University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

August 2020

Reevaluating Order Fulfillment Decisions for E-Tailers Under True
Simulated Operating Conditions

Amir H. Kalantari
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

b Part of the Business Administration, Management, and Operations Commons, Computer Sciences
Commons, and the Industrial Engineering Commons

Recommended Citation

Kalantari, Amir H., "Reevaluating Order Fulfillment Decisions for E-Tailers Under True Simulated Operating
Conditions" (2020). Theses and Dissertations. 2533.

https://dc.uwm.edu/etd/2533

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/623?utm_source=dc.uwm.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2533?utm_source=dc.uwm.edu%2Fetd%2F2533&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

REEVALUATING ORDER FULFILLMENT

DECISIONS FOR E-TAILERS UNDER TRUE

SIMULATED OPERATING CONDITIONS

by

Amir Kalantari

A Dissertation Submitted in
Partial Fulfillment of the
Requirement for the Degree of
Doctor of Philosophy
in Engineering
at
The University of Wisconsin — Milwaukee

August 2020

ABSTRACT

REEVALUATING ORDER FULFILLMENT DECISIONS FOR E-TAILERS UNDER
TRUE SIMULATED OPERATING CONDITIONS

by

Amir Kalantari

The University of Wisconsin — Milwaukee, 2020
Under the Supervision of Professor Matthew Petering

This dissertation makes both a methodological and an applied contribution. From a
methodological standpoint, this is among the very first works in the literature to explore the
concepts of true simulated operating conditions and fully embedded decision-making algorithms.
We illustrate the effectiveness of these concepts by applying them to an online retailer (i.e. e-tailer)

order fulfillment decision making process.

Online shopping has completely transformed retail markets in recent years. For customers, it
provides convenience, visibility and choice, and for retailers it provides market expansion
opportunities, operational cost reduction, and many other advantages. There are fundamental
differences between the supply chain design and operations of an online and traditional (i.e. brick
and mortar) retailer. One of the key differences exists in customer order fulfillment which refers
to the process of picking and packing order items from a retailer’s warehouse or store and
delivering them to customers. In traditional retail, order fulfillment happens in physical stores and
by customers. In online retail, however, the tables are turned, and the retailer is responsible for this

task.

The reliability, cost, and lead time of online order fulfillment have a direct impact on customer
satisfaction and an e-tailer’s overall success. In today’s competitive market, excellence in
fulfillment is critical and organizations are struggling with how best to accomplish this while
remaining profitable. On one hand, order fulfillment accounts for a considerable amount of
operational cost and reducing it directly improves an e-tailer’s bottom-line. On the other hand,
customers demand fast and cheap order delivery options. This constantly pushes e-tailers to make

tough strategic and operational choices to stay competitive.

An e-tailer’s order fulfillment process begins with a fulfillment decision which assigns a
customer order to one or more fulfillment centers (FCs). E-tailers typically put an order fulfillment
policy (i.e. fulfillment strategy) in place that determines how those decisions must be made.
Identifying the best policy is extensively studied in the literature. However, most of the proposed
policies focus on minimizing the fulfillment cost for individual customer orders by finding an
optimal assignment at the time an order is placed. In this dissertation we show that this policy leads
to a suboptimal decision at the system level. In other words, when a collection of these myopic
fulfillment decisions is analyzed together, total fulfillment cost can be further reduced by

optimizing the decisions for that group collectively.

Since e-tailers receive customer orders around the clock and at a fast pace, order fulfillment
decisions are made automatically using an algorithm. Additionally, from an operational
perspective, making fulfillment decisions on the fly for individual customer orders enables e-tailers
to keep an updated available-to-promise inventory record for each stock keeping unit (SKU) and
FC combination. It also allows them to provide an estimated delivery window to their customers

in real time. Therefore, although in theory optimizing fulfillment decisions for a group of customer

orders reduces costs, there are practical challenges in deploying this policy in a real-world e-tailer

environment.

In order to address these challenges, we propose a reevaluation strategy that does not fully
replace the automated order fulfillment decision making process. Instead, it periodically
reevaluates and optimizes the fulfillment decisions for a group of orders that are waiting in the
system to be processed and shipped to customers. We develop an integer programming-based
reevaluation algorithm that can be triggered for a fixed number of customer orders or at regular
time intervals. Our integer program considers several dimensions such as on-hand and on-order
inventory, customer delivery preferences, shipping methods, and the number of boxes to minimize
total fulfillment cost while maintaining the delivery time and service level for all customer orders.
Additionally, since the large instances of the proposed model are mathematically difficult to solve

to optimality, we develop a decomposition-based heuristic for those instances.

As noted, our proposed reevaluation algorithm must be triggered regularly during an e-tailer’s
operations without interrupting other important processes relating to new customer orders,
shipment of orders, and inventory replenishment. Therefore, in addition to reevaluation decisions,
the computation time used by a reevaluation algorithm needs to be considered when designing an
effective strategy. For example, for customer orders that need to be shipped on a given day,

reevaluation decisions must be finalized before the shipping deadline.

To study the complex relationship between reevaluation and other processes, we embed our
reevaluation algorithm inside a discrete event simulation model in such a way that both the
decisions produced and computation time used by the algorithm are fed back to the simulation
model. This novel method which was first presented by Petering (2015), enables us to study the

tradeoff between the quality of the decisions produced and computation time used by the algorithm

iv

in order to recommend the overall best reevaluation strategy for an e-tailer according to its

operational characteristics.

Finally, we conduct more than two hundred experiments in which the reevaluation algorithm
is fully embedded in the DES model. The results confirm the effectiveness of reevaluation
algorithm in reducing total fulfillment cost by an average of 5% for our test instances. It also
illustrates the tradeoff between decision quality and computation time and allows us to perform

scenario analysis to find the best overall reevaluation strategy for an e-tailer.

© Copyright by Amir Kalantari, 2020
All Rights Reserved

Vi

To
My parents

vii

TABLE OF CONTENTS

L@ T o (= ol) (T 11 Tox [SRS 1
1.1, Order FUIFIIIMENT PrOCESSc.ooueiieiiiieiieit ettt 3
1.2. Order fUIFIIMENT ECISTONeiviiieiieie ettt st et e b sreeaesreeneeneeenen 8
1.3, Order TUIFITIMENT POLICY ...ovviiieie e st esreen e resreesaenre e 12
1.4. Intense unending real-time operational challenge (IURTOC)ccooiiiiiiieneieeese e 18
1.5. Fully embedded decision-making algorithm (FEDMA)ccoiiiiiininiieecee e 22
1.6. Contribution and novelty of the reSearch.........cccccov i 23

Chapter 2: REVIEW OF IIEEIAIUIEcveie ittt re et sb e e ne e te e e eenee e 24
2.1. FEDMA, PEDMA, and true simulated operating CONGItIONS...........ccccervieeiienienieniseeie e 24
2.2. ONHINE TELAITING ... bbbttt een e 27

2.2.1. ENaDIErs and SUCCESS TACLOISccuiviieieiieiisicsie sttt sttt e 27
2.2.2. SUPPLY ChAIN NEIWOTK......coeiiiiiiiie e 28
2.2.3. OFUEE UEIIVETY ...ttt ettt b e b n e 31
2.2.4. Order fUIFIIIMENT AECISIONcciiiiiiiieeee et 32

Chapter 3: Discrete-event simulation model for an e-tailer order fulfillment process..........cccocevvvvvenenenn, 35

3.1. Generic DES MOUel arChitECIUIE.cviieiie ettt sre et eneenne s 35
TR Y1 (=T 0 0 N 151 g Lot SRS 36
31,2, SYSIEIM STALE ...eeeeee e nraeennes 37
0 T Y o T PP UU TR UP PSPPI 37
3.1.4. SIMUIALION CIOCK ...vvivieiieceieie sttt sttt sb e s e te e e neesteeneeneeenen 37
3. L5, EVENE CAIBNUAT ... ittt sttt r et se et enes 38
3.1.6. Statistical ACCUMUIALOTS.civiiieieeieie ettt et enes 38

3.2. DES model of an e-tailer order fulfillment ProCesscoovieiiiiiieniseseeeee e 38
3.2.1. System instance for e-tailer DES MOElcccoiiiiiiiiiieic e 39
3.2.2. System state for e-tailer DES MOlc.covciiiiiiiiecc et 59
3.2.3. Events for e-tailer DES MOUELccoo ittt 65
3.2.4. Statistical accumulators for e-tailer DES MOdelc.coooiiiiiiiniiieee s 73

Chapter 4: Integer program for reevaluating order fulfillment plans............ccooiiii i 75
4.1, Problem defiNITIONooi ittt neeenes 75
4.2. Mathematical FOrmMUIALION..........cooiiiice et ene 77

Chapter 5: Heuristic algorithm for reevaluating order fulfillment plansccccoooo i 84

Chapter 6: Fully embedded order fulfillment reevaluation algorithm ... 89
6.1. Definition of a fully embedded decision-making algorithm (FEDMA)cccccooviiiiiiiniicieen, 90
6.2. FEDMA for reevaluating order fulfillment plans ... 91

viii

6.3. Challenges when fully embedding the order fulfillment DMA in the DES model............c..cc........ 93

6.3.1. Structural differences between optimization and simulationc.ccoecevveiei v 93
6.3.2. Shared resources between optimization and SIMulationcccccoccviivive v 94
6.3.3. Impact of Shipment PICK-UP tIME ..o 96
6.3.4. Impact of inventory repleniSNMENTccooiiiiiiiie e 98
6.3.5. Impact of customer delivery PreferenCeS ..o 100
6.3.6. Executing multiple reevaluations in parallel...............cccooooiiiiiiii e 102
6.3.7. Locking inventory for reeValUatioN...............cuoiiiiiiiieicieesise e 103

6.4. Execution cadence fOr reeValULIONcovoviiiiiiie i 104
Chapter 7: Experimental setup, results, and diSCUSSIONcccveviiiiiieiiiieeie e e 108
7.1. Experimental setup for IP-based reevaluation algorithm..............ccocooiiiiiiiiiiiii e 108
7.2. Experimental setup for DES model with fully embedded reevaluation algorithm 110
7.3. RESUILS AN QISCUSSION ..ttt sttt sttt b ettt b enes 113
7.3.1. Integer programming reevaluation algorithm scalabilitycc.ccooriiiiiiiiiiie 113
7.3.2. Simulation model performance without running reevaluation algorithmcccccoenennee. 117
7.3.3. Reevaluation algorithm performance for individual customer orderscccoceeevvevveinennnn, 118
7.3.4. Triggering reevaluation for a batch of customer orders.........ccoceveviiiie i 120
7.3.5. Identifying the optimal batch size for reevaluation.............ccocoviieieieneise e 122
7.3.6. Impact of reevaluation time Per OFAEYcooiiiiiieieieiee e 124
7.3.7. Impact of adjustmENt FACLONccooiiiii e e re e 126
7.3.8. Triggering reevaluation in fixed time iNtervals.............cccooiiiiiiiinencece e 128
7.3.9. Impact Of NUMDEE OF FCSoouiiiiiiiie e 130
7.3.10. Impact of NUMDET OF SKUSooiiiiicc e et st re e 132
7.3.11. Heuristic vs. IP-based reeValUation.............ccccviieiiieieiescse e 134
Chapter 8: Conclusions and TULUIE WOTK..........ccuiiiiiiiiiiiisieieese e 136
Appendix A: Linear regression models for UPS shipping ratesccoveeveviiieeiiine s 141
Appendix B: Simulation model pSEUAOCOTESociiiiiiiiee et ere s 145
[C T =) T ST RSPRSSRIN 160
CURRICULUM VITAE ...ttt ettt sttt e st e st e e st e e st e e s ta e e sate e e beeeataeesabeeesaneesnreas 167

LIST OF FIGURES

Figure 1.1: Order fUlfIIMENT PrOCESS........cviiiiiieieieses e 4
Figure 1.2: Difference between customer delivery options and shipping methods........................ 7
Figure 1.3: Order fulfillment decision for Order 1cocoiiiiiiiiieisese e 9
Figure 1.4: Order fulfillment decision fOr OFdEr 2ccviieieiie e 13
Figure 1.5: Making order fulfillment decisions for both orders simultaneouslycc..c....... 14
Figure 1.6: Reevaluating order fulfillment deCiSIONSccccvevieiiieiiee e 17
Figure 1.7: Importance of time in reviewing order fulfillment decisions............cccccceoveiiiinnnnnne 21
Figure 3.1: Conceptual diagram of a DES model architeCtureccccceovvevveve i 36
Figure 3.2: Visual representation of system instance for the DES modelccccooeiiiinnnnnn. 40
Figure 3.3: Order-up-to-level inventory policy with periodiC reVIewccccoccevvevievciiieieenns 44
Figure 3.4: Geographical distribution of a sample of OList customer orderscccccocerennee 51
Figure 3.5: Modeling geographical distribution of customer orders using regions...................... 52
Figure 3.6: Conceptual diagram of CUStOMEr Order QUEUE..........coverververierieriiseeeeeeie e 60
Figure 3.7: Inventory types in the SYStemM State..........c.cccveiiiieiiiie e 61
Figure 3.8: Transition logic between different iNVENtOry types.........ccovvvriienicieie e 63
Figure 3.9: Relationship between customer orders, fulfillment decisions and assignments 65
Figure 3.10: Event triggering diagram for discrete event simulation modelccccoceneene. 67

Figure 6.1: Event triggering diagram for DES model with FEDMA -
(fixed reevaluation DALCN SIZE)cuiiiiiiiee e 92

Figure 6.2: Event triggering diagram for DES model with FEDMA -

(fixed reevaluation CYCIE TIME)coi i 92
Figure 6.3: Shared resources between reevaluation algorithm and simulation model 95
Figure 6.4: Impact of shipment pick-up time on reevaluation algorithmcccccceeeiiivnnnnne. 97
Figure 6.5: Impact of inventory replenishment on reevaluation algorithmccccoeeiiennnne 99
Figure 6.6: Impact of customer delivery preference on reevaluation algorithm......................... 101

Figure 6.7: Executing multiple reevaluation algorithms in parallelcccocoveiieiiiininennn. 102
Figure 6.8: Scenario 1: executing reevaluation algorithm for a batch size of 2cccceeee.. 106
Figure 6.9: Scenario 2: executing reevaluation algorithm for a batch size of 3 ... 107

Figure 7.1: Relationship between number of SKUs, FCs and orders and optimization gap 116

Figure 7.2: Simulation model performance without reevaluationcccocceveveveiieiecie s, 117
Figure 7.3: System performance for reevaluating orders one at a timecccccceeeerencrcnnnnn. 119
Figure 7.4: Impact of reevaluating a batch of orders on average shipping costcccccceueene.. 121

Figure 7.5: Impact of reevaluating a batch of orders on number of orders reevaluated

AN SEIVICE BVttt st st et b ne e 121
Figure 7.6: Identifying the optimal batch size for reevaluating Orders...........ccccceoeeerencrernnne. 123
Figure 7.7: Impact of reevaluation time per order on system performance..............ccccceevvernenee. 125
Figure 7.8: Impact of adjustment factor on system performancec.ccooveveierenenenenenenns 127
Figure 7.9: Triggering reevaluation in fixed time intervals.............ccocoveiiiie i, 129
Figure 7.10: Impact of number of FCs on system performancecc.ccoceevinereincnensinnnenn 131
Figure 7.11: Impact of number of SKUs on system performance.............ccccoccevvveveiieciene e, 133
Figure 7.12: Heuristic vs. IP-based reevaluation algorithm performance comparison............... 135

Xi

LIST OF TABLES

Table 1.1: Alternatives to fulfill example CUStOMEr Order..........ccccoviiiiiiiiinieee 10
Table 1.2: Cost of shipping one box for different shipping methodsccccccvvveviiiiiiciecnee, 10
Table 1.3: Shipping cost for all alternatives ... 11
Table 3.1: Indices and parameters for DES model ..o 39
Table 3.2: Location class definitioN ..o s 41
Table 3.3: SKU Class definitioNccocoiiiiiiiiecesses s 42
Table 3.4: FC Class defiNITIONcooiiiiiiiiiiee e 42
Table 3.5: INVINFO €lass definition ..o 42
Table 3.6: List Of deliVery OPLIONSccuiiiiiiiieiee s 46
Table 3.7: Order class definitioN............oo i 47
Table 3.8: 1tem Class defiNItioN............ccoi i s 48
Table 3.9: Distribution of number of items in OList customer orders...........ccccoceeervrineneiinennns 49
Table 3.10: Region Class defiNitiONccoiiiiiiieieee e 51
Table 3.11: List of Shipping MEthOdScocveiiiieiece e 53
Table 3.12: List of UPS shipping zones based on shipping method and distance (in miles) 56
Table 3.13: Sample shipping rates from UPS COSt MAtriX..........ccccoveveiiieiiieriiieseece e 57
Table 3.14: Summary of fitted linear models for all shipping Zones..........ccccovvviiiiiieiiinenn 58
Table 3.15: SysState class definitioncccooviiiiiiiic e 59
Table 3.16: Inventory class definitioncccooviiiieiie i 62
Table 3.17: Assignment class definition...........c.ccveieiiiiic i 64
Table 3.18: Shipping method and shipping day determinationcccccoeevivinieienenencseee 71
Table 3.19: Statistical aCCUMUIALOTSoiiiiiieie s 73
Table 4.1: Indices, parameters and decision variables in integer programcccccoceveevervnenne. 78

Xii

Table 5.1: Indices, parameters and decision variables in decomposed integer program.............. 86

Table 7.1: Instances for integer program scalability eXperimentsc.cccocevvvieiiennenieseennens 109
Table 7.2: Instances for DES model eXperiments...........cccooviieiiiieieene s 110
Table 7.3: Results from integer program eXperimentS..........cooeerererereneseeieee e 115

Xiii

ACKNOWLEDGEMENTS

I would like to express my gratitude towards many individuals whose help and assistance made
it possible for me to accomplish this work. First and foremost, | would like to formally thank my
PhD advisor and committee chair, Dr. Matthew Petering for helping and supporting me over the
years. He has been very inspirational to me and without his perpetual guidance, support and
motivation, this would not have been possible. | would also like to thank and acknowledge the
effort of Dr. Hamid Seifoddini, Dr. Jaejin Jang, Dr. Wilkistar Otieno and Dr. Christine Cheng for
their invaluable insight, kind help and great comments. I have learned a great deal from them, and
| feel very much indebted. | am grateful to all of those with whom I have had the pleasure to work
during my PhD. Last but not the least, | would like to thank my family. There are no proper words

to convey my deep gratitude and respect for their heart-warming emotional support.

Xiv

Chapter 1

Introduction

The online retail (e-tail) industry has grown substantially during the past few decades. In the
second quarter of 2019, the U.S. Department of Commerce reported that the estimate of U.S. retail
e-commerce sales was $146.2 billion, which shows an increase of 4.2 percent from the first quarter
of that year. This is while the total retail sales for the second quarter of 2019 was reported at
$1,361.8 billion which means that e-commerce retail accounted for about 10.7 percent of the total
retail sales in the U.S. Although this market share seems small, e-tail has been steadily growing
year over year and is projected to continue with the same trend in the coming years (U.S.
Department of Commerce, 2019). A similar retail transformation seems to be taking place in other
parts of the world (O'Grady and D'Costa, 2019; Khan et al., 2013; Geng and Li, 2019) According
to Statista, in 2019 retail e-commerce sales worldwide amounted to $3.53 trillion and its revenue

is projected to grow to $6.54 trillion in 2022 (Statista, 2019).

The internet enables retailers to increase their sales and market share and to generate new
business by offering new services (De Koster, 2003). It also provides consumers with more
information and alternatives to help them with their product discovery and final purchase (Gao
and Su, 2016). The availability, convenience and competitive pricing of e-tailers have also
contributed to their growing popularity. Although the early e-tailers, such as Amazon and eBay,
operated their entire business online, this market has evolved over time and nowadays many
traditional retailers and manufacturers such as Walmart and Apple have moved a significant
portion of their sales to the e-commerce channel. De Koster (2003) identifies four types of

companies that sell products online to consumers: (i) product manufacturers such as DELL,

Unilever and Numico; (ii) traditional retailers and wholesalers, such as Barnes & Noble, Albert
Heijn and Tesco; (iii) new internet companies without physical assets such as eBay; (iv) new

internet companies, with physical assets such as Amazon, Peapod, and Maxfoodmarkets.

As companies move their sales to the e-commerce channel, one of the key decisions is how to
design an effective supply chain network to deliver goods to customers with minimum cost and
maximum reliability and service. There are fundamental differences between the supply chain
structure of an e-tailer and a traditional retailer which need to be considered while making this
decision. One of the main differences is in their delivery policy (De Koster, 2003). While in most
traditional retail settings, customers pick up their orders from physical stores at the time of making
a purchase, e-tailers are responsible for delivering orders to their customers. This has several
implications for designing an effective supply chain network and strategy for an e-tailer. When

placing an online order, customers provide the following information:

e Items that are ordered
e Quantity of each item
e Delivery preference

e Shipping address

e Payment method

Although customers indicate their delivery preference and shipping address, they do not
control how and when their order is shipped to them. E-tailers typically operate several fulfillment
centers (FCs) that are strategically positioned in different geographical locations within their area
of operation. Those FCs are responsible to hold inventory and to ship customer orders to their

shipping addresses using a courier. When a customer makes an order, the e-tailer assigns

fulfillment responsibility to one FC or a combination of FCs based on their available inventory,
customer delivery preference and other criteria. Those FCs are responsible for picking order items
from their warehouse, packing them into one or multiple boxes and shipping those boxes to
customers within their desired delivery window. This process is referred to as the order fulfillment
process. Since e-tailers control the order fulfillment process, they can decide the responsible FCs,
number of boxes, shipping time and shipping method to satisfy customer orders. In the e-tail
industry, this decision is called the order fulfillment decision. There are several order fulfillment
policies that can be adopted by e-tailers for making fulfillment decisions. Those policies govern
how fulfillment responsibilities must be delegated to FCs to reduce e-tailers’ operating cost. The
following sections describe the order fulfillment process, order fulfillment decision and order

fulfillment policies in detail.

1.1. Order fulfillment process
When a customer places an online order, e-tailers make order fulfillment decisions to specify
which FCs are responsible for fulfilling that order. In this section we examine how FCs fulfill

customer orders that are assigned to them.

Figure 1.1 illustrates the order fulfillment process and its timeline using a simple example. As
shown in this figure, the order fulfillment process consists of several steps and events that are

explained below.

Promised

Order |-=—Delivery —m=]
Window
Processing
|

; Shipment Transit >

| | . | | | | | | | | | | | | | L~
]] L]]]]]] P
Orderis Fulfillment Shipping Order
placed decision customer Delivery
& is locked order
Fulfillment
decision
is made

Figure 1.1: Order fulfillment process

e Order is placed: This is defined as the time at which a customer places an order. Unlike
traditional retailers who normally have specific working hours, e-tailers receive customer
orders around the clock.

e Fulfillment decision is made: E-tailers make fulfillment decisions on the fly and
immediately after a customer order is placed. This decision assigns the customer order to
one or multiple FCs which will be responsible for shipping the order items to the customer
in one or more boxes.

e Promised delivery window: After customer places an order, e-tailer confirms the order
and provides an estimated delivery time which is calculated based on order submission
time and customer delivery preference. Because of the inherent variability and
uncertainties in order fulfillment process, calculating an exact delivery time is not possible
and instead, e-tailers provide an estimated time range which we refer to as the promised
delivery window.

e Fulfillment decision is locked: Although fulfillment decisions are made immediately after
customers place online orders, they are not executed in real-time and are added to a queue
that contains a list of fulfillment decisions for all customer orders that are waiting in the

system for shipment. Fulfillment decisions remain in the queue until few hours before the

4

customer order is shipped. At that point, the e-tailer locks the decision and begins to prepare
the order items for shipment by picking them from the warehouse and placing them into
boxes. While fulfillment decisions are waiting in the queue, the e-tailer can review and
change them. However, once a fulfillment decision is locked, that decision is finalized, and
no changes are allowed.

Shipping customer order: There is a fixed cost associated with shipping customer orders
from FCs. In order to break down this cost among multiple customer orders, e-tailers batch
several shipments and pick up a group of them together at predetermined times during the
day. We refer to this event as shipping a customer order. Time and cadence of this event
depends on e-tailer’s order volume and other variables.

Order processing: To prepare customer orders that are assigned to them for shipment,
FCs need to pick each item from their warehouse and pack them into boxes. This step
which occurs between order placement and shipment pick-up is referred to as order
processing.

Shipment transit time: Shipment transit time is defined as the elapsed time between
shipment pick-up and order delivery. The length of shipment transit time depends on the
shipping method that is used at FCs for delivering customer orders.

Order delivery: Order delivery is the actual time at which customers receive their orders.
On-time delivery is one of the key performance indicators (KPI) for e-tailers which is
measured as the percentage of customer orders that are delivered within their promised
delivery windows. Although the e-tailer’s goal is to maximize on-time delivery, in some
cases due to supply chain related challenges such as inventory shortages and logistical

problems, promised delivery window is missed and order delivery happens outside of that.

In addition to the order fulfillment process, it is important to understand the difference between

customer delivery options and shipping methods that are used by e-tailers.

Customer delivery options: Customer wait time for receiving their online orders, and the
associated delivery cost, are among top e-tail performance measures (Kacen et al., 2013).
To improve these metrics, e-tailers offer various delivery options to give customers
flexibility in tradeoff between delivery cost and wait time. In this dissertation, we consider
four delivery options that are most common in e-tail industry namely: One Day Delivery,
Two Day Delivery, Five Day Delivery and Seven Day Delivery. Intuitively, the
faster delivery options are more expensive.

Shipping methods: Most e-tailers outsource their outbound transportation to 3rd party
logistic providers (3PLs) such as USPS, UPS and FedEx who are responsible for picking
up customer shipments from FCs and delivering them to their shipping addresses. 3PLs
offer several shipping methods that vary in shipping cost and transit time. For instance,
UPS provides Next Day Air, Second Day Air, Three Day Select and UPS Ground
which on average takes five days to deliver a shipment (UPS website, 2019). Like customer

delivery options, shipping methods with shorter delivery times are more expensive.

Figure 1.2 depicts the difference between customer delivery options and shipping methods.

Consider a scenario where a customer places an order with a Two Day Delivery preference. The

promised delivery window for that order is estimated as a time range between noon and 6 p.m. two

days after the order is placed. Assuming customer orders are shipped once every day at noon and

all ordered items are available in e-tailer’s inventory at the time the order is placed, this order can

be fulfilled using one of the following two alternatives. The first alternative is to process the order

in the same day and use a Second Day Air shipping method to send it to the customer. The second

6

alternative is to wait until the following day and use a Next Day Air shipping method instead.
Although shipping cost for the first alternative is lower, in some cases e-tailer might decide to use

the second alternative because of inventory shortage or other constraints.

Promised Delivery
Customer order is placed Window

¢

Day 1 Day 2 Day 3

Alternative I: Ship the order in I |

day 1 using Second Day Air Second Day Air

Day 1 Day 2 Day 3

Next Day A

Alternative I1: Ship the order in
day 2 using Next Day Air

Day 1 Day 2 Day 3

Figure 1.2: Difference between customer delivery options and shipping methods

The order fulfillment process is a critical part of e-tailer operations that not only accounts for
a significant portion of overall operating cost, but also has a direct impact on customer service and
satisfaction. Since shipping cost is considerably higher than the cost of picking and packing orders,
in this dissertation we use it as an estimation of total order fulfillment cost. Acimovic and Graves
(2015) report that an e-tailer’s shipping cost could amount to 3.2% to 4.6% of its total annual sales.
On the other hand, e-tailers often charge a fixed delivery fee for online orders which on some
occasions is waived for loyalty program members or large customer orders. Therefore, reducing
shipping costs has a direct and major impact on e-tailers’ bottom-line.

A detailed analysis of shipping cost is provided in Chapter 3 using a sample dataset from the

UPS website. The results of this analysis indicate that the shipping cost for a box is comprised of

two components. The first component is a fixed cost and only depends on the shipping method

while the second component also depends on distance traveled and box weight.

1.2. Order fulfillment decision
After a customer places an order and before the order fulfillment process begins, the e-tailer
needs to determine how to fulfill the order. We refer to this as the order fulfillment decision in

which the following important questions are answered:

e Which FC or FCs are responsible for fulfilling the order?
e Which items and how many of each item are assigned to each FC?
e When should the order be shipped to the customer?

e What shipping method should be used at each FC?

The outcome of the order fulfillment decision is stored in an order fulfillment plan and is sent
to the responsible FCs. In order to make this decision, e-tailer needs real-time visibility into
available inventory at each FC as well as a list of other customer orders that are assigned to them.
Computer information systems such as enterprise resource planning (ERP) and warehouse
management systems (WMS) provide this visibility by allowing FCs to share information with

each other and enabling the e-tailer to make order fulfillment decisions at a global level.

To understand the order fulfillment decision, consider a simple example in which an e-tailer
operates three FCs and has three SKUs in its product catalog (Figure 1.3). Assume a customer
places an order on Day; before the shipment pick-up time requesting one unit of SKU; and SKU,
withaTwo Day Delivery preference. The available inventory at each FC when the order is placed

and their distance to customer shipping address are listed below:

e F(, is located 100 miles west of the customer and holds one unit of SKU;

8

e F(, islocated 100 miles north of the customer and holds one unit of SKU,

e F(5islocated 200 miles east of the customer and holds one unit of SKU;, SKU, and SKU;

FC2
Inventory:
SKU1: 0 Unit
SKU2: 1 Unit
SKU3: 0 Unit
100 mi.

FC1 FC3
Inventory: Inventory:
SKU1: 1 Unit [==—100 mi. 200 mi.—— ™= SKUI: 1 Unit
SKU2: 0 Unit SKU2: 1 Unit
SKU3: 0 Unit Orderl SKU3: 1 Unit
Ttems:
SKU1: 1 Unit
SUK2: 1 Unit

Two Day Delivery
Figure 1.3: Order fulfillment decision for Order 1

In this example, there are several feasible alternatives to fulfill the customer order. Table 1.1
lists all feasible alternatives with their details. Note that since the customer has requested a
Two Day Delivery and the FCs have on-hand inventory for all SKUs, the e-tailer can either
decide to use a Second Day Air shipping method on the day the order is placed (Day,) or wait

until following day (Day,) and use a Next Day Air shipping method instead.

Table 1.1: Alternatives to fulfill example customer order

Item assignment

Day of shipment

Shipping method

Alt. FC, FC, FC; FC, FC, FC; FC, FC, FC;
1 SKU, SKU, Day, Day, Second Day Air Second Day Air
2 SKU; SKU, Day, Day, Next Day Air Next Day Air
3 SKU, SKU, Day, Day, Second Day Air Next Day Air
4 SKU, SKU, Day, Day, Next Day Air Second Day Air
5 SKU, SKU, Day, Day, Second Day Air Second Day Air
6 SKU, SKU, Day, Day, Next Day Air Next Day Air
7 SKU; SKU, Day, Day, Second Day Air Next Day Air
8 SKU, SKU, Day, Day, Next Day Air Second Day Air
9 SKU, SKU, Day, Day, Second Day Air Second Day Air
10 SKU, SKU, Day, Day, Next Day Air Next Day Air
11 SKU, SKU, Day, Day, Second Day Air Next Day Air
12 SKU, SKU, Day, Day, Next Day Air Second Day Air
13 SKU,,SKU, Day; Second Day Air
14 SKU,,SKU, Day, Next Day Air

The goal of the order fulfillment decision is to find the best alternative based on the e-tailer’s
order fulfillment policy which is explained in detail in Section 1.3. In this example, we assume the
order fulfillment decision aims to find the alternative with the minimum shipping cost. As
mentioned earlier, the cost of shipping one box is comprised of two components: a fixed
component that depends on the shipping method and a variable component that also depends on
box weight and shipping distance. Since all alternatives in this example use either Next Day Air

or Second Day Air shipping methods, assume the shipping cost for these methods are as listed in

Table 1.2.

