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ABSTRACT 
 

THE ASSOCIATION OF AEROBIC FITNESS WITH RESTING STATE FUNCTIONAL 
CONNECTIVITY AND VERBAL LEARNING AND MEMORY IN HEALTHY YOUNG 

ADULTS 
 

by 

Kyle Joseph Jennette 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Krista Lisdahl, Ph.D. 

 

 

The beneficial effects of exercise and cardiopulmonary fitness on general health, quality 

of life, and reduction of mortality are well known in older adults. There is evidence to 

support the positive effects of exercise and aerobic fitness on psychiatric and 

neurocognitive function in children, adults, and older adults. Indeed, many studies have 

explored the positive effects of aerobic fitness on slowing cognitive decline associated 

with normal and pathological aging. However, comparatively fewer empirical studies in 

the literature exist to support and understand the effects of aerobic fitness on the 

developing brain, particularly during adolescence and young adulthood, especially as it 

relates to resting state functional connectivity during this dynamic stage of development. 

The current study investigated the association of aerobic fitness on functional 

connectivity with the left hippocampus in healthy young adults and the degree to which 

differential resting state functional connectivity is associated with verbal learning and 

memory. The sample was comprised of healthy young adults with varying degrees of 

aerobic fitness as part of a larger study of the effects of cardiorespiratory health on 

neurocognitive performance, brain structure and function. Results of the study indicated 

that better aerobic fitness is associated with increased functional connectivity to the left 
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parahippocampal gyrus, a region known for its role in working memory and encoding. 

Results from this study contribute to a better understanding of the factors that may 

underlie the beneficial effects of exercise on brain health and neurocognition and further 

offer insights into the value of early preventive health behaviors to reduce the risk of 

later of cognitive decline and impairment.   
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INTRODUCTION 
 

1.1 Statement of the Problem 
 

Given the growing evidence of metabolic disorder risk and sedentary behavior in a 

large percentages of individuals in the United States (Barlow et al., 2016), understanding 

the link between aerobic fitness and neurocognitive health is of great interest. There is a 

growing consensus among healthcare professionals that the rise of obesity in the United 

States presents many serious public health challenges (Masters et al., 2013) including 

increased rates of type-2 diabetes, hypertension, heart disease, and cancer (NIH, 2013). 

The prevalence of obesity has been on the rise in the United States since the 1980s but 

has plateaued in the last 20 years in both youth (Ogden et al, 2016) and adults (Flegal et 

al., 2016), with 16.8% of youth and 18.5% of adults having a Body Mass Index >30 in 

2016 (Hales et al., 2018).  Sedentary behavior impacts a large percentage of youth such 

that 8% of adolescents and 42% of children do not engage in the amount of physical 

exercise recommended by the American Heart Association (Troiano et al., 2008) and 

there is evidence that poor physical health or aerobic fitness may negatively impact 

neurocognition (Voss et al., 2014).  
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1.2 Background 
 

The hippocampus is a site of known neuroplasticity throughout the lifespan and 

appears to be particularly sensitive to the positive effects of aerobic exercise (Cotman et 

al., 2007; Erikson et al, 2011). Preclinical animal studies have found that both acute and 

sustained aerobic exercise are associated with larger hippocampi (van Praag et al., 

2005), hippocampal neurogenesis, prevention of age-related volume loss, and better 

spatial memory performance in hippocampal mediated tasks (e.g. Morris Water Maze) in 

young, middle aged, and older aged rodents (van Praag, 2008). For example, age-related 

declines in hippocampal neurogenesis and cognitive function can be prevented with 

prolonged running intervention (Kronenber et al., 2006) and rescued with as little as one 

month of running intervention, even after prolonged sedentary behavior (van Praag et al., 

2005). The mechanisms that underlie the effects of aerobic exercise on neuroplasticity 

and neurogenesis in the hippocampus may be related to changes in various neurotrophic 

factors (Calof, 1995; Fischer et al., 1994; Kang and Schuman, 1995; Neeper et al, 1995; 

Molteni et al., 2002; Berchtold et al., 2010), such as brain-derived neurotrophic factor 

(BDNF; Widenfalk et al, 1999; Lipsky & Marini, 2007; Cowansage et al., 2010; Ding et al., 

2011), insulin-like growth factor 1 (IGF-1; Carro et al., 2000; Tang et al., 2010) and 

vascular endothelial growth factor (VEGF; Trejo et al., 2001) which support new neural 

growth, synaptic plasticity, and angiogenesis in animal models and human samples. 

Increases in BDNF expression is associated with faster learning acquisition and better 

memory in rodents after exercise relative to sedentary controls (Vaynman et al., 2004; 

Trejo et al., 2001), while increased levels of VEGF are associated with angiogenesis in 

the hippocampus and subsequent new neurogenesis near new cells (Krum et al., 2002; 



 

 

 

3 
 

Lopez-Lopez et al., 2004; Swain et al., 2003; van Praag et al., 2005). As such, there is 

clear evidence for the effects of aerobic fitness on brain regions critically associated with 

learning and memory.  

Consistent with pre-clinical animal findings, the literature in older adult human 

populations shows a link between aerobic fitness and neurocognition, especially in the 

area of memory. For example, older adults that have been active throughout their lifespan 

are at a significantly lower risk of developing dementia relative to their low activity and 

sedentary peers (Griffin et al., 2011). Structured aerobic exercise improves memory in 

depressed older adults (Khatri et al., 2001), while prolonged exercise slows cognitive 

decline in cognitively normal older adults and those at risk for neurodegenerative disease 

(Colcombe & Kramer, 2003) and is associated with larger left hippocampal volume (Firth 

et al., 2018). Similarly, investigations into the effects of aerobic fitness on brain 

morphology and functional connectivity in older adult clinical samples have been 

conducted in an effort to understand the pathophysiology of age-associated 

neurocognitive disorders (Colcombe & Kramer, 2003; Kramer et al., 1999). Verbal 

memory is of particular interest, as several disorders impact verbal memory, including 

many manifestations of dementia, traumatic brain injury, anoxia, drug exposure, and 

psychiatric disorders (APA, 2013).  

However, conclusions made from studies of older adults likely do not generalize to 

adolescents and young adults, as this population is typically in better physical health, 

have fewer comorbid medical conditions such as hypertension, hyperlipidemia, and 

diabetes (CDC, 2017), and are still in a dynamic stage of neurodevelopment that is distinct 

from both childhood and older adulthood which may moderate the effects of aerobic 
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fitness interventions on cognitive function. overall brain health and function (Ernst et al, 

2006; Casey et al, 2008). During childhood and the transition into adolescence, the brain 

has an abundance of often-redundant synaptic connections that are pruned away, with 

those connections that are functionally dormant eliminated (Zehr et al., 2006). This results 

in reductions in gray matter volume through adolescence and into young adulthood, 

especially in the prefrontal and parietal regions (Giedd et al., 2012; Gogtay et al., 2004; 

Sowell, et al., 2004; Lenroot et al., 2007). Frontal gray matter volume peaks by around 

age 12 followed by reduction in gray matter volume into adolescence while temporal gray 

matter volume peaks by around age 17 (Giedd et al., 1999). Similar to gray matter, white 

matter development occurs in sensory and motor pathways earlier followed by higher 

association cortices later (Giedd et al., 1999), however white matter volumes continue to 

increase in a mostly linear pattern well into the early 30s without subsequent decreases 

during and beyond adolescence (Giedd et al., 1999; Jernigan & Gamst, 2005) with the 

rate of white matter volume maturation roughly equivalent between major subdivisions of 

the cortex (Thompson et al., 2000). Subcortical regions also display significant changes 

during adolescence, with some volume differences related to sex-associated hormone 

changes (Giedd et al., 1996). The interconnectivity of functional networks in the 

adolescent brain also changes through adolescence into adulthood (Fair et al., 2008; 

Stevens et al., 2007). Functional connectivity within cortical-subcortical networks follows 

a similar developmental trajectory to gray and white matter where inefficient connectivity 

between networks is eliminated as greater connectivity within each network is established 

(Dosenbach et al, 2010). Increased connectivity within the default mode and other 

networks may correspond to better cognitive function, including better cognitive flexibility 
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(Stevens, Pearlson & Calhoun, 2009). The default mode network has connectivity with 

the hippocampal formation, with the posterior parietal cortex implicated in successful 

uncued memory recall (Vincent et al., 2006). To date, there have been no neurocognitive 

investigations of verbal memory network connectivity with the hippocampus in young 

adults.  

 Investigations into the effects of aerobic fitness on brain morphology and functional 

connectivity in preadolescent children have been conducted (Chaddock et al, 2011; 

Hillman et al, 2009; Hillman, Castelli, & Buck, 2005); however, comparatively few studies 

have focused on older adolescents or young adults. To date, studies have found that 

acute exercise is associated with increased verbal learning speed immediately following 

acute, high impact running in young adult males (Winter et al., 2007), and improved 

performance on a visual memory and recognition tasks in young adult cyclists (Grego et 

al., 2008). However, excessive prolonged exercise (generally greater than 60 minutes in 

one bout) may compromise processing speed and memory performance (Tomporowski, 

2003), and may be differentially impacted by type of intervention employed (Lambourne 

& Tomporowski, 2010). Sedentary young adults who participated in a prolonged aerobic 

exercise program performed better on a complex pattern separation task along with 

improvements in maximal oxygen consumption measured via VO2 Max (Dery et al., 2013).  

