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ABSTRACT 

REEVALUATING ORDER FULFILLMENT DECISIONS FOR E-TAILERS UNDER 

TRUE SIMULATED OPERATING CONDITIONS 

by 

Amir Kalantari 

 

The University of Wisconsin – Milwaukee, 2020 

Under the Supervision of Professor Matthew Petering 

 

This dissertation makes both a methodological and an applied contribution. From a 

methodological standpoint, this is among the very first works in the literature to explore the 

concepts of true simulated operating conditions and fully embedded decision-making algorithms.  

We illustrate the effectiveness of these concepts by applying them to an online retailer (i.e. e-tailer) 

order fulfillment decision making process. 

Online shopping has completely transformed retail markets in recent years. For customers, it 

provides convenience, visibility and choice, and for retailers it provides market expansion 

opportunities, operational cost reduction, and many other advantages. There are fundamental 

differences between the supply chain design and operations of an online and traditional (i.e. brick 

and mortar) retailer. One of the key differences exists in customer order fulfillment which refers 

to the process of picking and packing order items from a retailer’s warehouse or store and 

delivering them to customers. In traditional retail, order fulfillment happens in physical stores and 

by customers. In online retail, however, the tables are turned, and the retailer is responsible for this 

task.  
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The reliability, cost, and lead time of online order fulfillment have a direct impact on customer 

satisfaction and an e-tailer’s overall success. In today’s competitive market, excellence in 

fulfillment is critical and organizations are struggling with how best to accomplish this while 

remaining profitable. On one hand, order fulfillment accounts for a considerable amount of 

operational cost and reducing it directly improves an e-tailer’s bottom-line. On the other hand, 

customers demand fast and cheap order delivery options. This constantly pushes e-tailers to make 

tough strategic and operational choices to stay competitive. 

An e-tailer’s order fulfillment process begins with a fulfillment decision which assigns a 

customer order to one or more fulfillment centers (FCs). E-tailers typically put an order fulfillment 

policy (i.e. fulfillment strategy) in place that determines how those decisions must be made. 

Identifying the best policy is extensively studied in the literature. However, most of the proposed 

policies focus on minimizing the fulfillment cost for individual customer orders by finding an 

optimal assignment at the time an order is placed. In this dissertation we show that this policy leads 

to a suboptimal decision at the system level. In other words, when a collection of these myopic 

fulfillment decisions is analyzed together, total fulfillment cost can be further reduced by 

optimizing the decisions for that group collectively. 

Since e-tailers receive customer orders around the clock and at a fast pace, order fulfillment 

decisions are made automatically using an algorithm. Additionally, from an operational 

perspective, making fulfillment decisions on the fly for individual customer orders enables e-tailers 

to keep an updated available-to-promise inventory record for each stock keeping unit (SKU) and 

FC combination. It also allows them to provide an estimated delivery window to their customers 

in real time. Therefore, although in theory optimizing fulfillment decisions for a group of customer 
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orders reduces costs, there are practical challenges in deploying this policy in a real-world e-tailer 

environment.  

In order to address these challenges, we propose a reevaluation strategy that does not fully 

replace the automated order fulfillment decision making process. Instead, it periodically 

reevaluates and optimizes the fulfillment decisions for a group of orders that are waiting in the 

system to be processed and shipped to customers. We develop an integer programming-based 

reevaluation algorithm that can be triggered for a fixed number of customer orders or at regular 

time intervals. Our integer program considers several dimensions such as on-hand and on-order 

inventory, customer delivery preferences, shipping methods, and the number of boxes to minimize 

total fulfillment cost while maintaining the delivery time and service level for all customer orders. 

Additionally, since the large instances of the proposed model are mathematically difficult to solve 

to optimality, we develop a decomposition-based heuristic for those instances.  

As noted, our proposed reevaluation algorithm must be triggered regularly during an e-tailer’s 

operations without interrupting other important processes relating to new customer orders, 

shipment of orders, and inventory replenishment. Therefore, in addition to reevaluation decisions, 

the computation time used by a reevaluation algorithm needs to be considered when designing an 

effective strategy. For example, for customer orders that need to be shipped on a given day, 

reevaluation decisions must be finalized before the shipping deadline.  

To study the complex relationship between reevaluation and other processes, we embed our 

reevaluation algorithm inside a discrete event simulation model in such a way that both the 

decisions produced and computation time used by the algorithm are fed back to the simulation 

model. This novel method which was first presented by Petering (2015), enables us to study the 

tradeoff between the quality of the decisions produced and computation time used by the algorithm 
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in order to recommend the overall best reevaluation strategy for an e-tailer according to its 

operational characteristics.  

Finally, we conduct more than two hundred experiments in which the reevaluation algorithm 

is fully embedded in the DES model. The results confirm the effectiveness of reevaluation 

algorithm in reducing total fulfillment cost by an average of 5% for our test instances. It also 

illustrates the tradeoff between decision quality and computation time and allows us to perform 

scenario analysis to find the best overall reevaluation strategy for an e-tailer. 
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Chapter 1 

Introduction 

 

The online retail (e-tail) industry has grown substantially during the past few decades. In the 

second quarter of 2019, the U.S. Department of Commerce reported that the estimate of U.S. retail 

e-commerce sales was $146.2 billion, which shows an increase of 4.2 percent from the first quarter 

of that year. This is while the total retail sales for the second quarter of 2019 was reported at 

$1,361.8 billion which means that e-commerce retail accounted for about 10.7 percent of the total 

retail sales in the U.S. Although this market share seems small, e-tail has been steadily growing 

year over year and is projected to continue with the same trend in the coming years (U.S. 

Department of Commerce, 2019). A similar retail transformation seems to be taking place in other 

parts of the world (O'Grady and D'Costa, 2019; Khan et al., 2013; Geng and Li, 2019) According 

to Statista, in 2019 retail e-commerce sales worldwide amounted to $3.53 trillion and its revenue 

is projected to grow to $6.54 trillion in 2022 (Statista, 2019). 

The internet enables retailers to increase their sales and market share and to generate new 

business by offering new services (De Koster, 2003). It also provides consumers with more 

information and alternatives to help them with their product discovery and final purchase (Gao 

and Su, 2016). The availability, convenience and competitive pricing of e-tailers have also 

contributed to their growing popularity. Although the early e-tailers, such as Amazon and eBay, 

operated their entire business online, this market has evolved over time and nowadays many 

traditional retailers and manufacturers such as Walmart and Apple have moved a significant 

portion of their sales to the e-commerce channel. De Koster (2003) identifies four types of 

companies that sell products online to consumers: (i) product manufacturers such as DELL, 
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Unilever and Numico; (ii) traditional retailers and wholesalers, such as Barnes & Noble, Albert 

Heijn and Tesco; (iii) new internet companies without physical assets such as eBay; (iv) new 

internet companies, with physical assets such as Amazon, Peapod, and Maxfoodmarkets. 

As companies move their sales to the e-commerce channel, one of the key decisions is how to 

design an effective supply chain network to deliver goods to customers with minimum cost and 

maximum reliability and service. There are fundamental differences between the supply chain 

structure of an e-tailer and a traditional retailer which need to be considered while making this 

decision. One of the main differences is in their delivery policy (De Koster, 2003). While in most 

traditional retail settings, customers pick up their orders from physical stores at the time of making 

a purchase, e-tailers are responsible for delivering orders to their customers. This has several 

implications for designing an effective supply chain network and strategy for an e-tailer. When 

placing an online order, customers provide the following information:  

• Items that are ordered 

• Quantity of each item 

• Delivery preference 

• Shipping address 

• Payment method 

 Although customers indicate their delivery preference and shipping address, they do not 

control how and when their order is shipped to them. E-tailers typically operate several fulfillment 

centers (FCs) that are strategically positioned in different geographical locations within their area 

of operation. Those FCs are responsible to hold inventory and to ship customer orders to their 

shipping addresses using a courier. When a customer makes an order, the e-tailer assigns 
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fulfillment responsibility to one FC or a combination of FCs based on their available inventory, 

customer delivery preference and other criteria. Those FCs are responsible for picking order items 

from their warehouse, packing them into one or multiple boxes and shipping those boxes to 

customers within their desired delivery window. This process is referred to as the order fulfillment 

process. Since e-tailers control the order fulfillment process, they can decide the responsible FCs, 

number of boxes, shipping time and shipping method to satisfy customer orders. In the e-tail 

industry, this decision is called the order fulfillment decision. There are several order fulfillment 

policies that can be adopted by e-tailers for making fulfillment decisions. Those policies govern 

how fulfillment responsibilities must be delegated to FCs to reduce e-tailers’ operating cost. The 

following sections describe the order fulfillment process, order fulfillment decision and order 

fulfillment policies in detail. 

1.1. Order fulfillment process 

When a customer places an online order, e-tailers make order fulfillment decisions to specify 

which FCs are responsible for fulfilling that order. In this section we examine how FCs fulfill 

customer orders that are assigned to them. 

Figure 1.1 illustrates the order fulfillment process and its timeline using a simple example. As 

shown in this figure, the order fulfillment process consists of several steps and events that are 

explained below.  
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Figure 1.1: Order fulfillment process 

 

• Order is placed: This is defined as the time at which a customer places an order. Unlike 

traditional retailers who normally have specific working hours, e-tailers receive customer 

orders around the clock.  

• Fulfillment decision is made: E-tailers make fulfillment decisions on the fly and 

immediately after a customer order is placed. This decision assigns the customer order to 

one or multiple FCs which will be responsible for shipping the order items to the customer 

in one or more boxes. 

• Promised delivery window: After customer places an order, e-tailer confirms the order 

and provides an estimated delivery time which is calculated based on order submission 

time and customer delivery preference. Because of the inherent variability and 

uncertainties in order fulfillment process, calculating an exact delivery time is not possible 

and instead, e-tailers provide an estimated time range which we refer to as the promised 

delivery window. 

• Fulfillment decision is locked: Although fulfillment decisions are made immediately after 

customers place online orders, they are not executed in real-time and are added to a queue 

that contains a list of fulfillment decisions for all customer orders that are waiting in the 

system for shipment. Fulfillment decisions remain in the queue until few hours before the 
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customer order is shipped. At that point, the e-tailer locks the decision and begins to prepare 

the order items for shipment by picking them from the warehouse and placing them into 

boxes. While fulfillment decisions are waiting in the queue, the e-tailer can review and 

change them. However, once a fulfillment decision is locked, that decision is finalized, and 

no changes are allowed. 

• Shipping customer order: There is a fixed cost associated with shipping customer orders 

from FCs. In order to break down this cost among multiple customer orders, e-tailers batch 

several shipments and pick up a group of them together at predetermined times during the 

day. We refer to this event as shipping a customer order. Time and cadence of this event 

depends on e-tailer’s order volume and other variables.  

• Order processing: To prepare customer orders that are assigned to them for shipment, 

FCs need to pick each item from their warehouse and pack them into boxes. This step 

which occurs between order placement and shipment pick-up is referred to as order 

processing.  

• Shipment transit time: Shipment transit time is defined as the elapsed time between 

shipment pick-up and order delivery.  The length of shipment transit time depends on the 

shipping method that is used at FCs for delivering customer orders.  

• Order delivery: Order delivery is the actual time at which customers receive their orders. 

On-time delivery is one of the key performance indicators (KPI) for e-tailers which is 

measured as the percentage of customer orders that are delivered within their promised 

delivery windows. Although the e-tailer’s goal is to maximize on-time delivery, in some 

cases due to supply chain related challenges such as inventory shortages and logistical 

problems, promised delivery window is missed and order delivery happens outside of that.  
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In addition to the order fulfillment process, it is important to understand the difference between 

customer delivery options and shipping methods that are used by e-tailers.  

• Customer delivery options: Customer wait time for receiving their online orders, and the 

associated delivery cost, are among top e-tail performance measures (Kacen et al., 2013). 

To improve these metrics, e-tailers offer various delivery options to give customers 

flexibility in tradeoff between delivery cost and wait time. In this dissertation, we consider 

four delivery options that are most common in e-tail industry namely: 𝑂𝑛𝑒 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦, 

𝑇𝑤𝑜 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦, 𝐹𝑖𝑣𝑒 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 and 𝑆𝑒𝑣𝑒𝑛 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦. Intuitively, the 

faster delivery options are more expensive.  

• Shipping methods: Most e-tailers outsource their outbound transportation to 3rd party 

logistic providers (3PLs) such as USPS, UPS and FedEx who are responsible for picking 

up customer shipments from FCs and delivering them to their shipping addresses. 3PLs 

offer several shipping methods that vary in shipping cost and transit time. For instance, 

UPS provides 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟, 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟, 𝑇ℎ𝑟𝑒𝑒 𝐷𝑎𝑦 𝑆𝑒𝑙𝑒𝑐𝑡 and 𝑈𝑃𝑆 𝐺𝑟𝑜𝑢𝑛𝑑 

which on average takes five days to deliver a shipment (UPS website, 2019). Like customer 

delivery options, shipping methods with shorter delivery times are more expensive.  

Figure 1.2 depicts the difference between customer delivery options and shipping methods. 

Consider a scenario where a customer places an order with a 𝑇𝑤𝑜 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 preference. The 

promised delivery window for that order is estimated as a time range between noon and 6 p.m. two 

days after the order is placed. Assuming customer orders are shipped once every day at noon and 

all ordered items are available in e-tailer’s inventory at the time the order is placed, this order can 

be fulfilled using one of the following two alternatives. The first alternative is to process the order 

in the same day and use a 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping method to send it to the customer. The second 
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alternative is to wait until the following day and use a 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping method instead. 

Although shipping cost for the first alternative is lower, in some cases e-tailer might decide to use 

the second alternative because of inventory shortage or other constraints. 

 

Figure 1.2: Difference between customer delivery options and shipping methods 

 

The order fulfillment process is a critical part of e-tailer operations that not only accounts for 

a significant portion of overall operating cost, but also has a direct impact on customer service and 

satisfaction. Since shipping cost is considerably higher than the cost of picking and packing orders, 

in this dissertation we use it as an estimation of total order fulfillment cost. Acimovic and Graves 

(2015) report that an e-tailer’s shipping cost could amount to 3.2% to 4.6% of its total annual sales. 

On the other hand, e-tailers often charge a fixed delivery fee for online orders which on some 

occasions is waived for loyalty program members or large customer orders. Therefore, reducing 

shipping costs has a direct and major impact on e-tailers’ bottom-line.  

A detailed analysis of shipping cost is provided in Chapter 3 using a sample dataset from the 

UPS website. The results of this analysis indicate that the shipping cost for a box is comprised of 
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two components. The first component is a fixed cost and only depends on the shipping method 

while the second component also depends on distance traveled and box weight.  

1.2. Order fulfillment decision 

After a customer places an order and before the order fulfillment process begins, the e-tailer 

needs to determine how to fulfill the order. We refer to this as the order fulfillment decision in 

which the following important questions are answered: 

• Which FC or FCs are responsible for fulfilling the order? 

• Which items and how many of each item are assigned to each FC? 

• When should the order be shipped to the customer? 

• What shipping method should be used at each FC? 

The outcome of the order fulfillment decision is stored in an order fulfillment plan and is sent 

to the responsible FCs. In order to make this decision, e-tailer needs real-time visibility into 

available inventory at each FC as well as a list of other customer orders that are assigned to them. 

Computer information systems such as enterprise resource planning (ERP) and warehouse 

management systems (WMS) provide this visibility by allowing FCs to share information with 

each other and enabling the e-tailer to make order fulfillment decisions at a global level.  

To understand the order fulfillment decision, consider a simple example in which an e-tailer 

operates three 𝐹𝐶𝑠 and has three 𝑆𝐾𝑈𝑠 in its product catalog (Figure 1.3). Assume a customer 

places an order on 𝐷𝑎𝑦1 before the shipment pick-up time requesting one unit of 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2 

with a 𝑇𝑤𝑜 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 preference. The available inventory at each 𝐹𝐶 when the order is placed 

and their distance to customer shipping address are listed below: 

• 𝐹𝐶1 is located 100 miles west of the customer and holds one unit of 𝑆𝐾𝑈1 



 
 

9 
 

• 𝐹𝐶2 is located 100 miles north of the customer and holds one unit of 𝑆𝐾𝑈2  

• 𝐹𝐶3 is located 200 miles east of the customer and holds one unit of 𝑆𝐾𝑈1, 𝑆𝐾𝑈2 and 𝑆𝐾𝑈3  

 

 
Figure 1.3: Order fulfillment decision for Order 1  

 

 

In this example, there are several feasible alternatives to fulfill the customer order. Table 1.1 

lists all feasible alternatives with their details. Note that since the customer has requested a 

𝑇𝑤𝑜 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 and the 𝐹𝐶𝑠 have on-hand inventory for all 𝑆𝐾𝑈𝑠, the e-tailer can either 

decide to use a 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping method on the day the order is placed (𝐷𝑎𝑦1) or wait 

until following day (𝐷𝑎𝑦2) and use a 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping method instead. 
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Table 1.1: Alternatives to fulfill example customer order 
 Item assignment Day of shipment Shipping method 

Alt. 𝑭𝑪𝟏 𝑭𝑪𝟐 𝑭𝑪𝟑 𝑭𝑪𝟏 𝑭𝑪𝟐 𝑭𝑪𝟑 𝑭𝑪𝟏 𝑭𝑪𝟐 𝑭𝑪𝟑 

1 𝑆𝐾𝑈1 𝑆𝐾𝑈2 - 𝐷𝑎𝑦1 𝐷𝑎𝑦1 - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 - 

2 𝑆𝐾𝑈1 𝑆𝐾𝑈2 - 𝐷𝑎𝑦2 𝐷𝑎𝑦2 - 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 - 

3 𝑆𝐾𝑈1 𝑆𝐾𝑈2 - 𝐷𝑎𝑦1 𝐷𝑎𝑦2 - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 - 

4 𝑆𝐾𝑈1 𝑆𝐾𝑈2 - 𝐷𝑎𝑦2 𝐷𝑎𝑦1  𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 - 

5 𝑆𝐾𝑈1 - 𝑆𝐾𝑈2 𝐷𝑎𝑦1 - 𝐷𝑎𝑦1 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

6 𝑆𝐾𝑈1  𝑆𝐾𝑈2 𝐷𝑎𝑦2 - 𝐷𝑎𝑦2 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 - 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

7 𝑆𝐾𝑈1 - 𝑆𝐾𝑈2 𝐷𝑎𝑦1 - 𝐷𝑎𝑦2 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 - 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

8 𝑆𝐾𝑈1 - 𝑆𝐾𝑈2 𝐷𝑎𝑦2 - 𝐷𝑎𝑦1 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

9 - 𝑆𝐾𝑈2 𝑆𝐾𝑈1 - 𝐷𝑎𝑦1 𝐷𝑎𝑦1 - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

10 - 𝑆𝐾𝑈2 𝑆𝐾𝑈1 - 𝐷𝑎𝑦2 𝐷𝑎𝑦2 - 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

11 - 𝑆𝐾𝑈2 𝑆𝐾𝑈1 - 𝐷𝑎𝑦1 𝐷𝑎𝑦2 - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

12 - 𝑆𝐾𝑈2 𝑆𝐾𝑈1 - 𝐷𝑎𝑦2 𝐷𝑎𝑦1 - 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

13 - - 𝑆𝐾𝑈1, 𝑆𝐾𝑈2 - - 𝐷𝑎𝑦1 - - 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

14 - - 𝑆𝐾𝑈1, 𝑆𝐾𝑈2 - - 𝐷𝑎𝑦2 - - 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

 

The goal of the order fulfillment decision is to find the best alternative based on the e-tailer’s 

order fulfillment policy which is explained in detail in Section 1.3. In this example, we assume the 

order fulfillment decision aims to find the alternative with the minimum shipping cost. As 

mentioned earlier, the cost of shipping one box is comprised of two components: a fixed 

component that depends on the shipping method and a variable component that also depends on 

box weight and shipping distance. Since all alternatives in this example use either 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

or 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping methods, assume the shipping cost for these methods are as listed in 

Table 1.2. 

Table 1.2: Cost of shipping one box for different shipping methods 

Shipping Method Fixed shipping cost ($) Variable shipping cost per pound/mile ($) 

Next Day Air 10 0.02 

Second Day Air 5 0.01 
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Assuming each 𝑆𝐾𝑈 weights exactly one-pound, shipping cost for each alternative is 

calculated in Table 1.3. Since objective of order fulfillment decision in this example is to minimize 

the shipping cost for the given order, Alternative 13 will be selected by the e-tailer. The fulfillment 

plan derived from this decision suggests that both 𝑆𝐾𝑈𝑠 should be shipped to the customer from 

𝐹𝐶3 using a 𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping method on 𝐷𝑎𝑦1. This fulfillment plan will be sent to 𝐹𝐶3 

to be processed accordingly. 

Table 1.3: Shipping cost for all alternatives 

Alt. 

Number of boxes 

shipped using 

𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

Number of boxes 

shipped using 

𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

Total pound/mile 

shipped using 

𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 

Total pound/mile 

shipped using 

𝑆𝑒𝑐𝑜𝑛𝑑 𝐷𝑎𝑦 𝐴𝑖𝑟 

Fixed 

shipping 

cost ($) 

Variable 

shipping 

cost ($) 

Total 

shipping 

cost ($) 

1 0 2 0 200 10 2 12 

2 2 0 200 0 20 4 24 

3 1 1 100 100 15 3 18 

4 1 1 100 100 15 3 18 

5 0 2 0 300 10 3 13 

6 2 0 300 0 20 6 26 

7 1 1 200 100 15 5 20 

8 1 1 100 200 15 4 19 

9 0 2 0 300 10 3 13 

10 2 0 300 0 20 6 26 

11 1 1 200 100 15 5 20 

12 1 1 100 200 15 4 19 

13 0 1 0 400 5 4 9* 

14 1 0 400 0 10 8 18 

 

 

As e-tailers receive orders around the clock they need to make an order fulfillment decision 

for each order. The order fulfillment decision described in this example follows a policy that 

determines the decision should be made in such a way that the shipping cost for the order is 

minimized. In the next section we describe different order fulfillment policies and how they impact 

the decision making process. 
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1.3. Order fulfillment policy 

The order fulfillment decision that was described in the previous example evaluates 

alternatives based on their shipping cost and selects the one with the minimum value to fulfill the 

customer order. However, this is not a generic approach and e-tailers might have a different 

strategy for making order fulfillment decisions. Order fulfillment policy determines how the 

fulfillment decisions should be made and the objective of those decisions.  

Some e-tailers fix fulfillment responsibilities ahead of time by assigning all customer orders 

received from each geographical region to a designated FC. This strategy is called static order 

fulfillment policy. Although the static policy is relatively simple to implement and maintain, it 

requires the e-tailer to hold inventory for all 𝑆𝐾𝑈𝑠 at all 𝐹𝐶𝑠. E-tailers typically have a very large 

product catalog which includes millions of 𝑆𝐾𝑈𝑠 from various categories. This makes it almost 

impossible to hold all those 𝑆𝐾𝑈𝑠 at each location. Instead, they develop an inventory policy that 

distributes the 𝑆𝐾𝑈𝑠 among 𝐹𝐶𝑠 based on their capacity, total customer demand for each 𝑆𝐾𝑈, 

geographical distribution of that demand and other factors. However, a static order fulfillment 

policy does not work with such inventory system, and e-tailers usually need to take a different 

approach. A dynamic order fulfillment policy assigns orders as they are placed, to the 𝐹𝐶 or a 

combination of 𝐹𝐶𝑠 that can satisfy them with the minimum shipping cost. Since fulfillment 

responsibilities in dynamic policy are not decided a priori, and are determined after orders are 

placed, it can work with a distributed inventory system. 

Although dynamic order fulfillment policies work well with a distributed inventory system 

and minimize shipping cost for individual orders as they are placed, it is possible for them to make 

a series of myopic optimal decisions which collectively lead to a sub-optimal decision at the system 

level. This is mainly because dynamic policies make order fulfillment decisions merely based on 
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the current system state without accounting for future customer orders and inventory 

replenishments (Xu et al., 2009). For example, a fulfillment decision that optimally assigns an 

order to 𝐹𝐶𝑠 based on current information could change the system state in such a way that future 

orders are fulfilled with sub-optimal assignments due to lack of inventory at certain locations.  

To understand the myopic nature of order fulfillment decisions that are made by a dynamic 

order fulfillment policy, consider the example provided in Section 1.2 and assume after making 

order fulfillment decision for the first customer order and assigning both 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2 to 𝐹𝐶3 

a second customer order (𝑂𝑟𝑑𝑒𝑟2) is placed in the same day requesting one unit of each 𝑆𝐾𝑈1, 

𝑆𝐾𝑈2 and 𝑆𝐾𝑈3 with a 𝑂𝑛𝑒 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 preference (Figure 1.4). If no inventory replenishment 

happens in 𝐷𝑎𝑦1 and since 𝐹𝐶3 has already assigned its inventory of 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2 to fulfill 

𝑂𝑟𝑑𝑒𝑟1, the only option for fulfilling 𝑂𝑟𝑑𝑒𝑟2 is to send a separate box from each 𝐹𝐶 to the second 

customer using a 𝑁𝑒𝑥𝑡 𝐷𝑎𝑦 𝐴𝑖𝑟 shipping method. The shipping cost for this decision can be 

calculated using Table 1.2 as $38.80, and the e-tailer’s total shipping cost for the two orders is 

$47.80 collectively.  

 
Figure 1.4: Order fulfillment decision for Order 2 
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Fulfillment decisions for 𝑂𝑟𝑑𝑒𝑟1 and 𝑂𝑟𝑑𝑒𝑟2 follow a dynamic policy which minimizes the 

shipping cost for individual orders as they are placed. Now consider a scenario where one 

fulfillment decision is made for both orders at the same time. Figure 1.5 illustrates the optimal 

fulfillment decision for this scenario that minimizes the total shipping cost for both orders. In this 

case, the optimal decision is to assign 𝑂𝑟𝑑𝑒𝑟1 to 𝐹𝐶1 and 𝐹𝐶2 and 𝑂𝑟𝑑𝑒𝑟2 to 𝐹𝐶3. Total shipping 

cost for this assignment is $28 which is $19.80 less than the previous assignment. This new 

decision increases the shipping cost for 𝑂𝑟𝑑𝑒𝑟1 by $3 by splitting its shipment into two boxes. 

However, this adjustment allows all items in 𝑂𝑟𝑑𝑒𝑟2 to be shipped in a single box.  

 
Figure 1.5: Making order fulfillment decisions for both orders simultaneously 

  

As shown in this example, by making fulfillment decisions for multiple orders together, e-

tailers can significantly reduce their total shipping costs and avoid myopic decisions that only 

consider individual orders. However, in practice fulfillment decisions need to be made as orders 

are placed in order to provide an estimated delivery window to customers and to update on-hand 
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inventory information at the FCs. In other words, the fulfillment decision for 𝑂𝑟𝑑𝑒𝑟1 may not be 

postponed until 𝑂𝑟𝑑𝑒𝑟2 is placed. There are two general techniques to address this problem. The 

first technique, which is called an adjusted dynamic order fulfillment policy, follows the same 

principles as the dynamic policy except it also accounts for future orders by forecasting them based 

on historical order information. For instance, Acimovic and Graves (2015) use the dual values of 

a transportation linear program to estimate future expected shipping cost and apply those estimates 

in the objective function of a heuristic algorithm that makes fulfillment decisions by minimizing 

the immediate shipping cost for the current order plus expected shipping cost for future orders.  

The second technique is called an order fulfillment reevaluation policy which, as suggested 

by its name, reevaluates fulfillment decisions that have been made using a dynamic policy for a 

group of orders and optimizes them globally. As mentioned earlier, when a customer places an 

order a fulfillment decision needs to be made immediately to update inventory status at 𝐹𝐶𝑠 and 

to provide an estimated delivery window to the customer. However, there is usually a lag between 

when a fulfillment decision is made and when the order is shipped to the customer. During this lag 

orders are processed at designated 𝐹𝐶𝑠 to get them ready for shipment. While an order is waiting 

for shipment, more customer orders are placed, and the same process is followed to make a myopic 

fulfillment decision for them. This lag can be leveraged to reevaluate the initial fulfillment 

decisions for all the orders that are queued in the system and to make a decision that minimizes 

their overall shipping cost. For example, Xu et al. (2009) develop a heuristic algorithm that reduces 

total shipping cost by minimizing total number of customer shipments. Their algorithm reevaluates 

myopic fulfillment decisions and reduces the number of split shipments by shuffling the 

assignments. Mahar and Wright (2009) develop a similar approach that assigns accumulated online 

orders to 𝐹𝐶𝑠 based on expected inventory, shipping, and customer wait cost.  
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Figure 1.6 illustrates an order fulfillment reevaluation policy for an e-tailer with three 𝑆𝐾𝑈𝑠 

and two 𝐹𝐶𝑠. At time 𝑡 = 11: 35, 𝐹𝐶1 holds one unit of each 𝑆𝐾𝑈 while 𝐹𝐶2 only has one unit of 

𝑆𝐾𝑈1 and one unit of 𝑆𝐾𝑈2 in its inventory. 𝑂𝑟𝑑𝑒𝑟1 is placed at 𝑡 = 11: 40 requesting one unit of 

𝑆𝐾𝑈1and one unit of 𝑆𝐾𝑈2 with a 𝑂𝑛𝑒 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 preference. 𝑂𝑟𝑑𝑒𝑟1 distance to 𝐹𝐶1 and 

𝐹𝐶2 is 50 miles and 125 miles respectively. Assuming that shipment pick up happens at 𝑡 =

12: 00, both 𝐹𝐶𝑠 can fulfill 𝑂𝑟𝑑𝑒𝑟1 by sending a single box to the customer using a 𝑂𝑛𝑒 𝐷𝑎𝑦 𝐴𝑖𝑟 

shipping method. However, since it is cheaper to send the shipment from 𝐹𝐶1, the order is assigned 

to this 𝐹𝐶. Shipping cost for this assignment, calculated based on the shipping rates in Table 1.2, 

is $12. After making this fulfillment decision 𝑂𝑟𝑑𝑒𝑟2 is placed at 𝑡 = 11: 45 requesting one unit 

of each 𝑆𝐾𝑈 with a 𝑂𝑛𝑒 𝐷𝑎𝑦 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 preference. Since 𝐹𝐶1 has already assigned its inventory 

of 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2 to 𝑂𝑟𝑑𝑒𝑟1, the only alternative to fulfill 𝑂𝑟𝑑𝑒𝑟2 is to split it into two shipments 

and send two separate boxes to the customer from 𝐹𝐶1 and 𝐹𝐶2. The cost of this assignment is 

$24.5, increasing the e-tailer’s total shipping cost for satisfying both orders to $36.5. At 𝑡 = 11: 55 

and before shipment pick-up time, the e-tailer can reevaluate the fulfillment decisions for both 

orders. The decisions generated by the reevaluation suggests that by assigning 𝑂𝑟𝑑𝑒𝑟1 to 𝐹𝐶2 and 

𝑂𝑟𝑑𝑒𝑟2 to 𝐹𝐶1, the e-tailer can satisfy both orders with a total shipping cost of $32.5 which is $4 

less than the previous assignments.  

