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ABSTRACT

A DYNAMIC PROGRAMMING APPROACH TO IMPULSE
CONTROL OF BROWNIAN MOTIONS

by

Robin Braun

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Chao Zhu

This thesis considers an impulse control problem of a standard Brownian motion under a

discounted criterion, in which every intervention incurs a strictly positive cost. The value

function and an optimal (τ∗, Y∗) policy are found using the dynamic programming principle

together with the smooth pasting technique. The thesis also performs a sensitivity analysis

by analyzing the limiting behaviors of the value function and the (τ∗, Y∗) policy when the

�xed intervention cost converges to zero. It is demonstrated that the limits agree with the

classic fuel follower problem.

The thesis next formulates and analyzes an N -player stochastic game of an impulse control

problem under a discounted criterion. In the N -player stochastic game, each player controls

an object. The objects are molded by an N -dimensional Brownian motion. A key aspect of

the formulation is that each player aims to minimize her total impulse control cost and the

total distance of her object to the moving center of the N objects. The interaction mandates

the players to closely follow each other's movements. The Nash equilibrium is characterized

and analyzed by a system of Hamilton-Jacobi-Bellman equations. The case when N = 2 is

studied in detail.
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1 Introduction

In this thesis, our goal is to control a standard Brownian motion, where any intervention

incurs a strictly positive cost. Doing this, means we have to select a sequence of separate

intervention times and amounts, making the resulting stochastic problem an impulse control

problem. Here, we want to minimize the total incurred cost over an in�nite horizon, while

considering a discounted criterion. In contrast to Helmes, Stockbridge and Zhu [1], which

used a linear programming approach to solve the problem, we will use the dynamic program-

ming principle (DPP) in combination with the smooth pasting technique to �nd the answer.

This will give us an alternate approach to the problem that we can then try to extend to an

N-dimensional case later on in the thesis.

1.1 1D Situation

Let W and {Ft} be a standard Brownian motion and its natural �ltration. An impulse

control policy is a pair of sequences (τ, Y ) := {(τk, Yk) : k ∈ N}, where for each k ∈ N,

τk is an {Ft}-stopping time and denotes the kth impulse time and Yk is an Fτk-measurable

variable indicating the kth impulse size.

Under such a policy, the controlled process is given by

Xt := x+Wt + ξt,

ξt :=
∞∑
k=1

I{τk≤t}Yk,
(1.1)

where ξ is the accumulative jump amount up to time t. Note that ∆ξt := ξt− ξt− 6= 0 if and

only if an impulse τk occurs at time t and in that case ∆ξt = Yk.

De�ne the running cost h and the impulse cost c

h(x) = x2, c(y, z) = k1 + k2|y − z|, (1.2)

1



where k1 is the �xed cost for an impulse, k2 is the proportional cost and y and z are the pre-

and post-jump locations. For a given impulse control policy (τ, Y ) the cost functional is

J(τ, Y ;x) = Ex

[∫ ∞
0

e−αs h(Xs)ds

+
∞∑
k=1

I{τk<∞}e
−ατk c(Xτk−, Xτk)

]
,

(1.3)

where x = X0− is the initial position and α > 0 is the discount factor. The �rst summand in

(1.3) corresponds to the running cost and the second one to the control cost for an in�nite

horizon. In other words, the controller will have to balance the desire to keep the process

near zero to keep the running cost low, against the desire to keep the number or sizes of

interventions low as to not infer a great control cost.

The corresponding value-function is given by

V (x) = inf
(τ,Y )∈U

{J(τ, Y ;x)} , (1.4)

where U is the set of all admissible control policies (more on that in section 2).

The goal now is to �nd an impulse control pair (τ ∗, Y ∗) that minimizes the cost functional,

i.e. for which J(τ ∗, Y ∗;x) = V (x) holds.

This problem has been solved in HSZ [1] using the linear programming approach. In the

following section, we will also solve this problem using the DPP to give a di�erent approach

to the problem and then extend it to an N-dimensional version.

2



2 Analysis using the Dynamic Programming Principle

In this we will use the DPP to solve the problem stated in section 1.

Let's start by looking at the set U used in (1.4). One very important observation we can

make, is that we don't need to include any policies (τ, Y ) for which J(τ, Y ;x) =∞ for some

x, since our end goal is to minimize the cost.

2.1 Formal Derivation the HJB Equation

Before diving into �nding the Hamilton�Jacobi�Bellman (HJB) equation, we'd like to make

an important observation about the value-function and it's associated optimal policy: An

optimal control policy, and with that V itself, should not be dependent on time, but only

on the current position of the process. This is because optimizing the cost after some time

t has past, is the same problem as optimizing from the start, just discounted by the factor

e−αt.

With that, consider a policy (τ̂ , Ŷ ) that immediately jumps to an arbitrary position y and

then continues optimally thereafter. We have

V (x) ≤ J(τ̂ , Ŷ ;x) = c(x, y) + V (y) ∀y ∈ R

Since the above equation holds true for any y ∈ R we have

V (x)−MV (x) ≤ 0 ∀x ∈ R, (2.1)

whereMV (x) := inf
z∈R
{c(x, z) + V (z)}.

3



Next, consider a policy (τ̃ , Ỹ ) and its associated process X̃ that does nothing up to a time

h and continues optimally from then on.

V (x) ≤ J(τ̃ , Ỹ ;x) = Ex
[∫ h

0

e−αsh(X̃s)ds+ e−αhV (X̃h)

]
(*)

Further assume that the value-function is smooth, so we can apply Itô's Formula to the

process e−αtV (X̃t):

e−αhV (X̃h) = V (x) +

∫ h

0

e−αs(−αV +
1

2
V ′′)(X̃s)ds

+

∫ h

0

e−αsV ′(X̃s)dWs

If we also assume that V ′ stays bounded (which is desirable, since we don't want the cost

to explode for large |x|), the second summand above is a mean-zero martingale. Thus, by

taking expectation on both sides, we get

Ex
[
e−αhV (X̃h)

]
= V (x) + Ex

[∫ h

0

e−αs(−αV +
1

2
V ′′)(X̃s)ds

]
.

Plugging this into (*) yields

V (x) ≤ Ex
[∫ h

0

e−αsh(X̃s)ds

]
+ V (x) + Ex

[∫ h

0

e−αs(−αV +
1

2
V ′′)(X̃s)ds

]
0 ≤ Ex

[∫ h

0

e−αs(−αV +
1

2
V ′′ + h)(X̃s)ds

]
.

Dividing by h and letting h→ 0 gives us

0 ≤ e−α·0(−αV +
1

2
V ′′ + h)(X̃0)

0 ≥ (αV − 1

2
V ′′ − h)(x) ∀x ∈ R.

(2.2)
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Now, if we consider the optimal policy (τ ∗, Y ∗) at an initial position X0− = x at time zero,

it only has two options. Either it will immediately push the process, or it will idle. In the

�rst case we get that the process jumps to some z ∈ R, so

V (x) = J(τ ∗, Y ∗;x) = c(x, z) + V (z).

Since our policy is optimal, we also get

V (x) = J(τ ∗, Y ∗;x) ≤ c(x, y) + V (y)∀y 6= z,

giving us in total:

V (x)−MV (x) = 0

In the second case, for h > 0 small enough, we get

V (x) = J(τ ∗, Y ∗;x) = Ex
[∫ h

0

e−αsh(X∗s )ds+ e−αhV (X∗h)

]
.

