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ABSTRACT

THREE ESSAYS ON MARKET ANOMALIES AND
FINANCIAL ECONOMETRICS

by
Junyong Kim

The University of Wisconsin—-Milwaukee, 2020
Under the Supervision of Professor Valeriy Sibilkov

This dissertation consists of two chapters about the momentum and idiosyncratic volatility
anomalies, respectively, and one chapter about estimating clustered standard errors.

Chapter 1, Flights to Quality and Momentum Crashes, relates crashes of momentum
strategies in stock markets around the world to investor behavior called flight to quality
phenomena. The momentum crashes, defined as extremely negative returns of momentum
portfolios, occur in most developed stock markets and are centered in economic recovery
periods after recessions. I find that their negative returns and negative market betas are
associated with investor behavior known as flights to quality (FTQ). Low quality—i.e., high
default risk—stocks experience larger investor withdrawals and consequential stock price
plunges at financial market collapses, featuring higher market betas particularly during re-
cessions. So the momentum strategies, which tend to sell these plunging stocks, exhibit
negative market betas before their crashes and underperform once those stocks bounce back
to an economic recovery phase. Worldwide momentum returns and two FTQ proxies, US in-
stitutional ownership changes and stock market-bond market disagreements, show consistent
results.

Chapter 2, Which Volatility Drives the Anomaly? Cash Flow Versus Discount Rate, ex-

i



amines whether the cross-sectional idiosyncratic volatility anomaly is because of the volatil-
ity’s cash flow news part or its discount rate news counterpart. In detail, I reexamine the
idiosyncratic volatility anomaly of |/Ang et al.| (2006) and investigate the relative importance
of cash flow news and discount rate counterpart in driving this anomaly using the news
decomposition of |Vuolteenaho| (2002). The results from idiosyncratic volatility-sorted port-
folios show that the arbitrage portfolio with two extreme portfolios earns about 1.3 (1.2)
percent quarterly alpha return after the market factor (the Fama-French factors). I also
create two decile portfolios sorted on discount rate news volatilities and cash flow news
counterparts. While the average return of the arbitrage portfolio from discount rate news
volatilities is insignificant, the counterpart from cash flow news volatilities exhibits about
1.5 (1.2) percent quarterly alpha return after the market factor (the Fama—French factors).
These findings indicate that cash flow news rather than discount rate counterpart governs
most of the anomaly. The results suggest that investors prefer cash flow news volatilities
to discount rate news counterparts, and hence not all idiosyncratic volatilities are equally
priced in the cross-section.

Chapter 3, Multiway Clustered Standard Errors in Finite Samples, proposes new clus-
tered standard errors less biased than existing clustered standard error estimators in finite
samples. Specifically, I demonstrate the downward bias of existing one-way and two-way
clustered standard error estimators (Petersen, [2009; Thompson), 2011) in finite samples using
Monte Carlo simulations. When there exist both firm and time effects in a panel regression
with N > T, a firm clustered standard error is always the worst. A clustered standard
error estimator by time is the third best, but worsens as T" increases. A clustered standard
error estimator by both firm and time is the second best, but is biased downward in finite
samples. I suggest two first best standard error estimators that always outperform the other

competitors.
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Chapter 1

Flights to Quality and Momentum

Crashes

1.1 Introduction

Since the seminal work of |Jegadeesh and Titman| (1993a)), momentum strategies have been
considered to be one of the most well-known investment strategies and have been followed
by money managers. Despite the momentum strategies’ strong long-run returns and high
Sharpe ratios, recent studies have reported episodes of momentum crashes, which refers to
the strategies’ extreme negative returns (Cooper et al.[ 2004, |Stivers and Sun|2010, Barroso
and Santa-Clara, 2015, Ali et al.2017). These momentum crashes, which tend to take
place when economies recover from recessions, rarely occur but significantly damage the
momentum portfolios. Finance literature introduces some methods to forecast or avoid the
momentum crashed] but pays less attention to the crashes’ economic origins. [Daniel and

Moskowitz| (2016)), for example, show that the momentum portfolios exhibit negative market

!Ehsani and Linnainmaal (2019)) show that the momentum crashes take place when other factors become
less autocorrelated. Novy-Marx| (2015)) shows that momentum strategies based on intermediate horizon past
performance, unlike the strategies based on recent past performance, reduce the momentum crashes.



betas before these crashes but don’t show what drives their negative betas/

I examine whether these momentum crashes and that pre-crash beta behavior originate
from investors’ flights to quality (FTQ). FTQ, which refers to investors’ shifting their port-
folios to safer assets, is a well-documented phenomenon around financial market collapses.ﬁ
When these extreme events happen, investors tend to hoard safe assets in fear of the worst
case scenario (Caballero and Krishnamurthy| 2008). Institutional investors also seek safe
and liquid assets because of concerns of retail investors’ withdrawals (Vayanos 2004)), mar-
gin constraints (Krishnamurthy [2010), or lower capital and risk-bearing capacity (He and
Krishnamurthy 2012)E] FTQ affects not only capital markets but also real estate markets
and economic growth (Boudry et al.|2019).

Why would investors” FTQ relate to momentum crashes? This prediction is motivated by
the findings of Baele et al|(2019). They find that FTQ events, over short horizons, decrease
equity prices relative to safer assets (e.g., sovereign or corporate bonds) and increase expected
returns of high default risk (i.e., low quality) stocks relative to low default risk (high quality)
stocks. These findings suggest that momentum portfolios, which buy past winner stocks and
sell past loser stocks, effectively sell those low quality stocks around recessions. This tendency
brings about the momentum crashes as the low quality stocks realize higher returns once
the economy enters to a recovery phase. Furthermore, the low quality stocks, which the
momentum portfolios sell, exhibit high market betas due to their procyclical returns, so the
momentum portfolios feature negative market betas during recessions.

Figure|l.1] shows intuition for how the market beta of the momentum factor behaves dif-
ferently from those of the other factors. I estimate monthly market betas of the momentum,

size, value, profitability, and investment factors using daily data and plot their one-year mov-

2Momentum betas reflect past factor realizations in part by nature as these factors determine the mo-
mentum winners and losers (Kothari and Shanken||1992). However, the momentum betas that control these
factors also show similar time-varying behavior (Blitz et al.[2011)).

3Some examples include the market crash in 1987, the Russian default and sovereign debt crisis in 1998,
and the global financial crisis in 2007.

4See also Barsky| (1989) and Bekaert et al.| (2009) who explain FTQ in consumption-based asset pricing
models.



ing averages. The momentum factor’s market beta, which signals the momentum crashes in
turn, fluctuates more often than the other factors’ market beta and becomes significantly
negative especially around shaded recessionsEl This pattern implies that, during those times,
buying winners and selling losers coincides buying low betas and selling high betas. I exam-
ine if this coincidence is driven by the FT(Q events and explore how these FTQ events affect
momentum returns using worldwide stock returns.

This cross-country analysis is crucial for my research objective because both the mo-
mentum crashes and the FT(Q events are respectively rare in one country, but at least the

momentum profitability and the FTQ behavior are commonly found in many countries

ness et al|2013 Baele et al.|[2019). Therefore, I first investigate whether the momentum

crashes, as well as the momentum effects per se, are universal around the world, and then
relate the FTQ events to these crashes. Moreover, the international data enable to further
explore a number of novel research questions: Do these crashes show similar patterns in
terms of timing and magnitude? Are the crashes proportional to the momentum profits
across countries? Can investors also hedge the foreign crashes using the existing methods?
Do the FTQ events lead to the momentum crashes in all developed markets?

I first test whether momentum crashes occur internationally. I find that momentum re-
turns are negatively skewed in most countries. Among 23 MSCI developed countries, 20
countries exhibit negative Skewnessﬁ In particular, momentum exhibits its worst perfor-
mance in the recovery period after recessions. During the recovery, winners underperform
losers by a significant -1.28% per month. Momentum crashes during the recovery period
are most severe in the United States, Canada, and Sweden (-5.13%, -4.23%, and -3.71% per

month, respectively), whereas least severe in Israel (1.77% per month)ﬂ Unlike the momen-

tum returns per se that differ by country (Griffin et al. 2003, (Chui et al. 2010, Goyal and|

°Though unreported, the market beta of the residual momentum factor (Blitz et al.[2011) shows similar
behavior.

Australia, Switzerland, and Portugal show positive skewness in the momentum return distributions.

Tsrael, Denmark, and Austria do not experience momentum crashes in the recovery period.




Wahal 2015)@ the momentum crashes are universal, which suggest the separate origins of
the momentum returns and their crashes (Novy-Marx| 2015, |Goetzmann and Huang)[2018]).

Next, I estimate the time-varying market beta of momentum portfolios for each coun-
try conditioning on the recovery period. The estimation shows that momentum portfolios
have a significantly negative market beta during the recovery, consistent with the US ev-
idence of Daniel and Moskowitz| (2016). The market beta of momentum returns during
the recovery period is significantly lower by -0.630. Sweden has the largest discrepency (-
1.439), whereas Norway has the smallest difference (-0.306). I also implement constant and
dynamic volatility strategies widely accepted in recent literature (Moskowitz et al.| 2012
Barroso and Santa-Clara/ 2015 Daniel and Moskowitz 2016, Hurst et al. 2017, Harvey et al.
2018)). Both strategies change the weights of the portfolio over time by reducing the leverage
of the strategies if the market is predicted to be volatile. These strategies work better than
simple momentum strategies in most countries, increasing the average return by 0.41% per
month. The strategies also generate much higher Sharpe ratios—0.44 and 0.48 per annum
for the constant and dynamic strategies, respectively—than their pure counterparts—0.32
per annum.

