
University of Wisconsin Milwaukee University of Wisconsin Milwaukee 

UWM Digital Commons UWM Digital Commons 

Theses and Dissertations 

December 2020 

The Design and Validation of a Discrete-Event Simulator for The Design and Validation of a Discrete-Event Simulator for 

Carbohydrate Metabolism in Humans Carbohydrate Metabolism in Humans 

Husam Ghazaleh 
University of Wisconsin-Milwaukee 

Follow this and additional works at: https://dc.uwm.edu/etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Ghazaleh, Husam, "The Design and Validation of a Discrete-Event Simulator for Carbohydrate Metabolism 
in Humans" (2020). Theses and Dissertations. 2505. 
https://dc.uwm.edu/etd/2505 

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more 
information, please contact open-access@uwm.edu. 

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2505&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F2505&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2505?utm_source=dc.uwm.edu%2Fetd%2F2505&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


THE DESIGN AND VALIDATION OF A DISCRETE-EVENT

SIMULATOR FOR CARBOHYDRATE METABOLISM IN

HUMANS

by

Husam Ghazaleh

A Dissertation Submitted in
Partial Fulfillment of the

Requirements for the degree of

Doctor of Philosophy
in Engineering

at
The University of Wisconsin-Milwaukee

Fall 2020



ABSTRACT

THE DESIGN AND VALIDATION OF A DISCRETE-EVENT
SIMULATOR FOR CARBOHYDRATE METABOLISM IN

HUMANS

by

Husam Ghazaleh

The University of Wisconsin-Milwaukee, 2020

Under the Supervision of Professor Mukul Goyal, Ph.D.

CarbMetSim is a discrete event simulator that tracks the changes of blood glucose

level of a human subject after a timed series of diet and exercises activities. CarbMetSim

implements wider aspects of carbohydrate metabolism in individuals to capture the average

effect of various diet/exercise routines on the blood glucose level of diabetic patients. The

simulator is implemented in an object-oriented paradigm, where key organs are represented

as classes in the CarbMetSim. Key organs (stomach, intestine, portal vein, liver, kidney,

muscles, adipose tissue, brain and heart) are implemented to the extent necessary to simulate

their impact on the production and consumption of glucose. Metabolic pathways (glucose

oxidation, glycolysis and gluconeogenesis) have been taken in account in the operation of

various organs. In accordance with published research, the impact of insulin and insulin

resistance on the operation of various organs/pathways is captured. CarbMetSim offers

broad versatility to configure the insulin production ability, the average flux along various

metabolic pathways and the impact of insulin resistance on different aspects of carbohydrate

metabolism. However, the CarbMetSim project has not yet been finished. There are many
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aspects and metabolic pathways that have not been implemented or have been implemented

in a simple manner. Also, additional validation is required before the simulator can be

considered ready for use by people with Diabetes.
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Chapter 1

Introduction

Diabetes mellitus, also called diabetes, is a group of diseases that affect how the human

body regulates the blood sugar (glucose) level and is mainly related to abnormally high

glucose levels in the blood. Understanding the role of one of the key hormones (insulin)

in the human body that regulates blood glucose will help us understand the underlying

causes for developing the disease. In general, the human body uses food to produce the

energy needed for daily activities and cells’ chemical reactions. The energy is formed by

breaking down the consumed food or drink into simple sugar forms called glucose. Glucose

is transported through the bloodstream to the body’s cells by the insulin hormone to be

utilized as a fuel source for different cell’s chemical reactions and metabolism processes.

The insulin hormone is produced by the beta cells in the pancreas, and it is the primary

transporter of glucose to the body’s cells. It binds to the insulin receptors on the body’s cells,

signaling them to absorb glucose from the bloodstream. Usually low insulin levels circulate

constantly throughout the body when the Blood Glucose Level (BGL) is low. However, when

the BGL increases due to meal ingestion, for example, insulin levels spike to return BGL

to the normal level and restore the body to the normoglycemia status (the presence of a

normal concentration of BGL). Besides, insulin signals the liver to absorb glucose and store

it as glycogen in the liver’s cells. If the amount of glycogen exceeds the limit, glucose will be

converted into fatty acids, transferred to other parts of the body, and stored as fat in tissues.

On the other hand, the Glucagon hormone produced by the alpha cells in the pancreas

regulates BGL when it is low by signaling the liver to convert the stored glycogen back to
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glucose, which in turn will raise BGL and return the body status to the normoglycemia.

Knowing the basic relationship between the insulin hormone and BGL helps us to cite

formal definitions of the disease here. In this literature, I am referencing two definitions of

the disease that have been stated by two prestigious diabetes research institutes in the USA.

The American Diabetes Association [6] defines Diabetes as “ a group of metabolic diseases

characterized by hyperglycemia (high BGL) resulting from defects in insulin secretion, insulin

action or both ”. Moreover, the Diabetes Research Institute foundation [36] states that it is

a serious condition that occurs when the body cannot make or effectively use its own insulin.

Diabetic people are classified into two different types[36][34][6]: type I and type II. In the

type I group, the pancreas cannot produce insulin at all, or it just produces very little of it.

This occurs because the beta cells of the pancreas are attacked and damaged by the immune

system. Type I diabetic patients are insulin dependent, and they must take insulin dosages

as part of their treatment. Insulin dosages can be taken by injection with a needle or with an

insulin pump. People with type I usually develop the disease at a young age. Therefore, it is

less common than the other type (type II), and accounts for only 5–10%[34]of those who have

diabetes. On the other hand, in the type II diabetes group, the body’s cells resist insulin

signals and do not absorb glucose from the bloodstream (can’t effectively use it). Also, in

some cases the pancreas cannot produce sufficient amounts of the insulin hormone. Usually

type II diabetes is developed due to lifestyle issues, such as obesity and lack of exercises.

Treatments require following healthy lifestyle changes, taking medications if needed, and

others. Diabetes type II can be developed due to genetic issues as well. It is the most

common type, and it accounts for 90–95% [34] of those who have diabetes.

The World Health Organization (WHO) published a global study [84] reporting that

the number of diabetic patients worldwide has increased from 108 million in 1980 to 422

million in 2014. Also, [21] noted that the commonness of the disease among adults over

2



18 years old has risen from 4.7% in 1980 to 8.5% in 2014. Unfortunately, the data also

shows that around two-thirds of all diabetes cases occur in middle and low-income countries

[6]. On the other hand, in the U.S there are 30.3 million people who have diabetes (9.4%

of the U.S. population)[82][33], this includes adults aged 18 years or older and people who

were not aware of it or did not report having diabetes (7.2 million or 23.8% of people with

diabetes)[33]. The global financial cost of diabetes is significant and will increase by 2030 [14].

The annual cost of diabetes (including the cost of treatment) was calculated in international

dollars by [117], and it was estimated at 825 billion dollars per year, with the highest cost

to individual countries being in China ($170 billion), the USA ($105 billion), and India ($73

billion). These calculations do not include workdays lost due to the disease, which would

significantly increase the costs if incorporated, as the author claimed.

A diabetic patient may develop serious health complications if his\her BGL is not con-

trolled appropriately. These health complications are specific and varied. The level of the

complications and difficulties depends on the patient’s lifestyle and his\her awareness of

diabetes-associated health issues. In general, the following health problems may occur for

a diabetic patient who does not follow a healthy lifestyle or control his\her BGL: neuropa-

thy, nephropathy, retinopathy, cardiovascular disease, stroke, and Peripheral Artery Disease

(PAD)[86]. Moreover, diabetic patients with uncontrolled BGL may develop hyperglycemia

(high BGL) that causes chronic damage such as retinopathy and kidney failure [105]. Also,

diabetic patients (specifically type I) may suffer hypoglycemia episodes. The hypoglycemia

episode happens when BGL is much lower than the normal levels. It usually occurs as a side

effect of the blood glucose lowering medications. Hypoglycemia may lead to brain damage,

coma, and, eventually, death [105][104].

To avoid these health complications, the patient needs to regularly see his\her endocri-

nologist, take medicines (if required), and control non-clinical parameters that significantly
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affect and help maintain healthy BGL (glycemic control). Firm glycemic control is widely

proven in preventing or reducing many diabetes health complications.[80][41][42] [95][109][65].

For instance, muscles absorb glucose from the blood when the human body is engaged in

physical exercises, even in the absence of insulin. These exercises may cause hypoglycemia if

it is not carefully coordinated with food and medication intake. Following a healthy lifestyle

that includes a healthy diet and exercising regularly must be coordinated with daily BGL

monitoring to help maintain BGL as close as possible to the normal ranges over time.

To observe BGL daily, Continuous Glucose Monitoring (CGM) portable sensors [62] have

been developed. These devices help the diabetic patient track his\her BGL continuously and

automatically throughout the day. These devices can help control BGL. But either they are

expensive or they are not easily available to a large population of diabetic patients world-

wide. Diabetic patients will benefit from having an available and free tool that will help

them decide how they should plan their food and exercise activities to keep their BGL

under control. Indeed, they need help in realizing the impact of a particular sequence of

food and exercise activities on their BGL. One solution is to build a simulation tool that

reasonably predicts the impact of diet and exercise activities on patient’s BGL using the vast

knowledge of energy metabolism in human beings. A few similar simulators exist [64][72]

but are designed toward predicting the impact of individual meals and are not available in

a manner that can be freely used by individuals.

In this thesis, a CarbMetSim [48] (the Carbohydrate Metabolism Simulator) is de-

scribed. CarbMetSim is an open-source [47] simulation software that predicts minute by

minute BGL in response to an arbitrary length sequence of food and exercise activities. The

proposed simulator is freely available and it is based on discrete event model, in contrast to

existing simulation tools that are classifed as continuous time models that use differential

and algebraic equations to describe physiological detail. In CarbMetSim, the time increments
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in ticks, where each tick is one minute long. At the start of each tick, CarbMetSim fires the

food/exercise events that need to be fired at the time and involves various simulated body

organs to perform the work that is supposed to be happening during this tick.

CarbMetSim implements wider aspects of carbohydrate metabolism in individuals to

capture the average effect of various diet/exercise routines on the BGL of diabetic patients.

The simulator implements the following key organs: stomach, intestine, portal vein, liver,

kidney, muscles, adipose tissue, brain and heart. The organs have been implemented to the

extent necessary to simulate their impact on the production and consumption of glucose.

Moreover, the following metabolic pathways have been taken in account in CarbMetSim:

glucose oxidation, glycolysis and gluconeogenesis. These pathways are simulated in the op-

eration of various organs. In accordance with published research, the impact of insulin and

insulin resistance on the operation of various organs/pathways is captured. CarbMetSim

offers broad versatility to configure the insulin production ability, the average flux along

various metabolic pathways and the impact of insulin resistance on different aspects of car-

bohydrate metabolism. Thus the simulator can be customized to a given individual by using

appropriate values to various configurable parameters.

However, the CarbMetSim project has not yet been finished. There are many aspects

and metabolic pathways that have not been implemented or have been implemented in

a simple manner. For instance, the protein and lipid metabolism are implemented in a

simplified manner. CarbMetSim doesn’t take the monosaccharides (other than glucose) into

consideration and assumes that after digestion all the dietary carbohydrates become glucose.

Moreover, the impact of insulin is captured in a simplified manner and does not model other

important hormones such as glucagon. The impact of short-term externally injected insulin

is not yet modeled, and it is currently possible to simulate just aerobic exercise. Finally, the

simulator cannot yet translate a user’s diet/exercise/BGL data into the values of simulation
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parameters governing the behavior of different organs.
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Chapter 2

Modeling carbohydrate metabolism in humans—A

literature review

Oviedo’s paper [85] provides a dense review of most of the significant BGL prediction

models and the models that predict hypo\hyperglycemia episodes for type I diabetic patients.

The paper only covered the models that have been published between 2010 and spring 2016,

due to the massive numbers of the published models in the glycemic control. BGL prediction

models were classified into four different groups: physiological models group, data-driven

models group, hybrid models group, and control-oriented prediction models group.

Physiological models are mathematical models that simulate all or some of the physiolog-

ical processes of glucose consumptions (glucose metabolism) and the corresponding insulin

actions that depend entirely on the current levels of glucose in the blood stream. Generally,

these models consist of compartmental sub-models such as an insulin absorption sub-model

and a carbohydrate digestion sub-model that simulate all the events that directly affect BGL.

The common inputs for these sub-models are carbohydrate intake, insulin therapy, physical

activities, and stress. Building these models requires a solid physiological knowledge of all

the related processes of glucose metabolic process. This knowledge is needed to simulate

these metabolic processes and to identify all the physiological parameters that are required

to describe the model accurately. Consequently, physiological models are classified based

on the complexity into two main subgroups: minimal and maximal models. The minimal

models simulate the vital physiological processes of glucose metabolism and insulin action

by using limited number of mathematical equations and parameters. On the other hand,
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the maximal models or the comprehensive models use the available knowledge to simulate

all the physiological processes of the glucose metabolism and insulin action by using a full

and complex set of equations and parameters. The Dall Man Model [24] , The Hovirka [51],

and Bergman minimal model [10] are the most popular used physiological models for BGL

predictions.

Data-driven models are less complicated than physiological models. These do not sim-

ulate the physiological processes of glucose metabolism, but they employ different artificial

techniques on the collected patient’s daily activities to predict future BGL level. The main

goal of these models is to simulate how food intake, exercises, and insulin therapy affect BGL.

However, simple mathematical equations are used to identify a few parameters to simulate

the glucose kinetics and insulin action. There is no single dominantly used artificial method

in this group due to the massive number of existing machine learning techniques and the

ability of mixing these techniques to achieve more accurate predictions.

Hybrid models combine the physiological models and the data-driven models in predicting

BGL and hypo\hyperglycemic episodes. The physiological models used here usually are the

meal models and insulin models. The Dalla Man meal model, the Lehmann model, and the

Deutsch model [68] are the most popular models used to model meal and glucose absorption.

However, Berger’s model and the Dalla Man model are the most used models in considering

insulin as an input. Data-driven models are used to draw the relationship between the user’s

activities and the outputs (future BGL). User activities are the carbohydrates intake and

insulin dosage. All the surveyed models in this group used carbohydrate as a main input,

while 78.5% of the surveyed papers use insulin as a secondary input [85].

The control oriented prediction models group includes all the models that are imple-

mented in controllers such as Artificial Pancreases (AP) and belong to one of the previous

groups. The majority of these models belong to the data-driven group, while the few others
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belong to the physiological group and the hybrid group.

2.1 Knowledge-driven Models

The physiological models or the knowledge-driven models are mathematical models that

are based on human physiology. Indeed, these models are a set of differential and algebraic

equations, and they represent different factors as different compartmental models that affect

each other [19]. For instance, the models in [13][2][40] are linear models that replicate the

BGL and the insulin level in the blood, and they show that the rate of their presence and

absence were linearly proportional to their corresponding levels in the blood. On the other

hand, [18] proposed a non-linear model that considered additional hormones besides insulin

hormone as glucagon. Moreover, [35] proposed a model that composed six compartment

model, one each for BGL, liver glycogen, muscle glycogen, plasma insulin, plasma glucagon

and free fatty acids in plasma. The addition or removal from each compartment occurred

in a non-linear fashion. Other distinguished non-linear multi-compartment models were the

models developed by [17], [55],[22], and [20]. The models are more complex and cover many

physiological details. An overview of the several knowledge-based models are presented in

[103]. This section covers some of the later models.

Bergman et al. introduced a model [10][11] that quantifies the sensitiviy of an individual’s

beta cells to the his\her BGL and the sensitivity of the individual’s BGL to the insulin level

in his\her bloodstream. The proposed model was a minimally complex mathematical model

that is able to capture the individual differences in the two sensitivities mentioned above.

However, the model has been modified by Furler et al [38]. Furler et al. allowed for the

absence of insulin production by the pancreas and external insulin infusion. Moreover,

Bergman et al.’s model has been extended by [98] to include the level of free fatty acids

in plasma. Also it has been extended in [99][25] to include the impact of physical exercise.
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Finally, Bergman et al.’s model was used to study the closed and semi-closed loop optimal

control algorithms to define the insulin infusion profile for an individual [83][32].

In [107], multi-compartment model for glucose circulation was proposed and developed,

where each related organ was modeled as a separate compartment. Another multi-compartment

model was introduced by Guyton et al. [49]. The model consists of:

1. A glucose circulation subsystem. Separate compartments were developed for liver glu-

cose, liver glycogen, kidney glucose, brain tissue glucose, brain blood glucose, peripheral

blood glucose (muscles, adipose tissue), peripheral tissue glucose, central blood glucose

(i.e. gastrointestinal tract), and central tissue glucose.

2. Insulin circulation subsystem. Separate compartments were developed for liver insulin,

which represents insulin from pancreatic beta cells, kidney insulin, peripheral blood

insulin, peripheral tissue insulin, central blood insulin and central tissue insulin.

There are 32 non-linear ordinary differential equations (ODEs) with 11 non-linear ODEs

in the model just to simulate the insulin secretion from the pancreas[103]. Another physio-

logically complex multi-compartment model was proposed by Sorensen [103] that includes a

simplified model for pancreatic insulin secretion. The multi-compartment model made up of

22 non-linear ODEs, of which 11 ODEs were associated with glucose circulation, 10 ODEs

with insulin, and 1 ODE with glucagon. The Guyton/Sorensen models were updated by

Parker et al. [87] [88]. The updated versions consider the uncertainty in parameter values

and include a sub-model for gastric emptying of carbohydrates in a meal [68]. In [51], Hov-

orka et al. developed a multi compartment model of glucose and insulin kinetics. The model

is part of another predictive controller model for sub-cutaneous insulin infusion for people

with type I diabetes. The model consists of:
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1. Two compartment glucose subsystems (modeling glucose absorption, distribution and

disposal).

2. Two-compartment insulin subsystems (modeling insulin absorption, distribution and

disposal).

3. Insulin action subsystem (modeling insulin action on glucose transport, disposal and

endogeneous production).

Dalla Man et al., in their study [24], developed a model that binds the concentrations of

glucose and insulin plasma to different glucose and insulin rates. These rates are:

1. The rate of arrival of glucose from the gastro-intestinal tract.

2. The rate at which the glucose is produced by liver and kidney organs.

3. The insulin dependent and independent rates of glucose usage.

4. The rate of renal extraction of glucose.

5. The rate of insulin secretion by beta cells.

6. The rate of insulin degradation.

The study collected the data from 204 normal and 14 type II diabetic subjects. These

experiment data determined the values of the model parameters. The model was used

to simulate patient behavior in UVA/PADOVA Type I Diabetes Simulator [64] in order to

examine the closed control strategies for insulin pumps. [72] modified the Dalla Man’s model

by combining glucagon secretion/action/kinetics and non-linear increase in insulin-dependent

glucose utilization as BGL declines below the normal range. The new modifications were

implemented in a new version of the UVA/PADOVA simulator.
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Our CarbMetSim simulator is a physiologically complex model like the models presented

by Tiran et al. [107], Guyton et al. [49], Sorensen [103] and Dalla Man [24]. The main

difference is that CarbMetSim uses software to implement the physiological details of various

body organs, and these details are implemented as objects whereas the existing models used

ODEs to model physiological details. Implementing physiological details in software allows

for more complex behavior to be considered and implemented than what is possible using

ODEs. Furthermore, it is easier to modify physiological behavior implemented in software

than via ODEs. Therefore, the presented simulator is an improvement over existing ODE-

based approaches. It is hoped that these benefits coupled with its open-source nature will

allow CarbMetSim to emerge as a popular simulation model of human metabolism for both

diabetes research and self-management tools for diabetic people.