To our knowledge, there are two studies that examine chronic exercise effects on 

verbal memory in young adults. High frequency aerobic exercise was associated with 

improved verbal learning and memory and increased cerebral blood volume in the dentate 

gyrus of young adults (Pereira et al., 2007), which is consistent with studies coupling 

neurogenesis with angiogenesis (Louissant et al., 2002; van Praag et al., 2005; Lin et al., 
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2002). One exercise intervention study found that aerobic exercise training uniquely 

impacted relational memory compared to other forms of memory, as it is heavily 

subserved by the hippocampus, which may be associated with the known neurogenesis 

that occurs in this region throughout the lifespan (Voss et al., 2013).  

Functional connectivity is one way to examine neuronal networks that subserve verbal 

learning and memory function. The verbal memory network at rest is understood to 

encompass components of the default mode network and vary based on the nature of the 

memory task demand. Functional co-activation of neocortical-hippocampal circuits are 

critical to memory consolidation, while cortico-cortical connectivity is associated with 

encoding of later successfully recalled verbal information (Albert et al., 2009). Activation 

in the left medial prefrontal cortex is associated with successful verbal memory encoding 

(Maillet & Rajah, 2014) and activation of the posterior cingulate cortex is associated with 

unsuccessful encoding. Further, deactivation of the medial prefrontal cortex is associated 

with successful memory retrieval (Sestieri et al., 2011) and differential activation of verbal 

memory network nodes within the default mode network in response to different learning 

and recall trials (Huo et al., 2018).  

To date, only one study has specifically examined the association between aerobic 

fitness and functional connectivity during a verbal memory task. Herting & Nagel (2013) 

found no difference between self-reported high and low fitness 15-18-year-old male 

adolescents in verbal recognition memory performance. However, there was a difference 

in memory-related default mode network regions during encoding of word pairs that were 

later successfully recalled, where less aerobically fit adolescents had greater activation 

in bilateral hippocampi and right superior frontal gyrus, indicating a deficit in deactivation 
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of the default mode network and switching to task-associated brain networks. The higher 

aerobic fitness group had greater activation of the hippocampus and concurrent 

deactivation of the default mode network for remembered words compared to the low fit 

group, a consistent finding with previous work showing negative activation of the 

hippocampus and default mode network is associated with better memory retrieval 

performance (Daselaar et al., 2004; Kim et al., 2011; Vannini et al., 2011). Similarly, in an 

overlapping sample, Herting & Nagel did not find a significant association between 

aerobic fitness and verbal list learning and memory but did find a significant effect for 

spatial learning (Herting & Nagel, 2012). It is notable that these studies utilized a self-

reported estimate of aerobic fitness and did not include any females. 

Further, given that the few studies that have focused on adolescent and young adult 

changes in functional networks have targeted males, there is a limited understanding and 

generalizability of the current literature to females. Indeed, sex differences in hippocampal 

development, neurotrophic factor regulation, and hormone expression may be negatively 

correlated with aerobic exercise and cognitive development in females. Sisk & Zehr 

(2005) report that variations in sex-specific hormones over the course of adolescence 

and young adulthood may alter the trajectory of cognitive and neurologic development 

and inform the extent to which aerobic exercise and fitness influences connectivity in 

developing brains. Further, there are known gender differences in brain structural volume 

(Persson et al., 2014), functional connectivity (Conrin et al., 2018), and hemispheric 

asymmetries in memory and language (Hamilton, 2008) that may confer different effects 

of aerobic intervention on functional and structural organization in the brain.  As such, this 
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study will explore gender differences in the effects of aerobic fitness on resting state 

functional connectivity and verbal learning and memory. 

 

1.3 Aims of Study 
 

This study will add to the literature by measuring the association between objectively 

measured aerobic fitness and resting state functional connectivity between the left 

hippocampus and the rest of the brain in healthy young adults. Further, we examined the 

degree to which gender moderates these effects. This study offers a unique opportunity 

to better understand the association of aerobic fitness and neurocognitive function in a 

gender-balanced sample of healthy young adults. Results from this study may aid in 

elucidating the extent to which aerobic fitness impacts functional connectivity in the 

developing brain and how such differential connectivity may serve as protective for 

subsequent cognitive decline with age. The following aims were proposed: 

1.3.1 Primary Aim: Assess the Association Between Resting State Functional 
Connectivity and Aerobic Fitness and the Moderating Influence of Gender. 

 

- Hypothesis 1: Better aerobic fitness will associate with greater connectivity between 

the left hippocampus and medical prefrontal cortex. 

- Hypothesis 2: Better aerobic fitness will associate with a negative association between 

the left hippocampus and the posterior cingulate cortex. 

- Hypothesis 3: There will be a difference in associated connectivity by gender. 

1.3.2 Secondary Aim: Assess the Association Between Resting State Functional 
Connectivity and Verbal Learning and Memory in regions that differ by level 
of aerobic fitness.  
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- Hypothesis 1: Greater connectivity between the left hippocampus and medial 

prefrontal cortex will associate with better encoding performance (Trial 1 & Trial 1-5 

Total) on the CVLT-II.  

- Hypothesis 2: Greater negative correlation between the left hippocampus and 

posterior cingulate cortex will be associated with better delayed recall on the CVLT-II.  

METHODS 
 

2.1 Procedures 
 

Data were drawn from participants from a larger parent study assessing the effects 

of cannabis use and aerobic fitness on neuropsychological outcomes in adolescents and 

young adults (PI Lisdahl; R01 DA030354). All aspects of the study protocol were 

approved by the University of Wisconsin-Milwaukee Institutional Review Board (Study # 

PRO00016025). There was a two-part screening process. Prior to the initial phone 

screen, oral consent was received from parents and youth participants who were 18 and 

older; oral parent permission and assent was received for youth who were minors. On 

initial screen, interested participants and one parent were interviewed over the phone for 

demographic information (including age, gender, race/ethnicity, and years of education) 

and basic eligibility requirements. If determined to be eligible, written consent was 

obtained from participants aged 18 or older and parents; written parental permission and 

assent was obtained for participants under age 18. Parents and youth were screened 

using the Mini Psychiatric Interview (MINI; Sheehan et al, 1998) or the MINI-Kid (Sheehan 

et al, 1998) to rule out independent life and past-year DSM-IV Axis I disorders other than 

substance use disorder. The Customary Drinking and Drug Use Record (CDDR; Brown 
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et al, 1998) was used at baseline to assess the frequency and age of onset of use if 

applicable for cannabis, alcohol, nicotine and other drug use. 

The detailed screen also included the International Physical Activity Questionnaire 

(IPAQ), a questionnaire of typical physical activity (Fogelholm et al, 2006), and the 

Physical Activity Readiness Questionnaire (PAR-Q), a questionnaire to assess ability to 

engage in VO2 maximum testing (Thomas et al, 1992). Eligible youth participants then 

came in for five study sessions over the course of 3.5 weeks. The first three sessions 

occurred weekly and included a brief neuropsychological battery, drug patch and urine 

toxicology testing. Sessions four and five occurred at least one week after session three 

and included measures of anthropometrics, aerobic fitness via VO2 maximum testing, 

detailed neuropsychological testing, and a brain MRI occurring within 24 to 48 hours of 

each other and not occurring on the same day. During enrollment in the study, participants 

were instructed to abstain from alcohol, cannabis, and other drug use, with the exception 

of tobacco use. Adherence was confirmed through urine, breath, and sweat toxicology 

assay. Participants who used tobacco were asked to abstain from use at least one hour 

prior to their MRI session.  

2.2 Sample 
 

2.2.1 Participants 
 

A total of 57 healthy young adult participants (see Sample Descriptive Statistics 

table) were recruited from a larger parent study (PI Lisdahl; R01 DA030354). Participants 

were recruited from the community via media advertisements and flyers posted around 

universities and local businesses.  
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Table 1: Sample Descriptive Statistics  
  Mean or Percentage (SD) Range 

Age 21.6 (2.18) 18-25 

Education (years) 14.8 (1.91) 12-21 

WRAT-4 Reading (SS) 105.6 (10.4) 87-133 

VO2 Max (mL/kg/min) 41.4 (8.9) 24.5-62.9 

Body Fat (%) 22 (9.7) 6.7-47.2 

Race (% Caucasian) 68.40%   

Gender (% Female) 50.90%   

 

2.2.2 Inclusion/Exclusion Criteria 
 

Inclusion Criteria: Participants were included in the current study if they were 

English speakers, right-handed, between the ages of 18-25, and had useable resting 

state functional magnetic resonance imaging (rs-fMRI) data.  