The high beta of the losers in the recovery comes from two effects, changes in the com-
position of the portfolio, that is, more procyclical stocks in the portfolio, and changes in the
beta of the constituent stocks. To disentangle the effects, I compare the market betas of
momentum portfolios estimated in different windows: of (t-5, t+6), of (t-23, t-12), and of
(t+13, t+24) months. During a recession, the market beta of the loser portfolio measured
in (t-5, t+6) is higher than the beta of the same portfolio measured in (t-23, t-12) or (t+13,
t+24), whereas the beta of the winner portfolio does not change by the estimation windows.
The results indicate that the beta of the stocks in the loser portfolio increase temporarily.
It is consistent with the hypothesis that the prices of the loser stocks temporarily drop due

to FTQ and recovers when the economy improves.

8Asness et al.| (2013) show that the momentum returns in Japan are positive and significant after ac-
counting other pricing factors.



Furthermore, I investigate whether FTQ is related to a sudden fall in the stock prices
of the losers and subsequent increase. To capture FTQ, I use fund flows of U.S. institu-
tional investors.ﬂ From the panel regression, I find that institutional flows have a positive
relationship with next quarter stock returns over the normal period, but they are negatively
associated with next quarter stock returns over the recovery period. I disentangle the effects
of outflows and inflows, and show that the outflows actually lead to a larger increase in stock
returns over the next recovery period. In addition, I study the interaction between institu-
tional flows and past stock returns and find that the increase in returns during the recovery is
more pronounced for the loser stocks with institutional outflows. Next, I investigate whether
the loser stocks during the recovery are those with more institutional outflows and higher
default risks. I confirm that the losers indeed experience larger institutional outflows during
the recession and have greater leverage during the recovery and therefore have a higher risk
of default. My results indicate that the outperformance of the losers relative to the winners
during the recovery is keenly related to the trading pattern of the investors.

Finally, following the recent FTQ literature (Baele et al. 2019, Boudry et al.[2019)), T
also identify both FTQ and flight to risk (FTR) events using both stock and bond market
information rather than institutional investors behavior. Since the FTQ and FTR events
identified by this method are short and infrequent, I estimate their effects to momentum
returns using daily US momentum deciles as well as monthly momentum portfolios in other
countries. Consistent with other findings, the results demonstrate that the momentum re-
turns positively (negatively) react to FTQ (FTR) events and their reaction is greater to
FTR rather than FT(Q events, which are similar to the previous market rebounds.

The remainder of the paper is organized as follows. Section describes the data,
and Section [I.3] documents the international evidences of momentum crashes. Section [1.4]

explores the relation between momentum crashes and FTQ. Section [1.5| concludes.

9U.S. institutional investors are less restricted in transferring funds from one country to another, so their
tradings are similar to trading patterns of FTQ.



1.2 Data

1.2.1 Stock Returns

The returns and market capitalizations of international securities are obtained from Datas-
tream. The intersection of the data contains 45,815 securities across 124 countries from
December 1964 to July 2015. Bermuda, Cayman Islands, Cote d’Ivoire, Malawi, Monaco,
Virgin Islands, Zambia, Canada, and United States are excluded. I include the observations
if at least 10 securities are available for each country and month. From the data, I only keep
the stocks identified by the Datastream type (EQ). I use the SEDOL codes to identify the
securities and the Datastream return indices to compute the security returns. I obtain the
securities’ regional (headquarter) information through FactSet using the SEDOL codes.

Following the literature, I include large securities that comprise the first 90% of each
country’s market capitalization in each month. I adopt the 95% alternatively for Israel and
Spain because the 90% threshold drops too many samples in late 1980s and early 199()SF_UI
According to the classification of Morgan Stanley Capital International (MSCI), 79 countries
are classified by developed, emerging, or frontiers. In detail, 21 countries are classified as
developed markets, 25 countries are classified as emerging markets, and 33 countries are
classified as frontier markets. In the main analysis, only the results of developed countries
are reported, and the results of emerging and frontier countries are included in the appendix.

The return index and market value of each security are denominated in its home currency.
The local return in month t is the difference between the return indices in t and t-1 divided
by the return index in t-1. The value-weighted portfolio return in month t is based on each
participating security’s local market capitalization. I rank the securities each month by the (-
12,-2) returns, the cumulative returns from t-12 to t-2, and form either the quintile portfolios
in the countries with 300 or more securities available or the tercile portfolios otherwise.

In each country, the bear market indicator in month t is 1 if the excess market return

10The size distribution of Israel and Spain is quite positively skewed. The largest company in each country
has a market share of nearly 40%.



from t-25 to t-1 is negative, and the down market indicator in month t is 1 if the one-month
or two-month excess market return is negative. The backward, central, and forward betas of
each security in month t are the simple regression estimates of the excess security returns on
the excess market counterparts from t-24 to t-12, t-6 to t+6, and t+12 to t+24, respectively.

The leverage variables are from Datastream. I calculate the total liabilities to share-
holders’ equity ratio and the current liabilities to shareholders’ equity counterpart as the
default risk measures. I require shareholders’ equity (WC03995) observations to have posi-
tive values but allow current liabilities (WC03101) observations with negative values. Each
total liabilities observation is the difference between the total liabilities and shareholders’
equity (WC03999) and the shareholders’ equity (WC03995). I alter negative total liabilities

observations by zero.

1.2.2 Currencies

The matching U.S. dollar return is based on the exchange rate return in month t. I collect
the United States dollar exchange rates against other currencies from FactSet. I identify
each country and each currency by the ISO 3166 and 4217 codes, respectively. I collect the
one-month Treasury bill rates as the risk-free rates from the Kenneth R. French’s website.
Each excess return is the difference between the U.S. dollar return and the risk-free rate.
Portfolios’ total and excess returns are converted from local currencies to US dollars pursuant

their respective definitions.

1.2.3 Institutional Investments

The institutional ownership data are from Global Ownership of Thomson Reuters. I consider
observations with the country code 21 as the U.S. institutions and measure each security’s
ownership change in each quarter based on the SEDOL code. The institutional ownership
change in quarter t is the aggregated value change from t-1 to t divided by the market

capitalization in t. Unlike the returns above, I compute each institutional ownership change



using the U.S. dollar market capitalization as well as the U.S. dollar value change.

1.2.4 Stock Market-Bond Market Disagreements

In addition to US institutional investment data, the FTQ and FTR events are identified
following Baele et al.| (2019) and Boudry et al| (2019). Since this literature employs stock
and bond market return data around the world, I use daily total market indices (TOTMK)
and benchmark 10 year government bond indices (BM10) from Datastream for stock and
bond market returns, respectively. Due to their unavailability issue, I exclude Hong Kong

and Israel from this analysis.

1.3 International Momentum Crashes

Summary statistics from the 21 countries categorized as developed by Morgan Stanley Cap-
ital International (MSCI) are presented in Table . I sort the countries in the first column
based on the numbers of the stocks available in my data. I append a dagger () to a country
with less than 300 securities. Each country, I report the beginning and ending dates in the
second and third columns, respectively. For example, the data from the United Kingdom
and Ireland start early in January 1966, but those from Spain and Portugal start late in
April 1988 and September 1989, respectively. Each in the fourth and fifth columns exhibits
the time-series average number of available stocks and the number of available months by
countryEr] Following Fama and French| (2017)), I only consider large stocks that account for
up to 90% of the country’s total market capital each month.[lzl For Israel and Spain, where
the largest company accounts for nearly 50% of the country’s total market capitalization, I

apply the threshold of 95% instead of 90%, as the 90% rule drops too many small-caps in

HFor example, in Japan, there are 498 months, with an average of more than 554 securities per month.
In Portugal, there exist 294 months, with less than 10 securities per month on average.

12For example, in Japan, there exist 752 stocks available at the beginning of February 1974. According
to the rules, I only include the largest 376 securities, with a total capital of 29.12 trillion yen, because they
account for 90% of the total capital of 32.37 trillion yen.



the late 1980s and early 1990s. The sixth to ninth columns present the sample means, stan-
dard deviations, skewness estimates, and annualized Sharpe ratios of the countries’ monthly
excess market returns. Fach month, I calculate the value-weighted average market return
of each country, convert the average return to the dollar return based on the percentage
change of the exchange rate, and calculate the excess market return based on a one month
U.S. Treasury bill rate. The average excess market return is between 0.213% and 1.041%.
Hong Kong has the highest market return (1.04%), whereas Portugal has the lowest market
return (0.213%) among developed countries. The average standard deviation of excess mar-
ket return for developed countries is 6.952%. The excess returns show a positive skewness in
the United Kingdom (0.95) and Singapore (0.81), but a negative skewness in Norway (-0.56)
and Australia (-0.72). The Sharpe ratios are relatively high in Switzerland (0.51), Sweden
(0.45), and Hong Kong (0.40), but relatively low in Austria (0.16), Italy (0.15), and Portugal
(0.10).

The last seven columns in Table|l.1{labeled momentum(-12,-2) display the sample means,
standard deviations, and skewness estimates of the countries” winner-minus-loser (WML)
portfolios, and then the average returns and annualized Sharpe ratios of the countries” winner
and loser portfolios. For each country, I form the value-weighted quintile or tercile ()
portfolios based on the returns from t-12 to t-2 of the sample stocks, rebalance them each
month, and adopt the highest and lowest portfolios with past returns as the winner and
loser portfolios following |Daniel and Moskowitz (2016). Consistent with the international
momentum literature, the average monthly returns of WML portfolios are positive in all
countries except Spain. Instead, the average momentum return in Spain is positive for the
equal-weighted momentum strategy without sample selectionﬂ The average returns of the
momentum portfolios in Israel (1.69%) and Denmark (1.32%) are relatively high, but those
in Japan (0.19%) and Belgium (0.0009%) are relatively low[¥] The WML portfolios in the

13Without sample screening, the mean, standard deviation, and skewness of WML portfolio of Spain are
0.64%, 5.83%, and -1.08, respectively.