2.2 Data-driven Models

In this section, several significant data-driven models for predicting BGL are covered.

These models were proposed either for diabetic patients type I and\or type II. Data-driven

models are black box models that aim to find the relationship between the inputs and the

outputs of a certain system. In the art of predicting BGL in diabetes, they extract the

information hidden in the patients’ data in order to model the glucose response to various

events, without explicit knowledge of the process behavior of the glucose-insulin regulatory

system. The complexity of the data-driven models determines the desired observed inputs.

Usually the inputs are the recently recorded BGL values, food intake components (such

as carbohydrates, fats, and proteins), exercises, stress, insulin dosages and time of insulin

injections. Moreover, the density of the collected BGL readings play a main role in deter-

mining the accuracy of the predictions. Data-driven models are easier to be designed and

developed in comparison to the physiological models. However, the models cannot provide
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any explanation of how the predicted values are obtained. In general, data-driven models

are classified in two families: Machine Learning Models and Time-Series Models [41]. Ma-

chine learning methods are mathematical descriptions of real-world processes that include

methods of data analysis to automate analytical model building. Different machine-learning

approaches have been used to model the relationship between recent past BGL values and

patient activities with the future BGL. These approaches include rule-based models, multi-

model approaches, Gaussian mixture models (GMM), vector machines for regression (SVR),

reinforcement learning, random support vector models, and artificial NN (ANN) models,

among others. On the other hand, time series analysis predicts future events based on recent

events that have been gathered and spotted at regular time intervals. It comprises meth-

ods to extract meaningful patterns of the collected data that aid in designing an accurate

prediction model.

The Velletta et al. model [109] is an example of using a black box model to predict

future BGL based only on the patient’s activities. The research work used a Gaussian

process and other existing models to model the relationship between the patient’s activities

and their BGL, minute by minute. Patients’ exercises and BGL values were monitored

continuously. Patients were instructed to wear the exercise monitoring device and the CGMS

for approximately two weeks. The CGMS needs to be replaced every three days. Several

existing models have been used to generate part of the required parameters for the Gaussian

process. For instance, the generic insulin model [106] and the popular Lehmann’s food model

[68] have been used to generate the insulin and the carbohydrate parameters, respectively.

The CGMS generated the related glucose parameters, and the exercise monitoring system

extracted the following parameters from the collected physical activity data: the METs

(Metabolic Equivalent) in (kcal/kg/hr),which is the amount of calories that the body burns

to keep itself functioning, Heat flux in (W/m2), and skin temperature in Celsius. Then,
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a Gaussian process [92] was used to return a non-parametric probabilistic model, where

the mean and covariance functions report all knowledge about the modeling process. The

inputs of the model are: glucose, carbohydrate intake, insulin, METs, Heat flux, and skin

temperature. The results indicated that the model can predict BGL in the long term, but

the predicted values were higher than the measured ones. However, it was able to track the

decreases and increases in BGL in the observed period. There are two limitations of the

proposed model: the model considers the carbohydrate as the only source of glucose for the

human body. However, fat and protein also are sources of glucose as well, which the model

does not consider in the modeling process. The model does not consider other parameters

that may affect the insulin absorption, such as the amount of the dose, the site of application,

and exercises.

Similar to Rollins et al.’s model [95] and Velletta et al.’s model [109], Georga et al.

prposed a model [41] that uses a multi-parametric set of free-living data to predict BGL

for type I diabetic patients. The model comprised three white box compartmental models

that mimic the glucose–insulin regulatory system and a fourth black box model that predicts

BGL. The compartmental sub-models are the meal model, the insulin model, and the physical

exercise model. They measure the effects of food intake, exercises, and medications on BGL,

respectively. Indeed, they are used to simulate the related physiological processes to produce

the needed parameters, which will be used later as inputs for the prediction model. Modeling

the effects of the physical exercises on BGL was developed using two different approaches.

The first approach represents the physical exercise input to the prediction model as a set of

the collected data (Metabolic Equivalent of Task (MET), the heat flux (hf), and the skin

temperature (st) variables) that was gathered from the exercise sensor armband. The second

approach represents the physical exercise input as a set of the generated outputs (glucose

concentration and insulin concentration) of the exercise sub-model.
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The compartmental models are represented and influenced by other existing sub-models.

Specifically, the insulin sub-model is a combination of Tarin et al.’s model [106] and Cobelli

et al.’s model [20], with some assumptions and modifications that were made by the authors.

The insulin sub-model simulates the absorption and the pharmacokinetics\pharmacodynamics

of subcutaneously injected insulin as it is described in [106]. It uses [20] model to estimate

plasma insulin concentration as well. Similarly, the meal sub-model uses [68] model to mimic

the processes of ingestion and the absorption of carbohydrates. Two assumptions have been

made about representing the percentage of glucose in the blood: the rate of gastric emptying

is a trapezoidal function and the intestinal glucose absorption follows the first order linear

kinetics. The parameters in the meal sub-model are obtained from [68] and they are patient-

independent. Finally, the exercise sub-model uses [99] model to simulate the physiological

processes that occur during an exercise event and in the recovery period. Indeed, the authors

developed an algorithm that determines the most significant physical activities performed

by the patient by analyzing the measurements provided by the exercises sensor armband.

Then, the corresponding data of these exercises are fed into the [99] model to simulate the

effects of exercises on BGL. The proposed algorithm in the exercise sub-model provides the

patient an option not to wear the activity monitor continuously throughout the day, but

only during an exercise.

The prediction sub-model uses support vector machines for regression (SVR) [101] and

[12] to predict BGL, due its effectiveness on large and dimensional datasets, which is the

case in glucose prediction problems. The prediction sub-model receives the following inputs

from the mentioned compartmental models: the rate of glucose appearance in plasma after

a meal, the plasma insulin concentration, the physical activity related variables, and the

s.c glucose measurements obtained from CGMS. The predictions are carried out for four

different Prediction Horizons (PH): 15 ,30 ,60 and 120 minutes. The study uses root mean
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squared error (RMSE) and the correlation coefficient r to evaluate the prediction accuracy.

The Clarke’s Error Grid Analysis is also used to evaluate the clinical significance of the errors

between the predictive and measured BGL. The published results demonstrate that the short-

term prediction (15 or 30 minutes) is more accurate and highly correlated with the measured

glucose values (0.95 for 15-minutes PH, and 0.88 for 30-minutes PH). However, the model

performance decreases when the PH increases to 60 or 120 minutes. The two approaches

used to describe the exercise activity produced approximately equal results. Moreover, most

of the predicted glucose points were on zones A and B on Clarke Error Grid Analysis, and

there are no points belonging to the erroneous E zone, which represents clinically acceptable

results. The model has some limitations; it does not consider the effects of fat, protein,

and the glycemic index on the digestive and absorptive processes. Additionally, it does not

consider other factors that affect the insulin absorption and insulin kinetics processes, such

as body temperature. It is worth pointing out that Georga et al.’s model [41] is the first

study that considers the impact of physical exercises on the future predicted BGL, and it

is the first study that fed the exercise model with real sensor data to measure the exercise

intensity.

[108] designed and developed a number of different linear, compartmental neural networks

models for predicting the BGL of diabetic patients. The goal of the paper was to evaluate

the neural network’s technique performance by comparing it with standard models such

as the linear model, and with complex models such as the compartmental model, each of

which simulates all the physiological processes related to diabetes. The following is a brief

description of the proposed compartmental model and the two neural networks models. The

compartmental model (non-linear model) consists of the following sub-models that mimic

human organs’ operations to regulate the BGL in the human body: kidney, blood, liver,

digestive tract, insulin dependent utilization (muscles), and insulin independent utilization
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(red blood cells). Food, insulin, and exercises were the gathered inputs for the model. The

effects of these inputs on BGL were approximated and delayed by linear response functions.

These inputs were mapped to corresponding response functions by a functional block called

Md. Then, the response functions were fed in a second compartment model called Mn

function to simulate the dynamics of the BGL, using a non-linear difference equation. The

non-linear equation models the following interactions of the glucose dynamics: the increase

of the BGL due to consuming carbohydrates, the insulin-dependent glucose production of

the liver, the insulin-dependent usage of BGL, the insulin-independent usage of BGL, the

renal clearance, and the effects of exercises on lowering BGL. The parameters of the model

were not adapted from the training data, but derived from other literature mentioned in

[108].

The used non-linear equation in the Mn functional block is derived from unreliable physi-

ological assumptions that do not simulate all the physiological interactions correctly. There-

fore, the authors replaced the Mn functional block with a Recurrent Neural Networks (RNN)

model to simulate the physiological interactions appropriately. The inputs for the model are

insulin, food, exercise, and the current and previous estimation of the BGL. It has been

chosen due its ability to accept previous predictions as an input and use these measurements

to improve the prediction process. Two different modes were used to run the RNN: free run-

ning (FR) mode and the teacher forced (TF) mode. In the free running mode, the network

predictions were iterated for training and prediction. While in the teacher forced mode, the

measurements of the BGL were substituted for the predicted values whenever available in

the training and prediction phases. Real time recurrent learning rules were used to adapt

the weights in the RNN.

On the other hand, Time Series Convolution Neural-Network Models (TSCNN) has been

proposed to predict BGL. TSCNN is an appropriate solution for applications where past
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measurements are not always available. TSCNN is exploited when there is a desire to avoid

recurrent learning rules and to predict new values without receiving all the past measure-

ments. However, TSCNN may need to receive relevant input that might have occurred a long

time period in the past (in this application, up to 24 hours). Therefore, to limit the input

space, and not end up with a large input space that leads to overfitting, the authors have

added several approaches to determine the appropriate size of the time window to receive

related inputs. These approaches handle the problem either by determining the size of the

window precisely (Hard Limited Time Windows TSCNN-HL) or softly (Soft Competitive

Fixed-Time Windows TSCNN-SC).

Based on the authors’ opinion, predicting BGL applications encounter two essential prob-

lems. The first problem is related to the number of times that BGL is measured each day.

Unfortunately, BGL were measured a few times every day, and therefore the model missed

many BGL measurements (assuming no CGMS has been used in this application). Sec-

ondly, the BGL dynamic system is highly stochastic: such that the standard deviation of

the residual error was around 54 mg/dl in the proposed application. This value is consid-

ered highly significant, especially if we consider that the mean BGL for a healthy person is

around 100mg/dl. Therefore, the authors applied Linear Error Modeling rules (LEM) on all

the proposed models to simulate all the non-linear interactions deterministically, to obtain

better prediction results, and to avoid solving complex integrals that are required for most

stochastic non-linear dynamic models.

As can be seen, Tresp et al. [108] have introduced several different models with differ-

ent variations and complexities. These models are the RNN, RNN-FR, RNN-TF, RNN-

LEM,TSCNN, TSCNN-LEM, TSCNN-HL, TSCNN-SC, compartmental model, compart-

ment model-LEM, and linear model. To evaluate these different predictive models, the

explained variance is used. It was defined as (1 −MSPE(model)/MSPE(mean))), where
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MSPE (model) is the mean squared prediction error on the test set of a certain model, and

MSPE (mean) is the mean squared prediction error of predicting the mean. The results

showed that RNN-LEM gave the best results and outperformed both of the compartment

models and TSCNN approach. The reasons that RNN has better results than the compart-

mental model might be attributed to the greater flexibility obtained using the RNN model,

which does not depend heavily on prior physiological assumptions. Similarly, RNN outper-

formed the TSCNN approach due to the fact that RNN better represents dynamical systems

than models whose predictions only depend on past inputs.

[91] compared the performance of the Multilayer Perception (MLP) neural network and

Elman-RNN in predicting BGL for type I diabetic patients. MLP NN consisted of three

layers of neural networks with a hidden layer that contains five neurons, and one output layer

with one neuron. Neuron active functions of each layer were used to compute the threshold

of the output layer. The logsig activation function was used for the output layer, and the

tansig activation function was used for the hidden layer. The network was trained by a back

propagation method. On the other hand, the Elman RNN has been modified by adding an

additional feedback layer to include past activities in the prediction process. Both models

have the same number of neurons, layers, type of activation functions, and training algorithm.

Moreover, the input set for the two models were the same, and it included the type of

insulin (short acting or long acting), the time between two consecutive glucose measurements,

carbohydrate intakes, exercises intensity, stress levels, and BGL measurement at the start

of the given period of time. The only difference between the two models is the feedback

loops that were added in Elman RNN, as mentioned earlier. The feedback loops provide the

Elman model with an internal memory that remembers the dynamic characteristics of the

inputs.

The mean absolute error between the observed and predicted BGL was used to evaluate
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the two models. The Elman RNN model outperformed the MLP NN model in the prediction

accuracy. The mean absolute of prediction errors for the testing step of Elman RNN was

equal to 1.04 mg\dl, whereas the mean absolute prediction errors for the testing step of

MLP NN was equal to 2.41 mg\dl. The authors attributed the results with the fact that

the current state of BGL in the glucose metabolism depends heavily on the activities that

took place in the past, and the new modification of the Elman RNN satisfies this factor by

its internal memory property.

The Elman neural network has been used with a neuro-fuzzy expert system in [100] to

predict BGL, and it suggests a short term therapy for type I diabetic patients. The system

predicts the next BGL value at time t+1 from the previous measured BGL, anticipated diet,

exercises, and insulin regimen events. It all happened at time t. These inputs and variables

were used to generate the best set of suggested exercises, diet regimen, and insulin regimen to

help the patient reach the targeted BGL. The training of the neural network was performed by

using a back-propagation method, incorporating momentum, and an adaptive learning rate.

The tan-sigmoidal activation function was used in the recurrent layer, whereas the linear

function was used in the output layer. Ninety-five recurrent layer neurons were used to give

the best results. To train the neural network, the following vector inputs were collected from

the patient; the insulin vector that includes the time, the site of the injection, and the type

of the insulin; the diet vector that includes the consumed carbohydrates portion and the

time of meals; the exercise vector that includes the duration, the strength, the endurance,

and the time of exercise; the BGL vector that includes the measurement value, the time

of the measurement, and the prediction time; and finally a vector that contains the stress,

illness, and other parameters.

The network was trained by allowing the patient to enter his\her BGL at time t and

at time t+1. They had to supply the neural network with all of the events (inputs) that
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occurred between these two times. Then the neural network was trained using the value of

BGL at time t+1. After this, the neural network was presented with the events that occurred

between t+1 and t+2. The neural network was then trained with the BGL value at time

t+2. In other words, the output of the trained network is the BGL of the following event

step.

To evaluate the model, the difference between the prediction value and the actual value

of BGL was computed. A certain value was specified to classify the performance of the

proposed system. It was determined that if the difference value is less than 27mg\dl, then

the performance of the model is classified as satisfactory; otherwise it will be considered as

poor performance. The paper showed that the prediction values and the measured values

were very close for the two cases that the model was tested on, with a difference equal to

27mg\dl or less.

A different and an interesting approach has been discussed in Kok’s thesis [63] to predict

BGL. The proposed system does not use a single neural network model to predict BGL for all

time periods of a typical day. It has been assumed that the accuracy of the prediction depends

mainly on the time of the day predicted and the factors that affect the BGL practically during

that period (factors that influence BGL vary during the day). Moreover, it has been shown

that there is no a particular neural network structure that performs perfectly on all of the

different time periods of a typical day. Therefore, the day has been divided into four different

time periods: morning, afternoon, evening, and night. A different neural network structure

has been applied to each time period. For instance, a small architecture neural network with

a single hidden layer with 2 nodes and a double hidden layer with 1 or 2 nodes in the first

layer was used in the morning period. Moreover, the proposed approach uses a different

set of input variables for each time period. The input variables of the morning period are

different from the input variables of the afternoon, evening, and night periods. The input
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variables of the afternoon period are also different from the input variables of the morning,

afternoon, and evening periods, etc. For example, the inputs for the afternoon period are

BGL, the amount of short acting insulin, food intake, and exercise and stress, while the

input for the morning period are BGL, the amount of short acting insulin, food intake, and

exercise and stress during the interval, long acting insulin over the past 24 hours, exercise

added up squared values during past 24 hours, and the interval length. The Trial and Error

method was used to determine the best input set for each time period. The total number of

the input variables for the whole day was equal to 19 different inputs.

RMSE was used to evaluate the proposed neural network models and the associated

inputs and parameters. Moreover, the performance of the models had been compared in

different aspects, such as the structure of the neural network, the learning rate, and the

model performance. The obtained results showed that the average RMSE for the morning,

afternoon, evening, and night periods were 41.4 mg\dl, 37.8 mg\dl, 43.2 mg\dl, and 41.4

mg\dl, respectively. Furthermore, the best RMSE for the four mentioned time periods were

32.4 mg\dl, 32.4 mg\dl , 37.8 mg\dl, and 39.6 mg\dl, respectively. In other words, the

best achieved prediction accuracies were in the range of 30-40 mg\dl, which is considered a

promising result, specifically when compared to the AIDA’s results [69], which has an RMSE

value equal to 35mg\dl.

Baghdadi’s et al.’s model [8] followed the same methodology applied in Kok’s model [63] to

predict BGL. It divides the typical day into four different time periods and predicts BGL for

each time period separately. The typical day was represented by eight BGL measurement

points that were collected at breakfast, after breakfast, lunch, after lunch, dinner, after

dinner, at night, and before sleeping. Each time period contains three of these measurement

points; the first one was collected at the beginning of the time period, the second one during

the time period, and the last one at the end of the time period. Indeed, the authors used the
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same 19 inputs that were used in Kok’s research work. However, the pruning method was

used to eliminate unimportant inputs for each time period and select the best input set for

each time period. The input variables that have the lowest weight vector were eliminated

for each time period, and those that do not affect the performance factor negatively were

considered as input variables.

The Radial Basis Function (RBF) neural network has been used to predict BGL for each

interval. It consisted of an input layer of source nodes, a hidden layer of high enough di-

mension, and an output layer that provided the response of the network to the activation

patterns applied to the input layer. The average RSME was computed to evaluate the appli-

cation, and the following are the corresponding values for the morning, afternoon, evening,

and night periods: 1.4868 mg\dl, 0.9234 mg\dl, 0.6714 mg\dl, and 0.2124 mg\dl. In addi-

tion, the model outperformed Kok’s model [63] and the AIDA system [69] with an RSME

equal to 0.216 mg\dl. The obtained results, however, need to be verified more by testing the

model on different data sets, and by comparing it with different models.