In this example, we assumed the reevaluation algorithm instantly finds the optimal assignment 

and did not consider its computation time. However, as we show in Chapter 7 order fulfillment 

reevaluation is a complex problem and finding an optimal decision for real-world e-tailers with 

millions of 𝑆𝐾𝑈𝑠 and tens of 𝐹𝐶𝑠 in a reasonable amount of time may not be possible. On the 

other hand, e-tailers operate around the clock 24 hours a day, 7 days a week and since decisions 

produced by the reevaluation algorithm impact other processes, they need to execute it during their 
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operations in such a way that it does not halt the system and finds the answer in a timely manner. 

Therefore, when designing a reevaluation strategy, both algorithm decisions and computation time 

need to be considered. In the following sections we introduce the concept of an intense unending 

real-time operational challenge (IURTOC) and explain how combining optimization and 

simulation techniques allows the e-tailer to objectively compare different reevaluation strategies 

and find the one that best fits its needs.  

 

Figure 1.6: Reevaluating order fulfillment decisions 

 

SKU1 

SKU2 

SKU3 



 
 

18 
 

1.4. Intense unending real-time operational challenge (IURTOC) 

Petering (2015) defines an intense unending real-time operational challenge (IURTOC) as “a 

business problem whose goal is to create an algorithm for automatically making operational 

decisions on a continual basis so as to maximize the productivity of an industrial system whose 

operations never cease and whose evolution is characterized by incomplete and/or changing 

second-by-second information regarding process times and new job arrivals from time 0 to time 

infinity.” E-tailer order fulfillment is an IURTOC in which operations never stop as customers 

place orders around the clock and fulfillment decisions are made one order at a time using an 

algorithm that automatically assigns them to a set of 𝐹𝐶𝑠 based on the e-tailer’s fulfillment policy. 

Furthermore, if an e-tailer uses a reevaluation policy, there will be another algorithm to shuffle the 

assignments for a set of orders to reduce the e-tailer’s total shipping cost.  

Since in an IURTOC an algorithm is embedded in a system to make operational decisions 

without human intervention in a continual basis, and since each decision impacts future ones by 

changing system state, when designing an effective decision-making algorithm, it is important to 

consider its computation time as well as the quality of the decisions it recommends. A sophisticated 

mixed integer programming (MIP) algorithm that finds the optimal solution for an IURTOC may 

not be an ideal option for that system if its computation time takes longer than when the decision 

is needed. The same rule applies when choosing the right heuristic algorithm. When comparing 

two heuristic algorithms for an IURTOC, if the first algorithm always finds a solution within 10% 

of optimal but requires one hour to compute while the second algorithm always finds a solution 

within 20% of optimal in 10 minutes, and the operational requirements of the system require a 

solution in less than 15 minutes, the second algorithm should be selected, although it produces 

inferior decisions.  
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Consider the example shown in Figure 1.6 where an e-tailer reevaluates fulfillment decisions 

for 𝑂𝑟𝑑𝑒𝑟1 and 𝑂𝑟𝑑𝑒𝑟2 at 𝑡 = 11: 55, five minutes before shipment pick-up time. As it was 

shown, without considering reevaluation algorithm computation time, the revised assignments 

become available before shipments are picked up and can be implemented to reduce the total 

shipping cost. Figure 1.7 depicts the same example but instead of assuming the reevaluation 

algorithm computation time is negligible, we assume it takes 10 minutes for the algorithm to find 

an optimal decision. In other words, the new fulfillment decision becomes available at 𝑡 = 12: 05, 

five minutes after shipments are sent out. Therefore, the e-tailer needs to keep the original 

assignments that are made by myopic decisions and although reevaluation finds a better 

assignment, at the time of execution completion, those decisions are invalid and lead to an 

infeasible solution.  

Most order fulfillment reevaluation studies in the literature focus on designing an optimization 

algorithm that finds the best decision for customer order fulfillment by minimizing total outbound 

shipping cost (Mahar and Wright, 2009; Xu et al., 2009; Acimovic and Graves, 2015). To the best 

of our knowledge, those studies do not address the computation time of those algorithms and its 

possible impact on the overall system productivity. In some papers in the operations management 

literature, computer simulation techniques are used for comparing the performance of different 

algorithms by embedding them in a simulation model. However, in those studies only the decisions 

produced by the reevaluation algorithm are fed back to the simulation model and their computation 

time is ignored. In other words, the algorithms are only partially embedded within a simulation 

model. Petering (2015) proposes an alternative method called a fully embedded decision making 

algorithm that combines optimization and discrete event simulation (DES) in a novel way to enable 

a more accurate and objective comparison between different decision-making algorithms for an 
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IURTOC. This method allows managers and other decision makers to better analyze and evaluate 

the performance of different algorithms in a test environment before deploying them in the field. 

This helps to prevent system shutdowns and interruptions which could occur as a result of long 

running algorithms that in theory produce favorable decisions but in practice halt the system by 

not providing a decision when it is needed. This technique is explained in the next section. 
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Figure 1.7: Importance of time in reviewing order fulfillment decisions 
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1.5. Fully embedded decision-making algorithm (FEDMA) 

In the previous section, we explained that, in an IURTOC, decisions are made continuously 

and around the clock in response to dynamic events that could not be predicted ahead of time. 

When evaluating a decision-making algorithm (DMA) for an IURTOC, it is important to consider 

the DMA’s computation time in addition to the quality of the decisions it recommends. However, 

most studies in the decision science literature either (i) consider static problems or (ii) design a 

DMA for an IURTOC without considering how much time is needed for solutions to be found. 

Regarding case (ii), in some studies in experimental decision science, a discrete event simulation 

(DES) technique is used to test and compare the performance of different DMAs by embedding 

them in a simulation model (Petering, 2015). In those studies, only DMA decisions are fed back 

into a DES model; the computation times are not fed back into the DES model and are assumed to 

be zero. Petering (2015) calls this technique a partially embedded decision-making algorithm 

(PEDMA) but states that it is preferable to use a fully embedded decision-making algorithm 

(FEDMA) technique that considers both the DMA’s decisions and computation time when 

embedding it into a DES model.  

The FEDMA technique allows DMAs to be tested under true simulated operating conditions 

which is more representative of real-world dynamic conditions than the PEDMA technique. 

Petering (2015) explains that using a FEDMA is particularly important if the average runtime of a 

DMA is nontrivial compared to the average time that elapses between consecutive calls to the 

DMA. Additionally, in this dissertation we show that if other types of decisions are made within 

the same system, using a FEDMA is critical to ensure that the DMA’s computation time and 

decisions do not interfere with these other decisions.  
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1.6. Contribution and novelty of the research 

This research applies the FEDMA technique to the e-tailer order fulfillment reevaluation 

problem. We develop a DES framework within which different reevaluation algorithms can be 

fully embedded, and we compare their performance under true simulated operating conditions. 

This allows managers to find the best reevaluation algorithm for their order fulfillment decisions 

that not only finds the best order-to-FC assignment but also can be operationalized in real-time 

without negatively impacting system productivity and performance.  

Additionally, we develop an IP and a heuristic algorithm to reevaluate order fulfillment 

decisions and fully embed them in our DES framework. Using the FEDMA concept we compare 

the performance of the two algorithms and show that although IP is proven to find an optimal 

decision, when problem size increases, it is not a viable option because of its computation time. In 

those cases, the heuristic algorithm should be selected to reevaluate fulfillment decisions.  

Beside the reevaluation algorithm itself, execution frequency is an important aspect of the 

order fulfillment reevaluation policy. For example, using the same algorithm, the e-tailer could 

reevaluate order fulfillment decisions for 10 orders or 100 orders at a time. We show that although 

reevaluating more fulfillment decisions together increases the potential savings, it also increases 

the complexity of the problem instances that are considered, and the computation time needed to 

identify good decisions. This might have a negative impact on the e-tailer operations. Using the 

FEDMA technique we can study the tradeoff between savings and computation time and 

recommend the best reevaluation execution frequency accordingly. We are not aware of any study 

in the literature that is able to (1) compare different order fulfillment reevaluation algorithms under 

true simulated operating conditions or (2) recommend the reevaluation algorithm execution 

frequency that best balances total savings and computation time.  
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Chapter 2 

Review of literature 

 

2.1. FEDMA, PEDMA, and true simulated operating conditions 

The concept of combining optimization and simulation has been extensively studied in the 

literature. Pflug (2012) suggests that combining simulation and optimization is the only practicable 

way of getting insight into stochastic models and obtaining optimal decisions for them. This is 

because, while optimization techniques recommend an optimal decision for a system, most of them 

assume the system under study is static and has deterministic parameters. This is while the vast 

majority of the real-world systems and phenomena have a stochastic nature. Simulation models, 

on the other hand, capture stochasticity by using probability distributions that measure the 

likelihood of various events. Therefore, an effective combination of these two techniques can 

provide a framework for analyzing many real-world systems.  

One of the proposed methods for combining simulation and optimization is called simulation-

based optimization or “simulation optimization”. In this method, in order to obtain an optimal 

design for a stochastic system a simulation model is run iteratively, each time with different values 

for the parameters that define the system. These parameters are the decision variables needing to 

be optimized, and simulation is used to (i) compute the objective value of and/or (ii) determine if 

constraints are satisfied by each particular set of parameter values. As the process unfolds, the 

parameter values gradually move closer to the optimum solution. In this case, simulation is used 

to set the value of different parameters in each iteration. Gosavi (2015), describes this method in 

detail and provides a comprehensive overview of different techniques for developing a simulation-

based optimization model. Many researchers have utilized simulation-based optimization to solve 
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problems in a wide range of applications. For instance, Marbach and Tsitsiklis (2001) propose a 

simulation-based optimization algorithm for optimizing the average reward in a Markov Reward 

Process where optimization takes place within a parameterized set of policies. Nguyen et al. (2014) 

provide an overview of simulation-based optimization methods applied to building performance 

analysis. Becerril-Arreola et al. (2013) apply this method to study an e-tailer’s promotional pricing, 

free-shipping threshold and inventory decisions. Other studies that use simulation-based 

optimization include Mele et al. (2006), Zeng and Yang (2009), Huang et al. (2010) and 

Keramydas et al. (2017). 

Another method for combining simulation and optimization is embedding an optimization 

algorithm (i.e. decision-making algorithm) within a simulation model in order to study the impact 

of the decisions produced by the decision-making algorithm (DMA) on the system’s performance. 

This method has also been extensively leveraged in the field to study a variety of systems. For 

instance, Sivakumar (1999) develops a discrete event simulation (DES) model of the complex 

manufacturing environment of a semiconductor test facility. He then embeds an optimization 

algorithm within this DES model for online and near real-time scheduling. Using this method, he 

achieves a world-class cycle time, improved machine utilization and more predictable and highly 

repeatable manufacturing performance. Hillstrom (1977) utilizes this technique to develop a 

methodology to evaluate the performance of unconstrained nonlinear optimization algorithms. 

This methodology enables decision makers to compare the performance of multiple optimization 

algorithms in a simulated environment. In a similar study, Beiranvand et al. (2017) describe this 

method as one of the best practices for benchmarking the performance of different optimization 

algorithms. Other studies that use this method include Azadivar and Wang (2000), Marques et al. 

(2014) and Hare et al. (2018). 
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When embedding a DMA within a DES model, most studies in the literature only feed the 

decisions produced by the DMA to the DES; and they do not account for its computation time. 

However, the computation time of a DMA can have a significant impact on a system’s operation. 

For instance, in designing a DMA to assign drivers to passengers in a ride-sharing app, if a DMA 

produces high quality decisions but takes one-hour of computation time, it may not fit the 

operational requirements of the real-world system. Therefore, in order to effectively evaluate a 

DMA, both the decisions produced and computation time must be taken into consideration.  

Petering (2015) refers to the technique in which only the decisions produced by the DMA are 

fed back to a DES model as partially embedding the DMA and the algorithm itself as a partially 

embedded DMA (PEDMA). He proposes a novel technique to embed a DMA in a discrete event 

simulation (DES) model so that both the decisions produced, and the computation time used, by 

the DMA are fed back to the DES model. In this case the algorithm is called a fully embedded 

decision-making algorithm (FEDMA). The FEDMA technique allows decision makers to study a 

system under true simulated operating conditions. 

Using a FEDMA is particularly important when the system under study operates at a fast pace 

and its operations never halt. In these systems, the DMA must be executed during normal 

operations without negatively impacting the system’s performance, so it is critical to consider the 

DMA’s computation time. Petering (2015) defines an intense unending real-time operational 

challenge (IURTOC) as “a business problem whose goal is to create an algorithm for automatically 

making operational decisions on a continual basis so as to maximize the productivity of an 

industrial system whose operations never cease and whose evolution is characterized by 

incomplete and/or changing second-by-second information regarding process times and new job 

arrivals from time 0 to time infinity.”  
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In this dissertation we show that an e-tailer’s order fulfillment process is an IURTOC and 

develop a FEDMA to reevaluate an e-tailer’s order fulfillment plans under true simulated operating 

conditions. 

2.2. Online retailing 

In this section we review the literature on online retail (e-tail) order fulfillment processes and 

related topics. The tremendous growth of the e-tail industry over the past two decades has attracted 

researchers and practitioners from various disciplines which has resulted in numerous research 

articles. Within this rich literature, we focus on e-tail success factors, supply chain management, 

transportation planning, and order fulfillment and delivery. 

2.2.1. Enablers and success factors  

The explosion of the e-tail sector has drastically transformed customer behavior and shopping 

habits in the last few decades. While shopping in a physical store was once the primary way to 

shop, e-tail is quickly becoming a preferred way to shop for customers around the world. Many 

researchers have developed quantitative and qualitative methods to identify enablers and 

facilitators for this rapid growth. Sahney (2008) follows an empirical study to conceptualize key 

e-tail enablers and uses a quality function development technique to identify performance 

indicators that are critical to the success of an e-tailer. The model determines clear transaction 

policies, online interactivity between buyer and seller, transaction safety and transaction privacy 

as main facilitators/enablers of e-tail systems. An effective website design which includes 

functionality, usability, ease-of-navigation and interface is another critical success factor that has 

been extensively studied. Constantinides (2004) studies the web experience components and their 

role as inputs in the online customer decision making process. This study shows that e-tail firms 

delivering superior web experience influence their client’s perceptions and attitudes and drive 
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additional traffic to their online store. Yen et al. (2007) develop an analytical model for effective 

web store design that can measure website accessibility in a systematic and quantitative manner. 

Other success factors that have been proposed include consumer traits, sense of freedom and 

control, convenience, customized service, access to wider variety of products, trust and shopping 

experience (Grewal et al., 2004; Dabholkar and Bagozzi, 2002; Wolfinbarger and Gilly, 2001; 

Elliot and Fowell, 2000; Shim et al., 2001; Eastlick and Lotz, 1999; Yoon, 2002; Lee and Turban, 

2001). 

2.2.2. Supply chain network 

There are fundamental differences in the supply chain of traditional retailers and e-tailers. 

According to Xu (2009), the common characteristics of the e-tail supply chain that distinguishes 

it from traditional retail include:  

(i) Large scale: Since e-tailers are not limited by the size of their stores, they can operate 

multiple fulfillment centers and use large physical spaces to store their products. This 

enables them to offer a more diverse product catalog compared to traditional retailers. 

(ii) Logistics as a matter of trust: trust and timely delivery are two of the most critical success 

factors for an e-tailer. Brynjolfsson and Smith (2000) compare e-tailers and traditional 

retailers and conclude that branding, awareness and trust are determining success factors 

for online stores. Keeney (1999) conducts a survey to analyze the advantages and 

disadvantages of e-tail from the customer standpoint. This study finds that timely delivery 

of products is a major factor contributing to the success or failure of an e-tailer. The results 

of a survey conducted by Torkzadeh and Dhillion (2002) confirms Keeney’s analysis.  

(iii) High visibility: e-tailers collect a large amount of data about customer orders and buying 

behavior. They also share a lot of information with customers in their website. This not 
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only allows e-tailers to improve their online store but also helps customers throughout the 

purchasing process.  

(iv) Assemble to order system: when customers place an online order, the e-tailer can decide 

to send that order to the customer in one or multiple shipments. Given the large number 

of SKUs in e-tailers website, the number of possible combinations is enormous. Therefore, 

it is critical for the e-tailer to make good decisions about how to assemble an order and 

ship it to the customer. There is a significant opportunity to reduce shipping cost by 

making the right decision. 

(v) Delay in demand fulfillment: there is a delay between the time when a customer places an 

online order and when it is delivered to their address. The length of this delay differs based 

on customers’ delivery preferences. E-tailers can leverage this delay to improve their 

fulfillment decisions and minimize their overall shipping cost. 

(vi) Retailer directed demand allocation: e-tailers control how customer orders should be 

assigned to fulfillment centers or drop-shippers.  

Because of these differences, retailers who add an online channel to their existing physical 

channel need to re-design their supply chain. Additionally, e-tailers who operate completely online 

without a physical store, need to take these differences into account for designing an effective 

supply chain. Retailers can treat their online channel as a separate business unit and designate a 

dedicated supply chain to fulfill online customer orders. Hovelaque et al. (2007) study different 

organizational models for traditional retailers who decide to add an online sales channel. They use 

a newsboy order policy model to compare the performance of three different organizational 

models: “store-picking”, “dedicated warehouse-picking” and “drop-shipping”. Their analysis 

indicates that, retailers can increase their profit by using a “store-picking” or “drop-shipping” 
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models when compared to “warehouse-picking”. Ma et al (2017) develop a news vendor model to 

analyze the value of drop-shipping for retailers with online and physical channels. Their results 

show that drop-shipping can significantly reduce store inventory, streamline returns and increase 

overall profit.  

In addition to drop-shipping, retailers can designate distribution centers for their online 

channel. De Koster (2003) proposes a model that establishes a positive association between 

operational complexity and the distribution structure of food e-tailers. Based on this analysis, 

complex operations with large product assortment tend to have special distribution centers for 

online orders and new internet-only companies tend to use special internet-orders only warehouses. 

In a similar article, Bendoly et al. (2007) propose that if percentage of total demand that is online 

exceeds a threshold, it is best to assign a dedicated warehouse for online channel. Maher et al. 

(2015) propose that retailers can save up to 18% in total cost by presenting only a subset of their 

stores to online customers as potential pick-up locations. Xiao et al. (2009) use a discrete-time 

dynamic programming model to analyze the impact of demand seasonality on an e-tailer’s 

inventory management policy. 

The primary reason for separating the supply chain network of online and physical channels is 

lack of preconditions for integration which includes know-how, resources, infrastructure and 

requirements for picking (Hübner, 2015). On the other hand, there is a significant value in 

integration between different channels. Integration allows retailers to use existing infrastructure, 

increase synergy and leverage inventory pooling and transshipment. Therefore, although 

combining the online and physical channel into one compelling seamless customer experience is 

one of the biggest challenges for retailers and manufacturers (Tetteh and Xu, 2014) we are now 

observing a move from multichannel to omnichannel which is an emerging channel integration 
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strategy aiming to address this challenge (Ansaripour and Trafalis, 2013; Piotrowicz, 2014; 

Verhoef et al., 2015; Mena et al. 2016). In an omnichannel model, customers can shop online and 

offline at the same retailer (Bett et al., 2013). Some retailers also allow customers to buy from the 

online channel and pick up their products from a physical store (Gao and Su, 2017). In addition to 

providing value for retailers, an omnichannel model also allows customers to use channels in 

parallel and simultaneously (Parker and Hand, 2009; Ortis and Casoli 2009; Rajendran et al., 2019) 

and enables a better and more streamlined return process (Akturk et al., 2018).  

2.2.3. Order delivery 

Order delivery is a key service element for an e-tailer (Boyer and Hult, 2005; Agatz et al., 

2008). Delivery encompasses any activities that physically move the product from the e-tailer to 

the customer. In the case of home delivery, this is known as the last mile. The last mile can be 

divided into customer pick-up versus home delivery (Daduna and Lenz, 2005) which can be further 

subdivided into attended and unattended delivery (Kamarainen and Punakivi, 2002). 

Most e-tail customers request home delivery (Devari et al., 2017). In an attended home 

delivery, the customer and e-tailer need to agree on a delivery time window. The length and timing 

of this window as well as delivery lead time are among the key customer service indicators (Agatz 

et al., 2008). On the other hand, they have a direct impact on the e-tailer’s delivery costs. The last 

mile delivery cost can account for 13% to 75% of total supply chain costs (Gevaers et al., 2009). 

Finding the right balance between cost and service is a challenging problem (Boyer et al., 2003; 

Esper et al., 2003) that needs to be carefully examined for an e-tailer based on its customer 

expectations, competitors and other determining factors. 
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Although last mile delivery has traditionally been handled by commercial carriers such as UPS, 

e-tailers are looking for options that can make their order delivery process more efficient. The 

highly advertised Amazon Prime Air delivery service using UAVs which can reduce delivery lead 

time from multiple days to a few hours is an example of such an attempt (Jung and Kim 2017). In 

the same vein, a stream of research has explored the idea of crowd logistics for resolving the last 

mile delivery issues in urban areas (Devari et al., 2017). Crowd logistics provides economic benefit 

for all parties involved by designating the outsourcing of logistic services to a crowd (Mehmann 

et al., 2015). Crowd logistics is massively supported by the increasing digitization of the society 

(Unterberg, 2010) and end-to-end information sharing enabled by customers’ smartphones 

throughout the process.  

2.2.4. Order fulfillment decision  

When a customer places an online order, the e-tailer makes an order fulfillment decision that 

assigns fulfillment responsibility to one or more FCs with available inventory and determines an 

estimated delivery date. In practice, most e-tailers optimize the order fulfillment decision for each 

customer order based on outbound transportation cost (Malykhina, 2005). Additionally, many e-

tailers make order fulfillment decisions immediately after a customer places an order (Soars, 

2003). Since order fulfillment decisions have a significant impact on an e-tailer’s bottom-line, 

many researchers have proposed different models and techniques to improve the decision-making 

process. 

One stream of research has explored improving the fulfillment decision for individual customer 

orders by improving the decision-making algorithm or combining that decision with other 

operational decisions made by the e-tailer. Jasin and Sinha (2015) formulate the online order 

fulfillment decision problem as a stochastic model and derive an approximation of that in form of 
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a deterministic linear program (DLP). They use two heuristic algorithms to solve this DLP and 

through numerical experiments illustrate that consolidating shipments for a customer order 

increases transportation cost savings. Bhargava et al. (2016) develop a Best Matching Protocol 

(BMP) for order fulfillment decisions in a collaborative and geographically distributed network. 

This protocol enables collaboration between multiple order fulfilling agents and provides a 

scalable solution for the increasing size of a supply network. Ardjmand et al. (2018) propose a 

genetic algorithm that integrates order cartonization into order fulfillment decisions to improve the 

overall shipping cost and fulfillment time. In a similar article, Govindarajan et al. (2018) propose 

a heuristic algorithm that combines the inventory policy with the order fulfillment decision. This 

combined approach outperforms a decentralized planning strategy that treats the inventory policy 

and order fulfillment as separate decisions. Other articles that consider improving fulfillment 

decisions for individual customer orders include Rambaran (2016), Acimovic and Graves (2017), 

Lei et al. (2018), Chen et al. (2019) and Li and Jia (2019).  

Another group of researchers have developed models that consider making fulfillment 

decisions for a group of customer orders as opposed to making myopic decisions for individual 

orders. Mahar and Wright (2009) develop a quasi-dynamic allocation policy that postpones 

fulfillment decisions for individual orders and instead assigns accumulated orders to fulfillment 

centers. This model also considers expected inventory and customer wait costs in addition to 

outbound transportation cost and reduces overall operating cost by as much as 23%. Acimovic and 

Graves (2015) use the dual values of a transportation linear program to estimate the future expected 

shipping costs and apply those estimates in the objective function of a heuristic algorithm that 

makes fulfillment decisions by minimizing the immediate shipping cost for the current order plus 

the expected shipping cost for future orders. Xu et al. (2009) develop a heuristic algorithm that 
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reduces the total shipping cost by minimizing the total number of boxes that are shipped. Their 

algorithm reevaluates myopic fulfillment decisions and reduces the number of split (i.e. multi-box) 

shipments by shuffling the assignments.  
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Chapter 3 

Discrete-event simulation model for an e-tailer order fulfillment process 

 

Discrete-event simulation (DES) is one of the most popular modeling techniques in 

experimental decision science that is used to study the behavior and performance of a discrete 

system over a finite time horizon. In this chapter a DES model of an e-tailer order fulfillment 

process is presented. This model is utilized in the following chapters to compare the performance 

of different reevaluation algorithms that are fully embedded in the simulation model.  

There are several out-of-the-box DES software packages on the market with relatively simple 

and intuitive paradigms for developing simulation models. Although those packages accelerate the 

model building process by simplifying and automating most of the tasks, they do not provide the 

required flexibility for fully embedding complicated reevaluation algorithms. Therefore, in this 

dissertation we build the DES model from the ground up in the C++ programming language which 

allows that flexibility. In Chapter 5 we leverage direct integration between C++ and the CPLEX 

optimization package to fully embed an integer programming-based reevaluation algorithm in this 

simulation model.  

3.1. Generic DES model architecture 

DES models a system as a series of events that occur over time and assumes no change in the 

system’s state between those events. This is in contrast with continuous simulation in which the 

system state evolves at regular intervals of time. The choice between DES and continuous 

simulation depends on the characteristics of the system under study. For example, DES can be 

used to study average customer wait time in a bank by modeling the system using discrete events 

such as customer arrivals and departures. However, to study an electric circuit, since system 
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evolution cannot be modeled using discrete events, a continuous simulation model should be used 

instead (Alimeling et al., 1999). 

Figure 3.1 illustrates the generic DES model architecture and its components. This section 

provides a brief description of each component and explores how they work together within the 

context of a DES model. There are many introductory books to DES that provide a comprehensive 

overview of this field including Banks et at. (1996). The specific DES model for an e-tailer order 

fulfillment process is described in Section 3.2.  

 
Figure 3.1: Conceptual diagram of a DES model architecture 

 

3.1.1. System instance  

The system instance is a mathematical representation of the real-world system under study. 

Building a DES model starts with defining a system instance that accurately captures the relevant 

operational behavior and characteristics of the real-world system. For example, a system instance 

for a DES model of a bank includes the customer interarrival time, service time, number of bank 
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tellers and other information that needs to be specified in order to fully define the system under 

consideration.  

3.1.2. System state  

The system state is a set of variables whose values capture the system status at a given moment 

in time. It is used to monitor the system’s evolution over the simulation time horizon by capturing 

the impact of each event. In the bank example, the number of bank tellers is not considered part of 

the system state since it is static and does not change as events occur. The number of customers in 

the queue, on the other hand, is dynamic and changes during simulation and hence is included in 

the system state. 

3.1.3. Events 

The events are the key building blocks of a DES model that represent any activity that makes 

a change in the system state. As mentioned earlier, DES assumes that events occur at a point in 

time and that the system state does not change between two consecutive events. In the bank DES 

model, customer arrival is an example of an event which changes system state by adding a new 

customer to the queue. As illustrated in Figure 3.1, in some cases, execution of an event results in 

addition of a new event to the event calendar. This is a very important property of DES models 

that will be explained further in the following sections. 

3.1.4. Simulation clock  

The simulation clock is a virtual timer inside a DES model that keeps track of the current 

simulation time. DES models are developed to analyze a system within a finite time horizon. The 

length of this time horizon and its measurement units are determined by the analysis objectives. 

The simulation clock starts at time 0 (at the beginning of this time horizon), moves forward 
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incrementally and checks the event calendar for the next event that needs to be triggered at each 

point in time. In this dissertation we consider a next-event time progression which means that the 

simulation clock moves directly from the starting time of one event to the next one. Alternatively, 

a fixed-increment time progression can be used that moves the simulation clock forward in fixed 

increments.  

3.1.5. Event calendar 

The event calendar is a list of events (and their related information) that are scheduled to take 

place at known future times (after the current clock time). As the simulation clock progresses, if 

the starting time of an event in the event calendar matches the current simulation time, it is 

triggered by simulation. The event calendar is constantly being updated during a simulation as past 

events are deleted and future events are added. 

3.1.6. Statistical accumulators 

The statistical accumulators keep track of various system performance metrics during a 

simulation. The type and number of statistical accumulators are determined by the objectives of 

the analysis. The value of a statistical accumulator is updated by different events and are reported 

at the end to help analyze the simulation output. In the bank DES model, average customer wait 

time is a statistical accumulator that is updated as each customer enters and subsequently exits the 

bank.  

3.2. DES model of an e-tailer order fulfillment process 

In this section a DES model of an e-tailer order fulfillment process is presented. As mentioned 

earlier in this chapter, this DES model is developed in the C++ programming language following 

an object-oriented approach. Table 3.1 displays a list of indices and parameters used to define the 
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system instance for this model. This section provides an overview of this DES model and describes 

the modeling approach and assumptions.  

Table 3.1: Indices and parameters for DES model 

Indices  

𝑠 SKU  

𝑓 FC  

𝑟 Customer order  

𝑖 Item: a particular SKU that is requested in a particular order 

𝑚 Shipping method  

𝑝 Delivery preference  

𝑎 Assignment  

𝑧 Shipping zone  

𝑔 Region  

𝑞 Order quantity  

Parameters  

𝐿𝑒𝑛𝑔𝑡ℎ Length of rectangular space that represents the e-tailer’s area of operation, (real, > 0) 

𝑊𝑖𝑑𝑡ℎ Width of rectangular space that represents the e-tailer’s area of operation, (real, > 0) 

𝑁𝑢𝑚𝑆𝐾𝑈𝑠 Number of SKUs in e-tailer product catalog, (integer, > 0) 

𝑁𝑢𝑚𝐹𝐶𝑠 Number of FCs in e-tailer supply chain network, (integer, > 0) 

𝑁𝑢𝑚𝑅𝑒𝑔𝑖𝑜𝑛𝑠 Number of regions in e-tailer area of operation, (integer, > 0) 

𝑆𝐾𝑈𝑠 An object that stores a representation of SKU 𝑠, (instance of 𝑆𝐾𝑈 class) 

𝐹𝐶𝑓 An object that stores a representation of FC 𝑓, (instance of 𝐹𝐶 class) 

𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠𝑝 Number of days a customer should wait to receive their order if delivery preference 𝑝 is selected, (integer, > 0) 

𝐷𝑒𝑙𝑃𝑟𝑜𝑏𝑝 Probability that delivery preference 𝑝 is selected when an order is placed, (real, ≥ 0)  

𝐴𝑣𝑔𝐼𝑛𝑡𝑃𝑙𝑐𝑇𝑖𝑚𝑒 Average inter-order-placement time, (real, > 0) 

𝑀𝑎𝑥𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠 Maximum number of order lines allowed in a customer order, (integer, > 0) 

𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏𝑖 Probability that 𝑖 items are requested in a customer order, (real, ≥ 0) 

𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐷𝑎𝑦𝑠𝑚 Number of days it takes for a box to reach its destination when it is shipped by shipping method 𝑚, (integer, > 0) 

𝑆𝑘𝑢𝑃𝑟𝑜𝑏𝑠 Probability that SKU 𝑠 is selected in a customer order, (real, ≥ 0) 

𝑀𝑎𝑥𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 Maximum quantity of any SKU that can be requested in any order, (integer, > 0) 

𝑄𝑡𝑦𝑃𝑟𝑜𝑏𝑞 Probability that the order quantity is 𝑞 in an order item, (real, ≥ 0) 

𝑟𝑒𝑔𝑖𝑜𝑛𝑔 An object that stores representation of region 𝑔, (instance of 𝑅𝑒𝑔𝑖𝑜𝑛 class) 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏𝑔 Probability that an order originates from region 𝑔, (real, ≥ 0) 

𝑀𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 Maximum weight capacity (in pounds) of a box, (real, > 0) 

 

3.2.1. System instance for e-tailer DES model 

The e-tailer order fulfillment process is a complex system that involves many entities and 

relationships. There are many ways to model this system using DES. Since the primary objective 

of this dissertation is studying different strategies and algorithms for reevaluating order fulfillment 

decisions, we model those system characteristics that are relevant to this analysis. In order to 

develop a generic simulation model that can be used by decision makers across a wide variety of 

e-tailers, we use several parameters in this model. The value of these parameters should be set 
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based on the characteristics of a real-world e-tailer. Figure 3.2 illustrates the main components of 

the system instance for this DES model.  