Table 1.2: Cost of shipping one box for different shipping methods

Shipping Method

Fixed shipping cost ($)

Variable shipping cost per pound/mile ($)

Next Day Air
Second Day Air

10
5

0.02
0.01

10

Assuming each SKU weights exactly one-pound, shipping cost for each alternative is
calculated in Table 1.3. Since objective of order fulfillment decision in this example is to minimize
the shipping cost for the given order, Alternative 13 will be selected by the e-tailer. The fulfillment
plan derived from this decision suggests that both SKUs should be shipped to the customer from
F (5 using a Second Day Air shipping method on Day;,. This fulfillment plan will be sent to FC;

to be processed accordingly.

Table 1.3: Shipping cost for all alternatives
Number of boxes Number of boxes Total pound/mile Total pound/mile Fixed Variable Total
Alt. shipped using shipped using shipped using shipped using shipping shipping shipping
Next Day Air Second Day Air Next Day Air Second Day Air cost ($) cost ($) cost ($)

1 0 2 0 200 10 2 12
2 2 0 200 0 20 4 24
3 1 1 100 100 15 3 18
4 1 1 100 100 15 3 18
5 0 2 0 300 10 3 13
6 2 0 300 0 20 6 26
7 1 1 200 100 15 5 20
8 1 1 100 200 15 4 19
9 0 2 0 300 10 3 13
10 2 0 300 0 20 6 26
11 1 1 200 100 15 5 20
12 1 1 100 200 15 4 19
13 0 1 0 400 5 4 9
14 1 0 400 0 10 8 18

As e-tailers receive orders around the clock they need to make an order fulfillment decision
for each order. The order fulfillment decision described in this example follows a policy that
determines the decision should be made in such a way that the shipping cost for the order is
minimized. In the next section we describe different order fulfillment policies and how they impact

the decision making process.

11

1.3. Order fulfillment policy

The order fulfillment decision that was described in the previous example evaluates
alternatives based on their shipping cost and selects the one with the minimum value to fulfill the
customer order. However, this is not a generic approach and e-tailers might have a different
strategy for making order fulfillment decisions. Order fulfillment policy determines how the

fulfillment decisions should be made and the objective of those decisions.

Some e-tailers fix fulfillment responsibilities ahead of time by assigning all customer orders
received from each geographical region to a designated FC. This strategy is called static order
fulfillment policy. Although the static policy is relatively simple to implement and maintain, it
requires the e-tailer to hold inventory for all SKUs at all FCs. E-tailers typically have a very large
product catalog which includes millions of SKUs from various categories. This makes it almost
impossible to hold all those SKUs at each location. Instead, they develop an inventory policy that
distributes the SKUs among FCs based on their capacity, total customer demand for each SKU,
geographical distribution of that demand and other factors. However, a static order fulfillment
policy does not work with such inventory system, and e-tailers usually need to take a different
approach. A dynamic order fulfillment policy assigns orders as they are placed, to the FC or a
combination of FCs that can satisfy them with the minimum shipping cost. Since fulfillment
responsibilities in dynamic policy are not decided a priori, and are determined after orders are

placed, it can work with a distributed inventory system.

Although dynamic order fulfillment policies work well with a distributed inventory system
and minimize shipping cost for individual orders as they are placed, it is possible for them to make
a series of myopic optimal decisions which collectively lead to a sub-optimal decision at the system

level. This is mainly because dynamic policies make order fulfillment decisions merely based on

12

the current system state without accounting for future customer orders and inventory
replenishments (Xu et al., 2009). For example, a fulfillment decision that optimally assigns an
order to FCs based on current information could change the system state in such a way that future

orders are fulfilled with sub-optimal assignments due to lack of inventory at certain locations.

To understand the myopic nature of order fulfillment decisions that are made by a dynamic
order fulfillment policy, consider the example provided in Section 1.2 and assume after making
order fulfillment decision for the first customer order and assigning both SKU; and SKU, to FCs
a second customer order (Order) is placed in the same day requesting one unit of each SKU,,
SKU, and SKU; with a One Day Delivery preference (Figure 1.4). If no inventory replenishment
happens in Day; and since FC5 has already assigned its inventory of SKU, and SKU, to fulfill
Order;, the only option for fulfilling Order, is to send a separate box from each FC to the second
customer using a Next Day Air shipping method. The shipping cost for this decision can be
calculated using Table 1.2 as $38.80, and the e-tailer’s total shipping cost for the two orders is

$47.80 collectively.

FC2
Inventory:
SKU1: 0 Unit
SKU2: 1 Unit
SKU3: 0 Unit
FC1 140 mi. FC3
Inventory: Inventory:
SKU1: 1 Unit [~#————— 200 mi. 100 mi. — =1 SKU1: 0 Unit
SKU2: 0 Unit SKU2: 0 Unit
SKU3: 0 Unit Order2 SKU3: 1 Unit
Items:
SKU1: 1 Unit
SUK2: 1 Unit
SKU3: 1 Unit

One Day Delivery
Figure 1.4: Order fulfillment decision for Order 2

13

Fulfillment decisions for Order; and Order, follow a dynamic policy which minimizes the
shipping cost for individual orders as they are placed. Now consider a scenario where one
fulfillment decision is made for both orders at the same time. Figure 1.5 illustrates the optimal
fulfillment decision for this scenario that minimizes the total shipping cost for both orders. In this
case, the optimal decision is to assign Order; to FC; and FC, and Order, to FCs. Total shipping
cost for this assignment is $28 which is $19.80 less than the previous assignment. This new
decision increases the shipping cost for Order; by $3 by splitting its shipment into two boxes.

However, this adjustment allows all items in Order, to be shipped in a single box.

FC2

Inventory:

SKU1: 0 Unit
SKU2: 1 Unit
SKU3: 0 Unit

Second Day Air

FC1 Cost: $6 FC3
Inventory: Second Day Air] Next Day Air [nventory:
Cost: 6 Cost: $16
SKUL: 1 Unit -@ @— SKU1: 1 Unit
SKU2: 0 Unit SKU2: 1 Unit
SKU3: 0 Unit Orderl Order2 SKU3: 1 Unit
Ttems: Ttems:

SKUI1: 1 Unit SKU1: 1 Unit
SUK2: 1 Unit SUK2: 1 Unit

Two Day Delivery SKU3: 1 Unit

One Day Delivery
Figure 1.5: Making order fulfillment decisions for both orders simultaneously
As shown in this example, by making fulfillment decisions for multiple orders together, e-
tailers can significantly reduce their total shipping costs and avoid myopic decisions that only
consider individual orders. However, in practice fulfillment decisions need to be made as orders

are placed in order to provide an estimated delivery window to customers and to update on-hand

14

inventory information at the FCs. In other words, the fulfillment decision for Order; may not be
postponed until Order, is placed. There are two general techniques to address this problem. The
first technique, which is called an adjusted dynamic order fulfillment policy, follows the same
principles as the dynamic policy except it also accounts for future orders by forecasting them based
on historical order information. For instance, Acimovic and Graves (2015) use the dual values of
a transportation linear program to estimate future expected shipping cost and apply those estimates
in the objective function of a heuristic algorithm that makes fulfillment decisions by minimizing

the immediate shipping cost for the current order plus expected shipping cost for future orders.

The second technique is called an order fulfillment reevaluation policy which, as suggested
by its name, reevaluates fulfillment decisions that have been made using a dynamic policy for a
group of orders and optimizes them globally. As mentioned earlier, when a customer places an
order a fulfillment decision needs to be made immediately to update inventory status at FCs and
to provide an estimated delivery window to the customer. However, there is usually a lag between
when a fulfillment decision is made and when the order is shipped to the customer. During this lag
orders are processed at designated FCs to get them ready for shipment. While an order is waiting
for shipment, more customer orders are placed, and the same process is followed to make a myopic
fulfillment decision for them. This lag can be leveraged to reevaluate the initial fulfillment
decisions for all the orders that are queued in the system and to make a decision that minimizes
their overall shipping cost. For example, Xu et al. (2009) develop a heuristic algorithm that reduces
total shipping cost by minimizing total number of customer shipments. Their algorithm reevaluates
myopic fulfillment decisions and reduces the number of split shipments by shuffling the
assignments. Mahar and Wright (2009) develop a similar approach that assigns accumulated online

orders to FCs based on expected inventory, shipping, and customer wait cost.

15

Figure 1.6 illustrates an order fulfillment reevaluation policy for an e-tailer with three SKUs
and two FCs. Attime t = 11: 35, FC, holds one unit of each SKU while FC, only has one unit of
SKU; and one unit of SKU, in its inventory. Order; is placed at t = 11: 40 requesting one unit of
SKU;and one unit of SKU, with a One Day Delivery preference. Order; distance to FC; and
FC, is 50 miles and 125 miles respectively. Assuming that shipment pick up happens at t =
12: 00, both FCs can fulfill Order; by sending a single box to the customer using a One Day Air
shipping method. However, since it is cheaper to send the shipment from FC;, the order is assigned
to this FC. Shipping cost for this assignment, calculated based on the shipping rates in Table 1.2,
is $12. After making this fulfillment decision Order, is placed at t = 11: 45 requesting one unit
of each SKU with a One Day Delivery preference. Since FC; has already assigned its inventory
of SKU, and SKU, to Order;, the only alternative to fulfill Order, is to split it into two shipments
and send two separate boxes to the customer from FC; and FC,. The cost of this assignment is
$24.5, increasing the e-tailer’s total shipping cost for satisfying both orders to $36.5. Att = 11: 55
and before shipment pick-up time, the e-tailer can reevaluate the fulfillment decisions for both
orders. The decisions generated by the reevaluation suggests that by assigning Order, to FC, and
Order, to FC,, the e-tailer can satisfy both orders with a total shipping cost of $32.5 which is $4

less than the previous assignments.

In this example, we assumed the reevaluation algorithm instantly finds the optimal assignment
and did not consider its computation time. However, as we show in Chapter 7 order fulfillment
reevaluation is a complex problem and finding an optimal decision for real-world e-tailers with
millions of SKUs and tens of FCs in a reasonable amount of time may not be possible. On the
other hand, e-tailers operate around the clock 24 hours a day, 7 days a week and since decisions

produced by the reevaluation algorithm impact other processes, they need to execute it during their

16

operations in such a way that it does not halt the system and finds the answer in a timely manner.
Therefore, when designing a reevaluation strategy, both algorithm decisions and computation time
need to be considered. In the following sections we introduce the concept of an intense unending
real-time operational challenge (IURTOC) and explain how combining optimization and
simulation techniques allows the e-tailer to objectively compare different reevaluation strategies

and find the one that best fits its needs.

Time
FC1 -
SKUL —) SKu3
@ A °
11:35 4+ ‘ .
SKU2
Orderl
One Dav Delivery
. A (One Day Delivery) .
— $12.0
® OO0 o
O A ac—, (One]?ﬂl;ig:li"ery) .
T o e 6% o D
O A 5
11:50 ==
S @ @ o
A -
11:55 ' : @ $17.5 — _7/% :
© 9
Relative | | | | | |
Location ! 1 } | | | , -
0 25 50 75 100 125 150 175

Figure 1.6: Reevaluating order fulfillment decisions

1.4. Intense unending real-time operational challenge (IURTOC)

Petering (2015) defines an intense unending real-time operational challenge (IURTOC) as “a
business problem whose goal is to create an algorithm for automatically making operational
decisions on a continual basis so as to maximize the productivity of an industrial system whose
operations never cease and whose evolution is characterized by incomplete and/or changing
second-by-second information regarding process times and new job arrivals from time 0 to time
infinity.” E-tailer order fulfillment is an IJURTOC in which operations never stop as customers
place orders around the clock and fulfillment decisions are made one order at a time using an
algorithm that automatically assigns them to a set of FCs based on the e-tailer’s fulfillment policy.
Furthermore, if an e-tailer uses a reevaluation policy, there will be another algorithm to shuffle the

assignments for a set of orders to reduce the e-tailer’s total shipping cost.

Since in an IURTOC an algorithm is embedded in a system to make operational decisions
without human intervention in a continual basis, and since each decision impacts future ones by
changing system state, when designing an effective decision-making algorithm, it is important to
consider its computation time as well as the quality of the decisions it recommends. A sophisticated
mixed integer programming (MIP) algorithm that finds the optimal solution for an IURTOC may
not be an ideal option for that system if its computation time takes longer than when the decision
is needed. The same rule applies when choosing the right heuristic algorithm. When comparing
two heuristic algorithms for an IURTOC, if the first algorithm always finds a solution within 10%
of optimal but requires one hour to compute while the second algorithm always finds a solution
within 20% of optimal in 10 minutes, and the operational requirements of the system require a
solution in less than 15 minutes, the second algorithm should be selected, although it produces

inferior decisions.

18

Consider the example shown in Figure 1.6 where an e-tailer reevaluates fulfillment decisions
for Order; and Order, at t = 11:55, five minutes before shipment pick-up time. As it was
shown, without considering reevaluation algorithm computation time, the revised assignments
become available before shipments are picked up and can be implemented to reduce the total
shipping cost. Figure 1.7 depicts the same example but instead of assuming the reevaluation
algorithm computation time is negligible, we assume it takes 10 minutes for the algorithm to find
an optimal decision. In other words, the new fulfillment decision becomes available at t = 12: 05,
five minutes after shipments are sent out. Therefore, the e-tailer needs to keep the original
assignments that are made by myopic decisions and although reevaluation finds a better
assignment, at the time of execution completion, those decisions are invalid and lead to an

infeasible solution.

Most order fulfillment reevaluation studies in the literature focus on designing an optimization
algorithm that finds the best decision for customer order fulfillment by minimizing total outbound
shipping cost (Mahar and Wright, 2009; Xu et al., 2009; Acimovic and Graves, 2015). To the best
of our knowledge, those studies do not address the computation time of those algorithms and its
possible impact on the overall system productivity. In some papers in the operations management
literature, computer simulation techniques are used for comparing the performance of different
algorithms by embedding them in a simulation model. However, in those studies only the decisions
produced by the reevaluation algorithm are fed back to the simulation model and their computation
time is ignored. In other words, the algorithms are only partially embedded within a simulation
model. Petering (2015) proposes an alternative method called a fully embedded decision making
algorithm that combines optimization and discrete event simulation (DES) in a novel way to enable

a more accurate and objective comparison between different decision-making algorithms for an

19

IURTOC. This method allows managers and other decision makers to better analyze and evaluate
the performance of different algorithms in a test environment before deploying them in the field.
This helps to prevent system shutdowns and interruptions which could occur as a result of long
running algorithms that in theory produce favorable decisions but in practice halt the system by

not providing a decision when it is needed. This technique is explained in the next section.

20

Time

FC2

Order2

(One Day Delivery)

00| e ee [@ee

FC1
@ A
11:35 ==
®
. A (O"e];?;rel]h'erf)
11:40 4+ —
® 0 O
O la -
11:45 4= __
S ®e
O A
11:50 4+
o | @9
=
11:55 Reevaluation Begins
.
@ A
12:00 ==
e Shipment Pick-up
A —, $17.5
®
. ' . §15.0

Relative |

Reevaluation Ends

.1 (O
O/

-1
Lh

[]
L ——

Location (;

Figure 1.7: Importance of time in reviewing order fulfillment decisions

21

1.5. Fully embedded decision-making algorithm (FEDMA)

In the previous section, we explained that, in an IURTOC, decisions are made continuously
and around the clock in response to dynamic events that could not be predicted ahead of time.
When evaluating a decision-making algorithm (DMA) for an IURTOC, it is important to consider
the DMA’s computation time in addition to the quality of the decisions it recommends. However,
most studies in the decision science literature either (i) consider static problems or (ii) design a
DMA for an IURTOC without considering how much time is needed for solutions to be found.
Regarding case (ii), in some studies in experimental decision science, a discrete event simulation
(DES) technique is used to test and compare the performance of different DMAs by embedding
them in a simulation model (Petering, 2015). In those studies, only DMA decisions are fed back
into a DES model; the computation times are not fed back into the DES model and are assumed to
be zero. Petering (2015) calls this technique a partially embedded decision-making algorithm
(PEDMA) but states that it is preferable to use a fully embedded decision-making algorithm
(FEDMA) technique that considers both the DMA’s decisions and computation time when

embedding it into a DES model.

The FEDMA technique allows DMASs to be tested under true simulated operating conditions
which is more representative of real-world dynamic conditions than the PEDMA technique.
Petering (2015) explains that using a FEDMA is particularly important if the average runtime of a
DMA is nontrivial compared to the average time that elapses between consecutive calls to the
DMA. Additionally, in this dissertation we show that if other types of decisions are made within
the same system, using a FEDMA s critical to ensure that the DMA’s computation time and

decisions do not interfere with these other decisions.

22

1.6. Contribution and novelty of the research

This research applies the FEDMA technique to the e-tailer order fulfillment reevaluation
problem. We develop a DES framework within which different reevaluation algorithms can be
fully embedded, and we compare their performance under true simulated operating conditions.
This allows managers to find the best reevaluation algorithm for their order fulfillment decisions
that not only finds the best order-to-FC assignment but also can be operationalized in real-time

without negatively impacting system productivity and performance.

Additionally, we develop an IP and a heuristic algorithm to reevaluate order fulfillment
decisions and fully embed them in our DES framework. Using the FEDMA concept we compare
the performance of the two algorithms and show that although IP is proven to find an optimal
decision, when problem size increases, it is not a viable option because of its computation time. In

those cases, the heuristic algorithm should be selected to reevaluate fulfiliment decisions.

Beside the reevaluation algorithm itself, execution frequency is an important aspect of the
order fulfillment reevaluation policy. For example, using the same algorithm, the e-tailer could
reevaluate order fulfillment decisions for 10 orders or 100 orders at a time. We show that although
reevaluating more fulfillment decisions together increases the potential savings, it also increases
the complexity of the problem instances that are considered, and the computation time needed to
identify good decisions. This might have a negative impact on the e-tailer operations. Using the
FEDMA technique we can study the tradeoff between savings and computation time and
recommend the best reevaluation execution frequency accordingly. We are not aware of any study
in the literature that is able to (1) compare different order fulfillment reevaluation algorithms under
true simulated operating conditions or (2) recommend the reevaluation algorithm execution

frequency that best balances total savings and computation time.

23

Chapter 2

Review of literature

2.1. FEDMA, PEDMA, and true simulated operating conditions

The concept of combining optimization and simulation has been extensively studied in the
literature. Pflug (2012) suggests that combining simulation and optimization is the only practicable
way of getting insight into stochastic models and obtaining optimal decisions for them. This is
because, while optimization techniques recommend an optimal decision for a system, most of them
assume the system under study is static and has deterministic parameters. This is while the vast
majority of the real-world systems and phenomena have a stochastic nature. Simulation models,
on the other hand, capture stochasticity by using probability distributions that measure the
likelihood of various events. Therefore, an effective combination of these two techniques can

provide a framework for analyzing many real-world systems.

One of the proposed methods for combining simulation and optimization is called simulation-
based optimization or “simulation optimization”. In this method, in order to obtain an optimal
design for a stochastic system a simulation model is run iteratively, each time with different values
for the parameters that define the system. These parameters are the decision variables needing to
be optimized, and simulation is used to (i) compute the objective value of and/or (ii) determine if
constraints are satisfied by each particular set of parameter values. As the process unfolds, the
parameter values gradually move closer to the optimum solution. In this case, simulation is used
to set the value of different parameters in each iteration. Gosavi (2015), describes this method in
detail and provides a comprehensive overview of different techniques for developing a simulation-

based optimization model. Many researchers have utilized simulation-based optimization to solve

24

problems in a wide range of applications. For instance, Marbach and Tsitsiklis (2001) propose a
simulation-based optimization algorithm for optimizing the average reward in a Markov Reward
Process where optimization takes place within a parameterized set of policies. Nguyen et al. (2014)
provide an overview of simulation-based optimization methods applied to building performance
analysis. Becerril-Arreola et al. (2013) apply this method to study an e-tailer’s promotional pricing,
free-shipping threshold and inventory decisions. Other studies that use simulation-based
optimization include Mele et al. (2006), Zeng and Yang (2009), Huang et al. (2010) and

Keramydas et al. (2017).

Another method for combining simulation and optimization is embedding an optimization
algorithm (i.e. decision-making algorithm) within a simulation model in order to study the impact
of the decisions produced by the decision-making algorithm (DMA) on the system’s performance.
This method has also been extensively leveraged in the field to study a variety of systems. For
instance, Sivakumar (1999) develops a discrete event simulation (DES) model of the complex
manufacturing environment of a semiconductor test facility. He then embeds an optimization
algorithm within this DES model for online and near real-time scheduling. Using this method, he
achieves a world-class cycle time, improved machine utilization and more predictable and highly
repeatable manufacturing performance. Hillstrom (1977) utilizes this technique to develop a
methodology to evaluate the performance of unconstrained nonlinear optimization algorithms.
This methodology enables decision makers to compare the performance of multiple optimization
algorithms in a simulated environment. In a similar study, Beiranvand et al. (2017) describe this
method as one of the best practices for benchmarking the performance of different optimization
algorithms. Other studies that use this method include Azadivar and Wang (2000), Marques et al.

(2014) and Hare et al. (2018).

25

When embedding a DMA within a DES model, most studies in the literature only feed the
decisions produced by the DMA to the DES; and they do not account for its computation time.
However, the computation time of a DMA can have a significant impact on a system’s operation.
For instance, in designing a DMA to assign drivers to passengers in a ride-sharing app, if a DMA
produces high quality decisions but takes one-hour of computation time, it may not fit the
operational requirements of the real-world system. Therefore, in order to effectively evaluate a

DMA, both the decisions produced and computation time must be taken into consideration.

Petering (2015) refers to the technique in which only the decisions produced by the DMA are
fed back to a DES model as partially embedding the DMA and the algorithm itself as a partially
embedded DMA (PEDMA). He proposes a novel technigue to embed a DMA in a discrete event
simulation (DES) model so that both the decisions produced, and the computation time used, by
the DMA are fed back to the DES model. In this case the algorithm is called a fully embedded
decision-making algorithm (FEDMA). The FEDMA technique allows decision makers to study a

system under true simulated operating conditions.

Using a FEDMA is particularly important when the system under study operates at a fast pace
and its operations never halt. In these systems, the DMA must be executed during normal
operations without negatively impacting the system’s performance, so it is critical to consider the
DMA’s computation time. Petering (2015) defines an intense unending real-time operational
challenge (IURTOC) as “a business problem whose goal is to create an algorithm for automatically
making operational decisions on a continual basis so as to maximize the productivity of an
industrial system whose operations never cease and whose evolution is characterized by
incomplete and/or changing second-by-second information regarding process times and new job

arrivals from time O to time infinity.”

26

In this dissertation we show that an e-tailer’s order fulfillment process is an IURTOC and
develop a FEDMA to reevaluate an e-tailer’s order fulfillment plans under true simulated operating

conditions.

2.2. Online retailing

In this section we review the literature on online retail (e-tail) order fulfillment processes and
related topics. The tremendous growth of the e-tail industry over the past two decades has attracted
researchers and practitioners from various disciplines which has resulted in numerous research
articles. Within this rich literature, we focus on e-tail success factors, supply chain management,

transportation planning, and order fulfillment and delivery.

2.2.1. Enablers and success factors

The explosion of the e-tail sector has drastically transformed customer behavior and shopping
habits in the last few decades. While shopping in a physical store was once the primary way to
shop, e-tail is quickly becoming a preferred way to shop for customers around the world. Many
researchers have developed quantitative and qualitative methods to identify enablers and
facilitators for this rapid growth. Sahney (2008) follows an empirical study to conceptualize key
e-tail enablers and uses a quality function development technique to identify performance
indicators that are critical to the success of an e-tailer. The model determines clear transaction
policies, online interactivity between buyer and seller, transaction safety and transaction privacy
as main facilitators/enablers of e-tail systems. An effective website design which includes
functionality, usability, ease-of-navigation and interface is another critical success factor that has
been extensively studied. Constantinides (2004) studies the web experience components and their
role as inputs in the online customer decision making process. This study shows that e-tail firms

delivering superior web experience influence their client’s perceptions and attitudes and drive

27

additional traffic to their online store. Yen et al. (2007) develop an analytical model for effective
web store design that can measure website accessibility in a systematic and quantitative manner.
Other success factors that have been proposed include consumer traits, sense of freedom and
control, convenience, customized service, access to wider variety of products, trust and shopping
experience (Grewal et al., 2004; Dabholkar and Bagozzi, 2002; Wolfinbarger and Gilly, 2001;
Elliot and Fowell, 2000; Shim et al., 2001; Eastlick and Lotz, 1999; Yoon, 2002; Lee and Turban,

2001).
2.2.2. Supply chain network

There are fundamental differences in the supply chain of traditional retailers and e-tailers.
According to Xu (2009), the common characteristics of the e-tail supply chain that distinguishes

it from traditional retail include:

(i) Large scale: Since e-tailers are not limited by the size of their stores, they can operate
multiple fulfillment centers and use large physical spaces to store their products. This
enables them to offer a more diverse product catalog compared to traditional retailers.

(if) Logistics as a matter of trust: trust and timely delivery are two of the most critical success
factors for an e-tailer. Brynjolfsson and Smith (2000) compare e-tailers and traditional
retailers and conclude that branding, awareness and trust are determining success factors
for online stores. Keeney (1999) conducts a survey to analyze the advantages and
disadvantages of e-tail from the customer standpoint. This study finds that timely delivery
of products is a major factor contributing to the success or failure of an e-tailer. The results
of a survey conducted by Torkzadeh and Dhillion (2002) confirms Keeney’s analysis.

(ii1) High visibility: e-tailers collect a large amount of data about customer orders and buying

behavior. They also share a lot of information with customers in their website. This not

28

only allows e-tailers to improve their online store but also helps customers throughout the
purchasing process.

(iv) Assemble to order system: when customers place an online order, the e-tailer can decide
to send that order to the customer in one or multiple shipments. Given the large number
of SKUs in e-tailers website, the number of possible combinations is enormous. Therefore,
it is critical for the e-tailer to make good decisions about how to assemble an order and
ship it to the customer. There is a significant opportunity to reduce shipping cost by
making the right decision.

(v) Delay in demand fulfillment: there is a delay between the time when a customer places an
online order and when it is delivered to their address. The length of this delay differs based
on customers’ delivery preferences. E-tailers can leverage this delay to improve their
fulfillment decisions and minimize their overall shipping cost.

(vi) Retailer directed demand allocation: e-tailers control how customer orders should be

assigned to fulfillment centers or drop-shippers.

Because of these differences, retailers who add an online channel to their existing physical
channel need to re-design their supply chain. Additionally, e-tailers who operate completely online
without a physical store, need to take these differences into account for designing an effective
supply chain. Retailers can treat their online channel as a separate business unit and designate a
dedicated supply chain to fulfill online customer orders. Hovelaque et al. (2007) study different
organizational models for traditional retailers who decide to add an online sales channel. They use
a newsboy order policy model to compare the performance of three different organizational
models: “store-picking”, “dedicated warehouse-picking” and “drop-shipping”. Their analysis

indicates that, retailers can increase their profit by using a “store-picking” or “drop-shipping”

29

models when compared to “warehouse-picking”. Ma et al (2017) develop a news vendor model to
analyze the value of drop-shipping for retailers with online and physical channels. Their results
show that drop-shipping can significantly reduce store inventory, streamline returns and increase

overall profit.

In addition to drop-shipping, retailers can designate distribution centers for their online
channel. De Koster (2003) proposes a model that establishes a positive association between
operational complexity and the distribution structure of food e-tailers. Based on this analysis,
complex operations with large product assortment tend to have special distribution centers for
online orders and new internet-only companies tend to use special internet-orders only warehouses.
In a similar article, Bendoly et al. (2007) propose that if percentage of total demand that is online
exceeds a threshold, it is best to assign a dedicated warehouse for online channel. Maher et al.
(2015) propose that retailers can save up to 18% in total cost by presenting only a subset of their
stores to online customers as potential pick-up locations. Xiao et al. (2009) use a discrete-time
dynamic programming model to analyze the impact of demand seasonality on an e-tailer’s

inventory management policy.

The primary reason for separating the supply chain network of online and physical channels is
lack of preconditions for integration which includes know-how, resources, infrastructure and
requirements for picking (Hibner, 2015). On the other hand, there is a significant value in
integration between different channels. Integration allows retailers to use existing infrastructure,
increase synergy and leverage inventory pooling and transshipment. Therefore, although
combining the online and physical channel into one compelling seamless customer experience is
one of the biggest challenges for retailers and manufacturers (Tetteh and Xu, 2014) we are now

observing a move from multichannel to omnichannel which is an emerging channel integration

30

strategy aiming to address this challenge (Ansaripour and Trafalis, 2013; Piotrowicz, 2014;
Verhoef et al., 2015; Mena et al. 2016). In an omnichannel model, customers can shop online and
offline at the same retailer (Bett et al., 2013). Some retailers also allow customers to buy from the
online channel and pick up their products from a physical store (Gao and Su, 2017). In addition to
providing value for retailers, an omnichannel model also allows customers to use channels in
parallel and simultaneously (Parker and Hand, 2009; Ortis and Casoli 2009; Rajendran et al., 2019)

and enables a better and more streamlined return process (Akturk et al., 2018).
2.2.3. Order delivery

Order delivery is a key service element for an e-tailer (Boyer and Hult, 2005; Agatz et al.,
2008). Delivery encompasses any activities that physically move the product from the e-tailer to
the customer. In the case of home delivery, this is known as the last mile. The last mile can be
divided into customer pick-up versus home delivery (Daduna and Lenz, 2005) which can be further

subdivided into attended and unattended delivery (Kamarainen and Punakivi, 2002).

Most e-tail customers request home delivery (Devari et al., 2017). In an attended home
delivery, the customer and e-tailer need to agree on a delivery time window. The length and timing
of this window as well as delivery lead time are among the key customer service indicators (Agatz
et al., 2008). On the other hand, they have a direct impact on the e-tailer’s delivery costs. The last
mile delivery cost can account for 13% to 75% of total supply chain costs (Gevaers et al., 2009).
Finding the right balance between cost and service is a challenging problem (Boyer et al., 2003;
Esper et al., 2003) that needs to be carefully examined for an e-tailer based on its customer

expectations, competitors and other determining factors.

31

Although last mile delivery has traditionally been handled by commercial carriers such as UPS,
e-tailers are looking for options that can make their order delivery process more efficient. The
highly advertised Amazon Prime Air delivery service using UAVs which can reduce delivery lead
time from multiple days to a few hours is an example of such an attempt (Jung and Kim 2017). In
the same vein, a stream of research has explored the idea of crowd logistics for resolving the last
mile delivery issues in urban areas (Devari et al., 2017). Crowd logistics provides economic benefit
for all parties involved by designating the outsourcing of logistic services to a crowd (Mehmann
et al., 2015). Crowd logistics is massively supported by the increasing digitization of the society
(Unterberg, 2010) and end-to-end information sharing enabled by customers’ smartphones

throughout the process.

2.2.4. Order fulfillment decision

When a customer places an online order, the e-tailer makes an order fulfillment decision that
assigns fulfillment responsibility to one or more FCs with available inventory and determines an
estimated delivery date. In practice, most e-tailers optimize the order fulfillment decision for each
customer order based on outbound transportation cost (Malykhina, 2005). Additionally, many e-
tailers make order fulfillment decisions immediately after a customer places an order (Soars,
2003). Since order fulfillment decisions have a significant impact on an e-tailer’s bottom-line,
many researchers have proposed different models and techniques to improve the decision-making

process.