Following the same methodology in [63] and [8], Zainuddin et al.[116] proposed an expert

system that uses the principal component analysis (PCA) technique, and Wavelet Neural

Network (WNN) to predict BGL for different time periods in a typical day. The same

collected 19 input variables in [63] and [8] were used, and the same methodology of modeling

the day time periods was followed as well. Moreover, Zainuddin et al. proved that inputs that

influence BGL vary during a day (stated in Kok’s thesis too) by calculating the correlation

coefficients R between the BGL of morning, afternoon, evening and night periods. It was

shown that BGL for the morning, afternoon, evening, and night periods were not highly

correlated to each other. For instance, the correlation factor between the morning and

afternoon time periods was 0.1168, which indicated a weak correlation between the two

time periods. These results might be explained by the fact that inputs that influence BGL
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dominate at different time periods. In other words, inputs affect BGL concentrations for a

few hours only, but are not continuous for the rest of the day.

The PCA technique used to extract the set of inputs that significantly affect BGL con-

centrations from the whole collected input sets make all of these correlated extracted inputs

independent of each other. In the proposed application, PCA reduced the number of input

variables from 19 different input variables to four input set for each time period. Three

WNN models were applied to each time period. Each of these models implements a different

embedded wavelet family in the hidden layer. The following wavelet families acted as acti-

vation functions in the hidden layers have been used: Mexican Hat, Gaussian wavelet, and

Morlet. Moreover, the learning method of the neural network was determined by solving

the pseudo-inverse with fixed parameter initialization. To avoid the overfitting problem, the

multifold cross validation technique was used. It is worth pointing out that Zainuddin et al.

model [116] was the first application that uses WNN in modeling BGL variations.

Several wavelet families have been used to predict BGL for each time period. RMSE was

used to compare the performance of these families and to compare the performance of the

application with the performance of [63] and[8]. The experiments showed that the WNN with

Gaussian Wavelet (as activation function) had the best performance with the lowest RMSE

for all the time periods. Therefore, it my be compared with kok’s model and Baghdadi’s et

al.’s model. Zainuddin et al.’s model had better performance than kok’s model, because the

latter used a random selection method to collect the inputs, while Zainuddin et al.’s model

used PCA to extract only the inputs that affect BGL significantly. On the other hand,

the proposed application outperformed Baghdadi et al.’s model in the morning, afternoon,

and evening periods. Combining the Gaussian function with the WNN helped the proposed

application perform better than Baghdadi’s et al.’s model, which uses the Gaussian function

alone in the hidden nodes. However, Baghdadi’s et al.’s model had a better performance in
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the night interval due to the used input selection method that eliminated the past inputs from

previous time periods. PCA considers all the related and valuable inputs that may influence

BGL from past and present user activities, which may span more than 36 hours from the

present glucose measurement, and consequently affect the prediction process negatively.(For

the night interval, the RMSE of Baghdadi’s et al model was 0.2124 mg\dl, whereas for the

Zainuddin et al. model it was 0.306 mg\dl.)

[78][79] proposed an application that combines compartmental models and neural network

models to make short-term BGL predictions. The compartmental model consists of five

physiological models that simulate the effects of different types of injected insulin on plasma

insulin concentration and the effects of consuming carbohydrates on the BGL. Those models

are: Quick Acting (QA) Insulin Kinetics model, Short Acting (SA) Insulin Kinetics model,

Intermediate Acting (IA) Insulin Kinetics model, Long Acting (LA) Insulin Kinetics model,

and a model for glucose absorption from the gut. The outputs of these models, along with the

recent BGL measurements, were used as inputs for the proposed neural network models to

predict BGL. The two proposed neural network models are the Feed-Forward Neural Network

(FFNN) and the RNN. The FFNN was trained by the batched back propagation algorithm

and receives the following inputs: the most recent BGL measurement, the four vectors that

describe the effects of the four types of insulin, and a vector that describes the effect of

food intake. On the other hand, the RNN was trained by the online Real Time Recurrent

Learning algorithm (RTRL), and it receives the following inputs: the current and previous

BGL predictions, glucose concentration into the blood from the gut, and the concentration of

insulin plasma after the injection of any type of insulin. The RTRL algorithm simulates the

dynamic system in real time by updating the weights of the model according to the received

inputs. Two different methods have been used to train the RNN: the Free-Run (FR) method

and the Teacher-Forcing (TF) method. In the RTRL–FR method, the RNN ignores the
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available glucose measurement, while in the RTRL–TF method, the RNN substitutes the

actual output for the corresponding available glucose measurement.

The RMSE, and the correlation coefficient (cc) have been computed for all the proposed

models. The results obtained from the performance assessment showed that the FFNN and

RTRL-TF models performed better than the RTRL-FR model in all the patients’ cases (data

from children with type I diabetes have been used). Although the performance of FFNN was

slightly better than the on-line RTRL-TF model, the authors preferred the on-line RTRL-TF

model due to its ability to adapt the weights when a new input is received.

As we have seen, neural networks have been used intensively to predict BGL and help

diabetic patients to know their future BGL concentrations ahead of time to achieve a better

life style. Indeed, different structures with different input sets have been investigated to

estimate BGL accurately. Some of the proposed methods used the food, exercises and insulin

as input sets for their models ,as we have seen, while other models used unordinary input sets

to estimate BGL for diabetic patients. For instance, [44] used blood glucose concentration,

skin impedance, and heart rate as inputs to the proposed model to simulate BGL variations

for type I diabetic patients. The application used a multilayer feed forward neural network

to make the prediction and back propagation training method to adapt the weights. The

estimated BGL was found to be correlated to the actual BGL with an accuracy within 10%.

On the other hand, other published literature focused only on comparing the performance

of different neural network structures in simulating the glucose dynamic system without

estimating the future BGL. For example, [120] [119] compared the performance of RNN-

Levenberg-Marquardt (LM) and Polynomial Neural Networks (PNN) in simulating BGL.

The two models were fed by the same set of inputs (insulin, exercises, meals, BGL, and

the time period between two consecutive glucose measurements) and were applied under the

same conditions. The results showed that the LM-NN model outperformed the PN model
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due to the type of the gathered data (not a PN type of data), and that the PN model could

not successfully use the patients’ activities to predict BGL.

On the other hand, time series models are used to predict future events based on recent

events that have been gathered at regular time intervals. To utilize time series models in

predicting BGL, the models were recursively defined at each sampling step and incorporated

with a change detection method that enabled dynamic adaptation of the model to inter- and

intra- subject changes and glycemic unsuitability. [15] is one of the first papers that used

time series analysis methods to test whether BGL can be predicted or estimated from past

BGL values. To determine if the BGL values are predictable, it was required to analyze

the BGL data and test if there is a stable or evident structure in the observed data, and if

the data are stationary. The paper used the autocorrelation function (ACF) to study the

correlation between individual data points and measure the dependency between individual

measurements that change over time. The sequence of ACF coefficients depicts the statisti-

cal dependence between the pairs of data separated by fixed-time intervals throughout the

sampling process. If the data were found statistically dependent, this implied that some pre-

dictable structure exists. Moreover, if the process readings had been and remain stationary,

this means that the process can be used to predict future values. The paper ,through a series

of steps, proved that BGL has a structured pattern and it is stationary and predictable. A

linear auto regressive model was used to predict future BGL in general, and to evaluate the

linear predictability of the glycemic dynamics during glycemic disturbances. It was evalu-

ated on different PH values, such as 10, 20, and 30 minutes. The results demonstrate that

the 10- and 30- minute predictions followed the general path of BGL data. However, the

10-minutes prediction was better than the other one. The average root mean squared error

value of predicting BGL with PH equals 10 minutes (under stationary disturbances) was

equal to 3.60 mg\dL, which is considered an acceptable error range. Since this study, most
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of the published works in this art use the auto-regressive(AR) prediction technique to predict

BGL in utilizing recent BGL values. However, other studies include different inputs such as

exercises and foods to increase prediction accuracy.

[104] built on Bremer and Gough’s model [15] to answer a question regarding the ability

of predicting BGL ahead of time to prevent or avoid hypo\hyperglycemic conditions that

diabetic patients may experience. The study utilized patients’ history BGL data to answer

the question. These data were collected from 28 diabetic patients and monitored every

three minutes for an 48-hour period. A linear model and a first-order AR model have been

used with time-varying parameters. These parameters were calculated using weighted least

squares on every new collected BGL sampling. Moreover, all the sample data were assigned

different weights using the forgetting factor that improves the fit of the most recent data.

Without using the forgetting factor (assigned a small value), it might take hours or days

before the actual sampling time would influence the prediction.

The results proved that BGL can be predicted ahead of time, with a PH equaling to 30

minutes. This time horizon is considered a sufficient margin to take all the needed actions

or treatment steps to recover a diabetic patient from hypo\hyperglycemic symptoms. Two

quantitative assessments were used to compare the two models; the mean square prediction

error (MSPE), and the energy of the second-order difference of the predicted profile (ESOD).

MSPE determines the closeness of the predicted BGL to the measured ones, while ESOD

evaluates the oscillation in the predicted BGL values. Comparing the two models using

MSPE shows that they were close and similar in performance. However, evaluating the

models using the EDOS technique show that the polynomial model was slightly smoother

than the AR model. Another evaluation has been taken to evaluate the effects of increasing

the length of PH on the precision of the prediction. As expected, increasing PH causes a

larger prediction error and q wider oscillation in the predicted BGL. In general, the paper
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preferred Average Glucose (AG) rather than the linear models in many aspects, especially

when the forgetting factor value is considered.

[30] [28] [29] used time-series analysis to design the subject-specific glucose prediction

model. The model is a low-order linear model that predicts BGL with a PH equal to 30

minutes, and it addresses the variabilities and fluctuations of BGL. It was incorporated with

recursive identification and change detection methods to provide a quick adaptive response.

These methods adapted the model dynamically to any changes in BGL and for any glycemic

disturbances. At every BGL sampling, the system updates the parameters dynamically

to reflect new information about the BGL readings. The weighted recursive least square

algorithm is used to implement the recursive identification feature. The algorithm captures

the BGL fluctuations or glycemic disturbances by decreasing the value of the forgetting

factor when a constant change in the models’ parameters is found. This way, past readings

are precluded and faster convergence to new parameters is included. The parameters are not

updated if the changes were not persistent. Moreover, future BGL values are predicted from

the recent readings without requiring any prior information about the glycemic disturbances,

such as meal consumption or insulin administration.

The proposed model in [95] [96] is a multivariate time series model that incorporated

external information regarding insulin, food and physical exercises. It estimates future BGL

by simulating the effects of measured inputs on BGL over a long period of time. The

suggested solution proposed was a causation model that correlates the changes of BGL to the

recent patients’ activities (measured inputs). The measured inputs consist of 24 disturbances

and are grouped into three main sets: food, activity, and stress. However, they have been

reduced to 11 variables that include three food variables, seven activity variables and a time

of day (TOD) variable, which is measured in minutes and represents the number of minutes in

a single day. The effects of each input on BGL was determined independently and in isolation
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of other inputs. However, the data were collected under free-living conditions and these data

in general are highly correlated data. For instance, the carbohydrates and fats variables

in the food set are highly correlated variables; they are usually increased and decreased

together. Moreover, the input data can have non-linear dynamic and interactive impacts on

BGL. The dynamic behavior defined as the delay between the occurrence of the input (food

intake, physical exercises,etc) and the output response (future BGL).The interactive behavior

is described as the modeling process of the effects of two or more variables concurrently on

the desired output. For instance, the exercise event can increase or decrease BGL based on

the food consumption history. Therefore, to model the effects of each input separately and

address the dynamic behavior of the inputs on BGL, the block-oriented Wiener model [94]

was used. In the Wiener model, each input (disturbance) is connected to a dynamic linear,

block which is a set of differential equations. The intermediate output of the dynamic block

is a variable that represents the dynamic response (behavior) of the corresponding input.

These intermediate outputs are then passed into a static non-linear block that computes the

final output, which is the glucose concentration in this context. In other words, the highly

correlated inputs that enter the Wiener model will be broken down to weakly correlated

variables represented by the intermediate dynamic variables. Then the effects of these weak

variables are used to compute the future BGL. For instance, the intermediate variables that

represent the carbohydrates and fats inputs will be weakly correlated, because their inputs

have different dynamic behaviors; carbohydrates have a shorter residence time than the

fats. The model was evaluated by the average absolute error (AAE) performance method.

It computes the absolute difference between the measured glucose concentration and the

modeled glucose concentration. The model was performing well with an AEE of 13.3 mg/dL

and a fitted correlation coefficient of 0.70 for 5 min predictions. The suggested model helps

type I and type II diabetic patients to manage their BGL by modeling the effects of the
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food, physical exercises disturbances, and other various daily activities on the BGL. The

model estimates BGL from 11 measured variables, only without utilizing previous measured

glucose measurements. It is worth mentioning that this study also proposed a sub-model that

predicts BGL by utilizing only the recent glucose measurements. The sub-model predicts

BGL in k-steps-ahead (KSA). The results showed that BGL can be predict accurately when

the number of k-steps is small, or when the PH value is short (less than 60 minutes). However,

its performance degraded when the number of k-steps increased, or when the PH get longer

(more than 60 minutes).

To validate the model, two continuous glucose data sets obtained under hospitalized and

normal daily life conditions were used. The BGL was measured every 5 minutes for an 48

hour period in the two sets. The Sum of Squares of the Glucose Prediction Error (SSGPE)

and Clarke Error Grid analysis (CG-EGA) were applied to validate the model on the two

used sets. It was proved that the model was able to track and predict BGL accurately with

a PH equal to 30 minutes. Since the proposed system has a small number of parameters

and its computations are considered light, it can be integrated in portable devices for early

hypo\hyperglycemic alarms, and for closing the glucose regulation loop with an insulin pump.

The prediction model was used also in [28] to measure the required insulin infusion rate, and

in [29] to predict hypo\hyperglycemic episodes and provide early notifications.

In conclusion, this section covered the significant published literature of predicting BGL

on different aspects and facets. Several shared notes and findings can be summarized in the

following points. A shared common finding between all the studied models is the negative

correlation between the accuracy of the BGL prediction and the PH, where the accuracy of

the prediction decreases when the PH increases. In fact, the most examined range for PH

in the covered models is between 15 minutes to 120 minutes, with 30 minutes as the most

examined value. Moreover, PH is affected directly by the type and kind of the gathered
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inputs, such as exercises, insulin therapy, and\or food components. Nonetheless, few studies

included other inputs that are associated with exercise activity such, as heat flux, galvanic

skin response, energy expenditure (EE), heart rate, rate of perceived exertion, and sleep.

Even though the main goal of most of the investigated models was predicting BGL and\or

hypo\hyperglycemia risks, there are other studies that use a classifier to identify related life-

threatening situations by mapping inputs to pre-established classes of recommendations [85].

Finally, the examined models have a general trend to individualize the prediction process by

considering the personal lifestyle and patients’ physiology to produce more accurate results.

2.3 The preliminary version of CarbMetSim

This section summarizes the preliminary version of CarbMetSim described in Aydas’ dis-

sertation [7]. However, all the aspects of the simulator were redesigned after this preliminary

version as it is described in chapter 3 and chapter 4 [48].

2.3.1 Food and Exercise Description

CarbMetSim represents meals (in the preliminary and recent version) in terms of their

serving size and the quantity of rapidly available glucose (RAG), slowly available glucose

(SAG), protein, and fats per serving. The RAG component consists of sugars and the

rapidly digestible starch (i.e. starch that was digested in vitro within 20 minutes [27],[56]),

whereas the SAG encompass the slowly digestible starch (i.e. starch that was digested in

vitro between 20 and 120 minutes [27],[56]). The preliminary and the current implementa-

tion of CarbMetSim considers the impact of protein and fat in food on gastric emptying,

and this illustrates why the protein and fat components per serving are included in the

food description. However, CarbMetSim in both implementations does not have a detailed
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implementation of protein and lipid metabolism. Also, the simulator does not take into

account the effect of dietary fiber (non-starch polysaccharide part of the carbohydrates) on

gastric emptying, even though fibers in food are known to have an impact on gastric emp-

tying. CarbMetSim does not represent protein in terms of its amino acid contents. Aerobic

exercises are the only exercises that were supported by CarbMetSim. An exercise activity

was described in terms of its intensity in units of METs, where 1 MET is 1 kcal of energy

expenditure per kg of body weight per hour.

2.3.1.1 Modeling Insulin Production

The current insulin level in the preliminary and current implementation of CarbMetSim

is represented by a variable called insulinLevel. In the preliminary implementation of Carb-

MetSim, the value of the insulinLevel was determined using the following four configurable

parameters :

1. baseGlucoseLevel_ : represents the typical fasting BGL of the individual (default value

equals 100 mg/dl).

2. highGlucoseLevel_: represents the typical peak BGL the individual experiences (de-

fault value equals 200 mg/dl).

3. baseInsulinLevel_: represents the insulin level in the blood when the BGL is less than or

equal to baseGlucoseLevel_ (assigned a value between 0 and 1); The baseInsulinLevel_

must be less than or equal peakInsulinLevel_.

4. peakInsulinLevel_: represents the ability to produce insulin (assigned a value between

0 and 1).

This implementation of CarbMetSim assumed a value between baseInsulinLevel_ and

peakInsulinLevel_ for the insulinLevel variable. The peakInsulinLevel_ parameter reflects
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the ability of producing insulin. A value 1 implies a normal insulin production, where a value

0 denotes there is no insulin production (from pancreas) at all. Assigning a value x (between

0 and 1) for the peakInsulinLevel_ variable indicates that the peak insulin production is

just x times the normal peak. The value of the insulinLevel is set according the following

rules. If the BGL is less than or equal to the baseGlucoseLevel_, the insulinLevel stays

at baseInsulinLevel_ . However, the variable increases linearly from baseInsulinLevel_ to

peakInsulinLevel_ as the BGL increases from baseGlucoseLevel_ to highGlucoseLevel_. If

the BGL becomes greater than or equal to highGlucoseLevel_, the insulinLevel stays at

peakInsulinLevel_. This module in the current implementation of CarbMetSim has been

changed and updated dramatically.

2.3.1.2 Modeling Glucose Transport

CarbMetSim models the active and passive glucose transporters. The active transporters

move glucose from a low concentration to a high concentration, while the passive transporters

such as Glucose Transporters (GLUTs) move glucose from a high concentration to a low

concentration. The acutal average amount of glucose that is transfered per minute via active

transporters is computed as a poisson distributed random variable. However, CarbMetSim

uses Michaelis Menten kinetics (described later in Section 3.3) to determine the amount of

glucose transferred in a minute via passive transport. GLUT4 is the passive transporter that

helps the muscles to absorb glucose from the bloodstream. The number of active GLUT4

depends on the insulin level in the bloodstream. This implementation of CarbMetSim models

GLUT4 transporters in the resting state and uses a paramter called glut4Impact to model

the insulin resistance and the reduced activation of GLUT4 transporters in diabetic patients.