14Tn Belgium, the average return of the momentum portfolio becomes much higher (0.77%) if I use the
equal-weighted tercile portfolios and do not exclude any stocks based on the market capital.



United Kingdom (5.91%) and Australia (6.15%) are riskier than those in Sweden (11.63%)
and Israel (14.26%). In my sample periods, the value-weighted momentum strategies show a
significance greater than 10% for 14 out of the 21 countries. As documented in the previous
literature, momentum strategies are profitable in most countries.

It is worth noting that 18 of the 21 skewness estimates of momentum portfolios are
negative, indicating that the momentum strategy is embedded in the possibility of a crash.
The skewness estimates are positive in Australia (0.08), Portugal (0.03), and Switzerland
(0.03), but are very negative in Singapore (-1.16), Sweden (-1.47), and Spain (-2.16). The
correlation between the means and skewness of the momentum is 0.51. It shows that the
occasional momentum collapse seriously affects the average of momentum gains.

Following Daniel and Moskowitz| (2016)), if the excess market returns in the previous two
years are negative, I define time as a bear market, otherwise it will be a normal market. In
the bear market, I divide time into up and down markets. If the excess market return for the
current month is negative (positive), then it is a down (up) market. Table displays the
average returns of the market, winner, loser, and WML portfolios in the developed countries
during the normal, bear-down, and bear-up markets. For each country in the first column,
I report the average returns of the market, winner, loser, and WML portfolios during the
normal period in Panel A. For each WML portfolio, I also report the t-statistic and the
number of observations in the sixth and seventh columns respectively. Panel B and Panel C
present the same statistics during the bear-down and the bear-up markets respectively. The
bottom row exhibits the averages of the average returns and their t-statistics.

Consistent with the momentum literature, the average returns of momentum portfolios
are positive in non-bear markets (0.38%) and bear markets (0.42%). In detail, the average
returns during the bear-down and bear-up markets are asymmetric. In the bear market, the
sample mean is largely positive (3.36%), whereas in the bear market it is negative (-1.17%).
However, the bear-up months (101 months on average) are about twice more often the bear-

down months (55 months on average). The average returns during the bear-down markets
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are positive in all countries except Israel, and those during the bear-up markets are negative
in the most countries, 18 out of 21 countries. In 16 out of 21 t-statistics during the bear-
down markets are greater than 1.64 and 7 out of 21 t-statistics during the bear-up markets
are less than -1.64. The results show that the momentum strategy is profitable in normal
period and at the beginning of recession periods, but in the recovery period, the momentum
returns are globally negative. Based on the findings that momentum crashes occur during
a given period, the momentum crash seems to be a systematic problem. This suggests
that the stocks included mechanically in the momentum portfolio during the recovery are
systematically different from those of other periods.

The average returns during the bear-down markets are relatively high in Sweden (8.53%),
Norway (6.29%), and Hong Kong (4.91%), but relatively low in Australia (0.72%), Austria
(0.32%), and Israel (-0.32%). Likewise, the average returns during the bear-up markets
are relatively low in Sweden (-3.71%), Singapore (-3.52%), and Switzerland (-2.65%), but
relatively high in Denmark (0.16%), Austria (0.48%), and Israel (1.77%). The countries with
the wide gaps are the countries with the high excess market returns. The average market
returns in Hong Kong, Sweden, Singapore, Switzerland, and Norway are 1.04%, 0.99%,
0.76%, 0.75%, and 0.73%, respectively. The correlation coefficient between the WML gaps
during the bear-down and bear-up markets and the excess market returns are 0.58.

Table displays the market timing regression estimates and the corresponding t-
statistics from the developed countries. Following Daniel and Moskowitz (2016), I consider
(1) a regression with one alpha and three betas during non-bear, bear-up, and bear-down
markets; (2) a simple market regression with one alpha and one beta; (3) a regression with
two alphas and two betas during non-bear and bear markets respectively; and (4) a regression
with two alphas during non-bear and bear markets, and three betas during non-bear, bear,
bear-up markets. I report the estimates of the first regression obtained from the developed
countries in Table and those of the other regression specifications and those obtained

from the emerging and unclassified countries in Appendix. For each country in the first
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column, I report the estimates (t-statistics) of the alpha, normal beta, bear-down beta, and
bear-up beta in the even (odd) columns, respectively. The bottom row exhibits the averages
of the countries’ regression estimates and their t-statistics.

Consistent with the literature, the alpha estimates are positive in all countries but Bel-
gium. In Belgium, alternatively, the alpha estimate of the equal-weighted counterpart is
also positive (0.90%) and statistically significant at 1% level. The estimates are relatively
high in Israel (2.98%), Portugal (2.57%), and Denmark (1.91%), but relatively low in Japan
(0.31%), Spain (0.27%), and Belgium (-0.02%). Fifteen of 21 t-statistics are greater than
1.64[0]

Non-bear beta estimates are positive in 18 of the 21 countries and significant in 11
countries. The estimates are relatively high in Japan (0.40), Portugal (0.31), and Israel
(0.27), but relatively low in Germany (0.06), New Zealand (0.04), and the United Kingdom
(0.02). The estimates are negative in France (-0.004), Spain (-0.007), and Italy (-0.08), but
insignificant. The average of the estimates is 0.14@ I confirm that the non-bear market beta

of WML is negative in the U.S., but positive outside the U.S., consistent with the literature

(Novy-Marx| 2012, Daniel and Moskowitz|2016)).

The bear-down beta estimates are negative in all countries but Israel and significant
in 15 out of 21 countries. The bear-up beta estimates are negative and significant in all
countries. Note that the bear-up beta captures the time-varying amount of beta from the
bechmark beta, that is, non-bear beta. In all countries, the sum of non-bear beta and bear-
up beta is also siginficantly negative, suggesting that momentum portfolios have negative
market betas in the recovery. The averages of the bear-down beta estimates and the bear-up

counterparts are -0.45 and -0.72, respectively. The results are consistent with (a)|Grundy and

(2001) as the betas are time-varying and negative during bear markets, (b)
(2004) as the WML portfolios underperform during bear markets, and (c)

15Tn the appendix, the average alphas from the regression models (2), (3), and (4) are 0.89%, 0.92%, and
0.92%, respectively.
®The averages from the regressions (2), (3), and (4) above are -0.14, 0.14, and 0.14, respectively.
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Moskowitz| (2016) as there exists the optionality in the upside and downside beta estimates
during the bear markets. The bear-up beta estimates are greater in magnitude than the
bear-down counterparts in 17 out of 21 countries by 0.28 on average, and the F-statistics
about their respective differences are significant in 7 out of 21 countries[]

There is an interesting relationship between the alphas and the difference between the
bear-down beta and bear-up beta. The alphas are relatively high in the countries where
the differences between betas are greater in magnitude. In other words, the market beta of
momentum portfolio is more time-varying in the countries with the momentum profits. It
suggests that in countries with momentum profits, momentum crash is more likely to occur
during the recovery periods. The differences between the bear-down and bear-up betas in
Israel, Portugal, and Denmark are -1.38, -0.85, and -0.59, respectively. The correlation
coefficient between the alphas and the differences is -0.85. The same coefficient between the
bear (non-bear) alphas and the bear-beta differences is -0.86 (-0.39).

The time-varying beta of momentum portfolio can be dissected by the beta changes of
winners and losers. It can be further divided into a time-varying composition of the portfolio
and a time-varying betas of constituent stocks. We examine the channels of time-varying
beta of momentum portfolio in Table by looking at the behavior of the central, backward,
and forward 12-month betas from the winner, loser, and WML portfolios during the non-
bear, bear-up, and bear-down markets. I obtain the equal-weighted betas of the countries’
winner, loser, and WML portfolios based on the betas of the constituent stocks each month
and report their time-series averages during the non-bear, bear-down, and bear-up markets.
I regress the securities’ returns on the corresponding market returns to acquire the stocks’
market betas. In each month t, I estimate (i) the central betas using the monthly returns
from t-5 to t46, (ii) the backward betas using the monthly returns from t-23 to t-12, and

(iii) the forward betas using the monthly returns from t+13 to t+24.

1"The bear beta estimates from the regressions (3) and (4) are significant in all countries and 16 out of
21 countries respectively. The averages of the bear beta estimates from the regressions (3) and (4) are -0.61
and -0.40 respectively.
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In Panel A, I present the central betas for each country. The backward betas and the
forward betas are reported in Panel B and Panel C, respectively. Each panel contains the
averages of the winner, loser, and WML betas during the non-bear, bear-down, and bear-
up markets, respectively. The asterisks present the significance of the averages from the
respective WML portfolios. The results with the central window in Panel A are consistent
with the results in Table [1.3] The averages of the WML portfolios’ equal-weighted betas
during the non-bear markets are positive in all countries but New Zealand and significant
in 16 out of 21 countries. The averages during the bear-down and bear-up markets are
negative and significant in all countries. The non-bear, bear-down, and bear-up averages of
the respective 21 WML averages are 0.14, -0.39, and -0.36. Both beta changes in winners
and losers seem to contribute beta changes in WML portfolio. During the recovery period,
the loser’s beta change is more pronounced, at 0.3, whereas the winner’s beta decreases by
0.2.