One stream of research has explored improving the fulfillment decision for individual customer
orders by improving the decision-making algorithm or combining that decision with other
operational decisions made by the e-tailer. Jasin and Sinha (2015) formulate the online order

fulfillment decision problem as a stochastic model and derive an approximation of that in form of

32

a deterministic linear program (DLP). They use two heuristic algorithms to solve this DLP and
through numerical experiments illustrate that consolidating shipments for a customer order
increases transportation cost savings. Bhargava et al. (2016) develop a Best Matching Protocol
(BMP) for order fulfillment decisions in a collaborative and geographically distributed network.
This protocol enables collaboration between multiple order fulfilling agents and provides a
scalable solution for the increasing size of a supply network. Ardjmand et al. (2018) propose a
genetic algorithm that integrates order cartonization into order fulfillment decisions to improve the
overall shipping cost and fulfillment time. In a similar article, Govindarajan et al. (2018) propose
a heuristic algorithm that combines the inventory policy with the order fulfillment decision. This
combined approach outperforms a decentralized planning strategy that treats the inventory policy
and order fulfillment as separate decisions. Other articles that consider improving fulfillment
decisions for individual customer orders include Rambaran (2016), Acimovic and Graves (2017),

Lei et al. (2018), Chen et al. (2019) and Li and Jia (2019).

Another group of researchers have developed models that consider making fulfillment
decisions for a group of customer orders as opposed to making myopic decisions for individual
orders. Mahar and Wright (2009) develop a quasi-dynamic allocation policy that postpones
fulfillment decisions for individual orders and instead assigns accumulated orders to fulfillment
centers. This model also considers expected inventory and customer wait costs in addition to
outbound transportation cost and reduces overall operating cost by as much as 23%. Acimovic and
Graves (2015) use the dual values of a transportation linear program to estimate the future expected
shipping costs and apply those estimates in the objective function of a heuristic algorithm that
makes fulfillment decisions by minimizing the immediate shipping cost for the current order plus

the expected shipping cost for future orders. Xu et al. (2009) develop a heuristic algorithm that

33

reduces the total shipping cost by minimizing the total number of boxes that are shipped. Their
algorithm reevaluates myopic fulfillment decisions and reduces the number of split (i.e. multi-box)

shipments by shuffling the assignments.

34

Chapter 3

Discrete-event simulation model for an e-tailer order fulfillment process

Discrete-event simulation (DES) is one of the most popular modeling techniques in
experimental decision science that is used to study the behavior and performance of a discrete
system over a finite time horizon. In this chapter a DES model of an e-tailer order fulfillment
process is presented. This model is utilized in the following chapters to compare the performance

of different reevaluation algorithms that are fully embedded in the simulation model.

There are several out-of-the-box DES software packages on the market with relatively simple
and intuitive paradigms for developing simulation models. Although those packages accelerate the
model building process by simplifying and automating most of the tasks, they do not provide the
required flexibility for fully embedding complicated reevaluation algorithms. Therefore, in this
dissertation we build the DES model from the ground up in the C++ programming language which
allows that flexibility. In Chapter 5 we leverage direct integration between C++ and the CPLEX
optimization package to fully embed an integer programming-based reevaluation algorithm in this

simulation model.

3.1. Generic DES model architecture

DES models a system as a series of events that occur over time and assumes no change in the
system’s state between those events. This is in contrast with continuous simulation in which the
system state evolves at regular intervals of time. The choice between DES and continuous
simulation depends on the characteristics of the system under study. For example, DES can be
used to study average customer wait time in a bank by modeling the system using discrete events
such as customer arrivals and departures. However, to study an electric circuit, since system

35

evolution cannot be modeled using discrete events, a continuous simulation model should be used

instead (Alimeling et al., 1999).

Figure 3.1 illustrates the generic DES model architecture and its components. This section
provides a brief description of each component and explores how they work together within the
context of a DES model. There are many introductory books to DES that provide a comprehensive
overview of this field including Banks et at. (1996). The specific DES model for an e-tailer order

fulfillment process is described in Section 3.2.

System Instance

System State

Simulation Clock

Check events Update

'

Statistical
Accumulators

Event Calendar Trigger—e- Events —Update—p-

Generate and
schedule new events

Figure 3.1: Conceptual diagram of a DES model architecture

3.1.1. System instance

The system instance is a mathematical representation of the real-world system under study.
Building a DES model starts with defining a system instance that accurately captures the relevant
operational behavior and characteristics of the real-world system. For example, a system instance

for a DES model of a bank includes the customer interarrival time, service time, number of bank

36

tellers and other information that needs to be specified in order to fully define the system under

consideration.

3.1.2. System state

The system state is a set of variables whose values capture the system status at a given moment
in time. It is used to monitor the system’s evolution over the simulation time horizon by capturing
the impact of each event. In the bank example, the number of bank tellers is not considered part of
the system state since it is static and does not change as events occur. The number of customers in
the queue, on the other hand, is dynamic and changes during simulation and hence is included in

the system state.

3.1.3. Events

The events are the key building blocks of a DES model that represent any activity that makes
a change in the system state. As mentioned earlier, DES assumes that events occur at a point in
time and that the system state does not change between two consecutive events. In the bank DES
model, customer arrival is an example of an event which changes system state by adding a new
customer to the queue. As illustrated in Figure 3.1, in some cases, execution of an event results in
addition of a new event to the event calendar. This is a very important property of DES models

that will be explained further in the following sections.

3.1.4. Simulation clock

The simulation clock is a virtual timer inside a DES model that keeps track of the current
simulation time. DES models are developed to analyze a system within a finite time horizon. The
length of this time horizon and its measurement units are determined by the analysis objectives.
The simulation clock starts at time 0 (at the beginning of this time horizon), moves forward

37

incrementally and checks the event calendar for the next event that needs to be triggered at each
point in time. In this dissertation we consider a next-event time progression which means that the
simulation clock moves directly from the starting time of one event to the next one. Alternatively,
a fixed-increment time progression can be used that moves the simulation clock forward in fixed

increments.

3.1.5. Event calendar

The event calendar is a list of events (and their related information) that are scheduled to take
place at known future times (after the current clock time). As the simulation clock progresses, if
the starting time of an event in the event calendar matches the current simulation time, it is
triggered by simulation. The event calendar is constantly being updated during a simulation as past

events are deleted and future events are added.

3.1.6. Statistical accumulators

The statistical accumulators keep track of various system performance metrics during a
simulation. The type and number of statistical accumulators are determined by the objectives of
the analysis. The value of a statistical accumulator is updated by different events and are reported
at the end to help analyze the simulation output. In the bank DES model, average customer wait
time is a statistical accumulator that is updated as each customer enters and subsequently exits the

bank.

3.2. DES model of an e-tailer order fulfillment process
In this section a DES model of an e-tailer order fulfillment process is presented. As mentioned
earlier in this chapter, this DES model is developed in the C++ programming language following

an object-oriented approach. Table 3.1 displays a list of indices and parameters used to define the

38

system instance for this model. This section provides an overview of this DES model and describes

the modeling approach and assumptions.

Table 3.1: Indices and parameters for DES model

Indices

s SKU

f FC

r Customer order

i Item: a particular SKU that is requested in a particular order

m Shipping method

p Delivery preference

a Assignment

z Shipping zone

g Region

q Order quantity

Parameters

Length Length of rectangular space that represents the e-tailer’s area of operation, (real, > 0)
Width Width of rectangular space that represents the e-tailer’s area of operation, (real, > 0)
NumSKUs Number of SKUs in e-tailer product catalog, (integer, > 0)

NumFCs Number of FCs in e-tailer supply chain network, (integer, > 0)

NumRegions Number of regions in e-tailer area of operation, (integer, > 0)

SKU; An object that stores a representation of SKU s, (instance of SKU class)

FCr An object that stores a representation of FC f, (instance of FC class)
DeliveryDays,, Number of days a customer should wait to receive their order if delivery preference p is selected, (integer, > 0)
DelProb, Probability that delivery preference p is selected when an order is placed, (real, = 0)
AvgIntPlcTime Average inter-order-placement time, (real, > 0)

MaxOrdLines Maximum number of order lines allowed in a customer order, (integer, > 0)
OrdLinesProb; Probability that i items are requested in a customer order, (real, > 0)
ShippingDays,, Number of days it takes for a box to reach its destination when it is shipped by shipping method m, (integer, > 0)
SkuProbg Probability that SKU s is selected in a customer order, (real, = 0)

MaxQuantity Maximum quantity of any SKU that can be requested in any order, (integer, > 0)
QtyProb, Probability that the order quantity is g in an order item, (real, > 0)

region, An object that stores representation of region g, (instance of Region class)
RgnProb, Probability that an order originates from region g, (real, = 0)

MaxBoxWeight Maximum weight capacity (in pounds) of a box, (real, > 0)

3.2.1. System instance for e-tailer DES model

The e-tailer order fulfillment process is a complex system that involves many entities and

relationships. There are many ways to model this system using DES. Since the primary objective

of this dissertation is studying different strategies and algorithms for reevaluating order fulfillment

decisions, we model those system characteristics that are relevant to this analysis. In order to

develop a generic simulation model that can be used by decision makers across a wide variety of

e-tailers, we use several parameters in this model. The value of these parameters should be set

39

based on the characteristics of a real-world e-tailer. Figure 3.2 illustrates the main components of

the system instance for this DES model.

Note that in this simulation, we use an object-oriented modeling approach in which each entity
is modeled as a member of a class. The characteristics of that entity are modeled as attributes of
that class. For example, each FC in this simulation is modeled as a member of the FC class. This
class has several attributes including invinf og that specifies the inventory policy for SKU, at an
FC. In this dissertation, to reference an attribute of a class we use the following terminology:
(member_name. attribute). For example, FCs.invInfo, describes the inventory policy for

SKUs; at FCy. Note that an attribute of a class can be another class.

Area of operation

SKU

{Items ﬂﬂ
aon

ooon

FC

Shipment
Shipping
Method

22

Inventory

Customer

Replenishment DE

Figure 3.2: Visual representation of system instance for the DES model

FC

40

Time measurement. For this DES model, time is measured in minutes. The timing of any
event including customer order placement and order shipment is captured by measuring the
number of minutes that elapsed between the simulation starting time and when that event occurs.
Additionally, we assume that the e-tailer’s operations never stop and customer orders are placed
and processed by the e-tailer around the clock. The simulation time horizon is a model parameter
that can be adjusted. For example, for simulating one month of the e-tailer’s operations, the time

horizon should be set to 43,200 minutes.

Area of operation. E-tailers typically serve customers within a certain geographical region
which is referred to as their area of operation. Some e-tailers ship products to their customers in a
single country while others operate internationally. In this DES model, the area of operation is
assumed to be a rectangular area. The size of this area is modeled using the Length and Width

parameters.

The location of each point within the e-tailer’s area of operation is measured based on its
relative position to the bottom-left corner which is assumed to be the origin of a two-dimensional
coordinate plane. This coordinate plane is used to define the location of each FC and customer
which allows the simulation model to measure the Euclidian distance between each FC and
customer order. Table 3.2 provides the definition of the Location class which is used in this

simulation to store the x and y coordinates of a customer and FC location.

Table 3.2: Location class definition

Class: Location
xCoord X coordinate of a location, (real,0 < xCoord < Length)
yCoord Y coordinate of a location, (real, 0 < yCoord < Width)

Stock keeping units (SKUSs). In this simulation model, a SKU is defined as a distinct type of

item for sale on the e-tailer’s website. The NumSKUs parameter represents total number of SKUs

41

in the e-tailer’s product catalog. Characteristics of SKU s are modeled using the SKU, object
which is a member of the SKU class that is described in Table 3.3. As shown in this table, the SKU

class includes two parameters that model the SKU ID and weight.

Table 3.3: SKU class definition

Class: SKU
SKU_ID SKU ID, (integer, 1 < SKU_ID < NumSKUSs)
weight SKU weight in pounds, (real, > 0)

Fulfillment centers (FCs). FCs are located inside the e-tailer’s area of operation and are
responsible for managing its inventory and fulfilling customer orders. The NumFCs parameter
represents total number of FCs in the e-tailer’s supply chain network. The characteristics of FC f,

are modeled using the F C object which is a member of the FC class that is described in Table 3.4.

Table 3.4: FC class definition

Class: FC

FC_ID FC ID, (integer,1 < FC_ID < NumFCs)

FCLoc FC location, (instance of Location class)

invinfog Inventory management information for SKU s, (instance of Invinfo class)

The first parameter in this class is FC_ID which assigns a unique identifier to each FC object.
In this model, an auto-increment number is used for generating values of FC_ID. The FCLoc

parameter captures location of FC based on the coordinate system that was described previously.

The inventory management policy for SKU at FCr is modeled using the invinf o, object

which is a member of the Invinfo class. The definition of this class is provided in Table 3.5.

Table 3.5: Invinfo class definition

Class: Invinfo

SKU_ID SKU ID, (integer, 1 < SKU_ID < NumSKU5s)

maxLevel Maximum inventory level, (integer, > 0)

reviewCycle Inventory review cycle in minutes, (real, > 0)

leadTime Lead time for receiving a replenishment order in minutes, (real, > 0)

42

Two main aspects of the e-tailer inventory management policy are considered in this simulation

model:

Inventory placement: e-tailers typically offer a large variety of SKUs in their website.
However, to reduce operational costs, they do not store all SKUs at all FCs and instead
strategically position their inventory by spreading it among their locations. This is modeled in
this simulation using the maxLevel parameter in Invinfo class. If in the real-world system,
the e-tailer does not stock SKU; in FCy, the value of FCy.invinfos. maxLevel can be set to
0.

Inventory replenishment policy: this refers to the frequency and size of replenishment orders
for each SKU. In this simulation model, we assume that all FCs follow an order-up-to-level
(OUTL) policy with periodic review for inventory replenishment which is illustrated in Figure
3.3. There are three parameters in the Invinfo class that are used to model this policy. The
maxLevel parameter refers to the maximum inventory level for a SKU. The reviewCycle
specifies the frequency at which inventory level is reviewed at the FC. Since there usually is a
lag between the time at which a replenishment order is placed and when it reaches the FC, the
leadTime parameter is used to capture that. The order quantity for each replenishment is
calculated based on on-hand inventory and its difference with maxLevel. Note that the value
of all these parameters could be different for each FC-SKU combination. For example, if
maxLevel for SKUg at FCy is 200 with a reviewCycle of 2880 minutes (2 days) and
leadTime of 1440 minutes (1 day), when the simulation begins, the inventory level for this
SKU and FC combination is set to 200. After that, the inventory level decreases as customers

place orders and they are assigned to FCr. Att = 2880, the inventory level is reviewed for the
first time. Assuming that on-hand inventory for SK U, is 50, a replenishment order is placed

43

with a quantity of 150 plus the expected demand for SKU at F C; during the leadTime. For
instance, if on average 75 units of SKU; are shipped from FC; in a day, since leadTime is 1

day, 75 units are added to the replenishment order quantity and the total quantity becomes 175.
Note that, this number does not immediately get added to the on-hand inventory level. Instead
this is added to on-order inventory which will be turned into on-hand inventory after 1440

minutes.

— maxLevel
5]
>
Q
p—
Q
&
5
= leadTime
= >
e
«>
reviewCyle
Time

Figure 3.3: Order-up-to-level inventory policy with periodic review

Delivery options. Several studies indicate that the variety, cost and lead time of e-tailer
delivery options is a highly influential part of the customer buying process (Esper et al., 2003; Ma,
2017) Most e-tailers offer several delivery options to their customers. In this DES model we

consider four of the most common delivery options that are listed below:

e Delivery Option 1: Seven Day Delivery
e Delivery Option 2: Five Day Delivery
e Delivery Option 3: Two Day Delivery

e Delivery Option 4: One Day Delivery

44

Average lead time for delivery option p is stored in the DeliveryDays, parameter. For

instance, value of DeliveryDays, is set to 5 which indicates that if a customer chooses delivery
option 2, their order is delivered to them within 5 days after it is placed. In real-world systems,
delivery options are not selected by customers with the same likelihood. For example, delivery
options with shorter lead time are more expensive and therefore less likely to be selected by
customers who are cost aware. DelProb,, parameter defines the probability of delivery option p
getting selected by a customer. This parameter allows decision makers to set the probability of

different delivery options based on their customer buying behavior.

The last aspect of delivery options that is modeled in this simulation is the delivery window.
The delivery window is a range of time during the day of order delivery when the customer should
expect to receive their package. In real-world systems, premium delivery options such as One Day
Delivery and Two Day Delivery have a tighter delivery window than basic options. This is modeled

by setting a shorter delivery window for premium delivery options in this simulation.

Table 3.6 summarizes all information for delivery options. Based on this table, if a customer
places an order at 10:00 a.m. on a Monday and selects a One Day Delivery option they can expect
to receive their order between 3:00 p.m. and 7:00 p.m. on Tuesday. If the customer selects a Seven
Day Delivery instead, their order will be delivered between 8:00 a.m. and 7:00 p.m. on the Monday
of the following week. Note that in this simulation model, 1:00 p.m. is considered the shipment
cutoff time (lock time) and customer orders that are placed after this time are not eligible to ship
on the same day. In other words, if a customer places an order at 1:05 p.m. on a Monday and selects
a One Day Delivery option, their order is delivered between 3:00 p.m. and 7:00 p.m. on

Wednesday.

45

Table 3.6: List of delivery options

Delivery option Description DeliveryDays, DelProb, Delivery window

(p) (Days) (%) (Time of Day)

1 Seven Day Delivery 7 31 8:00 a.m. to 7:00 p.m.
2 Five Day Delivery 5 27 8:00 a.m. to 7:00 p.m.
3 Two Day Delivery 2 23 12:00 p.m. to 7:00 p.m.
4 One Day Delivery 1 19 3:00 p.m. to 7:00 p.m.

Customer orders. Customer orders in this simulation are modeled using the order. object
which is a member of the Order class that is described in Table 3.7. Unlike SKUs and FCs, the
number of customer orders is not a known value and is a random variable. The time that elapses
between two consecutive orders being placed is referred to as the inter-order-placement time. We
use a probability distribution to model the variability of the inter-order-placement time. The type
of this distribution is a model parameter that can be configured based on a specific e-tailer customer
order placement rate. Additionally, we use the AvgIntPlcTime parameter as the mean value of

this probability distribution that can also be adjusted as needed.

As shown in Table 3.7, each customer order is assigned an ordID that uniquely identifies that
order in the system. The time an order is placed is stored in the ordTime parameter. In addition,
the day and hour of order placement are stored in the ordDay and ordHour parameters

respectively.

The location of customer orders is modeled using the ordLoc object which is a member of the
Location class that was described in Table 3.2. In other words, order;.ordLoc.xCoord and

order,.ordLoc.yCoord store the x and y coordinates of the customer who places order r.

46

Table 3.7: Order class definition

Class: Order

ordID Order ID, (integer, > 0)

ordTime Clock time (in minutes) when order is placed, (real, > 0)

ordHour Hour of order placement time, (integer, 0 < ordHour < 23)

ordDay Day of order placement, (integer, > 0)

ordLoc Customer location, (instance of Location class)

delPref Delivery preference, (integer,1 < delPref < NumDelPref)

estDel Estimated delivery time, (real, = 0)

mustLockTime Simulation clock time by which all assignments for the order should be locked, (real, = 0)
estLockTime Estimated time at which all assignments for the order will be locked, (real, > 0)
numltems Number of line items (i.e. unique SKUSs) in the order, (integer, 1 < numltems < MaxOrdLines)
item; Information pertaining to item i in customer order, (instance of Item class)

In a real-world e-tailer system when a customer places an order, they select one of the delivery
options that are available in the website. The delPref parameter in the Order class stores the
delivery option selected by a customer in this simulation. For example, if a Two Day Delivery
option is selected by the customer who places order;., the value of order,.delPref is set to 3

based on the delivery options listed in Table 3.6.

The estimated delivery time for an order is calculated based on when it is placed and its
delivery preference, and it is stored in estDel parameter. Additionally, estimated delivery time
determines how much time the e-tailer has before they must lock their fulfillment decision for the
order. We assume that boxes are shipped once every day at 2:00 p.m. and the fulfillment decision
for all orders that will be shipped that day must be locked at 1:00 p.m. This gives FCs enough time
to prepare customer orders for shipment. Based on this assumption, the final deadline for locking
customer order r (mustLockTime) is 1:00 p.m. on the day before its estimated delivery. This
allows the e-tailer to use a Next Day Air shipping method to fulfill that customer order. This final
deadline is stored in the mustLockTime parameter. For example, if a customer places an order at
10:00 a.m. on a Monday and selects a Five Day Delivery preference, their estimated delivery time
(estDel) is calculated as a random time between 8:00 a.m. and 7:00 p.m. on Saturday of the same

week and the value of mustLockTime for their order is set to 1:00 p.m. on Friday.

47

Although waiting until the final deadline and using a Next Day Air shipping method is a
feasible decision, in a real-world system the e-tailer could find a more economical way to fulfill
that order. For instance, in the previous example, if the e-tailer has enough inventory, it can use a
UPS Ground (i.e. 5-day) shipping method to ship the customer order at 2:00 p.m. on Monday
which is a cheaper option than waiting until Friday and using a Next Day Air shipping method. In
following sections, we explain the fulfillment decision process that focuses on finding the best
decision to minimize the shipping cost of each customer order. The estLockTime parameter stores
the estimated time at which the e-tailer will lock its fulfillment decision for order r. By definition,

estLockTime is less than or equal to mustLockTime.

The numlitems parameter stores the number of items (i.e. number of unique SKUs) requested
in customer order r. This is modeled using the Item class that is described in Table 3.8. Some

customers order a single item while others order multiple items.

Table 3.8: Item class definition

Class: Item
SKU_ID SKU ID, (integer,1 < skulD < NumSKUs)
qty Order quantity, (integer,1 < qty < MaxQuantity)

In a real-world e-tailer system, the number of items varies from one customer order to another.
An example dataset from OL.ist, a Brazilian e-tailer, is presented in Table 3.9 (Kaggle website,
2020). This table shows the number of items requested in 98,000 historical customer orders. It
can be observed that almost 90% of OL.ist customer orders include a single item while less than
1% of them include more than four items. In addition, the maximum number of items in a single
customer order in this sample dataset is 21 which occurs only in one instance. To model this, we

use the MaxOrdLines parameter to represent the maximum number of items in this simulation.

48

Additionally, OrdLinesProb; is the probability that i items are requested in an order. Values of
MaxOrdLines and OrdLinesProb; can be adjusted by decision makers based on real-world e-
tailer historical demand patterns. For example, to model OList customer order patterns,
MaxOrdLines should be set to 21 and value of OrdLinesProb, through OrdLinesProb,,should
be calculated based on the distribution that is presented in Table 3.9. Note that since

OrdLinesProb; represents a probability distribution, the sum of its values must be equal to 1.

Table 3.9: Distribution of number of items in OL.ist customer orders

Number of items Frequency
1 88863
2 7516
3 1322
4 505

5 204

6 198

7 22

8 8

9 3

10 8

11 4

12 5

13 1

14 2

15 2

20 2

21 1

Another important aspect of customer orders that is modeled in this simulation is the
distribution of SKUs in customer orders. Some SKUs are fast-moving and are ordered very
frequently while others are slow-moving and have a sporadic ordering pattern. SkuProb,
represents the probability that SKU s is the next SKU requested in any order. The value of
SkuProb, can be calculated for all SKUs based on historical demand records of a real-world e-
tailer. This allows decision makers to set a higher probability value to fast-moving SKUs. For

example, consider a scenario in which the e-tailer has three SKUs in its product catalog. The e-

49

tailer’s historical demand records indicate that in the past 1000 customer orders SKU,, SKU,, and
SK U5 have been ordered by 800, 500 and 200 customers respectively. According to this data, value
of SkuProb;, SkuProb, and SkuProb; should be set to 0.8, 0.5 and 0.2. Note that since

SkuProby is not a probability distribution, the sum of its values does not have to be equal to 1.

In order to model variability of order quantities, QtyProb, is used in this simulation which
defines the probability that quantity associated with an item is equal to q. Like SkuProb,, the
values of QtyProb, could be set based on e-tailer historical demand. For instance, if 90% of a

real-world e-tailer’s single item orders have an order quantity of 1, value of QtyProb,should be

set to 0.9.

Regions. All customer orders are placed from within the e-tailer’s area of operation. In a real-
world e-tailer system, customer locations are not evenly distributed inside the area of operation.
For instance, more orders are submitted from highly populated metropolitan areas than rural areas.
Figure 3.4 illustrates the geographical distribution of a sample of OL.ist customer orders that was
presented earlier in this chapter. As the map shows, the number of orders that are submitted from
eastern parts of the country is higher than the west. Additionally, it can be observed that certain

regions in the east have a higher order density than others.

50

Figure 3.4: Geographical distribution of a sample of OL.ist customer orders

To model the geographical distribution of customer orders, we split the e-tailer’s area of
operation into multiple rectangular regions. NumRegions is a model parameter that allows
decision makers to control the granularity of this division. By setting a higher value for this
parameter, the area of operation is split into more regions and vice versa. The size and position of
region g is modeled using the region, object which is a member of the Region class that is
described in Table 3.10. Each region is assigned a regionID that uniquely identifies it in the
system. The [lLoc and urLoc parameters store the coordinates of the lower left and upper right

corner of region, respectively.

Table 3.10: Region class definition

Class: Region

regionlD Region ID, (integer, 1 < regionlD < NumRegions)
llLoc Location of lower left corner of region, (instance of Location class)
urLoc Location of upper right corner of region, (instance of Location class)

RgnProbg is a probability distribution that specifies the likelihood that a customer order is
placed from region,. By setting a higher value of RgnProb, for regions that represent highly

populated areas within an e-tailer’s area of operation, we can model the geographical distribution

of customer orders.

51

A simple example is presented in Figure 3.5. As displayed in this figure, the e-tailer’s area of
operation is split into four regions. A regionID is assigned to each region as well as a RgnProb,
value. In this example, region 1 has the highest order rate with a probability value of 0.4 which
indicates that 40% of the e-tailer’s customer orders are submitted from a location within this
region. The locations of customer orders are assumed to be uniformly distributed within each

region.

regionlD = 2
regionlD =1
RgnProb, = 0.2
RgnProb, = 0.4

regionlD = 4
regionlD = 3
RgnProb, = 0.3
RgnProb; = 0.1

Figure 3.5: Modeling geographical distribution of customer orders using regions

Shipping methods. The difference between customer delivery options and shipping methods
that are used by e-tailers for order delivery is explained in Chapter 1. Some e-tailers handle their
own outbound transportation while most of them outsource it to 3PLs who offer various shipping
methods for order delivery. In this model, the following UPS shipping methods are used for

analysis.

e Shipping Method 1: UPS Ground
e Shipping Method 2: Three Day Select
e Shipping Method 3: Second Day Air

e Shipping Method 4: Next Day Air

52

We use ShippingDays,, parameter to store the transit time for shipping method m. Table 3.11
provides a summary of these four shipping methods. We assume that the time it takes to ship a box
is independent of the distance it is shipped. That is, the times shown in Table 3.11 are valid for
shipping times from any FC to any customer. When a customer places an order, the e-tailer can
choose a shipping method that meets the customer’s delivery preference. For example, for an order
with a Seven Day Delivery preference, the e-tailer can use any of the four shipping methods above.
In the following sections, we present the shipping cost of different methods and explain how the
e-tailer takes that into account for selecting a shipping method that minimizes its total shipping

cost.

Table 3.11: List of shipping methods

Shipping method (m) Description ShippingDays,, (days)
1 UPS Ground 5
2 Three Day Select 3
3 Second Day Air 2
4 Next Day Air 1

Shipments. In the simulation model, orders can be rejected if not enough open inventory is
available to satisfy the order. If they can be satisfied, they are shipped in one or more boxes. As
we explain in the next section, there is a fixed cost for shipping each box. This incentivizes the e-
tailer to reduce the total number of boxes for fulfilling a customer order. In a real-world e-tailer
system, there is a maximum weight capacity for a single box. If the total weight of the items
ordered exceeds this threshold, the e-tailer must break the order shipment into multiple boxes. The
maximum box weight varies from one e-tailer to another and is dependent on product types. In this
simulation parameter MaxBoxWeight is used to give the decision maker flexibility in setting this

value based on its business requirements.

53

All shipments must be delivered to customers within their expected delivery window which is
determined based on their delivery preference. As mentioned earlier, there are four shipping
methods that can be used for order delivery. Since there is a fixed cost associated with picking
orders from FCs, orders are not typically shipped one at a time and instead FCs batch multiple
orders and ship them at a pre-determined time referred to as the shipment pick-up time. We assume
shipment pick-up happens once a day at 2:00 p.m. Since picking items from inventory and getting
them packed into boxes for shipment requires time, we assume that all fulfillment decisions for
customer orders must be fixed by 1:00 p.m. on the day of shipment. This gives FCs enough time
to meet the shipment deadline. All orders that are placed after 1:00 p.m. are therefore not eligible

for being shipped on that day and must wait until following days.

Note that we assume all inventory replenishments reach their destination FC at 12:00 a.m. The
inventory units that are received at an FC can be used to satisfy an order that is shipped from that
FC at 2:00 p.m. on the same day. For instance, consider a scenario where a customer places an
order at 11:00 p.m. on a Monday and requests 1 unit of SKU; with a One Day Delivery preference.
If there is no on-hand inventory of SKU,at any FC, but FC; expects a replenishment for that SKU
at 12:00 a.m. on Tuesday, the e-tailer can accept the order and assign it to FC;. In this case, the
customer order is shipped at 2:00 p.m. on Tuesday and is delivered to the customer between 3:00

p.m. and 7:00 p.m. on Wednesday.

Consider another example in which a customer places an order at 1:01 p.m. on a Monday and
requests 1 unit of SKU; with a One Day Delivery preference. In this case we assume that the e-
tailer has enough inventory on-hand to satisfy this order. However, since the order is placed after

the locking time (1:00 p.m.) it is not shipped on Monday and instead is sent out to the customer on

54

Tuesday at 2:00 p.m. The customer will receive their order between 3:00 p.m. and 7:00 p.m. on

Wednesday.

Shipping cost. In this simulation model, shipping cost is calculated based on UPS shipping

rates (UPS website, 2019). UPS uses a three-step process to calculate shipping cost.

Step 1: Specify shipping method. The first step in calculating shipping cost is identifying the
shipping method that is used by the e-tailer. The list of available shipping methods and their details
are provided in previous sections. Intuitively, shipping methods with shorter transit times have a

higher shipping cost.

Step 2: Identify a UPS shipping zone. A UPS Shipping zone is specified based on the selected
shipping method and distance between the origin and destination. A list of shipping zones for all
shipping methods as well as the distance range for each is provided in Table 3.12. For instance, if
a box is sent from a FC in Chicago to a customer in Detroit using a Three Day Select shipping
method, since the total distance is approximately 280 miles the UPS shipping zone is identified as

308.