The simulator also models the impact of insulin on GLUT4.
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2.3.1.3 Modeling Glucose Consumption (Modeling Glycolysis)

Glycolysis is a process that breaks down glucose to extract energy for cellular metabolism.

In CarbMetSim the following organs uses anaerobic glycolysis to extract energy: Mus-

cles, Liver, Kidneys, Intestine and Blood. Each of the mentioned organs has two con-

figurable parameters: glycolysisMin_and glycolysisMax_. The organ generates at each

tick a poisson distributed random number (x), with glycolysisMin_ as the mean value

and glycolysisMax_ as the maximum value. Then based on the glucose availability in

the organ, the glycolysis process consumes glucose in a tick according to this formula:

x+ insulinImpact ∗ (glycolysisMax_− x). The insulinImpact variable is a factor that in-

creases in value with an increase in the insulinLevel. The simulator also used a configurable

multiplicative parameter called glycolysisImpact_ to modify the glycolysisMax_ parameter

associated with each organ. glycolysisImpact_ is utilized to model the impact of diabetes on

glycolysis flux. Part of the glucose consumed for glycolysis is converted to lactate, which is

then added to the Blood object. The recent implementation of the simulator uses different

parameters and rules to model the glycolysis process.

2.3.1.4 Modeling Gluconeogenesis

gluconeogenesis is a process that takes place in the liver and the kidney. It produces

glucose by consuming lactate, glycerol, glutamine and alanine[56],[74]. Gluconeogenesis nor-

mally happens when the insulin level is low; however, high gluconeogenesis flux may occur

with diabetic patients when their insulin level is high [71],[56]. The preliminary implemen-

tation of the simulator modeled the impact of insulin on gluconeogenesis flux by multiplying

it with a factor that decreases in value with an increase in the insulinLevel. Also, it used

a configurable multiplicative parameter gngImpact_ to model the impact of diabetes on
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gluconeogenesis flux by modifying the configured gluconeogenesis flux. Only the lactate con-

centration in the blood is being tracked in the simulator. Other substrates are assumed to

be always available in sufficient quantity to allow gluconeogensis to occur.

2.3.1.5 Modeling Liver Glycogen Synthesis and Breakdown

Liver stores excess glucose in the blood during the post-prandial state as glycogen and

it breaks down the stored glycogen. It releases the generated glucose to the blood during

the post-absorptive state. The two mentioned processes help the human body to maintain

glucose homeostasis. The preliminary implementation of CarbMetSim modeled the synthesis

and breakdown processes simultaneously at configured rates modified by two factors each:

the impact of insulin on these two processes, and the affecting of the liverGlycogenSynthe-

sisImpact_ and liverGlycogenBreakdownImpact_ parameters on the glycogen synthesis and

glycogen breakdown processes, respectively. For the glycogen synthesis process, the insulin

factor increases in value with an increase in the insulinLevel. However, for the glycogen

breakdown, the factor decreases in value with an increase in the insulinLevel. The second

factor is used to model the impact of diabetes on glycogen synthesis and breakdown in the

liver by modifying the configured rates multiplicatively.

2.3.2 CarbMetSim Design and Implementation

CarbMetSim is a discrete event simulator that traces how BGL in the human body is

changed after a timed series of diet and exercises activities. The simulator is implemented in

an object-oriented paradigm, where the key organs are represented as classes. This section

covers the design and preliminary implementation of CarbMetSim.
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2.3.2.1 HumanBody

The HumanBody class contains the following organ objects: Stomach, Intestine, Por-

talVein, Liver, Kidneys, Muscles, AdiposeTissue, Brain, Heart, and Blood. At the beginning

of a simulation, the HumanBody uses priority queue to read the food events and its de-

scription. Also, it reads the intensity of different exercise activities in units of METs (into

the same priority queue) and other simulation parameters that impact the operation of the

human body organs. After firing a food event, the simulator adds the consumed food to the

Stomach. Also, the simulator recognizes when there is no food left in the Stomach. The

simulator updates\rest the energy needs of the simulated subject when there is an exercise

event fired and when the simulated subject is in the reseting state, respectively. In other

words, the simulated subject in CarbMetSim can be in any of the following body states:

Fed_Resting, Fed_Exercising, PostAbsorptive_Resting, and PostAbsorptive_Exercising.

2.3.2.2 Blood

CarbMetSim represents the bloodstream via the Blood object. The Blood object ex-

changes glucose and other substrates with various organs. It maintains the following vari-

ables: glucose, lactate, branched AminoAcids, unbranched AminoAcids, insulinLevel vari-

able, and fluidVolume_ (the blood volume in the simulator). CarbMetSim does not maintain

any other hormones in the Blood object other than insulinLevel.

2.3.2.3 Stomach

In CarbMetSim, the gastric emptying process is motivated by [54]. It is a simple mode

that takes into consideration the role of fat\protein in slowing down the gastric emptying

process. When a food event is fired, the consumed food enters the Stomach instantaneously,

and its contents are added to any existing stores of RAG, SAG, protein and fat. CarbMetSim
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assumes that all the food in the Stomach is in the chyme form and this amount of chyme

that leaks to the Intestine (each minute) consists of one part determined using a poisson

distribution (with a default mean 100 mg) and another part proportional to the total amount

of chyme currently present in the Stomach. The proportional part increases linearly with

a decrease in the energy density of the chyme. When the chyme consists entirely of fat

(with energy density 9.0 kcal/g), the minimum value of this proportionality constant is

0.01 (the default value), and it represents the fraction leaking out of the Stomach object

each minute (where chyme consists entirely of fat). On the other hand, when the chyme

consists entirely of carbohydrate (with energy density 4.0 kcal/g), the maximum value is

9.0/4.0 times the minimum value, and it represents the fraction leaking out of the Stomach

each minute. CarbMetSim does not take into account other factors that impact the gastric

emptying process, such as the solid/liquid nature of food and the fiber content. Therefore,

a bolus of chyme leaks from the Stomach into the Intestine every tick until the Stomach is

empty.

2.3.2.4 Intestine

Carbohydrates are converted to one monosaccharide-glucose in the Intestine object. Once

the Intestine receives bolus of chyme object from the Stomach, it digests some amount of its

RAG/SAG component (the amount digested is calculated using normal distributions), such

that most of the RAG/SAG components of a bolus are digested within 20 and 120 minutes

respectively. The generated glucose of the digested RAG/SAG is added to the glucoseInLu-

men variable, where this variable represents the total glucose in the intestinal lumen. The

fat components of the chyme object are simply added to the AdiposeTissue, and the protein

components are added to a common protein pool in Intestine. The Intestine digests a small

amount of the protein and transfers the generated amino acids to the PortalVein. On the
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other hand, the glucose is moved from the intestinal lumen to the enterocytes, and then

from the enterocytes to the portal vein. The Intestine object maintains two variables: glu-

coseInLumen and glucoseInEnterocytes, where these variables represent total glucose in the

intestinal lumen and in enterocytes, respectively. In details, the Intestine moves some glucose

from glucoseInLumen variable to glucoseInEnterocytes variable, so the amount moved has

an active transport component (determined by poisson distribution) and a passive transport

component (determined by Michaelis Menten kinetics). Also, glucose is moved from the

enterocytes (glucoseInEnterocytes) to the portal vein at each tick using Michaelis Menten

kinetics. Finally, the intestinal cells receives some of their energy via glycolysis process. If

the glucose in enterocytes is not sufficient, the extra glucose needed for glycolysis comes from

the Blood object.

2.3.2.5 PortalVein

The portal vein carries blood that moves through the intestinal tract to the liver. Carb-

MetSim represents the portal vein as a separate class from the rest of the circulatory system

(represented by the Blood object) due its special role as a conduit from the intestine to the

liver. PortalVein object carries the glucose and amino acids generated from the food diges-

tion in the Intestine to the Liver. Also,the PortalVein moves all the amino acids received

from the Intestine to the Liver during each tick. Because the portal vein is a part of the

circulatory system, CarbMetSim maintains the glucose concentration of the PortalVein as

rest of the circulatory system, when no new glucose is being received from the intestine.

2.3.2.6 Liver

The Liver’s operations are implemented in the CarbMetSim as following. Liver absorbs

via GLUT2s some glucose from the PortalVein when the glucose level in the PortalVein is
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higher than what is in the Liver. On the other hand, if the glucose concentration in the Liver

is higher than what is in the Blood, some glucose will be released to the Blood via GLUT2s.

The amount of the glucose absorbed/released is determined using Michaelis Menten kinetics.

Liver converts some of the glucose to glycogen and breaks down some glycogen to glucose

in the manner described previously. Moreover, Liver converts excess glycogen to fat, and

stores it in AdiposeTissue when the glycogen level exceeds its maximum configured value

(equivalent to 120 grams of glucose by default). The Liver consumes some glucose for

glycolysis and produces glucose via the gluconeogenesis process. 93% of unbranched amino

acids received from the PortalVein is consumed by the Liver, and the rest (along with all

the branched amino acids) is released to the Blood.

2.3.2.7 Kidneys

One of the significant tasks for the kidneys is filtering the blood from waste and extra

fluid. The kidneys obtain the needed energy for this task from the oxidation and glycolysis

processes. CarbMetSim represents the kidney operations in the Kidneys object. At each

tick, the Kidneys do the following: Glycolysis, Gluconeogenesis, and Glucose Excretion in

Urine. In the later operation, when the glucose concentration in the Blood object increases

from 11 mmol/l (by default [43]) to 22 mmol/l , the glucose excretion in urine increases

linearly from zero to a certain peak level (100 mg/min by default).

2.3.2.8 Muscles

CarbMetSim represents the skeletal muscles in the Muscles class. The preliminary imple-

mentation of CarbMetSim simulates the response to aerobic exercise only. The summary of

the simulator’s operations when the HumanBody is in Fed Resting, PostAbsorptive Resting,

Fed Exercising, or PostAbsorptive Exercising states is as follows.
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The Muscles perform the following operations when the HumanBody is in the Fed Resting

or PostAbsorptive Resting state (during a tick):

1. Glucose Absorption: Where the glucose is absorbed by GLUT4 as stated previously.

Moreover, a basal absorption via GLUT1s happens at a certain configured rate.

2. Glycolysis: A portion of absorbed glucose is consumed via glycolysis and the resulting

lactate is added to the Blood.

3. Glycogen Synthesis: Some of the absorbed glucose is converted to glycogen when the

glycogen store of the Muscles is less than a configurable maximum value.

4. Oxidation: Remainder of the absorbed glucose is consumed via oxidation.

5. Fatty Acid Consumption: Muscles consume fat from the AdiposeTissue to meet the

remaining energy needs when the glycolysis and glucose oxidation processes do not

meet the energy needs during the resting state.

The Muscles perform the following operations when the HumanBody is in the Fed Exer-

cising or PostAbsorptive Exercising state (during a tick):

1. Oxidation: Glucose absorbed from Blood or derived from locally stored glycogen is

oxidized to meet portion of the energy needs of the human body during exercise.

2. Glycolysis: The glycolysis flux increases from the average value (glycolysisMin_) lin-

early with exercise intensity. The peak level (glycolysisMax_) is achieved when the

intensity of the exercise is 18 METs. The glucose 6-phosphate consumed for glycolysis

comes from locally stored glycogen.

3. Fatty Acid Consumption: Muscles consume fat from the AdiposeTissue to meet the

remaining energy needs when the glucose oxidation and glycolysis described above do

not meet the energy needs.
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2.3.2.9 Adipose Tissue

The AdiposeTissue in CarbMetSim serves as the storage for fat. The Liver converts

excess glycogen to fat and then stores it in the AdiposeTissue. Also, the Intestine object

adds the fat contents in chyme to the AdiposeTissue object. The Muscles object removes

fat from the AdiposeTissue to meet the energy needs. CarbMetSim does not have detailed

implementation of the lipid metabolism.

2.3.2.10 Brain

The brain uses GLUT3 transporters to absorb glucose from the bloodstream and oxidizes

glucose to meet the energy needs. The brain oxidizes about 120 g of glucose per day, which

is equivalent to absorbing 83.33 mg of glucose per minute [57]. CarbMetSim models the

brain operation in the Brain class, where the Brain object consumes on average 83.33 mg of

glucose every minute from the Blood object.

2.3.2.11 Heart

The heart meets most of its energy needs by oxidizing fatty acids. Also, it utilizes glucose

and lactate to meet up to 30% of the its energy needs[57]. The Heart object in CarbMetSim

models the heart operation. It absorbs glucose to meet its energy needs during the fed state.

As mentioned previously, all the aspects of the simulator were redesigned after this pre-

liminary version as it is described in subsequent chapters.
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Chapter 3

Key Aspects in CarbMetSim design

This chapter describes the key aspects of CarbMetSim’s design.

3.1 Food, Exercise and Human Subject Description

CarbMetSim represents meals in terms of their serving size and the quantity of rapidly

available glucose (RAG), slowly available glucose (SAG), protein and fats per serving. The

RAG component consists of sugars and the rapidly digestible starch (i.e. starch that was di-

gested in vitro within 20 minutes [27],[56]), whereas the SAG encompass the slowly digestible

starch (i.e. starch that was digested in vitro between 20 and 120 minutes [27],[56]). The di-

etary fiber (non-starch polysaccharide part of the carbohydrates) is currently not considered

or represented in the simulator, even though fibers in food are known to have an impact on

gastric emptying. Also, the simulator does not have a detailed implementation of protein and

lipid metabolism. It provides a model of the impact of protein and fat contents of food on

gastric emptying. Therefore, the total amount of protein and total amount of fat per serving

is listed in the food description, which is one of the input files to the simulator. CarbMetSim

presently does not represent protein in terms of its amino acid contents. Gleeson [45] stated

that 3 of the 20 amino acids have branched chains; therefore a general assumption is made

that 85% of amino acids that come from protein digestion have unbranched chains and the

remainder have branched chains.

Aerobic exercises are the only exercises that can be simulated by CarbMetSim. An

exercise activity is described in terms of its intensity in units of METs, where 1 MET is
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1 kcal of energy expenditure per kg of body weight per hour. By convention, 1 MET is

considered equivalent to 3.5ml of oxygen consumption per kg of body weight per minute. In

general, each person consumes oxygen up to a certain rate. This personalized maximal rate,

called (%V O2max), depends on the following factors or attributes of the individual being

simulated: gender, age and fitness level of the individual [58].

Representing the intensity of a physical activity in terms of the associated oxygen con-

sumption rate determines the relative fraction of the glucose and fatty acids oxidized to meet

the energy needs of the exercising muscles. Note that the intensity reported as the % age of

the individuals (%V O2max), and it represents the specific oxygen consumption rate associ-

ated with each individual. Therefore, CarbMetSim needs to know the gender, age and fitness

level within the age group of the individual being simulated to estimate the (%V O2max) for

the individual using the tables in Kaminsky, et al. [58].

3.2 Modeling Insulin production

BGL is one of the main factors that determines the insulin level in the blood. If the

BGL is high, the insulin level will increase in order to simulate the liver and the muscle

tissues to absorb glucose from the blood, and also to signal both the liver and the kidneys

to minimize or halt the endogeneous glucose production through glycogen breakdown and

gluconeogenesis processes. On the other hand, the insulin level in the blood decreases when

an individual physically exercises, [110],[102],[111], [39],[115], and therefore the liver and the

kidneys in response increase the production of glucose.

CarbMetSim uses a variable called insulinLevel (inside the Blood object) to represent the

current insulin level in the blood, and it assigns values between 0 and 1 to the variable. The

value of insulinLevel depends on the following variables:
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1. current BGL,

2. the current exercise intensity (in %V O2max),

3. and other configurable parameters:

(a) minGlucoseLevel_: represents typical hypoglycemic BGL.

(b) baseGlucoseLevel_: represents typical fasting BGL.

(c) highGlucoseLevel_: represents typical peak BGL, where (minGlucoseLevel_ <

baseGlucoseLevel_ < highGlucoseLevel_).

(d) baseInsulinLevel_: represents the typical fasting insulin level.

(e) peakInsulinLevel_: represents typical insulin level when BGL is at peak, where

where 0 ≤ baseInsulinLevel_≤ peakInsulinLevel_≤ 1.

(f) restIntensity_: represents the oxygen consumption rate in %V O2max when the

individual is in rest state (not exercising), by default 2 METs converted to%V O2max.

(g) intensityPeakGlucoseProd_: represents the exercise intensity in %V O2max at

which the liver and kidney produce glucose at the maximum rate (by default

20%).

CarbMetSim uses the following rules to determine the value of insulinLevel :

1. if the current BGL is less than or equal to the minGlucoseLevel_, the insulinLevel

stays at value zero.

2. if the current BGL is between the minGlucoseLevel_ and the baseGlucoseLevel_,

the insulinLevel depends on if the human subject being simulated is currently engaged

in physical activity or not. If the human subject is practicing and the exercise intensity

is greater than or equal to intensityPeakGlucoseProd_, the insulinLevel stays at zero.
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On the other hand, the insulinLevel depends on the exercise intensity. As the ex-

ercise intensity decreases from intensityPeakGlucoseProd_ to the the restIntensity_,

the insulinLevel increases linearly from zero to the baseInsulinLevel_ However, If the

individual is in the rest state (not exercising), and the BGL increases from minGlu-

coseLevel_ to baseGlucoseLevel_, the insulinLevel increases linearly from zero to the

baseInsulinLevel_.

3. In the time the BGL increases from the baseGlucoseLevel_ to the highGlucose-

Level_, the insulinLevel increases linearly from the baseInsulinLevel_ to the peakIn-

sulinLevel_.

4. If the BGL is greater than or equal to the highGlucoseLevel_, the insulinLevel

stays at the peakInsulinLevel_ value.

As discussed earlier, the peakInsulinLevel_ variable represents the peak ability to pro-

duce insulin. When peakInsulinLevel_ equals 1, this means that the pancreas produces a

normal (or excessive, as in the case of initial stages of type II diabetes) production of in-

sulin. However, assigning a value 0 to peakInsulinLevel_ means that the pancreas does not

produce any insulin at all (type I diabetes). Assigning a value x (between 0 and 1) to the

variable means that peak insulin production is just x times the normal peak.