The results with the backward beta in Panel B are also consistent as the non-bear betas
are positive in 16 out of 21 countries and the bear betas in all countries except the bear-up
beta in Switzerland are negative. Unlike the central betas, however, the backward counter-
parts exhibit a relatively weaker pattern. Fifty-five out of 63 backward WML betas are less
in magnitude by 0.15 on average than the central counterparts. The non-bear, bear-down,
and bear-up averages of the respective 21 WML averages are 0.03, -0.23, and -0.16. Likewise,
the pattern of the forward betas in Panel C is relatively weaker than that in the central betas.
Forty-seven out of 63 forward WML betas are less in magnitude by 0.10 on average than the
central counterparts. The non-bear, bear-down, and bear-up averages of the respective 21
WML averages are 0.08, -0.29, and -0.20.

It is worth noting that during a recession, central beta of the losers (winners) are higher
(less) than backward and forward betas of the same portfolio. The loser’s market beta
has increased over the past year before being included in the loser portfolio, and after the

formation period, the market beta has declined. It can be inferred that the increase in the
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beta of losers during this period is mainly due to changes in the beta of individual stocks
rather than changes in composition. If the loser’s stock price temporarily falls more than
other stocks and then rebounds more, then the beta change pattern can be similar. The
time-varying beta of the losers is due to the capture of this fluctuation.

Table [L.5] displays the returns and Sharpe ratios of (i) the plain WML strategy, (ii) the
constant volatility strategy, and (iii) the dynamic volatility strategy by country. Following
Daniel and Moskowitz| (2016)), I estimate the full-sample GJR-GARCH(1,1)-M with each
country’s WML portfolio and scale the portfolio based on the mean and variance estimates
to implement the constant and dynamic volatility strategies.ﬂ I adjust the time-invariant
scalars in the scaling factors of the constant and dynamic strategies to equate the strategies’
full-sample volatilities and the plain strategy’s counterpart.

For each country in the first column, I report the average returns of the plain, constant,
and dynamic strategies in the second, third, and fourth columns, respectively. The brackets
below the averages display the annualized Sharpe ratios. I also report the GARCH estimates
of each country in the fifth to tenth columns. The parentheses below the estimates exhibit
the t-statistics. The bottom row presents the averages of the countries’ estimates and their
t-statistics.

The results in Table are consistent with not only Barroso and Santa-Clara (2015)
as the constant volatility strategies outperform the plain WML strategies in all countries,
but also |[Daniel and Moskowitz (2016) as the dynamic volatility strategies outperform the
constant volatility strategies in all countries but Finland. The return improvements from
the plain strategies to the constant counterparts are relatively high in Spain (0.75%), Israel
(0.71%), and Sweden (0.61%), but relatively low in New Zealand (0.07%), Norway (0.06%),
and Finland (0.03%). The return improvements from the constant strategies to the dy-

namic counterparts are relatively high in Spain (1.22%), Singapore (0.64%), and Belgium

18 As aforementioned in Daniel and Moskowitz (2016), these GARCH-based strategies are not imple-
mentable in real time. Some strategies using trailing volatilities allow real time implementation but require
daily returns as well as monthly returns (Moreira and Muir|2017}, Harvey et al.|[2018)).
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(0.58%), but relatively low in Norway (0.03%), New Zealand (0.02%), and Sweden (0.01%),
and negative in Finland (-0.03%). The average returns (Sharpe ratios) of the countries’
plain, constant, and dynamic strategies are 0.77% (0.30), 1.06% (0.41), and 1.31% (0.51),
respectively. The improvements by the constant strategies are not in some countries, but
those by the dynamic counterparts are in most countries. The correlation coefficients of the
plain strategies’ averages with the improvements by the constant and dynamic strategies are
-0.03 and -0.57, respectively.

The results in the 8th column are also consistent with the momentum literature. The
asymmetry parameters are negative in all countries but Germany and significant in 18 out of
21 countries. The pattern suggests the momentum crashes as the volatility react strongly to
the positive shocks and weakly to the negative counterparts. Unlike the literature, however,
the feedback parameters in the 10th column are significant in 3 out of 21 countries, though
their average is -0.59.

The unreported alphas of the plain strategies are positive in all countries but Spain (-
0.16%) and significant in 17 out of 21 countries. The alphas of the constant strategies are
positive in all countries including Spain. They are significant in 18 out of 21 countries. The
alphas of the dynamic strategies are positive and significant in all countries. The averages
from the unreported alphas of the plain, constant, and dynamic strategies are 0.85%, 1.13%,
and 1.34%, respectively. Likewise, I examine whether the plain strategies span the constant
and dynamic strategies based on the regression alphas of the constant and dynamic strategies
on the plain counterparts. The unreported alphas of the constant and dynamic strategies
after the plain counterparts are significant in 17 out 21 countries respectively. The averages
of the unreported alphas from the constant and dynamic strategies are 0.34% and 0.74%
respectively.

In addition, the averages of the plain, constant, and dynamic strategies’ unreported
skewness estimates are -0.54, -0.24, and 0.36, respectively. Consistent with |[Barroso and

Santa-Clara (2015) and Daniel and Moskowitz (2016)), the results indicate that the constant
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and dynamic volatility strategies mitigate the momentum crashes of the plain WML strate-
gies and improve them significantly in the international markets. The results also prove that
the performance improvements by the dynamic volatility strategies are more effective and

stable than those by the constant counterparts.

1.4 Flights to Quality and Momentum Crashes

1.4.1 FTQs by Institutional Investments

In Table panel A I investigate the stock return consequences of flight-to-quality. FTQ is
proxied by ownership changes of U.S. financial institutions. The rationale for this proxy is
that U.S. institutions are less constrained to withdraw their money from one country, their
investment behavior would resemble the investment pattern of FT(Q investors. Due to the
filing frequency of ownership data, I use quarterly returns and quarterly holding changes of

U.S. institutions. I run the following panel regression:

Reitv1 = o+ (B4 (v + 0lyast) Iper) ALOu + €citsa, (1.1)

where R is the dollar return, Iz is the bear market indicator, I;; is the up market indicator,
and AIO is the institutional ownership change at the stock level. For the up market indicator
(Iyet+1), I use the beginning month of the quarter (I;;;) or the same quarter (I U(Lg)) relative
to the quarter of stock return. The subscripts ¢, i, and t indicate each country, stock, and
quarter, respectively. In the regression, I include time fixed effects and cluster standard
errors by country. Column 1 shows that changes in U.S. institutional ownership is positively
and significantly associated with the next quarter stock returns. It is consistent with the
literature of smart money effect in foreign equity sector by U.S. institutions. I decompose
the ownership changes by positive and negative changes. This decomposititon allows me to

examine whether return predictability comes from inflows, outflows, or both. The result in
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column 2 shows that outflows predominantly predict returns, but not inflows. When U.S.
institutions collectively sell, then the returns of the stocks are lower in the next quarter. In
columns 3-8, I divide the periods to distinguish the effect of institutional holding changes
over different periods. In columns 5 and 7, I find that the stock return becomes opposite
to the direction of institutional flows in the next quarter if the next quarter is up market
during the recession. The results in columns 6 and 8 indicate that the reversal during bear-up
market period is concentrated in stocks with institutional outflows.

In panel B of Table [I.6] I examine the interaction effect of institutional flows and mo-
mentum. In the previous section, I show that momentum crash is due to the extremely high
return of losers in the recovery. The results in columns 6 and 8 indicate that there is an
interaction between momentum and FTQ. The returns of the losers, which also experienced
U.S. institutional outflows, are particularly higher during the bear-up market period. It is
consistent that the reversal of the losers are associated with the flight-to-quaility and the
subsequent flight-from-quality, that is, investors over-sell risky stocks at high risk of default,
but the price declines of losers rebound rapidly during the market recovery phase, when
market-wide fears about default risks are resolved.

Table displays changes in institutional ownership prior to the formation of the winner
and loser portfolios during the non-bear, bear-down, and bear-up markets. I obtain the
institutional ownership changes of the securities from Global Ownership and compute the
value-weighted averages of the winner and loser portfolios. Changes in ownership of the
winner and loser portfolios are calculated monthly, even if institutional ownership changes are
quarterly, as the portfolio is rebalanced each month. For example, value-weighted averages
for October, November and December are derived from changes in institutional ownership
from the previous quarter, from July through the end of September. I winsorize the ownership
changes at the 0.5th and 99.5th percentiles by country and months.

For each country in the first column, I report the means of the monthly value-weighted

average institutional ownership changes based on the previous quarter data (AIO from t-2
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to t-1) in Panel A, based on the data from two quarters before (AIO from t-3 to t-2) in
Panel B, and based on the previous two quarter data (AIO from t-3 to t-1) in Panel C,
respectively. Each Panel of 9 columns exhibits the winner and loser portfolios” means and
their differences during the non-bear, bear-down, and bear-up markets respectively. The
bottom row presents the averages of the countries’ estimates and their t-statistics.

The results indicate that the institutional investors increase their ownership of the winner
securities more and the ownership of the loser counterparts less on average. In panel A, the
differences between the winner and loser average ownership changes are positive in 16 out
of 21 countries during the non-bear, bear-down, and bear-up markets, respectively. In panel
B, the differences are positive in 16, 13, and 18 countries during the non-bear, bear-down,
and bear-up markets, respectively. In panel C, the differences are positive in 17, 16, and 18
countries during the non-bear, bear-down, and bear-up markets, respectively. The averages
of the differences during the non-bear, bear-up, and bear-down markets are 0.10, 0.19, and
0.18 in panel A, 0.13, -0.01, and 0.19 in panel B, and 0.22, 0.00, and 0.30 in panel C,
respectively. This evidence suggests that the institutional investors prefer the momentum
strategy to the reversal counterpart.