Following the same steps as for (τ̃ , Ỹ ), we get

0 = (αV − 1

2
V ′′ − h)(x).

Putting our two cases together, means the value-function must satisfy

max

{
αV (x)− 1

2
V ′′(x)− h(x), V (x)−MV (x)

}
= 0. (2.3)
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2.2 Finding the Optimal Strategy

Now that we know the HJB equation for V , let's think about how an optimal strategy could

look like. We already know that it shouldn't be dependent on time, i.e. it will always act the

same for the same position. This means we can split our space in two regions: The Action

Region A and Continuation Region or Waiting Region W (We push when the process is in

A and idle in W):

A := {x ∈ R : ∆ξ(x) 6= 0}, W := AC (2.4)

Pushes should always move the process out of A, since otherwise we would push again

immediately afterwards, incurring the �xed cost twice.

Another observation is that our strategy should be symmetrical, meaning if it pushes to z

from a position y, it should push to −z from −y. This is because the running cost h(x) = x2

is even and the push cost doesn't favor one direction over the other. Also, since h is strictly

increasing for growing |x|, there shouldn't be a part of W farther away from 0 than A, i.e.:

∀x ∈ W ,∀y ∈ A : |x| ≤ |y|

So we should expect W to be some area bounded around zero and A to be the rest of R.

This implies there exists some y∗ > 0 (to be determined) s.t.:

W = {x ∈ R : −y∗ ≤ x ≤ y∗}

The last remaining question is how much we should push if x is in A. Let x > y∗ (so x ∈ A).

Since we want the optimal strategy, we should expect there to be some z∗ ∈ W (to be

determined) that is the optimal place to push to. In that case z∗ should also be the optimal

place for all x > y∗ since the push cost is linearly proportional to the push distance (factor

k2).
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So, all in all, the strategy should idle in W and always push to z∗ for x > y∗ or, because

of the symmetry, to −z∗ for x < −y∗ (See Figure 1). So in mathematical terms, our strategy

(τ ∗, Y ∗) is de�ned the following way:

τ ∗0 := inf{t > 0 : |Xt| > y∗}

τ ∗k := inf{t > τ ∗k−1 : |Xt| > y∗} ∀k ∈ N>

Y ∗k := sgn(Xτ∗n−) · z∗ −Xτ∗n− ∀k ∈ N≥

(2.5)

0 z∗−z∗ y∗−y∗

ImpulseImpulse

WA A

Figure 1: 1D Impulse control strategy

Now we need to determine the associated value u(x) := J(τ ∗, Y ∗;x) to the optimal strategy,

and with it y∗ and z∗.

From the symmetry we know that u(x) = u(−x) if x < 0. For x > y∗, we always push to z∗,

so u looks like the following:

u(x) = u(z∗) + c(x, z∗)

For 0 ≤ x ≤ y∗ our policy idles, so we want u(x) to ful�ll αu(x) − 1
2
u′′(x) − h(x) = 0 (see

2.3).

7



To �nd that, we �rst solve the homogeneous part of the di�erential equation.

αuh(x)− 1

2
u′′h(x) = 0 ⇒ α− 1

2
λ2 = 0 ⇒ λ = ±

√
2α =: ±ρ

Which gives us the homogeneous solution

uh(x) = A1e
−ρx + A2e

ρx A1, A2 constants

Since h(x) = x2, we can �nd the particular solution by assuming it is a quadratic function,

up(x) = ax2 + bx+ c:

αup(x) =
1

2
u′′p(x) + x2 ⇒ (ax2 + bx+ c) =

1

2
2a+ x2 ⇒ a =

1

α
; b = 0; c =

a

α
=

1

α2

Which gives us the particular solution

up(x) =
1

α
x2 +

1

α2
=
αx2 + 1

α2

Remark 2.1

A more general approach for cost functions c(x) other than x2 is to use the Zero-control (do

nothing) to �nd the particular solution (See Guo and Xu, 2019 [2]):

up(x) = E
[∫ ∞

0

e−αtc(Xt)dt

]
= E

[∫ ∞
0

e−αth(x+Wt)dt

]
=

∫ ∞
0

e−αt
∫
R
c(x+ y)

1√
2πt

e−
y2

2t dy dt

=

∫
R
c(x+ y)

∫ ∞
0

e−αt
1√
2πt

e−
y2

2t dt dy

=

∫
R
c(x+ y)

1√
2α
e−
√
2α|y|dy

8



All in all, this gives us u(x) = uh(x) + up(x) = A1e
−ρx + A2e

ρx + αx2+1
α2

From the symmetry we get:

u(x) = A1e
−ρx + A2e

ρx +
αx2 + 1

α2
= A1e

ρx + A2e
−ρx +

αx2 + 1

α2
= u(−x)

So A1 has to be equal to A2. De�ning A := 2A1 lets us rewrite u(x) the following way:

u(x) = A cosh(ρx) +
αx2 + 1

α2
∀0 ≤ x < y∗

So u(x) is de�ned as follows:

u(x) =


A cosh(ρx) + αx2+1

α2 0 ≤ x ≤ y∗

u(z∗) + c(x, z∗) x > y∗

u(−x) x < 0

(2.6)

Notice that per this de�nition u′(x) is bounded, which was one of our assumptions for the

value-function. Another assumption was for V to be smooth, so we want u to ful�ll this

also. For that we use the Smooth Pasting technique, i.e. set u and its derivative equal on

the boundaries:

u(y∗−) = A cosh(ρy∗) +
αy2∗ + 1

α2

= A cosh(ρz∗) +
αz2∗ + 1

α2
+ c(y∗, z∗) = u(y∗+)

u′(y∗−) = ρA sinh(ρy∗) +
2y∗
α

= k2 = u′(y∗+)

(2.7)

9



We now have two equations, but need to determine three variables (A, y∗ and z∗), so we

need one more constraint. We get that from the fact that we push to z∗. But if we are doing

a push, it should be the optimal one, so the following holds for an x > y∗:

∂

∂z
[u(z∗) + c(x, z∗)] = 0 ⇔ u′(z∗)− k2 = 0 ⇔ ρA sinh(ρz∗) +

2z∗
α

= k2 (2.8)

Remark 2.2

From the last two constraints we can already make an important observation: Since both

2x/α and ρ sinh(x) are strictly increasing functions, the only way to get a y∗ 6= z∗ is when

A < 0.

If we use the �rst constraint of (2.7) and solve for A, we get:

A cosh(ρy∗)− A cosh(ρz∗) =
αz2∗ + 1

α2
− αy2∗ + 1

α2
+ c(y∗, z∗)

A =
c(y∗, z∗) + z2∗−y2∗

α

cosh(ρy∗)− cosh(ρz∗)
(≡ A(z∗, y∗))

Rearranging the other two constraints a little, we get:

α · ρ sinh(ρy∗) · A = k2α− 2y∗

(
⇒ y∗ >

k2α

2

)
α · ρ sinh(ρz∗) · A = k2α− 2z∗

(
⇒ z∗ >

k2α

2

)

So:

A =
c(y∗, z∗) + z2∗−y2∗

α

cosh(ρy∗)− cosh(ρz∗)
=

k2α− 2y∗
α · ρ sinh(ρy∗)

=
k2α− 2z∗

α · ρ sinh(ρz∗)
(2.9)

These equations have a unique solution and an analysis of the function A(z, y) shows that it

has a unique minimum less than zero at (z∗, y∗) (see HSZ VI-VII [1]). Unfortunately there is

no straightforward analytic expression for y∗ and z∗. It is however relatively straightforward

to get them numerically (see section 2.4).

10



In the following �gure, we can see a plot of u with speci�c parameters. Notice that the

tangents at y∗ and z∗ have the same angle φ (from u′(z∗) = u′(y∗)) and the function continues

linearly for |x| > y∗.

y∗z∗−y∗ −z∗

φ φ

φφ

u(x)

k1 = 10
k2 = 10
α = 0.1

Figure 2: Sample plot of the candidate function u(x)

Using the script to �nd y∗ and z∗, we can also take a look at a sample path of the controlled

and uncontrolled processes.