The value of insulinLevel should be understood as the impact it has on various organ

objects, rather than the absolute insulin concentration associated with a particular human

subject. Indeed, the variable has a deep impact on the operation of different organ objects in

CarbMetSim. In other words, it is not unexpected to have two different insulin concentrations

for two individuals, in which both of them have the same value for the insulinLevel, because

they have the same impact on carbohydrate metabolism related functions of the organs.
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3.3 Modeling glucose transport

Two types of glucose transporters help in moving glucose into human body cells. The

first type is the active transporters that move glucose from a low concentration to a high

concentration, such as Sodium GLucose coTransporters (SGLTs) . The second type, are the

passive transporters, such as Glucose Transporters (GLUTs) that move glucose from a high

concentration to a low concentration.

The operation of active transporters in an organ is modeled by specifying the average

amount of glucose transferred per minute via active transport. The actual amount transferred

is a poisson distributed random variable. On the other hand, the simulator employ Michaelis

Menten kinetics to set the amount of glucose transferred in a minute via passive transport.

According to Michaelis Menten kinetics, the rate of transport (V) across a membrane depends

on the difference in the substrate concentration (Y) across the membrane in the following

manner: V = Vmax
Y

Y+km
, where Vmax is the maximum rate of transport and km is the

substrate concentration difference at which the transport rate is half the maximum. The

simulator uses the Vmax value associated with a GLUT transporter in an organ to determine

the number of transporters involved, and it treats the Vmax (associated with a particular

GLUT in a particular organ) as a poisson distributed random variable with a configurable

mean.

There are many types of GLUT transporters in the human body, and one of them is

the GLUT4 transporters. These transporters allow muscles to absorb glucose from the

bloodstream, and therefore they play a main role in moving glucose into cells. GLUT4

transporters are activated by two different ways, depending on the status of the individual. If

the individual is in the rest state (not exercising), the number of active GLUT4 transporters

depends on the insulin level in the bloodstream. When the insulin level is low, GLUT4
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transporters are inactive and the muscles do not absorb enough glucose from the bloodstream.

GLUT4 transporters get active when the insulin level rises in the blood, and which makes the

muscles to absorb excess glucose from the blood. On the other hand, GLUT4 transporters

are activated when the human subject is engaged in physical activity. The exercise itself

activates a sufficient number of GLUT4 transporters [93],[46],[112] to simulates muscles to

absorb the needed amount of glucose from the bloodstream. The simulator replicates both

behaviors. Indeed, CarbMetSim models the GLUT4 activation during the resting states by

configuring the Vmax value associated with GLUT4 transporters in the following manner:

1. Since muscles convert and store a large fraction of the absorbed glucose to glycogen and

there is a limit on the amount of stored glycogen inside muscles, the current amount

of muscle glycogen impacts the Vmax value. In particular, when the muscle glycogen

storage increases from zero to a configurable maximum value, the Vmax value reduces

linearly from a configurable maximum (7 mg/kg/min by default) to a configurable

minimum (3.5 mg/kg/ min by default).

2. The impact of the insulin level is modeled by multiplying the Vmax value with a factor

that increases in value with an increase in the insulinLevel. The insulinLevel itself is

used as the value of this factor, and it is assigned values between between 0 and 1.

Intense physical exercise causes a temporary increase in glucose absorption by muscles

[3] to make up for the glycogen lost during exercise, therefore the insulinLevel does not

impact the Vmax value in the first hour after a robust physical exercise activity (except

if the current BGL is below the baseGlucoseLevel_).

3. The impact of insulin resistance in reducing the activation of GLUT4 transporters is

modeled by multiplying the Vmax value with a configurable parameter (glut4Impact_)

that assumes values between 0 and 1 (by default 1.0).
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3.4 Modeling glycolysis

Human tissues depend on glucose as one of the main sources of energy to maintain their

metabolisms. Human cells either oxidize glucose completely or consume it anaerobically via

the process of glycolysis. Aerobic metabolism (complete oxidation of glucose) generates 15

times more energy than anaerobic glycolysis, but it can only happen if oxygen is available.

Tissues with access to sufficient amounts of oxygen oxidize glucose for their energy needs,

whereas others use glycolysis. The following are the organs that use anaerobic glycolysis as

an energy source in CarbMetSim: Muscles, Liver, Kidneys, Intestine and Blood. The insulin

level in the bloodstream determines the amount of glucose consumed for glycolysis process.

In other words, the consumed amount of glucose increases with the glucose availability (high

insulin levels). The simulator models this process in the following manner:

1. There are two configurable parameters for each organ using glycolysis as an energy

source: glycolysisMin_ and glycolysisMax_. These parameters are in units of mg of

glucose consumed per kg of body weight per minute.

2. At each tick, the organ generates a poisson distributed random number (min) with

glycolysisMin_ as the mean value and glycolysisMax_ as the maximum value. Then,

based on the glucose availability in the organ, the amount of glucose consumed in a

tick for glycolysis is given by: min+ insulinImpact ∗ (glycolysisMax_−min). The

insulinImpact is a factor that is assigned a value between 0 and 1. It increases in value

with an increase in the insulinLevel, and it is calculated using a sigmoid function, which

is currently the CDF of a normal distribution with a configurable mean and standard

deviation.

3. To model the impact of diabetes on glycolysis flux, CarbMetSim uses configurable
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multiplicative parameters glycolysisMinImpact_ and glycolysisMaxImpact_ (with de-

fault values 1.0) to modify the values of glycolysisMin_ and glycolysisMax_ parameters

associated with each organ.

The glycolysis process generates lactate, which serves as a key substrate for endogenous

glucose production via gluconeogenesis (discussed later). Indeed, a fraction (by default 1) of

the glucose consumed for glycolysis is converted to lactate, and added to the Blood object.

Table 3.1 shows the default values for glycolysis related parameters for different organs. The

relative contributions of different organs towards overall glycolysis flux were set as suggested

in [43][113]. The default values of various configurable parameters in CarbMetSim were

determined experimentally to provide a close match with published measurements performed

on non-diabetic human subjects before and after a meal event [114].

Organ glycolysisMin_ glycolysisMax_
(mg/kg/minute) (mg/kg/minute)

Blood 0.0315 0.1135
Kidneys 0.0315 0.1135
Liver 0.0630 0.5675
Muscles 0.0630 0.8512
Intestine 0.0315 0.1135

Table 3.1: The default values for glycolysis related parameters in
various organs.

3.5 Modeling gluconeogenesis

When the human body is not receiving new glucose via food and the glycogen store in

the liver has been exhausted, the glucose is produced through a different metabolic pathway

called gluconeogenesis. This metabolic pathway motivates the liver and kidneys to produce

glucose from lactate, glycerol, glutamine and alanine [37],[75]. Typically, gluconeogenesis
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occurs when the insulin level is low. However, diabetic people may experience high gluco-

neogenesis flux even when the insulin level is high[71][90].

The Liver and the Kidneys (in CarbMetSim) produce glucose via gluconeogenesis using

the substrates mentioned above. CarbMetSim assumes that the substrates are always avail-

able in sufficient amounts to allow gluconeogenesis to take place. The simulator uses two

configurable average rates to produce glucose; gngLiver_ and gngKidneys_ with a default

value equal to 0.16 mg/kg/minute for each parameter.

CarbMetSim models the process of producing glucose via the gluconeogenesis pathway. If

the insulinLevel is above the baseInsulinLevel_, the average gluconeogenesis flux is multiplied

by a factor that has a value between 0 and 1. This factor decreases in value with an increase

in the insulinLevel as per an inverse sigmoid function (currently, the complementary CDF of

a normal distribution with a configurable mean and standard deviation). This simulates the

process of the decrease in gluconeogenesis flux with an increase in the insulin level. On the

other hand, the simulator models the increased gluconeogenesis flux when BGL is low and

gluconeogenesis is probably the only source of glucose for the body. If the insulinLevel is

below the baseInsulinLevel_, the average gluconeogenesis flux is multiplied by a factor that

decreases in value from a configurable maximum (gngImpact_ ≥ 1, by default 6.0) to the

minimum value 1 as the insulinLevel increases from zero to the baseInsulinLevel_.

3.6 Modeling Liver glycogen synthesis & breakdown

The liver plays an important role in monitoring and maintaining normal blood glucose

concentrations. The liver stores and converts excess glucose in blood as glycogen when

the insulin levels are high (during the post-prandial state). Also, the liver breaks down

the stored glycogen and releases glucose to the blood when the insulin level is low (during

the post-absorptive and exercising state). Diabetes may effect both glycogen synthesis and
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breakdown in the liver.

The exact amount of glycogen synthesized by the Liver object during each tick is a poisson

distributed random variable with a configurable average (glucoseToGlycogenInLiver_, 4.5

mg/kg/min by default). The amount of synthesized glycogen depends on the availability of

glucose; also the poisson variable is modified multiplicatively by two factors. The first one

models the effect of insulin on glycogen synthesis. The factor is assigned values between 0 and

1, and it increases in value with increases in the insulinLevel. It is calculated using a sigmoid

function, which is currently the CDF of a normal distribution with a configurable mean and

standard deviation. The second factor called liverGlycogenSynthesisImpact_ modifies the

configured average multiplicatively to model the impact of diabetes on glycogen synthesis

in the Liver. It has value 1.0 as a default. The Liver object has a limited capacity to store

glycogen, and hence any excess glycogen is converted to fat and stored in the AdiposeTissue.

As mentioned above, the glycogen breakdown in the liver serves as the key source of

glucose, so the body does not run out of glucose, especially when no new glucose via food

is entering the body or when the body is experiencing an intensive physical exercise, and

the glucose needs of the body is high. Therefore, the amount of glycogen stored in the

Liver that is broken down to glucose during a tick closely depends on the insulinLevel. In

CarbMetSim, the average glycogen breakdown flux in the Liver is represented by glycogen-

ToGlucoseInLiver_ variable (0.9 mg/kg/min by default). When the insulinLevel is above

the baseInsulinLevel_, the average glycogen breakdown flux in Liver is multiplied by a fac-

tor (between 0 and 1) that decreases in value with increases in the insulinLevel as per an

inverse sigmoid function, which is currently the CDF of a normal distribution with a con-

figurable mean and standard deviation. Typically, this occurs when the BGL is more than

the baseGlucoseLevel_, to model the decrease in Liver glycogen breakdown when there is an

increase in the insulin level. On the other hand, the simulator models the increased Liver
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glycogen breakdown when BGL is below the baseGlucoseLevel_. If the insulinLevel is below

the baseInsulinLevel_, the average Liver glycogen breakdown flux is multiplied by a factor

that decreases in value from a configurable maximum (liverGlycogenBreakdownImpact_ ≥ 1,

by default 6.0) to the minimum value 1 as the insulinLevel increases from zero to the ba-

seInsulinLevel_.
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Chapter 4

CarbMetSim design and implementation

CarbMetSim is a discrete event simulator that tracks the changes of BGL of a human

subject after a timed series of diet and exercises activities. The simulator is implemented

in an object-oriented paradigm, where the Key organs are represented as classes in the

CarbMetSim. On top of these classes, the simulator has a SimCtl (SIMulation ConTroLler)

class and a HumanBody class. The SimCtl contains a data structure of type a priority queue

that stores the food/exercise events sorted in order of their firing times. Also, the class

maintains the simulation time in ticks, where each tick is a minute. At the beginning of the

simulation, the SimCtl object reads all the food/exercise events into the priority queue. At

each tick, the SimCtl object fires the events whose firing time has arrived. Once the event

has fired, the simulator invokes the appropriate methods of the HumanBody class, and then

makes each organ to do its work during the tick time.

In this chapter, the implementation and the operation of the different classes (the roles

of organs) of the simulator are discussed and described. The default values of different

parameters mentioned in this chapter were determined experimentally to provide a close

match with published measurements performed on non-diabetic human subjects before and

after a meal event [114]. Table 4.1 shows the default values of configurable parameters that

determine the effect of insulinLevel on various metabolic processes.
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4.1 HumanBody

The HumanBody class contains the following organ objects: Stomach, Intestine, Por-

talVein, Liver, Kidneys, Muscles, AdiposeTissue, Brain, Heart and Blood. At the beginning

of a simulation, the HumanBody object does the following:

1. It reads the constituents of the consumed foods in terms of rapidly/slowly available

glucose (RAG/SAG), protein and fat.

2. It reads the intensity of different exercise activities in units of METs.

3. It calculates the maximal rate of glucose consumption (%V O2max), associated with

the human subject being simulated using the tables in [58]. The simulator is supplied

with the parameters of the individual’s (being simulated) gender, age and self-assessed

fitness level within his\her age group.

4. It reads other simulation parameters that impact the operation of different organs.

Parameter Default Value
insulinImpactOnGlycolysis_Mean 0.5
insulinImpactOnGlycolysis_StdDev 0.2

insulinImpactOnGNG_Mean 0.5
insulinImpactOnGNG_StdDev 0.2

insulinImpactGlycogenBreakdownInLiver_Mean 0.1
insulinImpactGlycogenBreakdownInLiver_StdDev 0.02
insulinImpactGlycogenSynthesisInLiver_Mean 0.5
insulinImpactGlycogenSynthesisInLiver_StdDev 0.2

Table 4.1: Configurable parameters (and their default values) for the
mean and standard deviation of normal distributions to determine
the impact of insulinLevel on various metabolic processes.

The SimCtl object calls a HumanBody’s method at each tick. This method causes other

methods to engage with individual organ objects that allow the organs to do their work
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during that tick. The HumanBody (through methods) adds the consumed food to the

Stomach when SimCtl fires a food event; also, it get notified by the Stomach when there

is no food left. On the other hand, the HumanBody updates the energy needs of the body

when SimCtl fires an exercise event. When the exercise event ends, the HumanBody resets

the energy needs to the resting state. Therefore, the HumanBody remembers whether the

Stomach has some undigested food (Fed) or not (PostAbsorptive) and whether the body is

currently engaged in exercise (Exercising) or not (Resting). The simulated human subject

in CarbMetSim can be in any of the following body states: Fed_Resting, Fed_Exercising,

PostAbsorptive_Resting and PostAbsorptive_Exercising. The simulator is configurable to

allow different values for the configurable parameters that control the operation of the organs

based on the current body state (Fed_Resting, Fed_Exercising, PostAbsorptive_Resting

and PostAbsorptive_Exercising).

4.2 Blood

CarbMetSim represents the bloodstream via the Blood object, where the object collabo-

rates with various organs to exchange glucose, amino acids and other substrates. The Blood

object maintains the following substrate variables: glucose, lactate, branched AminoAcids

(consumed by muscles, adipose tissue and brain) and unbranched AminoAcids. The Blood

object also maintains the insulinLevel variable and a variable representing the blood volume

(5 liters by default) called fluidVolume_ . CarbMetSim maintains the insulin hormone only.

At each tick, the Blood object updates the insulinLevel as described in Section 4.2. Also,

some glucose is consumed for glycolysis in the manner described in Section 4.4.

56



4.3 Stomach

The process of emptying food from the stomach into the intestine is known as the gastric

emptying process. Gastric emptying is a complicated process and it is affected by several

factors such as the volume, particle size, viscosity, osmolarity, acidity and nutritional contents

of the meal [70], [76] [52]. Several mathematical models have been proposed simulating the

gastric emptying process. For instance, [73], [53] proposed exponential models, where [26]

suggested power exponential functions. Other complicated models were proposed too. For

example, [23] suggested a three-compartment model of the gastrointestinal tract where the

gastric emptying rate follows a trough-shaped pattern (initially high followed by a non-linear

decrease to a minimum value followed by a non-linear increase back to the initial maximum

value). Moreover, [68] proposed a simple model for gastric emptying of carbohydrates in

a meal, where the rate of gastric emptying has three phases—a linear increase phase, a

constant maximum rate phase and a linear decrease phase.

In CarbMetSim, the gastric emptying process is motivated by [54]. It is a simple mode

that takes into consideration the role of fat\protein in slowing down the gastric emptying

process. When a food event is fired, the consumed food enters the Stomach instantaneously,

and its contents are added to any existing stores of RAG, SAG, protein and fat. CarbMetSim

assumes that all the food in the Stomach are in the chyme form and that the amount of

chyme leaking to the Intestine each minute consists of one part determined using a poisson

distribution (with a default mean 500 mg) and another part proportional to the total amount

of chyme currently present in the Stomach. The proportional part increases linearly with a

decrease in the energy density of the chyme. When the chyme consists entirely of fat (with

energy density 9.0 kcal/g) the minimum value of this proportionality constant is 0.03 (the

default value) and it represents the fraction leaking out of the Stomach object each minute.
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On the other hand, when the chyme consists entirely of carbohydrate (with energy density

4.0 kcal/g), the maximum value is 9.0/4.0 times the minimum value, and it represents the

fraction leaking out of the Stomach each minute. CarbMetSim does not take into account

other factors that impact the gastric emptying process, such as solid/liquid nature of food,

and the fiber content. Therefore, a bolus of chyme leaks from the Stomach into the Intestine

every tick until the Stomach is empty. The nutritional composition of leaked chyme is the

same as that of chyme present in the stomach.

4.4 Intestine

The following are the main four operations that occur in the Intestine object in Carb-

MetSim:

Carbohydrate Digestion:

The intestine uses different enzymes to digest the carbohydrates in the chyme (re-

ceived from stomach) to produce monosaccharides such as glucose, fructose and galactose

[57]. CarbMetSim converts all the carbohydrates in the chyme to just one monosaccha-

ride—glucose. With every tick, the Intestine receives a bolus of chyme from the Stomach

as long as there is some food in it. The Intestine class maintains a list of Chyme objects

where each object includes the undigested RAG / SAG contents of each bolus obtained

from the Stomach and the moment it acquired the bolus. Moreover, the Intestine digests

a certain amount of RAG / SAG from a Chyme entity at each tick. The amount digested

from a specific Chyme object is determined using normal distributions with default mean

and standard-deviation, as follows: 2 minutes & 0.5 minutes for RAG and 30 minutes &

10 minutes for SAG. Most of the RAG and SAG contents of the bolus are digested within

20 and 120 minutes, respectively, after the bolus has entered the Intestine. The produced

glucose from the Carbohydrate digestion is added to a variable (in Intestine object ) called
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glucoseInLumen. The variable represents the total glucose present in the intestinal lumen.

Fat and Protein Digestion: When the Intestine receives a chyme bolus, it adds its fat

contents to the AdiposeTissue. Also, it adds the protein contents to a common protein pool

in the Intestine. The Intestine object, at each tick, digests an amount of this protein and

transfers the resulting amino acids to the PortalVein. This digested amount is determined

as per a poisson distribution with a default mean 1 mg. The simulator does not keep track

of the dietary protein’s amino acid composition and makes a simple assumption that 85% of

these amino acids are unbranched and the remaining 15% are branched.