The results also indicate that the institutional investors increase their ownership more
during the non-bear markets and less during the bear-down and bear-up markets on average.
In panel C, the averages from the countries’ winner portfolios during the non-bear, bear-
down, and bear-up markets are 0.55, 0.02, and 0.17, respectively. Likewise, the same averages
from the countries’ loser counterparts are 0.33, 0.02, and -0.14, respectively. This evidence
suggests that the institutions relatively inject capital into the international markets prior
to the non-bear markets and relatively eject from the markets prior to the bear-down and
bear-up markets.

An interesting pattern exists between the countries’ average WML returns and the in-
stitutional ownership changes. The correlation coefficients of the average returns with the

differences between the winner and loser portfolios” ownership changes during the non-bear,
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bear-down, and bear-up markets are 0.12, 0.32, and 0.60, respectively. The same coefficients
with the central (backward) betas in Table [1.4] are 0.08 (0.28), 0.11 (-0.54), and 0.48 (-0.25),
respectively. The results suggest that the momentum strategies by the institutional investors
are effective as the returns of the WML portfolios are proportional to the differences between
the winner and loser portfolios” ownership changes.

Table exhibits the winner and loser portfolios’ equal-weighted averages of the book
leverages with the total and current liabilities respectively during the non-bear, bear-down,
and bear-up markets. I acquire the current liabilities, total liabilities, and shareholders’
equity of each participating security from Datastream and compute the current liabilities-to-
shareholders’ equity ratio and the total liabilities-to-shareholders’ equity counterpart as the
default risk measures. I estimate the monthly equal-weighted averages of the winner and loser
portfolios with the annual balance sheet items as I rebalance the portfolios each month. For
example, I calculate the monthly equal-weighted averages in year t with the leverage ratios
based on the accounting data in year t-1. I exclude observations with negative shareholders’
equity values and alter negative total liabilities values by 0Os. I winsorize the ratios at the
99th percentile by country and year.

For each country in the first column, I report the means from the monthly equal-weighted
averages with the total liabilities-to-shareholders’ equity ratios of the winner and loser port-
folios in the second to tenth columns, and the same means with the current liabilities-to-
shareholders’ equity ratios in the eleventh to nineteenth columns, respectively. Each partition
of nine columns display the winner and loser portfolios” means and their differences during
the non-bear, bear-down, and bear-up markets. The bottom row exhibits the averages of
the countries’ estimates and their t-statistics.

The results present that the differences between the leverage ratios of the winner and
loser portfolios increase (decrease) prior to the non-bear (bear-down and bear-up) markets
on average. In panel A, 13 (8) out of 21 differences are positive (significant) during the non-

bear markets and the average is 0.19. In contrast, 15 (6) differences are negative (significant)
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during the bear-down markets and 14 (9) differences are negative (significant) during the
bear-up markets. The averages during the bear-down and bear-up markets are -1.02 and
-1.03 respectively. In panel B, likewise, 13 (8) out of 21 differences are positive (significant)
during the non-bear markets, but 14 (9) differences are negative (significant) during the bear-
down markets and 14 (10) differences are negative (significant) during the bear-up markets.
The averages during the non-bear, bear-down, and bear-up markets are 0.02, -0.24, and
-0.22, respectively. The correlation coefficient between the WML returns during all the
periods and the leverage ratios with the total liabilities (current liabilities) is 0.29 (0.16).
The unreported results with the value-weighted leverage ratios are also consistent with the
results in Table [1.8] This evidence demonstrates that the default risk measures explain the
time-varying returns of the WML portfolios in part as the leverage ratios allegedly proxy
the default probabilities.

One characteristic of flight-to-quality events is the enhanced negative correlation between
the stock and bond markets (Baele et al.[2019)). If the flight-to-quality events affect these two
markets more during the bear markets than the bull markets, then the correlation between
the stock and bond markets will decrease. Following Baele et al.|(2019), I investigate whether
the daily return correlations between the stock and bond markets in the countries decrease
during the bear markets. Table exhibits the daily return performance of the stock and
bond markets in the MSCI developed markets except the United States, Canada, Hong Kong,
and Israel.

Among 19 countries, the correlation between the stock and bond markets is negative in
14 countries and significant in 10 countries during the bull markets, while the correlation
is positive in 5 countries and significant in Italy, Ireland, Spain and Portugal. During the
bear-down markets, in contrast, the correlation is negative and significant in 11 countries,
but positive and significant in Italy and Portugal. The positive and significant correlations
in Spain and Ireland become insignificant and negative, respectively. In detail, during the

bear-down markets, the correlation drops in 16 countries and the decreases are significant
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in 8 countries. Similarly, during the bear-up markets, the correlation drops in 15 countries
but significant in only 4 countries. This is consistent with the literature as the flight-to-
quality events are more likely during the bear-down markets according to the definition
of the flight-to-quality. Consistent with Baele et al| (2019), these findings imply that the
flight-to-quality episodes affect both the stock and bond markets in the countries during the
bear markets, especially during the bear-down markets, and that the bear market indicator

variables capture the flight-to-quality effects consistently.

1.4.2 FTQs by Stock Market-Bond Market Disagreements

FTQ behavior by investor is informative but difficult to directly observe. Researchers, there-
fore, also use market information to indirectly identify FT(Q events and measure their effects
(Baele et al., [2019; Boudry et al., 2019)). They identify the FTQ events as the periods with
large negative stock market returns and large positive bond market returns together. Since
these events are short and infrequent, the researchers examine daily data from stock and
bond markets.

Following this literature, I examine how FT(Q affects momentum crashes using the indirect
method as well. Following Baele et al| (2019), I compute daily stock and bond market
returns from US Datastream market total return index (TOTMKUS) and US benchmark 10
year Datastream government bond total return index (BMUS10Y), respectively. Daily FTQ

events are identified as follows.
FTQ,=1{r} > ro}} x I {r{ < —ko(},

where 7° and r¢ are the daily bond and stock market returns, respectively. o’ and of are the
second moments of these returns estimated using a one-sided normal kernel with a bandwidth
of 250 days skipping the nearest 5 days to avoid any influence of FTQ and FTR events. x

is 1.5 following Boudry et al.| (2019)) while the results are robust regardless of the choice.
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While both FTQ and flight to risk (FTR) affect momentum returns, momentum crashes
are affected more by FTR events because these crashes often occur during market recoveries.
Therefore, I identify FTR events in addition to the FTQ counterparts using the opposite
inequalities. That is, the FTR events are identified as the periods with large negative bond
market returns and large positive stock market returns together.

Figure shows the annual distribution of FTQ and FTR days identified using the
stock and bond market returns from the 21 countries. The results confirm that the FTQ
and FTR days tend to cluster over time. For example, there were 33 FTQ days in the
United States and 387 FTQ days outside the United States in 2007 and 2008. These FTQ
days account for 29.2% and 26.7% of all the FTQ days identified in and outside the United
States, respectively. Likewise, 19.7% of FTR days in the United States and 28.2% of FTR
days outside the United States are concentrated in 2007 and 2008.

Though untabulated, the unconditional likelihood of the identified FTQ events is 1.13%
and their estimated daily price impact is 4.01%. These results are consistent with the 1.74%
likelihood of Baele et al.| (2019) and the 1.54% likelihood of Boudry et al| (2019) but lower
than these two. Similarly, the unconditional likelihood of the identified FTR events is 0.76%
and their estimated daily price impact is 3.69%.

Since these FTQ and FTR events are identified at a monthly frequency, I first examine
daily momentum returns. Due to the lack of daily momentum return data by country, I
investigate US daily momentum deciles. After than, I generalize the definition of the FT(Q
and FTR events to incorporate monthly momentum returns around the world. Using these

events, I estimate the following regression.

RS =a+ BT fi +yFTQ, + BoFTQ, fMETRE + SFTR, + BrET R, fMETRE 1 ¢

where Rf is a daily excess return of each momentum decile or a daily winner-minus-loser

(WML) return from the deciles, and f; is a vector of pricing factors (Fama and French| 2015)).
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I estimate v and 0 with and without these factors, and then test whether v, 6, 8o, and g
are significant.

Table exhibits the regression results. The first partition displays the results without
the pricing factors. The intercept of the daily WML returns is 4.8 basis points (12.1% per
annum) and its t-statistics is 2.86. Consistent with previous results, the v and § estimates
are 0.9% and -1.3% and their t-statistics are 2.60 and -3.32, respectively. The results show
that the WML portfolio experiences positive returns during F'TQ events and negative returns
during FTR events, and that the magnitude of the negative returns is greater than that of
the positive returns. The unreported Wald statistic that tests their difference is 13.82.

The second and third partitions display the results with the pricing factors. The intercept
after controlling the factors is 6.2 basis points (12.1% per annum) and its t-statistics is 4.12.
Following the literature, the daily WML returns exhibit negative loadings to the market,
size, and value factors but positive loadings to the profitability and investment factors,
respectively. Furthermore, consistent with previous results, the Sg is negative and significant.
That is, the WML returns react more negatively to the market factor during FTR events.

Similar to Boudry et al.| (2019), I also examine how FTQ and FTR events affect momen-
tum returns using monthly FTQ and FTR variables as well as monthly momentum returns
around the world. After excluding the United States, Canada, Hong Kong, and Israel, I com-
pute the daily FTQ and FTR variables of the 19 MSCI developed countries using their stock
(TOTMK) and bond (BM10Y) market returns (Baele et al., 2019) and examine whether
there are FTQ and FTR events occurred in each month to incorporate monthly informa-
tion. Monthly FTQ (FTR) variables are one in month t if one or more FT(Q (FTR) events
identified in month t. Similar to the previous regression, both v and ¢ are estimated with
monthly WML returns by country but without other factors.

