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ABSTRACT 

 

DICTIONARY-BASED DATA GENERATION FOR FINE-TUNING BERT FOR 

ADVERBIAL PARAPHRASING TASKS 

 

by 

 

Mark Carthon III 

 

The University of Wisconsin-Milwaukee, 2020 

Under the supervision of Professor Istvan Lauko 

 

 

 Recent advances in natural language processing technology have led to the emergence of 

large and deep pre-trained neural networks. The use and focus of these networks are on transfer 

learning. More specifically, retraining or fine-tuning such pre-trained networks to achieve state 

of the art performance in a variety of challenging natural language processing/understanding 

(NLP/NLU) tasks. In this thesis, we focus on identifying paraphrases at the sentence level using 

the network Bidirectional Encoder Representations from Transformers (BERT).  It is well 

understood that in deep learning the volume and quality of training data is a determining factor 

of performance. The objective of this thesis is to develop a methodology for algorithmic 

generation of high-quality training data for paraphrasing task, an important NLU task, as well as 

the evaluation of the resulting training data on fine-tuning BERT to identify paraphrases. Here 

we will focus on elementary adverbial paraphrases, but the methodology extends to the general 

case. In this work, training data for adverbial paraphrasing was generated utilizing an Oxford 
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synonym dictionary, and we used the generated data to re-train BERT for the paraphrasing task 

with strong results, achieving a validation accuracy of 96.875%. 
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History of Natural Language 

Processing (NLP)   

  

The field of NLP comes from a field called Machine Translation (MT). Machine Translation is 

the study of how to algorithmically translate one language to another. One of the first people to 

work in Machine Translation was a Persian intellectual named Al-Kindi (circa 801 AD - 873 

AD). Al-Kindi was born in a city named Kufa but was educated in Bagdad. He was a prominent 

figure in the Grand Library of Bagdad. This was a public academy and the intellectual center of 

Bagdad during the Islamic Golden Age. Several Abbasid caliphs appointed Al-Kindi to oversee 

the translation of Greek scientific and philosophical texts into the Arabic language. Al-

Kindi developed various methods to do this. These methods relied on the frequency of the 

characters that were used in the texts. He developed techniques for 

systematic language translation including, but not limited to: cryptanalysis, frequency analysis, 

probability theory, and statistics, all of which are used in modern machine translation.   

 

In 1623, Rene Descartes (and others) proposed an artificial universal language; in this language, 

equivalent ideas in different languages would share the same symbol. Both Leibniz and 

Descartes put forward proposals for codes which would relate words between languages. Of 

course, all these proposals were purely theoretical, and none of them resulted in the development 

of an actual algorithm for language translation. During the mid-1930s when the first patents for 

”translating machines” were applied for, one proposal by Georges Antsrouni was simply an 
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automatic bilingual dictionary using paper tape. Paper tape was a form of data storage that 

consisted of a long strip of paper in which holes were punched. Paper tape was used mostly 

during the 19th and 20th centuries. They were effective with teleprinter communication as input 

for computers of the 1950s and 1960s, and later as a storage medium for minicomputers and 

CNC machine tools. Another proposal was made by Peter Troyanski, a Russian who included a 

bilingual dictionary, and a method for dealing with grammatical roles between languages based 

on Esperanto.   

  

Esperanto was the most widely spoken constructed international auxiliary language. It was 

created by a Polish ophthalmologist called Ludwik Lejzer Zamenhof in 1887. The purpose of 

this universal language Esperanto was to create a flexible language that would serve as a 

universal second language to foster world peace, international understanding, and to build a 

”community of speakers”. Peter Troyanski’s proposal was a system that was separated into three 

stages. The first stage consisted of a native-speaking editor in the source language to organize the 

words into their logical forms and to exercise the syntactic functions. A logical form of a 

syntactic expression is a precisely specified semantic version of that expression in some formal 

system. Think of this first stage as tokenization for BERT. The second stage 

of Troyanski’s proposal was for the machine (such a machine did not exist when this proposal 

was initially made) to translate these logical forms into the target language. Stage three required 

a native-speaking editor to normalize this output. This system did not become relevant on a big 

scale until the 1950s when computers became widely utilized.   
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In 1946, Andrew Donald Booth, a British electrical engineer, physicist, and computer scientist, 

proposed the idea of using digital computers for translation of natural languages. Warren Weaver 

was a researcher at the Rockefeller Foundation, and he presented one of the first set of computer-

based machine translation proposals in 1949; it was called ”Translation Memorandum”. Warren 

Weaver proposals came about thanks to advancements in information theory, successes in 

cryptography during World War II, and theories about invariants at the foundation of natural 

language. In 1950, a breakthrough was made by Alan Turing when he published his 

famous paper ”Computing Machinery and Intelligence” which proposed the ”Turing Test” as a 

criterion of intelligence. This criterion depends on the ability of a computer program to 

impersonate a human in a real-time written conversation with a human judge, sufficiently well 

that the judge is unable to reliably distinguish between the computer program and a real 

human on the basis of conversational content alone.   

  

In 1951, Yehosha Bar-Hillel began research in MT and later claimed that without a ”universal 

encyclopedia” a machine would never be able to deal with the problem of one word having 

multiple definitions because during this time, semantic ambiguity could only be solved by 

writing source texts for machine translation in a controlled language that uses a vocabulary in 

which each word has exactly one meaning. Also, in 1954, Georgetown University created an MT 

research team. On January 7, 1954 Georgetown and IBM teamed up to give a public 

demonstration of its Georgetown-IBM experiment system which involved fully automatic 

translation of more than 60 Russian sentences into English. This demonstration was widely 

reported in the newspapers and gained public interest. However, this feat was limited because it 

had only 250 words and translated 49 carefully selected Russian sentences into English. Most of 
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the words were related to the field of Chemistry. Despite its shortcomings, this demonstration 

encouraged others to put more resources into furthering MT on a worldwide scale.   

  

Andrew Donald Booth designed the All Purpose Electronic (X) Computer, APE(X)C, at 

Birkbeck College (now the University of London). In 1954 a demonstration was made on the 

APE(X)C of a rudimentary translation of English into French. In 1955, Japan and Russia began 

to develop their own MT research programs and in 1956 the first ever MT conference was held 

in London. In 1957, Noam Chomsky, an American linguist developed the idea of syntactic 

structures which was a work that sought to prove that semantics and syntax are two separate 

concepts. He did this by forming the sentence ”Colorless green ideas sleep furiously”, which 

shows that semantics and syntax really are different.   

  

In the 1960s, some NLP processing systems were developed, such as: SHRDLU which was a 

natural language system that worked in restricted ”block worlds” with restricted vocabularies. 

This block world was a breakthrough in Artificial Intelligence (AI) which made it easier for 

systems to model and reason about abstract symbols. Also, ELIZA was another NLP processing 

system which was a simulation of a psychotherapist. This was written by 

Joseph Weizenbaum who was a German American computer scientist from MIT. ELIZA was 

able to provide human-like interaction whenever the patient was saying things 

within ELIZA’s small database. This was quite remarkable considering that ELIZA was given no 

information about human thought or emotion.   
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During the 1960s, The United States and the Soviet Union did research in Russian - English 

translation of scientific journals and technical articles. This endeavor was successful in that the 

rough translations helped to give a basic understanding of the material. In 1962, the Association 

for Machine Translation and Computational Linguistics was formed in the U.S.A. and many 

researchers joined it. Research in MT continued until the US Government commissioned the 

Automatic Language Processing Advisory Committee (ALPAC) report. This committee was 

made up of seven scientists who decided that there was a lack of progress in the last ten years of 

MT research despite significant funds being allocated toward this research area. 