55

Table 3.12: List of UPS shipping zones based on shipping method and distance (in miles)

Shipping method (m)

Shipping method description

Minimum distance

Maximum distance

Shipping zone

1 UPS Ground 0 165 002
1 UPS Ground 166 308 003
1 UPS Ground 309 607 004
1 UPS Ground 608 1,020 005
1 UPS Ground 1,021 1,440 006
1 UPS Ground 1,441 2,020 007
1 UPS Ground 2,021 NA 008
2 Three Day Select 0 165 302
2 Three Day Select 166 308 303
2 Three Day Select 309 607 304
2 Three Day Select 608 1,020 305
2 Three Day Select 1,021 1,440 306
2 Three Day Select 1,441 2,020 307
2 Three Day Select 2,021 NA 308
3 Second Day Air 0 165 202
3 Second Day Air 166 308 203
3 Second Day Air 309 607 204
3 Second Day Air 608 1,020 205
3 Second Day Air 1,021 1,440 206
3 Second Day Air 1,441 2,020 207
3 Second Day Air 2,021 NA 208
4 Next Day Air 0 165 102
4 Next Day Air 166 308 103
4 Next Day Air 309 607 104
4 Next Day Air 608 1,020 105
4 Next Day Air 1,021 1,440 106
4 Next Day Air 1,441 2,020 107
4 Next Day Air 2,021 NA 108

Step 3: Calculate shipping cost. After identifying the shipping zone, UPS uses a step function

to calculate the final shipping cost based on the box weight. This step function rounds up total box

weight to full pounds and then uses a cost matrix to specify the final shipping cost. Table 3.13

displays a sample dataset from this cost matrix for UPS shipping zone 303. Based on this table,

the total cost of shipping a box that weighs 8 pounds from a FC in Chicago to a customer in Detroit

using the Three Day Select shipping method is $19.11.

56

Table 3.13: Sample shipping rates from UPS cost matrix
Shipment weight (Ib.) Shipping cost ($)
1 11.43

12.12

12.76

14.06

15.07

16.35

17.63

19.11

19.98

20.62

© 00 NO O bW

=
o

As can be observed from this sample dataset, the shipping cost per pound is not a constant
value. In order to simplify this step function for the simulation model, linear regression is used to
fit a linear model to shipping cost based on box weight. Table 3.14 summarizes the information
for all fitted models and reports their accuracy using the R? metric. As shown in this table, the
linear models estimate shipping cost with a very high degree of accuracy. A scatter plot of all UPS

shipping costs and the fitted linear model for all the shipping zones is provided in Appendix A.

57

Table 3.14: Summary of fitted linear models for all shipping zones

Shipping Method Shipping Zone Fitted Model Estimated Fixed Cost ($/box) Estimated Variable Cost ($/Ib) R?

UPS Ground 002 y = 0.467x + 0.500 0.500 0.467 0.93
UPS Ground 003 y = 0.483x + 0.900 0.900 0.483 0.96
UPS Ground 004 y = 0.513x + 1.370 1.370 0.513 0.97
UPS Ground 005 y =0.502x +6.011 6.011 0.502 0.99
UPS Ground 006 y =0.543x+9.707 9.707 0.543 0.99
UPS Ground 007 y =0.576 x + 13.629 13.629 0.576 0.99
UPS Ground 008 y =0.636 x + 15.849 15.849 0.636 0.98
Three Days Select 302 y =0.808x +7.23 7.23 0.808 0.99
Three Days Select 303 y =1.013x +9.874 9.874 1.013 0.99
Three Days Select 304 y =1328x +9.284 9.284 1.328 0.99
Three Days Select 305 y =1745x +9.296 9.296 1.745 0.99
Three Days Select 306 y =2525x+ 12312 12.312 2.525 0.99
Three Days Select 307 y=2970x+11.164 11.164 2.970 0.99
Three Days Select 308 y =3.329x + 11.692 11.692 3.329 0.99
Two Days Air 202 y =1.181x +10.348 10.348 1.181 0.99
Two Days Air 203 y =1.338x +15.010 15.010 1.338 0.99
Two Days Air 204 y =1772x+15.223 15.223 1.772 0.99
Two Days Air 205 y =2.590 x + 17.495 17.495 2.590 0.99
Two Days Air 206 y = 4.265 x + 19.846 19.846 4.265 0.99
Two Days Air 207 y =4.525x+24.643 25.643 4.525 0.99
Two Days Air 208 y =4.760x +24.013 24.013 4.760 0.99
Next Day Air 102 y =2.073x +11.562 11.562 2.073 0.99
Next Day Air 103 y =3.012x + 16.57 16.57 3.012 0.99
Next Day Air 104 y =4.998x +35.206 35.206 4.998 0.99
Next Day Air 105 y=5410x+41.148 41.148 5.410 0.99
Next Day Air 106 y =5.543x4+49.559 49.559 5.543 0.99
Next Day Air 107 y =6.039 x +45.559 45559 6.039 0.99
Next Day Air 108 y = 6.345x +45.379 45.379 6.345 0.99

Using these linear models, the shipping cost for each zone is broken down into two separate
components. The first component is a fixed charge which does not depend on box weight and the
second component is a variable cost which is dependent on box weight. For instance, for shipping
an 8-pound box from a FC in Chicago to a customer in Detroit using a Three Day Select shipping
method, there is a fixed cost of $9.874 and a variable cost of $1.103 per pound. Therefore, total
shipping cost for this box is estimated as $18.698 using the regression model which has less than

3% error when compared with the actual shipping cost of $19.11 from the UPS cost matrix.

Several important patterns can be detected in Table 3.14. First, the fixed shipping cost
components are considerably higher than the variable components. Therefore, minimizing the
number of boxes that are shipped to customers can reduce total shipping cost. Xu et al. (2009) use
this principle in designing an order fulfillment reevaluation algorithm that minimizes total number

of boxes by shuffling order assignments. However, there are other patterns in this data that need

58

to be considered. There is a significant difference between the cost of various shipping methods.
In the previous example of sending an 8-pound box from a FC in Chicago to a customer in Detroit,
if the e-tailer uses UPS Ground shipping method instead of Three Day Select, they can reduce total
shipping cost from $19.11 to $4.77 and save $13.94. This indicates that minimizing number of
boxes does not necessarily minimize the total cost. In some cases, sending more boxes using
cheaper shipping methods could result in an overall lower shipping cost. In the following sections,
we discuss additional aspects of the online order fulfillment process that must be considered by

our proposed algorithms.
3.2.2. System state for e-tailer DES model

The system state is the dynamic aspect of a simulation model that evolves over time as new
events occur. The system state for an e-tailer order fulfillment process is composed of several
entities and relationships that are explained in this section. To model these entities, we use a class

called SysState. Table 3.15 provides a definition of this class.

Table 3.15: SysState class definition

Class: SysState

orderQueue, List of all orders, (instance of Order class)

openOrderNumbers Order numbers for open orders, (integer, > 0)
closedOrderNumbers Order numbers for closed orders, (integer, > 0)

numOrders Total number of orders that have been placed, (integer, > 0)
numOpenOrders Total number of open orders, (integer, > 0)

numClosedOrders Total number of closed orders, (integer, > 0)

numAssignments Total number of assignments, (integer, > 0)

assignments, List of current assignments, (instance of Assignment class)

invg s Inventory status for SKU s at FC f, (instance of Inventory class)
timeOfMostRecentEvent Time of most recent event, (real, > 0)

Order queue. The order queue keeps a record of all customer orders that have been placed.
Figure 3.6 provides a conceptual view of the order queue. As shown in this figure, each customer
order is modeled as an independent entity. The order queue consists of a collection of these entities

that together capture the relevant information of all customer orders that have been placed since

59

the beginning of the simulation. We use orderQueue, to store the information of customer order

r. The numOrders parameter is also used to capture total number of customer orders that have

been placed.

ordNum ordNum ordNum
ordTime ordTime ordTime
ordHour ordHour ordHour
ordDay ordDay ordDay
ordLoc ardLoc ordLoc
delPref . delPref delPref
estDel estDel estDel
mustLockTime mustLockTime mustLockTime
estLockTime estLockTime estLockTime
numltems numltems numitems
items items items
v v v
skuNum skuNum skuNum
qty qty aty
N N N N AN

Figure 3.6: Conceptual diagram of customer order queue

Open orders and closed orders list. In addition to the order queue, two other lists are used in
the system state to separate open orders from closed orders. When a new order is placed, its order
number is added to openOrderNumbers list and it remains there until it is either rejected or all
its items are shipped out from FCs. At that point, its order number is removed from the
openOrderNumbers list and is added to the closedOrderNumbers list. Note that since all
information about an order is already stored in orderQueue, the openOrderNumbers and

closedOrderNumbers lists only include the order numbers.

Inventory level. The inventory level is the amount of inventory that is available at the e-tailer

at a particular time during the simulation. In this model, inventory is tracked using six inventory

60

types for each SKU and FC combination. Figure 3.7 illustrates these inventory types. As shown in
this figure, all inventory units that are physically present at an FC are referred to as on-hand, while
the units that are ordered but have not reached the destination FC are considered on-order.
Inventory units that are not assigned to a customer order are tagged as unassigned and otherwise
they are considered assigned. If the order that an inventory unit is assigned to is locked for
shipment, that inventory unit is referred to as locked. Inventory units that are assigned to orders

that are not locked for shipment are considered open.

Order 3 Order 4 Order 1 Order 2
(open) (locked) (open) (locked)

A

a: onHandUnassigned
b: onHandAssignedOpen

D — —] c¢: onHandAssignedLocked
“ “ d: onOrderUnassigned
e: onOrderAssignedOpen
f: onOrderAssignedLocked

Figure 3.7: Inventory types in the system state

To store inventory information for SKU s at FC f in the system state, we use the inv ; object

which is a member of Inventory class that is described in Table 3.16. As shown in this table,
there is a variable for each of the six inventory types in this class. These variables are used to track

inventory levels during the simulation.

61

Table 3.16: Inventory class definition

Class: Inventory

FC_ID FC number, (integer, 1 < FC_ID < NumFCs)

SKU_ID SKU number, (integer,1 < SKU_ID < NumSKUSs)

onHandUnassigned On hand inventory units that are not assigned to any order, (integer, > 0)
onHandAssignedOpen On hand inventory units that are assigned to an order but can be reevaluated, (integer, = 0)
onHandAssignedLocked On hand inventory units that are assigned to an order and cannot be reevaluated, (integer, = 0)
onOrderUnassigned On order inventory units that are not assigned to any order, (integer, > 0)

onOrderAssignedOpen On order inventory units that are assigned to an order but can be reevaluated, (integer, > 0)
onOrderAssignedLocked On order inventory units that are assigned to an order and cannot be reevaluated, (integer, > 0)
repTime Expected simulation clock time of next replenishment, (real, > 0)

Figure 3.8 shows how inventory types change as different events occur. Inventory is first
created when an FC places a replenishment order for a SKU and all inventory units in that
replenishment order are tagged as on-order-unassigned. If the e-tailer assigns some of those units
to customer orders before they reach the FC, their type changes to on-order-assigned-open. If the
order that those inventory units are assigned to gets locked for shipment while the replenishment
order is still in transit, their type becomes on-order-assigned-locked. When the replenishment
order reaches the destination FC, all inventory units with on-order types are added to the
corresponding on-hand type. For example, inventory units that are on-order-unassigned are added
to existing on-hand-unassigned inventory units. The inventory type transition ends when an
inventory unit is shipped to a customer as a result of shipment event. More information about

events are provided in the following sections.

62

OnOrderUnassigned

OnOrderAssignedOpen

OnOrderAssignedLocked

onHandUnassigned

onHandAssignedOpen

lonHandAssignedLocked|

i

replenishment
order

Assignments. When the e-tailer makes a fulfillment decision for an order, the decision is stored
in the system state as a set of assignments. Each assignment specifies the responsible FC for
fulfilling an item in the customer order in addition to information about when and how that item
will be shipped. In other words, if a customer order contains multiple items, a separate assignment
is generated and stored in the system state for each item. In some cases, if the e-tailer decides to

split a single-item order between multiple FCs, multiple assignments will be generated for that

» Receive replenishment

» Make order fulfillment decision

—» Lock fulfilment decision

Box shipped

Figure 3.8: Transition logic between different inventory types

Box Shipped

— e — s — —» Place inventory replenishment order

item. In this simulation we use the Assignment class to store this information in the system state.

Table 3.17 provides the definition for this class as well as the variables that are used to capture

different aspects of an assignment.

63

Table 3.17: Assignment class definition

Class: Assignment

asglID Assignment ID, (integer, > 0)

ordID Order ID, (integer, > 0)

skulD SKU ID, (integer, 1 < skulD < NumSKUs)

fclD FC ID, (integer, 1 < fcNumber < NumFCs)
qtyFromOnHand Quantity that is assigned from on hand inventory, (integer, > 0)
qtyFromOnOrder Quantity that is assigned from on order inventory, (integer, > 0)
shippingTime Scheduled shipping time for assignment, (real, > 0)
lockingTime Scheduled locking time for assignment, (real, > 0)
shippingMethod Shipping method, (integer, 1 < shippingMethod < 4)
locked Is this assignment locked or it can be modified? (binary)

Figure 3.9 illustrates the relationship between customer orders, fulfillment decisions and
assignments. In this example, a customer order is placed at time t = 0 with two items. The first
item is one unit of SKU; and the second item is two units of SKU,. This customer has requested
delPref; which, as described previously, is Seven Day Delivery. According to this delivery
preference, the mustLockTime for this order is estimated as t = 9420 which is 1:00 p.m. of the
day before the delivery deadline. The e-tailer makes a fulfillment decision to identify the best
option to fulfill the order given its current system state. The results of this decision are stored in
two assignment objects. The first assignment indicates that SKU; will be fulfilled by FC, using
on-hand inventory. This assignment will be locked at t = 3660 minutes and shipped at t = 3720
minutes. Order locking time and shipping time correspond to 1:00 p.m. and 2:00 p.m. two days
after the order is placed. Additionally, the e-tailer has decided to use shippingMethod, which is
UPS Ground and has an average transit time of 5 days. The second assignment indicate that SKU,
will also be fulfilled by FC,with a similar shipping method, locking time and shipping time. The
only difference in the second assignment is that the e-tailer has decided to fulfill SKU, by using
one unit of on-hand inventory and one unit of on-order inventory. This might be because the e-
tailer does not have enough on-hand inventory at FC, but is expecting a replenishment for SKU,

before order locking time. Note that both assignments are not locked at this time and can be

64

changed if needed. Finally, the value of estLockTime for customer order is set according to these
assignments. In this case, since both assignments for this order are locked at t = 3660, the

estLockTime for the order is also set to the same value.

Customer Order

ordld =1
delPref =1
numltems = 2
itemy.skulD =1

Assignments

asglD =1

ordID =1

skulD =1

fclD =1
qtyFromOnHand =1
qtyFromInOrder = 0
shippingTime = 3720
lockingTime = 3660
shippingMethod = 1

item;.qty =1 locked = false
item,.skulD =2
item,.qty = 2 — Fulfillment Decision
ordTime =0
ordDay =0 as%g f f
musLockTime = 9420 0]: D _ 2
estLockTime = 3660 s o =

feID =1

qtyFromOnHand =1
qtyFromInOrder = 1
shippingTime = 3720
lockingTime = 3660
shippingMethod = 1
locked = false

Figure 3.9: Relationship between customer orders, fulfillment decisions and assignments

3.2.3. Events for e-tailer DES model

The e-tailer order fulfillment process is a highly complex system that involves many activities
and events. An event triggering diagram is provided in Figure 3.10 which illustrates the main
events that are considered in this DES model and the relationships between them. A solid arrow
indicates possible instant triggering of the downstream event resulting from the occurrence of the
upstream event. A dashed arrow indicates a guaranteed placement of the downstream event into

the calendar whenever the upstream event occurs.

65

The overall flow of this DES model begins with a customer places order event. When an order
is placed, the e-tailer immediately checks inventory levels at all FCs to determine whether it can
be fulfilled. A customer order is accepted if there is enough inventory to satisfy all order items;
otherwise the e-tailer rejects that order. The next step for accepted orders is making a fulfillment
decision that determines the best option to fulfill the order with minimum cost while meeting
customer expectations including the requested delivery deadline. Note that, when a customer order

is placed, it triggers a future order placement which is added to the event calendar.

Inventory replenishment at FCs are independent of customer order placement and occur
periodically based on the e-tailer’s inventory policy. The periodicity of this event means that every
replenishment order triggers the next one and this cycle continues throughout the simulation. There
is a lead time for receiving a replenishment order; hence this event is added to the event calendar

to be executed in the future.

It is assumed that shipments are picked up from all FCs at 2:00 p.m. every day. In order to
prepare for this event, all fulfillment decisions for orders that are due for shipment that day are
locked at 1:00 p.m. This gives the e-tailer enough time to pick items from inventory and pack them
into boxes that will be shipped out to customers. This is depicted in Figure 3.10 by showing “lock
fulfillment decision” as a recurring event that schedules customer order shipments to take place in

the future.

66

_» Customer places Check inventory | Accept customer > mﬁ?ﬁrgﬁ{
order availability g order g isi
decision
FC rec;elves Reject customer |{__ | Lock fulfillment
Inventory order decision
replenishment
A :
: \ 4
FC inventory .
checked 3 Boxes shipped
x |

Figure 3.10: Event triggering diagram for discrete event simulation model

The remainder of this section explains these events in more detail. The pseudocode for all

events is provided in Appendix B.

67

Customer places order. This is the beginning of main simulation flow. When a new customer

places an order, the first step is to gather and generate information about it. This includes the order

ID, order placement time, customer location, delivery preference, expected delivery window,

number of items and SKU and quantity of each item.

Order ID: a sequential numbering system is used in this simulation to generate an integer order
ID for each customer order.

Placement time: this is same as the current simulation time and can be directly derived from
that. In addition to order placement time, the day and hour of this event is calculated and stored
in the system state.

Customer location: orders are assumed to be placed from a location within the e-tailer’s area
of operation. As described previously, the area of operation is split into multiple regions and
RgnProby is the probability that a customer order originates from region g. When the
customer places order event is triggered, a random number is generated to determine the
location of the new order based on the values of RgnProb, forall g.

Delivery preference: Four delivery options are considered in this simulation. To determine
which delivery option is selected by order., we use a random number generator and DelProb,,
which specifies the probability that a customer selects delivery option p for their order.
Expected delivery window: this is calculated based on when the order is placed and the
customer’s selected delivery preference. If an order is placed after 1:00 p.m., which is the
locking time for all assignments, it is not eligible for same day shipment and must wait until
the following day.

Number of items: a discrete probability distribution is used to determine number of items in
the customer order.

68

e SKUs: a different SKU is selected for each item that is ordered. Some SKUs are ordered more
frequently than others. To model these differences a probability distribution is used that gives
popular SKUs a higher likelihood of being included in a customer order.

e Order quantity: The quantity of an item is correlated to the SKU in that item. For instance, it
is more likely for a customer to order multiple pens in a single order than it is for them to order
multiple computers. To model this, a probability distribution is used whose value changes
based on the SKU. This allows e-tailers to set a different value for this distribution for each of

their SKUs to accurately capture their customer order pattern.

Once the order information is generated, the next step is to update the statistical accumulators
and system state. The only statistical accumulator that is updated by this event is TotalDemand.
The new order is added to the end of customer order queue in the system state and is considered
as an open order. At the end of this event, the check inventory availability event is triggered to
decide whether this order can be fulfilled. A future customer places order event is also added to

the event calendar.

Check inventory availability. When a customer places an order, the e-tailer immediately
checks its inventory levels to decide if all items in that order can be fulfilled. The check inventory
availability event performs this task by calculating total eligible inventory for each SKU in the
customer order at all FCs. While all on-hand-unassigned inventory units are eligible to satisfy a
customer order, on-order-unassigned inventory units are only eligible if they are scheduled to

arrive at a FC before the order must be locked.

Once the total eligible inventory units for all SKUs in the customer order are calculated, they

are compared with customer order quantity to determine whether the order should be accepted or

69

rejected. If there is enough eligible inventory to satisfy all order items, the order is accepted,; if any

of the items in the order cannot be fulfilled, the order is rejected.

Accept customer order. This event increases the NumOrdersAccepted statistical
accumulator by one unit and subsequently calls the make order fulfillment decision event to

determine how this order is fulfilled.

Reject customer order. This event increases the NumOrdersRejected statistical
accumulator by one unit. It then updates the system state by moving the rejected order from the

open orders list to the closed orders list.

Make order fulfillment decision. As described previously, the check inventory availability
event determines if an order can be fulfilled given current inventory levels at all FCs. However, it
does not specify how the order is fulfilled. This decision is made when the make order fulfillment
decision event is triggered. This event uses a greedy heuristic algorithm for assigning a customer

order to FCs.

The algorithm begins with ranking the FCs based on number of the items they can fulfill. FCs
that can fulfill more items are ranked higher. If two FCs can fulfill the same number of items, the
FC that is closer to the customer’s location gets a higher rank. After ranking FCs, the algorithm
assigns each item to the FC with the highest rank that can fulfill it. If one of the order items cannot
be fulfilled by a single FC, it is split between multiple FCs. By following this process, if the FC
with the highest rank can fulfill all order items, then the customer order is shipped from a single

FC and vice versa.

When assigning order items to FCs, the algorithm also determines the shipping method and

shipping day for the assignment based on the customer delivery preference and inventory

70

replenishment lead time. Table 3.18 summarizes all combinations that are considered. As shown
in this table, the algorithm finds the cheapest shipping method that can satisfy the customer’s
delivery preference while considering the inventory replenishment lead time constraint. It then
finds the latest time for shipping out the customer order based on the selected shipping method
and delivery preference. For example, if a customer selects a Seven Day Delivery preference and
the FC has on-hand inventory to fulfill the order, the algorithm picks a UPS Ground shipping
method (M1) which takes an average of five days to deliver a shipment. It then decides to hold this
shipment for 2 days before sending it out. The locking time for the assignment is always set on the
same day as the shipment. This delay not only allows the e-tailer to tend to more urgent customer
orders in the meantime, but also increases the opportunity to reevaluate assignments for this order
within these two days. After all assignments are determined by the algorithm, they are added to
the list of active assignments in the system state which makes them available to subsequent events

in the simulation.

Table 3.18: Shipping method and shipping day determination
LT = inventory replenishment lead time, MX|D indicates order will be shipped D days after it is placed using method X

Delivery preference LT:0 LT:1 LT:2 LT:3 LT: 4 LT:5 LT:6
Seven Day Delivery M1|2 M1|2 M1|2 M2 |4 M2 |4 M3 |5 M4 | 6
Five Day Delivery M1]|0 M2 |2 M2 |2 M3 |3 M4 | 4 N/A N/A
Two Day Delivery M3 |0 M4 |1 N/A N/A N/A N/A N/A
One Day Delivery M4 |0 N/A N/A N/A N/A N/A N/A

Lock fulfillment decision. All assignments that are generated by the make order fulfillment
decision event have a locking time associated with them that is determined based on their shipping
method and shipping time. Lock fulfillment decision is a periodic event that occurs every day in
the simulation at 1:00 p.m. This event checks all assignments that are stored in system state and

locks those that have a locking time that matches current simulation time. In addition to locking

71

assignments, this event locks inventory units in the FCs that are used in those assignments. Just

before it ends, this event puts a boxes shipped event in event calendar.

Boxes shipped. As mentioned earlier, boxes shipped event occurs every day at 2:00 p.m. This
event reviews all assignments that are currently stored in system state and finds the ones that are
locked for shipment. It then calculates the shipping cost for each order based on the fixed and
variable shipping rate that is presented in Table 3.14. The calculated cost is added to the
TotalShippingCost statistical accumulator. At the end, this event updates inventory levels at all

FCs by removing inventory units that are in boxes that are shipped.

FC inventory replenishment. This DES model follows a periodic inventory review policy to
replenish the inventory at all FCs. Each SKU at each FC has a review cycle associated with it that
specifies the periodicity of its replenishment. There is also a maxLevel parameter that determines
the size of replenishment. When the FC inventory replenishment event is triggered, it reviews the
current inventory level for each SKU at each FC and then places replenishment orders based on
this information. There is a lead time associated with receiving replenishment orders. This lead
time also depends on the SKU and FC for which the replenishment order is placed. As a result of
this event, a receive replenishment order event is placed in the event calendar which will be
triggered when the lead time is reached. The inventory units that are ordered are added to the list

of on-order inventory units in the system state.

Receive replenishment. Once a replenishment order reaches its destination FC, the receive
replenishment event is triggered to update the system state accordingly. For every SKU-FC
combination in the replenishment order, this event updates inventory levels by adding the on-order

inventory units to on-hand inventory and subsequently setting the on-order inventory units to zero.

72

It also checks all the assignments in the system state that use the arriving on-order inventory units

and updates them by changing that value to on-hand inventory instead.

3.2.4. Statistical accumulators for e-tailer DES model

There are four statistical accumulators in this DES model that are listed in Table 3.19. These
accumulators are updated during the simulation to monitor system performance. The primary
performance metric in this study is TotalShippingCost which is the combined cost of fulfilling
all customer orders that are placed over the course of simulation. This metric is used to compare

different fulfillment strategies.

Table 3.19: Statistical accumulators

Statistical accumulators

TotalDemand; Total demand for SKU s, (integer, > 0)
NumOrdersAccepted Number of orders that are accepted, (integer, > 0)
NumOrdersRejected Number of orders that are rejected, (integer, = 0)
TotalShippingCost Total shipping cost, (real, > 0)

In addition to TotalShippingCost other statistical accumulators are used in this model which
help decision makers to analyze the system from different standpoints beside shipping cost.
NumOrdersAccepted and NumOrdersRejected provide insight into the e-tailer’s service level

which is a very important KPI. The e-tailer service level is computed as

N OrdersA ted . . .
(). If a fulfillment strategy reduces total shipping cost but
NumOrdersAccepted+NumOrdersRejected

negatively impacts service level by rejecting more orders, it might not be an ideal strategy for an
e-tailer whose primary objective is to increase the service level. In this dissertation we assume

total shipping cost is the main focus, but this model can also be used to study service level and

73

find a fulfillment strategy to optimize that. Lastly, TotalDemand, is an accumulator which

represents the total number of units of SKU s that have been ordered.

This chapter provided a comprehensive overview of the DES model of an e-tailer order
fulfillment process. The rule-based algorithm used in this model to make order fulfillment
decisions in the order fulfillment decision event only considers one order at a time which leads to
a set of myopic assignments. We also observed that e-tailers do not immediately ship a customer
order and there is a window of time between when a customer order is placed and when it is locked
and shipped out of the FCs. The next chapter presents a math model that takes advantage of this
window to revise fulfillment decisions by optimizing them for a group of customer orders. This
model has the potential to generate significant cost savings for the e-tailer while maintaining an

adequate customer service level.

74

Chapter 4

Integer program for reevaluating order fulfillment plans

4.1. Problem definition

When a customer places an order, the e-tailer makes an order fulfillment decision to determine
the best option to fulfill that order with minimum cost. Since this decision is made independently
for each customer order, it leads to a myopic decision that might not be optimal at the system level.
In the previous chapter a simulation model of an e-tailer order fulfillment process was presented
which includes a greedy rule-based algorithm for making individual order fulfillment decisions.
In Chapter 1 we analyzed the fulfillment process and identified a window of opportunity between
the time a fulfillment decision is made for an order and the time the items are processed by the e-
tailer and shipped to the customer. This window can be used to reevaluate fulfillment decisions for

a group of active customer orders to find a decision that reduces total shipping cost.

In this chapter an integer program is presented for reevaluating order fulfillment decisions for
a set of customer orders. This integer program is intended to be executed several times during a
day to reduce an e-tailer’s total shipping cost. In this program, we assume R customer orders are
reevaluated together. A total of F FCs exist in the e-tailer supply chain that hold inventory and
ship customer orders. There are S distinct SKUs within the customer orders that are reevaluated.
Since the set of customer orders might not include all SKUs in the e-tailer’s product catalog, S is
less than or equal to the total number of SKUs on the e-tailer’s website. Each customer order
includes one or more items and has a promised delivery day that is determined by the customer

delivery preference. All items in each order must be delivered to customer before the promised

75

delivery day. In other words, reevaluating order fulfillment decisions should not negatively impact

an e-tailer’s customer service level.

Inventory units that are assigned to individual orders by the myopic fulfillment decisions are
added to a shared inventory pool and used by the reevaluation algorithm for improving
assignments. This includes both on-hand as well as on-order inventory units. This guarantees that
the reevaluation algorithm will always be able to find at least one feasible decision which is the
same as the myopic decisions. This is critical because, as mentioned earlier, reevaluation must not
impact service level; all customer orders and commitments must be met. In addition to this, a
portion of the un-assigned inventory units at each FC gets locked and is made available to the
reevaluation algorithm to improve its decisions. That inventory may not be used to fulfill other

customer orders that are placed while reevaluation is being executed.

Since this integer program is used to improve the myopic decisions that are made by a greedy
rule-based algorithm, the integer program uses the same shipping methods and shipping rates to
keep the results consistent and comparable. There are four shipping methods that are adopted from
the UPS website: UPS Ground, Three Day Select, Two Day Air and Next Day Air. The shipping

rates for these methods are presented in Table 3.14.

The math model assumes that ordered items are packaged into boxes and shipped to customers
at a predetermined time each day which is called the shipment pick-up time. In our math model
we assume that there is a maximum weight limit for a single box and if the total weight of items
shipped to a customer from a FC exceeds this limit, the shipment must be split into multiple boxes.
Additionally, as in the simulation model we assume that the locking time is 1:00 p.m. and the

shipment pick-up time is 2:00 p.m. every day.

76

Note that this mathematical model is executed regularly and at different times during the e-
tailer’s operations. When the reevaluation is triggered, the e-tailer takes a snapshot of the orders
and inventory levels at all FCs and uses that information to construct an instance of this
mathematical model to optimize the assignments for those orders. In this dissertation we assume
that the e-tailer can choose to trigger the reevaluation algorithm either for a fixed number of orders
or at fixed time intervals. The first method enables the e-tailer to find a batch size (i.e. number of
orders in a single reevaluation) that performs best for its business and use that to specify when
reevaluation should be triggered. The second method enables the e-tailer to find a time interval
that produces the best results and use that to trigger the reevaluation. Intuitively, if the e-tailer uses
the first method, the elapsed time between two consecutive reevaluations will be variable; by
following the second method on the other hand the elapsed time between two consecutive
reevaluations is constant but number of customer orders that are reevaluated together will be

variable.

4.2. Mathematical formulation
In this section the integer programming model is presented. The set of indices, parameters and
decision variables used in the mathematical program, and their respective explanations, are given

in Table 4.1.

77

Table 4.1: Indices, parameters and decision variables in integer program

Indices

s SKU(1<s<YS)

d Day (0 <d < D)

m Shipping method (1 < m < M)

f FC(1<f<F)

r Customer order (1 < r < R)

Parameters

S Number of unique SKUs requested within the orders being reevaluated

F Number of FCs

R Number of customer orders being reevaluated

M Number of shipping methods

D Number of days in reevaluation horizon

weightg Weight of SKU s in pounds

maxBoxWeight Maximum weight in pounds allowed in a single box, (integer, > 0)

cBoxpfr Fixed shipping cost for sending a box from FC f to the customer who placed order r using shipping
method m

cPound,, ¢, Shipping cost per pound from FC f to the customer who placed order r using shipping method m

ordQtysar Number of units of SKU s in customer order r that are requested to be delivered by day d

cQtysar Total (cumulative) number of units of SKU s that must be delivered by day d to the customer who
placed order r

inventorysqs Number of units of SKU s that arrive at FC f on day d

clnventorygqs Cumulative number of units of SKU s that arrive at FC f on or before day d

transitDaysy, {(1) gttgg:lvs\,,iig (teime for shipping method m is exactly d days

delivery, Promised delivery day for customer order r, (integer, 1 < delivery, < D)

Decision Variables

Xsdmfr

Number of units of SKU s that are shipped on day d using shipping method m from FC f to the
customer who placed order r, (0 <d <D — 1)

Bamgr Number of boxes shipped out of FC f to the customer who placed order r using shipping method m on
dayd,(0<d<D-1)

Wngr Total weight of shipment from FC f to the customer who placed order r using shipping method m,
(0<d<D-1)

Usar Total units of SKU s that are shipped out of FC fonday d, (0 <d <D —1)

Vsar Total units of SKU s that are shipped out of FC f on or before day d, (0 <d <D — 1)

Ysar Total units of SKU s that are delivered on day d to the customer who placed order r, (1 < d < D)

Zsar Total units of SKU s that are delivered on or before day d to the customer who placed order r,

(1<d<D)

The input data consists of several primary parameters as well as secondary parameters that are
derived from primary parameters. A detailed description of some of these parameters is provided

below.

e D: This is a primary parameter that indicates time horizon for reevaluation. In this
dissertation, since the longest delivery option is Seven Day Delivery, we set the value of D

to 7.