Exclusion criteria: Exclusion criteria for the current study included: parent or youth 

reported prenatal exposure to alcohol (>6 drinks per week or >4 drinks per day) or 

nicotine, birth complications, premature birth (<33 weeks gestation), history of neurologic 

disorder, head trauma with >2-minute loss of consciousness, vision or hearing 

impairments, major health problems (hyperlipidemia, hypertension, diabetes), ability to 

safely complete VO2 Max testing, independent DSM-IV Axis I diagnoses, learning and/or 

intellectual disability, use of psychoactive medication, presence of non-removable metal 

in body (or other MRI safety and quality contraindications), past year use of cannabis > 

104 times, and significant illicit substance use (>30 lifetime uses). Individuals in the parent 

study were expected to remain abstinent from substances for three weeks prior to their 

participation, with adherence monitored by urine toxicology and/or continuous sweat 

patch toxicology testing.  
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2.3 Measures 
 

2.3.1 Screening and Eligibility 
 

The Mini International Psychiatric Interview (MINI) and the Mini International 

Psychiatric Interview for Children and Adolescents (MINI-KID) are structured diagnostic 

interviews developed for use in the United States and Europe designed to be a brief 

assessment of Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV) and 

International Classification of Diseases (ICD) 10th revision psychiatric disorders 

(Sheehan et al, 1998). Both have been found to be valid and reliable assessments of 

Axis I psychopathology (Sheehan et al, 2010).   

 The Customary Drinking and Drug Use Record (CDDR) is in an interviewer-

administered questionnaire that provides past 3 months and lifetime measures of 

alcohol and drug-related use characteristics, including level of involvement, withdrawal 

characteristics, symptoms of psychological and behavioral dependence, and negative 

consequences of use. The CDDR has been found to be a reliable and valid assessment 

of substance use patterns in both clinical and research settings (Brown et al, 1998).  

 A modified version of the Timeline Follow-Back (TFLB; Sobell & Sobell, 1992) 

was used to assess patterns of substance use over the course of the past year by 

providing memory cues anchored to personal events and holidays (Lisdahl & Price, 

2012). Quantity of substance use was measured by standard units: alcohol (standard 

drinks), nicotine (number of cigarettes and hits of chew/snuff/pipe/cigar/hookah), 

cannabis (all methods converted to joints or milligrams in concentrates), ecstasy 

(number of tablets), sedatives (number of pills or hits of GHB), stimulants (cocaine and 

methamphetamine use converted to milligrams and number of amphetamine pills), 
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hallucinogens (number of hits or occasions of ketamine/salvia/shrooms/other 

hallucinogens), opioids (number of hits of heroin/opium), and inhalants (number of hits).  

 

2.3.2 Neuropsychological Assessment 
 

Verbal Learning and Memory: Participants were administered a comprehensive 

battery of neuropsychological tests as part of the parent study. Of relevance to the 

proposed study, the California Verbal Learning Test – 2nd Edition (CVLT-II; Delis et al., 

2000) was used as measure of unstructured verbal learning and memory. The CVLT-II 

involves the auditory presentation of 16 words that conform to four semantic categories. 

The word list is presented five times with a free recall prompt after each trial. 

Participants are then administered a distractor list of 16 words that conform to the same 

four semantic categories. There is then an immediate free recall prompt where the 

participant is instructed to recall as many words as they can from the first list that was 

presented five times, followed by a cued recall where they are instructed to recall words 

that belong to each semantic category in turn. There is then an unprompted 20-30-

minute delay period before the participant is asked to both free recall and cued recall 

the list, followed by a forced choice recognition trial.  

 

2.3.3 Anthropometrics 
 

Anthropometric measures included height and weight measured in light clothes 

and without shoes, with Body Mass Index (BMI) calculated as participant weight divided 

by height squared (kg*m2). Body fat percentage was measured by electrical 

bioimpedance analysis system [The Tanita Body Composition Analyzer, TBF-300 (Tanita 

Corporation, Tokyo, Japan)]. 
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2.3.4 Physical Activity and Aerobic Fitness 
 

Participants’ aerobic fitness level was measured as a function of maximal aerobic 

capacity and quantified as a VO2 maximum (VO2 Max) score. Participants were instructed 

to refrain from food and caffeine for 4 hours prior to VO2 Max testing. Prior to each 

participant session, the metabolic measurement system [ParvoMedics TrueOne 2400 

(ParvoMedics, Salt Lake City, UT)] was calibrated using a two-point calibration for the 

gas analyzers (room air and certified gas: 4.008% CO2, 15.98% O2, balance N2) and a 3L 

syringe for the pneumotachometer. Participants were fitted with the rubber mouthpiece 

connected to a two-way non-rebreathing valve [Hans Rudolf 2700 series (Kansas City, 

MO)], nose clip, and heart rate strap (Polar Wearlink 31, Finland) for heart rate 

measurement and collection of expired gases. Maximal aerobic capacity is the point at 

which oxygen consumption reaches a plateau during sustained aerobic activity and is 

considered the gold standard for measuring cardiorespiratory capacity during exercise 

(Myers et al, 2002), and is understood to be a stable measure of aerobic fitness despite 

short term changes in levels of physical activity.  VO2 Max was measured using a treadmill 

(Full Vision Inc., TMX425C Trackmaster, Newton, KS) following the Bruce protocol for 

graded exercise testing, a widely used, reliable, standardized approach appropriate for 

use in young adult samples (ACSM, 2006). Participants were provided with procedures, 

explanation of known minimal risks, and instructed to complete as much work as possible 

but they could stop the assessment at any time they wished. They were then instructed 

to begin by walking or running at a comfortable speed. The speed and/or grade were then 

systematically increased at each Bruce protocol stage. Heart rate expired respiratory 
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gases, and subjective rating of exertion by each participant were collected at each stage. 

The assessment was ended when the participant reached their individual max or reached 

grade VI of the Bruce protocol.   

 

2.3.5 MRI Acquisition and Processing 
 

Acquisition: MRI scan data were collected using a 3T Signa LX MRI scanner (GE 

Healthcare, Waukesha, WI) using a 32-channel quadrature transmit/receive head coil. 

High-resolution anatomical images were acquired using a T1-weighted spoiled gradient-

recalled at steady-state (SPGR) pulse sequence (TR = 8.2 ms, TE = 3.4 s, TI = 450 and 

flip angle of 12°). The in-plane resolution of the anatomical images was 256x256 with a 

square field of view (FOV) of 240 mm. One hundred fifty slices were acquired at 1 mm 

thickness. Functional resting-state MRI scans were acquired with gradient-echo echo 

planar imaging (EPI) pulse sequences in the sagittal orientation (TR = 2 sec, TE = 25 ms 

and flip angle = 90°). The in-plane resolution was 64x64 with a FOV of 240 mm with 40 

contiguous 3.7 mm slices. Participants were instructed to lie awake with their eyes closed 

for the six-minute resting scan.  

MRI Preprocessing: Resting-state fMRI scan data were preprocessed and 

analyzed using AFNI software (Cox, 1996). The first four time points of each acquisition 

were removed due to T1 stabilization effects. Motion was corrected for by rigidly aligning 

each volume to the mean image volume of the sample. The data were despiked and linear 

and quadratic detrended. Functional data was smoothed in-plane using a 6 mm full width 

half maximum Gaussian kernel and then temporally filtered (0.005 < f < 0.1). The SPGR 

was normalized to a standard dataset (MNI152) and the resulting registration matrix was 
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applied to the resting-state scan. Nuisance signals, including white matter and CSF 

signals, and six motion parameters were regressed from the data using 3DDeconvolve 

(Fox et al., 2005; Gusnard, Raichle, & Raichle, 2001). 

 

2.4 Data Analysis 
 

2.4.1 Primary Aim: Resting State Functional Connectivity and Aerobic Fitness 
Analysis 
 

To assess functional connectivity between the left hippocampus and the rest of the 

brain, seed-based whole brain resting state functional connectivity analyses were 

performed using a 4-millimeter radius sphere centered in the left hippocampus (MNI 

coordinates: -20, -30, -8), consistent with previous literature assessing whole 

hippocampus connectivity (Holmes et al., 2014). The correlation between time series 

activation in the left hippocampus and whole brain was calculated to identify regions of 

correlated and anti-correlated activation. Correlation coefficients were transformed to 

Fischer Z-scores in AFNI software (Cox, 1996). Changes in hippocampal functional 

connectivity associated with VO2 Max performance was first analyzed using a general 

linear model via 3Dttest++ in AFNI. A second GLM of a VO2 Max*Gender interaction 

predicting hippocampal connectivity was then conducted to assess the moderating effect 

to gender. A family-wise error (FWE) threshold of pFWE < 0.05 (individual voxel level (p < 

0.001) was used via a cluster-threshold method to correct for multiple comparisons at the 

whole group level, and pFWE < 0.10 (individual voxel level (p < 0.001) at the subgroup 

level using 10,000 Monte Carlo simulations via 3DClustSim within AFNI. These threshold 

cutoffs have shown to reduce false-positive rates (Cox, Chen, Glen, Reynolds, & Taylor, 

2017; Slotnick, 2017). 
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Figure 1: Location of 4mm seed in left hippocampus (MNI: -20, -30, -8). 