This ALPAC report concluded that MT was more expensive, less accurate, and slower than a 

human translator. This report also concluded that MT was unlikely to make very much progress 

towards human-level translation. Consequently, MT funding was greatly reduced.   

 

There was a beacon of hope though because this ALPAC report recommended that tools (i.e. 

automatic dictionaries) be developed to aid human translators and that some research in 

computational linguistics should continue to receive funding and support. Because of this report, 

MT research was practically abandoned for over a decade. This had a ripple effect as the Soviet 

Union and the United Kingdom decided to cut back on their MT research efforts as well. 

However, Canada, France, and Germany continued to research in MT. In 1969, Roger Schank, 

an American A.I. theorist, introduced the conceptual dependency theory for NLU; this model 

was partially inspired by the work of Sydney Lamb, an American linguist. The biggest efforts in 

MT in the US, during the period after the ALPAC, was given by Systran and Logos; these 

companies did MT work for the US Department of Defense.   
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In 1970, the Systran system was installed for the Us Air Force, it was used by the Commission of 

the European Communities in 1976, and Xerox used Systran to translate technical manuals in 

1978. Also, in 1970, William A. Woods developed the augmented transition network (ATN) 

to represent natural language input. These ATNs were graph-theoretic structures that are used in 

formal languages. Instead of phrase structure rules, ATNs used an equivalent set of recursively 

called finite state automata. Eventually, these ATNs were generalized into so-called 

’generalized ATNs”.  

 

In 1970, The French Textile Institute used MT to translate abstracts between French, English, 

German, and Spanish. In 1971, Brigham Young University (BYU) started a project to translate 

Mormon texts automatically. During the 1970s, it was common for computer programmers to 

write ’conceptual ontologies’, which structured real-world information into data that was of such 

a form that a computer would be able to understand what it was. Some examples of this is: 

MARGIE (Schank, 1975), SAM (Cullingford, 1978), and many more. In the 1960s, MT research 

concentrated on limited language pairs and input, but in the 1970s, the concentration was on low-

cost systems that could translate technical and commercial documents. Up to the 1908s, most 

NLP systems were based on complex sets of handwritten rules.   

  

By the 1980s, both the diversity and the number of installed systems for machine translation had 

increased. Several systems that relied on mainframe technology were in use (i.e. Systran and 

Logos). Systran’s first implementation system was implemented in 1988 by the French Postal 

Service’s online service called Mintel. There was a market for lower-end machine translation 

systems because of the much-improved availability of microcomputers. Thus, microcomputers 
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became more common in Europe, Japan, USA, China, Korea, and the Soviet Union. Japan had 

a fifth-generation computer and tried to create software for translating between English and 

many other Asian languages.   

 

During the 1980s, translation relied on intermediary linguistic representation such as: syntactic, 

morphological, and semantic analysis. In the late 1980s, computational power increased in line 

with Moore’s Law and the fact that researchers were relying on Chomskyan theories less 

because its theory discouraged the kind of  corpus linguistics that is at the foundation of the 

machine learning approach to language processing. As a result, computational power also 

became less expensive. Also, more research and attention was allocated towards statistical 

models for machine translation. Some of the earliest used machine learning algorithms (i.e. 

decision trees) produced systems with difficult if-then rules to resolve and maintain which 

were similar to existing hand-written rules, but the statistical models made soft, probabilistic 

decisions based on attaching real-valued weights to the features of the input data.   

    

In the 1990s, MT began to move away from large mainframe computers and towards personal 

computers and workstations. Recent research has focused more on unsupervised and semi-

supervised learning algorithms. These algorithms learn from data that has not been annotated or 

a combination of non-annotated and annotated data with the desired answers given and with the 

creation of the World Wide Web, lots of non-annotated data is available. In the 2010s, 

representation learning and deep neural network machine learning methods became widespread 

in NLP. These methods have been shown to produce state-of-the-art results in many NLP tasks 

such as: language modeling, parsing, etc. Many state-of-the-art techniques use word embeddings 
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to capture semantic properties of words and an increase in end-to-end learning of higher-

level tasks.   
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Applications of NLP   

  

Natural Language Processing (NLP) is a sub-topic of Artificial Intelligence and its purpose is to 

train computers to understand, interpret, read, hear, and communicate using human (natural) 

languages. Neural networks have long been associated with NLP research, but their use has 

become increasingly practical, widespread, and dominant in applications in both image and 

language processing from the early 2000s. In 1997, a variety of neural network architectures 

such as Long Short-Term Memory (LSTM) Recurrent Neural Network (RNN) models were 

introduced and found great success with NLP tasks, voice and text recognition, and text and 

speech generation. RNN  are iterative models used in sequence to sequence translation, 

use previous outputs as inputs for future iterations of the algorithm. In 2001, Yoshio Bengio and 

his team proposed the first neural language model using a feed-forward neural network (FFNN). 

The big difference between RNNs and FFNNs are that RNNs use previous outputs in an iterative 

fashion as future input, but the simpler architecture FFNNs do not, the data is feed forward, an 

output is produced, then the new input is fed forward and so on.   

  

In 2011, Apple released Siri which became known as the world’s first successful NLP assistant 

to be used by the public. The Automated Speech Recognition module in Siri can translate the 

user’s words into digitally interpreted tokens/concepts. Siri has predefined commands within its 

software and uses the tokens it receives from the user’s speech and matches it up with one or 

more of its predefined commands. Then it carries out the said commands. Machine Learning 

techniques are necessary because NLP engines need to recognize a command even if the 
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command is not expressed using the exact sequence of tokens that the engine has been 

programmed with; it has to allow for some freedom of expression while still capturing the main 

idea of the user’s words and matching it to the predefined set of commands.   

  

In November 2014, Amazon announced Alexa alongside Echo. The inspiration for Alexa stems 

came from the computer voice and conversational system on the Starship Enterprise in Sci-fi 

works such as Star Trek. One of the reasons the Amazon developers chose the name Alexa is 

because x is a hard consonant; hard consonants are recognized with higher precision than other 

types of letters. The Amazon developers also liked the name Alexa because it was reminiscent of 

the Library of Alexandria, which is where the field of MT began (the precursor to NLP).   

  

Google Assistant was unveiled during Google’s developer conference on May 18, 2016. It was 

part of the unveiling of the Google Home smart speaker and a new messaging app called Allo. 

Google’s CEO claimed that Google Assistant was designed to be a conversational experience, a 

two-way experience, and ”an ambient experience that extends across devices”.   
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Motivation for Data Generation   

 

The goal of this thesis is to investigate the facilitation of the training of large neural networks to 

learn and understand (i.e.: develop the capacity to identify and differentiate) grammatical 

structure and extended vocabulary, including a wide range of idiomatic language use in the 

English language. More specifically, we would aim to re-train a Bidirectional Encoder 

Representations from Transformers (BERT) neural network to enhance its capacity to understand 

the language well enough to be able to identify paraphrases for a large variety of sentences. The 

task of computational paraphrase identification, a high-level artificial intelligence task in the 

language understanding domain (NLU), is to evaluate whether the two sentences in a sentence 

pair are semantically equivalent.   

  

BERT is constructed as a large and deep neural network with novel network structures (attention 

mechanism) to be able to encode longer range morphological  and semantic relations within a 

text. It has several variants in terms of network size as well as training language data used, but in 

all variants it has over 100 million “learnable “ network parameters to be adjusted in an 

optimization process. BERT has been trained in a supervised training fashion on two tasks for 

which generations of annotated data is easy to produce: Masked Language Modeling and Next 

Sentence Prediction, and it has been demonstrated that the network has a strong capacity to be 

trained of fine-tuned to produce state of the art performance in a wide range of NLP tasks 

(transfer learning).  
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To either train from scratch or to retrain/fine tune for close to human performance on a complex 

task such large pre-trained networks in a supervised training regime, extensive amount of labeled 

training data is needed. For strong performance of the targeted trained network in a  general NLP 

setting the training data deployed need to represent a rich variety of the targeted language use. 