Glucose Absorption from Intestine to PortalVein: Glucose moves from the in-

testinal lumen to the enterocytes through the border membrane of the brush and from the

enterocytes to the portal vein through the basolateral membrane. The transmission from the

intestinal lumen is carried out by the combination of active (SGLT-1) and passive (GLUT2)

transporters in which the amount of GLUT2 transporters is dependent on the level of the

glucose on the lumbar side. However, the transfer from the enterocytes to the portal vein

takes place solely via passive GLUT2 transporters [57]. CarbMetSim uses two variables,

glucoseInLumen and glucoseInEnterocytes, inside the the Intestine object, to represent the

total glucose present in the intestinal lumen and in enterocytes, respectively. At each tick,

the Intestine moves some glucose from the glucoseInLumen variable to glucoseInEnterocytes

variable. The amount moved has an active transport component and a passive transport

component. The active component is determined via poisson distribution, where the default

mean equals 30 mg/minute. The passive transport component is determined using Michaelis

Menten kinetics (assuming configurable volumes for the lumen and the enterocytes). The

Vmax value used for Michaelis Menten kinetics increases with glucose levels in the lumen with

a default maximum value of 800 mg/minute. The Km value used is 20 mmol/l by default
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[57]. The transfer of glucose from the enterocytes to the portal vein is determined by trans-

ferring some glucose from glucoseInEnterocytes, at each tick, to the PortalVein. The amount

moved is determined using Michaelis Menten kinetics (average Vmax= 800 mg/ minute, Km

= 20 mmol/l by default [57]).

Glycolysis: In the way mentioned in Section 4.4, the intestinal cells get some of their

energy via glycolysis of glucose. If the glucose in enterocytes (glucoseInEnterocytes) is not

enough, the extra glucose needed for glycolysis comes from the bloodstream (the Blood

object).

4.5 PortalVein

The portal vein carries blood that passes through the intestinal to the liver. CarbMetSim

treats the portal vein as a separate class from the rest of the circulatory system (represented

by the Blood class), due to its particular role as a conduit from the intestine to the liver.

CarbMetSim passes the glucose and amino acids, resulting from food digestion in the Intes-

tine, to the Liver through the PortalVein. Because the portal vein is part of the circulatory

system, where no new glucose is obtained from the Intestine, the portal vein must have

the same glucose concentration as the rest of the circulatory system. It is implemented in

the following way with CarbMetSim. At the beginning of a tick, there is no glucose in the

PortalVein. During each tick, the following sequence of actions take place:

1. The PortalVein imports glucose from the Blood. The glucose levels in the PortalVein

must match the glucose levels in the Blood before the import process. The PortalVein’s

volume is a configurable parameter with default value 5 dl. It is used to calculate the

glucose concentration.

2. The transfer of glucose takes place from the Intestine to the PortalVein (as described
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previously) and then from the PortalVein to the Liver (described later).

3. After this, any glucose remaining in the PortalVein is transferred back to the Blood.

Also, CarbMetSim moves all the amino acids received from the Intestine to the Liver

during that tick itself.

4.6 Liver

When the glucose level in the portal vein is high, the cells in the liver absorb glucose

from the portal vein through GLUT2s transporters. The absorbed glucose is phosphorylated

to glucose 6-phosphate, which will be used for glycogen synthesis or glycolysis. In the liver,

the Insulin hormone and glucose activate glycogen synthesis enzymes and block the glycogen

breakdown enzymes. Moreover, the insulin hormone activates the glycolysis of glucose 6-

phosphate in liver cells to produce pyruvate, some of which is oxidized, and the remaining is

converted to lactate and released to the bloodstream. However, insulin insufficiency activates

the process of glycogen breakdown and the gluconeogenesis process (as described in chapter

4). The gluconeogenesis flux increases with the availability of the lactate, alanine, glycerol,

and other substrates in the bloodstream even if the level of insulin is high. If the glucose

levels and insulin levels are high, the liver uses the excess glucose for synthesizing glycogen.

However, if the insulin level is low, the excess glucose may leave the liver cells via GLUT2s

and probably other means. Also, a high insulin levels make some of the excess glucose to be

converted into lipid. The main roles of the liver in the fed and post-absorptive states can

be summarized as follows. During the fed stage, the liver absorbs glucose and uses this for

glycogen synthesis and glycolysis. However, during post-absorptive and exercise states, the

liver releases glucose to the bloodstream though the glycogen breakdown and gluconeogenesis

processes. Another essential operation of the liver is its oxidation of unbranched amino acids,
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which supplies nearly half the energy requirements of the liver.

The Liver class in CarbMetSim implements the aforementioned operations of the liver. It

maintains the initial and the allowable maximum amount of stored glycogen as configurable

variables (parameters). The initial value of this variable guarantees that the Liver is able to

produce 100 grams of glucose at the beginning of a simulation. However, the upper default

amount of allowable stored glycogen in the Liver is equivalent to 120 grams of glucose.

The Liver object does the following at every tick:

1. Glucose Absorption\Release: When the glucose level in the PortalVein is greater than

in the Liver, some glucose will be absorbed into the Liver by GLUT2 transporters.

Likewise, if the concentration of glucose in the Liver is higher than into the Blood,

GLUT2 transporters transfer some glucose to the Blood. The amount of glucose ab-

sorbed\released is calculated using Michaelis Menten kinetics (Vmax = 50mg/kg/min

by default and Km = 20 mmol/l by default) [57]).

2. Glycogen Synthesis\Breakdown: The Liver synthesizes or breaks down glycogen in the

particular way described in Section 4.6.

3. Lipogenesis: If the Liver glycogen production meets its configurable maximum value,

the excess glycogen is converted into fat that is stored in AdiposeTissue.

4. Glycolysis and Gluconeogenesis: The Liver absorbs some glucose for glycolysis and

produces glucose through gluconeogenesis, as stated in in Section 4.4 and Section 4.5,

respectively.

5. Amino Acid Consumption: The Liver absorbs 93% of the unbranched amino acids ob-

tained from the PortalVein and transfers the remainder togather with all the branched

amino acids to the Blood.
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4.7 Kidneys

One of the significant tasks for the kidneys is filtering the blood from waste and extra fluid.

This task requires considerable energy. In general, the kidneys obtain the needed energy from

oxidation and glycolysis processes. Their outer layer (the cortex) is well supplied with oxygen

and therefore meets its energy needs through the oxidation of the absorbed glucose and fatty

acids from the bloodstream. The inner center (the medulla) gets its energy from anaerobic

glycolysis. Moreover, the kidneys produce glucose through gluconeogenesis. CarbMetSim

simulates the main operations of the kidney through the Kidneys class. The Kidneys object

do the following at every tick:

1. Glycolysis: The kidney fulfills its energy requirements through glycolysis, as mentioned

in Section 4.4. The glucose consumed for glycolysis is removed from the Blood object

and the resulting lactate is released into the Blood object.

2. Gluconeogenesis: The Kidneys produce glucose via gluconeogenesis in the way de-

scribed in Section 4.5, and they release it to the Blood object.

3. Glucose Excretion in Urine: As the the BGL rises from one Glucose threshold (11

mmol/l) to another (22 mmol/l by default)[43], [77], the glucose excretion in urine

increases linearly from zero to a certain peak level (100 mg/min by default). The

simulator uses a configurable variable excretionKidneysImpact_ (with default value 1)

to multiplicatively modify the amount of glucose excreted per tick in urine.

4.8 Muscles

There are two types of cells or fibers in the skeletal muscles: the red fibers and the

white fibers. To meet the body’s energy needs, the red fibers oxidize fatty acids and glucose
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absorbed from the bloodstream. Muscles mainly use insulin-sensitive GLUT4 transporters to

absorb glucose from the bloodstream. Also, it uses GLUT1 transporters for some basal-level

absorption. The white fibers, however, rely on glycolysis of glucose 6-phosphate obtained

from the glycogen stored within the white fibers. Moreover, the skeletal muscles get their

energy from the absorbed branched chain amino acids.

As stated previously, each individual can consume oxygen up to a certain maximal rate.

This rate is called %V O2max and the rate depends on the gender, age and fitness level

of the individual [58]. Therefore, the intensity of a physical activity can be expressed by

this oxygen consumption rate (%V O2max). The exercise intensity can be also expressed in

Metabolic Equivalent of Task or METs, where 1 MET is 1 kcal of energy expenditure per

kg of body weight per hour. Normally, 1 MET is considered equivalent to 3.5ml of oxygen

consumption per kg of body weight per minute. In other words, the intensity of a particular

exercise in METs can be converted to different intensities in terms of %V O2max for different

individuals.

Muscles during aerobic exercises meet their energy via oxidation of glucose and fatty

acids [57], [50], [97]. The exercise intensity and the rate at which the person consumes

oxygen during the exercise determines the relative fraction of the substrates used to meet the

energy. About, 10% of the energy needs during aerobic exercise are met by oxidizing glucose

absorbed from the bloodstream via GLUT4/GLUT1 transporters [97]. The aerobic exercise

activates GLUT4 transporters to absorb glucose from the bloodstream, despite the insulin

levels during the aerobic exercise [89], [46], [112]. Low intensity (e.g. 25%V O2max) exercises

meet most of the remaining energy needs via oxidizing fatty acids [97]. In a moderate and

high intensity exercise, a significant fraction of energy needs is met by oxidation of glucose

derived from the glycogen stored locally in the exercising muscles. [97] reported that when

the intensity of the aerobic exercise is about 65%V O2max, 30% of the energy comes from
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the oxidation of glucose obtained from locally stored glycogen. Also, it is reported in [50]

that the oxidation of glucose that is absorbed from the bloodstream and obtained from

local stored glycogen provides for about 50% and almost 100% of the energy needs when the

exercise intensities were 50%V O2max and 100%V O2max respectively. Most of the remaining

energy needs are met by the oxidation of fatty acids [31]. A small quantity of the energy

needs is met by the glycolysis of glucose 6-phosphate derived from locally stored glycogen.

The glycolysis level increases linearly with exercise intensity. Finally, a very small fraction of

energy needs is acquired by consuming branched amino acids absorbed from the bloodstream

[31]. When the glycogen stored in the liver and the muscles is depleted, the individual will

not be able to perform high intensity exercises (almost impossible). On the other hand, in

the resting state the muscles meet 85–90% of their energy needs via the oxidation of fatty

acids. The remaining energy comes from the oxidation of glucose (about 10%) and amino

acids (1–2%).[57] [50] [110]. In addition, [59] reported that the absorbed glucose is used for

oxidation, glycogen synthesis, and glycolysis. The glucose oxidation and glycolysis processes

(in muscles) increase with the insulin level in the bloodstream during the resting conditions.

CarbMetSim uses Muscles class (object) to model skeletal muscles. The skeletal muscle

(in the simulator) responds to the resting condition and the aerobic exercise only. The current

version cannot simulate anaerobic exercises,and neither can it distinguish among different

muscle groups. At the start of the simulation, a method in HumanBody class calculates

the %V O2max associated with the individual being simulated using the tables in [58]. The

simulator uses the following parameter for the %V O2max estimation: individual’s gender,

age, and self-assessed fitness level within his/her age group. These individual’s parameters

are all entered to the simulator as configuration parameters. In CarbMetSim, the intensity

of exercise is translated from the units of METs into %V O2max. As stated before, the

energy needs (to do the exercise) is met via the oxidation of glucose derived from locally
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stored glycogen. The initial amount of glycogen stored in the Muscles and the maximum

amount the simulator can hold are set via configurable parameters. By default, both these

parameters have values equivalent to 500 grams of glucose.

The Muscles object performs the following actions when the simulator (particulary Hu-

manBody class) is in the Fed_Exercising or PostAbsorptive_Exercising state during a tick:

1. Oxidation of glucose absorbed from the Blood: The Muscles absorb a random amount

of glucose from the Blood so that the absorbed glucose can be oxidized to meet on

average 10% of the energy needs during the tick as stated previously. The Muscles

absorb up to a configurable variable that is equal to 30µmol/kg/min (by default). The

absorption does not depend on the current insulinLevel in the Blood.

2. Oxidation of glucose derived from local glycogen: The Muscles absorb glucose derived

from local glycogen to meet a fraction of energy needs. The exercise intensity (in

%V O2max) is used (by oxidation) to determine this fraction value. As the exercise

intensity increases from 0 %V O2max to 100 %V O2max, a value between 0 and 0.9 is

chosen using a sigmoid function (currently, the compressed CDF of a normal distri-

bution), such that values close to 0.4 and 0.9 will be assigned for exercise intensities

50 %V O2maxx and 100 %V O2max, respectively. This value is then used as the mean

to generate a random value that gives the fraction of energy needs during the tick, as

long as a sufficient amount of local glycogen is available.

3. Glycolysis: Increases of exercise intensity yield to increases in the glycolysis flux. When

the exercise intensity increases from 0 %V O2max to 100 %V O2max during the tick,

the glycolysis flux increases linearly from a (poisson distributed) random value (with

glycolysisMin_ as the mean) to glycolysisMax_. The glycolysis process uses the glu-

cose 6-phosphate from the locally stored glycogen and adds the resulting lactate to the
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Blood object.

4. Fatty Acid Consumption: If the glycolysis and glucose oxidation processes do not

provide the current energy needs, Muscles will consume the fat from the AdiposeTissue

to meet the remaining energy needs.

The Muscles object performs the following actions when the simulator (HumanBody class)

is in Fed_Resting or PostAbsorptive_Resting state during a tick:

1. Glucose Absorption: GLUT4 is responsible of the basal glucose absorption [45] as

described previously. Moreover, basal absorption via GLUT1s happens at a configured

rate (by default zero).

2. Glycolysis: A fraction of the absorbed glucose is consumed via glycolysis and the

generated lactate is added to the Blood object as described in Section 3.4.

3. Glycogen Synthesis: Glycogen will be synthesized if the glycogen store of the Mus-

cles is less than the maximum amount that Muscles could hold [45]. The simulator

will generate a poisson distributed random amount of the absorbed glucose (with a

configurable mean, 7.0mg/kg/min by default), and it will be converted to glycogen.

4. Oxidation: The rest of the absorbed glucose is consumed via oxidation.

5. Fatty Acid Consumption: If glycolysis and glucose oxidation processes do not pro-

vide the energy needs during the resting state, Muscles will consume fat from the

AdiposeTissue to meet the remaining energy needs.
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4.9 Adipose Tissue

In CarbMetSim the AdiposeTissue object serves as the storage for fat. The Liver class

adds the exceeded glycogen in the form of fat (converted to fat) to the AdiposeTissue

object. Also, the Intestine object adds the fat contents in chyme to the AdiposeTis-

sue object. Fat in AdiposeTissue is consumed or removed by the Muscles to meet

its energy needs. These are the only operations are supported by CarbMetSim cur-

rently. Otherwise, CarbMetSim does not yet have a detailed implementation of lipid

metabolism.

4.10 Brain

The brain uses GLUT3 transporters to absorb glucose from the bloodstream, so the

brain cells can meet their energy needs by oxidizing glucose. The brain oxidizes about

120 g of glucose per day. In other words, the brain absorbs about 83.33 mg of glucose

per minute [37],[59]. In CarbMetSim, the brain operation is represented in the Brain

class, which consumes a poisson distributed random amount of glucose every minute

from the Blood object (with a mean 83.33 mg).

4.11 Heart

The heart uses both GLUT1 and GLUT4 transporters to absorb glucose from the

bloodstream. Consuming glucose and lactate provides up to 30% of the heart’s energy

needs [1]. However, the heart meets most of its energy needs by oxidizing fatty acids.

In CarbMetSim the Heart object absorbs a poisson distributed random amount of
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glucose from Blood and oxidizes it to meet its energy needs (with a default mean 14

mg/minute [59]).
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Chapter 5

Validation of CarbMetSim for a meal event

This chapter demonstrates the ability of CarbMetSim to model carbohydrate metabolism

in normal people and type II diabetic patients in the post-absorptive and post-prandial

phases. The default values of various configurable parameters had to be determined for

normal subjects before the start of the simulation processes. Therefore, CarbMetSim is

configured to provide a close match with measurements reported in Woerle et al. [114]. In

their literature, Woerle et al. did in-depth study on determining the flux along different

pathways for glucose arrival and consumption after a standard meal. The particpants in the

study were type II diabetic patients and normal subjects. It included 26 subjects with type

II diabetes, and 15 age/weight/sex-matched normal subjects (without diabetes). Diabetic

subjects included 16 men and ten women with the following characteristics: age 53±2 years,

body weight 93±4 kg, BMI 30±1 kg/m2, body fat 34 ±3%, and average HbA1c 8.6 ± 0.3%.

The normal subjects included seven men and eight women with the following characteristics:

age 49 ± 3 years, body weight 89 ± 4 kg, body fat 36 ± 3 %, and BMI 30 ± 1 kg/m2. All

the participants (diabetic and normal) consumed a standard breakfast consisting of 84 g of

glucose, 10 g of fat and 26 g of protein, at 10am on the day of the measurements after a fast

of more than 14 hours. Measurements were carried out for the post-absorptive phase before

the breakfast. The post-prandial phase was assumed to be six hours in duration after the

breakfast.

We performed two sets of simulations using CarbMetSim: one for a normal subject and

one for a type II diabetic subject. In each set, 30 simulations with different seeds for a
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random number generation were performed. Most of the configurable simulation parameters

were set to their default values. Indeed, they were set so that the normal subject simula-

tions produced a close match with measurements reported in [114]. The insulin level in the

reported measurements did not appear to influence the gluconeogenesis flux; therefore, the

impact of the insulin level on the gluconeogenesis flux was disabled in CarbMetSim for the

reported results in this chapter. Table 5.1 shows the configurable parameters for which the

default values were not used. In the reported experiments the parameters did not change

in value with the body state. However, the simulator is able to use different values for the

parameteres based on the body state. Also, CarbMetSim sets the value of bodyWeight and

age_ to the average values reported for subjects in each category in [114]. As reported

earlier, the age_, gender_and fitnessLevel_ parameters are used to estimate %V O2max for

the person being simulated. However, they are not pertinent in the reported simulations in

this chapter.

The following parameters (see Tables 5.2 and 5.3) were set as per the data reported in

[114]:

1. The baseGlucoseLevel_ and highGlucoseLevel_ values were set according to the re-

ported values for the fasting and the peak BGL [114].

2. The peakInsulinLevel_ values were set to the reported peak plasma insulin levels [114].

3. The average glycogen breakdown flux in the Liver (glycogenToGlucoseInLiver_) val-

ues was set to obtain a good match with the reported values for the post-absorptive

glycogen breakdown flux and the total glycogen breakdown in the liver during the

post-prandial phase.

The length of each simulation run was 18 hours of simulated time. It started at 12 am and

ended at 6 pm the next evening, with one breakfast meal intake that occurred at 10 am. The
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meal consisted of 84 g of glucose, 10 g of fat, and 26 g of protein. During the simulated time,

there were no other events. Also, at the beginning of the simulation (when the simulation

started at 12 am) the simulated subject was in the post-absorptive phase.