 

2.4.2. Secondary Aim: Resting State Functional Connectivity and Verbal Learning 
and Memory Analysis 
 

Fischer Z-scores demonstrating the strength of relationship between the seed 

region (left hippocampus) and clusters that were significantly associated with VO2 Max or 

gender interactions were extracted and correlated with CVLT-II learning and memory 

scores to assess the degree to which differential connectivity associates with out of 

scanner verbal learning and memory performance. SPSS software (Microsoft, version 24) 

was used to calculate the Pearson’s correlation coefficient between the mean Z-score of 

each significant resting state functional connectivity region and scores of the CVLT-II 

(specifically Trial 1, Trial 1-5 Total Score, Short Delay Free Recall, and Long Delay Free 

Recall). 
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RESULTS 
 

3.1 Sample Descriptive Statistics  
 

Descriptive statistics of the sample separated by gender (Table 2) and VO2 Max 

median split (Table 3) are reported below. In terms of gender, there was a significant 

difference in raw VO2 Max performance, where males had a higher average VO2 Max 

score compared to females (t = 4.883, p < 0.05). There was also a difference in racial 

identification by gender, where females had a higher percentage of Caucasians relative 

to the males (ꭕ2 = 12.09, p < 0.05). 

Table 2: Descriptive Statistics by Gender 

  Female (n=29) Male (n=28)     

  Mean (SD) [range] t-stat or χ2 p-value 

Age 21.7 (1.9) [18-25] 21.5 (1.9) [18-25] -0.387 0.70 

Education (years) 14.7 (1.7) [12-19] 14.9 (1.7) [12-21] 0.399 0.69 

WRAT-4 Reading (SS) 104.5 (10.1) [90-133] 106.7 (10.7) [87-133] 0.809 0.42 

Body Fat (%) 28.3 (7.1) [16.3-47.2] 16.1 (8.0) [6.7-41.7] -6.078 <0.001 

VO2 Max (mL/kg/min) 36.7 (7.1) [28.6-62.9] 46.4 (7.9) [24.5-49.4] 4.883 < 0.05 

Race (% Caucasian) 75.9% 58.6% 12.09 < 0.05 

Gender (%Female) 0.51 0.49 0.018 0.90 

 

When the sample was divided by median VO2 Max (median = 42.4 mL/kg/min), as 

expected there was a significant difference in percentage body fat, where the lower VO2 

Max group had a higher average percentage body fat compared to high VO2 Max group 

(t = 4.782, p = 0.00001). There was also a difference observed gender percentage by 

VO2 Max group, where there was a higher than statistically expected representation of 

females in the low VO2 Max group and lower representation in the high VO2 Max group 

(ꭕ2 = 12.81, p = 0.001).  
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Table 3: Descriptive Statistics by VO2 Max 

  VO2 Max Low (n=28) VO2 Max High (n=29)     

  Mean (SD) [range] t-stat or χ2 p-value 

VO2 Max Median Split 34.0 (4.9) [24.5-41.2] 48.6 (5.1) [42.4-62.9]    

Age 21.8 (2.1) 18-25] 21.4 (2.3) [18-25] 0.701 0.49 

Education (years) 15.0 (2.0) [12-21] 14.6 (1.8) [12-19] 0.958 0.34 

Body Fat (%) 27.7 (8.9) [8.7-47.2] 17.2 (7.5) [6.7-31.8] 4.782 0.00001 

Race (% Caucasian) 57.1% 79.3% 3.24 0.064 

Gender (% Female) 75% 27.6% 12.81 0.001 

 

3.2 Primary Aim: Whole Brain Resting State Functional Connectivity and 
VO2 Max Analysis 
 

VO2 Max: Results of association between VO2 Max level and resting state 

functional connectivity pattern between the left hippocampus and the whole brain 

revealed one statistically significant cluster of co-activation in the left parahippocampal 

gyrus (cluster size: 112 voxels; center of mass (20.6, 17.1, -9.7); peak (24, 18, -12) after 

correction for multiple comparisons (cluster pFWE < 0.05, voxel p < 0.001).  

 

Figure 2:  Functional connectivity between the left hippocampus and left parahippocampal gyrus associated with aerobic fitness 

level 
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Figure 3: Bivariate scatterplot demonstrating association between extent of connectivity between left parahippocampal gyrus and 

left hippocampus associated with VO2 Max score, parsed by gender. 

 

VO2 Max*Gender: Results of VO2 Max*Gender association with left hippocampal 

functional connectivity yielded one cluster of anti-correlation with the right 

parahippocampal gyrus, which did not survive correction for multiple comparisons (cluster 

size: 30 voxels; center of mass (-27.7, 4.1, -16.4); peak (-24, 3, -15).  
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Figure 4: Functional connectivity between left hippocampus and right parahippocampal gyrus marginally associated with aerobic 

fitness.  

 

Exploratory Post-Hoc Whole Brain Connectivity: VO2 Max Separately by Gender 

Males: Results of VO2 Max level associated with resting state functional 

connectivity to the left hippocampus in the male group yielded one statistically significant 

cluster of co-activation in the left parahippocampal gyrus (cluster size: 57 voxels; center 

of mass (21.2, 13.1, -14.2); peak (18, 9, -19) that survived correction for multiple 

comparisons (pFWE < 0.10 (individual voxel level p < 0.001) and one cluster of co-

activation in the right parahippocampal gyrus (cluster size: 39 voxels; center of mass (-

25.9, 6.1, -16.2); peak (-24, 6, -15) that did not survive correction for multiple 

comparisons.  
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Figure 5: Functional connectivity between left hippocampus and left parahippocampal gyrus associated with aerobic fitness in 

males. 

 

Figure 6: Bivariate scatterplot demonstrating association between extent of connectivity between left parahippocampal gyrus and 

left hippocampus associated with VO2 Max score in males. 
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Figure 7: Functional connectivity between left hippocampus and right parahippocampal gyrus marginally associated with aerobic 

fitness in males. 

 

 

Figure 8: Bivariate scatterplot demonstrating marginal association between extent of connectivity between right parahippocampal 

gyrus and left hippocampus associated with VO2 Max score in males. 

 

Females: Results of VO2 Max level predicting resting state functional connectivity 

to the left hippocampus in the female group did not yield statistically significant clusters 
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that survived correction for multiple comparisons. Two clusters were observed before 

correction: co-activation in the left cingulate gyrus (cluster size: 29 voxels; center of mass 

(20.4, 35.1, 36.2); peak (24, 36, 39) and anti-correlation in the right inferior temporal gyrus 

(cluster size: 23 voxels; center of mass (-53.7, 59.7, -4.9); peak (-57, 66, -3). 

 

Figure 9: Functional connectivity between left hippocampus and left cingulate gyrus marginally associated with aerobic fitness in 

females. 

 

Figure 10: Bivariate scatterplot demonstrating non-significant association between extent of connectivity between left cingulate 

gyrus and left hippocampus associated with VO2 Max scores in females. 
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Figure 11: Functional connectivity between left hippocampus and right inferior temporal gyrus marginally associated with aerobic 

fitness in females. 

 

Figure 12: Bivariate scatterplot demonstrating non-significant right inferior temporal gyrus anti-correlation with left hippocampus 

associated with VO2 Max scores in females. 

 

3.3 Secondary Aim: Brain-Behavior Relationships: Resting State Functional 
Connectivity ROIs and Verbal Learning and Memory Analysis 
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negative correlation between connectivity to the left parahippocampal gyrus and total 

intrusions (r = -0.265, p = 0.047). Marginally significant correlations were observed for 

trial 1 (r = 0.235, p = 0.079) and trial B (r = 0.213, p = 0.111). No significant correlations 

were observed for trial 1-5 total score (p = 0.816), short delay (p = 0.703), or long delay 

(p = 0.582) free recall memory.  

 

Figure 13: Bivariate scatterplot demonstrating marginal association between extent of connectivity to the left parahippocampal 

gyrus with CVLT-II Trial 1 standard score.  
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Figure 14:  Bivariate scatterplot demonstrating marginal association between extent of connectivity to the left parahippocampal 

gyrus with CVLT-II Trial B standard score.  
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Figure 15: Bivariate scatterplot demonstrating significant association between extent of connectivity to the left parahippocampal 

gyrus with CVLT-II Total Intrusions standard score.  
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DISCUSSION 
 

The current study set out to understand the relationship between objective 

measures of aerobic fitness and resting state functional connectivity between the left 

hippocampus, a region critically involved in verbal learning and memory, and the whole 

brain. Superior aerobic fitness was positively associated with connectivity between the 

left hippocampus and the left parahippocampal gyrus, a region known for its role in 

encoding and memory (Strange et al., 2002). Co-activation of the left hippocampus and 

left parahippocampal gyrus that associated with better aerobic fitness was also 

correlated with superior verbal working memory, auditory attention, and single-trial 

learning in this sample of healthy adolescents and young adults. There was no 

significant gender-by-aerobic fitness interactions, however exploratory analyses suggest 

this is an area that requires additional research with a larger sample.  

The significant association of superior aerobic-fitness and increased connectivity 

between the left hippocampus and parahippocampal gyrus is consistent with known 

functional neuroanatomy of the hippocampal complex and mesial temporal lobe 

structures. The hippocampus is physically connected to parahippocampal gyrus via the 

subiculum, with the anterior aspect of the parahippocampal gyrus comprised of the 

entorhinal cortex, a region that serves as a node for input and output between 

association cortex and the hippocampal formation (Blumenthal, 2010). Further inputs to 

the hippocampal formation via the entorhinal cortex rise from the posterior two thirds of 

the parahippocampal gyrus, comprised of the perirhinal cortex and parahippocampal 

cortex. Functional connectivity between the left hippocampus and parahippocampal 

gyrus associated with aerobic fitness is likely due to aerobic effects on neuroplasticity in 
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the greater hippocampal complex, especially the dentate gyrus (Toda et al., 2019). This 

plasticity is likely to be mediated by the various neurotrophic (e.g. BDNF) and 

angiogenic (e.g. VEGF and IGF-1) factors known the be released and associated with 

acute and sustained aerobic exercise (Pereira et al., 2007; Louissant et al., 2002; van 

Praag et al., 2005; Lin et al., 2002; Voss et al., 2013). 