α = 0.1
k1 = 10
k2 = 10

y∗

z∗

−y∗

−z∗

Figure 3: Sample paths of the uncontrolled and optimally controlled processes.
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2.3 Veri�cation

Proposition 2.3

u ∈ C1(R)∩C2(R \ {−y∗, y∗}) as given in (2.6) and satisfying (2.9) is a solution to the HJB

equation given in (2.3).

Proof. Per construction, we know that on W , (αu− 1
2
u′′ − h)(x) ≤ 0 is ful�lled. It remains

to check whether u(x)−Mu(x) ≤ 0. From the symmetry it's enough to consider 0 ≤ x ≤ y∗.

Since u is strictly increasing on R+ we know that for a z > x, u(z) > u(x), so the above

inequality is trivially ful�lled. So the interesting case is for a 0 ≤ z ≤ x:

u(x)− u(z)− c(x, z)
?

≤ 0

A cosh(ρx) +
αx2 + 1

α
− A cosh(ρz)− αz2 + 1

α

?

≤ k1 + k2(x− z)

A (cosh(ρx)− cosh(ρz))
?

≤ k1 + k2(x− z) +
z2 − x2

α

A ≤
k1 + k2(x− z) + z2−x2

α

cosh(ρx)− cosh(ρz)

This inequality holds, since per de�nition of u, A is the minimum of the right expression.

So in W the HJB equation is satis�ed. What's left is to check A, i.e. x > y∗:

Per construction we know that u(x)−Mu(x) = 0. So what's left is to show the following:

αw(x)− 1

2
w′′(x)− h(x)

?

≤ 0 (w′′(x) = 0)

αw(x)− x2
?

≤ 0

x > y∗ implies that

d

dx

[
αw(x)− x2

]
= k2α− 2x < k2α− 2y∗ = α · ρ sinh(ρy∗) · A < 0,

12



So it is enough to show that αu(y∗)− y2∗ ≤ 0. But y∗ ∈ W , so the following holds:

αu(y∗)− y2∗ =
1

2
u′′(y∗)

From the de�nition of u we can make three important observations. Firstly u′ is a concave

function on R+, secondly u
′(0) = 0 and u′(z∗) = u′(y∗) = k2 > 0, which gives us thirdly

that u′ has its absolute maximum on R+ somewhere between z∗ and y∗. This implies that

u′′(z∗) ≥ 0 and u′′(y∗) ≤ 0. So in particular 1
2
u′′(y∗) ≤ 0.

So u satis�es the HJB equation. �

Proposition 2.4

For u de�ned as in (2.3) and (τ ∗, Y ∗) de�ned as in (2.5): u(x) = J(τ ∗, Y ∗;x).

Proof. Since u is smooth, we can apply Itô's Formula on the process e−αtu(Xt):

e−αtu(Xt) = u(x) +

∫ t

0

e−αs(−αu+
1

2
u′′)(Xs)ds

+

∫ t

0

e−αsu′(Xs)dWs

+
∞∑
k=0

I{τ∗k≤t}e
−ατ∗k

[
u(Xτ∗k

)− u(Xτ∗k−)
] (2.10)

Applying expectation, rearranging a bit and adding and subtracting h(Xt) we get

Ex[u(x)] = Ex
[
e−αtu(Xt)

]
+ Ex

[∫ t

0

e−αs(αu− 1

2
u′′ − h)(Xs)ds

]
+ Ex

[∫ t

0

e−αsh(Xs)ds

]
− Ex

[∫ t

0

e−αsu′(Xs)dWs

]
+ Ex

[
∞∑
k=0

I{τ∗k≤t}e
−ατ∗k

(
u(Xτ∗k−)− u(Xτ∗k

)
)]

(2.11)

13



Remember that for this policy we always immediately push into W for any x ∈ A.

This means for one that Xt stays bounded, so the �rst term approaches zero as t ap-

proaches in�nity. It also implies that the set {t ≥ 0 : Xt ∈ A} has Lebesgue measure

zero. Furthermore, from the construction we know that for any x ∈ W the following holds:

u(x)− 1
2
u′′(x)− h(x) = 0. Which means the second term is equal to zero. Per construction,

u′ is bounded, so the fourth term is equal to zero. Also, for this control |Xτ∗k−| ≥ y∗ and

|Xτ∗k
| = z∗, so

u(Xτ∗k−) = u(sgn(Xτ∗k−)z∗) + c(Xτ∗k−, sgn(Xτ∗k−)z∗) = u(Xτ∗k
) + c(Xτ∗k−, Xτ∗k

)

⇒ u(Xτ∗k−)− u(Xτ∗k
) = c(Xτ∗k−, Xτ∗k

)

This gives us �rst that

u(x) = Ex
[
e−αtu(Xt)

]
+ Ex

[∫ t

0

e−αsh(Xs)ds

]
+ Ex

[
∞∑
k=0

I{τ∗k≤t}e
−ατ∗k c(Xτ∗k−, Xτ∗k

)

]

and then, by applying the monotone convergence theorem

u(x)
t→∞
= Ex

[∫ ∞
0

e−αsh(Xs)ds

]
+ Ex

[
∞∑
k=0

I{τ∗k<∞}e
−ατ∗k c(Xτ∗k−, Xτ∗k

)

]

= J(τ ∗, Y ∗;x)

(2.12)

This �nishes the proof. �
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Theorem 2.1 (Veri�cation Theorem). Suppose (τ ∗, Y ∗) is an admissible policy and the

corresponding value u(x) := J(τ ∗, Y ∗;x) with

(i) u(x) ∈ C2(R) and satis�es (2.3),

(ii) u′(x) is bounded,

(iii) for any (τ, Y ) and its controlled dynamic Xt the transversality condition holds:

lim sup
t→∞

Ex
[
e−αtu(Xt)

]
≤ 0.

Then

u(x) ≤ J(τ, Y ;x) ∀(τ, Y ) admissible policies,

i.e. V (x) = u(x).

Proof. Under a policy (τ, Y ), we have

Xt = x+Wt +
∞∑
k=1

I{τk≤t}Yk

We now apply Itô's Formula to the process e−αtu(Xt) as in (2.10) and (2.11) to obtain

u(x) = Ex
[
e−αtu(Xt)

]
+ Ex

[∫ t

0

e−αs(αu− 1

2
u′′ − h)(Xs)ds

]
+ Ex

[∫ t

0

e−αsh(Xs)ds

]
− Ex

[∫ t

0

e−αsu′(Xs)dWs

]
+ Ex

[
∞∑
k=0

I{τk≤t}e
−ατk (u(Xτk−)− u(Xτk))

]
(2.13)
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Letting t→∞, the �rst term is 0 because of the transversality condition. Since u(x) satis�es

(2.3), the second term is less than or equal to 0 and u(Xτk−) − u(Xτk) ≤ c(Xτk−, Xτk) for

the last term. Since u′(x) is bounded, the fourth term is equal to 0. Which gives us in total

u(x)
t→∞
≤ Ex

[∫ ∞
0

e−αsh(Xs)ds

]
+ Ex

[
∞∑
k=0

I{τk<∞}e
−ατkc(Xτk−, Xτk)

]

= J(τ, Y ;x)

(2.14)

This ends the proof. �

As we can see, our u �ts the Veri�cation Theorem if we can show the transversality

condition. Let (τ, Y ) be an admissible policy and Xt the corresponding controlled process.

Suppose further, the transversality condition does not hold, i.e.

lim inf
t→∞

Ex
[
e−αtu(Xt)

]
> K for some K > 0.

This implies that Xt is unbounded, so

lim
t→∞

Ex
[
e−αtu(Xt)

]
= lim

t→∞
Ex
[
e−αtu(Xt)I{|Xt|≥y∗}

]
.