Normal Type II Diabetic
age_ (years) 49 53
gender_ 0 (male) 0 (male)

fitnessLevel_ (%ile) 50 50
bodyWeight (kg) 89 93

minGlucoseLevel_ (mg/dl) 50 50
baseGlucoseLevel_ (mg/dl) 90 210
highGlucoseLevel_ (mg/dl) 145 360

baseInsulinLevel_ 0.001 0.001
peakInsulinLevel_ 1.0 0.6

glut4Impact_ 1.0 0.25
glycolysisMinImpact_ 1.0 4.0
glycolysisMaxImpact_ 1.0 1.5

excretionKidneysImpact_ 1.0 1.3
glucoseToGlycogenInLiver_ (mg/kg/min) 4.5 6.75
glycogenToGlucoseInLiver_ (mg/kg/min) 0.9 1.25

gngLiver_ (mg/kg/min) 0.16 0.38
gngKidneys_ (mg/kg/min) 0.16 0.38

Table 5.1: Configuration parameters for simulations for a single meal
event.

Following Figures shows the related results in simulating a normal subject and a diabetic

subject. The Figures displays the minute-by-minute values of interest in the two simulations

with a particular seed value. In the details, Figure 5.1 shows that the gastric emptying has

been completed within 45 minutes of meal intake. Some of the delay in gastric emptying

(shown in Figure 5.1) was caused by the fat contents of the meal. Figure 5.2 displays

the quick digestion of glucose when it arrives in the Intestine. Also, Figure 5.3 shows the

appearance of consumed glucose in the PortalVein as described previously. Figure 5.4 shows

the changes in BGL during the post-prandial phase which starts from the post-absorptive
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Woerle et al. [114] Simulations
Before Breakfast

BGL 4.7± 0.1 mM (84.6± 1.8 mg/dl) 91.937± 0.010 mg/dl
Glycogen Breakdown 5.5± 0.6µmol/kg/min (88.1± 9.6 mg/min) 80.064± 0.171 mg/min

Gluconeogenesis 2.6± 0.2µmol/kg/min (41.6± 3.2 mg/min) 41.720± 0.053 mg/min
90 Minutes After Breakfast

Plasma Insulin 290± 29 pM 0.993± 0.001
Glycogen Breakdown 1.3± 0.6µmol/kg/min (20.8± 9.6 mg/min) 0 mg/min

Gluconeogenesis 2.6± 0.2µmol/kg/min (41.6± 3.2 mg/min) 41.824± 0.051 mg/min
Peak Post-prandial BGL 8 mM (144 mg/dl) 144.826± 0.046 mg/dl

Total Glucose Consumed/Produced During 6 Hours After The Breakfast
Gluconeogenesis 15.3± 1.2 g 15.041± 0.001 g

Glycogen Breakdown 4.3± 1.7 g 16.241± 0.002 g
Glucose Excretion in Urine 0.7± 0.4 g 0 g

Oxidation 45.6± 2.6 g 47.055± 0.008 g
Glycolysis 21.5± 2.2 g 22.614± 0.002 g

Glycogen Storage 40.6± 3.6 g 45.616± 0.008 g

Table 5.2: Normal Subjects: Key Measurements From Woerle Et Al.
[114] and Corresponding Results From 30 Simulations with Differ-
ent Seeds. ”Before Breakfast” Simulation Results Were Observed at
9.59AM. All Values Expressed as Mean ± Std Error.

levels before 10 am.

Post-Absorptive Phase: Figure 5.5 shows that insulinLevel during the post-absorptive

phase is low enough to ensure that the glycogen breakdown in the Liver occurs at the peak

level as shown in Figure 5.7. Figure 5.6 shows that there is no glycogen synthesis in the

Liver during this phase. Figure 5.10 and Figure 5.9 show that glucose consumption via

oxidation and glycolysis in various organs are at their minimum levels. Also, during this

phase, Gluconeogenesis happens in the Liver and the Kidneys (as shown in Figure 5.8)

which is unaffected by the insulinLevel as reported in [114]. Also, Gluconeogenesis happens

at the configured rates specified in [114] and provides the second source of glucose during

the phase. Since the minimum glucose oxidation flux is mostly specified by the needs of the

Brain and Heart, the configured values for the minimum glycolysis flux are selected to ensure

that the total glucose consumption matches the total glucose production during this phase.

Hence, the glycolysisMinImpact_ parameter was set to 4.0 in simulations for the type II
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Woerle et al. [114] Simulations
Before Breakfast

BGL 11.7± 0.6 mM (210.6± 10.8 mg/dl) 219.820± 0.063 mg/dl
Glycogen Breakdown 7.0± 0.4µmol/kg/min (117.2± 6.7 mg/min) 116.089± 0.183 mg/min

Gluconeogenesis 3.8± 0.3µmol/kg/min (63.6± 5 mg/min) 64.092± 0.078 mg/min
90 Minutes After Breakfast

Plasma Insulin 179± 19 pM 0.6± 0.000
Glycogen Breakdown 3.8± 0.7µmol/kg/min (63.6± 11.7 mg/min) 0 mg/min

Gluconeogenesis 3.8± 0.3µmol/kg/min (63.6± 5 mg/min) 64.127± 0.084 mg/min
Peak Post-prandial BGL 20 mM (360 mg/dl) 363.064± 0.076 mg/dl

Total Glucose Consumed/Produced During 6 Hours After The Breakfast
Gluconeogenesis 26.9± 2.2 g 23.069± 0.001 g

Glycogen Breakdown 10.1± 1.2 g 22.648± 0.006 g
Glucose Excretion in Urine 17.4± 2.7 g 16.750± 0.007 g

Oxidation 32.8± 2.8 g 35.039± 0.001 g
Glycolysis 28.7± 2.2 g 31.386± 0.010 g

Glycogen Storage 46.3± 3.3 g 46.514± 0.007 g

Table 5.3: Subjects with Type II Diabetes: Key Measurements From
Woerle Et Al. [114] and Corresponding Results From 30 Simulations
with Different Seeds. ”Before Breakfast” Simulation Results Were
Observed at 9.59AM. All Values Expressed as Mean ± Std Error.

diabetic subject to ensure that glycolysis flux for the type II diabetic subject during the post-

absorptive phase is much higher than that for the normal subject, as shown in Figure 5.9. In

other words, the total glucose production from the glycogen breakdown and gluconeogenesis

processes is matched by the total glucose consumption from the oxidation, glycolysis, and

excretion in urine in the post-absorptive phase. This makes the BGL stabilize at a value

near the baseGlucoseLevel_. Any temporary mismatch between glucose production and

consumption is quickly fixed, because the glycogen breakdown in the Liver is configured to

quickly slow down with increase in the insulinLevel.

Post-Prandial Phase: The following paragraphs illustrate the simulation results during

the post-prandial phase that begins with food intake at 10:00 am. Figure 5.4 shows that BGL

begin to rise when the consumed glucose just arrives in the PortalVein. Also, Figure 5.5 shows

that insulinLevel increases due to an increase in the BGL. The increase of the insulinLevel

halts the glycogen breakdown in the Liver as shown in Figure 5.7 The influx of consumed

glucose is more than enough to compensate for the halt in glycogen breakdown. Indeed,
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Figure 5.1: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Gastric Emptying
(mg/minute) in simulations with a particular seed for random num-
ber generation.

the process of digesting glucose provides approximately 700 mg/minute at peak, while the

glycogen breakdown provides approximately 120 and 80 mg/minute for type II diabetic and

normal subjects respectively. Figure 5.8 shows that glucose production via gluconeogenesis

continues as before, unaffected by the increase in the insulinLevel as reported in [114].

Figure 5.12 shows that GLUT4 activation for the normal subject increases proportionally

in response to the increase in the insulinLevel, and therefore an increase in the glucose

absorption by Muscles. The glycogen storage in the Muscles are full, and therefore, the

absorbed glucose cannot be added as glycogen in the Muscle cells. Figure 5.10 shows that

the increased oxidation flux in the normal subject between 10 am and 1 pm is a result of

the increase in the glucose oxidation in the Muscles. On the other hand, the Muscles in

the diabetic subject are not able to absorb glucose at the normal rate as in the normal

subject case (Figure 12). This caused by setting the glut4Impact_ parameter to 0.25, which
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Figure 5.2: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Carbohydrate Di-
gestion in Intestine (mg/min) in simulations with a particular
seed for random number generation.

indicates an impaired in GLUT4 activation for a type II diabetic patient. Also, most of

the glucose absorbed in the diabetic subject case is consumed via glycolysis because the

glycolysisMinImpact_ parameter was set to 4.0, comparing to 1.0 for the normal subject.

This explains why the oxidation flux shown in Figure 10 does not show any rise in the post-

prandial phase for the type II diabetic subject. CarbMetSim sets glycolysisMaxImpact_

to 1.25 for the type II diabetic subject, so the peak glycolysis flux for the type II diabetic

subject will be higher than that for the normal subject to achieve a close match with reported

results in [114] for the total glycolysis flux during the post-prandial phase between 10 am

and 4 pm (see Table 5.3). Also, note that the glycolysis flux has been increased in other

organs due to an increase in the insulinLevel as it is shown in Figure 5.9. Figure 5.6 shows

that when the BGL approaches the highGlucoseLevel_, the glycogen synthesis process in

the Liver starts and rapidly ramps up to its peak level, and thereby significantly slows down
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Figure 5.3: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Appearance of Di-
gested Glucose in PortalVein (mg/min) in simulations with a
particular seed for random number generation.

any further increase in BGL. As reported in [114], and shown in Table 5.2 and 5.3, the

glycogen storage during the post-prandial phase is higher for the type II diabetic subject

than for the normal subjects, even though the peak insulin levels for the type II diabetic

subject is smaller than for a normal subject. The insulinLevel has a significant impact on

glycogen synthesis in the Liver, as discussed previously. In order to compensate for lower

insulin levels in the type II diabetic subjects, the glucoseToGlycogenInLiver_ parameter in

the simulations is assigned a value equal 6.75 mg/kg/min, which is higher than the value

assigned for glucoseToGlycogenInLiver_ parameter for normal subjects (4.5 mg/kg/min).

The type II diabetic patient lose a significant amount of glucose via excretion in urine

(see Figure 5.11). This makes BGL remain around the highGlucoseLevel_ as long as the

digested glucose is appearing in the PortalVein at the peak rate. When the digested glucose

occurrence in the PortalVein slows down, the BGL begins to drop and the glycogen synthesis
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Figure 5.4: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Blood Glucose Level
(mg/dl) in simulations with a particular seed for random number
generation.

in the Liver rapidly comes to a halt. Therefore, this process slows down the rate at which

the BGL falls. When the BGL decreases, the glycolysis flux, the glucose absorption by the

Muscles, and the glucose excretion in the urine decrease consequently. This slows down the

rate of the BGL decreases. When BGL approaches the baseGlucoseLevel_, the glycogen

breakdown in the Liver quickly increases to prevent any more decreases in the BGL, and

another post-absorptive phase begins.

Comparison with Measurements from Woerle et al.[114]: A comparison between

the reported measurements in [114] and the results obtained from the simulations are dis-

cussed in the following paragraphs. Tables 5.2 and 5.3 show the significant measurements

from [114] for normal and type II diabetes subjects, respectively, along with the correspond-

ing results from the simulations. In the simulations, CabrmetSim were configured to use the

peak glycogen breakdown and gluconeogenesis flux values during the post-absorptive phase
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Figure 5.5: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Insulin Level in sim-
ulations with a particular seed for random number generation.

that are reported in [114]. By using the appropriate values for other configurable parameters

(shown in Table 5.1), the post-absorptive BGL values in the simulations were near the values

reported in [114] for both normal and type II diabetic subjects. To ensure that the insulin-

Level does not have any impact on gluconeogenesis flux, as stated previously, the simulations

were configured appropriately. In consequence, the gluconeogenesis flux in simulations 90

minutes after breakfast was the same as the ones before the breakfast, which matches the

results reported in [114]. The glycogen breakdown 90 minutes after the breakfast was con-

siderable in [114] but had completely halted in the simulations. Generally, the peak BGL

during the post-prandial in simulations matched the reported results in [114]. The glucose

produced and consumed through various pathways in the simulations for the normal subject

during 6 hours after the breakfast matched the values reported in [114]. However, the glyco-

gen breakdown case was an exception in the simulation results. It is clear from the Figures
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Figure 5.6: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Liver Glycogen Syn-
thesis in simulations with a particular seed for random number gen-
eration.

that the post-prandial phase in simulations was over by 1 pm, which make the glycogen

breakdown occurred at the peak level between 1 pm and 4 pm (See Figure 5.7). In [114], the

case was different and the average glycogen breakdown flux for 6 hours after the breakfast

was low. Also, the glycogen breakdown was still considerable 90 minutes after the breakfast

when the insulin levels were at their peak. It can be reasoned that the glycogen breakdown

is relatively slow in responding to the insulin levels impact. A similar mismatch in the total

glycogen breakdown during 6 hours after the breakfast was observed between the simulation

results and the reported values in [114] for the type II diabetic subject. Moreover, Woerle et

al. reported higher total gluconeogenesis flux for the 6 hours after the breakfast (26.9±2.2 g)

for the type II diabetic patient than what was observed in the simulations (23.069±0.001 g).

The increased gluconeogenesis flux in [114] during the post-prandial phase may be attributed

to the higher availability of gluconeogenesis substrates. However, the gluconeogenesis flux
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Figure 5.7: Simulating a meal event for a normal and a subject
with type II Diabetes: Minute-by-minute values of Liver Glyco-
gen Breakdown in simulations with a particular seed for random
number generation.

in the simulation had the same values during both the post-prandial and post-absorptive

phases. CarbmetSim does not support increase in gluconeogenesis flux due to the increased

availability of substrates. The other results for type II diabetic subjects were close to the

results reported in [114]. Generally, it can be said that the simulation results closely matched

the results reported in [114] for both normal and type II diabetic subjects.
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Figure 5.8: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Total Gluconeogen-
esis in Liver and Kidneys in simulations with a particular seed for
random number generation.
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Figure 5.9: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Total Glycolysis in
All Organs in simulations with a particular seed for random number
generation.
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Figure 5.10: Simulating a meal event for a normal and a subject
with type II Diabetes: Minute-by-minute values of Total Glucose
Oxidation in All Organs in Liver and Kidneys in simulations with
a particular seed for random number generation.
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Figure 5.11: Simulating a meal event for a normal and a subject with
type II Diabetes: Minute-by-minute values of Glucose Excretion
in Urine in All Organs in Liver and Kidneys in simulations with a
particular seed for random number generation.
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Figure 5.12: Simulating a meal event for a normal and a subject with
Type II Diabetes: Minute-by-minute values of Glucose Absorption
in Muscles in simulations with a particular seed for random number
generation.
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Chapter 6

Validation of CarbMetSim for an exercise event

Glucose is the main energy source utilized by muscles during moderate to high-intensity

exercise. The exercise muscles absorb glucose from the bloodstream and break down the

local stored glycogen to provide the energy needs during an exercise. Indeed, the muscles do

not depend on the insulin level to get the absorbed glucose, because the exercise is sufficient

to activate GLUT4 transporters [89][46][112]. As reported previously, glucose oxidation

plays a signiifcant role in meeting energy needs during physical exercise. The metabolism

of Carbohydrates during and after a physical exercise has been analyzed widely for normal

and diabetic subjects in [112][50][81][16][66][67].

The physical exercise in a normal subject case induces the secretion of glucogon [4] [39]

[115] [60] and inhibits the secretion of insulin [110][102][111][39][115]. As consequence, the

liver will produce more glucose to meet the needs of the energy requirements by breaking

down glycogen into glucose. The glycogenolysis (the process that breaks glycogen into glucose

in the liver and the exercising muscles) and the gluconeogenesis (described previously) are

the two processes that produce glucose as long as the glycogen is available in the liver and in

the exercising muscles. The glucose production from these two processes generally matches

the total glucose consumption by exercising muscles ,which makes the BGL remain at the

normal level [112][50]. When the glycogen stores are used up, the BGL will drop, because

the produced glucose from the gluconeogenesis process alone is not adequate to match the

glucose consumption by the exercising muscles. On the other hand, the insulin level in the

diabetic patients (type I and type II) is not affected (and therefore not reduced) by the
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physical exercises. In consequence, the glycogen breakdown in the liver will not be sufficient

to produce the additional glucose needs [118], and the BGL will drop remarkably during

exercises. However, BGL in the type I diabetic case may increase during an exercise (which

was high before the exercise). This happens due to an increase in glucose production via

the glycogen breakdown in the liver (due to secretion of glucagon and other hormones).

This increase of BGL is much higher than the impaired rate at which the exercising muscles

absorb glucose in some type I Diabetic patients [112] [9] [61][50].

In CarbMetSim, we are able to simulate the impact of aerobic physical exercise. This

chapter reports the results of simulations where normal male subjects perform a long aerobic

exercise following an overnight fast. These simulations replicate the experiments reported

in [3] and [5]. In [3], twenty normal male subjects were observed when they performed a

leg exercise at intensity 58%V O2max for 3 to 3.5 hours after a 12 to 14 hour overnight

fast. Also, in [5] study, twelve normal male subjects participated. The subjects performed a

leg/arm exercise at intensity 30%V O2max for 2 hours after a 12 to 14 hour overnight fast.

Table 6.1 shows the characteristics of these subjects. For each subject, the concentrations of

glucose and other hormones in the blood were recorded. Table 6.2 and Figure 6.1 show the

relevant BGL data reported in [3] and [5]. In this chapter, we explain each set of BGL data

and show that CarbMetSim with proper configuration can replicate each pattern.

6.1 Exercise at intensity 58% VO2max

This section discusses the experiments that replicate the physical exercise at intensity

58%V O2max that is reported in [3]. As seen in Table 6.2 and Figure 6.1, the BGL drops

continuously as the exercise progresses, and it reaches the hypoglycemic levels towards the

end of the exercise. However, a modest recovery from this hypoglycemic level happens when

the exercise concludes. The results indicate that the liver glycogen was drained some time
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after the start of the exercise and the only sources of glucose for the exercising muscles were

the local glycogen and the gluconeogenesis. This can be explained due to the fact that the

exercise began after a long fast and the drops in BGL. Also, the Figure and the table show

that the BGL dropped continuously because the gluconeogenesis process alone was not able

to compensate for the glucose absorption by the exercising muscles from the bloodstream.

Even after the exercise finished, the gluconeogenesis was the only source of glucose, and it

was not adequate to bring the BGL back to pre-exercise level.

Average Standard Error Range
20 Subjects Doing Leg Exercise at 58%V O2max [3]

Age (years) 26 0.7 20-31
Weight(Kg) 71 1.6 57-82
Height(cm) 182 1.4 169-187

V O2max(liters/min) 3.8 .13 2.6-4.8
6 Subjects Doing Arm Exercise at 30%V O2max [5]

Age (years) 27 1 24-29
Weight(Kg) 80 6 61-100
Height(cm) 186 4 171-198

V O2max(liters/min) 4.1 .3 3.3-4.8
6 Subjects Doing Leg Exercise at 30%V O2max [5]

Age (years) 27 2 19-31
Weight(Kg) 74 4 62-93
Height(cm) 181 3 170-194

V O2max(liters/min) 3.9 .2 3.3-4.8

Table 6.1: Characteristics of Subjects Reported in [3] and [5].