Note that in this simulation, we use an object-oriented modeling approach in which each entity 

is modeled as a member of a class. The characteristics of that entity are modeled as attributes of 

that class. For example, each FC in this simulation is modeled as a member of the FC class. This 

class has several attributes including 𝑖𝑛𝑣𝐼𝑛𝑓𝑜𝑠 that specifies the inventory policy for 𝑆𝐾𝑈𝑠 at an 

FC. In this dissertation, to reference an attribute of a class we use the following terminology: 

(𝑚𝑒𝑚𝑏𝑒𝑟_𝑛𝑎𝑚𝑒. 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒). For example, 𝐹𝐶𝑓 . 𝑖𝑛𝑣𝐼𝑛𝑓𝑜𝑠 describes the inventory policy for 

𝑆𝐾𝑈𝑠 at 𝐹𝐶𝑓. Note that an attribute of a class can be another class.  

 
Figure 3.2: Visual representation of system instance for the DES model 
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Time measurement. For this DES model, time is measured in minutes. The timing of any 

event including customer order placement and order shipment is captured by measuring the 

number of minutes that elapsed between the simulation starting time and when that event occurs. 

Additionally, we assume that the e-tailer’s operations never stop and customer orders are placed 

and processed by the e-tailer around the clock. The simulation time horizon is a model parameter 

that can be adjusted. For example, for simulating one month of the e-tailer’s operations, the time 

horizon should be set to 43,200 minutes.  

Area of operation. E-tailers typically serve customers within a certain geographical region 

which is referred to as their area of operation. Some e-tailers ship products to their customers in a 

single country while others operate internationally. In this DES model, the area of operation is 

assumed to be a rectangular area. The size of this area is modeled using the 𝐿𝑒𝑛𝑔𝑡ℎ and 𝑊𝑖𝑑𝑡ℎ 

parameters.  

The location of each point within the e-tailer’s area of operation is measured based on its 

relative position to the bottom-left corner which is assumed to be the origin of a two-dimensional 

coordinate plane. This coordinate plane is used to define the location of each FC and customer 

which allows the simulation model to measure the Euclidian distance between each FC and 

customer order. Table 3.2 provides the definition of the 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 class which is used in this 

simulation to store the x and y coordinates of a customer and FC location. 

Table 3.2: Location class definition 

𝑪𝒍𝒂𝒔𝒔: 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛  

𝑥𝐶𝑜𝑜𝑟𝑑 X coordinate of a location, (𝑟𝑒𝑎𝑙, 0 ≤ 𝑥𝐶𝑜𝑜𝑟𝑑 ≤ 𝐿𝑒𝑛𝑔𝑡ℎ) 

𝑦𝐶𝑜𝑜𝑟𝑑 Y coordinate of a location, (𝑟𝑒𝑎𝑙, 0 ≤ 𝑦𝐶𝑜𝑜𝑟𝑑 ≤ 𝑊𝑖𝑑𝑡ℎ) 

 

Stock keeping units (SKUs). In this simulation model, a SKU is defined as a distinct type of 

item for sale on the e-tailer’s website. The 𝑁𝑢𝑚𝑆𝐾𝑈𝑠 parameter represents total number of SKUs 
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in the e-tailer’s product catalog. Characteristics of SKU 𝑠 are modeled using the 𝑆𝐾𝑈𝑠 object 

which is a member of the 𝑆𝐾𝑈 class that is described in Table 3.3. As shown in this table, the 𝑆𝐾𝑈 

class includes two parameters that model the SKU ID and weight.  

Table 3.3: SKU class definition 

𝑪𝒍𝒂𝒔𝒔: 𝑆𝐾𝑈  

𝑆𝐾𝑈_𝐼𝐷 SKU ID, (integer, 1 ≤ 𝑆𝐾𝑈_𝐼𝐷 ≤ 𝑁𝑢𝑚𝑆𝐾𝑈𝑠) 

𝑤𝑒𝑖𝑔ℎ𝑡 SKU weight in pounds, (real, > 0) 

 

Fulfillment centers (FCs). FCs are located inside the e-tailer’s area of operation and are 

responsible for managing its inventory and fulfilling customer orders. The 𝑁𝑢𝑚𝐹𝐶𝑠 parameter 

represents total number of FCs in the e-tailer’s supply chain network. The characteristics of FC 𝑓, 

are modeled using the 𝐹𝐶𝑓 object which is a member of the 𝐹𝐶 class that is described in Table 3.4.  

Table 3.4: FC class definition 

𝑪𝒍𝒂𝒔𝒔: 𝐹𝐶  

𝐹𝐶_𝐼𝐷 FC ID, (integer, 1 ≤ 𝐹𝐶_𝐼𝐷 ≤ 𝑁𝑢𝑚𝐹𝐶𝑠) 

𝐹𝐶𝐿𝑜𝑐 FC location, (instance of 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 class) 

𝑖𝑛𝑣𝐼𝑛𝑓𝑜𝑠 Inventory management information for SKU 𝑠, (instance of 𝐼𝑛𝑣𝐼𝑛𝑓𝑜 class) 

 

The first parameter in this class is 𝐹𝐶_𝐼𝐷 which assigns a unique identifier to each 𝐹𝐶 object. 

In this model, an auto-increment number is used for generating values of 𝐹𝐶_𝐼𝐷. The 𝐹𝐶𝐿𝑜𝑐 

parameter captures location of 𝐹𝐶𝑓 based on the coordinate system that was described previously. 

The inventory management policy for 𝑆𝐾𝑈𝑠 at 𝐹𝐶𝑓 is modeled using the 𝑖𝑛𝑣𝐼𝑛𝑓𝑜𝑠 object 

which is a member of the 𝐼𝑛𝑣𝐼𝑛𝑓𝑜 class. The definition of this class is provided in Table 3.5.  

Table 3.5: InvInfo class definition 

𝑪𝒍𝒂𝒔𝒔: 𝐼𝑛𝑣𝐼𝑛𝑓𝑜  

𝑆𝐾𝑈_𝐼𝐷 SKU ID, (integer, 1 ≤ 𝑆𝐾𝑈_𝐼𝐷 ≤ 𝑁𝑢𝑚𝑆𝐾𝑈𝑠) 

𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 Maximum inventory level, (integer, ≥ 0) 

𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑐𝑙𝑒 Inventory review cycle in minutes, (real, > 0) 

𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 Lead time for receiving a replenishment order in minutes, (real, ≥ 0) 
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Two main aspects of the e-tailer inventory management policy are considered in this simulation 

model:  

• Inventory placement: e-tailers typically offer a large variety of SKUs in their website. 

However, to reduce operational costs, they do not store all SKUs at all FCs and instead 

strategically position their inventory by spreading it among their locations. This is modeled in 

this simulation using the 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 parameter in 𝐼𝑛𝑣𝐼𝑛𝑓𝑜 class. If in the real-world system, 

the e-tailer does not stock 𝑆𝐾𝑈𝑠 in 𝐹𝐶𝑓, the value of 𝐹𝐶𝑓 . 𝑖𝑛𝑣𝐼𝑛𝑓𝑜𝑠 . 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 can be set to 

0.  

• Inventory replenishment policy: this refers to the frequency and size of replenishment orders 

for each SKU. In this simulation model, we assume that all FCs follow an order-up-to-level 

(OUTL) policy with periodic review for inventory replenishment which is illustrated in Figure 

3.3. There are three parameters in the 𝐼𝑛𝑣𝐼𝑛𝑓𝑜 class that are used to model this policy. The 

𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 parameter refers to the maximum inventory level for a SKU. The 𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑐𝑙𝑒 

specifies the frequency at which inventory level is reviewed at the FC. Since there usually is a 

lag between the time at which a replenishment order is placed and when it reaches the FC, the 

𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 parameter is used to capture that. The order quantity for each replenishment is 

calculated based on on-hand inventory and its difference with 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙. Note that the value 

of all these parameters could be different for each FC-SKU combination. For example, if 

𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 for 𝑆𝐾𝑈𝑠 at 𝐹𝐶𝑓 is 200 with a 𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑐𝑙𝑒 of 2880 minutes (2 days) and 

𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 of 1440 minutes (1 day), when the simulation begins, the inventory level for this 

SKU and FC combination is set to 200. After that, the inventory level decreases as customers 

place orders and they are assigned to 𝐹𝐶𝑓. At 𝑡 = 2880, the inventory level is reviewed for the 

first time. Assuming that on-hand inventory for 𝑆𝐾𝑈𝑠 is 50, a replenishment order is placed 
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with a quantity of 150 plus the expected demand for 𝑆𝐾𝑈𝑠 at 𝐹𝐶𝑓 during the 𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒. For 

instance, if on average 75 units of 𝑆𝐾𝑈𝑠 are shipped from 𝐹𝐶𝑓 in a day, since 𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 is 1 

day, 75 units are added to the replenishment order quantity and the total quantity becomes 175. 

Note that, this number does not immediately get added to the on-hand inventory level. Instead 

this is added to on-order inventory which will be turned into on-hand inventory after 1440 

minutes.   

 
Figure 3.3: Order-up-to-level inventory policy with periodic review 

 

Delivery options. Several studies indicate that the variety, cost and lead time of e-tailer 

delivery options is a highly influential part of the customer buying process (Esper et al., 2003; Ma, 

2017) Most e-tailers offer several delivery options to their customers. In this DES model we 

consider four of the most common delivery options that are listed below: 

• Delivery Option 1: Seven Day Delivery 

• Delivery Option 2: Five Day Delivery 

• Delivery Option 3: Two Day Delivery 

• Delivery Option 4: One Day Delivery 

𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 

𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑙𝑒 

𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 
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Average lead time for delivery option 𝑝 is stored in the 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠𝑝 parameter. For 

instance, value of 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠2 is set to 5 which indicates that if a customer chooses delivery 

option 2, their order is delivered to them within 5 days after it is placed. In real-world systems, 

delivery options are not selected by customers with the same likelihood. For example, delivery 

options with shorter lead time are more expensive and therefore less likely to be selected by 

customers who are cost aware. 𝐷𝑒𝑙𝑃𝑟𝑜𝑏𝑝 parameter defines the probability of delivery option 𝑝 

getting selected by a customer. This parameter allows decision makers to set the probability of 

different delivery options based on their customer buying behavior. 

The last aspect of delivery options that is modeled in this simulation is the delivery window. 

The delivery window is a range of time during the day of order delivery when the customer should 

expect to receive their package. In real-world systems, premium delivery options such as One Day 

Delivery and Two Day Delivery have a tighter delivery window than basic options. This is modeled 

by setting a shorter delivery window for premium delivery options in this simulation.  

Table 3.6 summarizes all information for delivery options. Based on this table, if a customer 

places an order at 10:00 a.m. on a Monday and selects a One Day Delivery option they can expect 

to receive their order between 3:00 p.m. and 7:00 p.m. on Tuesday. If the customer selects a Seven 

Day Delivery instead, their order will be delivered between 8:00 a.m. and 7:00 p.m. on the Monday 

of the following week. Note that in this simulation model, 1:00 p.m. is considered the shipment 

cutoff time (lock time) and customer orders that are placed after this time are not eligible to ship 

on the same day. In other words, if a customer places an order at 1:05 p.m. on a Monday and selects 

a One Day Delivery option, their order is delivered between 3:00 p.m. and 7:00 p.m. on 

Wednesday.   
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Table 3.6: List of delivery options 

Delivery option 

(𝑝) 

Description 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠𝑝 

(Days) 

𝐷𝑒𝑙𝑃𝑟𝑜𝑏𝑝 

(%) 

Delivery window 

(Time of Day) 

1 Seven Day Delivery 7 31 8:00 a.m. to 7:00 p.m. 

2 Five Day Delivery 5 27 8:00 a.m. to 7:00 p.m. 

3 Two Day Delivery 2 23 12:00 p.m. to 7:00 p.m. 

4 One Day Delivery 1 19 3:00 p.m. to 7:00 p.m. 

 

Customer orders. Customer orders in this simulation are modeled using the 𝑜𝑟𝑑𝑒𝑟𝑟 object 

which is a member of the 𝑂𝑟𝑑𝑒𝑟 class that is described in Table 3.7. Unlike SKUs and FCs, the 

number of customer orders is not a known value and is a random variable. The time that elapses 

between two consecutive orders being placed is referred to as the inter-order-placement time. We 

use a probability distribution to model the variability of the inter-order-placement time. The type 

of this distribution is a model parameter that can be configured based on a specific e-tailer customer 

order placement rate. Additionally, we use the 𝐴𝑣𝑔𝐼𝑛𝑡𝑃𝑙𝑐𝑇𝑖𝑚𝑒 parameter as the mean value of 

this probability distribution that can also be adjusted as needed. 

As shown in Table 3.7, each customer order is assigned an 𝑜𝑟𝑑𝐼𝐷 that uniquely identifies that 

order in the system. The time an order is placed is stored in the 𝑜𝑟𝑑𝑇𝑖𝑚𝑒 parameter. In addition, 

the day and hour of order placement are stored in the 𝑜𝑟𝑑𝐷𝑎𝑦 and 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 parameters 

respectively.  

The location of customer orders is modeled using the 𝑜𝑟𝑑𝐿𝑜𝑐 object which is a member of the 

𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 class that was described in Table 3.2. In other words, 𝑜𝑟𝑑𝑒𝑟𝑟 . 𝑜𝑟𝑑𝐿𝑜𝑐. 𝑥𝐶𝑜𝑜𝑟𝑑 and 

𝑜𝑟𝑑𝑒𝑟𝑟 . 𝑜𝑟𝑑𝐿𝑜𝑐. 𝑦𝐶𝑜𝑜𝑟𝑑 store the x and y coordinates of the customer who places order 𝑟.  
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Table 3.7: Order class definition 

𝑪𝒍𝒂𝒔𝒔: 𝑂𝑟𝑑𝑒𝑟  

𝑜𝑟𝑑𝐼𝐷 Order ID, (integer, > 0) 

𝑜𝑟𝑑𝑇𝑖𝑚𝑒 Clock time (in minutes) when order is placed, (real, ≥ 0) 

𝑜𝑟𝑑𝐻𝑜𝑢𝑟 Hour of order placement time, (integer, 0 ≤ 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 ≤ 23) 

𝑜𝑟𝑑𝐷𝑎𝑦 Day of order placement, (integer, ≥ 0) 

𝑜𝑟𝑑𝐿𝑜𝑐 Customer location, (instance of 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 class) 

𝑑𝑒𝑙𝑃𝑟𝑒𝑓 Delivery preference, (integer, 1 ≤  𝑑𝑒𝑙𝑃𝑟𝑒𝑓 ≤ 𝑁𝑢𝑚𝐷𝑒𝑙𝑃𝑟𝑒𝑓) 

𝑒𝑠𝑡𝐷𝑒𝑙 Estimated delivery time, (real, ≥ 0) 

𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 Simulation clock time by which all assignments for the order should be locked, (real, ≥ 0) 

𝑒𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 Estimated time at which all assignments for the order will be locked, (real, ≥ 0) 

𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 Number of line items (i.e. unique SKUs) in the order, (integer, 1 ≤ 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 ≤ 𝑀𝑎𝑥𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠) 

𝑖𝑡𝑒𝑚𝑖 Information pertaining to item 𝑖 in customer order, (instance of 𝐼𝑡𝑒𝑚 class) 

 

In a real-world e-tailer system when a customer places an order, they select one of the delivery 

options that are available in the website. The 𝑑𝑒𝑙𝑃𝑟𝑒𝑓 parameter in the 𝑂𝑟𝑑𝑒𝑟 class stores the 

delivery option selected by a customer in this simulation. For example, if a Two Day Delivery 

option is selected by the customer who places 𝑜𝑟𝑑𝑒𝑟𝑟, the value of 𝑜𝑟𝑑𝑒𝑟𝑟 . 𝑑𝑒𝑙𝑃𝑟𝑒𝑓 is set to 3 

based on the delivery options listed in Table 3.6.  

The estimated delivery time for an order is calculated based on when it is placed and its 

delivery preference, and it is stored in 𝑒𝑠𝑡𝐷𝑒𝑙 parameter. Additionally, estimated delivery time 

determines how much time the e-tailer has before they must lock their fulfillment decision for the 

order. We assume that boxes are shipped once every day at 2:00 p.m. and the fulfillment decision 

for all orders that will be shipped that day must be locked at 1:00 p.m. This gives FCs enough time 

to prepare customer orders for shipment. Based on this assumption, the final deadline for locking 

customer order 𝑟 (𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒) is 1:00 p.m. on the day before its estimated delivery. This 

allows the e-tailer to use a Next Day Air shipping method to fulfill that customer order. This final 

deadline is stored in the 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 parameter. For example, if a customer places an order at 

10:00 a.m. on a Monday and selects a Five Day Delivery preference, their estimated delivery time 

(𝑒𝑠𝑡𝐷𝑒𝑙) is calculated as a random time between 8:00 a.m. and 7:00 p.m. on Saturday of the same 

week and the value of 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 for their order is set to 1:00 p.m. on Friday. 
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Although waiting until the final deadline and using a Next Day Air shipping method is a 

feasible decision, in a real-world system the e-tailer could find a more economical way to fulfill 

that order. For instance, in the previous example, if the e-tailer has enough inventory, it can use a 

UPS Ground (i.e. 5-day) shipping method to ship the customer order at 2:00 p.m. on Monday 

which is a cheaper option than waiting until Friday and using a Next Day Air shipping method. In 

following sections, we explain the fulfillment decision process that focuses on finding the best 

decision to minimize the shipping cost of each customer order. The 𝑒𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 parameter stores 

the estimated time at which the e-tailer will lock its fulfillment decision for order 𝑟. By definition, 

𝑒𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 is less than or equal to 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒. 

The 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 parameter stores the number of items (i.e. number of unique SKUs) requested 

in customer order 𝑟. This is modeled using the 𝐼𝑡𝑒𝑚 class that is described in Table 3.8. Some 

customers order a single item while others order multiple items.  

 

Table 3.8: Item class definition 

𝑪𝒍𝒂𝒔𝒔: 𝐼𝑡𝑒𝑚  

𝑆𝐾𝑈_𝐼𝐷 SKU ID, (𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 1 ≤ 𝑠𝑘𝑢𝐼𝐷 ≤ 𝑁𝑢𝑚𝑆𝐾𝑈𝑠) 

𝑞𝑡𝑦 Order quantity, (𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 1 ≤ 𝑞𝑡𝑦 ≤ 𝑀𝑎𝑥𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦) 

 

In a real-world e-tailer system, the number of items varies from one customer order to another. 

An example dataset from OList, a Brazilian e-tailer, is presented in Table 3.9 (Kaggle website, 

2020). This table shows the number of items requested in 98,000 historical customer orders.  It 

can be observed that almost 90% of OList customer orders include a single item while less than 

1% of them include more than four items. In addition, the maximum number of items in a single 

customer order in this sample dataset is 21 which occurs only in one instance. To model this, we 

use the 𝑀𝑎𝑥𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠 parameter to represent the maximum number of items in this simulation. 
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Additionally, 𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏𝑖 is the probability that 𝑖 items are requested in an order. Values of 

𝑀𝑎𝑥𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠 and 𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏𝑖 can be adjusted by decision makers based on real-world e-

tailer historical demand patterns. For example, to model OList customer order patterns, 

𝑀𝑎𝑥𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠 should be set to 21 and value of 𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏1 through 𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏21should 

be calculated based on the distribution that is presented in Table 3.9. Note that since 

𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏𝑖 represents a probability distribution, the sum of its values must be equal to 1.  

 

Table 3.9: Distribution of number of items in OList customer orders 

Number of items Frequency 

1 88863 

2 7516 

3 1322 

4 505 

5 204 

6 198 

7 22 

8 8 

9 3 

10 8 

11 4 

12 5 

13 1 

14 2 

15 2 

20 2 

21 1 

 

Another important aspect of customer orders that is modeled in this simulation is the 

distribution of SKUs in customer orders. Some SKUs are fast-moving and are ordered very 

frequently while others are slow-moving and have a sporadic ordering pattern. 𝑆𝑘𝑢𝑃𝑟𝑜𝑏𝑠 

represents the probability that SKU 𝑠 is the next SKU requested in any order. The value of 

𝑆𝑘𝑢𝑃𝑟𝑜𝑏𝑠 can be calculated for all SKUs based on historical demand records of a real-world e-

tailer. This allows decision makers to set a higher probability value to fast-moving SKUs. For 

example, consider a scenario in which the e-tailer has three SKUs in its product catalog. The e-
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tailer’s historical demand records indicate that in the past 1000 customer orders 𝑆𝐾𝑈1, 𝑆𝐾𝑈2, and 

𝑆𝐾𝑈3 have been ordered by 800, 500 and 200 customers respectively. According to this data, value 

of 𝑆𝑘𝑢𝑃𝑟𝑜𝑏1, 𝑆𝑘𝑢𝑃𝑟𝑜𝑏2 and 𝑆𝑘𝑢𝑃𝑟𝑜𝑏3 should be set to 0.8, 0.5 and 0.2. Note that since 

𝑆𝑘𝑢𝑃𝑟𝑜𝑏𝑠 is not a probability distribution, the sum of its values does not have to be equal to 1.  

In order to model variability of order quantities, 𝑄𝑡𝑦𝑃𝑟𝑜𝑏𝑞 is used in this simulation which 

defines the probability that quantity associated with an item is equal to 𝑞. Like 𝑆𝑘𝑢𝑃𝑟𝑜𝑏𝑠, the 

values of 𝑄𝑡𝑦𝑃𝑟𝑜𝑏𝑞 could be set based on e-tailer historical demand. For instance, if 90% of a 

real-world e-tailer’s single item orders have an order quantity of 1, value of 𝑄𝑡𝑦𝑃𝑟𝑜𝑏1should be 

set to 0.9. 

Regions. All customer orders are placed from within the e-tailer’s area of operation. In a real-

world e-tailer system, customer locations are not evenly distributed inside the area of operation. 

For instance, more orders are submitted from highly populated metropolitan areas than rural areas. 

Figure 3.4 illustrates the geographical distribution of a sample of OList customer orders that was 

presented earlier in this chapter. As the map shows, the number of orders that are submitted from 

eastern parts of the country is higher than the west. Additionally, it can be observed that certain 

regions in the east have a higher order density than others.   
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Figure 3.4: Geographical distribution of a sample of OList customer orders 

 

To model the geographical distribution of customer orders, we split the e-tailer’s area of 

operation into multiple rectangular regions. 𝑁𝑢𝑚𝑅𝑒𝑔𝑖𝑜𝑛𝑠 is a model parameter that allows 

decision makers to control the granularity of this division.  By setting a higher value for this 

parameter, the area of operation is split into more regions and vice versa. The size and position of 

region 𝑔 is modeled using the 𝑟𝑒𝑔𝑖𝑜𝑛𝑔 object which is a member of the 𝑅𝑒𝑔𝑖𝑜𝑛 class that is 

described in Table 3.10. Each region is assigned a 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 that uniquely identifies it in the 

system. The 𝑙𝑙𝐿𝑜𝑐 and 𝑢𝑟𝐿𝑜𝑐 parameters store the coordinates of the lower left and upper right 

corner of 𝑟𝑒𝑔𝑖𝑜𝑛𝑔 respectively.   

Table 3.10: Region class definition 

𝑪𝒍𝒂𝒔𝒔: 𝑅𝑒𝑔𝑖𝑜𝑛  

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 Region ID, (integer, 1 ≤ 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 ≤ 𝑁𝑢𝑚𝑅𝑒𝑔𝑖𝑜𝑛𝑠) 

𝑙𝑙𝐿𝑜𝑐 Location of lower left corner of region, (instance of 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 class) 

𝑢𝑟𝐿𝑜𝑐 Location of upper right corner of region, (instance of 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 class) 

 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏𝑔 is a probability distribution that specifies the likelihood that a customer order is 

placed from 𝑟𝑒𝑔𝑖𝑜𝑛𝑔. By setting a higher value of 𝑅𝑔𝑛𝑃𝑟𝑜𝑏𝑔 for regions that represent highly 

populated areas within an e-tailer’s area of operation, we can model the geographical distribution 

of customer orders.  
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A simple example is presented in Figure 3.5.  As displayed in this figure, the e-tailer’s area of 

operation is split into four regions. A 𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 is assigned to each region as well as a 𝑅𝑔𝑛𝑃𝑟𝑜𝑏𝑔 

value. In this example, region 1 has the highest order rate with a probability value of 0.4 which 

indicates that 40% of the e-tailer’s customer orders are submitted from a location within this 

region. The locations of customer orders are assumed to be uniformly distributed within each 

region. 

 

Figure 3.5: Modeling geographical distribution of customer orders using regions 

 

Shipping methods. The difference between customer delivery options and shipping methods 

that are used by e-tailers for order delivery is explained in Chapter 1. Some e-tailers handle their 

own outbound transportation while most of them outsource it to 3PLs who offer various shipping 

methods for order delivery. In this model, the following UPS shipping methods are used for 

analysis.  

• Shipping Method 1: UPS Ground 

• Shipping Method 2: Three Day Select 

• Shipping Method 3: Second Day Air 

• Shipping Method 4: Next Day Air 

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 = 1 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏1 = 0.4 

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 = 2 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏2 = 0.2 

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 = 4 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏4 = 0.3 

𝑟𝑒𝑔𝑖𝑜𝑛𝐼𝐷 = 3 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏3 = 0.1 
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We use 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐷𝑎𝑦𝑠𝑚 parameter to store the transit time for shipping method 𝑚. Table 3.11 

provides a summary of these four shipping methods. We assume that the time it takes to ship a box 

is independent of the distance it is shipped. That is, the times shown in Table 3.11 are valid for 

shipping times from any FC to any customer. When a customer places an order, the e-tailer can 

choose a shipping method that meets the customer’s delivery preference. For example, for an order 

with a Seven Day Delivery preference, the e-tailer can use any of the four shipping methods above. 

In the following sections, we present the shipping cost of different methods and explain how the 

e-tailer takes that into account for selecting a shipping method that minimizes its total shipping 

cost.  

Table 3.11: List of shipping methods 

Shipping method (𝑚) Description 𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐷𝑎𝑦𝑠𝑚 (days) 

1 UPS Ground 5 

2 Three Day Select 3 

3 Second Day Air 2 

4 Next Day Air 1 

 

Shipments. In the simulation model, orders can be rejected if not enough open inventory is 

available to satisfy the order. If they can be satisfied, they are shipped in one or more boxes. As 

we explain in the next section, there is a fixed cost for shipping each box. This incentivizes the e-

tailer to reduce the total number of boxes for fulfilling a customer order. In a real-world e-tailer 

system, there is a maximum weight capacity for a single box. If the total weight of the items 

ordered exceeds this threshold, the e-tailer must break the order shipment into multiple boxes. The 

maximum box weight varies from one e-tailer to another and is dependent on product types. In this 

simulation parameter 𝑀𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 is used to give the decision maker flexibility in setting this 

value based on its business requirements. 
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All shipments must be delivered to customers within their expected delivery window which is 

determined based on their delivery preference. As mentioned earlier, there are four shipping 

methods that can be used for order delivery. Since there is a fixed cost associated with picking 

orders from FCs, orders are not typically shipped one at a time and instead FCs batch multiple 

orders and ship them at a pre-determined time referred to as the shipment pick-up time. We assume 

shipment pick-up happens once a day at 2:00 p.m. Since picking items from inventory and getting 

them packed into boxes for shipment requires time, we assume that all fulfillment decisions for 

customer orders must be fixed by 1:00 p.m. on the day of shipment. This gives FCs enough time 

to meet the shipment deadline. All orders that are placed after 1:00 p.m. are therefore not eligible 

for being shipped on that day and must wait until following days.  

Note that we assume all inventory replenishments reach their destination FC at 12:00 a.m. The 

inventory units that are received at an FC can be used to satisfy an order that is shipped from that 

FC at 2:00 p.m. on the same day. For instance, consider a scenario where a customer places an 

order at 11:00 p.m. on a Monday and requests 1 unit of 𝑆𝐾𝑈1 with a One Day Delivery preference. 

If there is no on-hand inventory of 𝑆𝐾𝑈1at any FC, but 𝐹𝐶1 expects a replenishment for that SKU 

at 12:00 a.m. on Tuesday, the e-tailer can accept the order and assign it to 𝐹𝐶1. In this case, the 

customer order is shipped at 2:00 p.m. on Tuesday and is delivered to the customer between 3:00 

p.m. and 7:00 p.m. on Wednesday.  

Consider another example in which a customer places an order at 1:01 p.m. on a Monday and 

requests 1 unit of 𝑆𝐾𝑈1 with a One Day Delivery preference. In this case we assume that the e-

tailer has enough inventory on-hand to satisfy this order. However, since the order is placed after 

the locking time (1:00 p.m.) it is not shipped on Monday and instead is sent out to the customer on 
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Tuesday at 2:00 p.m. The customer will receive their order between 3:00 p.m. and 7:00 p.m. on 

Wednesday. 

Shipping cost. In this simulation model, shipping cost is calculated based on UPS shipping 

rates (UPS website, 2019). UPS uses a three-step process to calculate shipping cost. 

Step 1: Specify shipping method. The first step in calculating shipping cost is identifying the 

shipping method that is used by the e-tailer. The list of available shipping methods and their details 

are provided in previous sections. Intuitively, shipping methods with shorter transit times have a 

higher shipping cost. 