78

cBoxmg,: This is a primary parameter that indicates the shipping cost for sending a box
from FC f to customer order r using shipping method m. The value of this parameter is
calculated using the procedure that was explained in Chapter 3.

cPound,, s This is a primary parameter that indicates the shipping cost per pound from
FC f to customer order r using shipping method m. The value of this parameter is
calculated using the procedure that was explained in Chapter 3.

ordQtysar- This is a primary parameter that indicates the number of units of SKU s in
customer order r that are requested to be delivered by day d. The value of this parameter
is set based on information about the order. In this case, d refers to the promised delivery
day for the order.

cQty.q-: This is a secondary parameter which is derived from ordQty.,, and indicates the
total (cumulative) number of units of SKU s that must be delivered by day d to the customer
who placed order r. If the value of ordQty,, is greater than 0, that value will be applied
to cQty,q, for all d which is less than or equal to b. For example, if ordQty,3, is 10 and
ordQtyie1 1S 2, then the value of cQty,4, for d between O and 7 is calculated as:
{0,0,0,10,10,10,12,12}

inventory,q¢: This is a primary parameter that indicates total number of inventory units
for SKU s that become available on day d at FC f. In this case on-hand inventory units are
assumed to be available on day O and any on-order inventory units are assumed to be
available on the day of replenishment order delivery.

cInventory,q: This is a secondary parameter which is derived from inventory,,, and
indicates the cumulative number of inventory units of SKU s that arrive at FC f on or

before day d. The value of cInventorys,r is the summation of inventory, forall d less

79

than or equal to b. For example, if the value of inventory;,; is 5 and the value of
inventory;s,is 10 then the value of cInventory, 4, for d between 0 and 7 is calculated
as: {5,5,5,15,15,15,15,15}

e transitDays,y,: This is a primary parameter that indicates the transit time for each
shipping method. If shipping method m has a transit time of d days value of
transitDays g, is equal to 1 otherwise, it is set to 0.

e delivery,: This is a primary parameter that indicates promised delivery day for customer

order r.

In addition to these parameters, there are seven integer decision variables in the model forming
our integer program. X, s is the primary decision variable that indicates the number of units of
SKU s that are shipped on day d using shipping method m from FC f to the customer who placed
order r. Bamrr and W, f, are secondary decision variables that are derived from X¢g., ¢ The
Bamgr decision variable is defined as the number of boxes that are shipped out of FC f to the
customer who placed order r using shipping method m on day d. The W, decision variable is
defined as the total weight of shipments from FC f to the customer who placed order r using
shipping method m. Ugqf and V¢ are used in the integer program to ensure that the total units of
SKU s that are shipped out of FC f on day d do not exceed available inventory. More specifically,
Usar represents the total units of SKU s that are shipped out of FC f on day d while Vs, represents
the total units of SKU s that are shipped out of FC f on or before day d. Finally, Y4, and Zg,,
capture the total units of SKU s that are delivered to the customer who placed order r and are used
in the integer program to ensure all customer demands are satisfied. More specifically, Y4, is

defined as the total units of SKU s that are delivered on day d to the customer who placed order r

80

and Z,, is defined as the total units of SKU s that are delivered on or before day d to the customer

who placed order r.

When reevaluation is triggered, the required information is captured from the e-tailer’s system
state to set the value of parameters for the math model. The generic steps that are followed for

each reevaluation are outlined below:

Step 1: A snapshot of all orders that need to be reevaluated is captured which includes the

number of orders, order items, promised delivery days and customer locations.

Step 2: The list of unique SKUs that are ordered at least by one customer is computed.

Step 3: For those SKUSs, a portion of on-hand-unassigned and on-order-unassigned inventory

at all FCs is locked and is made available to the reevaluation.

Step 4: The inventory assignments for all orders that are reevaluated are cancelled and the

assigned inventory units are made available to the reevaluation.

This provides all necessary information for the reevaluation. Note that if reevaluation is
triggered before 1:00 p.m. (i.e. locking time) we consider the day the reevaluation is triggered to
be d = 0 and the value of d for all other parameters is calculated based on this day. For example,
if a reevaluation is triggered at 10:00 a.m. on day 5 of the simulation to reevaluate three customer
orders that have a delivery deadline of day 7, 8 and 10 respectively, in constructing the math model,
the value of d for ordQty,,, for these orders is calculated as 2, 3 and 5 respectively. If the
reevaluation is triggered after 1:00 p.m. on the other hand, the day after the reevaluation is
triggered, is considered d = 0. In the previous example, if reevaluation is instead triggered at 1:05
p.m. on day 5 of the simulation, the value of d for the three orders is calculated as 1, 2 and 4. The

same principle applies to calculating the value of d for inventory. If reevaluation is triggered at

81

10:00 a.m. on day 5 and FC; expects a replenishment for SKU, at 12:00 a.m. on day 6, those
inventory units are added to inventory,,(d = 1). If the reevaluation is triggered at 1:05 p.m. on
day 5 on the other hand, those inventory units are added to inventory,y,(d = 0).

Minimize

R D-1

M F
Z Z Winpr X cPoundy, s +

m=1f=1r=1

M F R
Z z z Bdmfr X CBOmer (4'1)

Subject to

s
Z Xsamsr X weights < maxBoxWeight X Bgapmr vd € [0,D —1],Vm,Vf,Vr (4-2)

s=1

S D-1
Wngr = Z Z Xsampr X weight, vm,Vf,vr (4-3)
s=1d=0
M R
sdf - Z Z sdmfr Vs, vd € [O,D - 1],Vf (4'4)
m= r=1
Vsar = Z Usvs Vs,vd € [0,D —1],Vf (4-5)
Vsar < clnventory,s Vs,vd € [0,D —1],Vf (4-6)
M F d-1
Year = Z Z Xspmpr X transitDaysq_pym Vs,vd € [1,D],Vr (4-7)
m=1f=1b=0
str = Z Y;‘br Vs, vd € [1,D],VT' (4-8)
Zsar 2 CQtYsar Vs,Vvd € delivery,, Vr (4-9)

82

In the mathematical model above, the objective function (4-1) minimizes total shipping cost.
Constraint (4-2) calculates total number of boxes that are shipped from FC f to customer order r
on day d using shipping method m based on assignments, SKU weights, and the maximum box
weight. This constraint assumes that a collection of objects weighting less than or equal to
maxBoxWeight * B can fit into B boxes without violating the weight limit of any individual box.
Although somewhat unrealistic, this constraint allows us to estimate the number of boxes shipped
without explicitly specifying the items that are placed in individual boxes. Constraint (4-3)
calculates total shipment weight from FC f to customer order r using shipping method m.
Constraint (4-4) calculates the total amount of inventory units of SKU s that are shipped out from
FC f on day d. Constraint (4-5) calculates the total amount of inventory units of SKU s that are
shipped out from FC f on or before day d. Constraint (4-6) ensures the total number of units of
SKU s that are shipped from FC f on day d does not exceed available inventory. Constraint (4-7)
calculates the total number of units of SKU s that are delivered on day d to the customer who
placed order r; this constraint acknowledges the transit time for each shipping method considered.
Constraint (4-8) calculates the total number of units of SKU s that are delivered on or before day
d to the customer who placed order r. Finally, constraint (4-9) ensures that all items in customer

orders are delivered on or before their promised delivery days.

83

Chapter 5

Heuristic algorithm for reevaluating order fulfillment plans

The large instances of the math model proposed in Chapter 4 are mathematically difficult to
solve to optimality. Therefore, a decomposition based heuristic algorithm is presented in this
chapter that can quickly solve very large problems and provide a sub-optimal decision that may
still be better than the combined decisions generated by the myopic fulfillment decision. It should
be noted that several heuristic algorithms were considered including simulated annealing and Tabu
search. After an extensive number of tests, the following decomposition-based heuristic

demonstrated superior performance to these alternatives.

Our proposed heuristic algorithm reevaluates the fulfillment decisions for a batch of customer
orders in four steps. In the first step, customer orders are randomly split into two subsets of equal
size. In the second step, the fulfillment decisions for orders in subset, are fixed based on the
original assignments. Third, the sequence of orders in subset, is randomly shuffled. Finally, a
simple integer program is used to optimize the fulfillment decision for each order in subset, one

at a time and sequentially as opposed to optimizing them together.

This heuristic can improve the fulfillment decisions and reduce shipping costs in two primary
ways. First, as noted earlier, an integer program applied to a single order outperforms the rule
based myopic decision for that order since it considers a more complex set of criteria to
mathematically optimize the assignments. Second, shuffling the sequence in which fulfillment
decisions are made for individual orders allows the heuristic to reconsider the inventory allocation
without being constrained to make those allocations chronologically. In Chapter 7, we illustrate

the effectiveness of this algorithm through a set of examples.

84

Table 5.1 provides a list of indices, parameters and decision variables, and their respective
explanations, for the simplified integer program used in the heuristic algorithm. Note the absence
of index r in Table 5.1. As shown in this table, by solving the integer program for an individual
customer order, the problem complexity reduces significantly. The decomposition reduces number
of dimensions for key decision variables in the integer program. Besides, the range of the
remaining dimensions particularly index s is also reduced resulting in additional simplification of
the problem. For example, number of SKUs in this case reflects the number of items in the specific
customer order which is significantly lower than number of SKUs in a collection of customer

orders.

85

Table 5.1: Indices, parameters and decision variables in decomposed integer program

Indices

s SKU(1<s<Y5)

d Day (0 <d < D)

m Shipping method (1 < m < M)

f FC(1<f<F)

Parameters

S Number of unique SKUs requested in the customer order

F Number of FCs

M Number of shipping methods

D Number of days in reevaluation horizon

weightg Weight of SKU s in pounds

maxBoxWeight Maximum weight in pounds allowed in a single box, (integer, > 0)

cBoxp,s Fixed shipping cost for sending a box from FC f to the customer who placed the order using
shipping method m

cPound,,¢ Shipping cost per pound from FC f to the customer who placed the order using shipping method m

ordQtysy Number of units of SKU s in the customer order that are requested to be delivered by day d

cQtysq Total (cumulative) number of units of SKU s that must be delivered by day d to the customer who
placed the order

inventorysqs Number of units of SKU s that arrive at FC f on day d

clnventorysqr Cumulative number of units of SKU s that arrive at FC f on or before day d

transitDays g, {(1) gttr:g:mvs\,,ii; 'éime for shipping method m is exactly d days

delivery Promised delivery day for the customer order, (integer, 1 < delivery < D)

Decision Variables

Xsdmf
Bams

Wins

Usar
Vsdf
Ysa
st

Number of units of SKU s that are shipped on day d using shipping method m from FC f to the
customer who placed the order, (0 <d <D — 1)

Number of boxes shipped out of FC f to the customer who placed the order using shipping method
mondayd,(0<d<D-1)

Total weight of shipment from FC f to the customer who placed the order using shipping method
m,(0<d<D-1)

Total units of SKU s that are shipped out of FC fonday d, (0 <d <D — 1)

Total units of SKU s that are shipped out of FC f on day d or before that, (0 <d < D — 1)

Total units of SKU s that are delivered on day d to the customer who placed the order, (1 < d < D)
Total units of SKU s that are delivered on or before day d to the customer who placed the order,
(1<d<D)

86

The formulation of this decomposed integer program for a single order is as follows:

Minimize
M F D-1 M F
Z Z Wy X cPound,s + Z z Bams X cBoX s (5-1)
m=1f=1 d=0m=1f=1
Subject to
s
ZXSdmf X weights < maxBoxWeight X Bgpy vd € [0,D —1],vm,Vf (5-2)
s=1
S D-1
Wi = z Xsams X weight vm,Vf (5-3)
s=1d=0
M
Usas = Z Xsams vs,vd € [0,D — 1],Vf (5-4)
m=1
d
Vea = Z Uspy Vs,vd € [0,D —1],Vf (5-5)
b=0
Vsag < clnventorysqs Vs,vd € [0,D —1],Vf (5-6)
M F d-1
Yoa = Z Z Xspmy X transitDaysq_pym Vs,vd € [1,D] (5-7)
m=1f=1b=0
d
Zoy = 2 Y, vs,vd € [1,D] (5-8)
b=1
Zsq = cQtysy Vs,d = delivery (5-9)

In the mathematical model above, the objective function (5-1) minimizes total shipping cost

for the order. Constraint (5-2) calculates total number of boxes that are shipped from FC f to the

87

customer order on day d using shipping method m based on assignments, SKU weights, and the
maximum box weight. This constraint has the same limitations as constraint (4-2). Constraint (5-
3) calculates total shipment weight from FC f to the customer order using shipping method m.
Constraint (5-4) calculates the total amount of inventory units of SKU s that are shipped out from
FC f on day d. Constraint (5-5) calculates the total amount of inventory units of SKU s that are
shipped out from FC f on or before day d. Constraint (5-6) ensures that the total number of units
of SKU s that are shipped from FC f on day d does not exceed available inventory. Constraint (5-
7) calculates the total number of units of SKU s that are delivered on day d to the customer who
placed the order; this constraint acknowledges the transit time for each shipping method is
considered. Constraint (5-8) calculates the total number of units of SKU s that are delivered on or
before day d to the customer who placed the order. Finally, constraint (5-9) ensures that all items

in customer orders are delivered on or before their promised delivery days.

The structure of the above integer program closely resembles that of the integer program
presented in Chapter 4. The main difference is that the subscript has been removed from the
parameters, variables, constraints and objective function. Therefore, this integer program has many
fewer variables and constraints than the integer program presented in Chapter 4. Overall, our
experiments indicate that the computation time required to reevaluate the fulfillment decisions for
n customer orders separately using n instances of the decomposed formulation is significantly
lower that the computation time required to reevaluate them together using the original

formulation. The details of these experiments are presented in Chapter 7.

88

Chapter 6

Fully embedded order fulfillment reevaluation algorithm

In Chapter 1 we defined an intense unending real-time operational challenge (IURTOC) and
explained why the e-tailer order fulfillment process is an example of such a challenge. Since in an
IURTOC, a system’s operation never halts and events occur around the clock, when designing a
decision-making algorithm (DMA) for it, it is important to not only consider the decisions made
by the algorithm, but also its computation time and execution cadence. This is because operations
of an IURTOC should not be interrupted while executing a DMA; the system continues to evolve
as the algorithm searches for decisions. Since the decisions that are generated by a DMA must be
fed back to the real-world system by a certain time to determine the future course of events, it is
critical to design a DMA that can meet that timeline. Additionally, if the decision-making process
must be repeated regularly in an IURTOC, the cadence of this event must be determined based on

the DMA decision quality and computation time.

Because of this complexity, in order to design and evaluate a DMA for an IURTOC, we need

a framework that enables us to analyze a DMA from three important dimensions:

1. Decision quality: does the DMA provide good decisions?
2. Computation time: does the DMA provide the decision when it is needed?

3. Execution cadence: how often should the DMA be executed?

While almost all articles in the literature investigate decision quality, the other two dimensions
have not been studied extensively. In other words, the vast majority of articles focus on designing
a DMA that finds high quality decisions for static problem instances, but they do not explore
whether the computation time of that DMA meets the operational requirements of a real-world

89

IURTOC. Additionally, they do not study how often the DMA should be executed to maximize its

effectiveness without causing any interruptions in real-world system operations.

6.1. Definition of a fully embedded decision-making algorithm (FEDMA)

In some studies, computer simulation techniques are used to run experiments with a DMA.
However, in those studies only the decisions produced by a DMA are fed back to the simulation
model and its computation time is assumed to be zero. We refer to this technique as partially
embedding the DMA within the DES model, and in this case, we have a partially embedded DMA
(PEDMA). In this dissertation however, we use the novel technique introduced by Petering (2015,
2018) to embed a DMA in a discrete event simulation (DES) model so that both the decisions
produced, and the computation time used by the DMA are fed back to the DES model. In this case
we say we have a fully embedded decision-making algorithm (FEDMA). Using the FEDMA, we

can study different execution cadences for the DMA in order to find the best strategy.

In this chapter we use the FEDMA concept as a framework to embed the integer program that
was presented in Chapter 4 and the heuristic method described in Chapter 5 within the DES model
that was described in Chapter 3. This allows us to analyze the performance of these decision-
making algorithms holistically and from all dimensions that are important to real-world

practitioners.

90

6.2. FEDMA for reevaluating order fulfillment plans

In order to fully embed the integer program from Chapter 4 within the DES model described
in Chapter 3, two main events are added to this model. The first event is called Reevaluate
fulfillment decisions. This event gathers all required information for formulating the integer
program from the system state; constructs the mathematical model; and calls the CPLEX solver to
solve the integer program. The second event, called Apply reevaluation decisions, takes the
decisions identified by the solver and feeds them back to the simulation model. Note that there is
atime lag between these two events. During this lag other parts of simulation model are not stopped
and continue to evolve. For instance, new customer orders are placed and the Make order
fulfillment decision event is triggered to assign those orders to FCs using the myopic, rule-based
fulfillment algorithm. This is one of the key differences between a FEDMA and PEDMA that

allows us to analyze impact of DMA computation time on system operations.

In order to identify the best cadence for executing the reevaluation algorithm, we consider two
different strategies. In the first strategy, which is illustrated in Figure 6.1, the reevaluation
algorithm is triggered for a fixed number of open customer orders. This fixed number is a model
parameter that can be adjusted based on the e-tailer’s operational characteristics. For instance, if
value of this parameter is set to 20, the simulation model waits until there are 20 open customer
orders in the queue before executing the reevaluation algorithm. The decision maker might
experiment with different values of this parameter to find an optimum value that maximizes cost
savings without negatively impacting customer service level. Note that, in this strategy, the elapsed
time between two subsequent reevaluations varies. In the second strategy, which is illustrated in
Figure 6.2, the reevaluation algorithm is triggered at regular time intervals (e.g. every 30 minutes).

In this case, the length of the time interval is a model parameter that can be adjusted. Unlike the

91

first strategy, the number of customer orders that are reevaluated together is variable. In Chapter

7 we experiment with these strategies to compare their performance under different settings.

i > Customer places Check inventory | Accept customer o l:‘/llfll]l‘(iTlr%rgr?tr
order availability o order o o
decision
Receive Reject customer | | N Lock fulfillment]Ic?eliyl?luat(te
replenishment order decision utfiiimen
decisions
v y
FC inventory Boxes are Apply
. -mees . reevaluation
replenishment i shipped decisions
A :

Figure 6.1: Event triggering diagram for DES model with FEDMA - (fixed reevaluation batch size)

» Customer places Check inventory | Accept customer o %?E?Ir?\fr?tr
order availability " order d o
decision
A 4 ! : i ;
Receive Reject customer | {__ | Lock fulfillment | i » ?el?’lf‘luat?
replenishment order decision uthtimen
decisions
y : .
v Y
FC inventory Boxes are Apply
veritiory . . h reevaluation
replenishment ! shipped decisions
A :

Figure 6.2: Event triggering diagram for DES model with FEDMA - (fixed reevaluation cycle time)

92

6.3. Challenges when fully embedding the order fulfillment DMA in the DES model
Designing a FEDMA for reevaluating order fulfillment decisions involves various

complexities and challenges that are described in this section.
6.3.1. Structural differences between optimization and simulation

Decision making algorithms (e.g. heuristic and integer programming algorithms) assume that
the system under study is static. In other words, they assume that the system state does not change
between the time the algorithm begins searching for a decision and when that decision is found.
Simulation models, on the other hand, assume that the underlying system is dynamic, and its state
evolves over time as new events occur. When fully embedding a DMA in a simulation model, the
simulation model runs in parallel while the DMA is searching for a decision, so the system state
in the DES model will be different when the DMA finds a decision compared to when it had started
looking for a decision. The FEDMA needs to take this into account and ensure that the decision it

finds is viable given the DES model’s new system state when the DMA terminates.

In designing a FEDMA for reevaluating order fulfillment decisions, we can ensure that the
integer program results are interpreted based on the updated system state. For instance, as

described in Chapter 4, one key decision variable in the integer program is X4,, -which indicates
the number of units of SKU s that are shipped on day d using shipping method m from FC f to
satisfy customer order r. When running the reevaluation algorithm, if the algorithm is called on
day d and finishes on the same day, the values of Xsamsr Should be fed back to the simulation
model without any adjustments. However, if the algorithm is called on day d and ends on day d +
1, then the X4mfrvalues must be adjusted to reflect this shift in the d index before they are fed

back to the simulation model.

93

6.3.2. Shared resources between optimization and simulation

When the reevaluation algorithm and simulation model are running in parallel, they use the
same set of physical resources and assets such as FCs, SKUs, and inventory units. When the
reevaluation algorithm begins, it takes a snapshot of available resources and uses that information
throughout its execution. This information cannot be modified while the reevaluation algorithm is
running. However, resource availability is impacted by the simulation model which could
invalidate decisions produced by the reevaluation algorithm at the end. Therefore, the FEDMA
needs to be designed to synchronize resource pooling and prevent any conflicts between the
decisions produced by the reevaluation algorithm and simulation. An example of this situation is
illustrated in Figure 6.3. In this example, the first customer order is placed at t = 0 and the
fulfillment decision assigns this order to FC; which has adequate inventory to satisfy all order
items with a minimal shipping cost. Inventory levels are updated based on this fulfillment decision.
A second customer order is placed at t = 10 and since no FC can satisfy all items in this order,
the rule-based fulfillment algorithm assigns the first two items (SKU,, SKU,) to FC5 and the last
item (SKU;) to FC,. At t = 30 the reevaluation algorithm is triggered to optimize assignments for
both orders (0,4, 0,). This reevaluation is expected to find a decision in 10 minutes (t = 40).
While reevaluation algorithm is being executed, a third customer order is placed at t = 35. If the
simulation model does not consider the inventory resources that are temporarily allocated to the
reevaluation, it may mistakenly allocate inventory units from all FCs (FC;, F C;, F C3) to this order.
However, the FEDMA model synchronizes resource pooling by prioritizing resources that are
required by the reevaluation algorithm over the new order and decides to reject O5 due to lack of
inventory availability. At t = 40 the reevaluation algorithm finds an optimal assignment for 0,

and 0, and its result is successfully fed back to the simulation model.

94

t=0 t=10
Arrival of order 1 Arrival of order 2 S=SKU
F2 F2 F=FC
S1: S1:0
S2:1 S2:1
S3:1 33: 1
F1 F3 F1 F3
SI: 1 o1 Sl: 1 S1:0 o1 02 Sl 1
S2 1 —==() s2:1 $2:0 e s2:1
S3:1 S1: 1 S3:0 3:1 S1: 1 S1:1 S3:0
S2:1 S2 S2:1
S3:1
t=20 t=30
Reevaluation begins
F2 F2
S1: 0 S1: 0
S2:1 S2:1
S3: 331
F1 F3 F1 F3
S1:0 o1 012 S1:0 Sli: 1 o1 02 Sl:
$2:0 e e S2:0 $2:1 O O s2:
531 SI: 1 S1: 1 §3:0 5§31 SI: S1:1 53:0
S2:1 S2: 1 S2 S2:1
S3:1 S3:1
t=35 t=40
Arrival of order 3 Reevaluation ends
F2 F2
03 03
S1: 0 S1: 0
S2:1 S2:1
S3: 1 S1:2 3311 S1:2
S2:2 S2:2
F1 F3 F1 F3
SI: 1 o1 012 Sl: 1 Sli: 1 o1 02 Sl 1
s2: O @) s2:1 $2:1 $2:1
S5 SI:1 SI: 1 83:0 s3:1 sli:1 S1:1 §3:0
S2:1 S2:1 S2 S2:1
S3:1 S3:1

Figure 6.3: Shared resources between reevaluation algorithm and simulation model

95

6.3.3. Impact of shipment pick-up time

As mentioned earlier, in order to leverage economies of scale, shipment pick-up happens at
specific times during a day. In this dissertation, we assume this time is fixed at 2:00 p.m. every
day at every FC. Additionally, to prepare customer shipments, all fulfillment decisions must be
locked an hour before shipment pick-up time. This means that if reevaluation algorithm is being
executed, it must finish before 1:00 p.m.; otherwise its decisions may not be valid. Figure 6.4
illustrates this situation using the previous example. In this case, reevaluation begins at t = 30 and
is expected to find an optimal decision at t = 40. All assignments must be locked by t = 35 for
preparing customer shipments. Therefore, although the reevaluation algorithm can find better
assignments, since it ends after the Lock fulfillment decision event, its decisions are nullified and

the e-tailer must use the original fulfillment decisions for these customer orders.

96

t=0 t=10
Arrival of order 1 Aurival of order 2 S =SKU
F2 F2 F=FC
S1: 0 S1: 0
S2:1 S2: 1
S3:1 S3:1
F1 F3 F1 F3
S1:1 01 SI:1 S1:0 01 02 S1:1
21— $2: 1 $2:0 $2:1
S3:1 S1: 1 S3:0 S3: 1 S S1: S3: 0
S2:1 S2:
S3:
t=20 t=130
Reevaluation begins
F2 F2
S1: 0 S1: 0
S2:1 S2: 1
S3: 0 33: 1
F1 F3 F1 F3
S1:0 01 02 S1:0 Sl: 1 o1 02 SI: 1
s2: e e $2:0 $2: 1 O $2:1
S3:1 S1-1 Sl S3:0 S3:1 S Sl S3:0
S2:1 S2: S2:
S3: S3:
=35 t=40
Lock fulfillment decisions Reevaluation ends
F2 F2
S1: 0 S1: 0
S2:1 S2: 1
S3:1 S3:1
F1 F3 F1 F3
S1:1 01 02 SI: 1 SI:1 o1 02 si:1
O O $2:1 $2: 1 s2:
S31 S1: 1 Sl: 53:0 S3:1 SI: 1 SI: S3:
S2:1 S2: S2:1 S2:
S3: S3:

Figure 6.4: Impact of shipment pick-up time on reevaluation algorithm

97

6.3.4. Impact of inventory replenishment

While the reevaluation algorithm is being executed, FCs might receive inventory
replenishments. Considering these replenishments could improve the decisions produced by the
reevaluation algorithm. Figure 6.5 illustrates this situation using a simple example. In this example,
when the reevaluation algorithm begins at t = 30, FC; holds one unit of SKU; and SKU,, FC,
holds one unit of SKU, and SKU5, and FC5 holds one unit of SKU; and SKU,. On the other hand,
0, requires one unit of SKU; and SKU, and 0, requires one unit of SKU;, SKU, and SKU;. At
t = 35, FC; receives a replenishment for SKU; which increases its inventory level to one unit.
Without considering this replenishment, the reevaluation algorithm would assign 0, to FC; and
would split 0, between FC, (SKU;) and FC; (SKU;,SKU,). Considering this replenishment

allows the reevaluation algorithm to find a better decision by assigning 0, to FC5 and O, to FC;.

In designing the FEDMA, before reevaluation algorithm begins, the model detects any future
replenishments that can be incorporated and makes the inventory in those replenishments available
to the reevaluation algorithm. This means that any replenishment that arrives while the
reevaluation is executed gets added to the inventory pool. In the next section, we explain how the
reevaluation algorithm also considers replenishment orders that are placed after the reevaluation

execution is finished for eligible customer orders.

98

t=0 t=10
Arrival of order 1 Arrival of order 2 S =SKU
F2 F2 F=FC
S1: 0 S1:0
S2:1 S2:1
S3:1 S3:1
F1 F3 F1 F3
SI:1 o1 Sl:1 S1:0 o1 02 SI:1
S2:1 b——m=() s2:1 S2:0 e s2:1
S3: Sl 1 S3:0 S$3:0 S Sl S3:0
S2:1 S2: S2:
S3:
t=20 =30
Reevaluation begins
F2 F2
S1:0 S1:0
S2:1 S2:1
S3:0 S3:1
F1 F3 F1 F3
S1:0 o1 02 S1:0 S1:1 o1 02 S1:1
$2:0) e §2:0 $2:1 O O $2:1
S3:0 S1: 1 S1: S3:0 S3: 0 S1: S1: S3:0
S2:1 S2: S2: S2:
S3: S3:
t=35 t=40
Replenishment arrives Reevaluation ends
F2 F2
S1: 0 S1: 0
S2:1 §2:1
s3:1 $3:1
F1 F3 F1 F3
SI:1 o1 o1 S1:1 S1:1 o1 02 SI:1
s2: O O s2:1 82: 1 s2: 1
s3:1 S1- 1 S1- 1 $3:0 S3: 1 S1- S1- $3:0
S2:1 S2:1 S2: S2:
S3: S3:

Figure 6.5: Impact of inventory replenishment on reevaluation algorithm

99

6.3.5. Impact of customer delivery preferences

Customers can choose how long they should wait to receive their online order through delivery
preferences. As mentioned earlier, in this dissertation we consider four delivery preferences: One
Day Delivery, Two Day Delivery, Five Day Delivery and Seven Day Delivery. E-tailers use
different shipping methods to meet customer delivery preferences. Shipping methods that are
considered in this dissertation include Next Day Air, Second Day Air, Three Day Select and UPS
Ground which has an average transit time of five days. For instance, if a customer chooses Five
Day Delivery, the e-tailer may use any of these shipping methods to satisfy that order. Since
shipping methods with longer transit times are typically cheaper, the e-tailer would normally
choose UPS Ground in this case. However, there could be a situation where the e-tailer is forced
to select a more expensive shipping method due to lack of inventory availability. For instance, if
the e-tailer does not have enough inventory to meet this customer order when it is placed, but it is
expecting to receive a replenishment in 2 days, it can still meet this order using a Three Day Select

shipping method.

The reevaluation algorithm must consider this relationship between customer delivery
preference, shipping method, and inventory replenishment for all customer orders that are
reevaluated together. A simple example is provided in Figure 6.6. In this example, when
reevaluation begins at t = 30, FC; expects a replenishment for SKU; that is scheduled to arrive
att = 75. This replenishment could be used to assign all items in O, to FC;. However, the
reevaluation algorithm must consider the delivery preference for 0, to determine if by waiting
until t = 75 the customer delivery deadline can be met. Additionally, if delaying the shipment
until t = 75 forces the e-tailer to use a more expensive shipping method, that trade-off must be

carefully evaluated by the algorithm.