Blood Glucose Level (mmol/l): Average ± Standard Error
Leg Exercise at 58%V O2max [3] Arm Exercise at 30%V O2max [5] Leg Exercise at 30%V O2max [5]

Rest 4.39±0.08 4.00±0.11 4.33±0.09
Exercise:40min 4.09±0.10 4.01±0.31 4.28±0.10
Exercise:90min 3.86±0.28 4.06±0.20 4.07±0.16
Exercise:120min 3.55±0.11 3.98±0.23 3.81±0.15
Exercise:180min 2.78±0.13
Exercise:210min 2.56±0.13
Recovery:10min 3.12±0.13 3.96±0.31 4.06±0.25
Recovery:20min 3.19±0.13 3.76±0.29 4.11±0.25
Recovery:40min 3.18±0.10 3.83±0.25 4.13±0.21

Table 6.2: BGL Measurements Reported in [3] and [5].

To simulate the described experiment, we created twenty pairs of age and weight values
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for normal subjects using the average and standard error values specified in [3] (also reported

in Table 6.1). Each simulation was begun at the simulated time of 12 am. and we simulated

a subject to do a 210-minutes long exercise at intensity 58%V O2max starting at 12 pm.

Each simulation finished at the simulated time of 5 pm and used the same seed value for the

random number generation. To match the reported BGL in [3], the simulation parameters

were configured to make the liver glycogen exhaustion early on in the exercise. Therefore,

it matches the reported BGL. Table 6.3 shows the simulation parameters for the simulated

subjects. For each simulation, the initial glycogen store in the Liver was configured to 60 g;

this means that a little glycogen was left in the Liver by the time the exercise event started

(at 12 pm). Also, to limit the glucose production via gluconeogenesis during the exercise,

the gngImpact_ parameter was set to values between 13.2 and 15.5.

The results of simulating the exercise event at intensity 58%V O2max using CarbMetSim

is shown in Figure 6.2, Figure 6.3, Figure 6.4, and Figure 6.5. In the details, Figure 6.2 shows

the BGL values for each simulated subject along with the average BGL values reported in [3].

As is clear from the figure, the BGL values in the simulations are close to the measurements

reported in [3]. Also, the BGL at the beginning of the exercise were hovaring around its

pre-exercise levels, and then it dropped continuously as the exercise progresses. It reached

the hypoglycemic levels at the end of the exercise. However, a modest recovery from the

hypoglycemic level happened after the exercise finished(did not reach the pre-exercise level

though). Figure 6.3 shows the amount of glycogen left in the Liver for a simulated subject.

The initial amount of glycogen in the Liver was configured in a manner that ensures that

the glycogen amount will deplete in the early stages of the physical exercise. Therefore, all

the glycogen in the Liver was depleted by 1 pm, after which the gluconeogenesis was the

only source of glucose for this subject. The glycogen breakdown flux in the Liver and the

combined gluconeogenesis flux in the Liver and Kidneys are shown in Figure 6.4 and 6.5
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Figure 6.1: Average BGL Measurements (After Conversion to mg/dl)
Reported in [3] and [5].

for the same subject. Both Figures show that the glycogen breakdown flux and the gluco-

neogenesis flux fluctuated between high and low values when the exercise began and before

the Liver glycogen was depleted. This behavior is in agreement with our previously dis-

cussed findings on how the insulinLevel varies, as well as how the glycogen breakdown in the

Liver and gluconeogenesis in the Liver and Kidneys react to the insulinLevel. Previously,

we have stated that when the BGL drops below the baseGlucoseLevel_, the insulinLevel

will be set to 0 when the simulated subject is engaged in an exercise at an intensity that is

higher than the intensityPeakGlucoseProd_ (default value 20% VO2max). In the current

simulation experiment, the exercise intensity was 58%V O2max and it is higher than the in-

tensityPeakGlucoseProd_ parameter. Therefore, the insulinLevel dropped to zero when the
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BGL dropped below the baseGlucoseLevel_. This pushes the glycogen breakdown process

in the Liver and gluconeogenesis process in the Liver and Kidneys to produce glucose at the

highest rates. However, when the BGL exceeded the baseGlucoseLevel_, the insulinLevel

exceeded the baseInsulinLevel_ and, therefore the glycogen breakdown and gluconeogenesis

fluxes fell down to the normal levels. After the liver glycogen was totally consumed, the glu-

coneogenesis process was not able to raise BGL above the baseGlucoseLevel_, even though

it occurs at the highest rate. This explains why the insulinLevel stayed at the zero level for

the rest of the exercise duration, and the gluconeogenesis process was the only source of glu-

cose for the blood. When the exercise finished, the insulinLevel increased to a positive value

below baseInsulinLevel_, and in response the gluconeogenesis flux assigned a value between

the regular and the highest levels. In other words, the gluconeogenesis process at this time

allowed the BGL to rise from the hypoglycemic level to a level below the baseGlucoseLevel_.
Subject # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
age_ (years) 23 26 26 30 22 25 26 24 24 22 20 23 31 26 26 30 21 29 25 26

gender_ (0=Male) 0
fitnessLevel_ (%ile) 50
bodyWeight (kg) 57 63 59 78 60 71 75 76 72 64 74 82 71 62 64 70 78 65 65 74

minGlucoseLevel_ (mg/dl) 40
baseGlucoseLevel_ (mg/dl) 79
highGlucoseLevel_ (mg/dl) 145

baseInsulinLevel_ 0.001
peakInsulinLevel_ 1.0

gngImpact_ 15.5 15.1 15.35 13.2 15.35 14.75 14.5 14.5 14.7 15.1 14.55 14.3 13.5 15.25 15.1 13.5 14.35 15 15 14.6
Initial Liver Glycogen (g) 60.0

Table 6.3: Configuration parameters for simulations for a single ex-
ercise event at intensity 58 %V O2max.

6.2 Arm exercise at intensity 30%V O2max

This section discusses the experiments that replicate the arm exercise at intensity 30

%V O2max that is reported in [5]. In these simulations, the BGL maintain its pre-exercise

level through the duration of the exercise, as shown in Figure 6.1 and Table 6.2. Also, it

is shown that there is a small drop that occurred during the recovery phase. Analyzing the

results in the table and the figure indicate that the liver glycogen did not exhaust during
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Figure 6.2: BGL results of simulations replicating a physical exercise
event at intensity 58 %V O2max as reported in [3]. Green: BGL for
20 simulated subjects; Red: average BGL reported in [3]

the exercise period and that both processes (liver glycogen breakdown and gluconeogenesis)

were able to meet the glucose needs of the exercising muscles. Moreover, both processes

returned to their pre-exercise levels after the exercise finished, and in consequence the BGL

got back to its pre-exercise level.

CarbMetSim does not differentiate between various types of muscles. Indeed, the arm

exercise was considered in the reported simulations as a regular exercise. To simulate the arm

exercise experiments, we generated 6 age and weight value pairs for normal male subjects

using the average and standard error values specified in [5] (reported in Table 6.1 as well).

Each simulation begun at the simulated time 12 am and simulated a subject to do a 120-

minutes long exercise at intensity 30%V O2max starting at 12 pm. Each simulation finished

at the simulated time 5 pm and used the same seed value for the random number generation.

Table 6.4 shows the simulation parameters for the simulated subjects, which is different from
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Figure 6.3: Liver glycogen for the subject # 1: results of simulations
replicating a physical exercise event at intensity 58 %V O2max as
reported in [3]

the default values. For each simulation, the initial glycogen store in the Liver was configured

to 100 grams to ensure that the liver glycogen does not get exhausted during the exercise.

Also, to guarantee that the glucose produced from the gluconeogenesis process will rise to a

high enough level when required during the exercise, the gngImpact_ parameter was set to

value 15.0.

The results of simulating the arm exercise event at intensity 30%V O2max using Carb-

MetSim is shown in Figure 6.6, Figure 6.7, Figure 6.8, and Figure 6.9. Specifically, Figure

6.6 shows BGL values for each simulated subject along with the average BGL values reported

in [3]. The values in the figure indicate that the simulator was able to generate BGL values

for the simulated subjects that are very close to the measurements reported in [3]. Indeed,

the BGL values for all the simulated subjects were hovering around its pre-exercise level

during the exercise time and then returned to the pre-exercise level. The results show that
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Figure 6.4: Liver glycogen breakdown for the subject # 1: results
of simulations replicating a physical exercise event at intensity 58
%V O2max as reported in [3]

the liver glycogen did not deplete during the exercise and in the recovery phase as it is clear

in Figure 6.7, which shows the amount of glycogen left in the Liver for a simulated subject.

The glycogen breakdown flux in the Liver and the combined gluconeogenesis flux in the Liver

and Kidneys for the particular subject are shown in Figure 6.8 and Figure 6.9 respectively.

The figures show that the glycogen breakdown flux and the gluconeogenesis flux oscillated

between high and low values when the exercise started, exactly similar to the corresponding

simulations result for the 58%V O2max exercise (Section 6.1). The fluctuations happened for

the same reasons mentioned in section 6.1, and they explain the reasons of BGL oscillating

during the exercise duration. When the exercise concluded, the insulinLevel increased to the

baseInsulinLevel_ (as explained in Section 3.2) and in response the liver glycogen breakdown

and gluconeogenesis fluxes (and also the BGL) reached their pre-exercise levels.
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Figure 6.5: Total gluconeogenesis in Liver and Kidneys for the subject
# 1: results of simulations replicating a physical exercise event at
intensity 58 %V O2max as reported in [3]

6.3 Leg exercise at intensity 30 %V O2max

The leg exercise at intensity 30%V O2max experiments are discussed in this section.

Using Table 6.2 and Figure 6.1, the reader will realize that the BGL dropped modestly

during the exercise and then seemed to returned back to the pre-exercise level. Moreover,

the liver glycogen was not depleted during the exercise or in the recovery phase as the post-

exercise BGL approached the pre-exercise level. The modest drop of BGL throughout the

exercise indicates that the leg exercise was not able to stimulate both the liver glycogen

breakdown and gluconeogenesis processes to produce enough glucose to match the demands

of the exercising muscles. In other words, the total glucose production during exercise was

a little less than the amount absorbed from the blood by the exercising muscles.

As mentioned before, CarbMetSim does not differentiate between various types of mus-

cles, and hence the leg exercise was considered in the reported simulations as a regular
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Subject # 1 2 3 4 5 6
age_ (years) 24 29 28 27 27 28

gender_ (0=Male) 0
fitnessLevel_ (%ile) 50
bodyWeight (kg) 61 100 97 62 88 87

minGlucoseLevel_ (mg/dl) 40
baseGlucoseLevel_ (mg/dl) 72
highGlucoseLevel_ (mg/dl) 145

baseInsulinLevel_ 0.001
peakInsulinLevel_ 1.0

gngImpact_ 15.0
Initial Liver Glycogen (g) 100.0

Table 6.4: Configuration parameters for simulations for a single "arm"
exercise event at intensity 30%V O2max.

exercise. To simulate the leg exercise experiments, we generated 6 age and weight value

pairs for normal male subjects using the average and standard error values specified in [5]

(reported in Table 6.1 as well). Each simulation begun at the simulated time of 12 am and

simulated a subject to do a 120-minutes long exercise at intensity 30%V O2max starting

at 12 pm. Each simulation finished at simulated time 5 pm and used the same seed value

for the random number generation. In this experiment, the goal was to control the glucose

production precisely via liver glycogen breakdown and gluconeogenesis during the exercise

to ensure that the total glucose production during the exercise was just a little less than

what the exercising muscles would absorb from the blood. Therefore, the liverGlycogen-

BreakdownImpact_ that controls the liver glycogen breakdown during exercise was reduced

to value 1.0, to limit extra glycogen breakdown in the Liver during the exercise. Also, the

glycogenToGlucoseInLiver_ parameter was increased appropriately (this variable controls
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Figure 6.6: BGL results of simulations replicating a physical exer-
cise event involving arms at intensity 30%V O2max as reported in
[5].Green: BGL for 6 simulated subjects; Red: average BGL reported
in [5]

the regular glycogen breakdown in the Liver).

Similarly, the parameter that controls the gluconeogenesis flux during the exercise gngIm-

pact_ was set properly to restrict glucose production via gluconeogenesis during the exercise.

Table 6.5 shows all simulation parameters for the simulated subjects, which is different than

the default values. For each simulation, the initial glycogen store in the Liver was configured

to 100 grams to ensure that the liver glycogen would not be depleted during the exercise or

the recovery phase. The results of simulating the leg exercise event at intensity 30%V O2max

using CarbMetSim is shown in Figure 6.10, Figure 6.11, Figure 6.12, and Figure 6.13. In

detail, Figure 6.10 shows BGL values for each simulated subject along with the average BGL

values reported in [3]. The values in the figure indicate that the simulator was able to gener-

ate BGL values for the simulated subjects that reasonably match the measurements reported
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Figure 6.7: Liver glycogen for the subject # 1: results of simulations
replicating a physical exercise event involving arms at intensity 30
%V O2max as reported in [5]

in [5]. The BGL for all the simulated subjects dropped modestly during the exercise dura-

tion and then returned to the pre-exercise level. Figure 6.11 shows the amount of glycogen

left in the Liver for a simulated subject. The glycogen breakdown flux in the Liver and the

combined gluconeogenesis flux in the Liver and Kidneys for the particular subject are shown

in Figure 6.12 and Figure 6.13 respectively. In Figure 6.12 it is clear that the liver glycogen

flux did not increase during the exercise . Also, in Figure 6.13 the reader will notice that

the gluconeogenesis happened at its highest level during the exercise time. This happened

because the BGL was below the baseGlucoseLevel_ during the exercise time and the exer-

cise intensity was greater than intensityPeakGlucoseProd_. Accordingly, the insulinLevel

was set to 0 throughout the exercise time, and this made the gluconeogenesis take place at

its highest level. Also, the insulinLevel was not able to stimulate liver glycogen breakdown

because liverGlycogenBreakdownImpact_ was set to value 1. The BGL dropped modestly
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Figure 6.8: Liver glycogen breakdown for the subject # 1: results
of simulations replicating a physical exercise event involving arms at
intensity 30 %V O2max as reported in [5]

during the exercise time (as desired) because the combined glucose production from the glu-

coneogenesis and liver glycogen breakdown processes was below the glucose absorbed from

the blood by the exercising muscles. When the exercise finished, the insulinLevel increased

to the baseInsulinLevel_ and consequently the gluconeogenesis flux and the BGL achieved

their pre-exercise level.
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Figure 6.9: Total gluconeogenesis in Liver and Kidneys for the sub-
ject # 1: results of simulations replicating a physical exercise event
involving arms at intensity 30 %V O2max as reported in [5]

Subject # 1 2 3 4 5 6
age_ (years) 20 31 22 29 30 25

gender_ (0=Male) 0
fitnessLevel_ (%ile) 50
bodyWeight (kg) 62 93 68 70 82 71

minGlucoseLevel_ (mg/dl) 40
baseGlucoseLevel_ (mg/dl) 78
highGlucoseLevel_ (mg/dl) 145

baseInsulinLevel_ 0.001
peakInsulinLevel_ 1.0

gngImpact_ 6.2 5.6 6.2 6.2 5.6 6.1
Initial Liver Glycogen (g) 100.0

glycogenToGlucoseInLiver_(mg/kg/min) 1.4 0.9 1.3 1.25 1.05 1.25
liverGlycogenBreakdownImpact_ 1.0

Table 6.5: Configuration parameters for simulations for a single "leg"
exercise event at intensity 30%V O2max.
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Figure 6.10: BGL results of simulations replicating a physical exercise
event involving legs at intensity 30%V O2max as reported in [5].Green:
BGL for 6 simulated subjects; Red: average BGL reported in [5]

Figure 6.11: Liver glycogen for the subject # 1: results of simulations
replicating a physical exercise event involving legs at intensity 30
%V O2max as reported in [5]
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Figure 6.12: Liver glycogen breakdown for the subject # 1: results
of simulations replicating a physical exercise event involving legs at
intensity 30%V O2max as reported in [5]

Figure 6.13: Total gluconeogenesis in Liver and Kidneys for the sub-
ject # 1: results of simulations replicating a physical exercise event
involving legs at intensity 30%V O2max as reported in [5]
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Chapter 7

Conclusion and Future Work

CarbMetSim is an open-source discrete event simulator that models carbohydrate metabolism

in human beings. Also, it predicts minute by minute the BGL of the user in response to an

arbitrary length sequence of food and exercise activities. The simulator is implemented in

an object-oriented paradigm, where the key organs are represented as classes in the Carb-

MetSim. Other simulation tools exist, but they are classified as continuous time models

that use differential and algebraic equations to describe the physiological details. It can

be argued that it is much easier to revise and modify behavior described in software than

differential equations. Moreover, the other simulators are designed to predict the impact of

individual meals and are not available in a manner that can be freely used by individuals.

The key aspects of CarbMetSim’s design is covered in Chapter 3, while Chapter 4 covered

the implementation and the operation of the different organs of the simulator. The sim-

ulator implements the following key organs: stomach, intestine, portal vein, liver, kidney,

muscles, adipose tissue, brain and heart. The organs have been implemented to the extent

necessary to simulate their impact on the production and consumption of glucose. Chapter

5 and Chapter 6 present a validation of CarbMetSim’s behavior in response to single meal

and exercise events, where the simulator’s results were compared against the group-level

averages reported in the published research. However, important additional validation is

required before the simulator is considered ready to be used in diabetes self-management

applications and\or for research. For instance, it is required to have a validation against the

continuous blood glucose data of individuals representing various races, ages, and genders.
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Also, a validation against continuous blood glucose data of individuals representing different

forms and levels of diabetes and different lifestyles is needed.

Our future work on CarbMetSim will include more validation for the CarbMetSim’s be-

havior and provide functionalities that enhance the current limitations specified in chapter 1.

Also, CarbMetSim can be used in predicting HbA1c. This marker is considered the golden

indicator of average glycemic control. It measures the BGL periodically and evaluates the

impact of treatments on the individual’s BGL in the past three to four months.CarbMetSim

can be used to build a tool that can suggest user-specific real-time recommendations on diet

and exercise routines. These recommendations, if followed over the remainder of the day,

will allow the patient to achieve the target glycemic control regardless of the user’s current

BGL. Another future area of work is to model the fat metabolism to be utilized in predicting

changes in body weight in response to a diet and exercise activities.

Finally, we are aiming forward to reaching a stage where the CarbMetSim simulator can

be very a useful underlying platform for a number of diabetes self-management tools and a

good simulation platform for diabetes research due to its nature and ease of modification

and extension.
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