The linearity of u on {x : |x| ≥ y∗} implies that

lim
t→∞

Ex
[
e−αtu(|Xt|)I{|Xt|≥y∗}

]
> K

lim
t→∞

Ex
[
e−αt (u(z∗) + k1 + k2(|Xt| − z∗)) I{|Xt|≥y∗}

]
> K

lim
t→∞

e−αt(u(z∗) + k1 − k2z∗) + k2e
−αt lim

t→∞
Ex
[
|Xt|I{|Xt|≥y∗}

]
> K

lim
t→∞

Ex
[
|Xt|I{|Xt|≥y∗}

]
> lim

t→∞
eαtk2 ·K

So Ex
[
|Xt|I{|Xt|≥y∗}

]
is asymptotically bounded below by eαtK̃. Jensen's inequality tells us
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Ex [|Xt|]2 ≤ Ex [X2
t ]. Combined with the above for an ε > 0 and large enough t we get

Ex
[
X2
t

]
≥ Ex

[
|Xt|I{|Xt|≥y∗}

]2 ≥ (K̃eαt)2 − ε,

which implies J(τ, Y ;x) =∞, which means (τ, Y ) wasn't an admissible control to begin with.

To summarize, we get the following.

Theorem 2.2. Let u be de�ned by (2.3) and (τ ∗, Y ∗) de�ned as in (2.5). Then u is the

value-function, i.e.

J(τ, Y ;x) ≤ u(x) = J(τ ∗, Y ∗;x) ∀x ∈ R, (τ, Y ) ∈ U

Meaning we have found the value-function and the optimal control policy.
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2.4 Numerical Solution for y∗ and z∗

Unfortunately, we can not �nd a simple analytic expression for z∗ and y∗, but �nding them

numerically is relatively straight-forward. Remember, (z∗, y∗) is the pair that minimizes

A(z, y) =
k1 + k2(y∗ − z∗) + z2∗−y2∗

α

cosh(ρy∗)− cosh(ρz∗)

on the domain 0 < z < y. Since u′(z∗) = u′(y∗), we also get

2y∗ − k2α
sinh(ρy∗)

=
2z∗ − k2α
sinh(ρz∗)

.

If we take a look at the function

f :

(
k2α

2
,∞
)
3 x→ 2x− k2α

sinh(ρx)
∈ R+,

we see that it has a maximum at (x̂, t̂), is strictly increasing on
(
k2α
2
, x̂
)
and strictly decreasing

on (x̂,∞).

f(x)

x̂

t̂
α = 0.1
k2 = 10

Figure 4: Sample plot of f(x)
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So for each section f has an inverse function. This allows us to de�ne a function that gives

us all level sets (z, y):

p : (0, t̂) 3 t→

f
∣∣
( k2α2 ,x̂)

−1
(t)

f
∣∣
(x̂,∞)

−1
(t)

 ∈ (k2α
2
, x̂

)
× (x̂,∞)

Using this, we get a new function, only dependent on a single variable that we need to

minimize:

Â : (0, t̂) 3 t→ A(p(t)) ∈ R

So if we de�ne t∗ := arg min
t∈(0,t̂)

{
Â(t)

}
, we get that

p(t∗) = (z∗, y∗)
T , Â(t∗) = A

t t∗

k1 = 10
k2 = 10
α = 0.1

Â(t)

t̂

(a) sample plot of Â and its minimum
z∗ y∗

t∗

(b) t∗, z∗ and y∗ marked in a plot of f(x)

Figure 5: Plots of the numerical Solution

Based on this we created a python script to �nd (z∗, y∗) and A given α, k1 and k2 (See

Appendix Python-Code 1-D).
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2.5 Comparison with the Fuel Follower Problem

Guo and Xu [2] discuss a very similar problem in their paper: The fuel follower problem.

This problem is very similar to our impulse control problem, with the only di�erence, that

there is no �xed cost k1. For their discussion, they also used a �xed push-cost of 1, which

would mean k2 = 1 for our problem.

The optimal policy they found was to always apply the minimal push for the process to stay

within [−c, c] for a c > 0 and the associated value-function is given by

vf (x) =


−p′′1 (c) cosh(x

√
2α)

2α cosh(c
√
2α)

+ p1(x) 0 ≤ x ≤ c

vf (c) + (x− c) x ≥ c

vf (−x) x < 0.

(2.15)

Where p1 is the cost of the "Zero-Control". Using the same running cost function as in this

thesis (h(x) = x2) will give us p1(x) = up(x) = αx2+1
α2 .

We can see that both the policy and value-function are very similar to our result. The key

di�erence is that Guo and Xu push to the border of the waiting region (to c), whereas we

actually push to a point inside it (to z∗).

An interesting question that that we can now ask ourselves is what happens when we let

the �xed cost k1 go to zero, i.e. if we make our problem more and more similar to the fuel

follower problem. Intuition tells us we should expect the same result, meaning we should

move to a strategy that pushes to the border of the waiting instead of inside it, or in other

words, we should expect to see z∗ → y∗ as k1 → 0.
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One thing that illustrates this quite well is if we take a look at the following function and

its derivative:

G(x) :=
αx2 + 1

α2
+ A cosh(ρx)− k2 · x ⇒ G′(x) :=

2x

α
+ A · ρ sinh(ρx)− k2

This allows us to express the constraints for u in (2.7) and (2.8) in terms of G:

G′(y∗) = 0, G′(z∗) = 0, G(y∗) = G(z∗) + k1

⇒ k1 =

∫ y∗

z∗

G′(x) dx

Since we can now express k1 as the area of G′ (which is strictly concave) between z∗ and

y∗, it is obvious that k1 → 0 has to imply that z∗ → y∗ (see Figure 6).

k1 = 10
k2 = 1
α = 0.1

k1

−k2
z∗ y∗

G′(x)

Figure 6: k1 expressed as an area of G′
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Since we now know that z∗ → y∗, this has to happen at the maximum (let's call it c to go

with Guo and Xu's [2] convention ) of f(x) = 2x−k2α
sinh(ρx)

.

f ′(c) =
2 sinh(ρc)− (2c− k2α)ρ cosh(ρc)

(sinh(ρc))2
= 0

2 sinh(ρc) = (2c− k2α)ρ cosh(ρc)

sinh(ρc)

ρ cosh(ρc)
=

tanh(ρc)

ρ
=

2c− k2α
2

(
k2=1
=

2c− α
2

)

In GX [2] c is the solution to 1√
2α

tanh(c
√

2α) =
p′1(c)−1
p′′1 (c)

. Together with ρ =
√

2α and

p1(x) = αx2+1
α2 , we get

1

ρ
tanh(ρc) =

1√
2α

tanh(c
√

2α) =
p′1(c)− 1

p′′1(c)
=

2c
α
− 1
2
α

=
2c− α

2
,

meaning the c's are the same in the two problems. Left to check is, if the value-functions

also agree. If we compare our value function u (2.6) with their value-function vf (2.15), we

can see that they are already similar in the last two cases, so left is to check if u(x) = vf (x)

for any 0 ≤ x ≤ c. In our problem we have u(x) = A cosh(ρx) + up(x), A = k2α−2c
α·ρ sinh(ρc) and

from before sinh(ρc) = ρ cosh(ρc)2c−k2α
2

, so

u(x) =
k2α− 2c

α · ρρ cosh(ρc)2c−k2α
2

cosh(ρx) + up(x)

= − 2

α2α cosh(ρc)
cosh(ρx) + up(x) = − cosh(ρx)

α2 cosh(ρc)
+ up(x)

Remember for this setup p1(x) = up(x), so p′′1(x) = 2
α
, so we get

vf (x) = −p
′′
1(c) cosh(x

√
2α)

2α cosh(c
√

2α)
+ p1(x) = − cosh(ρx)

α2 cosh(ρc)
+ up(x) = u(x).