Step 2: Identify a UPS shipping zone. A UPS Shipping zone is specified based on the selected 

shipping method and distance between the origin and destination. A list of shipping zones for all 

shipping methods as well as the distance range for each is provided in Table 3.12. For instance, if 

a box is sent from a FC in Chicago to a customer in Detroit using a Three Day Select shipping 

method, since the total distance is approximately 280 miles the UPS shipping zone is identified as 

303. 
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Table 3.12: List of UPS shipping zones based on shipping method and distance (in miles) 

Shipping method (m) Shipping method description Minimum distance Maximum distance Shipping zone 

1 UPS Ground 0 165 002 

1 UPS Ground 166 308 003 

1 UPS Ground 309 607 004 

1 UPS Ground 608 1,020 005 

1 UPS Ground 1,021 1,440 006 

1 UPS Ground 1,441 2,020 007 

1 UPS Ground 2,021 NA 008 

2 Three Day Select 0 165 302 

2 Three Day Select 166 308 303 

2 Three Day Select 309 607 304 

2 Three Day Select 608 1,020 305 

2 Three Day Select 1,021 1,440 306 

2 Three Day Select 1,441 2,020 307 

2 Three Day Select 2,021 NA 308 

3 Second Day Air 0 165 202 

3 Second Day Air 166 308 203 

3 Second Day Air 309 607 204 

3 Second Day Air 608 1,020 205 

3 Second Day Air 1,021 1,440 206 

3 Second Day Air 1,441 2,020 207 

3 Second Day Air 2,021 NA 208 

4 Next Day Air 0 165 102 

4 Next Day Air 166 308 103 

4 Next Day Air 309 607 104 

4 Next Day Air 608 1,020 105 

4 Next Day Air 1,021 1,440 106 

4 Next Day Air 1,441 2,020 107 

4 Next Day Air 2,021 NA 108 

 

Step 3: Calculate shipping cost. After identifying the shipping zone, UPS uses a step function 

to calculate the final shipping cost based on the box weight. This step function rounds up total box 

weight to full pounds and then uses a cost matrix to specify the final shipping cost. Table 3.13 

displays a sample dataset from this cost matrix for UPS shipping zone 303. Based on this table, 

the total cost of shipping a box that weighs 8 pounds from a FC in Chicago to a customer in Detroit 

using the Three Day Select shipping method is $19.11. 
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Table 3.13: Sample shipping rates from UPS cost matrix 

Shipment weight (lb.) Shipping cost ($) 

1 11.43  

2 12.12  

3 12.76  

4 14.06  

5 15.07  

6 16.35  

7 17.63  

8 19.11  

9 19.98  

10 20.62  

 

As can be observed from this sample dataset, the shipping cost per pound is not a constant 

value. In order to simplify this step function for the simulation model, linear regression is used to 

fit a linear model to shipping cost based on box weight. Table 3.14 summarizes the information 

for all fitted models and reports their accuracy using the 𝑅2 metric. As shown in this table, the 

linear models estimate shipping cost with a very high degree of accuracy. A scatter plot of all UPS 

shipping costs and the fitted linear model for all the shipping zones is provided in Appendix A.  
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Table 3.14: Summary of fitted linear models for all shipping zones 

Shipping Method Shipping Zone Fitted Model Estimated Fixed Cost ($/box) Estimated Variable Cost ($/lb) 𝑅2 

UPS Ground 002 𝑦 = 0.467𝑥 + 0.500 0.500 0.467 0.93 

UPS Ground 003 𝑦 = 0.483𝑥 + 0.900 0.900 0.483 0.96 

UPS Ground 004 𝑦 = 0.513𝑥 + 1.370 1.370 0.513 0.97 

UPS Ground 005 𝑦 = 0.502 𝑥 + 6.011 6.011 0.502 0.99 

UPS Ground 006 𝑦 = 0.543 𝑥 + 9.707 9.707 0.543 0.99 

UPS Ground 007 𝑦 = 0.576 𝑥 + 13.629 13.629 0.576 0.99 

UPS Ground 008 𝑦 = 0.636 𝑥 + 15.849 15.849 0.636 0.98 

Three Days Select 302 𝑦 = 0.808 𝑥 + 7.23 7.23 0.808 0.99 

Three Days Select 303 𝑦 = 1.013 𝑥 + 9.874 9.874 1.013 0.99 

Three Days Select 304 𝑦 = 1.328 𝑥 + 9.284 9.284 1.328 0.99 

Three Days Select 305 𝑦 = 1.745 𝑥 + 9.296 9.296 1.745 0.99 

Three Days Select 306 𝑦 = 2.525 𝑥 + 12.312 12.312 2.525 0.99 

Three Days Select 307 𝑦 = 2.970 𝑥 + 11.164 11.164 2.970 0.99 

Three Days Select 308 𝑦 = 3.329 𝑥 + 11.692 11.692 3.329 0.99 

Two Days Air 202 𝑦 = 1.181 𝑥 + 10.348 10.348 1.181 0.99 

Two Days Air 203 𝑦 = 1.338 𝑥 + 15.010 15.010 1.338 0.99 

Two Days Air 204 𝑦 = 1.772 𝑥 + 15.223 15.223 1.772 0.99 

Two Days Air 205 𝑦 = 2.590 𝑥 + 17.495 17.495 2.590 0.99 

Two Days Air 206 𝑦 = 4.265 𝑥 + 19.846 19.846 4.265 0.99 

Two Days Air 207 𝑦 = 4.525 𝑥 + 24.643 25.643 4.525 0.99 

Two Days Air 208 𝑦 = 4.760 𝑥 + 24.013 24.013 4.760 0.99 

Next Day Air 102 𝑦 = 2.073 𝑥 + 11.562 11.562 2.073 0.99 

Next Day Air 103 𝑦 = 3.012 𝑥 + 16.57 16.57 3.012 0.99 

Next Day Air 104 𝑦 = 4.998 𝑥 + 35.206 35.206 4.998 0.99 

Next Day Air 105 𝑦 = 5.410 𝑥 + 41.148 41.148 5.410 0.99 

Next Day Air 106 𝑦 = 5.543 𝑥 + 49.559 49.559 5.543 0.99 

Next Day Air 107 𝑦 = 6.039 𝑥 + 45.559 45.559 6.039 0.99 

Next Day Air 108 𝑦 = 6.345 𝑥 + 45.379 45.379 6.345 0.99 

 

Using these linear models, the shipping cost for each zone is broken down into two separate 

components. The first component is a fixed charge which does not depend on box weight and the 

second component is a variable cost which is dependent on box weight. For instance, for shipping 

an 8-pound box from a FC in Chicago to a customer in Detroit using a Three Day Select shipping 

method, there is a fixed cost of $9.874 and a variable cost of $1.103 per pound. Therefore, total 

shipping cost for this box is estimated as $18.698 using the regression model which has less than 

3% error when compared with the actual shipping cost of $19.11 from the UPS cost matrix. 

Several important patterns can be detected in Table 3.14. First, the fixed shipping cost 

components are considerably higher than the variable components. Therefore, minimizing the 

number of boxes that are shipped to customers can reduce total shipping cost.  Xu et al. (2009) use 

this principle in designing an order fulfillment reevaluation algorithm that minimizes total number 

of boxes by shuffling order assignments. However, there are other patterns in this data that need 



 
 

59 
 

to be considered. There is a significant difference between the cost of various shipping methods. 

In the previous example of sending an 8-pound box from a FC in Chicago to a customer in Detroit, 

if the e-tailer uses UPS Ground shipping method instead of Three Day Select, they can reduce total 

shipping cost from $19.11 to $4.77 and save $13.94. This indicates that minimizing number of 

boxes does not necessarily minimize the total cost. In some cases, sending more boxes using 

cheaper shipping methods could result in an overall lower shipping cost. In the following sections, 

we discuss additional aspects of the online order fulfillment process that must be considered by 

our proposed algorithms.  

3.2.2. System state for e-tailer DES model 

The system state is the dynamic aspect of a simulation model that evolves over time as new 

events occur. The system state for an e-tailer order fulfillment process is composed of several 

entities and relationships that are explained in this section. To model these entities, we use a class 

called 𝑆𝑦𝑠𝑆𝑡𝑎𝑡𝑒. Table 3.15 provides a definition of this class.  

Table 3.15: SysState class definition 

𝑪𝒍𝒂𝒔𝒔: 𝑆𝑦𝑠𝑆𝑡𝑎𝑡𝑒  

𝑜𝑟𝑑𝑒𝑟𝑄𝑢𝑒𝑢𝑒𝑟 List of all orders, (instance of 𝑂𝑟𝑑𝑒𝑟 class) 

𝑜𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 Order numbers for open orders, (integer, > 0) 

𝑐𝑙𝑜𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 Order numbers for closed orders, (integer, > 0) 

𝑛𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠 Total number of orders that have been placed, (integer, ≥ 0) 

𝑛𝑢𝑚𝑂𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑠 Total number of open orders, (integer, ≥ 0) 

𝑛𝑢𝑚𝐶𝑙𝑜𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑠 Total number of closed orders, (integer, ≥ 0) 

𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 Total number of assignments, (integer, ≥ 0) 

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑎 List of current assignments, (instance of 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 class) 

𝑖𝑛𝑣𝑠,𝑓 Inventory status for SKU 𝑠 at FC 𝑓, (instance of 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 class) 

𝑡𝑖𝑚𝑒𝑂𝑓𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 Time of most recent event, (real, > 0) 

 

Order queue. The order queue keeps a record of all customer orders that have been placed. 

Figure 3.6 provides a conceptual view of the order queue. As shown in this figure, each customer 

order is modeled as an independent entity. The order queue consists of a collection of these entities 

that together capture the relevant information of all customer orders that have been placed since 
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the beginning of the simulation. We use 𝑜𝑟𝑑𝑒𝑟𝑄𝑢𝑒𝑢𝑒𝑟 to store the information of customer order 

𝑟. The 𝑛𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠 parameter is also used to capture total number of customer orders that have 

been placed.  

 

Figure 3.6: Conceptual diagram of customer order queue 

 

Open orders and closed orders list. In addition to the order queue, two other lists are used in 

the system state to separate open orders from closed orders. When a new order is placed, its order 

number is added to 𝑜𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 list and it remains there until it is either rejected or all 

its items are shipped out from FCs. At that point, its order number is removed from the 

𝑜𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 list and is added to the 𝑐𝑙𝑜𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 list. Note that since all 

information about an order is already stored in 𝑜𝑟𝑑𝑒𝑟𝑄𝑢𝑒𝑢𝑒, the 𝑜𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 and 

𝑐𝑙𝑜𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 lists only include the order numbers.  

Inventory level. The inventory level is the amount of inventory that is available at the e-tailer 

at a particular time during the simulation. In this model, inventory is tracked using six inventory 
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types for each SKU and FC combination. Figure 3.7 illustrates these inventory types. As shown in 

this figure, all inventory units that are physically present at an FC are referred to as on-hand, while 

the units that are ordered but have not reached the destination FC are considered on-order. 

Inventory units that are not assigned to a customer order are tagged as unassigned and otherwise 

they are considered assigned. If the order that an inventory unit is assigned to is locked for 

shipment, that inventory unit is referred to as locked. Inventory units that are assigned to orders 

that are not locked for shipment are considered open. 

 

 
Figure 3.7: Inventory types in the system state 

 

 

To store inventory information for SKU 𝑠 at FC 𝑓 in the system state, we use the 𝑖𝑛𝑣𝑠,𝑓 object 

which is a member of 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 class that is described in Table 3.16. As shown in this table, 

there is a variable for each of the six inventory types in this class. These variables are used to track 

inventory levels during the simulation.  
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Table 3.16: Inventory class definition 

𝑪𝒍𝒂𝒔𝒔: 𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦  

𝐹𝐶_𝐼𝐷  FC number, (integer, 1 ≤ 𝐹𝐶_𝐼𝐷 ≤ 𝑁𝑢𝑚𝐹𝐶𝑠) 

𝑆𝐾𝑈_𝐼𝐷 SKU number, (integer, 1 ≤ 𝑆𝐾𝑈_𝐼𝐷 ≤ 𝑁𝑢𝑚𝑆𝐾𝑈𝑠) 

𝑜𝑛𝐻𝑎𝑛𝑑𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 On hand inventory units that are not assigned to any order, (integer, ≥ 0) 

𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 On hand inventory units that are assigned to an order but can be reevaluated, (integer, ≥ 0)  

𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 On hand inventory units that are assigned to an order and cannot be reevaluated, (integer, ≥ 0) 

𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 On order inventory units that are not assigned to any order, (integer, ≥ 0) 

𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 On order inventory units that are assigned to an order but can be reevaluated, (integer, ≥ 0)  

𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 On order inventory units that are assigned to an order and cannot be reevaluated, (integer, ≥ 0) 

𝑟𝑒𝑝𝑇𝑖𝑚𝑒 Expected simulation clock time of next replenishment, (real, ≥ 0) 

 

 Figure 3.8 shows how inventory types change as different events occur. Inventory is first 

created when an FC places a replenishment order for a SKU and all inventory units in that 

replenishment order are tagged as on-order-unassigned. If the e-tailer assigns some of those units 

to customer orders before they reach the FC, their type changes to on-order-assigned-open. If the 

order that those inventory units are assigned to gets locked for shipment while the replenishment 

order is still in transit, their type becomes on-order-assigned-locked. When the replenishment 

order reaches the destination FC, all inventory units with on-order types are added to the 

corresponding on-hand type. For example, inventory units that are on-order-unassigned are added 

to existing on-hand-unassigned inventory units. The inventory type transition ends when an 

inventory unit is shipped to a customer as a result of shipment event. More information about 

events are provided in the following sections.  
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Figure 3.8: Transition logic between different inventory types 

 

 

Assignments. When the e-tailer makes a fulfillment decision for an order, the decision is stored 

in the system state as a set of assignments. Each assignment specifies the responsible FC for 

fulfilling an item in the customer order in addition to information about when and how that item 

will be shipped. In other words, if a customer order contains multiple items, a separate assignment 

is generated and stored in the system state for each item. In some cases, if the e-tailer decides to 

split a single-item order between multiple FCs, multiple assignments will be generated for that 

item. In this simulation we use the 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 class to store this information in the system state. 

Table 3.17 provides the definition for this class as well as the variables that are used to capture 

different aspects of an assignment.   
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Table 3.17: Assignment class definition 

𝑪𝒍𝒂𝒔𝒔: 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡  

𝑎𝑠𝑔𝐼𝐷 Assignment ID, (integer, > 0) 

𝑜𝑟𝑑𝐼𝐷 Order ID, (integer, > 0) 

𝑠𝑘𝑢𝐼𝐷 SKU ID, (integer, 1 ≤ 𝑠𝑘𝑢𝐼𝐷 ≤ 𝑁𝑢𝑚𝑆𝐾𝑈𝑠) 

𝑓𝑐𝐼𝐷 FC ID, (integer, 1 ≤ 𝑓𝑐𝑁𝑢𝑚𝑏𝑒𝑟 ≤ 𝑁𝑢𝑚𝐹𝐶𝑠) 

𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝐻𝑎𝑛𝑑 Quantity that is assigned from on hand inventory, (integer, ≥ 0) 

𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝑂𝑟𝑑𝑒𝑟 Quantity that is assigned from on order inventory, (integer, ≥ 0) 

𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 Scheduled shipping time for assignment, (real, > 0) 

𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑇𝑖𝑚𝑒 Scheduled locking time for assignment, (real, > 0) 

𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 Shipping method, (integer, 1 ≤  𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ≤ 4) 

𝑙𝑜𝑐𝑘𝑒𝑑 Is this assignment locked or it can be modified? (binary) 

  

Figure 3.9 illustrates the relationship between customer orders, fulfillment decisions and 

assignments. In this example, a customer order is placed at time 𝑡 = 0 with two items. The first 

item is one unit of 𝑆𝐾𝑈1 and the second item is two units of 𝑆𝐾𝑈2. This customer has requested 

𝑑𝑒𝑙𝑃𝑟𝑒𝑓1 which, as described previously, is Seven Day Delivery. According to this delivery 

preference, the 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 for this order is estimated as 𝑡 = 9420 which is 1:00 p.m. of the 

day before the delivery deadline. The e-tailer makes a fulfillment decision to identify the best 

option to fulfill the order given its current system state. The results of this decision are stored in 

two assignment objects. The first assignment indicates that 𝑆𝐾𝑈1 will be fulfilled by 𝐹𝐶1 using 

on-hand inventory. This assignment will be locked at 𝑡 = 3660 minutes and shipped at 𝑡 = 3720 

minutes. Order locking time and shipping time correspond to 1:00 p.m. and 2:00 p.m. two days 

after the order is placed. Additionally, the e-tailer has decided to use 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑1 which is 

UPS Ground and has an average transit time of 5 days. The second assignment indicate that 𝑆𝐾𝑈2 

will also be fulfilled by 𝐹𝐶1with a similar shipping method, locking time and shipping time. The 

only difference in the second assignment is that the e-tailer has decided to fulfill 𝑆𝐾𝑈2 by using 

one unit of on-hand inventory and one unit of on-order inventory. This might be because the e-

tailer does not have enough on-hand inventory at 𝐹𝐶1 but is expecting a replenishment for 𝑆𝐾𝑈2 

before order locking time. Note that both assignments are not locked at this time and can be 
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changed if needed. Finally, the value of 𝑒𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 for customer order is set according to these 

assignments. In this case, since both assignments for this order are locked at 𝑡 = 3660, the 

𝑒𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 for the order is also set to the same value. 

 

Figure 3.9: Relationship between customer orders, fulfillment decisions and assignments 

 

3.2.3. Events for e-tailer DES model 

The e-tailer order fulfillment process is a highly complex system that involves many activities 

and events. An event triggering diagram is provided in Figure 3.10 which illustrates the main 

events that are considered in this DES model and the relationships between them. A solid arrow 

indicates possible instant triggering of the downstream event resulting from the occurrence of the 

upstream event. A dashed arrow indicates a guaranteed placement of the downstream event into 

the calendar whenever the upstream event occurs.  
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The overall flow of this DES model begins with a customer places order event. When an order 

is placed, the e-tailer immediately checks inventory levels at all FCs to determine whether it can 

be fulfilled. A customer order is accepted if there is enough inventory to satisfy all order items; 

otherwise the e-tailer rejects that order. The next step for accepted orders is making a fulfillment 

decision that determines the best option to fulfill the order with minimum cost while meeting 

customer expectations including the requested delivery deadline. Note that, when a customer order 

is placed, it triggers a future order placement which is added to the event calendar.  

Inventory replenishment at FCs are independent of customer order placement and occur 

periodically based on the e-tailer’s inventory policy. The periodicity of this event means that every 

replenishment order triggers the next one and this cycle continues throughout the simulation. There 

is a lead time for receiving a replenishment order; hence this event is added to the event calendar 

to be executed in the future.   

It is assumed that shipments are picked up from all FCs at 2:00 p.m. every day. In order to 

prepare for this event, all fulfillment decisions for orders that are due for shipment that day are 

locked at 1:00 p.m. This gives the e-tailer enough time to pick items from inventory and pack them 

into boxes that will be shipped out to customers. This is depicted in Figure 3.10 by showing “lock 

fulfillment decision” as a recurring event that schedules customer order shipments to take place in 

the future. 
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Figure 3.10: Event triggering diagram for discrete event simulation model 

 

 

The remainder of this section explains these events in more detail. The pseudocode for all 

events is provided in Appendix B. 
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Customer places order. This is the beginning of main simulation flow. When a new customer 

places an order, the first step is to gather and generate information about it. This includes the order 

ID, order placement time, customer location, delivery preference, expected delivery window, 

number of items and SKU and quantity of each item. 

• Order ID: a sequential numbering system is used in this simulation to generate an integer order 

ID for each customer order. 

• Placement time: this is same as the current simulation time and can be directly derived from 

that. In addition to order placement time, the day and hour of this event is calculated and stored 

in the system state. 

• Customer location: orders are assumed to be placed from a location within the e-tailer’s area 

of operation. As described previously, the area of operation is split into multiple regions and 

𝑅𝑔𝑛𝑃𝑟𝑜𝑏𝑔 is the probability that a customer order originates from region 𝑔. When the 

customer places order event is triggered, a random number is generated to determine the 

location of the new order based on the values of 𝑅𝑔𝑛𝑃𝑟𝑜𝑏𝑔 for all 𝑔. 

• Delivery preference: Four delivery options are considered in this simulation. To determine 

which delivery option is selected by 𝑜𝑟𝑑𝑒𝑟𝑟 , we use a random number generator and 𝐷𝑒𝑙𝑃𝑟𝑜𝑏𝑝 

which specifies the probability that a customer selects delivery option 𝑝 for their order. 

• Expected delivery window: this is calculated based on when the order is placed and the 

customer’s selected delivery preference. If an order is placed after 1:00 p.m., which is the 

locking time for all assignments, it is not eligible for same day shipment and must wait until 

the following day. 

• Number of items: a discrete probability distribution is used to determine number of items in 

the customer order.  
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• SKUs: a different SKU is selected for each item that is ordered. Some SKUs are ordered more 

frequently than others. To model these differences a probability distribution is used that gives 

popular SKUs a higher likelihood of being included in a customer order. 

• Order quantity: The quantity of an item is correlated to the SKU in that item. For instance, it 

is more likely for a customer to order multiple pens in a single order than it is for them to order 

multiple computers. To model this, a probability distribution is used whose value changes 

based on the SKU. This allows e-tailers to set a different value for this distribution for each of 

their SKUs to accurately capture their customer order pattern. 

Once the order information is generated, the next step is to update the statistical accumulators 

and system state. The only statistical accumulator that is updated by this event is 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑. 

The new order is added to the end of customer order queue in the system state and is considered 

as an open order. At the end of this event, the check inventory availability event is triggered to 

decide whether this order can be fulfilled. A future customer places order event is also added to 

the event calendar. 

Check inventory availability. When a customer places an order, the e-tailer immediately 

checks its inventory levels to decide if all items in that order can be fulfilled. The check inventory 

availability event performs this task by calculating total eligible inventory for each SKU in the 

customer order at all FCs. While all on-hand-unassigned inventory units are eligible to satisfy a 

customer order, on-order-unassigned inventory units are only eligible if they are scheduled to 

arrive at a FC before the order must be locked.  

Once the total eligible inventory units for all SKUs in the customer order are calculated, they 

are compared with customer order quantity to determine whether the order should be accepted or 
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rejected. If there is enough eligible inventory to satisfy all order items, the order is accepted; if any 

of the items in the order cannot be fulfilled, the order is rejected.  

Accept customer order. This event increases the 𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 statistical 

accumulator by one unit and subsequently calls the make order fulfillment decision event to 

determine how this order is fulfilled. 

Reject customer order. This event increases the 𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 statistical 

accumulator by one unit. It then updates the system state by moving the rejected order from the 

open orders list to the closed orders list. 

Make order fulfillment decision. As described previously, the check inventory availability 

event determines if an order can be fulfilled given current inventory levels at all FCs. However, it 

does not specify how the order is fulfilled. This decision is made when the make order fulfillment 

decision event is triggered. This event uses a greedy heuristic algorithm for assigning a customer 

order to FCs.  

The algorithm begins with ranking the FCs based on number of the items they can fulfill. FCs 

that can fulfill more items are ranked higher. If two FCs can fulfill the same number of items, the 

FC that is closer to the customer’s location gets a higher rank. After ranking FCs, the algorithm 

assigns each item to the FC with the highest rank that can fulfill it. If one of the order items cannot 

be fulfilled by a single FC, it is split between multiple FCs. By following this process, if the FC 

with the highest rank can fulfill all order items, then the customer order is shipped from a single 

FC and vice versa.  

When assigning order items to FCs, the algorithm also determines the shipping method and 

shipping day for the assignment based on the customer delivery preference and inventory 
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replenishment lead time. Table 3.18 summarizes all combinations that are considered. As shown 

in this table, the algorithm finds the cheapest shipping method that can satisfy the customer’s 

delivery preference while considering the inventory replenishment lead time constraint. It then 

finds the latest time for shipping out the customer order based on the selected shipping method 

and delivery preference. For example, if a customer selects a Seven Day Delivery preference and 

the FC has on-hand inventory to fulfill the order, the algorithm picks a UPS Ground shipping 

method (M1) which takes an average of five days to deliver a shipment. It then decides to hold this 

shipment for 2 days before sending it out. The locking time for the assignment is always set on the 

same day as the shipment. This delay not only allows the e-tailer to tend to more urgent customer 

orders in the meantime, but also increases the opportunity to reevaluate assignments for this order 

within these two days. After all assignments are determined by the algorithm, they are added to 

the list of active assignments in the system state which makes them available to subsequent events 

in the simulation.  

Table 3.18: Shipping method and shipping day determination  

LT = inventory replenishment lead time, MX|D indicates order will be shipped D days after it is placed using method X 

Delivery preference LT: 0 LT: 1 LT: 2 LT: 3 LT: 4 LT: 5 LT: 6 

Seven Day Delivery M1 | 2 M1 | 2 M1 | 2 M2 | 4 M2 | 4 M3 | 5 M4 | 6 

Five Day Delivery M1 | 0 M2 | 2 M2 | 2 M3 | 3 M4 | 4 N/A N/A 

Two Day Delivery M3 | 0 M4 | 1 N/A N/A N/A N/A N/A 

One Day Delivery  M4 | 0 N/A N/A N/A N/A N/A N/A 

 

 

Lock fulfillment decision. All assignments that are generated by the make order fulfillment 

decision event have a locking time associated with them that is determined based on their shipping 

method and shipping time. Lock fulfillment decision is a periodic event that occurs every day in 

the simulation at 1:00 p.m. This event checks all assignments that are stored in system state and 

locks those that have a locking time that matches current simulation time. In addition to locking 
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assignments, this event locks inventory units in the FCs that are used in those assignments. Just 

before it ends, this event puts a boxes shipped event in event calendar.  

Boxes shipped. As mentioned earlier, boxes shipped event occurs every day at 2:00 p.m. This 

event reviews all assignments that are currently stored in system state and finds the ones that are 

locked for shipment. It then calculates the shipping cost for each order based on the fixed and 

variable shipping rate that is presented in Table 3.14. The calculated cost is added to the 

𝑇𝑜𝑡𝑎𝑙𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡 statistical accumulator. At the end, this event updates inventory levels at all 

FCs by removing inventory units that are in boxes that are shipped.  

FC inventory replenishment. This DES model follows a periodic inventory review policy to 

replenish the inventory at all FCs. Each SKU at each FC has a review cycle associated with it that 

specifies the periodicity of its replenishment. There is also a 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 parameter that determines 

the size of replenishment. When the FC inventory replenishment event is triggered, it reviews the 

current inventory level for each SKU at each FC and then places replenishment orders based on 

this information. There is a lead time associated with receiving replenishment orders. This lead 

time also depends on the SKU and FC for which the replenishment order is placed. As a result of 

this event, a receive replenishment order event is placed in the event calendar which will be 

triggered when the lead time is reached. The inventory units that are ordered are added to the list 

of on-order inventory units in the system state.  

Receive replenishment. Once a replenishment order reaches its destination FC, the receive 

replenishment event is triggered to update the system state accordingly. For every SKU-FC 

combination in the replenishment order, this event updates inventory levels by adding the on-order 

inventory units to on-hand inventory and subsequently setting the on-order inventory units to zero. 
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It also checks all the assignments in the system state that use the arriving on-order inventory units 

and updates them by changing that value to on-hand inventory instead. 

3.2.4. Statistical accumulators for e-tailer DES model 

There are four statistical accumulators in this DES model that are listed in Table 3.19. These 

accumulators are updated during the simulation to monitor system performance. The primary 

performance metric in this study is 𝑇𝑜𝑡𝑎𝑙𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡 which is the combined cost of fulfilling 

all customer orders that are placed over the course of simulation. This metric is used to compare 

different fulfillment strategies. 

Table 3.19: Statistical accumulators 

Statistical accumulators  

𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑𝑠 Total demand for SKU 𝑠, (integer, ≥ 0) 

𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 Number of orders that are accepted, (integer, ≥ 0) 

𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 Number of orders that are rejected, (integer, ≥ 0) 

𝑇𝑜𝑡𝑎𝑙𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡 Total shipping cost, (real, ≥ 0) 

 

In addition to 𝑇𝑜𝑡𝑎𝑙𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡 other statistical accumulators are used in this model which 

help decision makers to analyze the system from different standpoints beside shipping cost. 

𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 and 𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 provide insight into the e-tailer’s service level 

which is a very important KPI. The e-tailer service level is computed as 

(
𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑

𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑+𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 
). If a fulfillment strategy reduces total shipping cost but 

negatively impacts service level by rejecting more orders, it might not be an ideal strategy for an 

e-tailer whose primary objective is to increase the service level. In this dissertation we assume 

total shipping cost is the main focus, but this model can also be used to study service level and 
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find a fulfillment strategy to optimize that. Lastly, 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑𝑠 is an accumulator which 

represents the total number of units of SKU 𝑠 that have been ordered. 

This chapter provided a comprehensive overview of the DES model of an e-tailer order 

fulfillment process. The rule-based algorithm used in this model to make order fulfillment 

decisions in the order fulfillment decision event only considers one order at a time which leads to 

a set of myopic assignments. We also observed that e-tailers do not immediately ship a customer 

order and there is a window of time between when a customer order is placed and when it is locked 

and shipped out of the FCs. The next chapter presents a math model that takes advantage of this 

window to revise fulfillment decisions by optimizing them for a group of customer orders. This 

model has the potential to generate significant cost savings for the e-tailer while maintaining an 

adequate customer service level. 
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Chapter 4 

Integer program for reevaluating order fulfillment plans 

 

4.1. Problem definition 

When a customer places an order, the e-tailer makes an order fulfillment decision to determine 

the best option to fulfill that order with minimum cost. Since this decision is made independently 

for each customer order, it leads to a myopic decision that might not be optimal at the system level. 

In the previous chapter a simulation model of an e-tailer order fulfillment process was presented 

which includes a greedy rule-based algorithm for making individual order fulfillment decisions. 

In Chapter 1 we analyzed the fulfillment process and identified a window of opportunity between 

the time a fulfillment decision is made for an order and the time the items are processed by the e-

tailer and shipped to the customer. This window can be used to reevaluate fulfillment decisions for 

a group of active customer orders to find a decision that reduces total shipping cost.  

In this chapter an integer program is presented for reevaluating order fulfillment decisions for 

a set of customer orders. This integer program is intended to be executed several times during a 

day to reduce an e-tailer’s total shipping cost. In this program, we assume 𝑅 customer orders are 

reevaluated together. A total of 𝐹 FCs exist in the e-tailer supply chain that hold inventory and 

ship customer orders. There are 𝑆 distinct SKUs within the customer orders that are reevaluated. 