Table exhibits the regression results. The intercept is positive in all countries but
Belgium and significant in 5 out of 19 countries. When all countries are used, it is positive

(cv = 0.008) and significant (¢ = 6.52). The ~y for the FTQ events is positive (significant) in 14
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(6) out of 19 countries. When all countries are used, it is positive (7 = 0.012) and significant
(t = 3.67). The 6 for the FTR events is negative in 15 out of 19 countries and significant in
France, Norway, and Austria. When all countries are used, it is negative (6 = —0.015) and
significant (f = 4.12). The results are also consistent when NFTQ and NFTR replace FTQ
and FTR, respectively. Consistent with previous findings, these results show that the WML
returns react positively (negatively) to FTQ (FTR) events, and that the magnitude of the

return reaction to FTR events is greater than its counterpart to FTQ events.

1.5 Conclusion

Many papers have explored the momentum effect and the momentum crashes. These papers
are also suggesting some successful trading methods that improve the static momentum
portfolios, which are vulnerable to those momentum crashes. In contrast, the economic
reason of these momentum crashes has drawn relatively less attention from those papers.
I examine the momentum crashes in international stock markets and introduce flights to
quality in financial markets to help explain the way the momentum crashes take place. While
the flights to quality are being studied actively, I relate them to the momentum crashes to
better understand the cross-sectional phenomena.

Like the momentum effect per se, the momentum crashes are universal in the interna-
tional security markets, as well as the United States market. Alongside the positive and
economically significant Sharpe ratios of the momentum portfolios around the world, their
skewness estimates are negative and economically significant as well on average. In partic-
ular, the crashes are concentrated during the bear-up rather than non-bear and bear-down
markets, and the tendencies are captured by the market timing regressions with the respec-
tive indicators. The time-varying betas explain the crashes in part as the betas are weakly
positive during the non-bear markets and strongly negative during the bear markets, and the

bear-up betas are greater in magnitude than the bear-down counterparts. These patterns
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are clear with the central betas, but unclear with the backward and forward betas.

The momentum crashes are also noticeable in the countries where the momentum perfor-
mance is insignificant. The constant and dynamic volatility strategies proposed by Barroso
and Santa-Claral (2015) and Daniel and Moskowitz (2016]) respectively are effective to avoid
the crashes and improve the WML portfolios. The constant and dynamic volatility portfo-
lios with the GJR-GARCH(1,1)-M estimates outperform not only the corresponding market
portfolios but also the plain momentum counterparts. The improvements of the dynamic
volatility portfolios are proportional, but those of the constant volatility counterparts are
disproportionate. The decrease in the negative skewness estimates after these portfolios is
economically significant. The momentum returns across the countries are weakly correlated
with each other.

Flight-to-quality by U.S. institutional investors precedes the momentum crashes. The
institutional ownership changes proxy the flight-to-quality. The returns react positively to
the flight-to-quality during the non-bear markets. This relation becomes negative during the
bear-down markets. This reversal confirms both the smart money effect by the institutional
investors and the price rebounds of the securities followed by the flight-to-quality. The smart
money effect comes from the negative institutional ownership changes, i.e. the outflows,
rather than the positive counterparts, i.e. the inflows. Likewise, the reversal arises after the
outflows but does not after the inflows. The rebounds are more pronounced among the loser
securities than the winner counterparts, resulting in the collapses of the WML portfolios.

Momentum returns exhibit consistent patterns when both FT(Q and FTR events are
identified by stock and bond market data rather than US institutional investor data. The
FTQ and FTR events identified by [Baele et al. (2019) and [Boudry et al.| (2019) demonstrate
the positive reaction of the WML returns during the FTQ events and the negative reaction
during the FTR events. The results also show that the negative FTR reaction is greater
than the positive FTQ reaction. These empirical findings answer why the momentum crashes

occur in part.
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The flight-to-quality coincides with how default risk behaves around the bear markets.
Two leverage ratios, the total liabilities and current liabilities-to-shareholders’ equity ratios
respectively, proxy the default risk. During the bear markets, the institutional flows to the
loser securities fall more than those to the winner counterparts do. At the same time, the
loser securities become riskier than the winner counterparts. The evidence advocates the
time-varying risk literature as the default risk measures as well as the central betas exhibit a
negative relation with the flight-to-quality proxies. The results associate the increased loser
default risk during the bear markets with the institutional flight-to-quality and exhibit the

post flight loser rebounds that crashes momentum.
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Table 1.3. Time-Varying Betas of Momentum Portfolios in Bear and Up Markets

Following [Daniel and Moskowitz| (2016]), I estimate the market timing regression for each country to capture
the changing behavior of WML portfolios during bear down (BD) and bear up (BU) markets.

Rwwrit = o + (8 + (BepilBDit + BUilBUit)) Rt + €it

Where the subscripts i and t represent each country and month, respectively. Ry, is the return of the
WML portfolio, Ry, is the market return of each country, Igp is the bear down market indicator, and Iy
is the bear up market indicator, respectively. I define the bear market if the 2-year excess market return
is negative, or 0 otherwise. I define the down (up) market if the contemporaneous excess market return
is negative (positive), or 0 otherwise. This table only covers the results of the specification above - the
regression results of other specifications are available in the appendix. The last row displays the pooled
estimates from all countires and their t-statistics. This table includes 23 MSCI developed countries - other
emerging and unclassified countries are also available in the appendix. The asterisks indicate the significance
at 10% (*), 5% (**), and 1% (***) levels.

COUHtI‘y « (%) t(a) B t(ﬂ) BBD t(,BBD) 5BU t(ﬁBU)
United States ~ 1.275%%%  (6.02)  -0.054  (-1.00) -0.632%%F (-4.04) -1.143%%% (-7.87)
Canada 1.780%%% (4.66)  0.054  (0.73) -0.537%% (-2.18) -1.322%%* (-7.41)
Japan 0.315  (1.03) 0.405%%* (6.17) -0.652%** (-5.08) -0.888*** (-8.49)
United Kingdom 0.787%%% (3.05)  0.024  (0.45) -0.225%%  (-2.00) -0.475%** (-5.44)
Australia 1.023%F%  (3.40) 0.181%%* (3.69)  -0.251%  (-1.77) -0.489%%* (-4.94)
France 1.094%%%  (3.42)  -0.004  (-0.06) -0.438%%* (-3.26) -0.858%** (-7.63)
Germany 1.393%%%  (2.99)  0.064  (0.63)  -0.314  (-1.50) -0.680%** (-3.87)
Hong Kong 0.974***  (2.75)  0.157*** (3.25) -0.612*** (-5.43) -0.601*** (-6.30)
Singapore 0.747%F  (2.02)  0.113%  (1.91) -0.567%%* (-3.59) -0.788%** (-7.06)
Sweden 1.343%% (2.24)  0.260%%* (2.81) -1.153%%* (-5.38) -1.439%%* (-8.15)
Israel 2.976¥FF  (3.66) 0.274%* (2.12)  0.383  (1.30) -0.998%%* (-4.31)
Ttaly 0924  (1.64) -0.079 (-0.77) -0.227  (-1.14)  -0.313%  (-1.84)
Switzerland 0475  (1.38)  0.166%* (2.20) -0.968%%* (-4.59) -0.670%** (-4.08)
Norway 0.734  (1.45)  0.083  (1.03) -0.536*** (-2.75) -0.306** (-1.99)
Netherlands ~ 1.007%%  (2.22)  0.198%*  (2.02) -0.690%** (-3.46) -1.067*** (-5.67)
Denmark 1.914%%% (420) 0079  (0.82)  -0.078  (-0.39) -0.664*** (-3.98)
Belgium 0.017  (-0.04) 0.254%%%  (3.23) -0.972%%* (-5.80) -0.870%** (-6.02)
Spain 0.265  (0.48)  -0.067  (-0.56) -0.406** (-2.20) -0.535%** (-3.16)
New Zealand ~ 1.146%%* (3.12)  0.036  (0.47) -0.265%* (-1.97) -0.551%** (-4.38)
Finland L5I6¥F  (2.66)  0.168%F  (2.18) -0.622%%* (-4.03) -0.797%** (-6.30)
Austria 1.129%%%  (3.40)  0.083  (1.37)  -0.194  (-1.60) -0.518%** (-4.53)
Ireland 1.5220%%  (3.44)  0.132  (1.56) -0.427%% (-2.31) -0.701%%* (-4.49)
Portugal 2.566%%% (3.14) 0307  (1.62)  -0.120  (-0.46) -0.976*** (-4.01)
Total 1.04717%%* 0.098%*#* -0.458%4* -0.630%**
(11.66) (2.93) (-6.77) (-8.89)
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Table 1.5. Time-Varying Maximum Sharpe Ratio Momentum Strategies with GARCH

Following |Daniel and Moskowitz (2016), I implement the constant and dynamic volatility strategies in
addition to plain WML strategy. I estimate full-sample GJR-GARCH(1,1)-M using the plain momentum
portfolio, and apply the scaling factor, 1/ (2Ao;—1) for the constant volatility strategy and p;—1/ (2)\0371)
for the dynamic volatility strategy, respectively. I scale the constant and dynamic strategies using the time-
invariant scalar A, so that the full sample volatilities of the plain, constant, and dynamic strategies are equal.
The specification of the GARCH model estimated by the maximum likelihood method is as follow:

Ry = pu+ 0hy + &4
he =w+ (a+v[i—1) 6?71 + Bhy_1.