Training such large systems is expected to require millions of annotated training samples that 

show a representative distribution of the targeted language use. Such richness in the training data 

would be key to improve the performance of state-of-the-art systems in automated language 

processing and language understanding, but currently for most tasks it is not available in the 

necessary volume and quality.   

  

Development of the needed training data sets with the current methods (i.e.: based on hand-

labeling by humans) are prohibitively expensive: it would require hundreds of thousands of 

expert human workhours or possibly substantially more. Thus, current industry standard data sets 

for training and evaluation for several NLP tasks are relatively small. For instance the General 

Language Understanding Evaluation (GLUE) benchmark’s MRPC component to evaluate a 

network’s capacity to train/perform for the task of paraphrasing is relatively small (on the order 

of 5000 sentences) and it is also restricted to a limited a (journalistic) language domain. One of 

the objectives in this thesis is to explore a method to generate a large  annotated training dataset 

for fine tuning a trained network in a supervised learning setting for the task of paraphrase 

identification, i.e. to decide if two sentences are semantically identical, or correspond to each 

other as paraphrases.   
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We base our paraphrase sample generation method on content extracted from an extensive 

synonym dictionary: The Oxford Thesaurus, An A-Z Dictionary of Synonyms, Oxford 

University Press (1994) (OTAZ). This dictionary puts a focus on compiling complete synonymic 

word and expression sets with an emphasis on representing rarer word and expressions uses, 

associated with semantic content of synonym sets. That information is very hard for networks to 

learn from corpus (even from billion-word corpora) due to very low frequency use even in very 

large text collections (corpus). However, some common synonyms may have been omitted from 

the collection to limit the volume of the original publication. We expect that the most common 

synonymic uses are well-represented in the training data that was originally used for training 

BERT; thus, they are already represented in the models we aim to fine-tune.  

  

Another attractive option as a source for the adverbial, adjective, noun and verbal synonym sets 

could be WordNet database, however WordNet does not contain rarer part of speech sets (such 

as Interjections, Conjunctions,...) of words and expressions and is more limited in the number of 

example sentences listed to illustrate semantic function. Additionally, to its polysemous 

synonymic organization of its headwords, OTAZ provides additional stylistic and usage 

information on the synonym sets and importantly a rich set of example sentences (1-4 example 

sentences per synonym sets) using the headword/expression of each synonym set entry. The idea 

of sentence pair generation using lexicographical resources for enhanced training of neural 

language networks for classification of sentence pairs relies on substitution of synonymic words 

and expressions into example sentences from thesauruses, synonym dictionaries and similar  

lexicographical resources.   
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In OTAZ fundamentally such a substitution task poses challenges of varying complexities 

depending on the part of speech categories the synonym sets belong to. The difficulties are 

ranging from the simple, (e.g.: for the case of adverbial synonym sets with very little to 

no morphological variation induced with substitution), to the sophisticated in the case of 

synonymic verbal expressions that are required to be adjusted in number, tense and attracted 

noun cases during a substitution step to provide correct sentence pairs. In this work, for 

simplicity, we limit our investigation for generation and training use of adverbial synonym sets 

only. There was not a substantial amount of data online for download, so we had to create our 

own training data. We used text data from the Oxford synonym dictionary cited above.   

  

In the format of this dictionary assigned to a given word or expression heading was its part-of-

speech,  a list of synonyms or synonymic expressions, and one or more (up to four) example 

sentences. Using regular expression as our editing tool, the data for adverbial synonyms was 

converted to a text file with each example sentence on a separate line paired with its head 

expression’s synonymic set -. Then we used regular expressions to organize the text, and to 

generate alternate matching sentence paraphrases by substitution of the marked expression 

heading with its synonymic alternatives. This provided on average about 10 paraphrase 

alternatives for each example sentence. As network training would require a balanced set of 

negative as well as positive examples, we also produced non-matching paraphrases from each 

example sentence, by associating it with a synonym set that were not matching the marked 

(head) expression in the example and performing the substitutions indicated above. 
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The substitution steps were performed with an iterative application of a complex regular 

expressions; the matching and replacement steps are as outlined below. These test processing 

methods are computationally highly efficient. After substitution we formed all possible sentence 

pairing in both paraphrase and non-paraphrase sentence matchings and attached an appropriate 

label to each resulting sentence pair (1 for paraphrase and 0 for non-paraphrase pairs). 

 

This procedure generated approximately 45000 paraphrase pairs and with a similar amount of 

non-paraphrase pairs we obtained a set of close to 90000 tagged training sentence pairs. These 

pairs were generated from the approximately 1000 adverbial synonym set and example sentence 

combinations that are found in OTAZ. We emphasize that these samples are produced varying 

adverbial expressions only. This paraphrase dataset is rich enough to finetune large pretrained 

neural networks (e.g. BERT) for the recognition of adverbial paraphrasing.  

 

In the generation process, we used a set of special characters to delineate the structure of the text 

database that we formulated from OTAZ. After completing the substitution, pairing steps, and 

eliminating the auxiliary characters from the results, we obtained our training data. This dataset 

is structured as a pair of sentences with a binary label to indicate whether the sentences are 

paraphrases of each other; this dataset was in a tab-separated format. This text document was 

loaded with the base BERT network model to perform fine-tuning. 
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Regular Expressions 

 

Regular expressions are powerful text pattern recognition codes/software tools that can be very 

efficiently implemented by programs (so-called Regex engines) based on the theory of finite 

automata. A regular expression is an algebraic formula whose value is a pattern identifying of a 

set of strings that are matched by the expression, called the language of the expression. Regular 

expression engines are a built-in part of most programming languages as well as more advanced 

text editors and are essential components of software that performs text mining and high volumes 

of sophisticated text processing. 

 

 A regular expression defines a character sequence search pattern. Usually such patterns are used 

by string searching algorithms for ”find” or ”find and replace” operations on strings, or for input 

validation. It originated in the 1950s and a mathematician from the U.S., Stephen Cole Keene, is 

given credit for creating it. Here are some basic components that are use in regular expressions:   

 

Normal text or character sequences: 

 

abc matches the string abc; Note: regex (language) special characters ()[]*^${}.?\- need to 

be escaped, i.e. preceded by the character “\”, in a regular expression to be matched within a 

normal text 

 

Anchors : ^ and $ 
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^ matches the beginning of a line (a zero-length string at the beginning of a line) 

$          matches the end of a line (a zero-length string at the end of a line) 

 

Repetition Quantifiers : * + ? and {} 

 

* zero or more times: abc*        matches a string that has ab followed by zero or more c 

+ one or more times: abc+        matches a string that has ab followed by one or more c 

? zero or one times: abc?        matches a string that has ab followed by zero or one c 

{n} n times:  abc{2}    matches a string that has ab followed by 2  

{n} n or more times: cabc{2,}  matches a string that has ab followed by 2 or more c 

{n,m} n to m times:  abc{2,5}  matches a string that has ab followed by 2 up to 5 c 

(text)  grouping/capturing:  a(bc)*      matches a string that has a followed by zero or more 

copies of the sequence bc and captures the sequence bc 

 

OR operator: | or [] 

 

a(b|c)    alternate expressions: matches a string that has a followed by b or c (and captures b or c)  

a[bc]      alternate characters: same as previous, but without capturing b or c 

a[^bc]    character exclusion: matches a string that has a followed one character that is not b or c  

 

Character classes: \d \w \s and . 