Since the set of customer orders might not include all SKUs in the e-tailer’s product catalog, 𝑆 is 

less than or equal to the total number of SKUs on the e-tailer’s website. Each customer order 

includes one or more items and has a promised delivery day that is determined by the customer 

delivery preference. All items in each order must be delivered to customer before the promised 
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delivery day. In other words, reevaluating order fulfillment decisions should not negatively impact 

an e-tailer’s customer service level. 

Inventory units that are assigned to individual orders by the myopic fulfillment decisions are 

added to a shared inventory pool and used by the reevaluation algorithm for improving 

assignments. This includes both on-hand as well as on-order inventory units. This guarantees that 

the reevaluation algorithm will always be able to find at least one feasible decision which is the 

same as the myopic decisions. This is critical because, as mentioned earlier, reevaluation must not 

impact service level; all customer orders and commitments must be met. In addition to this, a 

portion of the un-assigned inventory units at each FC gets locked and is made available to the 

reevaluation algorithm to improve its decisions. That inventory may not be used to fulfill other 

customer orders that are placed while reevaluation is being executed. 

Since this integer program is used to improve the myopic decisions that are made by a greedy 

rule-based algorithm, the integer program uses the same shipping methods and shipping rates to 

keep the results consistent and comparable. There are four shipping methods that are adopted from 

the UPS website: UPS Ground, Three Day Select, Two Day Air and Next Day Air. The shipping 

rates for these methods are presented in Table 3.14.  

The math model assumes that ordered items are packaged into boxes and shipped to customers 

at a predetermined time each day which is called the shipment pick-up time. In our math model 

we assume that there is a maximum weight limit for a single box and if the total weight of items 

shipped to a customer from a FC exceeds this limit, the shipment must be split into multiple boxes. 

Additionally, as in the simulation model we assume that the locking time is 1:00 p.m. and the 

shipment pick-up time is 2:00 p.m. every day. 
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Note that this mathematical model is executed regularly and at different times during the e-

tailer’s operations. When the reevaluation is triggered, the e-tailer takes a snapshot of the orders 

and inventory levels at all FCs and uses that information to construct an instance of this 

mathematical model to optimize the assignments for those orders. In this dissertation we assume 

that the e-tailer can choose to trigger the reevaluation algorithm either for a fixed number of orders 

or at fixed time intervals. The first method enables the e-tailer to find a batch size (i.e. number of 

orders in a single reevaluation) that performs best for its business and use that to specify when 

reevaluation should be triggered. The second method enables the e-tailer to find a time interval 

that produces the best results and use that to trigger the reevaluation. Intuitively, if the e-tailer uses 

the first method, the elapsed time between two consecutive reevaluations will be variable; by 

following the second method on the other hand the elapsed time between two consecutive 

reevaluations is constant but number of customer orders that are reevaluated together will be 

variable. 

4.2. Mathematical formulation 

In this section the integer programming model is presented. The set of indices, parameters and 

decision variables used in the mathematical program, and their respective explanations, are given 

in Table 4.1.  
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Table 4.1: Indices, parameters and decision variables in integer program 

Indices 

𝑠 SKU (1 ≤ 𝑠 ≤ 𝑆) 

𝑑 Day (0 ≤ 𝑑 ≤ 𝐷) 

𝑚 Shipping method (1 ≤ 𝑚 ≤ 𝑀)  

𝑓 FC (1 ≤ 𝑓 ≤ 𝐹)  

𝑟 Customer order (1 ≤ 𝑟 ≤ 𝑅) 

Parameters 

𝑆 Number of unique SKUs requested within the orders being reevaluated 

𝐹 Number of FCs 

R Number of customer orders being reevaluated 

M Number of shipping methods 

D Number of days in reevaluation horizon 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠  Weight of SKU 𝑠 in pounds 

𝑚𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 Maximum weight in pounds allowed in a single box, (integer, > 0) 

𝑐𝐵𝑜𝑥𝑚𝑓𝑟 Fixed shipping cost for sending a box from FC 𝑓 to the customer who placed order 𝑟 using shipping 

method 𝑚 

𝑐𝑃𝑜𝑢𝑛𝑑𝑚𝑓𝑟 Shipping cost per pound from FC 𝑓 to the customer who placed order 𝑟 using shipping method 𝑚 

𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑑𝑟 Number of units of SKU 𝑠 in customer order 𝑟 that are requested to be delivered by day 𝑑 

𝑐𝑄𝑡𝑦𝑠𝑑𝑟 Total (cumulative) number of units of SKU 𝑠 that must be delivered by day 𝑑 to the customer who 

placed order 𝑟 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 Number of units of SKU 𝑠 that arrive at FC 𝑓 on day 𝑑 

𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 Cumulative number of units of SKU 𝑠 that arrive at FC 𝑓 on or before day 𝑑 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝐷𝑎𝑦𝑠𝑑𝑚 {
1
0

 
If transit time for shipping method 𝑚 is exactly 𝑑 days 

Otherwise  

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑟 Promised delivery day for customer order 𝑟, (integer, 1 ≤ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑟 ≤ 𝐷) 

Decision Variables 

𝑋𝑠𝑑𝑚𝑓𝑟  Number of units of SKU 𝑠 that are shipped on day 𝑑 using shipping method 𝑚 from FC 𝑓 to the 

customer who placed order 𝑟, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝐵𝑑𝑚𝑓𝑟 Number of boxes shipped out of FC 𝑓 to the customer who placed order 𝑟 using shipping method 𝑚 on 

day 𝑑, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑊𝑚𝑓𝑟  Total weight of shipment from FC 𝑓 to the customer who placed order 𝑟 using shipping method 𝑚, 

(0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑈𝑠𝑑𝑓 Total units of SKU 𝑠 that are shipped out of FC 𝑓 on day 𝑑, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑉𝑠𝑑𝑓 Total units of SKU s that are shipped out of FC f on or before day d, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑌𝑠𝑑𝑟 Total units of SKU 𝑠 that are delivered on day 𝑑 to the customer who placed order 𝑟, (1 ≤ 𝑑 ≤ 𝐷) 

𝑍𝑠𝑑𝑟 Total units of SKU 𝑠 that are delivered on or before day 𝑑 to the customer who placed order 𝑟, 

(1 ≤ 𝑑 ≤ 𝐷) 

 

The input data consists of several primary parameters as well as secondary parameters that are 

derived from primary parameters. A detailed description of some of these parameters is provided 

below.  

• 𝐷: This is a primary parameter that indicates time horizon for reevaluation. In this 

dissertation, since the longest delivery option is Seven Day Delivery, we set the value of 𝐷 

to 7.  
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• 𝑐𝐵𝑜𝑥𝑚𝑓𝑟: This is a primary parameter that indicates the shipping cost for sending a box 

from FC 𝑓 to customer order 𝑟 using shipping method 𝑚. The value of this parameter is 

calculated using the procedure that was explained in Chapter 3. 

• 𝑐𝑃𝑜𝑢𝑛𝑑𝑚𝑓𝑟: This is a primary parameter that indicates the shipping cost per pound from 

FC 𝑓 to customer order 𝑟 using shipping method 𝑚. The value of this parameter is 

calculated using the procedure that was explained in Chapter 3. 

• 𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑑𝑟: This is a primary parameter that indicates the number of units of SKU 𝑠 in 

customer order 𝑟 that are requested to be delivered by day 𝑑. The value of this parameter 

is set based on information about the order. In this case, 𝑑 refers to the promised delivery 

day for the order.  

• 𝑐𝑄𝑡𝑦𝑠𝑑𝑟: This is a secondary parameter which is derived from 𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑑𝑟 and indicates the 

total (cumulative) number of units of SKU 𝑠 that must be delivered by day d to the customer 

who placed order 𝑟. If the value of 𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑏𝑟  is greater than 0, that value will be applied 

to 𝑐𝑄𝑡𝑦𝑠𝑑𝑟  for all 𝑑 which is less than or equal to 𝑏. For example, if 𝑜𝑟𝑑𝑄𝑡𝑦131 is 10 and 

𝑜𝑟𝑑𝑄𝑡𝑦161 is 2, then the value of 𝑐𝑄𝑡𝑦1𝑑1 for d between 0 and 7 is calculated as: 

{0,0,0,10,10,10,12,12} 

• 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓: This is a primary parameter that indicates total number of inventory units 

for SKU 𝑠 that become available on day 𝑑 at FC 𝑓. In this case on-hand inventory units are 

assumed to be available on day 0 and any on-order inventory units are assumed to be 

available on the day of replenishment order delivery. 

• 𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓: This is a secondary parameter which is derived from 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 and 

indicates the cumulative number of inventory units of SKU 𝑠 that arrive at FC 𝑓 on or 

before day 𝑑. The value of 𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑏𝑓 is the summation of 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 for all 𝑑 less 
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than or equal to 𝑏. For example, if the value of 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦101 is 5 and the value of 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦131is 10 then the value of 𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦1𝑑1 for 𝑑 between 0 and 7 is calculated 

as: {5,5,5,15,15,15,15,15} 

• 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝐷𝑎𝑦𝑠𝑑𝑚: This is a primary parameter that indicates the transit time for each 

shipping method. If shipping method 𝑚 has a transit time of 𝑑 days value of 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝐷𝑎𝑦𝑠𝑑𝑚 is equal to 1 otherwise, it is set to 0. 

• 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑟: This is a primary parameter that indicates promised delivery day for customer 

order 𝑟.  

In addition to these parameters, there are seven integer decision variables in the model forming 

our integer program. 𝑋𝑠𝑑𝑚𝑓𝑟 is the primary decision variable that indicates the number of units of 

SKU 𝑠 that are shipped on day 𝑑 using shipping method 𝑚 from FC 𝑓 to the customer who placed 

order 𝑟. 𝐵𝑑𝑚𝑓𝑟 and 𝑊𝑚𝑓𝑟  are secondary decision variables that are derived from 𝑋𝑠𝑑𝑚𝑓𝑟. The 

𝐵𝑑𝑚𝑓𝑟 decision variable is defined as the number of boxes that are shipped out of FC 𝑓 to the 

customer who placed order 𝑟 using shipping method 𝑚 on day 𝑑. The 𝑊𝑚𝑓𝑟 decision variable is 

defined as the total weight of shipments from FC 𝑓 to the customer who placed order 𝑟 using 

shipping method 𝑚. 𝑈𝑠𝑑𝑓 and 𝑉𝑠𝑑𝑓 are used in the integer program to ensure that the total units of 

SKU 𝑠 that are shipped out of FC 𝑓 on day 𝑑 do not exceed available inventory. More specifically, 

𝑈𝑠𝑑𝑓 represents the total units of SKU 𝑠 that are shipped out of FC 𝑓 on day 𝑑 while 𝑉𝑠𝑑𝑓 represents 

the total units of SKU 𝑠 that are shipped out of FC 𝑓 on or before day 𝑑. Finally, 𝑌𝑠𝑑𝑟 and 𝑍𝑠𝑑𝑟 

capture the total units of SKU 𝑠 that are delivered to the customer who placed order 𝑟 and are used 

in the integer program to ensure all customer demands are satisfied. More specifically, 𝑌𝑠𝑑𝑟 is 

defined as the total units of SKU 𝑠 that are delivered on day 𝑑 to the customer who placed order 𝑟 
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and 𝑍𝑠𝑑𝑟 is defined as the total units of SKU 𝑠 that are delivered on or before day 𝑑 to the customer 

who placed order 𝑟.   

When reevaluation is triggered, the required information is captured from the e-tailer’s system 

state to set the value of parameters for the math model. The generic steps that are followed for 

each reevaluation are outlined below: 

Step 1: A snapshot of all orders that need to be reevaluated is captured which includes the 

number of orders, order items, promised delivery days and customer locations.  

Step 2: The list of unique SKUs that are ordered at least by one customer is computed.  

Step 3: For those SKUs, a portion of on-hand-unassigned and on-order-unassigned inventory 

at all FCs is locked and is made available to the reevaluation.  

Step 4: The inventory assignments for all orders that are reevaluated are cancelled and the 

assigned inventory units are made available to the reevaluation. 

This provides all necessary information for the reevaluation. Note that if reevaluation is 

triggered before 1:00 p.m. (i.e. locking time) we consider the day the reevaluation is triggered to 

be 𝑑 = 0 and the value of 𝑑 for all other parameters is calculated based on this day. For example, 

if a reevaluation is triggered at 10:00 a.m. on day 5 of the simulation to reevaluate three customer 

orders that have a delivery deadline of day 7, 8 and 10 respectively, in constructing the math model, 

the value of 𝑑 for 𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑑𝑟 for these orders is calculated as 2, 3 and 5 respectively. If the 

reevaluation is triggered after 1:00 p.m. on the other hand, the day after the reevaluation is 

triggered, is considered 𝑑 = 0. In the previous example, if reevaluation is instead triggered at 1:05 

p.m. on day 5 of the simulation, the value of 𝑑 for the three orders is calculated as 1, 2 and 4. The 

same principle applies to calculating the value of 𝑑 for inventory. If reevaluation is triggered at 
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10:00 a.m. on day 5 and 𝐹𝐶1 expects a replenishment for 𝑆𝐾𝑈1 at 12:00 a.m. on day 6, those 

inventory units are added to 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦111(𝑑 = 1). If the reevaluation is triggered at 1:05 p.m. on 

day 5 on the other hand, those inventory units are added to 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦101(𝑑 = 0).  

Minimize 

∑ ∑ ∑ 𝑊𝑚𝑓𝑟 × 𝑐𝑃𝑜𝑢𝑛𝑑𝑚𝑓𝑟

𝑅

𝑟=1

𝐹

𝑓=1

𝑀

𝑚=1

+ ∑ ∑ ∑ ∑ 𝐵𝑑𝑚𝑓𝑟 × 𝑐𝐵𝑜𝑥𝑚𝑓𝑟

𝑅

𝑟=1

𝐹

𝑓=1

𝑀

𝑚=1

𝐷−1

𝑑=0

 (4-1) 

 

Subject to 

∑ 𝑋𝑠𝑑𝑚𝑓𝑟

𝑆

𝑠=1

× 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑚𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐵𝑑𝑚𝑓𝑟 ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑚, ∀𝑓, ∀𝑟 (4-2) 

𝑊𝑚𝑓𝑟 = ∑ ∑ 𝑋𝑠𝑑𝑚𝑓𝑟 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝐷−1

𝑑=0

𝑆

𝑠=1

 ∀𝑚, ∀𝑓, ∀𝑟 (4-3) 

𝑈𝑠𝑑𝑓 = ∑ ∑ 𝑋𝑠𝑑𝑚𝑓𝑟

𝑅

𝑟=1

𝑀

𝑚=1

 ∀𝑠, ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑓 (4-4) 

𝑉𝑠𝑑𝑓 = ∑ 𝑈𝑠𝑏𝑓

𝑑

𝑏=0

 ∀𝑠, ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑓 (4-5) 

𝑉𝑠𝑑𝑓 ≤ 𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 ∀𝑠, ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑓 (4-6) 

𝑌𝑠𝑑𝑟 = ∑ ∑ ∑ 𝑋𝑠𝑏𝑚𝑓𝑟 × 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝐷𝑎𝑦𝑠(𝑑−𝑏),𝑚

𝑑−1

𝑏=0

𝐹

𝑓=1

𝑀

𝑚=1

 ∀𝑠, ∀𝑑 ∈ [1, 𝐷], ∀𝑟 (4-7) 

𝑍𝑠𝑑𝑟 = ∑ 𝑌𝑠𝑏𝑟

𝑑

𝑏=1

 ∀𝑠, ∀𝑑 ∈ [1, 𝐷], ∀𝑟 (4-8) 

𝑍𝑠𝑑𝑟 ≥ 𝑐𝑄𝑡𝑦𝑠𝑑𝑟 ∀𝑠, ∀𝑑 ∈ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑟 , ∀𝑟 (4-9) 
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In the mathematical model above, the objective function (4-1) minimizes total shipping cost. 

Constraint (4-2) calculates total number of boxes that are shipped from FC 𝑓 to customer order 𝑟 

on day 𝑑 using shipping method 𝑚 based on assignments, SKU weights, and the maximum box 

weight. This constraint assumes that a collection of objects weighting less than or equal to 

𝑚𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 ∗ 𝐵 can fit into 𝐵 boxes without violating the weight limit of any individual box. 

Although somewhat unrealistic, this constraint allows us to estimate the number of boxes shipped 

without explicitly specifying the items that are placed in individual boxes. Constraint (4-3) 

calculates total shipment weight from FC 𝑓 to customer order 𝑟 using shipping method 𝑚. 

Constraint (4-4) calculates the total amount of inventory units of SKU 𝑠 that are shipped out from 

FC 𝑓 on day 𝑑. Constraint (4-5) calculates the total amount of inventory units of SKU 𝑠 that are 

shipped out from FC 𝑓 on or before day 𝑑. Constraint (4-6) ensures the total number of units of 

SKU 𝑠 that are shipped from FC 𝑓 on day 𝑑 does not exceed available inventory. Constraint (4-7) 

calculates the total number of units of SKU 𝑠 that are delivered on day 𝑑 to the customer who 

placed order 𝑟; this constraint acknowledges the transit time for each shipping method considered. 

Constraint (4-8) calculates the total number of units of SKU 𝑠 that are delivered on or before day 

𝑑 to the customer who placed order 𝑟.  Finally, constraint (4-9) ensures that all items in customer 

orders are delivered on or before their promised delivery days.  
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Chapter 5 

Heuristic algorithm for reevaluating order fulfillment plans 

The large instances of the math model proposed in Chapter 4 are mathematically difficult to 

solve to optimality. Therefore, a decomposition based heuristic algorithm is presented in this 

chapter that can quickly solve very large problems and provide a sub-optimal decision that may 

still be better than the combined decisions generated by the myopic fulfillment decision. It should 

be noted that several heuristic algorithms were considered including simulated annealing and Tabu 

search. After an extensive number of tests, the following decomposition-based heuristic 

demonstrated superior performance to these alternatives.  

Our proposed heuristic algorithm reevaluates the fulfillment decisions for a batch of customer 

orders in four steps. In the first step, customer orders are randomly split into two subsets of equal 

size. In the second step, the fulfillment decisions for orders in 𝑠𝑢𝑏𝑠𝑒𝑡1 are fixed based on the 

original assignments. Third, the sequence of orders in 𝑠𝑢𝑏𝑠𝑒𝑡2 is randomly shuffled. Finally, a 

simple integer program is used to optimize the fulfillment decision for each order in 𝑠𝑢𝑏𝑠𝑒𝑡2 one 

at a time and sequentially as opposed to optimizing them together.  

This heuristic can improve the fulfillment decisions and reduce shipping costs in two primary 

ways. First, as noted earlier, an integer program applied to a single order outperforms the rule 

based myopic decision for that order since it considers a more complex set of criteria to 

mathematically optimize the assignments. Second, shuffling the sequence in which fulfillment 

decisions are made for individual orders allows the heuristic to reconsider the inventory allocation 

without being constrained to make those allocations chronologically. In Chapter 7, we illustrate 

the effectiveness of this algorithm through a set of examples. 
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Table 5.1 provides a list of indices, parameters and decision variables, and their respective 

explanations, for the simplified integer program used in the heuristic algorithm. Note the absence 

of index 𝑟 in Table 5.1. As shown in this table, by solving the integer program for an individual 

customer order, the problem complexity reduces significantly. The decomposition reduces number 

of dimensions for key decision variables in the integer program. Besides, the range of the 

remaining dimensions particularly index 𝑠 is also reduced resulting in additional simplification of 

the problem. For example, number of SKUs in this case reflects the number of items in the specific 

customer order which is significantly lower than number of SKUs in a collection of customer 

orders. 
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Table 5.1: Indices, parameters and decision variables in decomposed integer program 

Indices 

𝑠 SKU (1 ≤ 𝑠 ≤ 𝑆) 

𝑑 Day (0 ≤ 𝑑 ≤ 𝐷) 

𝑚 Shipping method (1 ≤ 𝑚 ≤ 𝑀)  

𝑓 FC (1 ≤ 𝑓 ≤ 𝐹)  

Parameters 

𝑆 Number of unique SKUs requested in the customer order 

𝐹 Number of FCs 

M Number of shipping methods 

D Number of days in reevaluation horizon 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠  Weight of SKU 𝑠 in pounds 

𝑚𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 Maximum weight in pounds allowed in a single box, (integer, > 0) 

𝑐𝐵𝑜𝑥𝑚𝑓 Fixed shipping cost for sending a box from FC 𝑓 to the customer who placed the order using 

shipping method 𝑚 

𝑐𝑃𝑜𝑢𝑛𝑑𝑚𝑓 Shipping cost per pound from FC 𝑓 to the customer who placed the order using shipping method 𝑚 

𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑑 Number of units of SKU 𝑠 in the customer order that are requested to be delivered by day 𝑑 

𝑐𝑄𝑡𝑦𝑠𝑑 Total (cumulative) number of units of SKU 𝑠 that must be delivered by day 𝑑 to the customer who 

placed the order 

𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 Number of units of SKU 𝑠 that arrive at FC 𝑓 on day 𝑑 

𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 Cumulative number of units of SKU 𝑠 that arrive at FC 𝑓 on or before day 𝑑 

𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝐷𝑎𝑦𝑠𝑑𝑚 {
1
0

 
If transit time for shipping method 𝑚 is exactly 𝑑 days 

Otherwise  

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 Promised delivery day for the customer order, (integer, 1 ≤ 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 ≤ 𝐷) 

Decision Variables 

𝑋𝑠𝑑𝑚𝑓 Number of units of SKU 𝑠 that are shipped on day 𝑑 using shipping method 𝑚 from FC 𝑓 to the 

customer who placed the order, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝐵𝑑𝑚𝑓 Number of boxes shipped out of FC 𝑓 to the customer who placed the order using shipping method 

𝑚 on day 𝑑, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑊𝑚𝑓 Total weight of shipment from FC 𝑓 to the customer who placed the order using shipping method 

𝑚, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑈𝑠𝑑𝑓 Total units of SKU 𝑠 that are shipped out of FC 𝑓 on day 𝑑, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑉𝑠𝑑𝑓 Total units of SKU s that are shipped out of FC f on day d or before that, (0 ≤ 𝑑 ≤ 𝐷 − 1) 

𝑌𝑠𝑑 Total units of SKU 𝑠 that are delivered on day 𝑑 to the customer who placed the order, (1 ≤ 𝑑 ≤ 𝐷) 

𝑍𝑠𝑑 Total units of SKU 𝑠 that are delivered on or before day 𝑑 to the customer who placed the order, 

(1 ≤ 𝑑 ≤ 𝐷) 
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The formulation of this decomposed integer program for a single order is as follows: 

Minimize 

∑ ∑ 𝑊𝑚𝑓 × 𝑐𝑃𝑜𝑢𝑛𝑑𝑚𝑓

𝐹

𝑓=1

𝑀

𝑚=1

+ ∑ ∑ ∑ 𝐵𝑑𝑚𝑓 × 𝑐𝐵𝑜𝑥𝑚𝑓

𝐹

𝑓=1

𝑀

𝑚=1

𝐷−1

𝑑=0

 (5-1) 

 

Subject to 

∑ 𝑋𝑠𝑑𝑚𝑓

𝑆

𝑠=1

× 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 ≤ 𝑚𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 × 𝐵𝑑𝑚𝑓 ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑚, ∀𝑓 (5-2) 

𝑊𝑚𝑓 = ∑ ∑ 𝑋𝑠𝑑𝑚𝑓 × 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

𝐷−1

𝑑=0

𝑆

𝑠=1

 ∀𝑚, ∀𝑓 (5-3) 

𝑈𝑠𝑑𝑓 = ∑ 𝑋𝑠𝑑𝑚𝑓

𝑀

𝑚=1

 ∀𝑠, ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑓 (5-4) 

𝑉𝑠𝑑𝑓 = ∑ 𝑈𝑠𝑏𝑓

𝑑

𝑏=0

 ∀𝑠, ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑓 (5-5) 

𝑉𝑠𝑑𝑓 ≤ 𝑐𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓 ∀𝑠, ∀𝑑 ∈ [0, 𝐷 − 1], ∀𝑓 (5-6) 

𝑌𝑠𝑑 = ∑ ∑ ∑ 𝑋𝑠𝑏𝑚𝑓 × 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝐷𝑎𝑦𝑠(𝑑−𝑏),𝑚

𝑑−1

𝑏=0

𝐹

𝑓=1

𝑀

𝑚=1

 ∀𝑠, ∀𝑑 ∈ [1, 𝐷] (5-7) 

𝑍𝑠𝑑 = ∑ 𝑌𝑠𝑏

𝑑

𝑏=1

 ∀𝑠, ∀𝑑 ∈ [1, 𝐷] (5-8) 

𝑍𝑠𝑑 ≥ 𝑐𝑄𝑡𝑦𝑠𝑑 ∀𝑠, 𝑑 = 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (5-9) 

 

In the mathematical model above, the objective function (5-1) minimizes total shipping cost 

for the order. Constraint (5-2) calculates total number of boxes that are shipped from FC 𝑓 to the 
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customer order on day 𝑑 using shipping method 𝑚 based on assignments, SKU weights, and the 

maximum box weight. This constraint has the same limitations as constraint (4-2). Constraint (5-

3) calculates total shipment weight from FC 𝑓 to the customer order using shipping method 𝑚. 

Constraint (5-4) calculates the total amount of inventory units of SKU 𝑠 that are shipped out from 

FC 𝑓 on day 𝑑. Constraint (5-5) calculates the total amount of inventory units of SKU 𝑠 that are 

shipped out from FC 𝑓 on or before day 𝑑. Constraint (5-6) ensures that the total number of units 

of SKU 𝑠 that are shipped from FC 𝑓 on day 𝑑 does not exceed available inventory. Constraint (5-

7) calculates the total number of units of SKU 𝑠 that are delivered on day 𝑑 to the customer who 

placed the order; this constraint acknowledges the transit time for each shipping method is 

considered. Constraint (5-8) calculates the total number of units of SKU 𝑠 that are delivered on or 

before day 𝑑 to the customer who placed the order.  Finally, constraint (5-9) ensures that all items 

in customer orders are delivered on or before their promised delivery days.  

The structure of the above integer program closely resembles that of the integer program 

presented in Chapter 4. The main difference is that the subscript 𝑟 has been removed from the 

parameters, variables, constraints and objective function. Therefore, this integer program has many 

fewer variables and constraints than the integer program presented in Chapter 4.  Overall, our 

experiments indicate that the computation time required to reevaluate the fulfillment decisions for 

𝑛 customer orders separately using 𝑛 instances of the decomposed formulation is significantly 

lower that the computation time required to reevaluate them together using the original 

formulation. The details of these experiments are presented in Chapter 7.  
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Chapter 6 

Fully embedded order fulfillment reevaluation algorithm 

In Chapter 1 we defined an intense unending real-time operational challenge (IURTOC) and 

explained why the e-tailer order fulfillment process is an example of such a challenge. Since in an 

IURTOC, a system’s operation never halts and events occur around the clock, when designing a 

decision-making algorithm (DMA) for it, it is important to not only consider the decisions made 

by the algorithm, but also its computation time and execution cadence. This is because operations 

of an IURTOC should not be interrupted while executing a DMA; the system continues to evolve 

as the algorithm searches for decisions. Since the decisions that are generated by a DMA must be 

fed back to the real-world system by a certain time to determine the future course of events, it is 

critical to design a DMA that can meet that timeline. Additionally, if the decision-making process 

must be repeated regularly in an IURTOC, the cadence of this event must be determined based on 

the DMA decision quality and computation time. 

Because of this complexity, in order to design and evaluate a DMA for an IURTOC, we need 

a framework that enables us to analyze a DMA from three important dimensions: 

1. Decision quality: does the DMA provide good decisions? 

2. Computation time: does the DMA provide the decision when it is needed? 

3. Execution cadence: how often should the DMA be executed? 

While almost all articles in the literature investigate decision quality, the other two dimensions 

have not been studied extensively. In other words, the vast majority of articles focus on designing 

a DMA that finds high quality decisions for static problem instances, but they do not explore 

whether the computation time of that DMA meets the operational requirements of a real-world 
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IURTOC. Additionally, they do not study how often the DMA should be executed to maximize its 

effectiveness without causing any interruptions in real-world system operations.  

6.1. Definition of a fully embedded decision-making algorithm (FEDMA) 

In some studies, computer simulation techniques are used to run experiments with a DMA. 

However, in those studies only the decisions produced by a DMA are fed back to the simulation 

model and its computation time is assumed to be zero. We refer to this technique as partially 

embedding the DMA within the DES model, and in this case, we have a partially embedded DMA 

(PEDMA). In this dissertation however, we use the novel technique introduced by Petering (2015, 

2018) to embed a DMA in a discrete event simulation (DES) model so that both the decisions 

produced, and the computation time used by the DMA are fed back to the DES model. In this case 

we say we have a fully embedded decision-making algorithm (FEDMA). Using the FEDMA, we 

can study different execution cadences for the DMA in order to find the best strategy.  

In this chapter we use the FEDMA concept as a framework to embed the integer program that 

was presented in Chapter 4 and the heuristic method described in Chapter 5 within the DES model 

that was described in Chapter 3. This allows us to analyze the performance of these decision-

making algorithms holistically and from all dimensions that are important to real-world 

practitioners. 
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6.2. FEDMA for reevaluating order fulfillment plans 

In order to fully embed the integer program from Chapter 4 within the DES model described 

in Chapter 3, two main events are added to this model. The first event is called Reevaluate 

fulfillment decisions. This event gathers all required information for formulating the integer 

program from the system state; constructs the mathematical model; and calls the CPLEX solver to 

solve the integer program. The second event, called Apply reevaluation decisions, takes the 

decisions identified by the solver and feeds them back to the simulation model. Note that there is 

a time lag between these two events. During this lag other parts of simulation model are not stopped 

and continue to evolve. For instance, new customer orders are placed and the Make order 

fulfillment decision event is triggered to assign those orders to FCs using the myopic, rule-based 

fulfillment algorithm. This is one of the key differences between a FEDMA and PEDMA that 

allows us to analyze impact of DMA computation time on system operations.  

In order to identify the best cadence for executing the reevaluation algorithm, we consider two 

different strategies. In the first strategy, which is illustrated in Figure 6.1, the reevaluation 

algorithm is triggered for a fixed number of open customer orders. This fixed number is a model 

parameter that can be adjusted based on the e-tailer’s operational characteristics. For instance, if 

value of this parameter is set to 20, the simulation model waits until there are 20 open customer 

orders in the queue before executing the reevaluation algorithm. The decision maker might 

experiment with different values of this parameter to find an optimum value that maximizes cost 

savings without negatively impacting customer service level. Note that, in this strategy, the elapsed 

time between two subsequent reevaluations varies. In the second strategy, which is illustrated in 

Figure 6.2, the reevaluation algorithm is triggered at regular time intervals (e.g. every 30 minutes). 

In this case, the length of the time interval is a model parameter that can be adjusted. Unlike the 
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first strategy, the number of customer orders that are reevaluated together is variable. In Chapter 

7 we experiment with these strategies to compare their performance under different settings.  