R; is the return of the plain momentum portfolio, h; is the time-varying volatility, and I; is the indicator
variable for negative ;. w, a, and § govern the GARCH process. The parameters v and § reflect the
asymmetric effect and the volatility-to-return effect, respectively. WML, CVOL, and DVOL are the average
monthly returns of the plain, constant volatility, and dynamic volatility portfolios, respectively. The numbers
in the sqaure brackets are annualized Sharpe ratios from the three momentum portfolios and the numbers in
the parentheses are the t-statistics of GARCH parameter estimates. The last row, Total, displays the pooled
statistics and estimates from all countries and their t-statistics. This table includes 23 MSCI developed
countries - other emerging and unclassified countries are also available in the appendix.
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(1) 2) ®3) (4) (5) (6) (7) (8) 9)
Country WML CVOL DVOL Iz w el ¥ 8 0

United States 1.0455 1.5070 1.6416  0.0135%%*F 0.0001%**  0.3748%** -0.3390*** 0.7730*** -1.1249*
[0.596] [0.859] [0.936] (7.542) (3.983) (6.815) (-5.669) (34.204)  (-1.683)

Canada 1.1380 1.2688 1.2945 0.0118*%  0.0003*%**  (0.1521%** -0.1404*** (0.8951***  -0.1129
[0.376] [0.419] [0.427] (1.875) (2.816) (4.922) (-4.242) (-43.663)  (-0.170)

Japan 0.1948 0.3676 0.5691 0.0078%*  0.0003***  (0.3020*** -0.2740*** 0.7831***  -1.4265
[0.106] [0.199] [0.308] (2.263) (2.680) (4.039) (-3.939) (14.266)  (-1.346)

United Kingdom  0.5706 0.7387 0.7941  0.0116%** 0.0002*** 0.1765%*F* -0.1234*** (.8280***  -2.0606*
[0.334] (0.433] [0.466] (3.633) (3.470) (4.310) (-3.209) (23.773)  (-1.815)

Australia 0.6803 0.7925 0.8404 0.0079  0.0004*** 0.2745%%*F  -0.1785%*  0.7126***  -0.2213
[0.383] [0.446] [0.473] (1.495) (2.603) (3.858) (-2.530) (10.062)  (-0.136)

France 0.4797 0.6489 0.7993 0.0089*%  0.0004*** 0.3675%** -0.3317*** 0.7327***  -0.7871
[0.240] [0.324] [0.399] (1.859) (3.198) (3.841) (-3.383) (15.318)  (-0.648)

Germany 0.8101 1.1905 1.5066  0.0159%** 0.0010%**  (.4978%** 0.0086 0.5748***  -0.5263
[0.285] (0.418] [0.529] (3.049) (4.771) (6.516) (0.092) (14.821)  (-1.028)

Hong Kong 0.8297 1.3068 1.7546  0.0176*** 0.0002*%** 0.2639*** -0.2181*** (.8253***  -1.3529
[0.355] [0.560] [0.752] (3.715) (3.144) (5.310) (-4.382) (43.591)  (-1.417)

Singapore 0.4174 0.8255 1.4634  0.0164*** 0.0004*** 0.3509%** -0.2894*** (.7807*** -1.5718*
[0.180] [0.357] [0.632] (3.079) (3.390) (5.100) (-4.388) (20.427)  (-1.646)

Sweden 0.9658 1.5714 1.5810 0.0111%F  0.0003*** (.3052*** -0.3052*** 0.8310%**  -0.2677
[0.288] (0.468] [0.471] (2.266) (2.625) (5.309) (-5.309) (34.302)  (-0.514)

Israel 1.6906 2.4004 2.7618  0.0150***  0.0002  0.2918***  -0.1520*  0.8053***  0.0296
[0.411] [0.583] [0.671] (2.596) (1.514) (3.566) (-1.897) (20.031) (0.072)

Ttaly 0.7777 1.1357 1.3932 0.0066 0.0001  0.2459%** -0.1587*** (0.8602***  0.0664
[0.253] [0.370] [0.454] (1.408) (1.355) (7.250) (-4.137) (52.772) (0.123)

Switzerland 0.5753 0.7459 0.8496 0.0105%*  0.0002**  0.1995%%*  -0.1499**  0.8238***  -0.9567
[0.284] (0.369] [0.420] (2.183) (2.276) (2.900) (-2.346) (15.669)  (-0.822)

Norway 1.1321 1.1967 1.2231 0.0094 0.0007*  0.1982*%**  -0.1469**  0.8055***  0.2759
[0.421] [0.445] [0.455] (0.877) (1.847) (2.754) (-2.041) (11.663) (0.205)

Netherlands 0.7699 1.0371 1.1343 0.0117*F  0.0005*** (0.2793*** -0.2706™** 0.8089***  -0.4887
[0.283] [0.381] [0.417] (2.046) (2.687) (4.409) (-4.649) (17.415)  (-0.613)

Denmark 1.3156 1.6527 1.7616 0.0138%F  0.0006*** (0.2982***  _0.1666*  0.7272***  -0.2219
[0.496] (0.623] [0.664] (2.074) (3.442) (3.535) (-1.757) (13.600)  (-0.238)
Belgium 0.0009 0.2559 0.8383  0.0166*** 0.0008*** (.3522%** _(0.2312%*F*  0.6407*** -2.7491**
[0.000] [0.114] [0.375] (2.999) (3.975) (4.595) (-3.122) (12.439)  (-2.376)

Spain -0.2765 0.4764 1.6956  0.0132*%**  0.0001  0.4482***  -0.1515  0.7246***  -0.9493
[-0.105] [0.180] [0.642] (3.017) (1.169) (4.557) (-1.498) (15.846)  (-1.175)

New Zealand 0.8367 0.9088 0.9295 0.0034  0.0001*** (0.1382***  -0.0343  0.8479***  1.0355
[0.408] (0.443] [0.453] (0.786) (2.656) (3.696) (-0.860) (30.437) (0.914)

Finland 1.0967 1.1256 1.0985 0.0020 0.0003**  0.1784***  -0.0883*  0.8261***  1.0353
[0.411] [0.421] [0.411] (0.229) (2.066) (4.140) (-1.837) (15.819) (0.912)

Austria 0.8367 0.9520 1.0185 0.0115%F  0.0004*** (0.2223*%* -0.1496*** 0.7551***  -0.8106
[0.442] [0.503] [0.538] (2.046) (2.772) (4.812) (-3.028) (14.020)  (-0.562)

Ireland 1.3047 1.3840 1.4169 0.0112  0.0004*** (0.1236***  -0.0582*  0.8672***  0.1916
[0.481] (0.510] [0.522] (1.235) (2.656) (3.705) (-1.692) (30.427) (0.177)

Portugal 1.1417 1.6473 2.0376 0.0157%F  0.0002**  0.1753*** -0.1687*** 0.8927***  -0.6355
[0.352] [0.508] [0.628] (2.533) (2.297) (3.532) (-3.134) (35.316)  (-0.878)

Total 0.8067*F*  1.0880%**  1.2933***  (.0098*** (.0002*** 0.2772*** -0.1848*** (0.8053***  -(0.2381
[0.321] [0.432] [0.514] (11.876)  (21.304)  (31.921)  (-21.695)  (196.847)  (-1.751)
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Table 1.6. Institutional Ownership Changes and Stock Returns

In this table, I examine the effect of flight-to-quality, which is proxied by US institutional ownership changes,
on stock returns. I use the following panel regression specification.

Reitp1 =ar + (B+ (v + 6uce+1) Iet) AIOs + €citt1,

where R is the dollar return, Ig is the bear market indicator, Iy is the up market indicator, and AIO is
the U.S. institutional ownership change for each stock. For the up market indicator (Iyci+1), I use the
beginning month of the quarter (Iyy1) or the same quarter (IU(Lg)) relative to the quarter of stock return.
The subscripts c, i, and t imply each country, stock, and quarter, respectively. Monthly dollar return data
are collected from Datastream. Quarterly investment flow data of institutional investors are collected from
Global Ownership. I employ time fixed effects and clustered standard errors by country. For each country
each quarter, I include the stocks that consist the top 90% market capitalization of the country. For each
country also, I winsorize the top and bottom 1% of the AIO observations to prevent any outlier effect. AIO+
is equal to AIO if positive or zero otherwise. AIO- is equal to AIO if negative or zero otherwise. Panel A
shows the results of return on AIO. Panel B contains the results of interaction between AIO and momentum
loser portfolio. The asterisks indicate the significance at 10% (*), 5% (**), and 1% (***) levels.