 

\d         matches a single character that is a digit; same as [0-9] 
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\w         matches a word character (alphanumeric character plus underscore); same as [a-z0-9_] 

\s         matches a whitespace character (includes tabs and line breaks); same as [\t\r\n ] 

.          matches any (one) character 

   

For example, if you have a text document and you want to search for a word character followed 

by a digit one or more times, you will use the regexp: \w\d+.  We used regular expressions to 

”clean up” the text documents that we wanted to use for training. We deleted all unnecessary and 

undesirable characters in the text, we rearranged words in the text, and we created 

multiple examples sentences from the given example sentence using regular expressions. Regexp 

made this task easier because it allowed us to make complex edits on very large text documents 

without having to manually go through single lines. We were able to check that everything 

worked in the desired way by changing a few lines at a time, first, then once we were confident 

that we tested and verified the correctness a specific edit, we would change the entire document. 

 

While editing large text files with regular expressions it is imperative that one is very familiar 

with the document and to follow best practices. Our original data to be edited is well-structured 

text database organized on a line per record basis and special characters are used to delimit fields 

within each line, thus it is well-suited for editing using Regex.    

  

A snippet of the reformulated lexicographical database obtained from OT is represented below. 

The database  stored in a text file is line based with Unicode character sets. Here D, @, &, %, # 

and ∼ represent specially selected,  special separator Unicode characters not appearing in the 

text-based data of our  database which are used as special markers. Each paragraph in the 
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representation below, headed by a lead expression and ending with one or more example 

sentences, shows an adverbial synonym set and its use. To a single lead expression there may be 

associated several alternative use sense or synonym set. Each paragraph below is in fact a (long) 

line in the database ending in a newline character. This representation allows us to use regular 

expressions for complex data generation very efficiently.   

 

Below are several lines of the reformulated data from the OTAZ with special characters used as 

markers: 

 

Đabove+♥adv.♦1*╕above, overhead, on_high, aloft, in_the_sky, 

in_the_heavens, <Tab>: Far aboveΣ, the clouds scudded swiftly 

by.♪ 

 

Đabroad+♥adv.♦1*╕abroad, overseas, in_foreign_lands, 

in_foreign_parts, <Tab>: We were abroadΣ on assignment for a few 

years.♪ 

 

Đabsolutely+♥adv.♦1*╕absolutely, unqualifiedly, unconditionally, 

unreservedly, unexceptionally, unequivocally, unquestionably, 

positively, definitely, really, genuinely, decidedly, surely, 

truly, certainly, categorically, <Tab>: She is absolutelyΣ the 

best dancer I have ever seen.♪ 
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Đabsolutely+♥adv.♦1*╕absolutely, unqualifiedly, unconditionally, 

unreservedly, unexceptionally, unequivocally, unquestionably, 

positively, definitely, really, genuinely, decidedly, surely, 

truly, certainly, categorically, <Tab>∷ I absolutelyΣ refuse to 

go.♪ 

 

Đabsolutely+♥adv.♦2*╕absolutely, totally, utterly, completely, 

entirely, fully, quite, altogether, wholly, <Tab>: It is 

absolutelyΣ necessary that you undergo surgery.♪ 

 

Đaccordingly+♥adv.♦1*╕accordingly, hence, therefore, 

consequently, thus, in_consequence_of, in_consequence_whereof, 

so, and_so, <Tab>: Smoking was forbidden; accordinglyΣ, we put 

out our cigars.♪ 

 

Đaccordingly+♥adv.♦2*╕accordingly, suitably, in_conformity, 

in_compliance,÷ conformably, appropriately, compliantly, <Tab>: 

Dinner-jackets were required, and the men dressed accordinglyΣ.♪ 

 

Đactually+♥adv.♦1*╕actually, really, in_reality, in_fact, 

in_actuality, in_point_of_fact, in_truth, absolutely, 

as_a_matter_of_fact, indeed, truly, literally, <Tab>: The 

interest rates actuallyΣ charged by banks may vary from those 

quoted publicly.♪ 
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In later discussion, we will refer to the replacement procedure based on the following entry as an 

example; the delineating characters are shown in blue: 

Đabout+♥adv.♦4* ╕about, here_and_there, far_and_wide, hither_and_

yon, hither_and_thither, helter-skelter, <Tab>: My papers were 

scattered aboutΣ as if a tornado had struck.♪  
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Structure of Transformer 

Networks   
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The BERT network is a type of Transformer network. A Transformer network is a large neural 

network that has both encoders and decoders (BERT only has encoders) and was introduced in 

2017 by Vaswani et al. in the well-known paper titled ”Attention is All You Need”.  

Transformer networks are designed to efficiently identify association patterns between distant 

terms in sequences and are designed to be trained for sentence translation and other NLP tasks. 

The  input could be a French sentence, for example, and the Transformer based on a large set of 

training examples that is usually referred as a corpus,  would be trained to translate the French 

sentence into English, and then output the English translation. The architecture of the 

Transformers is  composed of a stack of encoders and a stack of decoder network components. 

The encoders basically take the French sentence and transform it into the language of 

the network , and then the last encoder feeds this information into the stack of decoders. The 

decoders take the information from the last encoder and they turn the information from the 

language internal to the network into the desired language output for the user (which is the  

corresponding English language sentence in this example). The underlying network architecture 

in a distributed fashion  (i.e. assigned to each artificial neuron) contains a very large set of 

parameters (numbering in the millions for large and deep state-of-the-art networks) that are 

identified in a large-scale optimization exercise, called training,  based on available training 

examples. This  demanding computation exercise requires highly parallelized hardware 

architectures such as GPUs or TPUs. 

  

Encoders in a Transformer can turn the input into language the model understands via a 

technique called word embeddings. These word embeddings are the process that the network 

takes to take a given word and turn it into a vector of a certain size. When using the Transformer 
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network, the word embeddings all have the same size. These vectors contain the word and some 

of its meaning. For example, the word ’King’ and the word ’Queen’ each have their own vector 

from the word embeddings. If you take the vector for King and subtract the vector for Queen, the 

difference will be a vector that is ”small” in magnitude. These word embeddings are possible 

after a network has been trained. So, the encoders use word embeddings to gather the necessary 

information from the input.   

  

Each of the encoders has a structure to it. In each encoder, there is a Self-Attention mechanism 

and a feed-forward network. The self-attention mechanism was invented in the paper 

”Attention is All You Need”. The goal of 11 attention is to help the network to understand the 

connection that each of the words have with each other. For example, in the sentence: The dog 

took a bone a buried it in the ground. What does the word ’it’ refer to in this sentence? Someone 

who is fluent in English would know that the word ’it’ would refer to the bone. The goal of 

attention is to help the network to understand that the word it refers to the 

bone. Therefore, attention is so important; for the network to properly understand the sentences, 

it must understand how each word in a sentence relates to all the other words.  