100

t=0 t=10
Arrival of order 1 Arrival of order 2 S =SKU
F2 F2 F=FC
S1: 0 S1: 0
S2:1 S2:1
S3:1 S3:1
F1 F3 F1 F3
Si:1 o1 St:1 S1:0 01 02 Si:1
ChIY) S——— s$2: 1 $2:0 e s2:1
S3:0 S1- 1 S3:0 S3:0 S1-1 Sl S3: 0
S2:1 S2 S2:
S3:
t=20 t=30
Reevaluation begins
F2 F2
S1:0 S1: 0
S2:1 S2:1
S3: 33: 1
F1 F3 F1 F3
S1:0 o1 02 S1:0 S1:1 o1 02 S1:1
§2:0 e e $2:0 s2:1 O O s2:1
S3:0 S1- 1 S1-1 S$3:0 S$3:0 S Sl S3: 0
S2 S§2:1 S2 S2:
S3:1 S3:
=33 t=40
Place replenishment order Reevaluation ends
F2 F2
arrival: t =75 S‘I: 0 arrival: t= 75 S,l: 0
S2:1 S2:1
$3 1 31
F1 F3 F1 F3
Sl:1 o1 02 SL: 1 SL: 1 o1 02 Sl: 1
S2: O O S2:1 S2:1 S2:1
S3:0 Sl S1-1 S3:0 S3:0 1 Sl S3:0
S2: S§2:1 2: S2:
S3:1 S3:

Figure 6.6: Impact of customer delivery preference on reevaluation algorithm

101

6.3.6. Executing multiple reevaluations in parallel

When embedding a reevaluation algorithm in a simulation model, if we choose to execute
reevaluation for a group of n customer orders, there might be a situation where as reevaluation is
executed for {04, 0,, ..., 0,} a second group of customer orders {041, Ops2, ..., 02, } are placed
which triggers another instance of reevaluation algorithm. Figure 6.7 illustrates this situation for
batch size of 5. As shown in this figure, while the first instance of the reevaluation algorithm is
optimizing assignments for {0,, 0,, 05, 04, 05}, customers continue to place new orders. When
0,0 is placed, a second instance of the reevaluation algorithm is triggered to optimize the
assignments for {Og, 0, Og, Oy, 01, }. In a real-world e-tailer system, since each instance requires
separate infrastructure and a separate optimization agent, the decision maker needs to determine
how many reevaluation algorithms can be executed in parallel. In this dissertation, we assume only
one reevaluation algorithm can be executed at each time. All customer orders that are placed during
the execution of the reevaluation algorithm are added to the next batch. When execution of the
reevaluation algorithm ends, the model checks the batch size and if it is greater than or equal to
the threshold another instance of the reevaluation is triggered immediately. Otherwise, the model

waits until more orders come in before triggering the next instance.

02 03 04 05 06 07 08 09 010 011 012 013 014 O0l5 0l6
| | | 1 | | | | | | | | | | | |
| I I I I I I I
| Reevaluation 1 >
| Reevaluation 2 >

Figure 6.7: Executing multiple reevaluation algorithms in parallel

102

6.3.7. Locking inventory for reevaluation

When the reevaluation algorithm is triggered, in addition to the inventory units that are already
assigned to the orders that are being reevaluated, a portion of unassigned inventory at each FC gets
locked and is made available to the reevaluation algorithm. Since inventory is one of the primary
constraints for the reevaluation, this enables the algorithm to potentially find a better optimal
solution. However, while these inventory units are being used by the reevaluation algorithm, the
e-tailer may not use them to fulfill other customer orders that are placed while the reevaluation is
being executed. This results in a tradeoff between the quality of decisions produced by the
reevaluation algorithm and the quality of the myopic decisions for other orders that are placed

during the reevaluation.

When deciding how many inventory units should be reserved for the reevaluation, this tradeoff
must be carefully considered so that the e-tailer’s overall performance is optimized. Note that, by
increasing the proportion of units reserved for reevaluation, the reevaluation decisions are
improved, but the myopic decisions are degraded. On the other hand, when the proportion of units
reserved for reevaluation decreases, the reevaluation decisions are degraded but the myopic
decisions are improved. Therefore, the optimal proportion is a value between 0 and 1 that results

in the lowest total shipping cost for all customer orders.

In this simulation, this proportion is a model parameter that can be set by the e-tailer. This
allows the decision maker to test different values and find the one that works best for its specific
system. Our analysis indicates that, for an e-tailer with limited inventory levels, the proportion
should be set to a lower number compared to an e-tailer who has a large amount of inventory. The

optimal proportion is also a function of reevaluation computation time. For a shorter reevaluation

103

computation time, the proportion can be set to a higher value compared to a reevaluation that takes

longer to compute.

6.4. Execution cadence for reevaluation

Identifying the best execution cadence for the reevaluation algorithm is an important aspect of
fully embedding the DMA within the DES model. Overall, if the reevaluation algorithm is allowed
to run until termination, total cost savings will increase as the number of customer orders
considered in each call to the algorithm increases. However, increasing the number of customer
orders considered in each call to the algorithm also increases computation time which has a
negative impact on system performance. Therefore, execution cadence for the reevaluation
algorithm needs to be determined by considering this tradeoff between decision quality and
computation time. As mentioned earlier, in this dissertation we consider two strategies for
triggering the reevaluation algorithm. In the first strategy, the reevaluation algorithm is executed
for a group of n open customer orders, where n is a model parameter. In the second strategy, the
reevaluation algorithm is executed every t minutes, where t is a model parameter. Both strategies
are more effective if the model parameter value is optimized according to the system

characteristics.

The importance of execution cadence for the reevaluation algorithm is illustrated through an
example shown in Figures 6.8 and 6.9. In this example, we compare the reevaluation decisions
when the algorithm is executed for 2 customer orders versus 3 customer orders. The first scenario
(Figure 6.8) considers triggering the reevaluation algorithm when there are two open customer
orders in the system. In this scenario, when 0, is placed at t = 0, it is assigned to FC; which is the
closest FC that can satisfy all items in this order in a single shipment. When 0, is placed at t =

10, given the updated inventory levels, its shipment is split between FC, for SKU; and FC5 for

104

SKU; and SKU,. At t = 20 the reevaluation algorithm is triggered to optimize the assignment for
0, and 0,. While the reevaluation algorithm is searching for an optimal assignment, O is placed
at t = 25. As mentioned earlier, during the reevaluation, in addition to the inventory units that are
already assigned to the orders that are reevaluated, 50 percent of the available inventory for each
SKU at each FCs (rounded up) gets locked and is made available to the reevaluation algorithm. In
this example, since there is only one inventory unit for each SKU at each FCs, all inventory units
are locked for reevaluation and O is rejected by the e-tailer. At t = 30 reevaluation algorithm
execution ends which reduces total number of shipments by 1 by assigning 0,to FC; and 0, to

FC,.

The second scenario (Figure 6.9) considers triggering the reevaluation algorithm when there
are three open customer orders in the system. This scenario follows a similar process to make the
myopic fulfillment decisions for 0, and 0,. However, the reevaluation algorithm is not triggered
before 05 is placed at t = 25 and is assigned to FC; for SKU; and FC, for SKU,. Instead, it is
triggered at t = 35 and reevaluates assignments for all three customer orders together. As a result,

the number of shipments is reduced from 5 to 3 by assigning 0, to FC5, 0, to FC; and O5 to FC,.

As shown in this simple example, changing the execution cadence for the reevaluation
algorithm not only improves service level by reducing the number of rejected orders, but also
promotes cost savings by giving the optimization algorithm more flexibility and degrees of
freedom. Although we were able to find the best execution cadence through observation for this
example, finding the optimal execution cadence for larger problems is not trivial and requires
extensive analysis and experimentation. In the next chapter we present the results of several

experiments that relate to execution cadence and other important issues.

105

t=0 t=10
Arrival of order 1 Arrival of order 2
F2 F2 S =SKU
F=FC
Sl: S1: 0
S2: $2: 1
S3 S3: 1
F1 F3 F1 F3
S1 o1 S1:1 S1:0 01 02 S1:1
$2:1 p——ou{) S2:1 $2:0 e S2:1
$3:1 $1- 1 S3:0 S3:1 S1- 1 $51- 1 S3:0
S2:1 S2: S2:1
S3:1
t=15 t=20
Reevaluation begins
F2 F2
S1:0 S1:0
s2:1 S2: 1
S3: S3:1
F1 F3 F1 F3
S1: 0 o1 o2 S1:0 S1:1 o1 02 S1:1
$2:0 S =) S2:0 S2:1 O O S2:
53:1 S1: 1 SI: 1 §3:0 §3:1 Sl: 1 S1:1 83:0
S2:1 S2: 1 S2: S2:1
S3:1 $3:1
t=25 =30
Arrival of order 3 Reevaluation ends
F2 F2
S1: 03 S1:0 03
S2: >g< $2: 1 >g<
$3:1 10 3 1 S1:0
S2: 1 §2:1
F1 $3: 1 F3 F1 $3:1 F3
S1:1 o1 02 S1:1 S1:1 o1 02 S1:1
s2:1 O O S2: 1 S2:1 S2:1
83:1 S1: 1 SI: 1 53:0 53:1 SI: S1:1 §3:0
§2:1 S2: 1 S2: S2:1
S3: 1 $3:1

Figure 6.8: Scenario 1: executing reevaluation algorithm for a batch size of 2

106

t=0 t=10
Arrival of order 1 Arrival of order 2 S =SKU
F2 F2 F=FC
S1: 0 S1: 0
S2:1 S2:1
S3:1 53: 1
F1 F3 F1 F3
S1: o1 SI:1 S1:0 o1 02 Si:1
)) B—— s2: 1 $2:0 e s2:1
S3:1 S1-1 S3:0 S3:1 S $1-1 S3:0
S2: S2 S2:1
S3:1
t=25 t=30
Arrival of order 3
F2 F2
S1: 0
$2:0 e
§3:0 S1: 0
S2:1
F1 F3 F1 $3 1 F3
S1:0 S1:0 S1:0 o1 02 S1:0
$2:0 $2:0 $2:0 e e $2:0
S3:1 S1: 1 S1: S3:0 S3:0 SI: 1 S1:1 S3:0
S2:1 S2: S2 S2:1
S3: S3:1
t=35 t=45
Reevaluation begins Reevaluation ends
F2 F2
S1: 0 S1: 0
S2:1 O S2:] |—u——&
531 S1:0 §3:1 S1:0
S2:1 S2:1
F1 S3: 1 F3 F1 S3: 1 F3
Sl: 1 01 02 SI: 1 si: 1 o1 02 Sl 1
s2: O O $2:1 5201 W s2:1
S3:1 Sl 1 SI- §3:0 S3:1 Sl $1-1 S3:0
S2:1 S2: S2 S2:1
S3: S3:1

Figure 6.9: Scenario 2: executing reevaluation algorithm for a batch size of 3

107

Chapter 7

Experimental setup, results, and discussion

In order to analyze the DES model with the fully embedded reevaluation algorithm, an
extensive set of experiments is conducted in this section. These experiments are set up to study
different aspects of the e-tailer order fulfillment process and to evaluate the impact of various
system parameters on the performance of the reevaluation algorithm. The first set of experiments
consider the performance of the integer program reevaluation algorithm alone and measure its
scalability based on system parameters such as number of customer orders, SKUs, and FCs. The
second set of experiments consider the fully embedded reevaluation algorithm within the DES
model to demonstrate its effectiveness and to study the impact of the reevaluation algorithm’s
settings on long-run system performance. All experiments are conducted within Windows 7

environment on a desktop computer with a Core i7 3.4 GHz processor and 16 GB of RAM.

7.1. Experimental setup for 1P-based reevaluation algorithm

As described in Chapter 4, the primary decision variable in the integer program reevaluation
algorithm is a five-dimensional integer variable x4y, r. Since in this dissertation we consider a
fixed set of shipping methods and customer delivery preferences, the range of the d and m indices
are fixed and therefore they do not impact the integer program’s scalability. In order to analyze the
impact of other three indices, we solve 27 different problem instances. As shown in Table 7.1,
these problem instances are defined by the values of S, F, and R. For each of these parameters a
low, medium, and high value is considered. This allows us to study the performance of the integer
program for a range of problem complexities in all three dimensions. Note that each instance is

given a unique ID that is used throughout this chapter to refer to that instance.

108

Table 7.1: Instances for integer program scalability experiments

Instance 1D # SKUs # Orders # FCs
IP 1 5 5 2
IP_2 5 5 10
IP_3 5 5 20
IP 4 5 20 2
IP.5 5 20 10
IP_6 5 20 20
IP_7 5 100 2
IP_8 5 100 10
IP.9 5 100 20
IP_10 20 5 2
IP_11 20 10
IP_12 20 20
IP_13 20 20 2
IP_14 20 20 10
IP_15 20 20 20
IP_16 20 100 2
IP_17 20 100 10
IP_18 20 100 20
IP_19 100 5 2
IP_20 100 5 10
IP_21 100 5 20
IP_22 100 20 2
IP_23 100 20 10
IP_24 100 20 20
IP_25 100 100 2
IP_26 100 100 10
IP 27 100 100 20

All other parameters are fixed or randomized for these instances. The value of weight, for
each s is set using a uniformly distributed random number between 1 and 10 pounds.
Parameter maxBoxWeight is set to a constant value of 18.11 pounds for all instances. The values
of parameters cPound,, s, and cBox,,s., which represent shipping cost per pound and per box
respectively, are calculated using the UPS shipping rates that were introduced in Chapter 3. The
value of ordQty,,, is calculated using a three-step process which is consistent throughout all

instances. In the first step, a truncated exponential distribution is used to determine the number of

109

order lines for order r; this distribution models the fact that orders with fewer lines are more
common. In the second step, another truncated exponential distribution that captures demand
variability among SKUs is used to determine the SKU for each order line. Finally, the quantity of
each line is calculated using a third truncated exponential distribution. The value of delivery, for
each order is also randomized in a way that cheaper delivery preferences are given a higher weight.
Finally, total inventory is determined based on total demand and it is randomly distributed among

FCs to set the value of inventorys,;.

7.2. Experimental setup for DES model with fully embedded reevaluation algorithm

A second set of problem instances is used to study the behavior of the fully embedded
reevaluation algorithm within the DES model. These instances, which are listed in Table 7.2, are
defined by three primary parameters: (i) number of SKUs, (ii) number of FCs, and (iii) inter-order-
placement time distribution. Like the first set of problem instances, a unique ID is assigned to each

instance in Table 7.2 which is used throughout this chapter to refer to that instance.

Table 7.2: Instances for DES model experiments

Instance ID # SKUs # FCs Inter-order-placement time distribution (minutes)
DES_1 1000 10 E(5)
DES_2 5 3 E(5)
DES 3 10 3 E(5)
DES_4 100 3 E(5)
DES 5 100 5 E(5)
DES_6 100 10 E(5)

In addition to the primary parameters that are listed in Table 7.2, several other model
parameters are used in this experimentation. The value of most parameters is fixed or randomized
for all experiments, while some parameter values are changed to study the sensitivity of the DES

110

model. The e-tailer’s area of operation is assumed to be a rectangular space with a length of 1000
miles and width of 500 miles. All FCs and customer orders are located within this area using a
uniformly distributed probability distribution. SKU weights are uniformly distributed between 1

and 3 pounds and the maximum box weight is set to 20 pounds.

As described in Chapter 3, four delivery preferences are considered in this study (i) One Day
Delivery, (ii) Two Day Delivery, (iii) Five Day Delivery and (iv) Seven Day Delivery. The delivery
preference for each customer order is selected using a truncated exponential probability
distribution with A = 0.85 that gives cheaper delivery preferences a higher likelihood of getting
selected. On the other hand, four shipping methods are available to the e-tailer to meet customer
delivery deadlines: (i) Next Day Air, (ii) Second Day Air, (iii) Three Day Select and (iv) UPS
Ground. The number of items in a customer order is a uniformly distributed integer value between
1 and 5. The SKU and quantity for each item are also uniformly distributed. The maximum order

quantity for a single item is assumed to be 3.

In order to model the fact that a real-world e-tailer does not hold all SKUs at all FCs, we
consider an 80% likelihood that SK U, is available at FCy. For each s, f combination a uniformly
distributed random value between 0 and 1 is generated; if its value is less than or equal to 0.8, we
assume that SKU s is available at FC f. If no FC is selected to hold SKU s through this randomized

process, we assume that the last FC in the list holds that SKU.

The inventory policy for each FC and SKU combination is defined using three parameters,
maxLevel, reviewCycle and leadTime. To set the value of these parameters for SK U, first the
average daily demand for SKU, is calculated based on the distribution for the inter-order-

placement time, number of order lines and quantity of each item ordered. Then that demand rate

111

is equally distributed between FCs that hold SKU,. The parameter reviewCycle and leadTime
are randomly set to either 1, 2 or 3 days and maxLevel is derived by multiplying the demand rate
that is assigned to FC f and the lead_time. Additionally, a 10% safety stock is added to maxLevel
to absorb demand variability. Inventory replenishments are assumed to reach FCs one second after
midnight every day. Customer shipments are picked-up from FCs at 2:00 p.m. every day and all

assignments for those shipments are locked one hour before that event.

In all experiments, 4000 customer orders are simulated which represents approximately two
weeks of e-tailer operations. In order to make statistical inference, each experiment is replicated 6
times with a different seed for the random number generator. The same 6 random number seeds

are used across experiments to ensure cross-evaluations are accurate.

The reevaluation algorithm can either be triggered for a fixed batch size of customer orders or
a fixed cycle time. The batch size and cycle time are both model parameters. The value of these
parameters is adjusted throughout the experiments to analyze model sensitivity and to find their

optimal value based on the e-tailer’s operational characteristics.

The reevaluation computation time is controlled using two parameters, timePerOrder and
adjustmentFactor. The first parameter represents the actual time that is given to the reevaluation
algorithm per order that is reevaluated. The second parameter models the fact that in a real-world
e-tailer system, reevaluation computation time could be different. Both parameters are studied

extensively in the following experiments.

For example, if the timePerOrder is set to 1 minute, and the adjustmentFactor to 10, when
the reevaluation algorithm is executed for a batch of 50 customer orders, the computation time

limit for the reevaluation is set to 50 minutes; however, in the simulation model, we assume that

112

this reevaluation takes 500 minutes. On the other hand, if adjustmentFactor is set to 0.1, then
in the simulation we assume the reevaluation algorithm only takes 5 minutes. Therefore, when
adjustmentFactor is set to a value less than 1, it allows us to model the fact that an e-tailer may
have access to a more powerful CPU for executing the reevaluation algorithm than our test
environment. When it is set to a value higher than 1 on the other hand, it allows us to speed up our
experimentation by reducing the amount of the experiment’s time that is spent on each instance of
the reevaluation execution. Finally, by setting adjustmentFactor to 1, we can model a scenario
where the e-tailer’s reevaluation computation time is equal to the actual computation time used in

our experiments.

7.3. Results and discussion

7.3.1. Integer programming reevaluation algorithm scalability

In this experiment, the scalability of the integer programming reevaluation algorithm is studied
by solving problem instances IP_1 to IP_27 using CPLEX. A fixed time limit of 10 minutes is
imposed for all instances and the solution status, objective function, and gap percentage
(percentage difference between the objective value of the best solution found and a lower bound
on the optimal value) are reported at the end. The results of this experiment are reported in Table
7.3. As shown in this table, optimal solutions are found for 16 instances in less than 10 minutes.
For the remaining 11 instances, a feasible solution is reached with an average gap percentage of

4%.

In order to analyze the relationship between problem difficulty and the number of SKUs,
number of customer orders, and number of FCs, a scatter plot of the optimization gap percentage
based on value of each parameter is constructed in Figure 7.1. It can be observed that the number

of customer orders has a non-linear positive impact, number of FCs has a linear positive impact

113

and number of SKUs has a non-linear negative impact on problem difficulty. The positive impact
of the number of customer orders and FCs on problem difficulty can be explained by the increasing
number of decision variables and constraints in the integer program. The negative impact of the
number of SKUs, on the other hand, can be attributed to the fact that, for a fixed number of
customer orders, increasing the number of SKUs reduces the amount of overlap between orders

which subsequently reduces the number of ways that orders can be reassigned to different FCs.

114

Table 7.3: Results from integer program experiments

Problem instance Solution
Solution Objective Elapsed

Instance ID #SKUs #Orders #FCs Status Function ($) Gap (%) Time (Sec)
IP_1 5 5 2 Optimal 354 0 <1
IP_2 5 5 10 Optimal 425 0 <1
IP_3 5 5 20 Optimal 402 0 <1
IP_4 5 20 2 Feasible 768 0.54% 600
IP_5 5 20 10 Feasible 682 1.22% 600
IP_6 5 20 20 Optimal 808 0 91
IP_7 5 100 2 Feasible 2191 2.52% 600
IP_8 5 100 10 Feasible 3451 4.10% 600
IP_9 5 100 20 Feasible 2959 9.96% 600
IP_10 20 5 2 Optimal 498 0 <1
IP_11 20 5 10 Optimal 542 0 <1
IP_12 20 5 20 Optimal 361 0 <1
IP_13 20 20 2 Optimal 714 0 21
IP_14 20 20 10 Optimal 1373 0 18
IP_15 20 20 20 Optimal 820 0 13
IP_16 20 100 2 Feasible 3692 3.32% 600
IP_17 20 100 10 Feasible 3250 7.08% 600
IP_18 20 100 20 Feasible 4112 7.55% 600
IP_19 100 5 2 Optimal 358 0 <1
IP_20 100 5 10 Optimal 431 0 <1
IP_21 100 5 20 Optimal 158 0 <1
IP_22 100 20 2 Optimal 1409 0 253
IP_23 100 20 10 Optimal 1276 0 3
IP_24 100 20 20 Optimal 922 0 2
IP_25 100 100 2 Feasible 5215 2.65% 600
IP_26 100 100 10 Feasible 6521 1.43% 600
IP 27 100 100 20 Feasible 5176 1.70% 600

115

2.50%

2.00%

1.50%

1.00%

Average Gap

0.50%

0.00%
20 40 60 80 100 120

Number of SKUs

[=]

2.50%

2.00%

1.50%

1.00%

Average Gap

0.50%

0.00%

[
th

0 5 10 15 20
Number of FCs

5.00%
4.50%
4.00%
3.50%
3.00%
2.50%
2.00%
1.50%
1.00%
0.50%
0.00%

Average Gap

0 20 40 60 80 100 120
Number of Orders

Figure 7.1: Relationship between number of SKUs, FCs and orders and optimization gap

116

7.3.2. Simulation model performance without running reevaluation algorithm

In order to study the simulation model and develop a baseline for the e-tailer’s performance
without the reevaluation algorithm, six replications of the simulation model were executed on
instance DES_1. The result of this experiment is quantified using average shipping cost per order
and service level which is illustrated in Figure 7.2. As shown in this figure, the average shipping
cost per order is consistent across all replications and its mean value is $22.75. Additionally,
service level, which is calculated as the percentage of customer orders that are accepted by the e-
tailer, is similar for all replications and its mean value is 88%. In the following experiments the

impact of the reevaluation algorithm in these KPIs is analyzed.

0 J | | | |
1 2 3 4 5

— b (]
< wh =}

Average Cost Per Order (8)

h

Replication
100%
90%
80%
& 70%
5 60%
)
- 50%
Q
2 40%
g
8 30%
20%
10%
0%
1 2 3 4 5 6
Replication

Figure 7.2: Simulation model performance without reevaluation

117

7.3.3. Reevaluation algorithm performance for individual customer orders

As described in Chapter 3, the simulation model utilizes a rule-based method to make
fulfillment decisions for customer orders one at a time. Since the reevaluation algorithm from
Chapter 4 is an integer program that uses mathematical optimization, it outperforms the rule-based
method even when it is applied to one customer order at a time. To quantify the difference in
performance between these two methods, two sets of experiments are conducted on instance
DES_1. The first set is identical to the experiments that are outlined in Section 7.3.2 where the
simulation model is executed without considering reevaluation. For the second set of experiments,
the reevaluation algorithm is triggered for a batch size of 1. The timePerOrder parameter is set

to 1 second and adjustmentFactor is set to 10.

As displayed in Figure 7.3, running the reevaluation algorithm for individual orders reduces
average shipping cost per order from $22.75 to $22.23 which amounts to a savings of
approximately 2.3%. Additionally, the service level is not negatively impacted by reevaluation,

and its mean value remains at 88%.

In this experiment, the inter-order-placement time is significantly higher than the allocated
time for each reevaluation. In particular, customer orders are placed every 5 minutes and it takes
the reevaluation algorithm only 10 seconds (timePerOrder X adjustmentfactor) to find an
optimal fulfillment decision for them. Therefore the e-tailer can replace the rule-based method
with the integer program reevaluation algorithm and save 2.3% in shipping costs. However, for an
e-tailer with a shorter inter-order-placement time and more FCs, less computation time will be
available and each problem instance would be more difficult to solve, so it may not be practical to

replace the rule-based method with an integer programming approach. Additionally, reevaluating

118

fulfillment decisions for a group of orders enables an e-tailer to shuffle the assignments holistically
and minimize the overall shipping cost for that group. Therefore, in the next experiment we study

the strategy of reevaluating fulfillment decisions for a batch of customer orders.

W No Reevaluation
MW Batch Size = 1
0
1 2 3 & 5 6

Replication

== s [
(=] th (=]

Average Cost Per Order ($)

th

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

W No Reevaluation

MW Batch Size = 1

Service Level (%)

0%
1 2 3 4 5 6
Replication

Figure 7.3: System performance for reevaluating orders one at a time

119

7.3.4. Triggering reevaluation for a batch of customer orders

In order to analyze the value of reevaluating fulfillment decisions for a group of customer
orders together, a set of experiments are executed using DES_1 and a reevaluation batch size of
20. The result of this experiment in comparison with the baseline (no reevaluation) as well as a
reevaluation batch size of 1 is illustrated in Figure 7.4. Note that timePerOrder and
adjustmentFactor parameters are set to 1 second and 10 respectively. As shown in this figure,
setting the reevaluation batch size to 20 reduces average shipping cost per order in all replications
resulting in mean value of $22.11 which is $0.12 less than batch size of 1. Additionally, this
strategy does not influence service level. However, although for a batch size of 1 all customer
orders could be reevaluated for this instance, by increasing the batch size to 20, about 2.3% of
customer orders are not reevaluated (Figure 7.5). Those are the orders with a tight customer

delivery deadline.

The result of this experiment confirms that reevaluating a batch of customer orders reduces
average shipping cost. In the next experiment we find the optimal reevaluation batch size for the
instance DES_1 and develop a framework that can be replicated to find the optimal value for e-

tailers with various operational characteristics.

120

[&)
e

o ’.\J
~ 2 w0 ~ 2
b [n [h

Average Cost Per Order (§)
[
i

J
=
th

[
=

Igi
3 4

Replication

B No Reevaluation
M Batch Size =1
H Batch Size = 20

Figure 7.4: Impact of reevaluating a batch of orders on average shipping cost

100%

95%

90%

80%

Percentage of Total Orders

75%
Batch Size=1 Batch Size = 20

M Rejected Orders
B Not-Reevaluated Orders

B Reevaluated Orders

Figure 7.5: Impact of reevaluating a batch of orders on number of orders reevaluated and service level

121

7.3.5. ldentifying the optimal batch size for reevaluation

In the previous experiment, we illustrated the value of reevaluating fulfillment decisions for a
group of customer orders. Although increasing the batch size enables the reevaluation algorithm
to make better reassignments that result in more cost reduction, it also increases problem
complexity and computation time that have a potential negative impact on system performance.
Therefore, by using a very large batch size, the overall system performance might be degraded
which subsequently impacts average shipping cost. In other words, there must be an optimal value
for the batch size that best trades off the decision quality and computation time of the reevaluation

algorithm.

To find the optimal batch size for instance DES_1, a set of experiments are conducted with
different values for this parameter. Note that values of all other model parameters
including timePerOrder and adjustmentFactor are fixed. Figure 7.6 shows the result of this
experiment. According to the results, a batch size of 50 provides the best outcome by reducing the

average cost per order to $21.79 and maintaining an 88% service level.

As shown in Figure 7.6, by increasing the batch size from 50 to a larger number, the
reevaluation algorithm is not able to find an optimal decision for all customer orders and the
optimization gap percentage grows. Additionally, the number of customer orders that are not
reevaluated increases. This is because the customer orders that have a tight delivery deadline may
need to be shipped before a batch of 50 customer orders accumulates in the system to trigger the
reevaluation. The combination of these two phenomena results in the system performance

degradation which increases the average cost per order.

122

(

&)
g
=Y
=

Average Cost Per Order (3)
R
(=3
(=]

0 1 10 20 30 40 50 100 150 200
Batch Size

100%
90%
80%
70%
60%
50% Rejected Orders
40% B Not-Reevaluated Oders
30% M Reevaluated Orders
20%
10%

0%

Percentage of Total Orders

1 10 20 30 40 50 100 150 200
Batch Size

0 50 100 150 200 250
Batch Size

Figure 7.6: Identifying the optimal batch size for reevaluating orders

123

7.3.6. Impact of reevaluation time per order

The timePerOrder parameter is one of the key model parameters that specifies the
computation time limit for the reevaluation algorithm. In order to study the impact of this
parameter on system performance a set of experiments are conducted using instance DES 1. As
shown in the previous section, by setting the reevaluation batch size to 100 and timePerOrder to
1 second, the reevaluation algorithm is not able to find an optimal decision for all customer orders.
In this experiment, we test four different values for timePerOrder and analyze the results. The
values that are considered are 1, 2, 5 and 10 seconds. Note that adjustmentFactor and the batch

size are set to 10 and 100 respectively.

Figure 7.7 illustrates the result of this experiment. This result shows that by increasing the
value of timePerOrder from 1 second to 2 seconds, system performance is improved and the
average cost per order decreases from $22.02 to $21.69. However, when timePerOrder is further

increased to 5 and 10 seconds, average cost per order increases slightly.

This behavior can be explained by observing the gap percentage and percentage of orders that
are reevaluated in Figure 7.7. As shown in this figure, by increasing timePerOrder from 1 second
to 2 seconds, the optimization gap percentage is significantly reduced while the percentage of
orders that are reevaluated remains intact. This results in a major improvement in average cost per
order. However, increasing timePerOrder to 5 and 10 seconds does not significantly reduce the
gap percentage and on the other hand decreases the percentage of orders that are reevaluated. The

combined effect of these two events results in a slight degradation in the system performance.

124

2205

22.00
21.95
21.90
2185
21.80

2175 —¢

21.70

Average Cost Per Order ($)

21.65
0 2 4 6 8 10 12

Reevaluation Time Per Order (Sec.)

100%

95%

o
=)
B

[+
0

°
S

m Rejected Orders
M Not-Reevaluated Oders

M Reevaluated Orders

Percentage of Total Orders

1 2 5 10
Reevaluation Time Per Order (Sec.)

W W
e 9
= =
s 3=

Average Gap (%)
4
=

20.00
15.00
10.00
5.00
0.00 L 2 4
0 2 4 6 8 10 12

Reevaluation Time Per Order (Sec.)

Figure 7.7: Impact of reevaluation time per order on system performance

125

7.3.7. Impact of adjustment factor

Another important parameter in this simulation is adjustmentFactor. As described earlier in
this chapter, this parameter models the fact that in a real-world e-tailer system, reevaluation
computation time might be different from what is considered in the experiments. We test the

impact of this parameter through a set of experiments in this section.

For this experiment, four different values of adjustmentFactor parameter are tested for the
instance DES_1. These values range from 1 to 200. The reevaluation batch size is set to 50,
timePerOrder to 1 second, and other model parameters are fixed as in the previous experiments.
The results are summarized in Figure 7.8, which illustrates that increasing the adjustment factor

negatively impacts system performance and increases average cost per order.

Note that since the value of timePerOrder parameter is fixed, the optimization gap
percentage does not change by increasing the value of adjustmentFactor. However, as shown
in Figure 7.8, the number of orders that are reevaluated tend to be lower for larger values of
adjustmentFactor. This is because increasing the value of adjustmentFactor increases the
computation time of each reevaluation algorithm run within the simulation model. Subsequently,
the e-tailer may not get the opportunity to reevaluate customer orders with a tight delivery deadline.

This negatively impacts system performance and results in a higher average cost per order.

126

Average Cost Per Order ($)

Percentage of Total Orders

21.94

21.92

21.90

21.88

21.86

21.84

21.82

21.80

21.78

21.76

100%

95%

90%

85%

80%

75%

70%

65%

60%

50 100

150 200 250

Adjustment Factor

12%

12% 12%

10 100
Adjustment Factor

12%

200

Rejected Orders
m Not-Reevaluated Oders

W Reevaluated Orders

Figure 7.8: Impact of adjustment factor on system performance

127

7.3.8. Triggering reevaluation in fixed time intervals

Instead of triggering the reevaluation for a predetermined number of customer orders, the e-
tailer may choose to execute the reevaluation in fixed time intervals. In this section we study this
strategy by running a set of experiments on instance DES_1. For these experiments, the value of
timePerOrder and adjustmentFactor parameters are set to 1 second and 10 respectively and
the simulation is executed with different reevaluation cycle times. Results are presented in Figure

7.9.