 

Figure 6.1: Event triggering diagram for DES model with FEDMA - (fixed reevaluation batch size) 

 

 

 

Figure 6.2: Event triggering diagram for DES model with FEDMA - (fixed reevaluation cycle time) 
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6.3. Challenges when fully embedding the order fulfillment DMA in the DES model  

Designing a FEDMA for reevaluating order fulfillment decisions involves various 

complexities and challenges that are described in this section.  

6.3.1. Structural differences between optimization and simulation  

Decision making algorithms (e.g. heuristic and integer programming algorithms) assume that 

the system under study is static. In other words, they assume that the system state does not change 

between the time the algorithm begins searching for a decision and when that decision is found. 

Simulation models, on the other hand, assume that the underlying system is dynamic, and its state 

evolves over time as new events occur. When fully embedding a DMA in a simulation model, the 

simulation model runs in parallel while the DMA is searching for a decision, so the system state 

in the DES model will be different when the DMA finds a decision compared to when it had started 

looking for a decision. The FEDMA needs to take this into account and ensure that the decision it 

finds is viable given the DES model’s new system state when the DMA terminates. 

In designing a FEDMA for reevaluating order fulfillment decisions, we can ensure that the 

integer program results are interpreted based on the updated system state. For instance, as 

described in Chapter 4, one key decision variable in the integer program is 𝑋𝑠𝑑𝑚𝑓𝑟which indicates 

the number of units of SKU 𝑠 that are shipped on day 𝑑 using shipping method 𝑚 from FC 𝑓 to 

satisfy customer order 𝑟. When running the reevaluation algorithm, if the algorithm is called on 

day �̂� and finishes on the same day, the values of 𝑋𝑠𝑑𝑚𝑓𝑟 should be fed back to the simulation 

model without any adjustments. However, if the algorithm is called on day �̂� and ends on day �̂� +

1, then the 𝑋𝑠𝑑𝑚𝑓𝑟values must be adjusted to reflect this shift in the 𝑑 index before they are fed 

back to the simulation model. 
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6.3.2. Shared resources between optimization and simulation  

When the reevaluation algorithm and simulation model are running in parallel, they use the 

same set of physical resources and assets such as FCs, SKUs, and inventory units. When the 

reevaluation algorithm begins, it takes a snapshot of available resources and uses that information 

throughout its execution. This information cannot be modified while the reevaluation algorithm is 

running. However, resource availability is impacted by the simulation model which could 

invalidate decisions produced by the reevaluation algorithm at the end. Therefore, the FEDMA 

needs to be designed to synchronize resource pooling and prevent any conflicts between the 

decisions produced by the reevaluation algorithm and simulation. An example of this situation is 

illustrated in Figure 6.3. In this example, the first customer order is placed at 𝑡 = 0 and the 

fulfillment decision assigns this order to 𝐹𝐶1 which has adequate inventory to satisfy all order 

items with a minimal shipping cost. Inventory levels are updated based on this fulfillment decision. 

A second customer order is placed at 𝑡 = 10 and since no FC can satisfy all items in this order, 

the rule-based fulfillment algorithm assigns the first two items (𝑆𝐾𝑈1, 𝑆𝐾𝑈2) to 𝐹𝐶3 and the last 

item (𝑆𝐾𝑈3) to 𝐹𝐶2. At 𝑡 = 30 the reevaluation algorithm is triggered to optimize assignments for 

both orders (𝑂1, 𝑂2). This reevaluation is expected to find a decision in 10 minutes (𝑡 = 40). 

While reevaluation algorithm is being executed, a third customer order is placed at 𝑡 = 35. If the 

simulation model does not consider the inventory resources that are temporarily allocated to the 

reevaluation, it may mistakenly allocate inventory units from all FCs (𝐹𝐶1, 𝐹𝐶2, 𝐹𝐶3) to this order. 

However, the FEDMA model synchronizes resource pooling by prioritizing resources that are 

required by the reevaluation algorithm over the new order and decides to reject 𝑂3 due to lack of 

inventory availability. At 𝑡 = 40 the reevaluation algorithm finds an optimal assignment for 𝑂1 

and 𝑂2 and its result is successfully fed back to the simulation model. 
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Figure 6.3: Shared resources between reevaluation algorithm and simulation model 
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6.3.3. Impact of shipment pick-up time 

As mentioned earlier, in order to leverage economies of scale, shipment pick-up happens at 

specific times during a day. In this dissertation, we assume this time is fixed at 2:00 p.m. every 

day at every FC. Additionally, to prepare customer shipments, all fulfillment decisions must be 

locked an hour before shipment pick-up time. This means that if reevaluation algorithm is being 

executed, it must finish before 1:00 p.m.; otherwise its decisions may not be valid. Figure 6.4 

illustrates this situation using the previous example. In this case, reevaluation begins at 𝑡 = 30 and 

is expected to find an optimal decision at 𝑡 = 40. All assignments must be locked by 𝑡 = 35 for 

preparing customer shipments. Therefore, although the reevaluation algorithm can find better 

assignments, since it ends after the Lock fulfillment decision event, its decisions are nullified and 

the e-tailer must use the original fulfillment decisions for these customer orders.  
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Figure 6.4: Impact of shipment pick-up time on reevaluation algorithm 
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6.3.4. Impact of inventory replenishment  

While the reevaluation algorithm is being executed, FCs might receive inventory 

replenishments. Considering these replenishments could improve the decisions produced by the 

reevaluation algorithm. Figure 6.5 illustrates this situation using a simple example. In this example, 

when the reevaluation algorithm begins at 𝑡 = 30, 𝐹𝐶1 holds one unit of 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2, 𝐹𝐶2 

holds one unit of 𝑆𝐾𝑈2 and 𝑆𝐾𝑈3, and 𝐹𝐶3 holds one unit of 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2. On the other hand, 

𝑂1 requires one unit of 𝑆𝐾𝑈1 and 𝑆𝐾𝑈2 and 𝑂2 requires one unit of 𝑆𝐾𝑈1, 𝑆𝐾𝑈2 and 𝑆𝐾𝑈3. At 

𝑡 = 35, 𝐹𝐶1 receives a replenishment for 𝑆𝐾𝑈3 which increases its inventory level to one unit. 

Without considering this replenishment, the reevaluation algorithm would assign 𝑂1 to 𝐹𝐶1 and 

would split 𝑂2 between 𝐹𝐶2 (𝑆𝐾𝑈3) and 𝐹𝐶3 (𝑆𝐾𝑈1, 𝑆𝐾𝑈2). Considering this replenishment 

allows the reevaluation algorithm to find a better decision by assigning 𝑂1 to 𝐹𝐶3 and 𝑂2 to 𝐹𝐶1.  

In designing the FEDMA, before reevaluation algorithm begins, the model detects any future 

replenishments that can be incorporated and makes the inventory in those replenishments available 

to the reevaluation algorithm. This means that any replenishment that arrives while the 

reevaluation is executed gets added to the inventory pool. In the next section, we explain how the 

reevaluation algorithm also considers replenishment orders that are placed after the reevaluation 

execution is finished for eligible customer orders. 
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Figure 6.5: Impact of inventory replenishment on reevaluation algorithm 
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6.3.5. Impact of customer delivery preferences  

Customers can choose how long they should wait to receive their online order through delivery 

preferences. As mentioned earlier, in this dissertation we consider four delivery preferences: One 

Day Delivery, Two Day Delivery, Five Day Delivery and Seven Day Delivery. E-tailers use 

different shipping methods to meet customer delivery preferences. Shipping methods that are 

considered in this dissertation include Next Day Air, Second Day Air, Three Day Select and UPS 

Ground which has an average transit time of five days. For instance, if a customer chooses Five 

Day Delivery, the e-tailer may use any of these shipping methods to satisfy that order. Since 

shipping methods with longer transit times are typically cheaper, the e-tailer would normally 

choose UPS Ground in this case. However, there could be a situation where the e-tailer is forced 

to select a more expensive shipping method due to lack of inventory availability. For instance, if 

the e-tailer does not have enough inventory to meet this customer order when it is placed, but it is 

expecting to receive a replenishment in 2 days, it can still meet this order using a Three Day Select 

shipping method.  

The reevaluation algorithm must consider this relationship between customer delivery 

preference, shipping method, and inventory replenishment for all customer orders that are 

reevaluated together. A simple example is provided in Figure 6.6. In this example, when 

reevaluation begins at 𝑡 = 30, 𝐹𝐶1 expects a replenishment for 𝑆𝐾𝑈3 that is scheduled to arrive 

at 𝑡 = 75. This replenishment could be used to assign all items in 𝑂2 to 𝐹𝐶1. However, the 

reevaluation algorithm must consider the delivery preference for 𝑂2 to determine if by waiting 

until 𝑡 = 75 the customer delivery deadline can be met. Additionally, if delaying the shipment 

until 𝑡 = 75 forces the e-tailer to use a more expensive shipping method, that trade-off must be 

carefully evaluated by the algorithm. 



 
 

101 
 

 

 

Figure 6.6: Impact of customer delivery preference on reevaluation algorithm 
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6.3.6. Executing multiple reevaluations in parallel 

When embedding a reevaluation algorithm in a simulation model, if we choose to execute 

reevaluation for a group of 𝑛 customer orders, there might be a situation where as reevaluation is 

executed for {𝑂1, 𝑂2, … , 𝑂𝑛} a second group of customer orders {𝑂𝑛+1, 𝑂𝑛+2, … , 𝑂2𝑛} are placed 

which triggers another instance of reevaluation algorithm. Figure 6.7 illustrates this situation for 

batch size of 5. As shown in this figure, while the first instance of the reevaluation algorithm is 

optimizing assignments for {𝑂1, 𝑂2, 𝑂3, 𝑂4, 𝑂5}, customers continue to place new orders. When 

𝑂10 is placed, a second instance of the reevaluation algorithm is triggered to optimize the 

assignments for {𝑂6, 𝑂7, 𝑂8, 𝑂9, 𝑂10}. In a real-world e-tailer system, since each instance requires 

separate infrastructure and a separate optimization agent, the decision maker needs to determine 

how many reevaluation algorithms can be executed in parallel. In this dissertation, we assume only 

one reevaluation algorithm can be executed at each time. All customer orders that are placed during 

the execution of the reevaluation algorithm are added to the next batch. When execution of the 

reevaluation algorithm ends, the model checks the batch size and if it is greater than or equal to 

the threshold another instance of the reevaluation is triggered immediately. Otherwise, the model 

waits until more orders come in before triggering the next instance. 

 
Figure 6.7: Executing multiple reevaluation algorithms in parallel 
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6.3.7. Locking inventory for reevaluation 

When the reevaluation algorithm is triggered, in addition to the inventory units that are already 

assigned to the orders that are being reevaluated, a portion of unassigned inventory at each FC gets 

locked and is made available to the reevaluation algorithm. Since inventory is one of the primary 

constraints for the reevaluation, this enables the algorithm to potentially find a better optimal 

solution. However, while these inventory units are being used by the reevaluation algorithm, the 

e-tailer may not use them to fulfill other customer orders that are placed while the reevaluation is 

being executed. This results in a tradeoff between the quality of decisions produced by the 

reevaluation algorithm and the quality of the myopic decisions for other orders that are placed 

during the reevaluation.  

When deciding how many inventory units should be reserved for the reevaluation, this tradeoff 

must be carefully considered so that the e-tailer’s overall performance is optimized. Note that, by 

increasing the proportion of units reserved for reevaluation, the reevaluation decisions are 

improved, but the myopic decisions are degraded. On the other hand, when the proportion of units 

reserved for reevaluation decreases, the reevaluation decisions are degraded but the myopic 

decisions are improved. Therefore, the optimal proportion is a value between 0 and 1 that results 

in the lowest total shipping cost for all customer orders.  

In this simulation, this proportion is a model parameter that can be set by the e-tailer. This 

allows the decision maker to test different values and find the one that works best for its specific 

system. Our analysis indicates that, for an e-tailer with limited inventory levels, the proportion 

should be set to a lower number compared to an e-tailer who has a large amount of inventory. The 

optimal proportion is also a function of reevaluation computation time. For a shorter reevaluation 
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computation time, the proportion can be set to a higher value compared to a reevaluation that takes 

longer to compute.  

6.4. Execution cadence for reevaluation  

Identifying the best execution cadence for the reevaluation algorithm is an important aspect of 

fully embedding the DMA within the DES model. Overall, if the reevaluation algorithm is allowed 

to run until termination, total cost savings will increase as the number of customer orders 

considered in each call to the algorithm increases. However, increasing the number of customer 

orders considered in each call to the algorithm also increases computation time which has a 

negative impact on system performance. Therefore, execution cadence for the reevaluation 

algorithm needs to be determined by considering this tradeoff between decision quality and 

computation time. As mentioned earlier, in this dissertation we consider two strategies for 

triggering the reevaluation algorithm. In the first strategy, the reevaluation algorithm is executed 

for a group of 𝑛 open customer orders, where 𝑛 is a model parameter. In the second strategy, the 

reevaluation algorithm is executed every 𝑡 minutes, where 𝑡 is a model parameter. Both strategies 

are more effective if the model parameter value is optimized according to the system 

characteristics.  

The importance of execution cadence for the reevaluation algorithm is illustrated through an 

example shown in Figures 6.8 and 6.9. In this example, we compare the reevaluation decisions 

when the algorithm is executed for 2 customer orders versus 3 customer orders. The first scenario 

(Figure 6.8) considers triggering the reevaluation algorithm when there are two open customer 

orders in the system. In this scenario, when 𝑂1 is placed at 𝑡 = 0, it is assigned to 𝐹𝐶1 which is the 

closest FC that can satisfy all items in this order in a single shipment. When 𝑂2 is placed at 𝑡 =

10, given the updated inventory levels, its shipment is split between 𝐹𝐶2 for 𝑆𝐾𝑈3 and 𝐹𝐶3 for 
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𝑆𝐾𝑈1 and 𝑆𝐾𝑈2. At 𝑡 = 20 the reevaluation algorithm is triggered to optimize the assignment for 

𝑂1 and 𝑂2. While the reevaluation algorithm is searching for an optimal assignment, 𝑂3 is placed 

at 𝑡 = 25. As mentioned earlier, during the reevaluation, in addition to the inventory units that are 

already assigned to the orders that are reevaluated, 50 percent of the available inventory for each 

SKU at each FCs (rounded up) gets locked and is made available to the reevaluation algorithm. In 

this example, since there is only one inventory unit for each SKU at each FCs, all inventory units 

are locked for reevaluation and 𝑂3 is rejected by the e-tailer. At 𝑡 = 30 reevaluation algorithm 

execution ends which reduces total number of shipments by 1 by assigning 𝑂1to 𝐹𝐶3 and 𝑂2 to 

𝐹𝐶1. 

The second scenario (Figure 6.9) considers triggering the reevaluation algorithm when there 

are three open customer orders in the system. This scenario follows a similar process to make the 

myopic fulfillment decisions for 𝑂1 and 𝑂2. However, the reevaluation algorithm is not triggered 

before 𝑂3 is placed at 𝑡 = 25 and is assigned to 𝐹𝐶1 for 𝑆𝐾𝑈3 and 𝐹𝐶2 for 𝑆𝐾𝑈2. Instead, it is 

triggered at 𝑡 = 35 and reevaluates assignments for all three customer orders together. As a result, 

the number of shipments is reduced from 5 to 3 by assigning 𝑂1 to 𝐹𝐶3, 𝑂2 to 𝐹𝐶1 and 𝑂3 to 𝐹𝐶2. 

As shown in this simple example, changing the execution cadence for the reevaluation 

algorithm not only improves service level by reducing the number of rejected orders, but also 

promotes cost savings by giving the optimization algorithm more flexibility and degrees of 

freedom. Although we were able to find the best execution cadence through observation for this 

example, finding the optimal execution cadence for larger problems is not trivial and requires 

extensive analysis and experimentation. In the next chapter we present the results of several 

experiments that relate to execution cadence and other important issues. 
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Figure 6.8: Scenario 1: executing reevaluation algorithm for a batch size of 2 
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Figure 6.9: Scenario 2: executing reevaluation algorithm for a batch size of 3 
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Chapter 7 

Experimental setup, results, and discussion 

In order to analyze the DES model with the fully embedded reevaluation algorithm, an 

extensive set of experiments is conducted in this section. These experiments are set up to study 

different aspects of the e-tailer order fulfillment process and to evaluate the impact of various 

system parameters on the performance of the reevaluation algorithm. The first set of experiments 

consider the performance of the integer program reevaluation algorithm alone and measure its 

scalability based on system parameters such as number of customer orders, SKUs, and FCs. The 

second set of experiments consider the fully embedded reevaluation algorithm within the DES 

model to demonstrate its effectiveness and to study the impact of the reevaluation algorithm’s 

settings on long-run system performance. All experiments are conducted within Windows 7 

environment on a desktop computer with a Core i7 3.4 GHz processor and 16 GB of RAM. 

7.1. Experimental setup for IP-based reevaluation algorithm 

As described in Chapter 4, the primary decision variable in the integer program reevaluation 

algorithm is a five-dimensional integer variable 𝑥𝑠𝑑𝑚𝑓𝑟. Since in this dissertation we consider a 

fixed set of shipping methods and customer delivery preferences, the range of the 𝑑 and 𝑚 indices 

are fixed and therefore they do not impact the integer program’s scalability. In order to analyze the 

impact of other three indices, we solve 27 different problem instances. As shown in Table 7.1, 

these problem instances are defined by the values of 𝑆, 𝐹, and 𝑅. For each of these parameters a 

low, medium, and high value is considered. This allows us to study the performance of the integer 

program for a range of problem complexities in all three dimensions. Note that each instance is 

given a unique ID that is used throughout this chapter to refer to that instance. 
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Table 7.1: Instances for integer program scalability experiments 

Instance ID # SKUs # Orders # FCs 
IP_1 5 5 2 
IP_2 5 5 10 
IP_3 5 5 20 
IP_4 5 20 2 
IP_5 5 20 10 
IP_6 5 20 20 
IP_7 5 100 2 
IP_8 5 100 10 
IP_9 5 100 20 
IP_10 20 5 2 
IP_11 20 5 10 
IP_12 20 5 20 
IP_13 20 20 2 
IP_14 20 20 10 
IP_15 20 20 20 
IP_16 20 100 2 
IP_17 20 100 10 
IP_18 20 100 20 
IP_19 100 5 2 
IP_20 100 5 10 
IP_21 100 5 20 
IP_22 100 20 2 
IP_23 100 20 10 
IP_24 100 20 20 
IP_25 100 100 2 
IP_26 100 100 10 
IP_27 100 100 20 

 

All other parameters are fixed or randomized for these instances. The value of 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 for 

each 𝑠 is set using a uniformly distributed random number between 1 and 10 pounds. 

Parameter 𝑚𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡 is set to a constant value of 18.11 pounds for all instances. The values 

of parameters 𝑐𝑃𝑜𝑢𝑛𝑑𝑚𝑓𝑟  and 𝑐𝐵𝑜𝑥𝑚𝑓𝑟 , which represent shipping cost per pound and per box 

respectively, are calculated using the UPS shipping rates that were introduced in Chapter 3. The 

value of 𝑜𝑟𝑑𝑄𝑡𝑦𝑠𝑑𝑟 is calculated using a three-step process which is consistent throughout all 

instances. In the first step, a truncated exponential distribution is used to determine the number of 
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order lines for order 𝑟; this distribution models the fact that orders with fewer lines are more 

common. In the second step, another truncated exponential distribution that captures demand 

variability among SKUs is used to determine the SKU for each order line. Finally, the quantity of 

each line is calculated using a third truncated exponential distribution. The value of 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑟 for 

each order is also randomized in a way that cheaper delivery preferences are given a higher weight. 

Finally, total inventory is determined based on total demand and it is randomly distributed among 

FCs to set the value of 𝑖𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑠𝑑𝑓. 

7.2. Experimental setup for DES model with fully embedded reevaluation algorithm 

A second set of problem instances is used to study the behavior of the fully embedded 

reevaluation algorithm within the DES model. These instances, which are listed in Table 7.2, are 

defined by three primary parameters: (i) number of SKUs, (ii) number of FCs, and (iii) inter-order-

placement time distribution. Like the first set of problem instances, a unique ID is assigned to each 

instance in Table 7.2 which is used throughout this chapter to refer to that instance. 

 

Table 7.2: Instances for DES model experiments 

Instance ID #  SKUs # FCs Inter-order-placement time distribution (minutes) 

DES_1 1000 10 𝐸(5) 

DES_2 5 3 𝐸(5) 

DES_3 10 3 𝐸(5) 

DES_4 100 3 𝐸(5) 

DES_5 100 5 𝐸(5) 

DES_6 100 10 𝐸(5) 

 

In addition to the primary parameters that are listed in Table 7.2, several other model 

parameters are used in this experimentation. The value of most parameters is fixed or randomized 

for all experiments, while some parameter values are changed to study the sensitivity of the DES 
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model. The e-tailer’s area of operation is assumed to be a rectangular space with a length of 1000 

miles and width of 500 miles. All FCs and customer orders are located within this area using a 

uniformly distributed probability distribution. SKU weights are uniformly distributed between 1 

and 3 pounds and the maximum box weight is set to 20 pounds.  

As described in Chapter 3, four delivery preferences are considered in this study (i) One Day 

Delivery, (ii) Two Day Delivery, (iii) Five Day Delivery and (iv) Seven Day Delivery. The delivery 

preference for each customer order is selected using a truncated exponential probability 

distribution with 𝜆 = 0.85 that gives cheaper delivery preferences a higher likelihood of getting 

selected. On the other hand, four shipping methods are available to the e-tailer to meet customer 

delivery deadlines: (i) Next Day Air, (ii) Second Day Air, (iii) Three Day Select and (iv) UPS 

Ground. The number of items in a customer order is a uniformly distributed integer value between 

1 and 5. The SKU and quantity for each item are also uniformly distributed. The maximum order 

quantity for a single item is assumed to be 3.  

In order to model the fact that a real-world e-tailer does not hold all SKUs at all FCs, we 

consider an 80% likelihood that 𝑆𝐾𝑈𝑠 is available at 𝐹𝐶𝑓. For each 𝑠, 𝑓 combination a uniformly 

distributed random value between 0 and 1 is generated; if its value is less than or equal to 0.8, we 

assume that SKU 𝑠 is available at FC 𝑓. If no FC is selected to hold SKU 𝑠 through this randomized 

process, we assume that the last FC in the list holds that SKU.  

The inventory policy for each FC and SKU combination is defined using three parameters, 

𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙, 𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑐𝑙𝑒 and 𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒. To set the value of these parameters for 𝑆𝐾𝑈𝑠, first the 

average daily demand for 𝑆𝐾𝑈𝑠 is calculated based on the distribution for the inter-order-

placement time, number of order lines and quantity of each item ordered. Then that demand rate 
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is equally distributed between FCs that hold 𝑆𝐾𝑈𝑠. The parameter 𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑐𝑙𝑒 and 𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 

are randomly set to either 1, 2 or 3 days and 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 is derived by multiplying the demand rate 

that is assigned to FC 𝑓 and the 𝑙𝑒𝑎𝑑_𝑡𝑖𝑚𝑒. Additionally, a 10% safety stock is added to 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 

to absorb demand variability. Inventory replenishments are assumed to reach FCs one second after 

midnight every day. Customer shipments are picked-up from FCs at 2:00 p.m. every day and all 

assignments for those shipments are locked one hour before that event.   

In all experiments, 4000 customer orders are simulated which represents approximately two 

weeks of e-tailer operations. In order to make statistical inference, each experiment is replicated 6 

times with a different seed for the random number generator. The same 6 random number seeds 

are used across experiments to ensure cross-evaluations are accurate. 

 The reevaluation algorithm can either be triggered for a fixed batch size of customer orders or 

a fixed cycle time. The batch size and cycle time are both model parameters. The value of these 

parameters is adjusted throughout the experiments to analyze model sensitivity and to find their 

optimal value based on the e-tailer’s operational characteristics.  

The reevaluation computation time is controlled using two parameters, 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟. The first parameter represents the actual time that is given to the reevaluation 

algorithm per order that is reevaluated. The second parameter models the fact that in a real-world 

e-tailer system, reevaluation computation time could be different. Both parameters are studied 

extensively in the following experiments.  

For example, if the 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 is set to 1 minute, and the 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 to 10, when 

the reevaluation algorithm is executed for a batch of 50 customer orders, the computation time 

limit for the reevaluation is set to 50 minutes; however, in the simulation model, we assume that 
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this reevaluation takes 500 minutes. On the other hand, if 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 is set to 0.1, then 

in the simulation we assume the reevaluation algorithm only takes 5 minutes. Therefore, when 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 is set to a value less than 1, it allows us to model the fact that an e-tailer may 

have access to a more powerful CPU for executing the reevaluation algorithm than our test 

environment. When it is set to a value higher than 1 on the other hand, it allows us to speed up our 

experimentation by reducing the amount of the experiment’s time that is spent on each instance of 

the reevaluation execution. Finally, by setting 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 to 1, we can model a scenario 

where the e-tailer’s reevaluation computation time is equal to the actual computation time used in 

our experiments. 

7.3. Results and discussion 

7.3.1. Integer programming reevaluation algorithm scalability 

In this experiment, the scalability of the integer programming reevaluation algorithm is studied 

by solving problem instances IP_1 to IP_27 using CPLEX. A fixed time limit of 10 minutes is 

imposed for all instances and the solution status, objective function, and gap percentage 

(percentage difference between the objective value of the best solution found and a lower bound 

on the optimal value) are reported at the end. The results of this experiment are reported in Table 

7.3. As shown in this table, optimal solutions are found for 16 instances in less than 10 minutes. 

For the remaining 11 instances, a feasible solution is reached with an average gap percentage of 

4%. 

In order to analyze the relationship between problem difficulty and the number of SKUs, 

number of customer orders, and number of FCs, a scatter plot of the optimization gap percentage 

based on value of each parameter is constructed in Figure 7.1. It can be observed that the number 

of customer orders has a non-linear positive impact, number of FCs has a linear positive impact 
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and number of SKUs has a non-linear negative impact on problem difficulty. The positive impact 

of the number of customer orders and FCs on problem difficulty can be explained by the increasing 

number of decision variables and constraints in the integer program. The negative impact of the 

number of SKUs, on the other hand, can be attributed to the fact that, for a fixed number of 

customer orders, increasing the number of SKUs reduces the amount of overlap between orders 

which subsequently reduces the number of ways that orders can be reassigned to different FCs. 
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Table 7.3: Results from integer program experiments 

Problem instance Solution 

Instance ID # SKUs # Orders # FCs 

Solution 

Status 

Objective 

Function ($) Gap (%) 

Elapsed 

Time (Sec) 

IP_1 5 5 2 Optimal 354 0 < 1 

IP_2 5 5 10 Optimal 425 0 < 1 

IP_3 5 5 20 Optimal 402 0 < 1 

IP_4 5 20 2 Feasible 768 0.54% 600 

IP_5 5 20 10 Feasible 682 1.22% 600 

IP_6 5 20 20 Optimal 808 0 91 

IP_7 5 100 2 Feasible 2191 2.52% 600 

IP_8 5 100 10 Feasible 3451 4.10% 600 

IP_9 5 100 20 Feasible 2959 9.96% 600 

IP_10 20 5 2 Optimal 498 0 < 1 

IP_11 20 5 10 Optimal 542 0 < 1 

IP_12 20 5 20 Optimal 361 0 < 1 

IP_13 20 20 2 Optimal 714 0 21 

IP_14 20 20 10 Optimal 1373 0 18 

IP_15 20 20 20 Optimal 820 0 13 

IP_16 20 100 2 Feasible 3692 3.32% 600 

IP_17 20 100 10 Feasible 3250 7.08% 600 

IP_18 20 100 20 Feasible 4112 7.55% 600 

IP_19 100 5 2 Optimal 358 0 < 1 

IP_20 100 5 10 Optimal 431 0 < 1 

IP_21 100 5 20 Optimal 158 0 < 1 

IP_22 100 20 2 Optimal 1409 0 253 

IP_23 100 20 10 Optimal 1276 0 3 

IP_24 100 20 20 Optimal 922 0 2 

IP_25 100 100 2 Feasible 5215 2.65% 600 

IP_26 100 100 10 Feasible 6521 1.43% 600 

IP_27 100 100 20 Feasible 5176 1.70% 600 
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Figure 7.1: Relationship between number of SKUs, FCs and orders and optimization gap 
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7.3.2. Simulation model performance without running reevaluation algorithm 

In order to study the simulation model and develop a baseline for the e-tailer’s performance 

without the reevaluation algorithm, six replications of the simulation model were executed on 

instance DES_1. The result of this experiment is quantified using average shipping cost per order 

and service level which is illustrated in Figure 7.2. As shown in this figure, the average shipping 

cost per order is consistent across all replications and its mean value is $22.75. Additionally, 

service level, which is calculated as the percentage of customer orders that are accepted by the e-

tailer, is similar for all replications and its mean value is 88%. In the following experiments the 

impact of the reevaluation algorithm in these KPIs is analyzed. 

 
Figure 7.2: Simulation model performance without reevaluation 
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7.3.3. Reevaluation algorithm performance for individual customer orders 

As described in Chapter 3, the simulation model utilizes a rule-based method to make 

fulfillment decisions for customer orders one at a time. Since the reevaluation algorithm from 

Chapter 4 is an integer program that uses mathematical optimization, it outperforms the rule-based 

method even when it is applied to one customer order at a time. To quantify the difference in 

performance between these two methods, two sets of experiments are conducted on instance 

DES_1. The first set is identical to the experiments that are outlined in Section 7.3.2 where the 

simulation model is executed without considering reevaluation. For the second set of experiments, 

the reevaluation algorithm is triggered for a batch size of 1. The 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 parameter is set 

to 1 second and 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 is set to 10. 

As displayed in Figure 7.3, running the reevaluation algorithm for individual orders reduces 

average shipping cost per order from $22.75 to $22.23 which amounts to a savings of 

approximately 2.3%. Additionally, the service level is not negatively impacted by reevaluation, 

and its mean value remains at 88%.  

In this experiment, the inter-order-placement time is significantly higher than the allocated 

time for each reevaluation. In particular, customer orders are placed every 5 minutes and it takes 

the reevaluation algorithm only 10 seconds (𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 𝑋 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝑓𝑎𝑐𝑡𝑜𝑟) to find an 

optimal fulfillment decision for them. Therefore the e-tailer can replace the rule-based method 

with the integer program reevaluation algorithm and save 2.3% in shipping costs. However, for an 

e-tailer with a shorter inter-order-placement time and more FCs, less computation time will be 

available and each problem instance would be more difficult to solve, so it may not be practical to 

replace the rule-based method with an integer programming approach. Additionally, reevaluating 
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fulfillment decisions for a group of orders enables an e-tailer to shuffle the assignments holistically 

and minimize the overall shipping cost for that group. Therefore, in the next experiment we study 

the strategy of reevaluating fulfillment decisions for a batch of customer orders. 