  

How does the self-attention work? Self-attention requires a few things: word embeddings, 

queries, keys, and values.  For each word embedding, a query, key, and value vector is created 

for it. Once a network has been trained, the network will have a weight matrix 𝑊𝑄 for the 

queries, a weight matrix for the keys 𝑊𝐾, and a weight matrix 𝑊𝑉 for the values. Each word 

embedding vector is multiplied by each of the weight matrices. This would produce a query 

vector 𝑞𝑖, a key vector 𝑘𝑖, and a value vector 𝑣𝑖 corresponding to the word embedding 𝑥𝑖. Next 
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you take 𝑞𝑖 ∏ 𝑘𝑖𝑖 . Then you do 
𝑞1𝑘1

+√𝑑𝑖𝑚(𝑘)
 and take the “SoftMax” of it. This SoftMax normalizes 

the constant so that it is between 0 and 1 (a probability). Then you take each value vector times 

the SoftMax score, then take the sum of all of them. This will give you a weighted sum of all the 

value vectors. This calculation is very similar for matrices. Here it is:   

𝑋 × 𝑊𝑄 = 𝑄 

𝑋 × 𝑊𝐾 = 𝐾 

𝑋 × 𝑊𝑉 = 𝑉 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄 × 𝐾𝑇

+√𝑑𝑘

) × 𝑉 = 𝑍 

In this calculation, 𝑋 is the input, 𝑄 is the query, 𝐾 is the key, 𝑉 is the value, 𝑍 is the 

output/head.   

  

There is also the notion of multi-headed attention. This notion helped the network’s attention 

layer to improve its performance. With multi-headed attention, the network produces multiple 

attention heads or multiple 𝑍 matrices. In this process we have multiple 𝑄/𝑉/𝐾 matrices. In the 

Transformer model, we have 8 attention heads. This will give us  

𝑍0, 𝑍1, … , 𝑍7. 

 Since the model only expects one attention head, we concatenate all the Z’s together to get Z 

then multiply Z by another weight matrix W which was trained by the model to give us a Z of the 

desired dimensions. Why would multi-head attention be useful? Consider the sentence, 

”Dave bought a phone, but didn’t know how to operate it.” What is the word ”it” referring to? Of 

course, we humans are fluent enough in language to know that the word ”it” refers to the phone, 

but the model is not as fluent in language as we are. The multi-head attention aids the network to 



26 

 

learn that the word ”it” refers to the phone. As we all know, the order of words in a sentence is 

important. The network has a way of understanding the position of each token in a sentence by 

using a ”positional encoding” that it learns through training. There are some residuals in the 

encoders. What happens is that the input X is fed into the encoder, self-attention is performed, 

the result of the self-attention Z is taken then the network computes X + Z, normalizes it, then 

feeds it into the feed-forward part of the encoder. The result of the feed-forward part of the 

encoder 𝑍′ is added to Z and normalized. Then this result 𝑍′′ is fed into the next encoder and the 

process repeats. Once our original input has made its way through all the encoders, it proceeds to 

the decoder.   

  

The structure of the decoder is as follows: The output of the encoder is fed into the decoder. 

The decoder takes this through self-attention, adds and normalizes, then does an encoder-decoder 

attention, then adds and normalizes, then goes through the feed-forward, then adds and 

normalizes, then repeats this process as it gets pushed into the next decoder. Once the original 

output of the encoder layers gets pushed through all the decoders, it goes through a linear layer, 

then gets its SoftMax score. This linear layer is what takes the vector that the decoders spit out 

and turns it into one of the tokens in its dictionary. It does this by projecting the output vector 

from the decoders into a logits vector whose length is the number of words in the given language 

that it knows. The SoftMax is used to help the network decide which of the words is the most 

probable.   

BERT, a transformer neural network is the product of several NLP advancements, such as, Semi-

Supervised Sequence Learning, ELMo, ULMFiT, the OpenAI transformer, and the Transformer. 

It is a transformer that only has encoders and no decoders.  
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Figure 2: BERT architecture 

BERT has been pre-trained on massive datasets, such as, all of Wikipedia and many books. 

BERT is mostly used for sentence classification and sentiment classification. As an example, we 

can see BERT used for spam classification outlined in Figure 3. 

 

Figure 3: BERT performing spam classification 

BERT takes a sentence as input, performs a word-embedding technique on all of the tokens, 

feeds these tokens through its encoders (see Figure 2), then sends it through a classifier to output 

a classification based on the probability of the input being spam or not spam. 
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In addition to spam classification, BERT can also do fact-checking at a high level. The 

tokenization process for BERT means that it takes words or parts of words that it recognizes 

from its training and turns them into word-embeddings. A word embedding is a vectorized text 

encoding, i.e. when a token is turned into a relatively high-dimensional vector representation. 

Usually, a word embedding is a vector of size 300 for a given token; a token is usually a word, 

but a token could also be one part of a word, or a hyphenated set of words, etc. These word 

embedding vectors have been developed internally by BERT itself for the purpose of identifying 

words (or pairs of words) that can be assembled to represent words from its dictionary. This 

word-embedding process allows it to perform vector/matrix calculations for the test data 

mentioned previously in this chapter. BERT’s input, along with word/token embedding also 

represents the token’s position within the text as well as representations of sentences; this 

concept is relevant for multi-sentence tasks. Our paraphrase classification problem relies on this 

multi-sentence tokenization. 

 

 

Figure 4: BERT input representation 
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The input is compressed into a sequence of vectors. These vectors enter the network at its first 

parametrized layer of encoders. The encoders process these vectors in a series of highly 

parallelizable numerical linear algebra steps within the layer. Then this result is fed into a second 

layer of an identically structured parametrized layer. This process is repeated several times (12 

times in the base BERT network). This leads to progressive information processing by the 

network. The output of the last layer is typically processed by a FFNN component that is trained 

to assign probabilities to the token positions. These probabilities measure the likeliness that a 

given token in the input belongs to a defined ranged of output classes. This process is well-suited 

for sequence translation, Named Entity labeling, and Named Entity Recognition (NER).  

 

In classification tasks, the last encoder produces a special token called the [CLS] token or 

classification token. This token is fed into a simple FFNN component that is trained to assign 

probabilities to the input tokens. These probabilities measure the likeliness of a given input token 

belonging to a defined range of output classes. 

 

The training of such a network is a (large) optimization exercise. The aim of this exercise is to 

identify a set of network parameters that maximize the network’s performance. The network 

wants to maximize its performance in classifying the training data while ensuring that it has the 

capacity to generalize to examples it has not seen before. In other words, the network wants to 

maximize its classification performance on the data it has seen without overfitting. If this is 

achieved, then BERT has been shown to perform very well in classification tasks. 
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Data Generation 

  

The goal of this project was to train a BERT network to be able to recognize when a pair of 

sentences that contained alternatives of adverbial words or expressions were paraphrases of each 

other. The first task was to create data for a BERT Transformer, as outlined above. This data 

needed to be example sentence pairs such that a sentence pair would be labelled with a 1 if the 

sentences presented were a paraphrase of one another. If one has a sentence pair such that neither 

sentence is a paraphrase of the other, this pair is labelled with 0. In other words, the goal is to 

create a large number of sentence pairings  of substantial linguistic variety as data to train a 

neural network to learn to recognize paraphrases. 

  

Such data is not readily available in the required quality and quantity and is very expensive to be 

produces by  humans. The Oxford synonym dictionary (OT) references earlier  contains heading 

words or expressions, synonyms to those headings, and example sentences using those words. 

An example of a line given in the dictionary is as follows:   

 

about adv.: about, here and there, far and wide, hither and yon, hither and thither, helter-skelter: 

My papers were scattered about as if a tornado had struck.  