Meaning the two value-functions agree with one another as k1 → 0.
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3 N-players

Now suppose there are N policies, each controlling one object. From now on, let's refer to

such a pair of policy and object as a "player". The goal for each player is to stay as close as

possible to the other players.

This N -player problem can be formulated as follows. Let νi := {(τ ik, Y i
k ) : k ∈ N} be the

policy for the ith player, where (as in the one-dimensional case), τ i1 < τ i2 < . . . are stopping

times denoting the impulse times for the ith player and Y i
k is Fτ ik-measurable for each k ∈ N

and indicates the kth impulse size for the ith player. Now, let (X1
t , . . . , X

N
t ) ∈ RN be the

positions of the players such that for i = 1, . . . , N ,

X i
t = xi +W i

t + ξit,

ξit =
∞∑
k=1

I{τ ik≤t}Y
i
k ,

(3.1)

with (X1
0−, . . . , X

N
0−) = (x1, . . . , xN) =: xxx, where (W 1

t , . . . ,W
N
t ) is an N -dimensional stan-

dard Brownian motion on RN and ξit are the total aggregated impulses for the ith player up

to time t.

LetX t :=
(∑N

i=1X
i
t

)/
N be the moving average of ourN -players. As in the one-dimensional

case, the running cost function is h(x) := x2 and c(y, z) = k1 + k2|y − z|. The goal for each

player i is to minimize, over all admissible control policies ννν := (ν1, . . . , νN) ∈ UN , the

following cost functional:

J i (ννν;xxx) = E
[ ∫ ∞

0

e−αth
(
X i
t −XXX t

)
dt

+
∞∑
k=1

I{τ ik<∞}e
−ατ ikc

(
X i
τ ik−

, X i
τ ik

)]
.

(3.2)
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The set UN is de�ned as

UN :=

{(
ν1, . . . , νN

) ∣∣∣∣ νj ∈ U jN ,P(∆ξit(xxx) ·∆ξjt (xxx)) = 0

for any t > 0,xxx ∈ RN , i, j ∈ {1, . . . , N}, i 6= j

}
,

(3.3)

with

U jN =

{
νj
∣∣∣∣ ∃ ν̂νν control policy s.t. J j((ν̂νν−j, νj);xxx) <∞

}
. (3.4)

Here (ν̂νν−j, νj) := (ν̂1, . . . , ν̂j−1, νj, ν̂j+1, . . . ν̂N).

The condition in (3.3)

P(∆ξit(xxx) ·∆ξjt (xxx)) = 0 for any t > 0,xxx ∈ RN , i, j ∈ {1, . . . , N}, i 6= j

means, we only consider policies where no two players act at the same time.

3.1 Nash equilibrium and HJB Equation

De�nition 3.1 (Nash Equilibrium). A tuple of admissible impulse controls

ννν∗ = (ν1∗, . . . , νN∗) is a Nash equilibrium (NE) of the N -player stochastic game if for any

i = 1, 2, . . . , N , XXX0 = xxx and any (ννν−i∗, νi), the following inequality holds:

J i(ννν∗;xxx) ≤ J i((ννν−i∗, νi),xxx).

J i(ννν∗;xxx) is called the NE value associated with ννν∗.

The �rst step to �nding the NE solution is to derive and analyze the associated HJB

system. To do that, let's de�ne the action region Ai and waiting region Wi for each player.
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De�nition 3.2. Player i's action region Ai is de�ned as

Ai := {xxx ∈ RN : ∆ξi(xxx) 6= 0},

and her waiting region is de�ned as

Wi := RN \ Ai.

Denote A−i :=
⋃
j 6=iAj the union of action regions of the other players and W−i :=

⋂
j 6=iWj

the common waiting region of the other players.

Introduce the operatorMif(xxx) := infy∈R{f(xxx−i, y) + c(xi, y)}. From the de�nition of UN

we know that Ai ∩ Aj = ∅ for any i 6= j. With this the HJB equation for the NE for the

N -player problem is


max

{
αwi(xxx)− h(xi − xxx)− Lwi(xxx), wi(xxx)−Miwi(xxx)

}
= 0, ∀xxx ∈ W−i,

∂

∂xj
wi(xxx) = 0, ∀xxx ∈ Aj, j 6= i,

(3.5)

where Lwi(xxx) :=
1

2

N∑
j=1

∂2

∂x2j
wi(xxx).

The derivation of (3.5) can be illustrated with the case of N = 2. In this case, if xxx =

(x1, x2) ∈ A2 and ∆ξ2∗ 6= 0. By the de�nition of the NE, player one is not expected to su�er

a loss for otherwise she will have incentive to take action. Thus

w1(x1, x2) = w1(x1, x2 + ∆ξ2∗).

Letting ∆ξ2∗ → 0, we have ∂
∂x2
w1(xxx) = 0 for xxx ∈ A2.
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If xxx ∈ W2, ∆ξ2∗(xxx) = 0, then the control problem for player one becomes a classical single

player impulse control problem. Therefore w1(xxx) satis�es

max

{
αw1(xxx)− h

(
x1 − x2

2

)
− 1

2

2∑
j=1

∂2

∂x2j
w1(xxx), w1(xxx)−M1w1(xxx)

}
= 0, ∀xxx ∈ W2.

3.2 Veri�cation Theorem

Theorem 3.3 (Veri�cation Theorem). Suppose ννν∗ = (ν1∗, . . . , νN∗) is an admissible policy

and the corresponding value wi(xxx) := J i(ννν∗;xxx) satis�es

(i) the function wi(xxx) ∈ C2(W−i) and satis�es (3.5),

(ii) for any admissible policy νi, the controlled dynamic (XXX−i∗t , X i
t) under the policy

(ννν−i∗, νi) stays in W−i for all t ≥ 0 P-a.s.,

(iii) there exists a function ui(xxx) ∈ C2(RN) such that ui(xxx) = wi(xxx) on W−i,

(iv) there exists an increasing sequence of stopping times {βn : n ∈ N} with βn → ∞ a.s.

such that

Mt∧βn :=

∫ t∧βn

0

e−αs
N∑
j=1

∂

∂xj
ui(XXX−i∗s , X i

s)dW
j
s

is a martingale with mean zero; moreover the transversality condition holds:

lim
T→∞

lim
n→∞

E
[
e−α(T∧βn)ui(XXX−i∗T∧βn , X

i
T∧βn)

]
= 0,

Then ννν∗ is a NE with value ui.
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Proof. Under the policy (ννν−i∗, νi), we have

X i
t = xi +W i

t + ξit, t ≥ 0,

and for j 6= i

Xj∗
t = xj +W j

t + ξj∗t , t ≥ 0.

Let βn as in the statement of the theorem. We now apply Itô's formula to the process

e−αtui(XXX−i∗t , X i
t) to obtain

E
[
e−αT∧βnui

(
XXX−i∗T∧βn , X

i
T∧βn

)]
− ui(xxx) (3.6)

= E

[∫ T∧βn

0

e−αt
(
Lui

(
XXX−i∗t , X i

t

)
− αui

(
XXX−i∗t , X i

t

))
dt

]

+ E

[
∞∑
k=1

I{τ ik≤T∧βn}e
−ατ ik

[
ui
(
XXX−i∗

τ ik
, X i

τ ik

)
− ui

(
XXX−i∗

τ ik−
, X i

τ ik−

)]]

+ E

[
N∑

j=1,j 6=i

∞∑
k=1

I{τ j∗k ≤T∧βn}
e−ατ

j∗
k

[
ui
(
XXX−i∗

τ j∗k
, X i

τ j∗k

)
− ui

(
XXX−i∗

τ j∗k −
, X i

τ j∗k −

)]]
.

By condition (ii), the last term is equal to zero. On the other hand, by conditions (ii) and

(i), we have

Lui
(
XXX−i∗t , X i

t

)
− αui

(
XXX−i∗t , X i

t

)
≥ −h

(
X i
t −XXX t

)
.