In this connectivity network associated with aerobic fitness, we found that 

positive functional connectivity was correlated with superior performance on single trial 

learning, auditory attention, and verbal working memory, which are essential 

components of successful encoding and subsequent retrieval (Delis et al, 2000). 

Consistent with these findings, several functional studies have shown that activation in 

the parahippocampal gyrus is associated with better encoding, retrieval, and recognition 

of both verbal (Fernandez & Tendolkar, 2002) and visual information (Brewer et al 1998; 

Wagner et al., 1997; Kirchoff et al., 2000; Aggelton & Brown, 1999). Activity in 

parahippocampal gyrus has also been associated with item novelty (Tulving et al, 1996; 

Stern et al., 1996; Dolan & Fletcher, 1997; Gabrieli et al., 1997) and better performance 

on single presentation memory tasks (Eichenbaum et al., 2000), which may facilitate 

better working memory performance. It appears that the benefits of aerobic fitness on 

functional connectivity with the hippocampus are focal to immediately physically 

connected and functionally associated mesial temporal regions, thereby conferring more 

efficient connectivity between the hippocampus and a critical “on ramp” for afferents to 

the greater hippocampal complex. Further, findings by Strange and colleagues (2002) 

support the functional integration of perirhinal cortex and hippocampal body in encoding 

and retrieval and that both regions may independently contribute to verbal encoding. 
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These results were found in predominantly left-sided perirhinal and hippocampal 

activation in response to list learning and recall, consistent with the historical and 

contemporary understanding of the dominance of the left medial temporal lobe in verbal 

memory (Milner, 1972).  

While gender was not found to moderate the relationship between aerobic fitness 

and hippocampal resting-state connectivity, visual inspection of the scatter plots 

revealed potential gender differences, such that males appeared to drive the 

association between higher aerobic fitness and left parahippocampal connectivity. 

Further, males appeared to drive the correlation between aerobic fitness associated 

with left parahippocampal gyrus co-activation with CVLT-II Trial 1 and Total Intrusions.  

Notably, left parahippocampal connectivity separated by gender shows the male group 

had more individuals with raw VO2 Max scores >50 mL/kg/min, while no individuals in 

the female group exceeded 50 mL/kg/min. This finding may indicate that there is a 

minimum raw VO2 Max threshold to be reached before there is a robust effect on 

functional connectivity and may also reflect that males benefit more from increased 

aerobic fitness in brain regions important for verbal learning and memory. However, 

these results are considered exploratory due to lowered power to detect small effect 

sizes for the gender by VO2 Max interaction (57% power estimated; Erdfelder et al, 

1996). Thus, larger studies that include male and female adolescents and young adults 

with a greater range of VO2 Max scores would help elucidate the mechanisms at play 

that confer this potential gender difference. Additional research is also needed to 

examine whether interventions aimed at improving neurocognitive functioning via 

aerobic exercise regimens impact the sexes differently.  
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Several factors may account for the lack of support for the original hypotheses. 

This study sought to understand the influence of cardiovascular fitness on the 

hippocampus, a region with known sensitivity to the beneficial effects provided by 

superior aerobic fitness, including evidence of increased neuroplasticity, neurogenesis, 

and angiogenesis. Previous studies have found association between aerobic fitness and 

broader default mode network activation (Herting & Nagel, 2013) during a scanner-

based task, which we did not observe. It is possible that there is a selective sensitivity of 

the greater hippocampal complex and surrounding cortex to aerobic fitness benefits. 

Indeed, prior studies have shown the dentate gyrus and hippocampal formation to be 

uniquely impacted by neurotrophic and angiogenic factors (Pereira et al, 2007; Redlila 

et al, 2006), an effect which may be more nuanced in other parts of the brain. Secondly, 

our sample was comprised of young, metabolically healthy individuals with no significant 

cardiovascular or other medical comorbidities; it is possible that more robust 

relationships between aerobic fitness and hippocampal connectivity would be observed 

in samples with a greater range of cardiorespiratory fitness and varying degrees of 

health status. Even so, a subtle relationship between cardiovascular fitness and 

hippocampal – parahippcampal gyrus connectivity was observed and this was 

correlated with downstream verbal learning and memory performance. Thus, the 

present findings support the idea that aerobic fitness is linked with brain health even in a 

young, healthy sample. This may lay the foundation for protective factors for later onset 

risk of mood, psychiatric, and cognitive impairments as we age. Additional 

considerations for future research include using measures of learning and memory to 

predict verbal memory connectivity networks and how that connectivity is moderated by 
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level of aerobic fitness. Such an approach may offer unique insights into networks 

associated with specific domains of neurocognitive function and the role that aerobic 

fitness may play in moderating the functional connectivity of these specific networks. 

Further, integration of other covariates of aerobic and metabolic health, such as 

subjective reports of physical activity type, degree, and quantity as well as measures of 

visceral and subcutaneous adipose tissue, may further elucidate the relationship 

between health status and functional activity in the brain.   

Limitations to the current study include a relatively small sample size comprised 

of healthy young adults with no psychiatric or medical comorbidities and without 

expected learning or memory deficits, thus creating a truncated range of both raw 

aerobic fitness scores and neurocognitive performance, likely reducing effect size and 

power especially in detecting gender interactions. Future studies would benefit from a 

broader range of ages, cognitive status, health and lifestyle factors that may increase 

variability and thus sensitivity to change. Another important consideration is the high 

correlation of VO2 Max with percentage body fat, which could not be controlled for in the 

analysis due to multicollinearity. Importantly, this study only assessed the correlation 

between aerobic fitness and functional connectivity in a cross section of time, thereby 

not allowing for predictive or causal conclusions. For example, it is possible that 

participants with greater functional connectivity engage in more aerobic exercise. These 

limitations emphasize the importance and need for prospective, longitudinal studies 

such as the Adolescent Brain Cognitive Development (ABCD) Study ® (Jernigan et al, 

2018) that assess the relationship between physical activity, adiposity, and brain 

development in a large sample of boys and girls as they age.  
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In summary, this study contributes to the rapidly growing body of literature that 

increasingly shows a positive relationship between aerobic fitness and neurocognitive 

function. From a public health standpoint, these findings suggest that the benefits of 

aerobic fitness on neurocognitive function may not only be reserved for those that have 

experienced subjective and objective change in the cognitive function. These cross-

sectional findings lend support to the importance of public health initiatives to promote 

physical activity and aerobic fitness in adolescents and young adults and that 

maintenance of these positive health behaviors should be sustained through young 

adulthood when activity levels often begin to decline. This also lends further evidence 

that aerobic exercise may be a viable low-cost, high-return intervention to improve brain 

health in clinical samples. Further studies should investigate the use of aerobic exercise 

interventions in neuropsychological and psychiatric clinical populations across the 

lifespan such as addiction/substance use, traumatic brain injury, and other acquired 

brain injuries (Lisdahl et al, 2013). 
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Conducted teleneuropsychological evaluations and served on select Teleneuropsychology 
Taskforce to maintain clinical service during COVID-19 pandemic.  

 
Consultation/Liaison Psychiatry Service (January 2020 –June 2020) 

Supervisors: Yasmin Asvat, Ph.D. and Marie Tobin, M.D. 
 

Provide bedside supportive care, psychotherapy interventions, and brief neurocognitive 
assessments for general medical and psychiatric inpatients within the University of Chicago 
Medical Center hospitals as part of an inpatient psychiatry team. Populations of emphasis 
include severe mental illness including schizophrenia spectrum disorders, personality 
disorders, bipolar disorders, and suicidal/homicidal ideation.  
 
Continued service telephonically and by video conference during COVID-19 pandemic.  

 
Behavioral Medicine and Primary Care Consultation Service (January 2020 –June 2020) 
Supervisor: Fabiana Souza Araújo, Ph.D. 

 
Provide consult services for primary care clinic patients via focused psychotherapy 
interventions. Facilitated weekly group therapy for patients with COVID-19 related stress. 
Served as on-call crisis line clinician for COVID-19 frontline healthcare workers in the UCMC 
system. Provided group therapy and lectures for individuals with COVID-19 related grief, 
mood dysfunction, and cognitive compromise. 
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General Outpatient Psychotherapy Clinic (July 2019-June 2020) 
Supervisors: Sarah Keedy, Ph.D. and Daniel Fridberg, Ph.D. 
 