As shown in this figure, the average cost per order demonstrates a very similar pattern to batch
size execution results. Note that since the inter-order-placement time follows an exponential
distribution with a mean of 5 minutes, a cycle time of 250 minutes is approximately equivalent to
a batch size of 50. Therefore, according to this experiment, both strategies provide a very similar
outcome for instance DES_1. In other words, the e-tailer can minimize shipping costs by choosing
to trigger the reevaluation algorithm either every 250 minutes or each time 50 customer orders

accumulate.

In this experiment, both strategies provide a very similar outcome, but this may not be
necessarily the case for all e-tailers. For example, if the inter-order-placement time does not follow
an exponential distribution, a batch size of 50 might not be comparable to a 250-minute cycle time.
Therefore, our recommendation is to test both strategies based on the e-tailer’s operational

characteristics to identify the best option that provides the minimum shipping cost.

128

Average Gap (%)

Percentage of Total Orders

0 5 50 100 150 200 250 500 750 1000
Reevaluation Cycle Time (min)

@

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

200 400 600 800 1000 1200
Reevaluation Cycle Time (min)

Rejected Orders
B Not-Reevaluated Oders

M Reevaluated Orders

5 50 100 150 200 250 500 750 1000
Reevaluation Cycle Time (min)

Figure 7.9: Triggering reevaluation in fixed time intervals

129

7.3.9. Impact of number of FCs

In Section 7.3.1 we studied the impact of the number of FCs on the performance of the IP-
based reevaluation algorithm. However, we did not consider the simulation model in that
experiment; the reevaluation algorithm was analyzed in isolation. This section extends that
analysis by considering the impact of the number of FCs when the reevaluation algorithm is fully
embedded within the DES model. For this analysis, a set of experiments are conducted on instances
DES 4, DES 5 and DES_6. These instances have a very similar configuration except for the
number of FCs. There are 3 FCs in DES_4, 5 FCs in DES_5 and 10 FCs in DES_6. For these
experiments, timePerOrder and adjustmentFactor are set to 1 second and 10 respectively and

reevaluation is triggered for a batch size of 50 customer orders.

Figure 7.10 illustrates the results of this analysis. As shown in this figure, by increasing the
number of FCs, the average shipping cost per order decreases. However, this is not because the
reevaluation algorithm performs better for instances with more FCs. Increasing the number of FCs
reduces the average distance between FCs and customer orders which subsequently reduces
average shipping cost per order. Based on the optimization gap percentage that is reported for these
instances, the reevaluation decisions tend to be negatively impacted by increasing number of FCs.
In other words, this experiment confirms that an e-tailer with a more sophisticated supply chain

network requires more processing power to reevaluate its customer orders.

130

12.5

12

11.5

11

Average Cost Per Order ($)

10

14

0 2 4 6 8 10

Number of FCs

12

12

10

Average Total Gap (%)

2 4 6 8 10
Number of FCs

Figure 7.10: Impact of number of FCs on system performance

131

12

7.3.10. Impact of number of SKUs

In this experiment, we extend the analysis that was presented in Section 7.3.1 where we studied
the impact of the number of SKUs on the performance of the IP-based reevaluation algorithm
performance. In order to quantify how e-tailer system performance is influenced by the number of
SKUs, a set of experiments are conducted with the DES model using three problem instances:
DES_2, DES_3 and DES_4. As shown in Table 7.2, these instances have a similar configuration
except for the number of SKUs. The number of SKUs for DES_2, DES_3 and DES 4 is 5, 10, and

100 respectively.

All DES model parameters are fixed throughout this experiment. The reevaluation algorithm
is triggered for a batch size of 50 orders and the values of timePerOrder and adjustmentFactor
are set to 1 second and 10 respectively. The results are summarized in Figure 7.11. According to
this figure, average cost per order does not demonstrate a correlation with the number of SKUs.
This can be explained by the fact that in this simulation the number of lines in a customer order is
independent of number of SKUs in e-tailer’s product catalog. Therefore, the average shipping cost

per order and number of SKUs are not closely related.

Note that in each execution of the reevaluation algorithm, only the SKUs in the customer orders
that are reevaluated are considered by the integer program. In other words, if number of SKUs is
100, but only 30 of those SKUs are included in any of the 50 orders that are reevaluated together,
the integer program for that reevaluation is constructed with the smaller subset of SKUs. In Section
7.3.1, we considered an exponential distribution to identify the SKUs that are ordered by each
customer while in this section we use a uniform distribution. Therefore, the number of SKUs that
are in the subset for this case is larger than what was presented previously. Hence, the optimization

gap percentage in this experiment has a positive correlation with the number of SKUs.

132

o
=2

-
'S

12

10

Average Cost Per Order ($)
(=]

h

IS

Average Total Gap (%)
[(%]

-

20 40 00 80 100
Number of SKUs

20 40 60 80 100
Number of SKUs

Figure 7.11: Impact of number of SKUs on system performance

133

120

7.3.11. Heuristic vs. IP-based reevaluation

Although the IP-based reevaluation algorithm is effective in reducing shipping costs, it has
some limitations for larger problem instances. As shown in previous experiments, parameters such
as the number of FCs, SKUs, and reevaluation batch size add to the complexity of the integer
program and increase the time needed to find an optimal decision. To solve larger problem
instances, a heuristic reevaluation algorithm is presented that reduces average shipping cost for the
e-tailer and can be triggered using the same mechanisms that were described for the IP-based
reevaluation algorithm. In this section, experiments are conducted to analyze the performance of

this heuristic algorithm in comparison with the integer program.

Figure 7.12 illustrates the results of these experiments. According to this figure, although the
integer program performs better for smaller batch sizes, its performance degrades as the batch size
increases. The heuristic algorithm, on the other hand, demonstrates more consistent performance,
and although it does not reduce the shipping cost to the same level as the integer program, it can
reevaluate a larger batch of customer orders. On the other hand, since the heuristic algorithm is
triggered like the integer program and its computation time is controlled with the same approach,

it does not impact the service level.

This experiment can be replicated for other parameters that increase the complexity of the
problem such as the number of SKUs and FCs. In general, for more complex reevaluation
problems, the heuristic algorithm may be a better alternative to consider that can reduce shipping

costs within a feasible timeframe.

134

23

(]
5
(=)

22

Average Cost Per Order (8)

100%
20%
80%
70%
60%
50%
40%

Service Level (%)

30%
20%
10%

0%

Figure 7.12

0 20 50 100 150 200
Batch Size
s v O o
0 20 50 100 150 200
Batch Size

1P

=d=~Heuristic

1P

=d=Heuristic

: Heuristic vs. IP-based reevaluation algorithm performance comparison

135

Chapter 8

Conclusions and future work

In this dissertation we have fully embedded two decision making algorithms within a DES
model of a general e-tailer order fulfillment process. This is the first study in the literature to
integrate integer programming and discrete event simulation in a novel way by feeding both the
decisions produced and the computation time used by the integer program to the DES model to
improve an e-tailer’s order fulfillment decisions. The DES model simulates daily operations of an
e-tailer by considering important processes such as orders being placed, order fulfillment,
shipment, and inventory replenishment. Order fulfillment decisions in the DES model are made
when a customer places an order an using a rule-based method that assigns each customer order to
one or more FCs that can fulfill them with a minimum number of shipments. This is a common
practice that allows e-tailers to maintain an updated available-to-promise inventory record for all

FCs and to provide an estimated delivery window to their customers.

We demonstrated that although making fulfillment decisions on the fly is critical for
maintaining the e-tailer’s operations, these decisions are made solely based on the available
information at the time an order is placed and with the objective of minimizing the shipping cost
for that individual order. In other words, they lead to a series of myopic fulfillment decisions that
are locally optimized for each customer order, but when considered holistically, they do not
globally minimize the e-tailer’s total shipping cost. In order to solve this problem, we presented
an IP-based reevaluation algorithm and a heuristic algorithm that simultaneously consider the
fulfillment decisions for a group of customer orders by shuffling the assignments that are made by

the myopic decisions.

136

E-tailers receive orders around the clock, 24 hours a day and 7 days a week. Reevaluation
needs to occur regularly during normal operations and without impacting important business KPIs
such as customer service level. During reevaluation, in addition to the inventory units that are
assigned to customer orders by myopic decisions, a portion of the un-assigned inventory at each
FC gets reserved and is made available to the reevaluation algorithm to improve its decisions. That
inventory may not be used to fulfill other customer orders that are placed while reevaluation is
being executed. Note that other processes may rely on or be impacted by the reevaluation. For
example, if customer shipments are sent from each FC at a fixed time every day, the fulfillment
decision for orders must be locked before that time. Therefore, reevaluation computation time must

be considered when designing a reevaluation strategy for an e-tailer.

Since both reevaluation decisions and computation time must be studied within the context of
e-tail operations and by considering the dependencies and relationships among multiple events,
we used a novel technique to fully embed our two reevaluation algorithms within a discrete event
simulation model. This framework enables us to design a reevaluation strategy that fits the e-
tailer’s operational characteristics. This also allows e-tailers to test multiple reevaluation scenarios
with different configurations in a simulated environment before selecting and deploying the

desired strategy to their fulfillment system.

The IP-based reevaluation algorithm is a complex problem which requires a nontrivial amount
of computation time. On one hand, reevaluating the fulfillment decisions for a larger group of
customer orders (with a larger reevaluation batch size) allows the integer program to generate
better decisions. On the other hand, a higher batch size requires more computation time which has
a negative impact on system performance. Because of this tradeoff, selecting the best strategy for

triggering the reevaluation algorithm is a nontrivial problem. We proposed two different methods

137

for doing this: (i) reevaluating for fixed batch sizes and (ii) reevaluating at a fixed time interval.
Additionally, we developed a framework that allows e-tailers to find the best value for the batch

size or time interval that minimizes total shipping cost.

The computation time for the IP-based reevaluation algorithm is dependent on several model
parameters including the number of FCs, SKUs, customer orders, and order lines. For an e-tailer
with a complex supply chain which contains millions of SKUs and hundreds of FCs, the integer
program may not find an optimal solution in a reasonable amount of time. Therefore, we developed
a heuristic reevaluation algorithm as an alternative. The heuristic algorithm’s computation time
can be controlled by the e-tailer. According to our experimental results, the heuristic algorithm
does not decrease total shipping cost as much as the integer program, but it shows a more consistent

performance for large problem instances.

The experimental results yield several managerial insights. First, our ability to significantly
reduce total shipping cost for customer orders using reevaluation demonstrates the effectiveness
of this approach. Second, in order to asses a reevaluation algorithm for making order fulfillment
decisions, both the decisions generated and computation time used by the algorithm need to be
considered. A reevaluation algorithm that generates high-quality decisions but requires a long
computation time may not be the best fit for a fast-paced e-tailer that receives hundreds of customer
orders in an hour. Third, there is a close relationship between the decisions generated by the
reevaluation algorithm, the computation time it uses, and the method by which it is triggered.
Increasing the frequency of reevaluation reduces the ability of the reevaluation algorithm to shuffle
assignments among a larger group of orders. On the other hand, it also decreases the reevaluation
computation time and reduces the optimization gap. A successful reevaluation strategy is therefore

a combination of an effective algorithm and a triggering method. Since these two are interrelated,

138

the best approach to find a successful strategy is experimenting with multiple scenarios. Our DES

model provides a framework for such analysis.

Future work on this problem might proceed in several directions. First, the DES model can be
extended to consider other processes in the e-tailer’s operations. For example, returns and reverse
logistics is an important aspect of an e-tailer supply chain. Some inventory units that are returned
to the e-tailer could be assigned to new customer orders. Our proposed DES model has a modular
design which is based on object-oriented programming and supports the addition of new events
and processes for further studies. Second, the objective function of the reevaluation integer
program can be extended to include other cost elements such as inventory holding cost and order
processing cost. Although outbound transportation cost (i.e. order shipping cost) accounts for a
significant portion of an e-tailer’s overall operating cost, including other cost elements increases
the effectiveness of the reevaluation algorithm. Third, there are research opportunities for
improving the reevaluation triggering methods. In this dissertation, we proposed two methods
based on a fixed batch size and fixed cycle time. We believe this could be augmented with other
techniques that consider triggering the reevaluation algorithm based on the characteristics of
customer orders as well as inventory levels at FCs. In other words, reevaluation can be triggered
according to the level of SKU overlap within a set of customer orders as opposed to the size of
that set. Fourth, there are two directions in which the proposed heuristic algorithm could be
improved. Instead of splitting the batch of customer orders to equal size subsets, the proportion
could be a model parameter that is customizable for each e-tailer according to their specific
business requirements. Additionally, although in this dissertation, we split customer orders only
once and apply the decomposed integer program to one of the subsets, this procedure could be

replicated multiple times with different randomized subsets to make a better overall decision. Fifth,

139

extending this model to analyze a retailer with an omni-channel supply chain network is a
worthwhile direction for future work. Finally, this model can be used to study the impact of a crisis
such as COVID-19 on an e-tailer order fulfillment process. COVID-19 has impacted e-tailers in
many ways by causing demand volatility and supply shortages, and by increasing replenishment
lead time, and creating logistics and transportation challenges. Since our proposed model is
designed in a modular way and it is highly parameterized, decision makers can study the impact
of many of these disruptions by either adjusting the model parameters or adding additional events
to the simulation model. This can be extended to any future crisis and disruptions to allow e-tailers

to proactively prepare their supply chains for those events.

140

Appendix A

Linear regression models for UPS shipping rates

Zone 002 Zone 003
90
80
70 /
60
50
40
30
20
10 =
0 =
1 26 51 76 101 126
Zone 004 Zone 005
100
90 |
80
70
60
50
40
30
20
10
0
1 26 51 76 101 126
Zone 006 Zone 007
100 120
90
80 100
70 80
60
50 60
40
30 40
20 20
10
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 008
120
100 Actual cost
80
6 = Estimated cost using linear regression
40 St X-axis: Box weight in pounds
20 , Vi : . .
y-axis: Shipping cost in dollars
0
1 26 51 76 101 126

Figure 1: Fitted linear regression models for shipping method 1

141

Zone 302 Zone 303
140 180
120 160
100 140
120
80 100
60 80
40 60
40
20 20
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 304 Zone 305
250 300
200 250
200
150
150
100
100
50 50
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 306 Zone 307
450 500
400 450
350 400
300 350
250 300
200 250
200
150 150
100 100
50 50
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 308
600
500 Actual cost
400
= Estimated cost using linear regression
300
200 X-axis: Box weight in pounds
100 il - .
¥y-axis: Shipping cost in dollars
0

-

26

51

76

101

126

Figure 2: Fitted linear regression models for shipping method 2

142

Zone 202 Zone 203
200 250
180
160 200
140
120 150
100
80 100
60
40 50
20
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 204 Zone 205
300 450
400
250
350
200 300
250
150
200
100 150
100
50
50
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 206 Zone 207
800 800
700 700
600 600
500 500
400 400
300 300
200 200
100 100
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 208
800
700
600 Actual cost
500 - . . .
= Estimated cost using linear regression
400
300 X-axis: Box weight in pounds
200
100 y-axis: Shipping cost in dollars
0

[N

26

51

76

101

126

Figure 3: Fitted linear regression models for shipping method 3

143

Zone 102 Zone 103
350 500
300 450
400
250 350
200 300
250
150 200
100 150
50 100
50
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 104 Zone 105
900 1000
800 900
700 800
600 700
500 600
400 500
400
300 300
200 200
100 100
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 106 Zone 107
1000 1200
900
800 1000
700 300
600
500 600
400
300 400
200 200
100
0 0
1 26 51 76 101 126 1 26 51 76 101 126
Zone 108
1200
1000 Actual cost
800
= Lstimated cost using linear regression
600
400 X-axis: Box weight in pounds
200 RPN _ .
y-axis: Shipping cost in dollars
0

101 126

Figure 4: Fitted linear regression models for shipping method 4

144

Appendix B

Simulation model pseudocodes

Table 1: Zone calculator pseudocode

Procedure: Zone
Input: orgLoc, destLoc, shippingMehod

shipDistance « distance(orgLoc, destLoc)
if shippingMethod = 1
if shipDistance < 165
zoneNum « 2
else if shipDistance < 308
zoneNum « 3
else if shipDistance < 607
zoneNum « 4
else if shipDistance < 1020
zoneNum « 5
else if shipDistance < 1440
zoneNum « 6
else
zoneNum « 7
endif
else if shippingMethod = 2
if shipDistance < 165
zoneNum « 302
else if shipDistance < 308
zoneNum « 303
else if shipDistance < 607
zoneNum « 304
else if shipDistance < 1020
zoneNum « 305
else if shipDistance < 1440
zoneNum « 306
else
zoneNum « 307
endif
else if shippingMethod = 3
if shipDistance < 165
zoneNum « 202
else if shipDistance < 308
zoneNum « 203
else if shipDistance < 607
zoneNum « 204
else if shipDistance < 1020
zoneNum « 205
else if shipDistance < 1440
zoneNum « 206
else
zoneNum « 207
endif
else if shippingMethod = 4
if shipDistance < 165
zoneNum « 102
else if shipDistance < 308
zoneNum « 103
else if shipDistance < 607
zoneNum « 104
else if shipDistance < 1020
zoneNum « 105
else if shipDistance < 1440
zoneNum « 106
else
zoneNum « 107
endif
endif
return (zoneNum)

145

Table 2: Shipping cost per box calculator pseudocode

Procedure: ShipCostPerBoxCalc
Input: shippingZone, shippingMehod

if shippingMethod = 1
if shippingZone = 2
costPerBox < 0.50
else if shippingZone = 3
costPerBox « 0.90
else if shippingZone = 4
costPerBox « 1.36
else if shippingZone =5
costPerBox « 6.01
else if shippingZone = 6
costPerBox « 9.70
else
costPerBox « 13.62
endif
else if shippingMethod = 2
if shippingZone = 302
costPerBox « 7.23
else if shippingZone = 303
costPerBox « 9.87
else if shippingZone = 304
costPerBox « 9.28
else if shippingZone = 305
costPerBox « 9.30
else if shippingZone = 306
costPerBox « 12.31
else
costPerBox « 11.16
endif
else if shippingMethod = 3
if shippingZone = 202
costPerBox < 10.35
else if shippingZone = 203
costPerBox < 15.01
else if shippingZone = 204
costPerBox « 15.22
else if shippingZone = 205
costPerBox « 17.50
else if shippingZone = 206
costPerBox < 19.85
else
costPerBox « 25.64
endif
else if shippingMethod = 4
if shippingZone = 102
costPerBox < 11.53
else if shippingZone = 103
costPerBox « 16.57
else if shippingZone = 104
costPerBox « 35.21
else if shippingZone = 105
costPerBox « 41.15
else if shippingZone = 106
costPerBox < 43.56
else
costPerBox < 45.37
endif
endif
return(costPerBox)

146

Table 3: Shipping cost per pound calculator pseudocode

Procedure: ShipCostPerPoundCalc
Input: shippingZone, shippingMehod

if shippingMethod = 1
if shippingZone = 2
costPerPound « 0.47
else if shippingZone = 3
costPerPound < 0.48
else if shippingZone = 4
costPerPound < 0.51
else if shippingZone =5
costPerPound < 0.50
else if shippingZone = 6
costPerPound « 0.54
else
costPerPound < 0.54
endif
else if shippingMethod = 2
if shippingZone = 302
costPerPound < 0.81
else if shippingZone = 303
costPerPound < 1.01
else if shippingZone = 304
costPerPound < 1.33
else if shippingZone = 305
costPerPound « 1.75
else if shippingZone = 306
costPerPound « 2.52
else
costPerPound < 2.97
endif
else if shippingMethod = 3
if shippingZone = 202
costPerPound « 1.18
else if shippingZone = 203
costPerPound « 1.34
else if shippingZone = 204
costPerPound < 1.34
else if shippingZone = 205
costPerPound « 2.59
else if shippingZone = 206
costPerPound « 4.27
else
costPerPound « 4.52
endif
else if shippingMethod = 4
if shippingZone = 102
costPerPound « 2.07
else if shippingZone = 103
costPerPound « 3.01
else if shippingZone = 104
costPerPound < 5.00
else if shippingZone = 105
costPerPound « 5.41
else if shippingZone = 106
costPerPound « 5.54
else
costPerPound < 5.54
endif
endif
return(costPerPound)

147

Table 4: Customer order placement event pseudocode

Procedure: CustomerOrderPlacement
Input: sysState, currTime

increase numOrd by 1

initialize nOrd as an empty instance of Order
nO0rd .ordNum < numOrd

nOrd .ordTime « currTime

nOrd .ordHour < Hour(currTime)

nOrd .ordDay < Day(currTime)

nOrd .ordLoc.xCoord < unifDist(0, Length)
nOrd .ordLoc.yCoord « unifDist(0, Width)
randl < unifDist(0,1)

rand2 < unifDist(0,1)

/* Specify new order’s delivery preference based on cumulative probability distribution */
if rand1 < DelProb[1]
nOrd.delPref « 1
if nOrd. ordHour < DailyShipHour
nOrd. estDel « (nOrd.ordDay + DeliveryDays|[1]) * 1440 + unif Dist(480,1140)
else
nOrd.estDel < (nOrd.ordDay + DeliveryDays[1] + 1) * 1440 4 unif Dist(480,1140)
endif
else if rand1 < DelProb|[2]
nOrd.delPref « 2
ifnOrd.ordHour < DailyShipHour
nOrd. estDel « (nOrd.ordDay + DeliveryDays|[2]) * 1440 + unif Dist(480,1140)
else
nOrd.estDel < (nOrd.ordDay + DeliveryDays|[2] + 1) * 1440 4 unif Dist(480,1140)
endif
else if rand1 < DelProb[3]
nOrd.delPref < 3
if nOrd. ordHour < DailyShipHour
nOrd. estDel « (nOrd.ordDay + DeliveryDays|[3]) * 1440 + unif Dist(720,1140)
else
nOrd. estDel < (nOrd.ordDay + DeliveryDays[3] + 1) * 1440 4+ unif Dist(720,1140)
endif
else
nOrd.delPref « 4
if nOrd. ordHour < DailyShipHour
nOrd. estDel « (nOrd.ordDay + DeliveryDays[4]) * 1440 4+ unif Dist(900,1140)
else
nOrd. estDel « (nOrd.orderDay + DeliveryDays[4] + 1) * 1440 + unif Dist(900,1140)
endif
endif

/* Specify when this order must be locked based on its arrival time */
nOrd.mustLockTime « (Day(nOrd.estDel) — 1) * 1440 + 780

/* Determine number of line items in the order based on cumulative probability distribution */
fori = 1to MaxOrdLines
ifrand2 < OrdLinesProb[1]
nOrd.numltems « i
exit for loop
endif
endfor

/* Specify SKUs for each order line based on cumulative probability distribution */
check « false
fori = 1to nOrd.numitems
while check is false
check « true
rand3 « unifDist(0,1)
fors = 1 to NumSkus
if rand3 < SkuProb|s]
candidateSku « s
exit for loop
endif
endfor

148

forj=1toi
ifnOrd. item[j]. skuNum = candidateSku
check < false
exit for loop
endif
endfor
endwhile
nOrd.item[i]. skuNum « candidateSku
check « false
endfor

* Specify order quantity for each order line based on cumulative probability distribution */
fori = 1 to nOrd. numlitems
rand4 < unifDist(0,1)
for g = 1 to MaxQuantity
if rand4 < QtyProb|q]
nOrd.item[i].qty < q
exit for loop
endif
endfor
endfor

/* Update statistical accumulators */
fori = 1 to nOrd. numltems

increase TotalDemand[nOrd. item[i]. skuNum] by nOrd. item[i]. qty
endfor

/* Update system state */
sysState.timeOfMostRecentEvent « currTime

push nOrd into sysState. orderQueue

push nOrd. ordNum into sysState. openOrder Numbers
sysState.numfOrders < nOrd.ordNum

increase sysState. numOfOpenOrders by 1

/* Update event calendar and call other events */
call CheckInventoryAvailability() event
put the next customer order arrival event in the calendar

149

Table 5: Check inventory availability pseudocode

Procedure: CheckinventoryAvailability
Input: custOrd, sysState, currTime

acceptOder <« true

* For each order line, check inventory availability at all FCs and determine if the customer order can be satisfied */
fori =1 to custOrd.numlitems
onHandInv « 0
inOrderInv < 0
sNum « custOrd.item[i]. skuNum
for f = 1to NumFcs
increase onHandlInv by sysState. inv[sNum][f]. onHandUnassigned
if sysState. inv[sNum][f].repTime < custOrd. mustLockTime
increase inOrderInv by sysState. inv[sNum][f]. inOrderUnassigned
endif
endfor
if onHandInv + inOrderInv < custOrd.item[i]. qty
acceptOrder « false
exit for loop
endif
endfor

[* Update event calendar and call other events */
if acceptOrder = true

Call AcceptCustomerOrder() event
else

Call RejectCustomerOrder() event
endif

Table 6: Accept customer order pseudocode

Procedure: AcceptCustomerOrder
Input: custOrd, sysState, currTime

/* Update statistical accumulators */
increase NumOrdersAccepted by 1

/* Update event calendar and call other events */
call MakeOrderFulfillmentDecision() event

Table 7: Reject customer order pseudocode

Procedure: RejectCustomerOrder
Input: custOrd, sysState, currTime

/* Update statistical accumulators */
increase NumOrdersRejected by 1

/* Update system state */

decrease sysState. numberO fOpenOrders by 1

increase sysState.numberOf ClosedOrders by 1

push custOrd. ordNum into sysState. closedOrder Numbers
remove custOrd. ordNum from sysState. openOrderNumbers
remove custOrd from sysState. orderQueue

150

Table 8: Make order fulfillment decision pseudocode

Procedure: MakeOrderFulfillmentDecision
Input: custOrd, sysState, currTime

/* For each order item, specify number of units of on-hand and in-order inventory that are eligible to satisfy customer order */
fori = 1 to custOrd. numltems
sNum « cusOrd.item[i]. skuNum
for f = 1to NumFcs
eligibleOH[i][f] < sysState.inv[sNum][f]. onHandUnassigned
if sysState.inv[sNum][f].repTime < custOrd.mustLockTime
eligiblelO[i][f] « sysState. inv[sNum][f]. inOrderUnassigned
else
eligiblelO[i][f] < O
endif
endfor
endfor

* Specify which order items can be fulfilled by each FC. Additionally, calculate total number of order items each FC can satisfy*/
for f = 1to NumFcs
numlLinesFcCanFulfill[f] « 0
for i = 1to custOrd.numltems
if eligibleOH[i][f] + eligiblelO[i][f] = custOrd.item[i]. qty
increase numLinesFcCanFulfill[f] by 1
canFulfill[i][f] < "true"
else
canFulfill[i][f] < "false"
endif
endfor
endfor

[* Calculate a weight factor for each FC based on number of items it can satisfy and its distance to customer location */
for f = 1to NumFcs

fcWeight[f] « numLinesFcCanFulfill[f] * 1000 — distance(fc[f]. location, custOrd.location)
endfor

/* Rank FCs based on the calculated weight */
for f = 1to NumFcs
rFes[f] « f
endfor
je1
swapped « "true"
while swapped = "true"
swapped « "false"
for f =1to NumFcs —j
if fcWeight[f] < fcWeight[f + 1]
templ « fcWeight[f]
temp2 « rFcs(f]
fcWeight[f] « fcWeight[f + 1]
rFcs[f] « rFes[f + 1]
fcWeight[f + 1] « templ
rFcs[f] « temp2
swapped « "true"
endif
endfor
increase j by 1
endwhile

/* Assign each order items to a FC. When assigning items to FCs, this algorithm first checks the FC that can fulfill maximum number of order items
and assigns the item to it if there is enough inventory. Otherwise it checks the second FC in the ranked list and repeats the logic until all items are
assigned. If no FC has enough inventory to fulfill an order item, the algorithm splits that item into multiple assignments. */
fori = 1to custOrd.numltems
found < "false"
sNum « custOrd.item[i]. skuNum
for f = 1to NumFcs
if canFulfill[i][rFcs[f]] = "true"
push rFcs[f] into fcForAsg|i]
found « "true"
if eligibleOH[i][rFcs[f]] = custOrd.item[i]. qty
push custOrd.item[i]. qty into gtyFromOH|i]
push 0 into gtyFromlO[i]

151

shMthd « ShipMethodCalc(custOrd.delPref, 0, hour(currTime)
shTime < ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref,shMthd)
lockTime « shTime — 60
push shMthd into asgShMthd|i]
push shTime into asgShTimeli]
push lockTime into asgLockTimel[i]
else
push eligibleOH[i][rFcs[f]] into gtyFromOH|[i]
push (custOrd.item[i]. qty — eligibleOH[i][rFcs[f]]) into qtyFromlO[i]
shMthd « ShipMethodCalc(custOrd.delPref,
Day(sysState. inv[sNum][rFcs[f].repTime) — Day(currTime), Hour(currTime))
shTime « ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref,shMthd)
lockTime « shTime — 60
push shMthd into asgShMthd|[i]
push shTime into asgShTime][i]
push lockTime into asgLockTimel[i]
endif
endif
endfor
if found = "false"
remQty « custOrd.item[i]. qty
fel
while remQty > 0
if eligibleOH[i][rFcs[f1]+ eligiblelO[i][rFcs[f]] > 0
push rFes[f] into fcForAsgl[i]
ifremQty > (eligibleOH[i][rFcs[f]]+ eligiblelO[i][rFcs[f]])
push eligibleOH[i][rFcs[f]] into qtyFromOH]i]
push eligiblelO[i][rFcs[f]] into gtyFromlIO[i]
if eligiblelO[i][rFcs[f1] > 0
shMthd < ShipMethodCalc(custOrd. delPref,
Day(sysState. inv[sNum][rFcs[f].repTime) — Day(currTime), Hour (currTime))
shTime « ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref, shMthd)
lockTime < shTime — 60
push shMthd into asgShMthd|[i]
push shTime into asgShTimel[i]
push lockTime into asgLockTime[i]
else
shMthd < ShipMethodCalc(custOrd. delPref,0, Hour(currTime))
shTime « ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref,shMthd)
lockTime < shTime — 60
push shMthd into asgShMthd|i]
push shTime into asgShTime][i]
push lockTime into asgLockTime[i]
endif
else if eligibleOH[i][rFcs[f]] = unfulfilledQuantity
push remQty into gtyFromOH[i]
push 0 into gtyFromlO[i]
shMthd « ShipMethodCalc(custOrd.delPref,0, Hour(currTime))
shTime « ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref,shMthd)
lockTime < shTime — 60
push shMthd into asgShMthd[i]
push shTime into asgShTimeli]
push lockTime into asgLockTime[i]
else
push eligibleOH[i][rFcs[f]] into qtyFromOH][i]
if eligiblelO[i][rFcs[f]] > 0
push remQty — eligibleOH[i][rFcs[f]] into gtyFromlIO[i]
shMthd < ShipMethodCalc(custOrd. delPref,
Day(sysState. inv[sNum][rFcs[f].repTime) — Day(currTime), Hour (currTime))
shTime « ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref,shMthd)
lockTime « shTime — 60
push shMthd into asgShMthd|i]
push shTime into asgShTime]i]
push lockTime into asgLockTime]i]
else
push 0 into gtyFromlO[i]

152

shMthd « ShipMethodCalc(custOrd.delPref,0, Hour(currTime))
shTime « ShipTimeCalc(Day(currTime), Hour (currTime), custOrd. delPref,shMthd)
lockTime < shTime — 60
push shMthd into asgShMthd|i]
push shTime into asgShTime][i]
push lockTime into asgLockTime[i]
endif
endif
decrease remQty by eligibleOH[i][rFcs[f]] + eligiblelO[i][rFcs[f]]
endif
fef+1
endwhile
endif
found « "true"
endfor