  

The presentation of every word in this synonym dictionary follows this basic structure. This 

looked like a promising source for data. As such, this entire dictionary was scanned and entered 
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in a text editor for cleaning. Various special characters were inserted to make the cleaning and 

generation process easier. For instance, the above example was changed to:  

  

Đabout+♥adv.♦4* ╕about, here_and_there, far_and_wide, hither_and_yon, hither_and_thither, h

elter-skelter, : My papers were scattered aboutΣ as if a tornado had struck.♪  

  

As you can see, the Đ marks the beginning of a new word, the + marks the end of the word, 

the ♥ marks the beginning of the part of speech, the ♦ marks the end of the part of speech, the 

number four denotes how many times this has been used (because many words have multiple 

meanings and each word that is in the dictionary has a separate synonym sequence for each 

different meaning it has), the * marks the end of the number, the ╕marks the beginning of the 

first synonym. Multiword expressions have underscores to separate each word (replace spaces 

within the expression), although some terms are separated by hyphens, for example, helter-

skelter. Each synonym is followed by a comma, even if it is the last synonym in the list. Each 

example sentence follows a colon and ends with a punctuation mark and a character ♪ (musical 

note). A tab always separates the synonyms and the first example sentence. These characters 

make it easier to do regular expressions on the text because many of the symbols used are rarely 

seen in dictionaries and thus, are unlikely to clash with anything in the text originally. If ! was 

used instead of one of the special characters, there would have been a higher probability of error 

with the regular expressions because ! is a more commonly used character in dictionaries.  

  

After the dictionary has been cleaned up and organized by the special characters, sample 

sentences are created. For this, a regular expression search pattern was created:   
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^([^\n╕\t]+ )╕([^\n╕:÷\t,]+)([,\t]÷* *)([^\n╕:\t]+)(\t:+)([^\n:]* )([^\n:]+Σ+)([^\n]+)♪([^\n]*)\n  

 

along with the following regular expression replacement pattern:  

 

\1\2\3╕\4\5\6\7\8♪\9\5\6\2τ\8\n  

  

The following explains the search pattern:   

^ means to start at the beginning of the line.  

The captured expression ([^\n╕\t]+ ) means that the aim is to collect everything that is not an end 

of line, nor a ╕, nor a tab if it occurs one or more times. This unit is referenced by \1 that appears 

in the replacement pattern.   

  

╕([^\n╕:÷\t,]+) means that a ╕will be matched preceding the regexp in the parenthesis, which is 

referenced by 2 in the replacement pattern.  \2,  matches everything after ╕ that is not an end of 

line, nor a ╕, nor a :, nor a ÷, nor a tab, nor a comma if it occurs one or more times. This pattern 

captures the first synonym in the list, while \1 captures everything up until the ╕.   

  

([,\t]÷* *) is denoted by \3 and it collects everything until the next comma or tab, whichever 

occurs first. In this instance, \3 captures the next synonym in the list.   

  

([^\n╕:\t]+) means \4 will  matches everything after the second synonym that is not an end of 

line, nor a ╕, nor a :, nor a tab if it occurs one or more times. In other words, \4 will  match 

everything after the second synonym up until the tab preceding the example sentence.  
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(\t:+) means \5 will collect the tab and colon that occurs one or more times, then stop preceding 

the example sentence.  

  

([^\n:]* ) means \6 will collect everything that is not an end of line, nor a colon if it occurs zero 

or more times. It will stop immediately before the original synonym including the whitespace 

preceding the first character of the original synonym. In other words, \6 collects everything in the 

example sentence preceding the first character of the “keyword”.  

  

([^\n:]+Σ+) means \7 will collect the keyword, which conveniently has a sigma at the end of it. 

Since it is possible for some keywords to have more than one sigma, Σ+ is used to 

collect sigmas if it occurs one or more times. It is important that Σ marks the keyword only in the 

original example sentence.   

  

([^\n]+) means \8 will collect everything after the “keyword” but stops before the character ♪. In 

other words, \8 collects the rest of the example sentence.   

  

♪([^\n]*)\n indicates the search pattern that locates the character ♪, which marks the end of the 

example sentence. \9 collects everything after the character ♪ that is not an end of line (\9 is most 

likely empty), and \n finds the end of the line.  

  

The replacement pattern is as follows: \1\2\3╕\4\5\6\7\8♪\9\5\6\2τ\8\n  
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This means that everything up to the first synonym is the same, but the ╕ gets moved to the 

position after the next synonym. Everything then continues as aforesaid until the original end of 

line is reached. It is here that the new example sentence is placed. The example 

sentence remains the same, except that the initial keyword is substituted for the next keyword in 

the list of synonyms that had the ╕ after it in the previous iteration. \n then creates the end of 

line. One should continue to apply this search and replacement pattern until it can no longer be 

matched. After it matches no more, each synonym in the list should be in its own example 

sentence. Then, the number of example sentences on each line is equal to the number of 

synonyms on each line plus one since the original example sentence is copied.   

  

It is important to note that τ marks the keyword in each example sentence after the original 

example sentence. Also, for ease of application, the original example sentence is copied by the 

regexp. Thus, it appears twice on each line where the keyword in the copy is denoted by a τ, 

while the Σ denotes the same keyword in the original example sentence. Moreover, each example 

sentence is separated by a tab, followed by a colon, followed by a whitespace.   

  

The first letter in any sentence should be capitalized. In order to assume this is the case, the 

following search pattern can be achieved by the matching pattern (\t:+ )([a-z]), (as the example 

sentences in each row are preceded by a Tab character followed by a series of semicolons and a 

space) along with this replacement pattern: \1\U\2\E  

  

Above, (\t:+ ) means that \1  will collect a tab followed by a colon that occurs one or more times. 

([a-z]) means that \2 will collect the first letter of a sentence only if it is lowercase. If the first 
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letter of a sentence is not lowercase, then this search pattern will not match, so there is no risk of 

corrupting sentences that are already correct. It is important to note that this is functional only 

because each example sentence is separated by one or more tabs and one or more colons. As 

such, this is effectual for each example sentence on every line.  

  

The replacement pattern \1\U\2\E means that the one or more tabs remain in place in front of 

each example sentence. If ([a-z]) finds a match, then \U\2 converts it to uppercase (hence, the 

capital U). \E ends the uppercase replacement mode.   

  

At this point, the sentences have been created and rendered grammatically correct (excluding the 

special characters). It is now time to create the sentence pairs that are required as data for the 

BERT Transformer. A nested for-loop is used for this task. The algorithm is broken up into four 

steps.   

  

Step #1. Search pattern: ♪, and the replacement pattern is: ♪♫. The point of step one is to use 

the character ♫ to separate the two sentences that will be paired.   

  

Step #2. Search pattern is as follows:   

(╕ \t:+ )([^\n\t]+♪)([^\n]*)(♫)(\t)([^\n\t]+)(\t)([^\n]*\n)   

  

The component parts will now be addressed.  

  



36 

 

(╕ \t:+ ) means that \1 will search for the ╕, which is in between the last synonym and the first 

example sentence, since all the synonyms have been used for sentence generation in the first 

regex algorithm. \1 collects the ╕, the whitespace, the one or more tabs followed by the one or 

more colons, followed by a whitespace.  

  

([^\n\t]+♪) means that \2 will start after the colon in \1 and collect everything that is not an end of 

line, nor a tab, one or more times, then it will collect the character ♪. In other words, \2 will 

collect the first example sentence on the line in addition to the character ♪.  

  

([^\n]*) means that \3 will collect everything in between the character ♪ in \2 and 

the character ♫ in \4, although it is very likely that \3 will be empty on most lines.  

  

(♫) as \4 is self-explanatory. (\t), which is \5 is also self-explanatory and is the tab in between the 

first two example sentences.   

  

([^\n\t]+) means that \6 will search for and collect anything after the tab that is not an end of line, 

nor a tab, in that order, one or more times. This, in practice, is the second example sentence on 

the line.  

  

(\t) as \7 is the tab between the second and third example sentence.  