Since Ai ∩ Aj = ∅ for i 6= j, we have XXX−i∗
τ ik

= XXX−i∗
τ ik−

. This, together with conditions (ii) and

(i), implies that

ui
(
XXX−i∗

τ ik
, X i

τ ik

)
− ui

(
XXX−i∗

τ ik−
, X i

τ ik−

)
≥ −c

(
X i
τ ik−

, X i
τ ik

)
.

27



Plugging the above two inequalities into (3.6), we obtain

E
[
e−αT∧βnui

(
XXX−i∗T∧βn , X

i
T∧βn

) ]
− ui(xxx)

≥ −E

[∫ T∧βn

0

e−αth
(
X i
t −XXX t

)
dt

]

− E

[
∞∑
k=1

I{τ ik≤T∧βn}e
−ατ ikc

(
X i
τ ik−

, X i
τ ik

)]
.

That is

ui(xxx) ≤ E

[
e−αT∧βnui

(
XXX−i∗T∧βn , X

i
T∧βn

)
+
∞∑
k=1

I{τ ik≤T∧βn}e
−ατ ikc

(
X i
τ ik−

, X i
τ ik

)]

+ E

[∫ T∧βn

0

e−αth
(
X i
t −XXX t

)
dt

]
.

Since h, c ≥ 0, we can use the monotone convergence theorem and the transversality condition

in (iii) to obtain

ui(xxx) ≤ E

[
∞∑
k=1

I{τ ik<∞}e
−ατ ikc

(
X i
τ ik−

, X i
τ ik

)
+

∫ ∞
0

e−αth
(
X i
t −XXX t

)
dt

]

= J i
(
(ννν−i∗, νi);xxx

)
.

This �nishes the proof. �
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3.3 Finding the Optimal Policies

Now that we have the Veri�cation Theorem, we can start �nding the policies for our players.

Let's try a similar approach to the one-dimensional case, meaning our player idles as long

as she stays within a certain distance of the moving average and jumps closer to it, if she is

farther away.

Note 3.4. The distance of a player to the moving average can also be expressed in terms of

the distance from the player to the average of the other players (excluding the player itself):

X i
t −XXX t = X i

t −
∑N

j=1X
j
t

N
=
N − 1

N

(
X i
t −

∑
j 6=iX

j
t

N − 1

)
=
N − 1

N

(
X i
t −XXX−it

)
(3.7)

Using this, we can also formulate that threshold in terms of the distance to the other

players' average. So we can say there exists some constant yN∗ > 0, s.t. we can decompose

the ith players action and waiting region as follows:

Ai :=
{
E−i ∪ E+

i

}
∩Qi, Wi = RN \ Ai, (3.8)

where

E−i :=
{
xxx ∈ RN : dNi (xxx) < −yN∗

}
,

E+
i :=

{
xxx ∈ RN : dNi (xxx) > yN∗

}
,

dNi (xxx) := xi − xxx−i.

(3.9)

Qi is a partition of RN . We need that, since we want to avoid any two players sharing an

action region, which could happen if we just used Ai = E−i ∪E+
i . This is especially noticeable

in the case N = 2, because of the symmetry we get there:

d21(x
1, x2) =

1

2
(x1 − x2) = −1

2
(x2 − x1) = −d22(x1, x2)
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So E−1 = E+
2 and E+

1 = E−2 . In general we can use the partition

Qi :=

{
xxx ∈ RN

∣∣∣∣ ∣∣dNi (xxx)
∣∣ ≥ ∣∣dNk (xxx)

∣∣ for any k < i;
∣∣dNi (xxx)

∣∣ > ∣∣dNk (xxx)
∣∣ for any k > i

}
,

(3.10)

i.e. we use the rule: Should more than one player be in their "action region", the one furthest

from the center pushes �rst. If multiple players have the biggest distance, the one with the

highest index pushes �rst.

On the common waiting region of all players W =
⋂N
i=1Wi, every policy idles, so every

candidate solution wi should satisfy:

αwi(xxx)− h(xxx)− Lwi(xxx) = 0

To solve this, we start by �nding the homogeneous solution wih to αw
i
h(xxx)−Lwih(xxx) = 0, by

assuming wih(xxx) = eλ·d
i
N (xxx):

α− 1

2

[
λ2 + (N − 1)

(
λ

N − 1

)2
]

= 0

α− 1

2
λ2
[
1 +

1

N − 1

]
= 0

λ = ±
√

2α · (N − 1)

N
=: ±ρN

So our homogeneous solution is given by

wih(xxx) = Bi
Ne

ρN ·diN (xxx) + Ci
Ne
−ρN ·diN (xxx),

for some constants Bi
N , C

i
N ∈ R.
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We �nd the particular solution wip by assuming

wip(xxx) = adiN(xxx)2 + bdiN(xxx) + c.

αwip(xxx) = h(xi − xxx) + Lwip(xxx)

α
(
adiN(xxx)2 + bdi(xxx) + c

)
=

(
N − 1

N
diN(xxx)

)2

+
1

2

(
2a+

2a

(N − 1)2
(N − 1)

)
α
(
adiN(xxx)2 + bdiN(xxx) + c

)
=

(
N − 1

N

)2

diN(xxx)2 + a

(
1 +

1

(N − 1)

)
a =

(N − 1)2

αN2
b = 0 c =

a

α
· N

(N − 1)
=
N − 1

α2N

Let αN := αN2

(N−1)2 , so a = 1
αN

and c = N3

α2
N (N−1)3 . Then we have

wi(xxx) = wih(xxx) + wip(xxx) = Bi
Ne

ρN ·diN (xxx) + Ci
Ne
−ρN ·diN (xxx) +

diN(xxx)2

αN
+

N3

α2
N(N − 1)3

(3.11)

for any xxx ∈ W .

Let's take a closer look at the case N = 2. Because of the above mentioned symmetry, we

get the following result if we use the partition from (3.10):

Q1 =

{
xxx ∈ R2

∣∣∣∣ ∣∣d21(xxx)
∣∣ > ∣∣d22(xxx)

∣∣ } = ∅

Q2 =

{
xxx ∈ R2

∣∣∣∣ ∣∣d22(xxx)
∣∣ ≥ ∣∣d21(xxx)

∣∣ } = R2.

In other words, player 2 does all the work, while player one always idles. This also gives us

W1 = R2, A1 = ∅,

W2 =
{

(x1, x2) ∈ R2 : |x2 − x1| ≤ y2∗
}
, A2 = E−2 ∪ E+

2

E−2 =
{

(x1, x2) ∈ R2 : x2 − x1 < −y2∗
}
, E+

2 =
{

(x1, x2) ∈ R2 : x2 − x1 > y2∗
}

To �nd the NE for this partition, let's start with �nding player two's candidate function w2.

Notice that, since player two is doing all the work, player one's action region is the empty
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set, so the second condition in (3.5), i.e.
∂

∂x1
w2(x1, x2) = 0 ∀(x1, x2) ∈ A1, is actually no

constraint at all. This means we only have to consider the �rst part, making this problem

very similar to the one-dimensional case.

From (3.11), we already know how w2 has to look like on W2 = W . Furthermore, from the

symmetry of this partition, we get w2(xxx) = w2(yyy) if |d22(xxx)| = |d22(yyy)|. This also gives us that

A2
2 = B2

2 , so with A2
2 := B2

2/2, we get

w2(x1, x2) = A2
2 cosh

(
ρ2(x

2 − x1)
)

+
(x2 − x1)2

α2

+
8

α2
2

∀(x1, x2) ∈ W2. (3.12)

On A2, we know that player two pushes, so

w2(x1, x2) = w2(x1, x1 − z2∗) + c(x2, x1 − z2∗) ∀(x1, x2) ∈ E−2 ,

w2(x1, x2) = w2(x1, x1 + z2∗) + c(x2, x1 + z2∗) ∀(x1, x2) ∈ E+
2 ,

for some constant z2∗. As in the one dimensional case, z2∗ should be the optimal jump

distance, so

∂

∂z

[
w2
(
x1, x1 + z2∗

)
+ c
(
x1, x2 + z2∗

)]
= 0

ρ2A
2
2 sinh(ρ2z2∗) +

2

α2

z2∗ − k2 = 0.