[* Update system state with information about fulfillment decision */
fori =1 to custOrd. numlitems
for f = 1to fcForAsgli].size()
initialize assignment to be an empty instance of Assignment
assignment. ordNum « custOrd.orderNumber
assignment. skuNum « custOrd. item;. skuNum
assignment. fcNum « fcForAsglil[f]
assignment. qtyFromOnHand « qtyFromOH|[i][f]
assignment. qtyFromInOrder < qtyFromlO[i][f]
assignment. shippingMethod « asgShMthd[i][f]
assignment. shippingTime « asgShTime[i][f]
assignment. lockingTime < asgLockTimel[i][f]
assignment.locked < "false"
push assignment into sysState. assignments
decrease sysState. inv[assignment. skuNum][assignment. fcNum]. onHandUnassigned by qtyFromOH|[i][f]
decrease sysState. inv[assignment. skuNum][assignment. fcNum]. inOrderUnassigned by qtyFromlIO[i][f]
increase sysState. inv[assignment. skuNum][assignment. fcNum]. onHandAssignedOpen by qtyFromOH/[i][f]
increase sysState. inv[assignment. skuNum][assignment. fcNum]. onOrderAssignedOpen by qtyFromlO[i][f]
endfor
endfor
sysState. timeOf MostRecentEvent « currTime

153

Table 9: Shipping method calculator pseudocode

Procedure: ShipMethodCalc
Input: deliveryOption, invAvailDay, order Hour

if orderHour < 13
if deliveryOption = 1
if invAvailDay < 2
shippingMethod < 1
else if invAvailDay < 4
shippingMethod « 2
else if invAvailDay = 5
shippingMethod « 3
else if invAvailDay = 6
shippingMethod < 4
endif
else if deliveryOption = 2
if invAvailDay = 0
shippingMethod < 1
else if invAvailDay < 2
shippingMethod « 2
else if invAvailDay = 3
shippingMethod < 3
else if invAvailDay = 4
shippingMethod « 4
endif
else if deliveryOption = 3
if invAvailDay = 0
shippingMethod « 3
else if invAvailDay = 1
shippingMethod « 4
endif
else if deliveryOption = 4
if invAvailDay = 0
shippingMethod « 4
endif
endif
else
if deliveryOption = 1
if invAvailDay < 3
shippingMethod « 1
else if invAvailDay < 5
shippingMethod « 2
else if invAvailDay = 6
shippingMethod « 3
else if invAvailDay = 7
shippingMethod « 4
endif
else if deliveryOption = 2
if invAvailDay < 1
shippingMethod « 1
else if invAvailDay < 3
shippingMethod « 2
else if invAvailDay = 4
shippingMethod « 3
else if invAvailDay = 5
shippingMethod « 4
endif
else if deliveryOption = 3
if invAvailDay < 1
shippingMethod « 3
else if invAvailDay = 2
shippingMethod « 4
endif
else if deliveryOption = 4
if invAvailDay < 1
shippingMethod « 4
endif
endif
endif
return(shippingMethod)

154

Table 10: Shipping time calculator pseudocode

Procedure: ShipTimeCalc
Input: orderDay, orderHour, deliveryOption, shippingMethod

if orderHour > 13
additionalDay « 1
else
additionalDay « 0
endif
if deliveryOption = 1
if shippingMethod = 1
shippingTime « (orderDay + additionalDay + 2) * 1440 + 840
else if shippingMethod = 2
shippingTime < (orderDay + additionalDay + 4) * 1440 + 840
else if shippingMethod = 3
sihppingTime « (orderDay + additionalDay + 5) * 1440 + 840
else if shippingMethod = 4
sihppingTime « (orderDay + additionalDay + 6) * 1440 + 840
endif
else if deliveryOption = 2
if shippingMethod = 1
shippingTime « (orderDay + additionalDay) * 1440 + 840
else if shippingMethod = 2
shippingTime < (orderDay + additionalDay + 2) * 1440 + 840
else if shippingMethod = 3
sihppingTime < (orderDay + additionalDay + 3) * 1440 + 840
else if shippingMethod = 4
sihppingTime < (orderDay + additionalDay + 4) * 1440 + 840
endif
else if deliveryOption = 3
if shippingMethod = 3
sihppingTime « (orderDay + additionalDay) * 1440 + 840
else if shippingMethod = 4
sihppingTime < (orderDay + additionalDay + 1) * 1440 + 840
endif
else if deliveryOption = 3
if shippingMethod = 4
sihppingTime « (orderDay + additionalDay) * 1440 + 840
endif
endif
return(shippingTime)

Table 11: Lock fulfillment decision pseudocode

Procedure: LockFulfillmentDecision
Input: sysState, currTime

/* Find all assignments that need to be locked and update system state accordingly */
sysState. timeOf MostRecentEvent « currTime
For a = 1to sysState. numAssignments
if sysState. assignments|a].lockingTime = currTime
fNum « sysState. assignments[a]. fcNum
sNum « sysState. assignments|[a]. skuNum
qtyOH « sysState.assignments|[a]. qtyFromOnHand
qtyl0 « sysState.assignments[a]. qtyFromInOrder
increase sysState. inv[sNum][f Num]. onHandAssignedLocked by qtyOH
decrease sysState. inv[sNum][f Num).onHandAssignedOpen by qtyOH
increase sysState. inv[sNum][f Num].onOrderAssignedLocked by qtylO
decrease sysState. inv[sNum][f Num).onOrderAssignedOpen by qtylO
sysState.assignments[a]. locked « true
endif
endfor
/* Update event calendar and call other events */
put customer order shipment event in calendar

155

Table 12: Order shipment pseudocode

Procedure: OrderShipment
Input: sysState, currTime

/* Find all assignments that need to be shipped and remove them from system state */
for a = 1to sysState. numAssignments
if sysState. assignments|a].locked = "true"
temp « assignments|a]
remove assignments[a] from list of current assignments in system state
push temp into assignmentsToShip
endif
endfor
numAssignmenetsToShip « assignmentsToShip. size()

/* Update system state inventory information */
for a = 1 to numAssignmentsToShip
fcN « assignmenetsToShip[a]. fcNum
skuN « assignmentsToShip[a]. skuNum
qtyOH « assignmentsToShip|a]. qtyFromOnHand
qtylO « assignmentsToShip|a]. qtyFromInOrder
decrease sysState. inv[fcN][skuN].onHandAssignedLocked by qtyOH
decrease sysState. inv[fcN][skuN].inOrderAssignedLocked by qtyOH
endfor

/* Find list of all customer orders that will be shipped at this time */
forr = 1to sysState.numOrders
for a = 1to numAssignmentsToShip
if assignmentsToShip[a]. ordNum = r
push r into ordersWithShipment
exit for loop
endif
endfor
endfor
numOfOrdersWithShipment « ordersWithShipment.size()

/* Find list of all FCs that will ship boxes to customers at this time */
for f = 1to NumFcs
for a = 1to numAssignmentsToShip
if assignmentsToShip[a]. fcNumber = f
push f into fcsWithShipment
exit for loop
endif
endfor
endfor
numOfFcsWithShipment « fcsWithShipment. size()

[* Calculate total weight and total number of boxes that will be shipped from each FC to each order using each shipping method */
form = 1to NumShipMethods
for f = 1to numOfFcsWithShipment
forr = 1to numOfOrdersWithShipment
weightShipped[m][f][r] < 0
boxShipped[m][f][r] «< 0
for a = 1to numdssignmentsToShip
mi < assignmentsToShip[a]. shippingMethod
fi < assignmentsToShip|[a]. fcNum
ri < assignmentsToShip[a]. ordNum
si < assignmenetToShip[a]. skuNumber
qtyOH « assignmenetsToShip[a]. qtyFromOnHand
qtyl0 « assignmenetsToShip[a]. qtyFromInOrder
increase weightShipped[mi][fi][ri] by sku[si].weight * (qtyOH + qtyl0)
increase boxShipped[mi][fi][ri] by ceil(weightShipped[mi][fi][ri]/MaxBoxW eight)
endfor
endfor
endfor
endfor

[*Calculate cost per mile and cost per pound for each order/FC/shipping method combination */
form = 1to NumShipMethods
for f = 1 to numOfFcsWithShipment
forr = 1to numOfOrdersWithShipment

156

forr = 1to numOfOrdersWithShipment
fi « fesWithShipment[f]
ri « ordersWithShipment[r]
mie<m
shipZone « Zone(fc[fi]. fcLoc, sysState. orderQueue[ri]. ordLoc, mi)
costPerBox[m][f][r] « ShipCostPerBoxCalc(mi, shipZone)
costPerPound[m][f][r] « ShipCostPerPoundCalc(mi, shipZone)

endfor

endfor
endfor

[*Calculate total cost of this shipment */
costOfThisShipment < 0
form = 1to NumShipMethods
for f = 1 to numOfFcsWithShipment
forr = 1to numOfOrdersWithShipment
increase costOfThisShipment by costPerBox[m][f][r] * boxShipped[m][f][r]
increase costOfThisShipment by costPerPound[m][f][r] * weightShipped[m][f][r]
endfor
endfor
endfor

[* Update statistical accumulators */
increase totalShippingCost by costOfThisShipment

157

Table 13: FC inventory replenishment pseudocode

Procedure: FCInventoryReplenishment
Input: targetFc,revCyc, currTime

/* Find all SKUs in target FC with similar review cycle and calculate the replenishment quantity for each based on their max inventory level
and current available inventory */
fors = 1 to NumSkus
if targetFc.invinfo[s].reviewCycle = revCyc
q < targetFc.invinfol[s]. maxLevel — sysState. inv[targetFc. fcNumber][s]. onHandUnAssigned
t « currTime + targetFc.invinfo[s].leadTime
push s into skusToReplenish
push g into gty
push t into recTime
endif
endfor

/* Update statistical accumulators */
for s = 1to skusToReplenish.size()

increase NumOfReplenishments[skusToReplenish[s]][targetFc. fcNumber] by 1
endfor

[* Update system state with information from this inventory replenishment */

sysState. timeOfMostRecentEvent « currTime

for s = 1to skusToReplenish.size()
increase sysState. inv[targetFc. fcNumber][skusToReplenish[s]]. inOrderUnAssigned by qty[s]
sysState. inv[targetFc. fcNumber][skusToReplenish[s]].repTime « recTimel[s]

endfor

/* Update event calendar and call other events */
put the receiving inventory replenishment event in the calendar
put event for next replenishment order in the calendar

Table 14: Receive replenishment pseudocode

Procedure: ReceiveReplenishment
Input: fcNum, skuNum, currTime

[* Update system state inventory and assignments information based on the arriving replenishment */
sysState. timeOfMostRecentEvent « currTime
increase sysState. inv[skuNum][fcNum].onHandUnassigned by sysState. inv[skuNum][fcNum].inOrderUnassigned
increase sysState. inv[skuNum][fcNum].onHandAssignedOpen by sysState. inv[skuNum][fcNum].inOrderAssignedOpen
increase sysState. inv[skuNum][fcNum].onHandAssignedLocked by sysState. inv[skuNum][fcNum]. inOrderAssignedLocked
sysState. inv[targetSku][targetFc]. onOrderUnassigned < 0
sysState. inv[targetSku][targetFc].onOrderAssignedOpen < 0
sysState. inv[targetSku][targetFc]. onOrderAssignedLocked < 0
sysState. inv[targetSku][targetFc].repTime < 0
for a = 1to sysState. numAssignments
if sysState. assignments|[a]. fcNum = targetFC AND sysState. assignments[a]. skuNum = targetSku
increase sysState. assignments[a]. qtyFromOnHand by sysState. assignments[a]. qtyFromInOrder
sysState. assignments|a]. qtyFromInOrder « 0
endif
endfor

158

Table 15: Day calculator function pseudocode

Procedure: Day
Input: timelnMinute

day « timelnMinute /1440
return(day)

Table 16: Hour calculator function pseudocode

Procedure: Hour
Input: timeInMinute

timeInHour « (timelnMinute — 1440 * Day(timeInMinute))/60

return(timelnHour)

Table 17: Other functions
Functions
unifDist(i,) Returns a uniformly distributed random real value between i and j
distance(origin, destination) Returns the Euclidean distance between origin and destination
ceil(number) Rounds number to closest higher integer value

159

10.

11.

12.

References

Acimovic, J., & Graves, S. C. (2015). Making better fulfillment decisions on the fly in an
online retail environment. Manufacturing & Service Operations Management, 17(1), 34-
51.

Acimovic, J., & Graves, S. C. (2017). Mitigating spillover in online retailing via
replenishment. Manufacturing & Service Operations Management, 19(3), 419-436.

Agatz, N. A., Fleischmann, M., & Van Nunen, J. A. (2008). E-fulfillment and multi-
channel distribution—A review. European Journal of Operational Research, 187(2), 339-
356.

Akturk, M. S., Ketzenberg, M., & Heim, G. R. (2018). Assessing impacts of introducing
ship-to-store service on sales and returns in omnichannel retailing: A data analytics study.
Journal of Operations Management, 61, 15-45.

Alimeling, J., & Hammer, W. P. (1999). PLECS-piece-wise linear electrical circuit
simulation for Simulink. Paper presented at the Proceedings of the IEEE 1999
International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.
99TH8475).

Ansaripour, A., & Trafalis, T. B. (2013). A Robust multicriteria optimization model for
city logistic terminal locations. In 1IE Annual Conference. Proceedings (p. 2801). Institute
of Industrial and Systems Engineers.

Ardjmand, E., Bajgiran, O. S., Rahman, S., Weckman, G. R., & Young Il, W. A. (2018).
A multi-objective model for order cartonization and fulfillment center assignment in the e-
tail/retail industry. Transportation Research Part E: Logistics and Transportation Review,
115, 16-34.

Azadivar, F., & Wang, J. (2000). Facility layout optimization using simulation and genetic
algorithms. International Journal of Production Research, 38(17), 4369-4383.

Banks, J. (2005). Discrete event system simulation: Pearson Education India.

Becerril-Arreola, R., Leng, M., & Parlar, M. (2013). Online retailers’ promotional pricing,
free-shipping threshold, and inventory decisions: A simulation-based analysis. European
Journal of Operational Research, 230(2), 272-283.

Beiranvand, V., Hare, W., & Lucet, Y. (2017). Best practices for comparing optimization
algorithms. Optimization and Engineering, 18(4), 815-848.

Bell, D. R., Gallino, S., & Moreno, A. (2013). Inventory showrooms and customer

migration in omni-channel retail: The effect of product information. Available at SSRN,
2370535.

160

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

Bendoly, E. (2004). Integrated inventory pooling for firms servicing both on-line and store
demand. Computers & Operations Research, 31(9), 1465-1480.

Bendoly, E., Blocher, D., Bretthauer, K. M., & Venkataramanan, M. (2007). Service and
cost benefits through clicks-and-mortar integration: Implications for the
centralization/decentralization debate. European Journal of Operational Research, 180(1),
426-442.

Bhargava, R., Levalle, R. R., & Nof, S. Y. (2016). A best-matching protocol for order
fulfillment in re-configurable supply networks. Computers in Industry, 82, 160-1609.

Boyer, K. K., Hult, G. T., & Frohlich, M. (2003). An exploratory analysis of extended
grocery supply chain operations and home delivery. Integrated Manufacturing Systems.

Boyer, K. K., & Hult, G. T. M. (2005). Extending the supply chain: integrating operations
and marketing in the online grocery industry. Journal of Operations Management, 23(6),
642-661.

Brynjolfsson, E., & Smith, M. D. (2000). Frictionless commerce? A comparison of Internet
and conventional retailers. Management Science, 46(4), 563-585.

Chen, C., & Pan, S. (2016). Using the Crowd of Taxis to Last Mile Delivery in E-
Commerce: a methodological research. In Service Orientation in Holonic and Multi-Agent
Manufacturing (pp. 61-70): Springer.

Chen, L., Jin, R., Qin, H., Simchi-Levi, D., & Zhang, Z. (2019). Distributionally Robust
Omnichannel Stocking Decisions in Quick Fulfillment Systems. Available at SSRN
3383881.

Constantinides, E. (2004). Influencing the online consumer's behavior: The Web
experience. Internet Research.

Dabholkar, P. A., & Bagozzi, R. P. (2002). An attitudinal model of technology-based self-
service: moderating effects of consumer traits and situational factors. Journal of the
Academy of Marketing Science, 30(3), 184-201.

Daduna, J. R., & Lenz, B. (2005). Online shopping and changes in mobility. In Distribution
Logistics (pp. 65-84): Springer.

De Koster, R. B. (2002). Distribution structures for food home shopping. International
Journal of Physical Distribution & Logistics Management, 32(5), 362-380.

De Koster, R. B. (2003). Distribution strategies for online retailers. IEEE Transactions on
Engineering Management, 50(4), 448-457.

Devari, A., Nikolaev, A. G., & He, Q. (2017). Crowdsourcing the last mile delivery of
online orders by exploiting the social networks of retail store customers. Transportation
Research Part E: Logistics and Transportation Review, 105, 105-122.

161

217.

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

39.

40.

Eastlick, M. A., & Lotz, S. (1999). Profiling potential adopters and non-adopters of an
interactive electronic shopping medium. International Journal of Retail & Distribution
Management.

Elliot, S., & Fowell, S. (2000). Expectations versus reality: a snapshot of consumer
experiences with Internet retailing. International Journal of Information Management,
20(5), 323-336.

Esper, T. L., Jensen, T. D., Turnipseed, F. L., & Burton, S. (2003). The last mile: an
examination of effects of online retail delivery strategies on consumers. Journal of
Business Logistics, 24(2), 177-203.

Favier, J., & Bouquet, M. (2006). Europe's e Commerce Forecast: 2006 to 2011

Gao, F., & Su, X. (2017a). Omnichannel retail operations with buy-online-and-pick-up-in-
store. Management Science, 63(8), 2478-2492.

Gao, F., & Su, X. (2017b). Online and offline information for omnichannel retailing.
Manufacturing & Service Operations Management, 19(1), 84-98.

Geng, J., & Li, C. (2019). Empirical Research on the Spatial Distribution and Determinants
of Regional E-Commerce in China: Evidence from Chinese Provinces. Emerging Markets
Finance and Trade.

Gevaers, R., Van de VVoorde, E., & Vanelslander, T. (2009). Characteristics of innovations
in last-mile logistics-using best practices, case studies and making the link with green and
sustainable logistics. Association for European Transport and Contributors.

Gosavi, A. (2015). Simulation-Based Optimization. Berlin: Springer.

Govindarajan, A., Sinha, A., & Uichanco, J. (2018). Joint inventory and fulfillment
decisions for omnichannel retail networks. Ross School of Business Paper(1341).

Grewal, D., lyer, G. R., & Levy, M. (2004). Internet retailing: enablers, limiters and market
consequences. Journal of Business Research, 57(7), 703-713.

Hare, W., Loeppky, J., & Xie, S. (2018). Methods to compare expensive stochastic
optimization algorithms with random restarts. Journal of Global Optimization, 72(4), 781-
801.

Hillstrom, K. E. (1977). A simulation test approach to the evaluation of nonlinear
optimization algorithms. ACM Transactions on Mathematical Software (TOMS), 3(4), 305-
315.

Hovelaque, V., Soler, L. G., & Hafsa, S. (2007). Supply chain organization and e-

commerce: a model to analyze store-picking, warehouse-picking and drop-shipping. 40R,
5(2), 143-155.

162

41.

42.

43.

44,

45.

46.

47.

48.

49,

50.

51.

52.

53.

54,

Huang, D., Zhao, Q. H., & Fan, C. C. (2010). Simulation-based optimization of inventory
model with products substitution. In Innovative Quick Response Programs in Logistics and
Supply Chain Management (pp. 297-312). Springer, Berlin, Heidelberg.

Hibner, A., Holzapfel, A., & Kuhn, H. (2015). Operations management in multi-channel
retailing: an exploratory study. Operations Management Research, 8(3-4), 84-100.

Jasin, S., & Sinha, A. (2015). An LP-based correlated rounding scheme for multi-item
ecommerce order fulfillment. Operations Research, 63(6), 1336-1351.

Jung, S., & Kim, H. (2017). Analysis of amazon prime air uav delivery service. Journal of
Knowledge Information Technology and Systems, 12(2), 253-266.

Kacen, J. J., Hess, J. D., & Chiang, W.-y. K. (2013). Bricks or clicks? Consumer attitudes
toward traditional stores and online stores. Global Economics and Management Review,
18(1), 12-21.

Kaggle. (2020). Brazilian E-Commerce Public Dataset by Olist. Retrieved from
https://www.kaggle.com/olistbr

Keeney, R. L. (1999). The value of Internet commerce to the customer. Management
Science, 45(4), 533-542.

Keramydas, C., Mallidis, 1., Dekker, R., Vlachos, D., & lakovou, E. (2017). Cost and
environmental trade-offs in supply chain network design and planning: the merit of a
simulation-based approach. Journal of Simulation, 11(1), 20-29.

Khan, W. A., Yousaf, S., Mian, N. A., & Nawaz, Z. (2013). E-commerce in Pakistan:
Growth potentials and e-payment solutions. Paper Presented at the 2013 11th
International Conference on Frontiers of Information Technology.

Ké&madrainen, V., & Punakivi, M. (2002). Developing cost-effective operations for the e-
grocery supply chain. International Journal of Logistics, 5(3), 285-298.

Lee, M. K., & Turban, E. (2001). A trust model for consumer internet shopping.
International Journal of Electronic Commerce, 6(1), 75-91.

Lei, Y., Jasin, S., & Sinha, A. (2018). Joint dynamic pricing and order fulfillment for e-
commerce retailers. Manufacturing & Service Operations Management, 20(2), 269-284.

Li, S., & Jia, S. (2019). A Benders decomposition algorithm for the order fulfilment
problem of an e-tailer with a self-owned logistics system. Transportation Research Part
E: Logistics and Transportation Review, 122, 463-480.

Ma, S. (2017). Fast or free shipping options in online and Omni-channel retail? The

mediating role of uncertainty on satisfaction and purchase intentions. The International
Journal of Logistics Management.

163

55.

56.

S7.

58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

Ma, S., Jemai, Z., Sahin, E., & Dallery, Y. (2017). The news-vendor problem with drop-
shipping and resalable returns. International Journal of Production Research, 55(22),
6547-6571.

Mahar, S., Salzarulo, P. A., & Wright, P. D. (2012). Using online pickup site inclusion
policies to manage demand in retail/E-tail organizations. Computers & Operations
Research, 39(5), 991-999.

Mahar, S., & Wright, P. D. (2009). The value of postponing online fulfiliment decisions in
multi-channel retail/e-tail organizations. Computers & Operations Research, 36(11), 3061-
3072.

Malykhina, E. (2005). Retailers take stock. Information Week (1025), 20-22.

Marbach, P., & Tsitsiklis, J. N. (2001). Simulation-based optimization of Markov reward
processes. IEEE Transactions on Automatic Control, 46(2), 191-209.

Marques, A. F., de Sousa, J. P., & Ronngvist, M. (2014). Combining optimization and
simulation tools for short-term planning of forest operations. Scandinavian Journal of
Forest Research, 29(supl), 166-177.

Mehmann, J., Frehe, V., & Teuteberg, F. (2015). Crowd logistics— a literature review and
maturity model. Paper presented at the Innovations and Strategies for Logistics and Supply
Chains: Technologies, Business Models and Risk Management. Proceedings of the
Hamburg International Conference of Logistics (HICL), Vol. 20.

Mele, F. D., Guillen, G., Espuna, A., & Puigjaner, L. (2006). A simulation-based
optimization framework for parameter optimization of supply-chain networks. Industrial
& Engineering Chemistry Research, 45(9), 3133-3148.

Mena, C., Bourlakis, M., Hubner, A., Wollenburg, J., & Holzapfel, A. (2016). Retail
logistics in the transition from multi-channel to omni-channel. International Journal of
Physical Distribution & Logistics Management.

Michelis, D. (2010). Social-Media-Handbuch: Theorien, Methoden, Modelle: Nomos-
Verlag-Ges., Ed. Fischer.

Nguyen, A. T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization
methods applied to building performance analysis. Applied Energy, 113, 1043-1058.

O'Grady, M., & D'Costa, V. (2019). Forrester Analytics: Online Retail Forecast, 2019 To
2024 (US). Retrieved from https://www.forrester.com/report

Ortis, 1., & Casoli, A. (2009). Technology selection: IDC retail insights guide to enabling
immersive shopping experiences. IDC Retail Insights Report.

Parker, R., & Hand, L. (2009). Satisfying the omnichannel consumers whenever and
wherever they shop. IDC Retail Insights Report.

164

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.
80.

81.

82.

Petering, MEH. (2015). Comparison of algorithms for the unending real-time traveling
repairperson problem by fully embedding them in a simulation model. Odysseus 2015
International Workshop on Freight and Transportation Systems

Petering, MEH. (2018). Evaluating exact vs. rule-based algorithms for the unending real-
time traveling repairperson problem under true simulated operating conditions. Odysseus
2018 International Workshop on Freight and Transportation Systems

Pflug, G. C. (2012). Optimization of Stochastic Models: the Interface Between Simulation
and Optimization (Vol. 373). Springer Science & Business Media.

Piotrowicz, W., & Cuthbertson, R. (2014). Introduction to the special issue information
technology in retail: Toward omnichannel retailing. International Journal of Electronic
Commerce, 18(4), 5-16.

Rajendran, S., Ansaripour, A., Kris Srinivasan, M., & Chandra, M. J. (2019). Stochastic
goal programming approach to determine the side effects to be labeled on pharmaceutical
drugs. IISE Transactions on Healthcare Systems Engineering, 9(1), 83-94.

Rambaran, S. (2016). The Effect of Omni-Distribution Systems in Managing Demand
Order Fulfilment Frequencies: an Apparel Retailer.

Sahney, S. (2008). Critical success factors in online retail-an application of quality
function deployment and interpretive structural modeling. International Journal of
Business and Information, 3(1).

Shim, S., Eastlick, M. A,, Lotz, S. L., & Warrington, P. (2001). An online pre-purchase
intentions model: the role of intention to search: best overall paper award—The Sixth

Triennial AMS/ACRA Retailing Conference, 2000+%. Journal of Retailing, 77(3), 397-416.

Sivakumar, A. I. (1999) Optimization of a cycle time and utilization in semiconductor test
manufacturing using simulation based, on-line, near-real-time scheduling system. In
Proceedings of the 31st Conference on Winter Simulation: Simulation---a Bridge to the
Future-Volume 1 (pp. 727-735).

Slabinac, M. (2015). Innovative solutions for a “Last-Mile” delivery—a European
experience. Business Logistics in Modern Management.

Soars, B. (2003). Showing how it's done. Grocer, 226(7603), 30.

Statista. (2019). Retail E-commerce Sales Worldwide from 2014 to 2023. Retrieved from
https://www.statista.com/statistics

Tetteh, A., & Xu, Q. (2014). Supply chain distribution networks: Single-, dual-, & omni-
channel. Interdisciplinary Journal of Research in Business, 3(9), 63-73.

Torkzadeh, G., & Dhillon, G. (2002). Measuring factors that influence the success of
Internet commerce. Information Systems Research, 13(2), 187-204.

165

83.

84.

85.

86.

87.

88.

89.

90.

91.

UPS Shipping Rates (2019), Retrieved from https://wwwapps.ups.com/ctc

U.S. Department of Commerce, (2019). Quarterly Retail E-commerce Sales, 3rd quarter
2019. Retrieved from https://www.census.gov/retail

Verhoef, P. C., Kannan, P. K., & Inman, J. J. (2015). From multi-channel retailing to omni-
channel retailing: introduction to the special issue on multi-channel retailing. Journal of
retailing, 91(2), 174-181.

Wolfinbarger, M., & Gilly, M. C. (2001). Shopping online for freedom, control, and fun.
California Management Review, 43(2), 34-55.

Xiao, Y., Chen, F. Y., & Chen, J. (2009). Optimal inventory and dynamic admission
policies for a retailer of seasonal products with affiliate programs and drop-shipping. Naval
Research Logistics (NRL), 56(4), 300-317.

Xu, P. J., Allgor, R., & Graves, S. C. (2009). Benefits of reevaluating real-time order
fulfillment decisions. Manufacturing & Service Operations Management, 11(2), 340-355.

Yen, B., Hu, P. J.-H., & Wang, M. (2007). Toward an analytical approach for effective
Web site design: A framework for modeling, evaluation and enhancement. Electronic
Commerce Research and Applications, 6(2), 159-170.

Yoon, S.-J. (2002). The antecedents and consequences of trust in online-purchase
decisions. Journal of Interactive Marketing, 16(2), 47-63.

Zeng, Q., & Yang, Z. (2009). Integrating simulation and optimization to schedule loading
operations in container terminals. Computers & Operations Research, 36(6), 1935-1944.

166

https://wwwapps.ups.com/ctc

CURRICULUM VITAE

Amir Kalantari

Place of birth: Tehran, Iran

EDUCATION
Ph.D. University of Wisconsin, Milwaukee August 2020
Major: Industrial Engineering — Operations Research
Minor: Computer Science

Dissertation title: Reevaluating Order Fulfillment Decisions for E-tailers Under True
Simulated Operating Conditions

Advisor: Dr. Matthew E. H. Petering

MSc. University of Wisconsin, Milwaukee May 2013
Major: Industrial Engineering — Operations Research

Thesis title: Facility Location Selection for Global Manufacturing

Advisor: Dr. Hamid Seifoddini

BSc. Sharif University of Technology, Tehran, Iran May 2011

Major: Industrial Engineering — Industrial Engineering

TEACHING EXPERIENCE

Primary Instructor, University of Wisconsin — Milwaukee Jan 2013 — May 2017
Course: Engineering Drawing & Computer Aided Design (70 freshman and sophomore
students)

Teaching Assistant, University of Wisconsin — Milwaukee Sept 2011 — Dec 2012

Course 1: Introduction to AutoCAD (30 freshman and sophomore students)

Course 2: Simulation Methodology (30 junior and senior students)

167

RESEARCH EXPERIENCE

Analysis of UWM Off-Campus Transit Service Jan 2014
University of Wisconsin — Milwaukee

PRESENTATIONS

A Kalantari, M.E.H. Petering, Reevaluating Order Fulfillment Decisions for E-tailers
Under True Simulated Operating Conditions, INFORMS Annual Meeting, Nashville, TN,
USA, October 2017

M.E.H Petering, A Kalantari, A Ross, H Seifoddini, A Mixed Integer Program for
Solving the Art Gallery Problem, INFORMS Annual Meeting, Minneapolis, MN, USA,
October 2013

GRADUATE INTERNSHIPS

Engineering Intern, Information Technology and Bl Jan 2015 — May 2015
Custom Service Plastics, Lake Geneva — Wisconsin

Engineering Intern, Enterprise Resource Planning May 2014 — Aug 2014
Custom Service Plastics, Lake Geneva — Wisconsin

Engineering Intern, Lean Manufacturing and Six Sigma May 2012 — Aug 2012
Custom Service Plastics, Lake Geneva — Wisconsin

HONORS AND AWARDS

e Chancellor’s Award (2011-2017)
Department of Industrial & Manufacturing Engineering, University of Wisconsin
— Milwaukee

e Graduate School Travel Award (2012)
University of Wisconsin — Milwaukee

e Ranked among the top 1% in Iran’s university entrance exam (2006)

e Received direct admission to the highly competitive graduate school at Sharif
University of Technology because of exceptional performance in the BSc. program
(2011)

168

	Reevaluating Order Fulfillment Decisions for E-Tailers Under True Simulated Operating Conditions
	Recommended Citation

	tmp.1617736683.pdf.qPWrl