 

 

Figure 7.3: System performance for reevaluating orders one at a time 
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7.3.4. Triggering reevaluation for a batch of customer orders 

In order to analyze the value of reevaluating fulfillment decisions for a group of customer 

orders together, a set of experiments are executed using DES_1 and a reevaluation batch size of 

20. The result of this experiment in comparison with the baseline (no reevaluation) as well as a 

reevaluation batch size of 1 is illustrated in Figure 7.4. Note that 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 parameters are set to 1 second and 10 respectively. As shown in this figure, 

setting the reevaluation batch size to 20 reduces average shipping cost per order in all replications 

resulting in mean value of $22.11 which is $0.12 less than batch size of 1. Additionally, this 

strategy does not influence service level. However, although for a batch size of 1 all customer 

orders could be reevaluated for this instance, by increasing the batch size to 20, about 2.3% of 

customer orders are not reevaluated (Figure 7.5). Those are the orders with a tight customer 

delivery deadline. 

The result of this experiment confirms that reevaluating a batch of customer orders reduces 

average shipping cost. In the next experiment we find the optimal reevaluation batch size for the 

instance DES_1 and develop a framework that can be replicated to find the optimal value for e-

tailers with various operational characteristics. 
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Figure 7.4: Impact of reevaluating a batch of orders on average shipping cost  

 

 

 

Figure 7.5: Impact of reevaluating a batch of orders on number of orders reevaluated and service level 
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7.3.5. Identifying the optimal batch size for reevaluation 

In the previous experiment, we illustrated the value of reevaluating fulfillment decisions for a 

group of customer orders. Although increasing the batch size enables the reevaluation algorithm 

to make better reassignments that result in more cost reduction, it also increases problem 

complexity and computation time that have a potential negative impact on system performance. 

Therefore, by using a very large batch size, the overall system performance might be degraded 

which subsequently impacts average shipping cost. In other words, there must be an optimal value 

for the batch size that best trades off the decision quality and computation time of the reevaluation 

algorithm. 

To find the optimal batch size for instance DES_1, a set of experiments are conducted with 

different values for this parameter. Note that values of all other model parameters 

including 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 are fixed. Figure 7.6 shows the result of this 

experiment. According to the results, a batch size of 50 provides the best outcome by reducing the 

average cost per order to $21.79 and maintaining an 88% service level.  

As shown in Figure 7.6, by increasing the batch size from 50 to a larger number, the 

reevaluation algorithm is not able to find an optimal decision for all customer orders and the 

optimization gap percentage grows. Additionally, the number of customer orders that are not 

reevaluated increases. This is because the customer orders that have a tight delivery deadline may 

need to be shipped before a batch of 50 customer orders accumulates in the system to trigger the 

reevaluation. The combination of these two phenomena results in the system performance 

degradation which increases the average cost per order.  
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Figure 7.6: Identifying the optimal batch size for reevaluating orders 
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7.3.6. Impact of reevaluation time per order 

The 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 parameter is one of the key model parameters that specifies the 

computation time limit for the reevaluation algorithm. In order to study the impact of this 

parameter on system performance a set of experiments are conducted using instance DES_1. As 

shown in the previous section, by setting the reevaluation batch size to 100 and 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 to 

1 second, the reevaluation algorithm is not able to find an optimal decision for all customer orders. 

In this experiment, we test four different values for 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and analyze the results. The 

values that are considered are 1, 2, 5 and 10 seconds. Note that 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 and the batch 

size are set to 10 and 100 respectively. 

Figure 7.7 illustrates the result of this experiment. This result shows that by increasing the 

value of 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 from 1 second to 2 seconds, system performance is improved and the 

average cost per order decreases from $22.02 to $21.69. However, when  𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 is further 

increased to 5 and 10 seconds, average cost per order increases slightly.  

This behavior can be explained by observing the gap percentage and percentage of orders that 

are reevaluated in Figure 7.7. As shown in this figure, by increasing 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 from 1 second 

to 2 seconds, the optimization gap percentage is significantly reduced while the percentage of 

orders that are reevaluated remains intact. This results in a major improvement in average cost per 

order. However, increasing 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 to 5 and 10 seconds does not significantly reduce the 

gap percentage and on the other hand decreases the percentage of orders that are reevaluated. The 

combined effect of these two events results in a slight degradation in the system performance. 
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Figure 7.7: Impact of reevaluation time per order on system performance 
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7.3.7. Impact of adjustment factor  

Another important parameter in this simulation is 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟. As described earlier in 

this chapter, this parameter models the fact that in a real-world e-tailer system, reevaluation 

computation time might be different from what is considered in the experiments. We test the 

impact of this parameter through a set of experiments in this section. 

For this experiment, four different values of 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 parameter are tested for the 

instance DES_1. These values range from 1 to 200. The reevaluation batch size is set to 50, 

𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 to 1 second, and other model parameters are fixed as in the previous experiments. 

The results are summarized in Figure 7.8, which illustrates that increasing the adjustment factor 

negatively impacts system performance and increases average cost per order.  

Note that since the value of 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 parameter is fixed, the optimization gap 

percentage does not change by increasing the value of 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟. However, as shown 

in Figure 7.8, the number of orders that are reevaluated tend to be lower for larger values of 

𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟. This is because increasing the value of 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 increases the 

computation time of each reevaluation algorithm run within the simulation model. Subsequently, 

the e-tailer may not get the opportunity to reevaluate customer orders with a tight delivery deadline. 

This negatively impacts system performance and results in a higher average cost per order. 
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Figure 7.8: Impact of adjustment factor on system performance 
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7.3.8. Triggering reevaluation in fixed time intervals 

Instead of triggering the reevaluation for a predetermined number of customer orders, the e-

tailer may choose to execute the reevaluation in fixed time intervals. In this section we study this 

strategy by running a set of experiments on instance DES_1. For these experiments, the value of 

𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 parameters are set to 1 second and 10 respectively and 

the simulation is executed with different reevaluation cycle times. Results are presented in Figure 

7.9.  

As shown in this figure, the average cost per order demonstrates a very similar pattern to batch 

size execution results. Note that since the inter-order-placement time follows an exponential 

distribution with a mean of 5 minutes, a cycle time of 250 minutes is approximately equivalent to 

a batch size of 50. Therefore, according to this experiment, both strategies provide a very similar 

outcome for instance DES_1. In other words, the e-tailer can minimize shipping costs by choosing 

to trigger the reevaluation algorithm either every 250 minutes or each time 50 customer orders 

accumulate. 

In this experiment, both strategies provide a very similar outcome, but this may not be 

necessarily the case for all e-tailers. For example, if the inter-order-placement time does not follow 

an exponential distribution, a batch size of 50 might not be comparable to a 250-minute cycle time. 

Therefore, our recommendation is to test both strategies based on the e-tailer’s operational 

characteristics to identify the best option that provides the minimum shipping cost.  
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Figure 7.9: Triggering reevaluation in fixed time intervals 
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7.3.9. Impact of number of FCs  

In Section 7.3.1 we studied the impact of the number of FCs on the performance of the IP-

based reevaluation algorithm. However, we did not consider the simulation model in that 

experiment; the reevaluation algorithm was analyzed in isolation. This section extends that 

analysis by considering the impact of the number of FCs when the reevaluation algorithm is fully 

embedded within the DES model. For this analysis, a set of experiments are conducted on instances 

DES_4, DES_5 and DES_6. These instances have a very similar configuration except for the 

number of FCs. There are 3 FCs in DES_4, 5 FCs in DES_5 and 10 FCs in DES_6.  For these 

experiments, 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 are set to 1 second and 10 respectively and 

reevaluation is triggered for a batch size of 50 customer orders. 

Figure 7.10 illustrates the results of this analysis. As shown in this figure, by increasing the 

number of FCs, the average shipping cost per order decreases. However, this is not because the 

reevaluation algorithm performs better for instances with more FCs. Increasing the number of FCs 

reduces the average distance between FCs and customer orders which subsequently reduces 

average shipping cost per order. Based on the optimization gap percentage that is reported for these 

instances, the reevaluation decisions tend to be negatively impacted by increasing number of FCs. 

In other words, this experiment confirms that an e-tailer with a more sophisticated supply chain 

network requires more processing power to reevaluate its customer orders.  
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Figure 7.10: Impact of number of FCs on system performance 
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7.3.10. Impact of number of SKUs  

In this experiment, we extend the analysis that was presented in Section 7.3.1 where we studied 

the impact of the number of SKUs on the performance of the IP-based reevaluation algorithm 

performance. In order to quantify how e-tailer system performance is influenced by the number of 

SKUs, a set of experiments are conducted with the DES model using three problem instances: 

DES_2, DES_3 and DES_4. As shown in Table 7.2, these instances have a similar configuration 

except for the number of SKUs. The number of SKUs for DES_2, DES_3 and DES_4 is 5, 10, and 

100 respectively. 

All DES model parameters are fixed throughout this experiment. The reevaluation algorithm 

is triggered for a batch size of 50 orders and the values of 𝑡𝑖𝑚𝑒𝑃𝑒𝑟𝑂𝑟𝑑𝑒𝑟 and 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡𝐹𝑎𝑐𝑡𝑜𝑟 

are set to 1 second and 10 respectively. The results are summarized in Figure 7.11. According to 

this figure, average cost per order does not demonstrate a correlation with the number of SKUs. 

This can be explained by the fact that in this simulation the number of lines in a customer order is 

independent of number of SKUs in e-tailer’s product catalog. Therefore, the average shipping cost 

per order and number of SKUs are not closely related.  

Note that in each execution of the reevaluation algorithm, only the SKUs in the customer orders 

that are reevaluated are considered by the integer program. In other words, if number of SKUs is 

100, but only 30 of those SKUs are included in any of the 50 orders that are reevaluated together, 

the integer program for that reevaluation is constructed with the smaller subset of SKUs. In Section 

7.3.1, we considered an exponential distribution to identify the SKUs that are ordered by each 

customer while in this section we use a uniform distribution. Therefore, the number of SKUs that 

are in the subset for this case is larger than what was presented previously. Hence, the optimization 

gap percentage in this experiment has a positive correlation with the number of SKUs. 
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Figure 7.11: Impact of number of SKUs on system performance 

  



 
 

134 
 

7.3.11. Heuristic vs. IP-based reevaluation  

Although the IP-based reevaluation algorithm is effective in reducing shipping costs, it has 

some limitations for larger problem instances. As shown in previous experiments, parameters such 

as the number of FCs, SKUs, and reevaluation batch size add to the complexity of the integer 

program and increase the time needed to find an optimal decision. To solve larger problem 

instances, a heuristic reevaluation algorithm is presented that reduces average shipping cost for the 

e-tailer and can be triggered using the same mechanisms that were described for the IP-based 

reevaluation algorithm. In this section, experiments are conducted to analyze the performance of 

this heuristic algorithm in comparison with the integer program.  

Figure 7.12 illustrates the results of these experiments. According to this figure, although the 

integer program performs better for smaller batch sizes, its performance degrades as the batch size 

increases. The heuristic algorithm, on the other hand, demonstrates more consistent performance, 

and although it does not reduce the shipping cost to the same level as the integer program, it can 

reevaluate a larger batch of customer orders. On the other hand, since the heuristic algorithm is 

triggered like the integer program and its computation time is controlled with the same approach, 

it does not impact the service level. 

 This experiment can be replicated for other parameters that increase the complexity of the 

problem such as the number of SKUs and FCs. In general, for more complex reevaluation 

problems, the heuristic algorithm may be a better alternative to consider that can reduce shipping 

costs within a feasible timeframe.  
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Figure 7.12: Heuristic vs. IP-based reevaluation algorithm performance comparison 
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Chapter 8 

Conclusions and future work 

 

In this dissertation we have fully embedded two decision making algorithms within a DES 

model of a general e-tailer order fulfillment process. This is the first study in the literature to 

integrate integer programming and discrete event simulation in a novel way by feeding both the 

decisions produced and the computation time used by the integer program to the DES model to 

improve an e-tailer’s order fulfillment decisions. The DES model simulates daily operations of an 

e-tailer by considering important processes such as orders being placed, order fulfillment, 

shipment, and inventory replenishment. Order fulfillment decisions in the DES model are made 

when a customer places an order an using a rule-based method that assigns each customer order to 

one or more FCs that can fulfill them with a minimum number of shipments. This is a common 

practice that allows e-tailers to maintain an updated available-to-promise inventory record for all 

FCs and to provide an estimated delivery window to their customers.  

We demonstrated that although making fulfillment decisions on the fly is critical for 

maintaining the e-tailer’s operations, these decisions are made solely based on the available 

information at the time an order is placed and with the objective of minimizing the shipping cost 

for that individual order. In other words, they lead to a series of myopic fulfillment decisions that 

are locally optimized for each customer order, but when considered holistically, they do not 

globally minimize the e-tailer’s total shipping cost. In order to solve this problem, we presented 

an IP-based reevaluation algorithm and a heuristic algorithm that simultaneously consider the 

fulfillment decisions for a group of customer orders by shuffling the assignments that are made by 

the myopic decisions.  
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E-tailers receive orders around the clock, 24 hours a day and 7 days a week. Reevaluation 

needs to occur regularly during normal operations and without impacting important business KPIs 

such as customer service level. During reevaluation, in addition to the inventory units that are 

assigned to customer orders by myopic decisions, a portion of the un-assigned inventory at each 

FC gets reserved and is made available to the reevaluation algorithm to improve its decisions. That 

inventory may not be used to fulfill other customer orders that are placed while reevaluation is 

being executed. Note that other processes may rely on or be impacted by the reevaluation. For 

example, if customer shipments are sent from each FC at a fixed time every day, the fulfillment 

decision for orders must be locked before that time. Therefore, reevaluation computation time must 

be considered when designing a reevaluation strategy for an e-tailer.  

Since both reevaluation decisions and computation time must be studied within the context of 

e-tail operations and by considering the dependencies and relationships among multiple events, 

we used a novel technique to fully embed our two reevaluation algorithms within a discrete event 

simulation model. This framework enables us to design a reevaluation strategy that fits the e-

tailer’s operational characteristics. This also allows e-tailers to test multiple reevaluation scenarios 

with different configurations in a simulated environment before selecting and deploying the 

desired strategy to their fulfillment system. 

The IP-based reevaluation algorithm is a complex problem which requires a nontrivial amount 

of computation time. On one hand, reevaluating the fulfillment decisions for a larger group of 

customer orders (with a larger reevaluation batch size) allows the integer program to generate 

better decisions. On the other hand, a higher batch size requires more computation time which has 

a negative impact on system performance. Because of this tradeoff, selecting the best strategy for 

triggering the reevaluation algorithm is a nontrivial problem. We proposed two different methods 
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for doing this: (i) reevaluating for fixed batch sizes and (ii) reevaluating at a fixed time interval. 

Additionally, we developed a framework that allows e-tailers to find the best value for the batch 

size or time interval that minimizes total shipping cost. 

The computation time for the IP-based reevaluation algorithm is dependent on several model 

parameters including the number of FCs, SKUs, customer orders, and order lines. For an e-tailer 

with a complex supply chain which contains millions of SKUs and hundreds of FCs, the integer 

program may not find an optimal solution in a reasonable amount of time. Therefore, we developed 

a heuristic reevaluation algorithm as an alternative. The heuristic algorithm’s computation time 

can be controlled by the e-tailer. According to our experimental results, the heuristic algorithm 

does not decrease total shipping cost as much as the integer program, but it shows a more consistent 

performance for large problem instances. 

The experimental results yield several managerial insights. First, our ability to significantly 

reduce total shipping cost for customer orders using reevaluation demonstrates the effectiveness 

of this approach. Second, in order to asses a reevaluation algorithm for making order fulfillment 

decisions, both the decisions generated and computation time used by the algorithm need to be 

considered. A reevaluation algorithm that generates high-quality decisions but requires a long 

computation time may not be the best fit for a fast-paced e-tailer that receives hundreds of customer 

orders in an hour. Third, there is a close relationship between the decisions generated by the 

reevaluation algorithm, the computation time it uses, and the method by which it is triggered. 

Increasing the frequency of reevaluation reduces the ability of the reevaluation algorithm to shuffle 

assignments among a larger group of orders. On the other hand, it also decreases the reevaluation 

computation time and reduces the optimization gap. A successful reevaluation strategy is therefore 

a combination of an effective algorithm and a triggering method. Since these two are interrelated, 
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the best approach to find a successful strategy is experimenting with multiple scenarios. Our DES 

model provides a framework for such analysis. 

Future work on this problem might proceed in several directions. First, the DES model can be 

extended to consider other processes in the e-tailer’s operations. For example, returns and reverse 

logistics is an important aspect of an e-tailer supply chain. Some inventory units that are returned 

to the e-tailer could be assigned to new customer orders. Our proposed DES model has a modular 

design which is based on object-oriented programming and supports the addition of new events 

and processes for further studies. Second, the objective function of the reevaluation integer 

program can be extended to include other cost elements such as inventory holding cost and order 

processing cost. Although outbound transportation cost (i.e. order shipping cost) accounts for a 

significant portion of an e-tailer’s overall operating cost, including other cost elements increases 

the effectiveness of the reevaluation algorithm. Third, there are research opportunities for 

improving the reevaluation triggering methods. In this dissertation, we proposed two methods 

based on a fixed batch size and fixed cycle time. We believe this could be augmented with other 

techniques that consider triggering the reevaluation algorithm based on the characteristics of 

customer orders as well as inventory levels at FCs. In other words, reevaluation can be triggered 

according to the level of SKU overlap within a set of customer orders as opposed to the size of 

that set. Fourth, there are two directions in which the proposed heuristic algorithm could be 

improved. Instead of splitting the batch of customer orders to equal size subsets, the proportion 

could be a model parameter that is customizable for each e-tailer according to their specific 

business requirements. Additionally, although in this dissertation, we split customer orders only 

once and apply the decomposed integer program to one of the subsets, this procedure could be 

replicated multiple times with different randomized subsets to make a better overall decision. Fifth, 
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extending this model to analyze a retailer with an omni-channel supply chain network is a 

worthwhile direction for future work. Finally, this model can be used to study the impact of a crisis 

such as COVID-19 on an e-tailer order fulfillment process. COVID-19 has impacted e-tailers in 

many ways by causing demand volatility and supply shortages, and by increasing replenishment 

lead time, and creating logistics and transportation challenges. Since our proposed model is 

designed in a modular way and it is highly parameterized, decision makers can study the impact 

of many of these disruptions by either adjusting the model parameters or adding additional events 

to the simulation model. This can be extended to any future crisis and disruptions to allow e-tailers 

to proactively prepare their supply chains for those events. 
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Appendix A 

 

Linear regression models for UPS shipping rates 
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 Figure 1: Fitted linear regression models for shipping method 1 
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Figure 2: Fitted linear regression models for shipping method 2 
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Figure 3: Fitted linear regression models for shipping method 3 
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Figure 4: Fitted linear regression models for shipping method 4 
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Appendix B 

Simulation model pseudocodes  

 

Table 1: Zone calculator pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑍𝑜𝑛𝑒 

𝑰𝒏𝒑𝒖𝒕: 𝑜𝑟𝑔𝐿𝑜𝑐, 𝑑𝑒𝑠𝑡𝐿𝑜𝑐, 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒ℎ𝑜𝑑 

𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜𝑟𝑔𝐿𝑜𝑐, 𝑑𝑒𝑠𝑡𝐿𝑜𝑐) 

if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 1 

        if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 165 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 2 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 308 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 3 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 607 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 4 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1020 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 5 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1440 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 6 

        else 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 7 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 2 

        if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 165 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 302 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 308 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 303 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 607 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 304 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1020 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 305 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1440 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 306 

        else 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 307 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 3 

        if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 165 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 202 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 308 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 203 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 607 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 204 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1020 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 205 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1440 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 206 

        else 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 207 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

        if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 165 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 102 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 308 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 103 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 607 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 104 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1020 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 105 

        else if 𝑠ℎ𝑖𝑝𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 1440 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 106 

        else 

                𝑧𝑜𝑛𝑒𝑁𝑢𝑚 ← 107 

        endif 

endif 

return (𝑧𝑜𝑛𝑒𝑁𝑢𝑚) 
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Table 2: Shipping cost per box calculator pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑆ℎ𝑖𝑝𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥𝐶𝑎𝑙𝑐 

𝑰𝒏𝒑𝒖𝒕: 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒, 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒ℎ𝑜𝑑 

if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 1 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 2 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 0.50 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 3 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 0.90 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 4 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 1.36 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 5 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 6.01 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 6 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 9.70 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 13.62 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 2 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 302 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 7.23 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 303 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 9.87 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 304 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 9.28 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 305 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 9.30 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 306 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 12.31 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 11.16 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 3 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 202 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 10.35 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 203 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 15.01 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 204 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 15.22 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 205 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 17.50 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 206 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 19.85 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 25.64 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 102 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 11.53 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 103 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 16.57 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 104 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 35.21 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 105 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 41.15 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 106 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 43.56 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥 ← 45.37 

        endif 

endif 

return(𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥) 
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Table 3: Shipping cost per pound calculator pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑆ℎ𝑖𝑝𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑𝐶𝑎𝑙𝑐 

𝑰𝒏𝒑𝒖𝒕: 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒, 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒ℎ𝑜𝑑 

if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 1 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 2 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.47 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 3 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.48 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 4 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.51 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 5 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.50 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 6 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.54 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.54 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 2 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 302 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 0.81 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 303 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 1.01 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 304 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 1.33 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 305 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 1.75 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 306 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 2.52 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 2.97 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 3 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 202 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 1.18 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 203 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 1.34 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 204 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 1.34 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 205 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 2.59 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 206 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 4.27 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 4.52 

        endif 

else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 102 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 2.07 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 103 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 3.01 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 104 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 5.00 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 105 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 5.41 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑍𝑜𝑛𝑒 = 106 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 5.54 

        else 

                𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑 ← 5.54 

        endif 

endif 

return(𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑) 
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Table 4: Customer order placement event pseudocode  

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟𝑃𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

𝑰𝒏𝒑𝒖𝒕: 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒  

increase 𝑛𝑢𝑚𝑂𝑟𝑑 by 1 

initialize 𝑛𝑂𝑟𝑑 as an empty instance of 𝑂𝑟𝑑𝑒𝑟 

𝑛𝑂𝑟𝑑 . 𝑜𝑟𝑑𝑁𝑢𝑚 ←  𝑛𝑢𝑚𝑂𝑟𝑑 

𝑛𝑂𝑟𝑑 . 𝑜𝑟𝑑𝑇𝑖𝑚𝑒 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

𝑛𝑂𝑟𝑑 . 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 ← 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒) 

𝑛𝑂𝑟𝑑 . 𝑜𝑟𝑑𝐷𝑎𝑦 ← 𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒) 

𝑛𝑂𝑟𝑑 . 𝑜𝑟𝑑𝐿𝑜𝑐. 𝑥𝐶𝑜𝑜𝑟𝑑 ← 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(0, 𝐿𝑒𝑛𝑔𝑡ℎ) 

𝑛𝑂𝑟𝑑 . 𝑜𝑟𝑑𝐿𝑜𝑐. 𝑦𝐶𝑜𝑜𝑟𝑑 ← 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(0, 𝑊𝑖𝑑𝑡ℎ) 

𝑟𝑎𝑛𝑑1 ← 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(0,1) 

𝑟𝑎𝑛𝑑2 ← 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(0,1) 

 

/* Specify new order’s delivery preference based on cumulative probability distribution */ 

if 𝑟𝑎𝑛𝑑1 ≤ 𝐷𝑒𝑙𝑃𝑟𝑜𝑏[1] 
        𝑛𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓 ← 1 

        if 𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 < 𝐷𝑎𝑖𝑙𝑦𝑆ℎ𝑖𝑝𝐻𝑜𝑢𝑟 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[1]) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(480,1140) 

        else 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[1] + 1) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(480,1140) 

        endif  

else if 𝑟𝑎𝑛𝑑1 ≤ 𝐷𝑒𝑙𝑃𝑟𝑜𝑏[2] 
        𝑛𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓 ← 2 

        if 𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 < 𝐷𝑎𝑖𝑙𝑦𝑆ℎ𝑖𝑝𝐻𝑜𝑢𝑟 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[2]) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(480,1140) 

        else 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[2] + 1) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(480,1140) 

        endif 

else if 𝑟𝑎𝑛𝑑1 ≤ 𝐷𝑒𝑙𝑃𝑟𝑜𝑏[3] 
        𝑛𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓 ← 3 

        if 𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 < 𝐷𝑎𝑖𝑙𝑦𝑆ℎ𝑖𝑝𝐻𝑜𝑢𝑟 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[3]) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(720,1140) 

        else  

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[3] + 1) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(720,1140) 

        endif 

else 

        𝑛𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓 ← 4 

        if 𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐻𝑜𝑢𝑟 < 𝐷𝑎𝑖𝑙𝑦𝑆ℎ𝑖𝑝𝐻𝑜𝑢𝑟 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[4]) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(900,1140) 

        else 

                𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙 ← (𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝐷𝑎𝑦𝑠[4] + 1) ∗ 1440 + 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(900,1140)  

        endif 

endif 
 

/* Specify when this order must be locked based on its arrival time */ 

𝑛𝑂𝑟𝑑. 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← (𝐷𝑎𝑦(𝑛𝑂𝑟𝑑. 𝑒𝑠𝑡𝐷𝑒𝑙) − 1) ∗ 1440 + 780 

 
/* Determine number of line items in the order based on cumulative probability distribution */ 

for 𝑖 = 1 to 𝑀𝑎𝑥𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠 

        if 𝑟𝑎𝑛𝑑2 ≤  𝑂𝑟𝑑𝐿𝑖𝑛𝑒𝑠𝑃𝑟𝑜𝑏[1] 
                𝑛𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 ← 𝑖 
                exit for loop 
        endif 

endfor 

 

/* Specify SKUs for each order line based on cumulative probability distribution */ 

𝑐ℎ𝑒𝑐𝑘 ← 𝑓𝑎𝑙𝑠𝑒 

for 𝑖 = 1 to 𝑛𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        while 𝑐ℎ𝑒𝑐𝑘 is 𝑓𝑎𝑙𝑠𝑒 

                𝑐ℎ𝑒𝑐𝑘 ← 𝑡𝑟𝑢𝑒 

                        𝑟𝑎𝑛𝑑3 ← 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(0,1) 

                        for 𝑠 = 1 to 𝑁𝑢𝑚𝑆𝑘𝑢𝑠 

                                if 𝑟𝑎𝑛𝑑3 ≤ 𝑆𝑘𝑢𝑃𝑟𝑜𝑏[𝑠] 
                                        𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑘𝑢 ← 𝑠 

                                        exit for loop 

                                endif 

                        endfor  
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                        for 𝑗 = 1 to 𝑖 
                                if 𝑛𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑗]. 𝑠𝑘𝑢𝑁𝑢𝑚 = 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑘𝑢 

                                        𝑐ℎ𝑒𝑐𝑘 ← 𝑓𝑎𝑙𝑠𝑒 

                                        exit for loop 

                                endif 

                endfor 
        endwhile 

        𝑛𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑠𝑘𝑢𝑁𝑢𝑚 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑆𝑘𝑢 

        𝑐ℎ𝑒𝑐𝑘 ← 𝑓𝑎𝑙𝑠𝑒 

endfor 

 

/* Specify order quantity for each order line based on cumulative probability distribution */ 

for 𝑖 = 1 to 𝑛𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        𝑟𝑎𝑛𝑑4 ← 𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(0,1) 

        for 𝑞 = 1 to 𝑀𝑎𝑥𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 

                if 𝑟𝑎𝑛𝑑4 ≤ 𝑄𝑡𝑦𝑃𝑟𝑜𝑏[𝑞] 
                        𝑛𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 ← 𝑞 

                        exit for loop 

                endif 

        endfor 
endfor 

 

/* Update statistical accumulators */ 

for 𝑖 = 1 to 𝑛𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        increase 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑚𝑎𝑛𝑑[𝑛𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑠𝑘𝑢𝑁𝑢𝑚] by 𝑛𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦         

endfor 
 

/* Update system state */ 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑡𝑖𝑚𝑒𝑂𝑓𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

push 𝑛𝑂𝑟𝑑 into 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑜𝑟𝑑𝑒𝑟𝑄𝑢𝑒𝑢𝑒 

push 𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝑁𝑢𝑚 into 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑜𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝑓𝑂𝑟𝑑𝑒𝑟𝑠 ← 𝑛𝑂𝑟𝑑. 𝑜𝑟𝑑𝑁𝑢𝑚 

increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝑂𝑓𝑂𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑠 by 1 

 

/* Update event calendar and call other events */ 

call 𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦() event 

put the next customer order arrival event in the calendar 
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Table 5: Check inventory availability pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 

𝑰𝒏𝒑𝒖𝒕: 𝑐𝑢𝑠𝑡𝑂𝑟𝑑, 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

𝑎𝑐𝑐𝑒𝑝𝑡𝑂𝑑𝑒𝑟 ← 𝑡𝑟𝑢𝑒 

 

/* For each order line, check inventory availability at all FCs and determine if the customer order can be satisfied */ 

for 𝑖 = 1 to 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        o𝑛𝐻𝑎𝑛𝑑𝐼𝑛𝑣 ← 0 

        𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑣 ← 0 

        𝑠𝑁𝑢𝑚 ← 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑠𝑘𝑢𝑁𝑢𝑚 

        for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

                increase o𝑛𝐻𝑎𝑛𝑑𝐼𝑛𝑣 by 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓]. 𝑜𝑛𝐻𝑎𝑛𝑑𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

                if 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒 ≤ 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 

                        increase 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑣 by 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

                endif 

        endfor 

        if o𝑛𝐻𝑎𝑛𝑑𝐼𝑛𝑣 + 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝐼𝑛𝑣 < 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 

                𝑎𝑐𝑐𝑒𝑝𝑡𝑂𝑟𝑑𝑒𝑟 ← 𝑓𝑎𝑙𝑠𝑒 

                exit for loop 

        endif 

endfor 

 
/* Update event calendar and call other events */ 

if 𝑎𝑐𝑐𝑒𝑝𝑡𝑂𝑟𝑑𝑒𝑟 = 𝑡𝑟𝑢𝑒 

        Call 𝐴𝑐𝑐𝑒𝑝𝑡𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟() event 

else 

        Call 𝑅𝑒𝑗𝑒𝑐𝑡𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟() event 

endif 

 

Table 6: Accept customer order pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐴𝑐𝑐𝑒𝑝𝑡𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟 

𝑰𝒏𝒑𝒖𝒕: 𝑐𝑢𝑠𝑡𝑂𝑟𝑑, 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

/* Update statistical accumulators */ 

increase 𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑 by 1 

 

/* Update event calendar and call other events */ 

call 𝑀𝑎𝑘𝑒𝑂𝑟𝑑𝑒𝑟𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛() event 

 

Table 7: Reject customer order pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑅𝑒𝑗𝑒𝑐𝑡𝐶𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑂𝑟𝑑𝑒𝑟 