  

([^\n]*\n) means that \8 collects everything else after the tab at the end of the second example 

sentence. This may include other example sentences.   
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The replacement pattern for step #2 is \1\2\3\5\6\4\7\8\2\6\n  

  

The replacement pattern will take the first example sentence, a tab, then the second example 

sentence, then the character ♫, then the tab, then all other example sentences, then the first and 

second example sentence, then the end of the line. In other words, the pairing of the first and 

second example sentences is pushed to after the last example sentence and our sentence pairing 

marker, character ♫, is pushed in between the second and third example sentences. The purpose 

of this is that the second and third example sentences can be paired and pushed to the end in the 

second iteration of this nested for-loop.  

  

Step #3: search for character ♫ and replace it with whitespace because it needs to be available to 

separate the second and third sentences in the next iteration.  

  

For step #4, the search pattern is as follows: (╕ )(\t)(:+ [^\n\t]+)(♪)(\t)([^\n\t]+)(\t)   

The replacement pattern is as follows: \2\3\1\5\6\4\7  

  

(╕ ) means that \1 searches for the ╕ followed by a whitespace, which can be found where it 

remained after the previous synonym.  

  

(\t) means that \2 searches for the tab before the first example sentence.  
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(:+ [^\n\t]+) means that \3 searches for and collects the one or more colons before the first 

example sentence, the whitespace, then everything that is not an end of line, nor a tab, one or 

more times.  

\4 is the character ♪ that separates the first and second example sentences.  

 

\5 is the tab before the second example sentence.  

  

([^\n\t]+) means that \6 will take the second example sentence.   

(\t) is \7, which takes the tab after the second example sentence.   

The replacement pattern is the following: \2\3\1\5\6\4\7   

This takes the tab before the first example sentence, then the first example sentence, then 

the ╕ to mark the beginning of the sentence pair for the next iteration, then the tab, then the 

second example sentence, then the ta ♪ to separate the second example sentence from the third 

example sentence. This creates a separation for the next pair of sentences in the next iteration, 

then the tab is inserted to separate the second example sentence from the third example 

sentence.   

 Repeat steps 1-4 until the search pattern finds no matches. This will create sentence pairs at the 

end of the example sentences that were created. Once this is completed, one can create a new 

text document with only the sentence pairs: one pair per line. Then, create the labels based on 

whether both sentences in each pair come from the same line in the original text document that 

was just created. If both sentences come from the same line, label that pair with a one. 

Otherwise, label that pair with a zero. Once this is completed, and all auxiliary characters have 
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been removed, the outcome is annotated training data for training data for fine-tuning the BERT 

Transformer for the task of paraphrase identification. 

 

As the training data was generated from dictionary entries of exclusively adverbial expressions, 

the retrained network is expected to be able to identify adverbial paraphrases only, however, in 

this task, it is expected to perform well, since the training data contains a relatively large set of 

examples with a very thorough coverage of adverbial phrase usage. 
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 Implementation of Training  

  

We trained BERT in Google CoLab. Google CoLab is a free cloud service that allows one to 

write and execute Python code in your browser with free access to GPUs and popular libraries 

such as Keras, TensorFlow, PyTorch, OpenCV. It is great for machine learning, data analysis, 

and education. CoLab is a hosted Jupyter notebook service that requires no setup to use. The 

resources for CoLab are not guaranteed and limited, and the usage limits sometimes fluctuate, 

but the usage limits can be extended and more dependable with a ColabPro subscription. 

 

The code can be found in the appendix, and it has been adopted from code on the GitHub site 

(https://github.com/naveenjafer/BERT_Amazon_Reviews). It uses the Pytorch package and 

Hugging Face’s popular Transformer Library to provide a solution to fine-tuning the BERT base 

model applied for a one sentence binary classification problem. We changed the code so that we 

could use it for solving a two-sentence binary classification problem. We can consider our 

paraphrasing problem as such a classification exercise. It was run in the Google CoLab 

environment which allowed us to access GPU compute facilities remotely for free.  

 

We split our training data into 80% used for training and the remaining 20% for validation. This 

gave us 72210 training samples and 18053 validation samples. We had a max length of 100 

units, our Batch Size was 64, and we used 2 epochs to retrain. It is recommended that one uses 2 

or 3 epochs for finetuning in Reference number 7. We used the Negative Log Likelihood Loss 

https://github.com/naveenjafer/BERT_Amazon_Reviews
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Function and the Adam optimization. The training loop did 1129 iterations for each epoch and 10 

validation iterations after each epoch. After the first epoch, the training accuracy was over 98% 

and the validation accuracy was over 96%. After the second and final epoch, the training 

accuracy was 100% and the validation accuracy was over 97%. The program ran for 22 minutes 

total.  

Since this thesis only addressed sentence pairs with adverbial expressions, in the future, I would 

love to apply this methodology of generating annotated paraphrasing sentence pairs with other 

parts of speech, such as, adjectives, nouns, and verbal expressions. Approximately 2.5 million 

sentences can be generated for other parts of speech by following the methodology outlined 

above. This data can be used for thorough retraining. Some of the objectives that can be achieved 

with such data are alternate uses of words and expressions in natural (human) language. This 

dataset is expected to boost the performance of Transformer-based networks in NLU. In general, 

dictionary annotations and style can also be exploited; transfer learning methods will make 

identification more efficient and will increase performance in differentiating stylistic language 

(formal, colloquial, slang, etc.)  
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APPENDIX: 

Python Code for Implementation 

The code below was implemented in Google CoLab because it allowed us to use a high-power 

machine remotely for free. Here is the code: 

! pip install pandas 

! pip install torch 

! pip install transformers 

 

from google.colab import drive 

drive.mount('/content/drive') 

projectFolder = "./drive/My Drive/Bert/" 

 

import pandas as pd 

import torch 

import torch.nn as nn 

from transformers import  BertModel, BertTokenizer 

from torch.utils.data import DataLoader 

import torch.optim as optim 

import os 

from torch.utils.data import Dataset 

 

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 

 

def read_and_shuffle(file): 

    df = pd.read_csv(file, delimiter='\t') 

    # Random shuffle. 

    df.sample(frac=1) 

    return df 
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def get_train_and_val_split(df, splitRatio=0.8): 

    train=df.sample(frac=splitRatio,random_state=200) 

    val=df.drop(train.index) 

    print("Number of Training Samples: ", len(train)) 

    print("Number of Validation Samples: ", len(val)) 

    return(train, val) 

 

def get_max_length(reviews): 

    return len(max(reviews, key=len)) 

 

def get_accuracy(logits, labels): 

    # get the index of the max value in the row. 

    predictedClass = logits.max(dim = 1)[1] 

 

    # get accuracy by averaging over entire batch. 

    acc = (predictedClass == labels).float().mean() 

    return acc 

 

def trainFunc(net, loss_func, opti, train_loader, test_loader, config): 

    best_acc = 0 

    for ep in range(config["epochs"]): 

        for it, (seq, attn_masks, labels) in enumerate(train_loader): 

            opti.zero_grad() 

            #seq, attn_masks, labels = seq.cuda(args.gpu), 

attn_masks.cuda(args.gpu), labels.cuda(args.gpu) 

            seq, attn_masks, labels = seq.to(device), attn_masks.to(device), 

labels.to(device) 

 

            logits = net(seq, attn_masks) 

            loss = loss_func(m(logits), labels) 

 

            loss.backward() 

            opti.step() 
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            print("Iteration: ", it+1) 

 

            if (it + 1) % config["printEvery"] == 0: 

                acc = get_accuracy(m(logits), labels) 

                if not os.path.exists(config["outputFolder"]): 

                    os.makedirs(config["outputFolder"]) 

 

                # Since a single epoch could take well over hours, we 

regularly save the model even during evaluation of training accuracy. 

