication that the event latency depends on the step size and the behaviors are checked for possible switching every time step. Push-based FRP such as FrTime [6], Flapjax [20], Scala React [19], ReactiveX [1], and Elm [8] wait on event occurrences and only run when an event occurs. Though this provides timely responses to events and avoids re-computation when events do not occur, there may be glitches where the events propagated from the same source are not evaluated the same time. Solutions to this problem usually involve some kind of central planner that oversees the event dispatching or propagation. For example, in Elm, the first-order signals form a graph where a global dispatcher takes events from their sources and push updates through the graph. In Flapjax, where a dataflow graph is used, the graph nodes are updated based on topological order. In Monadic FRP [26], a program runs in a loop where at each iteration, it collects a set of future events, uses blocking IO to wait for one of the events to occur, and then starts the next iteration with the event. These types of solutions add complexity to their implementations. Our push-stream does
not prevent glitch in itself, but the data events pushed to the pull-signals will not have glitches when they are driven by the same clock.

Push-Pull Our work was influenced by push-pull FRP [9], which was a modernization of Fran [10]. Push-pull FRP models a behavior as a reactive time function, where a push-event can cause a pull-based behavior to switch to another one. Reactive is recursively defined as a value followed by a future Reactive where the racing of future values is implemented with threads. Our push-stream shares the same structure as Reactive and its monadic interface. The difference is that we implement the future value using AsyncM. Racing future values with AsyncM is lightweight, does not involve threads so that it is suitable for dynamic languages with event loops. Moreover, a stream is also run as an AsyncM, which can be shared through multicast.

Variations of classic FRP First-class behaviors can lead to space-time leaks and wasteful re-computation. Jeltsch [12] used phantom types to tie discrete push-signals to specific start time to avoid restarting a signal after switching and used memoization to avoid duplicated computation of signals. The paper’s motivation is related to stateful signals such as the one that counts network traffic. Such a signal is recomputed if used in multiple places and gets restarted after switching. Our push-stream does not prevent this
type of issue through types since our model is aimed for dynamic languages. Instead, we can multicast a stream so that multiple uses will not cause re-computation, and switching will not cause restart. Krishnaswami [14] used a static approach to ensure that past values cannot be accessed and Patai [22] achieved similar goals by distinguishing streams and streams of streams at the type level. FRP Now [25] provided a variation to Fran that does not cause space leaks and also supports asynchronous IO. This approach erases past values with an optimization based on mutable memory. It handles asynchronous IO in a behavior by running the IO on a new thread, which passes the results as an event to the next round of the clock that runs the behavior.

Arrowized FRP Another type of solution to the space-time leak problem is to use the Arrows abstraction [18]. Yampa is an arrowized FRP variant which composes signal functions using arrow combinators where signals are not first-class values. A drawback of the arrowized approach is that it requires inputs and outputs be threaded throughout the entire program, and imposes a point-free style of programming [7]. Scalable FRP [4] improved on Yampa by providing an imperative implementation which has most of the expressiveness of Yampa with better performance. Arrowized FRP has been generalized into a monad stream function in Ivan Perez’s Dunai [23], which
can model FRP signals and stateful reactive programming by stacking different monads. A later version called Rhine [3] introduced type-level clocks for processing data at different rates, where synchronous processes are run with an atomic clock on signal functions while asynchronous processes are run with schedules on resampling buffers. Rhine statically checks for correct composition involving clocks, and concurrent data is processed by threads that pass results through channels.

Dataflow Languages Before FRP, dataflow languages (e.g. Lucid [27]) and synchronous dataflow languages (e.g. Lustre [24] and SIGNAL [15]) provided an efficient and correct solution to real-time processing of signals. However, they are limited in power, as their dataflow graphs are static, and they do not support a form of first-class signals. In these models, signals use implicit time based on ordering of events, rather than an explicit continuous time or discrete time interval. Without switching operator, adjusting sample rates to external factors is not possible with these languages.

Concurrency monad The use of a continuation monad for a form of concurrency was demonstrated by Claessen [5] in the context of Haskell. This idea was later adopted by Li and Zidanwic [16] in their design for scalable network services that provides type-safe abstractions for both events and threads. They use a continuation monad to build traces that are scheduled
by event loops. This work uses a continuation monad to provide concurrency control for asynchronous IO that is run by event loops or threads.
8 Conclusion

We have created a model of reactive programming structured around IoT use cases by layering multiple composable abstractions on top of each other. First AsyncM was presented, offering a foundation for representing asynchronous computations. We demonstrated how AsyncM’s monadic interface is useful for combining chains of bind applications and other AsyncM together to create new behavior. The cancellation token structure which is implicit to AsyncM was presented, which allows AsyncM to have liveliness checkpoints by use of ifAliveM, and to race each other with anyM (among many other primitives).

We presented our design of push-streams with the Stream class. Streams provide low latency push capabilities where Emitters are used to broadcast events throughout the program. We defined a monadic instance for Stream which used a primitive called “switching” to add a dynamic structure to the program’s dataflow graph. We showed how this behavior is well-behaved through its satisfaction of the monad laws.

Two pull-based abstractions (Signal and Behavior) were presented to serve two discrete use cases. Signals are for computations on batches of data which do not use the sample’s time explicitly (such as point-wise
computations), and Behavior are for better abstracting time-bound computations (such as windowed computations). We demonstrated how both are applicative functors which can be composed via an app operator.

Finally, we applied our model to a real-world use case of an IoT analytics system. Primitives were added to our model (control and speedControl) for scaling the KPI computations with the performance of the system (to avoid excessive back-pressure). More primitives were added for interfacing with external sources and sinks, acting as a bridge between our model and the outside world (e.g. web servers, databases, and visualizations). We outlined the process from data capture to data display and storage, where data is fetched from external sources as a Streams of input, is converted to Signals and Behaviors (where KPIs are computed), then converted to a Stream of KPIs, and finally, sent to external sinks.
Bibliography