Tiered Clinical Neuropsychology Supervisor:  

- Aamir Laique, M.S. (Ph.D. Candidate, Illinois Institute of Technology) 
- Richard Keezer, M.A., LPC (Psy.D. Candidate, Wheaton College) 
- Amanda Wisinger, M.S. (Psy.D. Candidate, Chicago School of Professional Psychology) 
- Bailey Cation, M.S. (Psy.D. Candidate, Roosevelt University) 
- Atash Sabet, M.S. (Psy.D. Candidate, Adler University) 
- Olivia Beers, M.S. (Psy.D. Candidate, National Louis University) 
- Alexis Siple, M.S. (Psy.D. Candidate, Adler University) 

 
CLINICAL TRAINING EXPERIENCES          
Advanced Clinical Neuropsychology Extern - Clement J. Zablocki VAMC  (2018-2019) 
Supervisors: Eric Larson, Ph.D., ABPP-CN, Angel Gleason, Ph.D., ABPP-CN, & Kathleen Paterson, 
Ph.D., ABPP-CN 
 

Provided neuropsychology consultation services for outpatients, domiciliary residents, and 
geriatric, rehabilitation, medical-surgical, neurology, cardiac, and psychiatry inpatients. 
Caseload included recently returning service members to geriatric patients. Common referrals 
included memory loss, evaluation of dementia, dementia vs. pseudodementia, traumatic 
brain injury, personality changes, ADHD, learning disabilities, demyelinating diseases, and 
seizure disorders as well as decisional capacity evaluations. 

 
Advanced Clinical Health/Neuropsychology Extern - Department of Transplant Surgery, 
Froedtert Hospital and Medical College of Wisconsin (2018-2019) 
Supervisors: Jenessa Price, Ph.D. & Stephanie Zanowski, Ph.D. 
 

Provided comprehensive neuropsychological assessment and intervention services for 
patients with complex medical conditions pre- and post- solid organ transplant (heart, lung, 
kidney, liver) for adherence and health maintenance. Conduct brief, tailored 
neuropsychological evaluations to inform individualized treatment interventions. Conduct 
individual/family sessions to provide feedback and recommendations. Interventions included 
goal-setting, motivational interviewing, relapse prevention, cognitive-behavioral, and 
dialectical-behavioral techniques.  

 
Clinical Neuropsychology Extern - Department of Neurology, Froedtert Hospital and Medical 
College of Wisconsin (2017-2018) 
Supervisors: Sara Swanson, Ph.D., ABPP-CN, David Sabsevitz, Ph.D., ABPP-CN, Julie Bobholtz, 
Ph.D., ABPP-CN & Laura Umfleet, Psy.D. 
 

Provided comprehensive neuropsychological evaluations  for young adults through older 
adults in both inpatient and outpatient settings. Referrals included traumatic brain injury, 



 

 

 

48 
 

epilepsy, memory disorders, movement disorders, and neuro-oncology (including pre-, post-, 
and peri-radiation/chemotherapy/surgery assessment). Participated in interviews and 
feedback of results. Attended weekly professional development and didactics.  

 
Graduate Student Therapist - UW-Milwaukee Psychology Clinic (2016-2019)  
Supervisors: Shawn Cahill, Ph.D. & Robyn Ridley, Ph.D. 
 

Clinics:  Behavioral and Exposure Therapy for Anxiety & CBT for Depression/Anxiety 
Provided evidence-based outpatient treatments for depression, anxiety, panic disorder, and 
post-traumatic stress disorder, including Cognitive-Behavioral Therapy, Behavioral Activation, 
and Exposure Therapy, with members of the community.  

 
Graduate Student Assessment Clinician - UW-Milwaukee Child Neuropsychology Clinic  
(2015-2019) 
Supervisor: Bonnie Klein-Tasman, Ph.D.  
 

Conducted pediatric learning disability and psychodiagnostic assessments using a range of 
cognitive, achievement, and neuropsychological measures, as well as symptom and 
behavioral questionnaires for community pediatric referrals. Completed clinical interviews, 
reports, and feedback sessions.  

 
Graduate Student Assessment Clinician - UW-Milwaukee Psychology Clinic (2015-2016) 
Supervisors: Hanjoo Lee, Ph.D., Kristin Smith, Ph.D. & Dave Osmon, Ph.D, ABPP-CN.  
 

Conducted learning disability and psychodiagnostic assessments using a range of cognitive, 
achievement, and neuropsychological measures, as well as symptom and behavioral 
questionnaires. Completed clinical interviews, reports, and feedback sessions.  

 
Clinical Practicums - UW-Milwaukee Psychology Clinic (2014-2016) 
Supervisors: Christopher Martell, Ph.D., ABPP & Robyn Ridley, Ph.D. 

- 2015-2016: Integrated Behavioral Couples Therapy; Behavioral Activation for Depression 
- 2014-2015: Cognitive Behavioral Therapy for Depression/Anxiety; Integrated Behavioral 

Couples Therapy 
 
Forensic Psychometry Consultant - Comprehensive Clinical & Consulting Services, Milwaukee, 
WI (2015-2018)  
Supervisors: Itzhak Mutasiak, Ph.D. & Pamela Schaefer, Ph.D. 
 

Conducted brief neurocognitive assessments of children and adults on referral from local 
courts.  

 
Child Psychometry Consultant - Eidex Testing Center, Atlanta, GA (2014-2017) 
Supervisor: Rivkah Eidex, Psy.D. 
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Conducted comprehensive psychodiagnostic evaluations and wrote interpretive reports for 
children referred primarily for moderate to severe autism spectrum disorder and other 
neurodevelopmental disorders.  

 
Senior Clinical Psychometrist - Department of Psychiatry & Behavioral Neurosciences;  Byrd 
Alzheimer’s Disease Research Center, University of South Florida Morsani College of Medicine 
(2012-2013)  
Supervisors: Michael Schoenberg, Ph.D., ABPP-CN, Michelle Mattingly, Ph.D., ABPP-CN & Eric 
Rinehardt, Ph.D., ABPP-CN 
 

Supervisor for neuropsychological assessment in outpatient psychiatry clinic and ADRC 
multidisciplinary care team. On-call psychometrist for pre-surgical evaluations at Tampa 
General Hospital Neurosurgery Service. Prepared and summarized patient data for 
multidisciplinary case conferences. Research responsibilities included maintaining 
neuropsychology research database, participant recruitment, and data analysis for 
presentation and manuscript presentation.  

 
Junior Clinical Psychometrist - Department of Psychiatry & Behavioral Neurosciences; Byrd 
Alzheimer’s Disease Research Center, University of South Florida Morsani College of Medicine  
(2011-2012)  
Supervisors: Michael Schoenberg, Ph.D., ABPP-CN, Michelle Mattingly, Ph.D., ABPP-CN & Eric 
Rinehardt, Ph.D., ABPP-CN 
 

Outpatient neuropsychological assessment, office management and maintenance of HIPPA 
compliance for private health information. Assisted in data entry and management for 
research projects.  

 
On-Call Clinical Psychometry Consultant - Comprehensive Inpatient Rehabilitation Unit, 
Florida Hospital, Tampa, FL (2012-2013) 
Supervisor: Michael Schoenberg, Ph.D., ABPP-CN 
 

On-call psychometrist for treatment and recovery tracking for inpatient vascular 
rehabilitation unit. Specifically trained in targeted bedside neuropsychological assessment.  

 
RESEARCH EXPERIENCE           
 
Graduate Research Assistant & Community Outreach Lead - Adolescent Brain and Cognitive 
Development (ABCD) Study, UW –Milwaukee (2016-2019) 
P.I.: Krista Lisdahl, Ph.D. Funding Source: U01 DA041025. National Institute of Health 
(NIH)/National Institute on Drug Abuse (NIDA). 
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Served as a research assistant in charge of coordinating community and school-based 
recruitment of parents and families and hosting community engagement events. Also 
responsible for conducting interviews and running sessions of parent and youth (psychiatric, 
substance use, bioassays, MRI, health [adiposity, sleep, physical activity).  

 
Graduate Research Assistant - Integration of Standing Desks in Elementary Schools to Reduce 
Sedentary Behavior and Improve Neuropsychological Functioning, UW-Milwaukee, Kinesiology & 
Psychology Departments (2016-2017)  
P.I.: Ann Swartz, Ph.D.; Co-I & Neuropsychology Supervisor: Krista M. Lisdahl, Ph.D. 
 

Assisted in a year-long study of in a community elementary school to determine possible 
outcomes of standing desks compared to sitting desks on executive function, learning, 
attention, postural stability, and physical activity levels. Conducted cognitive evaluations of 
grade school aged (3rd-6th grade) participants using the NIH Toolbox at baseline, 4 months, 
and 8 months.  
 

Graduate Student Program Evaluator - Clinical & Translational Science Institute, Medical College 
of Wisconsin (2015) 
 

Cleaned, processed, and analyzed longitudinal data for a graduate program tracking system 
for research scholar funding programs. Prepared report of analysis and findings and created 
protocol for future analysis and report preparation.  

 
Graduate Research Assistant - Neurobiology of Memory Lab, UW-Milwaukee (2014-2016) 
P.I.: Ira Driscoll, Ph.D. 
 

Conducted and analyzed behavioral studies of learning and memory in older adults using fear 
conditioning and eye tracking methodologies.  

 
Clinical Research Coordinator - Division of Cognitive Neurology & Alzheimer’s Disease Research 
Center, Emory University School of Medicine (2013-2014) 
Supervisors: Felicia Goldstein, Ph.D., ABPP-CN, Allan Levey, M.D., Ph.D. & James Lah, M.D., Ph.D. 
 

Lead research coordinator for multisite international Phase-III clinical trial sponsored by 
Takeda Pharmaceuticals. Conducted study screenings, intakes, neuropsychological testing, 
phlebotomy, and recruitment through community outreach presentations. Coordinated 
several other active drug trials. Attended bi-weekly clinical case conference meetings for 
research and clinical activities. Supervised neuropsychological assessment training.  