Furthermore, using the smooth-pasting technique along x2 = x1 + y2∗, we get

w2(x1, x1 + y2∗−) = A2
2 cosh (ρ2y2∗) +

y22∗
α2

+
8

α2
2

= A2
2 cosh (ρ2z2∗) +

z22∗
α2

+
8

α2
2

+ c (y2∗, z2∗) = w2(x1, x1 + y2∗+)

∂

∂x2
wi(x1, x1 + y2∗−) = ρ2A

2
2 sinh(ρ2y2∗) +

2

α2

y2∗ = k2 =
∂

∂x2
w2(x1, x1 + y2∗+)
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Giving us the following system of equalities:

A2
2 =

c(y2∗, z2∗) +
z22∗−y22∗
α2

cosh(ρ2y2∗)− cosh(ρ2z2∗)
=

α2k2 − 2y2∗
α2ρ2 sinh(ρ2y2∗)

=
α2k2 − 2z2∗

α2ρ2 sinh(ρ2z2∗)
.

If we compare this to the system we found for the one-dimensional case

A =
c(y∗, z∗) + z2∗−y2∗

α

cosh(ρy∗)− cosh(ρz∗)
=

k2α− 2y∗
α · ρ sinh(ρy∗)

=
k2α− 2z∗

α · ρ sinh(ρz∗)
,

we can see that they are very similar and can be solved the same way. Unfortunately, as

with the one dimensional case, there is no simple analytic expression for A2
2, z2∗ and y2∗, but

�nding the solution numerically works nearly the same way as for the one dimensional case

(See Appendix Python-Code N-D). All put together we get

w2(x1, x2) =


w2(x1, x1 − z2∗) + c(x2, x1 − z2∗) (x1, x2) ∈ E−2 ,

A2
2 cosh (ρ2 · (x2 − x1)) + (x2−x1)2

α2
+ 8

α2
2

(x1, x2) ∈ W2,

w2(x1, x1 + z2∗) + c(x2, x1 + z2∗) (x1, x2) ∈ E+
2 .

(3.13)

With u2(x1, x2) = A2
2 cosh (

√
α · (x2 − x1)) + (x2−x1)2

4α
+ 1

2α2 , we can check as in the one

dimensional case that w2 ful�lls the conditions in the Veri�cation Theorem, meaning to �nd

a NE solution, all that's left is to �nd w1.
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As with w2, we know w1 on W is given by (3.11) and with A1
2 := B1

2/2 and the symmetry

we get

w1(x1, x2) = A1
2 cosh

(
ρ2(x

1 − x2)
)

+
(x1 − x2)2

α2

+
8

α2
2

∀(x1, x2) ∈ W . (3.14)

On A2 we know that player two pushes and from (3.5) we know that player one incurs no

cost from that push. So we should expect

w1(x1, x2) = w1(x1, x1 − z2∗) ∀(x1, x2) ∈ E−2 ,

w1(x1, x2) = w1(x1, x1 + z2∗) ∀(x1, x2) ∈ E+
2 .

Matching the values along x2 = x1 + y2∗, we get

w1(x1, x1 + y2∗−) = A1
2 cosh (ρ2y2∗) +

y22∗
α2

+
8

α2
2

= A1
2 cosh (ρ2z2∗) +

z22∗
α2

+
8

α2
2

= w1(x1, x1 + y2∗+)

Solving for A1
2 gives us the last missing variable:

A1
2 =

(z22∗ − y22∗) /α2

cosh(ρ2y2∗)− cosh(ρ2z2∗)
.

So the �nal expression for w1 is

w1(x1, x2) =


w1(x1, x1 − z2∗) (x1, x2) ∈ E−2 ,

A1
2 cosh (ρ2 · (x1 − x2)) + (x1−x2)2

α2
+ 8

α2
2

(x1, x2) ∈ W2,

w1(x1, x1 + z2∗) (x1, x2) ∈ E+
2 .

(3.15)
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Let's check if w1 satis�es the HJB equation (3.5).

Per construction only w1(x1, x2)−M1w1(x1, x2) ≤ 0 on W is left to check. Let q ∈ R, then

we need to check whether

w1(x1, x2)− w1(x1 + q, x2)− c(x1, x1 + q) ≤ 0.

Suppose (x1 + q, x2) ∈ E+
2 , then w

1(x1 + q, x2) = w1(x1 + q, x1 + q+z2∗). From the de�nition

of A1
2 and the symmetry of w1 around x1 = x2, we get

w1(x1 + q, x1 + q + z2∗) = w1(x1 + q, x1 + q + y2∗) = w1(x2 − y2∗, x2).

But since (x1 + q, x2) ∈ E+
2 , we also know that x1 + q < x2 − y2∗ ≤ x1, so

w1(x1, x2)−w1(x1 + q, x2)− c(x1, x1 + q) < w1(x1, x2)−w1(x2− y2∗, x2)− c(x1, x2− y2∗).

Using the same argument for (x1, x2) ∈ E−2 , we see that it is enough to check any q, s.t.

(x1 + q, x2) ∈ W . Then

w1(x1, x2)−w1(x1 + q, x2)− c(x1, x1 + q)

=

[
A1

2 cosh
(√

α · (x1 − x2)
)

+
(x1 − x2)2

4α
+

1

2α2

]
−
[
A1

2 cosh
(√

α · (x1 + q − x2)
)

+
(x1 + q − x2)2

4α
+

1

2α2
+ k1 + k2|q|

]
?

≤ 0

Let y = x1 − x2 and z = x1 + c− x2. Then, if |z| < |y| we get

A1
2

?

≤
k1 + k2|z − y|+ z2−y2

α2

cosh (ρ2y)− cosh (ρ2z)

This is true, since A1
2 < A2

2 and A2
2 is the minimum of the right expression (as in the one

dimensional case).
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Now suppose |z| > |y|. This case is more tricky to show and we actually have no analytic

proof yet, which will have to be done in a future work. For now, we veri�ed that the

inequality holds numerically and will assume its correctness from here on.

From here it is straightforward to check that w1 satis�es the Veri�cation Theorem, so we

have found a possible NE Solution. Let

ν1∗ := "Zero-control" , ν2∗ := (τ 2∗k , Y
2∗
k ),

τ 2∗0 := inf
{
t > 0 : |X2

t −X1
t | > y2∗

}
τ 2∗k := inf

{
t > τ 2∗k−1 : |X2

t −X1
t | > y∗

}
∀k ∈ N>

Y 2∗
k := sgn

(
(X2 −X1)τ∗n−

)
· z∗ − (X2 −X1)τ∗n− ∀k ∈ N≥

(3.16)

y∗

y∗
z∗
z∗

W

W A2

A2

x1

x2

Figure 7: Possible NE impulse control strategy for 2D

Theorem 3.5. Let ννν∗ = (ν1∗, ν2∗) de�ned as in (3.16), then ννν is a NE with values w1 and

w2 de�ned as in (3.13) and (3.15) respectively.

36



x2
x1

E−2E+
2

W W

w1(x1, x2)

w2(x1, x2)
α = 0.1
k1 = 10
k2 = 10

Figure 8: Sample plot of w1 and w2 - NE solutions

In the above �gure, we can see a sample plot of w1 and w2. The �gure in the next page

shows a cross-section of the above plot for (x1 = −x2) that shows what in�uence z2∗ and y2∗

have on the functions.