                torch.save(net.state_dict(), os.path.join(projectFolder, 

config["outputFolder"], config["outputFileName"])) 

                print("Iteration {} of epoch {} complete. Loss : {} Accuracy 

: {}".format(it+1, ep+1, loss.item(), acc)) 

                print("Saving at", os.path.join(projectFolder, 

config["outputFolder"], config["outputFileName"])) 

 

        # perform validation at the end of an epoch. 

        val_acc, val_loss = evaluate(net, loss_func, val_loader, config) 

        print(" Validation Accuracy : {}, Validation Loss : 

{}".format(val_acc, val_loss)) 

        if val_acc > best_acc: 

            print("Best validation accuracy improved from {} to {}, saving 

model...".format(best_acc, val_acc)) 

            best_acc = val_acc 

            torch.save(net.state_dict(), os.path.join(projectFolder, 

config["outputFolder"], config["outputFileName"] + "_valTested_" + 

str(best_acc))) 

 

def evaluate(net, loss_func, dataloaderq, config): 

    net.eval() 

 

    mean_acc, mean_loss = 0, 0 

    count = 0 

 

    with torch.no_grad(): 
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        for seq, attn_masks, labels in dataloaderq: 

            #seq, attn_masks, labels = seq.cuda(args.gpu), 

attn_masks.cuda(args.gpu), labels.cuda(args.gpu) 

            seq, attn_masks, labels = seq.to(device), attn_masks.to(device), 

labels.to(device) 

 

            logits = net(seq, attn_masks) 

            mean_loss += loss_func(m(logits), labels) 

            mean_acc += get_accuracy(m(logits), labels) 

            print("Validation iteration", count+1) 

            count += 1 

 

            ''' 

            The entire validation set was around 0.1 million entries, 

            the validationFraction param controls what fraction of the 

shuffled 

            validation set you want to validate the results on. 

            ''' 

            if count > config["validationFraction"] * len(val_set): 

                break 

    return mean_acc / count, mean_loss / count 

 

config = { 

    "splitRatio" : 0.8, 

    "maxLength" : 100, 

    "printEvery" : 100, 

    "outputFolder" : "Models", 

    "outputFileName" : "ParaphraseClassifier.dat", 

    "threads" : 4, 

    "batchSize" : 64, 

    "validationFraction" : 0.0005, 

    "epochs" : 2, 

    "forceCPU" : False 
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    } 

if config["forceCPU"]: 

    device = torch.device("cpu") 

 

config["device"] = device 

 

class SentimentClassifier(nn.Module): 

    def __init__(self, num_classes, device, freeze_bert = True): 

        super(SentimentClassifier, self).__init__() 

        self.bert_layer = BertModel.from_pretrained('bert-base-uncased') 

        self.device = device 

 

        if freeze_bert: 

            for p in self.bert_layer.parameters(): 

                p.requires_grad = False 

 

        self.cls_layer = nn.Linear(768, num_classes) 

 

    def forward(self, seq, attn_masks): 

        ''' 

        Inputs: 

            -seq : Tensor of shape [B, T] containing token ids of sequences 

            -attn_masks : Tensor of shape [B, T] containing attention masks 

to be used to avoid contibution of PAD tokens 

        ''' 

 

        #Feeding the input to BERT model to obtain contextualized 

representations 

        cont_reps, _ = self.bert_layer(seq, attention_mask = attn_masks) 

 

        #Obtaining the representation of [CLS] head 

        cls_rep = cont_reps[:, 0] 
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        #Feeding cls_rep to the classifier layer 

        logits = self.cls_layer(cls_rep) 

 

        return logits.to(self.device) 

 

from torch.utils.data import Dataset 

from transformers import BertTokenizer 

import torch 

 

class AmazonReviewsDataset(Dataset): 

    def __init__(self, df, maxlen): 

        self.df = df 

        # A reset reindexes from 1 to len(df), the shuffled df frames are 

sparse. 

        self.df.reset_index(drop=True, inplace=True) 

        self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') 

        self.maxlen = maxlen 

 

    def __len__(self): 

        return(len(self.df)) 

 

    def __getitem__(self, index): 

        sent1 = self.df.loc[index, 'Sentence1'] 

        sent2 = self.df.loc[index, 'Sentence2'] 

 

        # Classes start from 0. 

        label = int(self.df.loc[index, 'Score']) 

 

        # Use BERT tokenizer since it needs to be able to match the tokens to 

the pre trained words. 

        token1 = self.tokenizer.tokenize(sent1) 

        token2 = self.tokenizer.tokenize(sent2) 
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        # BERT inputs typically start with a '[CLS]' tag and end with a 

'[SEP]' tag. For 

        tokens = ['[CLS]'] + token1 + ['[SEP]'] + token2 + ['[SEP]'] 

 

        if len(tokens) < self.maxlen: 

            # Add the ['PAD'] token 

            tokens = tokens + ['[PAD]' for item in range(self.maxlen-

len(tokens))] 

        else: 

            # Truncate the tokens at maxLen - 1 and add a '[SEP]' tag. 

            tokens = tokens[:self.maxlen-1] + ['[SEP]'] 

 

        # BERT tokenizer converts the string tokens to their respective IDs. 

        token_ids = self.tokenizer.convert_tokens_to_ids(tokens) 

 

        # Converting to pytorch tensors. 

        tokens_ids_tensor = torch.tensor(token_ids) 

 

        # Masks place a 1 if token != PAD else a 0. 

        attn_mask = (tokens_ids_tensor != 0).long() 

 

        return tokens_ids_tensor, attn_mask, label 

 

print('Loading BERT tokenizer...') 

tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', 

do_lower_case=True) 

 

print("Configuration is: ", config) 

# Read and shuffle input data. 

df = read_and_shuffle(os.path.join(projectFolder, "PARAPHRASE-

DATASET/datap.csv")) 

 

df 

 



50 

 

num_classes = df['Score'].nunique() 

print("Number of Target Output Classes:", num_classes) 

totalDatasetSize = len(df) 

 

# Group by the column Score. This helps you get distribution of the Review 

Scores. 

symbols = df.groupby('Score') 

 

scores_dist = [] 

for i in range(num_classes): 

    scores_dist.append(len(symbols.groups[i])/totalDatasetSize) 

 

train, val = get_train_and_val_split(df, config["splitRatio"]) 

 

val.to_csv(os.path.join(projectFolder, "PARAPHRASE-DATASET/Validations.csv")) 

train.to_csv(os.path.join(projectFolder, "PARAPHRASE-DATASET/Train.csv")) 

 

# You can set the length to the true max length from the dataset, I have 

reduced it for the sake of memory and quicker training. 

#T = get_max_length(reviews) 

T = config["maxLength"] 

 

train_set = AmazonReviewsDataset(train, T) 

val_set = AmazonReviewsDataset(val, T) 

 

train_loader = DataLoader(train_set, batch_size = config["batchSize"], 

num_workers = config["threads"]) 

val_loader = DataLoader(val_set, batch_size = config["batchSize"], 

num_workers = config["threads"]) 

 

# We are unfreezing the BERT layers so as to be able to fine tune and save a 

new BERT model that is specific to the Sizeable food reviews dataset. 

 

net = SentimentClassifier(num_classes, config["device"], freeze_bert=False) 
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net.to(config["device"]) 

weights = torch.tensor(scores_dist).to(config["device"]) 

 

# Setting the Loss function and Optimizer. 

loss_func = nn.NLLLoss(weight=weights) 

opti = optim.Adam(net.parameters(), lr = 2e-5) 

m = nn.LogSoftmax(dim=1) 

 

torch.cuda.set_device(0) 

trainFunc(net, loss_func, opti, train_loader, val_loader, config) 
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