 
Clinical Research Scholar - Departments of Psychiatry and Psychology; Neuroscience, Mayo Clinic 
of Florida (2010-2011) 
Supervisors: Otto Pedraza, Ph.D., ABPP-CN & Nilufer Taner, M.D., Ph.D. 
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Conducted analyses of relationships between single nucleotide polymorphisms associated 
with risk or protection from Alzheimer’s disease and longitudinal neuropsychological test 
performance via PLINK analyses software. Assisted in conducting assays of genetic samples, 
and manuscript preparation.  

 
Research Assistant - Guana-Tolomato-Matanzas National Estuarine Research Reserve, Saint 
Augustine, FL (2011) 
 

Assisted staff scientists with field data collection for two separate studies; one of nutritional 
composition of hammock soil pre and post controlled burn, and another as assessing the 
impact of water pH on shell integrity of NE Florida oysters. 

 
Clinical Research Intern - Division of Developmental Pediatrics; Center for Autism and Related 
Disabilities, University of Florida College of Medicine (2010) 
Supervisors: Jacqueline Brown, Ph.D., ABPP-CN & David Childers, M.D. 
 

Assisted with neuropsychological assessment of children with moderate to severe pervasive 
developmental and rare neurogenetic disorders. Responsible for data entry, management, 
and summarization for multidisciplinary case conferences. Hosted several community 
outreach presentations targeted toward providing underserved, low SES communities with 
information concerning available resources and pro bono evaluations.  

 
Research Assistant - Department of Social-Behavioral Sciences; Natural Sciences, Flagler 
College (2009-2010)  

Responsibilities: Assisted with literature reviews and data management for faculty members 
in psychology, sociology, and environmental science. 

 
NSF Undergraduate Research Scholar - Departments of Functional Genomics; Neuroscience,   
University of Florida Whitney Laboratory for Marine Biosciences (2009-2010)  
Supervisors: Peter Anderson, Ph.D. & Christelle Bouchard, Ph.D. 

Conducted mentored research in evolutionary neuroscience of marine invertebrates, 
specifically Cyanea capillata and Physalia physalis to isolate novel genetic markers for 
neurotransmission in primitive nervous systems and functional neuroscience investigations 
of cnidocyte behavior and biochemical characteristics.  

 
PEER-REVIEWED PUBLICATIONS          
Jennette, K., Wallace, A., Swartz, A., & Lisdahl, K.M. (In preparation). Aerobic fitness and resting 

state functional connectivity to the left hippocampus associates with attention and 
working memory performance.  

 
Wallace, A., Hatcher, K., Jennette, K., & Lisdahl, K.M. (under revision). Attention function 

improves following three-weeks of monitored abstinence in regular cannabis using 
adolescents and young adults. 
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Kangiser, M., Kaiver, C., Knecht, B., Jennette, K., & Lisdahl, K.M. (under review). Increased binge 

drinking is associated with cognition in adolescents and emerging adults. 
 
Jennette, K., Wallace, A.L., Swartz, A.M., & Lisdahl, K.M. (In preparation). Aerobic fitness predicts 

increased functional connectivity in verbal memory networks in healthy adolescents and 
young adults. 

 
Jennette, K., Wallace, A.L., Kangiser, M., & Lisdahl, K.M. (In preparation). Semantic organization 

predicts delayed verbal recall in cannabis-using and non-drug using adolescents and 
young adults. 

 
Jennette, K., Kangiser, M., Knecht, B., Groth, M., & Lisdahl, K.M. (In preparation). The influence of 

binge drinking behavior on verbal learning and memory strategy in young adults. 
 
Wallace, A., Jennette, K., Mulligan, D., Lisdahl, K.M. (In preparation) Impact of Three-Weeks of 

Sustained Abstinence on Cognition in Young Adult Cannabis Users.  
 
Pedraza, O., Allen, M., Jennette, K., Carrasquillo, M., Crook, J., Serie, D….Ertekin-Taner, N. (2014). 

Evaluation of memory endophenotypes for association with CLU, CR1, and PICALM 
variants in black and white subjects. Alzheimer's & Dementia, 10(2), 205-213.  

 
Rudd, M., Jennette, K., Duey, B., Selman, A., & Seron, T. (2013). The effects of increased acidity 

on the shell integrity and body size of c. virginica: A comparison of oyster populations in 
northeast florida. The Journal of Young Investigators, 25 (2). 

 
Pedraza, O., Allen, M., Jennette, K., Crook, J., Carrasquillo, M., Palusak, R….Ertekin-Taner, N. 

(2011) Evaluation of Cognitive Endophenotypes for Association with CLU, CR1 and 
PICALM LOAD Risk Genes. Alzheimer's & Dementia, 7(4), S191-S192. 

 
CONFERENCE PRESENTATIONS         
Jennette, K. (2020, February) Aerobic fitness predicts increased functional connectivity in verbal 

memory networks in healthy adolescents and young adults. Poster presented at the 
International Neuropsychological Society (INS) 48th Annual Meeting, Denver, CO. 

 
Wallace, A., Jennette, K., Lisdahl, K (2018, June) Effects of Continued Cannabis Abstinence on 

Neuropsychological Performance. Poster presented at the College of Problem Drug 
Dependence 80th Annual Scientific Meeting 

 
Lehman, S., Jennette, K., Wallace, A. & Lisdahl, K. (2018, April) Effects of Early Onset Marijuana 

Use on Executive Functioning Compared to Late Onset Marijuana Use. Poster presented 
at the National Conference on Undergraduate Research, University of Central Oklahoma.  
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Groth, M., Jennette, K. & Lisdahl, K. (2018, April) Binge Drinking Impact on Verbal Memory Recall 
in Adolescents and Young Adults. Poster presented at the National Conference on 
Undergraduate Research, University of Central Oklahoma. 

 
Jennette, K., Kangiser, M., Lisdahl, K. (2018, February) The Influence of Binge Drinking Behavior 

on Verbal Learning and Memory Strategy in Young Adults. Poster presented at the 
International Neuropsychological Society (INS) 46th Annual Meeting, Washington, DC. 

 
Jennette, K., Gilbart, E. & Lisdahl, K. (2017, June) The Association of Learning Strategy and 

Delayed Recall in Adolescents and Young Adult Marijuana Users and Controls. Poster 
presented for the College of Problem Drug Dependence 79th Annual Scientific Meeting, 
Montreal, Québec, Canada.  

 
Kangiser, M., Jennette, K., Thomas, A. & Lisdahl, K. (2017, June) Gender Moderates Chronic 

Nicotine Effects on Cognition in Young Adults. Poster presented for the College of 
Problem Drug Dependence 79th Annual Scientific Meeting, Montreal, Québec, Canada. 

 
Jennette, K., Gilbart, E. & Lisdahl, K. (2017, February) The Relationship Between Marijuana Use, 

Inhibitory Control, and Learning Strategy in Adolescents and Young Adults. Poster 
presented at the International Neuropsychological Society (INS) 45th Annual Meeting, 
New Orleans, LA. 

 
Blujus, J., Kaiver, C., Jennette, K., Gracian, E., Hannula, D. & Driscoll, I. (2016, November) Using 

Eye Movements to Dissociate Memory Performance in Normal and Pathological Aging. 
Poster presented at the Society for Neuroscience (SfN) Annual Meeting, San Diego, CA.   

 
Jennete, K., Hopkins, L., Kaiver, C., Helmstetter, F., Driscoll, I. (2015, October) Contingency 

Awareness for Delay and Trace Fear Conditioning in Normal Aging. Poster presented at 
the Pre-Society for Neuroscience (SfN) UWM Symposium, Milwaukee, WI.  

 
Jennette, K., Gracian, E. & Driscoll, I. (2015, April) Association of Eye Tracking Relational Memory 

with Neuropsychological Performance in Middle and Older Age Adults. Poster presented 
at the University of Wisconsin - Milwaukee Health Sciences Research Symposium, 
Milwaukee, WI. 

 
Jennette, K. (2015, February) The Association of Cognitive Endophenotypes and Risky Single 

Nucleotide Polymorphisms of Alzheimer’s Disease within the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) Database. Poster presented at the International 
Neuropsychological Society (INS) 43rd Annual Meeting, Denver, CO.  

 
Jennette, K., Avenengo, S., Rinehardt, E. & Schoenberg, M. (2013, September) Relative Influence 

of Spatial Reasoning vs. Processing Speed on Neurocognitive Performance in Women with 
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Multiple Sclerosis. Poster presented at the University of South Florida Health Research 
Symposium, Tampa, FL. 

 
Jennette, K. (2012, November) Influence of Depression and Anxiety on Measures of Intelligence in 

Patients with Multiple Sclerosis. Poster presented at the National Academy of 
Neuropsychology (NAN) 32nd Annual Conference, Nashville, TN.  

 
Jennette, K., Kaufman, R. & Rinehardt, E. (2012, September) The Influence of Depression and 

Anxiety on Neurocognitive Performance in Patients with Multiple Sclerosis. Poster 
presented at the University of South Florida Neuroscience Research Symposium, Tampa, 
FL. 