As we can see in both plots, w1 < w2 everywhere. This might seem unexpected at �rst, but

does make sense. Player one never has to push, so the total cost should be lower than for

player two for the same start position.
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x

w1(x,−x)

w2(x,−x)

α = 0.1
k1 = 10
k2 = 10

y2∗
2

z2∗
2

− z2∗
2

−y2∗
2

Figure 9: Cross section of w1 and w2 - NE solutions

Because of the symmetry in the two dimensional case, we actually have more than one

NE solution. One that we can immediately �nd, is if we �ip the roles of player one and

player two, so now player one always pushes and player two always idles. This solution also

corresponds to the partition Q1 = R2, Q2 = ∅.
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3.4 Outlook

Another partition that might be interesting to analyze in a future work is

Q1 =

{
(x1, x2) ∈ R2

∣∣∣∣ x1 > x2
}

Q2 =

{
(x1, x2) ∈ R2

∣∣∣∣ x1 ≤ x2
}

x1

x2

Q2

Q1

Figure 10: Partition of R2

This partition would result in both player one and player two doing pushes, with player

one to the right of x1 = x2− y2∗ and player one to the left of x2 = x1− y2∗. This also means

that we would loose the inherent symmetry the problem had until now, meaning the constant

Bi
2 and C

i
3 in (3.11) would most likely not be the same anymore. A possible cross-section of

the corresponding w1 and w2 functions could look as in Figure 11.
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w1(x,−x)w2(x,−x)

Figure 11: Possible shape of cross section of w1 and w2 for non-symmetric strategy

After �nishing with the two dimensional case, the next step is of course to get a general

NE solution for the N-player case. One thing that could cause problems there, compared to

before is that Ai ∩ Aj 6= ∅ in general, meaning the action-regions share borders. Matching

the di�erent functions along those borders could prove di�cult. Another thing to consider,

is that pushes from one player may cause another player to react. Consider the following

5-player situation. XXX0− = (−2
3
y5∗ − 0.1,−2

3
y5∗,

2
3
y5∗,

2
3
y5∗,

2
3
y5∗), then the distance of player

one to the others is:

d15(XXX0−) = −2

3
y5∗ − 0.1−

−2
3
y5∗ + 2

3
y5∗ + 2

3
y5∗ + 2

3
y5∗

4
= −y5∗ − 0.1 < −y5∗.

So player one has incentive to act and makes a push toward the center. But this causes

player two to slip out of the waiting region, resulting in a push from player two. This goes

against the assumption that actions of other players should not result in a disadvantage and

de�nitely warrants a closer look in a future work.
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Appendix Python-Code 1-D

1 import numpy as np

2 import s c ipy . opt imize as opt

3 import matp lo t l i b . pyplot as p l t

4

5 # se t as needed

6 k1 = 10 # > 0

7 k2 = 10 # > 0

8 alpha = 0 .1 # > 0

9

10 rho = np . sq r t (2* alpha )

11

12 de f A( z , y ) :

13 t ry :

14 re turn ( k1 + k2*np . abs (y=z ) + ( z **2 = y**2) / alpha ) /(np . cosh ( rho*y ) =

↪→ np . cosh ( rho*z ) )

15 except Overf lowError :

16 re turn np . i n f

17

18 de f f ( x ) :

19 re turn (2*x = k2* alpha ) /(np . s inh ( rho*x ) )

20

21 hat_x = opt . minimize_scalar ( lambda x : =f ( x ) ) . x

22 hat_t = f (hat_x )

23

24 de f inv_f ( t , left_of_hat_x=True ) :

25 # method : f i nd zero f o r f ( x ) = t

26 i f left_of_hat_x :

27 # we know i t has to c r o s s zero between 0 and hat_x

28 bounds = [ 0 , hat_x ]

29 e l s e :

30 # f ind the zero c r o s s i n g
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31 b1 , b2 = 0 , 10

32 whi le f ( hat_x + b2 ) >= t :

33 b1 = b2

34 b2 *= 2

35 bounds = [ hat_x + b1 , hat_x + b2 ]

36 re turn opt . brentq ( lambda x : f ( x ) = t , bounds [ 0 ] , bounds [ 1 ] )

37

38 de f P( t ) :

39 p_z = inv_f ( t , left_of_hat_x=True )

40 p_y = inv_f ( t , left_of_hat_x=False )

41

42 re turn (p_z , p_y)

43

44 de f hat_A( t ) :

45 z , y = P( t )

46 re turn A( z , y )

47

48 #pr in t r e s u l t

49 t_star = opt . minimize_scalar (hat_A , bounds=(0 , hat_t ) , method=' bounded ' ) . x

50 z_star , y_star = P( t_star )

51 pr in t ( f 'A = {hat_A( t_star ) } ; z* = {z_star } ; y*={y_star} ' )

52

53 #plo t r e s u l t

54 t s = np . arange (0 , 1 , 0 . 005 ) * hat_t

55 r e s = [ hat_A( t ) f o r t in t s ]

56 p l t . p l o t ( ts , res , '= ' , [ t_star ] , [A( z_star , y_star ) ] , ' ro ' )

57 p l t . show ( )
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Appendix Python-Code N-D

1 import numpy as np

2 import s c ipy . opt imize as opt

3 import matp lo t l i b . pyplot as p l t

4

5 # se t as needed

6 k1 = 10 # > 0

7 k2 = 10 # > 0

8 alpha = 0 .1 # > 0

9 N = 2 # > 1

10

11 rhoN = np . sq r t (2* alpha * (N=1)/N)

12 alphaN = ( alpha * N**2) /(N=1)**2

13

14 de f A( z , y ) :

15 t ry :

16 re turn ( k1 + k2*np . abs (y=z ) + ( z **2 = y**2) /alphaN ) /(np . cosh ( rhoN*y ) =

↪→ np . cosh ( rhoN*z ) )

17 except Overf lowError :

18 re turn np . i n f

19

20 de f f ( x ) :

21 re turn (2*x = k2*alphaN ) /(np . s inh ( rhoN*x ) )

22

23 hat_x = opt . minimize_scalar ( lambda x : =f ( x ) ) . x

24 hat_t = f (hat_x )

25

26 de f inv_f ( t , left_of_hat_x=True ) :

27 # method : f i nd zero f o r f ( x ) = t

28 i f left_of_hat_x :

29 # we know i t has to c r o s s zero between 0 and hat_x

30 bounds = [ 0 , hat_x ]
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31 e l s e :

32 # f ind the zero c r o s s i n g

33 b1 , b2 = 0 , 10

34 whi le f ( hat_x + b2 ) >= t :

35 b1 = b2

36 b2 *= 2

37 bounds = [ hat_x + b1 , hat_x + b2 ]

38 re turn opt . brentq ( lambda x : f ( x ) = t , bounds [ 0 ] , bounds [ 1 ] )

39

40 de f P( t ) :

41 p_z = inv_f ( t , left_of_hat_x=True )

42 p_y = inv_f ( t , left_of_hat_x=False )

43

44 re turn (p_z , p_y)

45

46 de f hat_A( t ) :

47 z , y = P( t )

48 re turn A( z , y )

49

50 #pr in t r e s u l t

51 t_star = opt . minimize_scalar (hat_A , bounds=(0 , hat_t ) , method=' bounded ' ) . x

52 z_star , y_star = P( t_star )

53 pr in t ( f 'A = {hat_A( t_star ) } ; z* = {z_star } ; y*={y_star} ' )

54

55 #plo t r e s u l t

56 t s = np . arange (0 , 1 , 0 . 005 ) * hat_t

57 r e s = [ hat_A( t ) f o r t in t s ]

58 p l t . p l o t ( ts , res , '= ' , [ t_star ] , [A( z_star , y_star ) ] , ' ro ' )

59 p l t . show ( )
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