𝑰𝒏𝒑𝒖𝒕: 𝑐𝑢𝑠𝑡𝑂𝑟𝑑, 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

/* Update statistical accumulators */ 

increase 𝑁𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠𝑅𝑒𝑗𝑒𝑐𝑡𝑒𝑑 by 1 

 
/* Update system state */ 

decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑂𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑠 by 1  

increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑙𝑜𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑠 by 1 

push 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑜𝑟𝑑𝑁𝑢𝑚 into 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑐𝑙𝑜𝑠𝑒𝑑𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 

remove 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑜𝑟𝑑𝑁𝑢𝑚 from 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑜𝑝𝑒𝑛𝑂𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟𝑠 

remove 𝑐𝑢𝑠𝑡𝑂𝑟𝑑 from 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑜𝑟𝑑𝑒𝑟𝑄𝑢𝑒𝑢𝑒 
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Table 8: Make order fulfillment decision pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑀𝑎𝑘𝑒𝑂𝑟𝑑𝑒𝑟𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑰𝒏𝒑𝒖𝒕: 𝑐𝑢𝑠𝑡𝑂𝑟𝑑, 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

/* For each order item, specify number of units of on-hand and in-order inventory that are eligible to satisfy customer order */ 

for 𝑖 = 1 to 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        𝑠𝑁𝑢𝑚 ←  𝑐𝑢𝑠𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑠𝑘𝑢𝑁𝑢𝑚 

        for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

                𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑓] ← 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓]. 𝑜𝑛𝐻𝑎𝑛𝑑𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

                if 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒 ≤ 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑚𝑢𝑠𝑡𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒 

                        𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑓] ← 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

                else 

                        𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑓] ← 0 

                endif 
        endfor 

endfor 

 
/* Specify which order items can be fulfilled by each FC. Additionally, calculate total number of order items each FC can satisfy*/ 

for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

        𝑛𝑢𝑚𝐿𝑖𝑛𝑒𝑠𝐹𝑐𝐶𝑎𝑛𝐹𝑢𝑙𝑓𝑖𝑙𝑙[𝑓] ← 0 

        for 𝑖 = 1 to 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

                if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑓] + 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑓] ≥ 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 

                        increase 𝑛𝑢𝑚𝐿𝑖𝑛𝑒𝑠𝐹𝑐𝐶𝑎𝑛𝐹𝑢𝑙𝑓𝑖𝑙𝑙[𝑓] by 1 

                        𝑐𝑎𝑛𝐹𝑢𝑙𝑓𝑖𝑙𝑙[𝑖][𝑓] ← "𝑡𝑟𝑢𝑒" 

                else 

                        𝑐𝑎𝑛𝐹𝑢𝑙𝑓𝑖𝑙𝑙[𝑖][𝑓] ← "𝑓𝑎𝑙𝑠𝑒" 

                endif 

        endfor 

endfor 
 

/* Calculate a weight factor for each FC based on number of items it can satisfy and its distance to customer location */ 

for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

        𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓] ← 𝑛𝑢𝑚𝐿𝑖𝑛𝑒𝑠𝐹𝑐𝐶𝑎𝑛𝐹𝑢𝑙𝑓𝑖𝑙𝑙[𝑓] ∗ 1000 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑓𝑐[𝑓]. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)  
endfor 

 
/* Rank FCs based on the calculated weight */ 

for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

        𝑟𝐹𝑐𝑠[𝑓]  ← 𝑓 

endfor 

𝑗 ← 1 

𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← "𝑡𝑟𝑢𝑒" 

𝑤ℎ𝑖𝑙𝑒 𝑠𝑤𝑎𝑝𝑝𝑒𝑑 = "𝑡𝑟𝑢𝑒" 

        𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← "𝑓𝑎𝑙𝑠𝑒" 

        for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 − 𝑗 

                if 𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓] < 𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓 + 1] 
                        𝑡𝑒𝑚𝑝1 ← 𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓] 
                        𝑡𝑒𝑚𝑝2 ←  𝑟𝐹𝑐𝑠[𝑓] 
                        𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓] ← 𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓 + 1] 
                        𝑟𝐹𝑐𝑠[𝑓] ← 𝑟𝐹𝑐𝑠[𝑓 + 1] 
                        𝑓𝑐𝑊𝑒𝑖𝑔ℎ𝑡[𝑓 + 1] ← 𝑡𝑒𝑚𝑝1 

                        𝑟𝐹𝑐𝑠[𝑓] ← 𝑡𝑒𝑚𝑝2 

                        𝑠𝑤𝑎𝑝𝑝𝑒𝑑 ← "𝑡𝑟𝑢𝑒" 

                endif 
        endfor 

        increase 𝑗 by 1 

endwhile 

 

/* Assign each order items to a FC. When assigning items to FCs, this algorithm first checks the FC that can fulfill maximum number of order items 
and assigns the item to it if there is enough inventory. Otherwise it checks the second FC in the ranked list and repeats the logic until all items are 

assigned. If no FC has enough inventory to fulfill an order item, the algorithm splits that item into multiple assignments. */ 

for 𝑖 = 1 to 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        𝑓𝑜𝑢𝑛𝑑 ← "𝑓𝑎𝑙𝑠𝑒" 

        𝑠𝑁𝑢𝑚 ← 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑠𝑘𝑢𝑁𝑢𝑚 

        for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

                if 𝑐𝑎𝑛𝐹𝑢𝑙𝑓𝑖𝑙𝑙[𝑖][𝑟𝐹𝑐𝑠[𝑓]] = "𝑡𝑟𝑢𝑒" 

                        push 𝑟𝐹𝑐𝑠[𝑓] into 𝑓𝑐𝐹𝑜𝑟𝐴𝑠𝑔[𝑖]  
                        𝑓𝑜𝑢𝑛𝑑 ← "𝑡𝑟𝑢𝑒" 

                        if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] ≥  𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 

                                push 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖] 
                                push 0 into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖] 
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                                𝑠ℎ𝑀𝑡ℎ𝑑 ← 𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 0, ℎ𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒) 

                                𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑) 

                                𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                        else 

                                push 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖] 
                                push (𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 − 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]]) into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖] 
                                𝑠ℎ𝑀𝑡ℎ𝑑 ← 𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 
                                𝐷𝑎𝑦(𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑟𝐹𝑐𝑠[𝑓]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒) − 𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒)) 

                                𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑) 

                                𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                        endif 

                endif 
        endfor 

        if 𝑓𝑜𝑢𝑛𝑑 = "𝑓𝑎𝑙𝑠𝑒" 

                𝑟𝑒𝑚𝑄𝑡𝑦 ← 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚[𝑖]. 𝑞𝑡𝑦 

                𝑓 ← 1 

                while 𝑟𝑒𝑚𝑄𝑡𝑦 > 0 

                        if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]]+ 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑟𝐹𝑐𝑠[𝑓]] > 0 

                                push 𝑟𝐹𝑐𝑠[𝑓] into 𝑓𝑐𝐹𝑜𝑟𝐴𝑠𝑔[𝑖] 
                                if 𝑟𝑒𝑚𝑄𝑡𝑦 > (𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]]+ 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑟𝐹𝑐𝑠[𝑓]]) 

                                        push 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖] 
                                        push 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑟𝐹𝑐𝑠[𝑓]] into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖] 

                                        if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑟𝐹𝑐𝑠[𝑓]] > 0 

                                                𝑠ℎ𝑀𝑡ℎ𝑑 ← 𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓,  
                                                𝐷𝑎𝑦(𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑟𝐹𝑐𝑠[𝑓]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒) − 𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒)) 

                                                𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑) 

                                                𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                                push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                                push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                                push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                                        else 

                                                𝑠ℎ𝑀𝑡ℎ𝑑 ← 𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 0, 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒)) 

                                                𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑) 

                                                𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                                push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                                push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                                push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                                        endif 

                                else if  𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] ≥ 𝑢𝑛𝑓𝑢𝑙𝑓𝑖𝑙𝑙𝑒𝑑𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 

                                        push 𝑟𝑒𝑚𝑄𝑡𝑦 into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖] 
                                        push 0 into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖] 
                                        𝑠ℎ𝑀𝑡ℎ𝑑 ←  𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 0, 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒)) 

                                        𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑)                               

                                        𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                        push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                        push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                        push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                                else 

                                        push 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖] 
                                        if 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑟𝐹𝑐𝑠[𝑓]] > 0 

                                                push 𝑟𝑒𝑚𝑄𝑡𝑦 − 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖] 
                                                𝑠ℎ𝑀𝑡ℎ𝑑 ← 𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓,  
                                                𝐷𝑎𝑦(𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑟𝐹𝑐𝑠[𝑓]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒) − 𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒)) 

                                                𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑) 

                                                𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                                push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                                push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                                push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                                        else 

                                                push 0 into 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖] 



 
 

153 
 

 

                                                𝑠ℎ𝑀𝑡ℎ𝑑 ←  𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐(𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 0, 𝐻𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒)) 

                                                𝑠ℎ𝑇𝑖𝑚𝑒 ← 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐(𝐷𝑎𝑦(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), H𝑜𝑢𝑟(𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒), 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑑𝑒𝑙𝑃𝑟𝑒𝑓, 𝑠ℎ𝑀𝑡ℎ𝑑) 

                                                𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 ← 𝑠ℎ𝑇𝑖𝑚𝑒 − 60 

                                                push 𝑠ℎ𝑀𝑡ℎ𝑑 into 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖] 
                                                push 𝑠ℎ𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖] 
                                                push 𝑙𝑜𝑐𝑘𝑇𝑖𝑚𝑒 into 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖] 
                                        endif 

                                endif 

                                decrease 𝑟𝑒𝑚𝑄𝑡𝑦 by 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑂𝐻[𝑖][𝑟𝐹𝑐𝑠[𝑓]] + 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝐼𝑂[𝑖][𝑟𝐹𝑐𝑠[𝑓]] 
                        endif 

                        𝑓 ← 𝑓 + 1 

                endwhile 

        endif 

        𝑓𝑜𝑢𝑛𝑑 ← "𝑡𝑟𝑢𝑒" 

endfor 

 

/* Update system state with information about fulfillment decision */ 

for 𝑖 = 1 to 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑛𝑢𝑚𝐼𝑡𝑒𝑚𝑠 

        for 𝑓 = 1 to 𝑓𝑐𝐹𝑜𝑟𝐴𝑠𝑔[𝑖]. 𝑠𝑖𝑧𝑒() 

                initialize 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 to be an empty instance of 𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 

                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑜𝑟𝑑𝑁𝑢𝑚 ← 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑜𝑟𝑑𝑒𝑟𝑁𝑢𝑚𝑏𝑒𝑟 

                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠𝑘𝑢𝑁𝑢𝑚 ← 𝑐𝑢𝑠𝑡𝑂𝑟𝑑. 𝑖𝑡𝑒𝑚𝑖 . 𝑠𝑘𝑢𝑁𝑢𝑚 

                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑓𝑐𝑁𝑢𝑚 ← 𝑓𝑐𝐹𝑜𝑟𝐴𝑠𝑔[𝑖][𝑓] 
                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝐻𝑎𝑛𝑑 ← 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖][𝑓] 
                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑛𝑂𝑟𝑑𝑒𝑟 ← 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖][𝑓] 
                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 𝑎𝑠𝑔𝑆ℎ𝑀𝑡ℎ𝑑[𝑖][𝑓] 
                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← 𝑎𝑠𝑔𝑆ℎ𝑇𝑖𝑚𝑒[𝑖][𝑓] 
                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← 𝑎𝑠𝑔𝐿𝑜𝑐𝑘𝑇𝑖𝑚𝑒[𝑖][𝑓] 
                𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑙𝑜𝑐𝑘𝑒𝑑 ← "𝑓𝑎𝑙𝑠𝑒" 

                push 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡 into 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 

                decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠𝑘𝑢𝑁𝑢𝑚][𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑓𝑐𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 by 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖][𝑓] 
                decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠𝑘𝑢𝑁𝑢𝑚][𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑓𝑐𝑁𝑢𝑚]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 by 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖][𝑓] 
                increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠𝑘𝑢𝑁𝑢𝑚][𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑓𝑐𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 by 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝐻[𝑖][𝑓] 
                increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑠𝑘𝑢𝑁𝑢𝑚][𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡. 𝑓𝑐𝑁𝑢𝑚]. 𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 by 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑂[𝑖][𝑓] 
        endfor 

endfor 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑡𝑖𝑚𝑒𝑂𝑓𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 
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Table 9: Shipping method calculator pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝐶𝑎𝑙𝑐 

𝐼𝑛𝑝𝑢𝑡: 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛, 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦, 𝑜𝑟𝑑𝑒𝑟𝐻𝑜𝑢𝑟 

if 𝑜𝑟𝑑𝑒𝑟𝐻𝑜𝑢𝑟 < 13 

        if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 1 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 2 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 1 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 4 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 2 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 5 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 3 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 6 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 2 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 0 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 1 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 2 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 2 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 3 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 3 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 4 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 3 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 0 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 3 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 1 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 4 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 0 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        endif 

else 

        if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 1 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 3 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 1 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 5 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 2 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 6 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 3 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 7 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 2 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 1 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 1 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 3 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 2 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 4 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 3 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 5 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 3 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 1 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 3 

                else if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 = 2 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 4 

                if 𝑖𝑛𝑣𝐴𝑣𝑎𝑖𝑙𝐷𝑎𝑦 ≤ 1 

                        𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 ← 4 

                endif 

        endif 

endif 

return(𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑) 
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Table 10: Shipping time calculator pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑆ℎ𝑖𝑝𝑇𝑖𝑚𝑒𝐶𝑎𝑙𝑐 

𝐼𝑛𝑝𝑢𝑡: 𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦, 𝑜𝑟𝑑𝑒𝑟𝐻𝑜𝑢𝑟, 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛, 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 

if 𝑜𝑟𝑑𝑒𝑟𝐻𝑜𝑢𝑟 ≥ 13 

        𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 ← 1 

else 

        𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 ← 0 

endif 

if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 1 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 1 

                𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 2) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 2 

                𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 4) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 3 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 5) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 6) ∗ 1440 + 840 

        endif 

else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 2 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 1 

                𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 2 

                𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 2) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 3 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 3) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 4) ∗ 1440 + 840 

        endif 

else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 3 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 3 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦) ∗ 1440 + 840 

        else if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦 + 1) ∗ 1440 + 840 

        endif 

else if 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦𝑂𝑝𝑡𝑖𝑜𝑛 = 3 

        if 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 = 4 

                𝑠𝑖ℎ𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒 ← (𝑜𝑟𝑑𝑒𝑟𝐷𝑎𝑦 + 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐷𝑎𝑦) ∗ 1440 + 840 

        endif 
endif 

return(𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑇𝑖𝑚𝑒) 

 

Table 11: Lock fulfillment decision pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐿𝑜𝑐𝑘𝐹𝑢𝑙𝑓𝑖𝑙𝑙𝑚𝑒𝑛𝑡𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

𝑰𝒏𝒑𝒖𝒕: 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

/* Find all assignments that need to be locked and update system state accordingly */ 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑡𝑖𝑚𝑒𝑂𝑓𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

For 𝑎 = 1 to 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 

        if 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑙𝑜𝑐𝑘𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

                𝑓𝑁𝑢𝑚 ← 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑓𝑐𝑁𝑢𝑚 

                𝑠𝑁𝑢𝑚 ← 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑠𝑘𝑢𝑁𝑢𝑚 

                𝑞𝑡𝑦𝑂𝐻 ←  𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝐻𝑎𝑛𝑑 

                𝑞𝑡𝑦𝐼𝑂 ← 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑛𝑂𝑟𝑑𝑒𝑟 

                increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 by 𝑞𝑡𝑦𝑂𝐻 

                decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 by 𝑞𝑡𝑦𝑂𝐻 

                increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓𝑁𝑢𝑚]. 𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 by 𝑞𝑡𝑦𝐼𝑂 

                decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑁𝑢𝑚][𝑓𝑁𝑢𝑚]. 𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 by 𝑞𝑡𝑦𝐼𝑂 

                𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑡𝑟𝑢𝑒 

        endif 
endfor 

/* Update event calendar and call other events */ 

put customer order shipment event in calendar 
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Table 12: Order shipment pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑂𝑟𝑑𝑒𝑟𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

𝑰𝒏𝒑𝒖𝒕: 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

/* Find all assignments that need to be shipped and remove them from system state */ 

for 𝑎 = 1 to 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 

        if 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑙𝑜𝑐𝑘𝑒𝑑 = "𝑡𝑟𝑢𝑒" 

                𝑡𝑒𝑚𝑝 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎] 
                remove 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎] from list of current assignments in system state 

                push 𝑡𝑒𝑚𝑝 into 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝 

        endif 
endfor 

𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑒𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝. 𝑠𝑖𝑧𝑒() 

 

/* Update system state inventory information */ 

for 𝑎 = 1 to 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝 

        𝑓𝑐𝑁 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑒𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑓𝑐𝑁𝑢𝑚 

        𝑠𝑘𝑢𝑁 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑠𝑘𝑢𝑁𝑢𝑚 

        𝑞𝑡𝑦𝑂𝐻 ←  𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝐻𝑎𝑛𝑑 

        𝑞𝑡𝑦𝐼𝑂 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑛𝑂𝑟𝑑𝑒𝑟 

        decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑓𝑐𝑁][𝑠𝑘𝑢𝑁]. 𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 by 𝑞𝑡𝑦𝑂𝐻 

        decrease 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑓𝑐𝑁][𝑠𝑘𝑢𝑁]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 by 𝑞𝑡𝑦𝑂𝐻 

endfor 

 
/* Find list of all customer orders that will be shipped at this time */ 

for 𝑟 = 1 to 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝑂𝑟𝑑𝑒𝑟𝑠 

        for 𝑎 = 1 to 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝 

                if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑜𝑟𝑑𝑁𝑢𝑚 = 𝑟 

                        push 𝑟 into 𝑜𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                        exit for loop 
                endif 

        endfor 

endfor 

𝑛𝑢𝑚𝑂𝑓𝑂𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 ←  𝑜𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡. 𝑠𝑖𝑧𝑒() 

 
/* Find list of all FCs that will ship boxes to customers at this time */ 

for 𝑓 = 1 to 𝑁𝑢𝑚𝐹𝑐𝑠 

        for 𝑎 = 1 to 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝 

                if 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑓𝑐𝑁𝑢𝑚𝑏𝑒𝑟 = 𝑓 

                        push 𝑓 into 𝑓𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                        exit for loop 
                endif 

        endfor 

endfor 

𝑛𝑢𝑚𝑂𝑓𝐹𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 ← 𝑓𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡. 𝑠𝑖𝑧𝑒() 

 

/* Calculate total weight and total number of boxes that will be shipped from each FC to each order using each shipping method */ 

for 𝑚 = 1 to 𝑁𝑢𝑚𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝑠 

        for 𝑓 = 1 to 𝑛𝑢𝑚𝑂𝑓𝐹𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                for 𝑟 = 1 to 𝑛𝑢𝑚𝑂𝑓𝑂𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                        𝑤𝑒𝑖𝑔ℎ𝑡𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚][𝑓][𝑟] ← 0 

                        𝑏𝑜𝑥𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚][𝑓][𝑟] ← 0 

                        for 𝑎 = 1 to 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝 

                                𝑚𝑖 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝑀𝑒𝑡ℎ𝑜𝑑 

                                𝑓𝑖 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑓𝑐𝑁𝑢𝑚 

                                𝑟𝑖 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑜𝑟𝑑𝑁𝑢𝑚 

                                𝑠𝑖 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑒𝑡𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑠𝑘𝑢𝑁𝑢𝑚𝑏𝑒𝑟 

                                𝑞𝑡𝑦𝑂𝐻 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑒𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝐻𝑎𝑛𝑑 

                                𝑞𝑡𝑦𝐼𝑂 ← 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑒𝑡𝑠𝑇𝑜𝑆ℎ𝑖𝑝[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑛𝑂𝑟𝑑𝑒𝑟 

                                increase 𝑤𝑒𝑖𝑔ℎ𝑡𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚𝑖][𝑓𝑖][𝑟𝑖] by 𝑠𝑘𝑢[𝑠𝑖]. 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑞𝑡𝑦𝑂𝐻 + 𝑞𝑡𝑦𝐼𝑂) 

                                increase 𝑏𝑜𝑥𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚𝑖][𝑓𝑖][𝑟𝑖] by 𝑐𝑒𝑖𝑙(𝑤𝑒𝑖𝑔ℎ𝑡𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚𝑖][𝑓𝑖][𝑟𝑖]/𝑀𝑎𝑥𝐵𝑜𝑥𝑊𝑒𝑖𝑔ℎ𝑡) 

                        endfor 

                endfor 
        endfor 

endfor 

 
/*Calculate cost per mile and cost per pound for each order/FC/shipping method combination */ 

for 𝑚 = 1 to 𝑁𝑢𝑚𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝑠 

        for 𝑓 = 1 to 𝑛𝑢𝑚𝑂𝑓𝐹𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                for 𝑟 = 1 to 𝑛𝑢𝑚𝑂𝑓𝑂𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡  
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                for 𝑟 = 1 to 𝑛𝑢𝑚𝑂𝑓𝑂𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                        𝑓𝑖 ← 𝑓𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡[𝑓] 
                        𝑟𝑖 ← 𝑜𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡[𝑟] 
                        𝑚𝑖 ← 𝑚 

                        𝑠ℎ𝑖𝑝𝑍𝑜𝑛𝑒 ← 𝑍𝑜𝑛𝑒(𝑓𝑐[𝑓𝑖]. 𝑓𝑐𝐿𝑜𝑐, 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑜𝑟𝑑𝑒𝑟𝑄𝑢𝑒𝑢𝑒[𝑟𝑖]. 𝑜𝑟𝑑𝐿𝑜𝑐, 𝑚𝑖) 

                        𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥[𝑚][𝑓][𝑟] ← 𝑆ℎ𝑖𝑝𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥𝐶𝑎𝑙𝑐(𝑚𝑖, 𝑠ℎ𝑖𝑝𝑍𝑜𝑛𝑒) 

                        𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑[𝑚][𝑓][𝑟] ← 𝑆ℎ𝑖𝑝𝐶𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑𝐶𝑎𝑙𝑐(𝑚𝑖, 𝑠ℎ𝑖𝑝𝑍𝑜𝑛𝑒) 

                endfor 
        endfor 

endfor 

 
/*Calculate total cost of this shipment */ 

𝑐𝑜𝑠𝑡𝑂𝑓𝑇ℎ𝑖𝑠𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 ← 0 

for 𝑚 = 1 to 𝑁𝑢𝑚𝑆ℎ𝑖𝑝𝑀𝑒𝑡ℎ𝑜𝑑𝑠 

        for 𝑓 = 1 to 𝑛𝑢𝑚𝑂𝑓𝐹𝑐𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                for 𝑟 = 1 to 𝑛𝑢𝑚𝑂𝑓𝑂𝑟𝑑𝑒𝑟𝑠𝑊𝑖𝑡ℎ𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 

                        increase 𝑐𝑜𝑠𝑡𝑂𝑓𝑇ℎ𝑖𝑠𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 by 𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝐵𝑜𝑥[𝑚][𝑓][𝑟] ∗ 𝑏𝑜𝑥𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚][𝑓][𝑟] 
                        increase 𝑐𝑜𝑠𝑡𝑂𝑓𝑇ℎ𝑖𝑠𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡 by 𝑐𝑜𝑠𝑡𝑃𝑒𝑟𝑃𝑜𝑢𝑛𝑑[𝑚][𝑓][𝑟] ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑆ℎ𝑖𝑝𝑝𝑒𝑑[𝑚][𝑓][𝑟] 
                endfor 

        endfor 

endfor 
 

/* Update statistical accumulators */ 

increase 𝑡𝑜𝑡𝑎𝑙𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔𝐶𝑜𝑠𝑡 by 𝑐𝑜𝑠𝑡𝑂𝑓𝑇ℎ𝑖𝑠𝑆ℎ𝑖𝑝𝑚𝑒𝑛𝑡  
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Table 13: FC inventory replenishment pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐹𝐶𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 

𝑰𝒏𝒑𝒖𝒕: 𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐, 𝑟𝑒𝑣𝐶𝑦𝑐, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

/* Find all SKUs in target FC with similar review cycle and calculate the replenishment quantity for each based on their max inventory level 

and current available inventory */ 

for 𝑠 = 1 to 𝑁𝑢𝑚𝑆𝑘𝑢𝑠 

        if 𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑖𝑛𝑣𝐼𝑛𝑓𝑜[𝑠]. 𝑟𝑒𝑣𝑖𝑒𝑤𝐶𝑦𝑐𝑙𝑒 = 𝑟𝑒𝑣𝐶𝑦𝑐 

                𝑞 ← 𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑖𝑛𝑣𝐼𝑛𝑓𝑜[𝑠]. 𝑚𝑎𝑥𝐿𝑒𝑣𝑒𝑙 − 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑓𝑐𝑁𝑢𝑚𝑏𝑒𝑟][𝑠]. 𝑜𝑛𝐻𝑎𝑛𝑑𝑈𝑛𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

                𝑡 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 + 𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑖𝑛𝑣𝐼𝑛𝑓𝑜[𝑠]. 𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒 

                push 𝑠 into 𝑠𝑘𝑢𝑠𝑇𝑜𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ 

                push 𝑞 into 𝑞𝑡𝑦 

                push 𝑡 into 𝑟𝑒𝑐𝑇𝑖𝑚𝑒 

        endif 
endfor 

 
/* Update statistical accumulators */ 

for 𝑠 = 1 to 𝑠𝑘𝑢𝑠𝑇𝑜𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ. 𝑠𝑖𝑧𝑒() 

        increase 𝑁𝑢𝑚𝑂𝑓𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡𝑠[𝑠𝑘𝑢𝑠𝑇𝑜𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ[𝑠]][𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑓𝑐𝑁𝑢𝑚𝑏𝑒𝑟] by 1 

endfor 

 

/* Update system state with information from this inventory replenishment */ 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑡𝑖𝑚𝑒𝑂𝑓𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

for 𝑠 = 1 to 𝑠𝑘𝑢𝑠𝑇𝑜𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ. 𝑠𝑖𝑧𝑒() 

        increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑓𝑐𝑁𝑢𝑚𝑏𝑒𝑟][𝑠𝑘𝑢𝑠𝑇𝑜𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ[𝑠]]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 by 𝑞𝑡𝑦[𝑠] 
        𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐. 𝑓𝑐𝑁𝑢𝑚𝑏𝑒𝑟][𝑠𝑘𝑢𝑠𝑇𝑜𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ[𝑠]]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒 ← 𝑟𝑒𝑐𝑇𝑖𝑚𝑒[𝑠] 
endfor 

 

/* Update event calendar and call other events */ 
put the receiving inventory replenishment event in the calendar 

put event for next replenishment order in the calendar 

 

Table 14: Receive replenishment pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑅𝑒𝑝𝑙𝑒𝑛𝑖𝑠ℎ𝑚𝑒𝑛𝑡 

𝑰𝒏𝒑𝒖𝒕: 𝑓𝑐𝑁𝑢𝑚, 𝑠𝑘𝑢𝑁𝑢𝑚, 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒  

/* Update system state inventory and assignments information based on the arriving replenishment */ 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑡𝑖𝑚𝑒𝑂𝑓𝑀𝑜𝑠𝑡𝑅𝑒𝑐𝑒𝑛𝑡𝐸𝑣𝑒𝑛𝑡 ← 𝑐𝑢𝑟𝑟𝑇𝑖𝑚𝑒 

increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑘𝑢𝑁𝑢𝑚][𝑓𝑐𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 by 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑘𝑢𝑁𝑢𝑚][𝑓𝑐𝑁𝑢𝑚]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 

increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑘𝑢𝑁𝑢𝑚][𝑓𝑐𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 by 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑘𝑢𝑁𝑢𝑚][𝑓𝑐𝑁𝑢𝑚]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 

increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑘𝑢𝑁𝑢𝑚][𝑓𝑐𝑁𝑢𝑚]. 𝑜𝑛𝐻𝑎𝑛𝑑𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 by 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑠𝑘𝑢𝑁𝑢𝑚][𝑓𝑐𝑁𝑢𝑚]. 𝑖𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑘𝑢][𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐]. 𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝑈𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 ← 0 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑘𝑢][𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐]. 𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑂𝑝𝑒𝑛 ← 0 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑘𝑢][𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐]. 𝑜𝑛𝑂𝑟𝑑𝑒𝑟𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐿𝑜𝑐𝑘𝑒𝑑 ← 0 

𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑖𝑛𝑣[𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑘𝑢][𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝑐]. 𝑟𝑒𝑝𝑇𝑖𝑚𝑒 ← 0 

for 𝑎 = 1 to 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑛𝑢𝑚𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 

        if 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑓𝑐𝑁𝑢𝑚 = 𝑡𝑎𝑟𝑔𝑒𝑡𝐹𝐶 𝐴𝑁𝐷 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑠𝑘𝑢𝑁𝑢𝑚 = 𝑡𝑎𝑟𝑔𝑒𝑡𝑆𝑘𝑢 

                increase 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝑂𝑛𝐻𝑎𝑛𝑑 by 𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑛𝑂𝑟𝑑𝑒𝑟 

                𝑠𝑦𝑠𝑆𝑡𝑎𝑡𝑒. 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠[𝑎]. 𝑞𝑡𝑦𝐹𝑟𝑜𝑚𝐼𝑛𝑂𝑟𝑑𝑒𝑟 ← 0 

        endif 

endfor 
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Table 15: Day calculator function pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐷𝑎𝑦 

𝑰𝒏𝒑𝒖𝒕: 𝑡𝑖𝑚𝑒𝐼𝑛𝑀𝑖𝑛𝑢𝑡𝑒 

𝑑𝑎𝑦 ← 𝑡𝑖𝑚𝑒𝐼𝑛𝑀𝑖𝑛𝑢𝑡𝑒/1440 

return(𝑑𝑎𝑦) 

 

 

Table 16: Hour calculator function pseudocode 

𝑷𝒓𝒐𝒄𝒆𝒅𝒖𝒓𝒆: 𝐻𝑜𝑢𝑟 

𝑰𝒏𝒑𝒖𝒕: 𝑡𝑖𝑚𝑒𝐼𝑛𝑀𝑖𝑛𝑢𝑡𝑒 

𝑡𝑖𝑚𝑒𝐼𝑛𝐻𝑜𝑢𝑟 ← (𝑡𝑖𝑚𝑒𝐼𝑛𝑀𝑖𝑛𝑢𝑡𝑒 − 1440 ∗ 𝐷𝑎𝑦(𝑡𝑖𝑚𝑒𝐼𝑛𝑀𝑖𝑛𝑢𝑡𝑒))/60 

return(𝑡𝑖𝑚𝑒𝐼𝑛𝐻𝑜𝑢𝑟) 

 

 

Table 17: Other functions 

Functions  

𝑢𝑛𝑖𝑓𝐷𝑖𝑠𝑡(𝑖, 𝑗) Returns a uniformly distributed random real value between 𝑖 and 𝑗 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑜𝑟𝑖𝑔𝑖𝑛, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) Returns the Euclidean distance between 𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 

𝑐𝑒𝑖𝑙(𝑛𝑢𝑚𝑏𝑒𝑟) Rounds 𝑛𝑢𝑚𝑏𝑒𝑟 to closest higher integer value  
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