 
Pedraza, O., Allen, M., Jennette, K., Crook, J., Carrasquillo, M., Palusak, R….Ertekin-Taner, N. 

(2011, June) Evaluation of Cognitive Endophenotypes for Association with CLU, CR1 and 
PICALM LOAD Risk Genes. Poster presented at the International Conference on 
Alzheimer's Disease (ICAD), Paris, France. 

 
INVITED TALKS            
 
Jennette, K. (November, 2015) The Association of Cognitive Endophenotypes and Risky Single 

Nucleotide Polymorphisms of Alzheimer’s Disease within the Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) Database. Community lecture presented at the School of 
Aging Studies, University of South Florida. 

 
Jennette, K. (May, 2014) What is Normal Aging? Invited lecture and discussion panel for the City 

of Decatur Lifelong Community Advisory Board. Awarded honorary key to the city for 
contributions.  

 
Jennette, K. (2013-2014) Where Did I Put My Keys? Myths and Misconceptions of Alzheimer’s 

Disease. Series of over 20 community-based presentations to various underserved 
communities in the greater Atlanta community on behalf of the Emory University 
Alzheimer’s Disease Research Center.  

 
Jennette, K. (2012, 2013) Pursuing Graduate Training and a Career in Clinical Neuropsychology. 

Panel Discussion for the Psi Chi Honor Society and Social Sciences Club, Flagler College 
 
Jennette, K. (2011) The Distinguishing Factors of Dementia: Etiologies, Diagnostics, and 

Treatments. Senior Thesis in Psychology presented to the Community and Department 
of Social and Behavioral Sciences, Flagler College 

 
Jennette, K. (2011) The Effects of Increased Acidity on Shell Integrity and Body Size of Crassostrea 

virginica. Senior Thesis in Environmental Science presented to the Community and 
Department of Natural Sciences, Flagler College 
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Jennette, K. (2011) The Hunt for an Epithelial Sodium Channel (ENaC) in Cyanea capillata. 

Presented to the Community and Whitney Laboratory for Marine Biosciences, University 
of Florida as required per NSF REU Grant. 

 
JOURNAL REVIEWING           
2019 Ad-Hoc Co-Reviewer Journal of Neurology, Neurosurgery, and Psychiatry 
2015 Ad-Hoc Co-Reviewer Alcohol 
 
TEACHING EXPERIENCE           
Teaching Assistant - University of Wisconsin-Milwaukee 

- Graduate Clinical Assessment Practicum (2017-2019) 
- Psychological Statistics (2015-2017) 
- Social Psychology (2015) 
- Research Methods in Psychology (2014) 

 
Invited Lecturer 
The University of Chicago Pritzker School of Medicine 

- Psychiatry 305: Human Behavior in Health and Illness course (medical students; 2019). 
- Department of Psychiatry and Behavioral Neuroscience: 

o Cross-Cultural Neuropsychology (2020, February) 
o Basal Ganglia (2019, November) 
o Laboratory Results for Use in Neuropsychology (2019, November) 
o Alzheimer’s Disease Genetics and Treatments (2019, September) 
o Executive Functioning (2019, August) 
o Psychopharmacology (2019, December) 

 
University of Wisconsin-Milwaukee 

- Cross Cultural Neuropsychology, (2020) Advanced Neuropsychology Seminar (Graduate) 
- Clinical Use of the WAIS-IV (2018) First-Year Assessment Practicum (Graduate)  
- Training and Careers in Clinical Neuropsychology (2018) First-Year Assessment Practicum 

(Graduate) 
- Normal Aging, MCI, and Cortical Dementias (2017) Assessment II (Graduate) 
- Alzheimer’s Disease and Related Dementias (2016) Neuropsychology (Undergraduate) 

 
Charles Darwin University, Casuarina, Northern Territory, Australia 

- Clinical Neuropsychology: Diagnosis, Prevention, and Treatment of Cognitive Disorders 
(2020) Clinical Neuroscience for Providers Practicum (Graduate) 

 
Mount Mary University, Milwaukee, WI 

- Introduction to Clinical Neuropsychology and Behavioral Neuroscience (2017) 
Introduction to Psychology (Undergraduate) 
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DEPARTMENTAL & UNIVERSITY SERVICE         
University of Chicago Medicine: 
Member, Tele-neuropsychology Task Force (2020) 
Volunteer, COVID-19 Crisis Line for Frontline Healthcare Workers (2020) 
 
University of Wisconsin-Milwaukee: 
Vice President, Association of Graduate Students in Health Psychology (2018-2019) 
Secretary, Association of Graduate Students in Neuropsychology (2017-2018) 
Volunteer, Eating Disorders Seminar (2017) 
Student Representative, Clinical Training Committee, Psychology Department (2014-2015) 
 
University of South Florida: 
Thesis Committee Member, (Daniel Lattimore), Undergraduate Honors College (2012) 
 
Flagler College: 
Molecular Biology Laboratory Technician, Department of Natural Sciences (2010-2011) 
Co-Founder and Vice President, Social Sciences Club (2010-2011) 
Resident Advisor, Department of Residence Life (2010-2011) 
Elected Member, Leadership Flagler, Office of the President (2010-2011) 
Elected Member, Ambassador Leadership Council, Office of Admissions (2010-2011) 
Lead Ambassador, Office of Admissions (2008-2011) 
Child Psychology Service Learning Mentor, Flagler College and EPIC of Saint Augustine (2009) 
 
NATIONAL & PROFESSIONAL SERVICE         
International Neuropsychological Society: 
Student Representative, Association for Internship Training in Clinical Psychology (2017-2019) 
 
National Academy of Neuropsychology: 
Senior Volunteer Coordinator, 36th Annual Conference, Seattle, Washington (2015-2016) 
Member, Program Planning Committee (2015-2016) 
Member, Legislative Action and Advocacy Committee (2014-2015) 
Junior Volunteer Coordinator, 35th Annual Conference, Austin, Texas (2014-2015) 
Incoming Volunteer Coordinator, 34th Annual Conference, Fajardo, Puerto Rico (2013-2014) 
Student Volunteer, 33rd Annual Conference, San Diego, CA (2013) 
 
Board of Certified Psychometrists: 
Member, Certification Exam Development and Item Approval Committee (2014-2015) 
Member, Marketing and Outreach Committee (2014-2015) 
 
PROFESSIONAL MEMBERSHIP AND CERTIFICATIONS       
Student Member, Association for Psychological Science (2018-Present) 
Member, Association of Neuropsychology Students in Training (2014-Present) 
Board Member, Board of Certified Psychometrists (2013-2015) 
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Student Member, American Academy of Clinical Neuropsychology (2013-2014) 
Student Member, International Neuropsychology Society (2013-Present) 
Student Member, American Psychological Association (2012-Present) 

Division 40 (Society for Clinical Neuropsychology)  
Division 22 (Rehabilitation Psychology) 
Division 20 (Adult Development and Aging) 

Student Member, National Academy of Neuropsychology (2011-Present) 
 
Certifications: 
Board Certified Specialist in Psychometry (CSP-0260), Lapsed in good standing (2011-2014) 

- Passed exam with distinction (top 5%) 
CPR/BLS Certified (2010-Present) 
PADI Certified Open Water SCUBA Diver (2009-Present) 
 
Honor Societies:
Phi Kappa Phi Honor Society 
Omicron Delta Kappa Leadership Honor Society 
Sigma Phi Omega Honor Society, Upsilon Chapter 
Sigma Xi Research Honor Society 
Golden Key International Honour Society 
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PROFESSIONAL TRAININGS           
2019 Cultural Competence and Diversity Training, University of Chicago Medicine 

(18 hours) 
2018 Functional Neuroimaging Workshop, University of Wisconsin-Milwaukee, 

(16 hours)  
2016 Introduction to ‘R’ – Learning by Example Seminar 
2016 Clinical Assessment and Treatment of Eating Disorders Seminar, University 

of Wisconsin – Milwaukee (40 Hours) 
2016 Behavioral Activation Therapy Workshop, University of Wisconsin – 

Milwaukee (8 Hours) 
2015 fMRI Safety Training—Medical College of Wisconsin 
2014 Analysis of Functional Imaging (AFNI) On-site Training National Institutes of 

Health, Bethesda, MD, (40 hours) 
 
GRANTS, HONORS, SCHOLARSHIPS & AWARDS        
2019 Child Neuropsychology Clinic Travel Award, University of Wisconsin-

Milwaukee 
2017 Summer Research Fellowship, Department of Psychology, University of 

Wisconsin-Milwaukee 
2015 Featured Alumni in Flagler College Magazine for Research in Alzheimer’s 

Disease 
2015 Featured in Flagler College Admissions Publications as Distinguished Alumni 
2013 Harold L. Sheppard Endowed Memorial Scholarship, School of Aging 

Studies, University of South Florida 
2012-2015 Dean’s List, University of South Florida Graduate School 
2011 Clinical Research Internship Scholar Program (CRISP) Award, Mayo Clinic of 

Florida 
2011 Distinguished Scholar Lecture Grant Co-Recipient, Southern Sociological 

Society 
2010 Research for Undergraduates (REU) Student Grant, National Science 

Foundation 
2010 Featured in Flagler College Honor Roll Publication for Academic, 

Community, & Civic Excellence 
2008-2011 Dean’s List, Flagler College 
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