Panel A: Regressions of return on AIO, changes in institutional ownership

(1) (2) (3) (4) (5) (6) (7) (8)
AIO 2.879*** 2.943%** 2.943%** 2.943%%*
(13.10) (9.04) (9.04) (9.04)
ATO+ -0.274 -0.521 -0.520 -0.520
(-0.64) (-0.57) (-0.57) (-0.57)
AIO- 4.923%** 5.021%** 5.021%** 5.021%**
(14.00) (12.49) (12.49) (12.49)
I x AIO -1.178 0.811 0.739
(-1.54) (0.82) (0.79)
Ip x ATIO+ -4.780%** S7.116%%* -8.763%**
(-2.86) (-3.11) (-3.79)
Ip x AIO- 0.650 9.433*** 8.062%**
(0.61) (6.41) (5.39)
Ip x Iy x AIO -3.900%***
(-4.48)
Ip X Iyp x AIO+ 7.007**
(2.02)
Ip x Iy x AIO- -14.45%**
(-6.95)
IB X [U(173) x AIO -5.197***
(-4.83)
Ip x Iz x AIO+ 15.60%***
(3.52)
IB X IU(1,3) x AIO- -17.16%%*
(-6.54)
N Observations 130648 130648 127912 127912 127904 127904 127883 127883
Adjusted R-Sq 0.242 0.242 0.241 0.241 0.241 0.241 0.241 0.242
Fixed Effects Quarter Quarter Quarter Quarter  Quarter  Quarter  Quarter  Quarter
Clustered SE Country Country Country Country  Country  Country  Country  Country
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Panel B: Regressions of return on interaction between AIO and momentum loser

(1) (2) (3) (4) (5) (6) (7) (8)
AIO 2.108%** 1.214%** 1.214%** 1.214%%*
(10.74) (4.12) (4.12) (4.12)
AIO x Loser 11.09%** 23.08%** 23.08%** 23.08%**
(16.86) (28.11) (28.11) (28.11)
AIO+ -1.263%** -1.636* -1.635%* -1.636%*
(-2.96) (-1.91) (-1.91) (-1.91)
AIO- 4.585%** 2.998%** 2.998%** 2.999%**
(19.23) (7.81) (7.81) (7.81)
AIO+ X Loser 11.64 10.66* 10.66%* 10.66%*
(1.52) (1.80) (1.80) (1.80)
AIO- x Loser 8.8T1*** 23.36*** 23.36**F* 23.36***
(8.12) (29.73) (29.73) (29.73)
Ip x AIO 2.288%** 1.231%* 1.345%**
(5.08) (2.43) (3.15)
Ig x AIO x Loser -30.64%** -9.708%** -6.342%*
(-3.42) (-3.84) (-2.54)
Ip x AIO+ -4.732%H* -6.0007%** -8.117HH*
(-2.75) (-2.79) (-3.65)
I x AIO- 7.038%*** 11.50%%* 9.593***
(7.72) (8.52) (7.19)
Ip x AIO+ x Loser 14.12 -40.17%* -159.7
(0.37) (-2.55) (-1.05)
I x AIO- x Loser -38.95%** -18.02%** -15.37%%*
(-4.04) (-4.17) (-3.70)
IB X [Ul x AIO 2.438%%*
(3.82)
Ip x Iy1 x AIO x Loser -30.60%**
(-16.15)
IB X [Ul X AIO+ 4.540
(1.56)
Ip x Iy x AIO- -6.523%**
(-3.70)
Ip x Iy x AIO+ x Loser 272.3%F%%*
(2.69)
Ig x Iy; x AIO- x Loser -27.54%%*
(-7.83)
Ip x Iy x AIO 4.544%%*
(4.29)
Ip x Iy(1,g) x AIOxLoser -37.35%+*
(-23.29)
Ip x IU(LS) x AIO+ 19.67***
(3.73)
Ip x Iy 3 x AIO- -7.042%*
(-2.31)
Ip x Iy s x AIO+xLoser 172.9
(1.22)
Ip % Iy(1,3) x AIO-xLoser -28.69%**
(-7.14)
N Observations 120834 120834 119895 119895 119895 119895 119874 119874
Adjusted R-Sq 0.247 0.247 0.247 0.247 0.247 0.247 0.247 0.247
Fixed Effects Quarter  Quarter  Quarter  Quarter  Quarter  Quarter  Quarter  Quarter
Clustered SE Country  Country  Country  Country  Country  Country  Country  Country
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Table 1.12. Difference Tests for Time-Varying Betas of Momentum Portfolios

This table reports the F-statistics that test the difference among the time-varying betas estimated in Table
The time-series regression specification by Daniel and Moskowitz (2016) is used for the quintile or tercile
winner-minus-loser portfolios by country. The non-bear beta 3, the bear-down beta Spp, and the bear-up
beta Spy are estimated using the bear-down and bear-up indicators Igp and Iy and the significance of
their difference is tested. The asterisks indicate the significance at the 10% (*), 5% (**), and 1% (***),
respectively.

Country B = Bsp B = Bpu Bep = BBU
United States 9.93*** 40.36%** 6.32**
Canada 39.54%** 39.54%** 7.16%*%*
Japan 37.47FF* 70.88*** 2.71
United Kingdom 2.83* 15.22%%* 4.15%*
Australia 6.77FF* 26.50%** 2.08
France 6.00%* 28.86%** T.31FF*
Germany 1.90 9.00%** 2.30
Hong Kong 29 . 58*** 36.39*** 0.01
Singapore 12.91%** 35.63*** 1.52
Sweden 27.26%** 52 71H** 1.50
Israel 0.17 15.75%** 19.23***
Ttaly 0.30 0.91 0.14
Switzerland 20.54*** 16.19%** 1.39
Norway 6.59%* 3.55% 1.02
Netherlands 11.33%** 25.40*** 2.36
Denmark 0.36 9.92%* 6.53**
Belgium 32.33%%* 32.62%%* 0.27
Spain 4.15%* 2.48 0.53
New Zealand 2.49 10.61%** 3.29%*
Finland 14.74%** 27.99*** 1.00
Austria 2.96* 15.22%** 4.69**
Ireland 6.26** 17.05%%* 1.59
Portugal 1.00 9.99%** 9.65%**
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Figure 1.1. Monthly Market Betas of Daily Momentum and Other Factors

This figure shows the market betas of the momentum, size, value, profitability, and investment factors from
June 1964 to January 2020. Each daily factor is regressed on the daily market factor in each month. The
one-year moving averages of these betas are plotted. Shaded areas indicate US recessions by NBER.
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Figure 1.2. Backward, Central, Forward Betas of WML Portfolios

This figure reports equal-weighted average of market beta (8) of winner-minus-loser (WML) portfolios for
three different time periods: (i) normal periods, (ii) bear down market periods, and (iii) bear up market
periods. Market beta (8) is measured from rolling regressions for three different horizons for each stock:
from -59 to -48 months (ﬂ(_597_48)) (upper left), from -23 to -12 months (6(_237_12)) (upper right), from -5
to 6 months (8(_s)) (lower left), and from 13 to 24 months (B(13,24)) (lower right) relative to the portfolio
formation period. I define the bear market if the 2-year excess market return is negative, or 0 otherwise.
I define the down (up) market if the contemporaneous excess market return is negative (positive), or 0
otherwise. The loser and winner portfolios are the bottom and top quintile—or tercile if less than 300 stocks
are available—portfolios. This figure includes 21 MSCI developed countries.

Backward beta (-59,-48) Backward beta (-23,-12)
50 60 -
40
40
30
20
20
10
0 B T T T T T 0 B T T T T T
2 -1 0 1 2 2 -1 0 1 2
Central beta Forward beta
40 I 507
“ 40
30
30
20 I
20
10 i
10 \
0 - T T T T T 0 - T T T T T
2 -1 0 1 2 2 -1 0 1 2

47



Figure 1.3. Annual Number of FTQs and FTRs from Stock—Bond Market Disagreement

This figure reports the annual distribution of FTQ and FTR days that are defined using the disagreement
between stock and bond markets, following the literature (Baele et al., 2019; Boudry et al., 2019). FTQ
(FTR) days in the first (second) plot are identified as the periods with large negative (positive) stock market
returns and large positive (negative) bond market returns together. Each plot displays the annual number
of FTQ or FTR days in the United States (blue) and outside the United States (red).
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Chapter 2

Which Volatility Drives the Anomaly?

Cash Flow Versus Discount Rate

The idiosyncratic volatility puzzle in the cross-section has been investigated over the past
decade. Economic theories as well as our intuitions predict zero or positive association
between returns and idiosyncratic volatilities. Surprisingly, however, most findings are the
opposite—returns and idiosyncratic volatilities apparently exhibit a negative relationship.
According to a substantial body of empirical finance literature, this counterintuitive anomaly
is not only consistent after controlling other factors, but also robust to a variety of research
designs (Ang et al., 2006, 2009; |Jiang et al., [2009; |Chen et al., |2012; [Fink et al., 2012; Guo
et al. 2014)). In particular, it has attracted a lot of interest from researchers because it is
hard to reconcile these findings with traditional asset pricing paradigms—that is to say, this
anomaly violates a high-risk high-return principle. Does the market compensate investors
for low idiosyncratic volatilities?

To fit this puzzle, previous papers have emphasized the importance of behavioral motives
such as investor sentiment, conditional heteroskedasticity, return reversal, and skewness
preference (Fu, [2009; [Huang et al.; 2010 Bali et al., [2011}; |[Stambaugh et al., 2015} Cao and

Han| 2016; [Egginton and Hur, 2018). However, none of the papers has paid attention to
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the role of cash flow and discount rate news, which is a fundamental determinant of both
returns and volatilities. Studies concerning news decomposition methods likewise have paid
no attention to the idiosyncratic volatility anomaly notwithstanding its importance in the
realm of asset pricing. Instead, they have highlighted the role of systematic risks to account
for the cross-section of returns (Campbell and Vuolteenaho, 2004; Campbell et al.; 2010,
2013; Yeh et al., |2015)).

Many studies have employed news decomposition methods to dissect stock returns into
cash flow and discount rate news at an aggregate level since|Campbell and Shiller| (1988), but
one of the most important papers is [Vuolteenaho) (2002)), which decomposes stock returns at
an individual level rather than at an aggregate level using an accounting identity framework
and a panel VAR model. Unlike other papers that emphasize the role of discount rate news
in determining stock returns at an aggregate level, the paper concludes that stock returns
at a firm level are mostly determined by cash flow news. |Chen et al.| (2013) disaggregate
returns by altering a predictive regression method with an implied cost of capital approach,
but their findings also indicate that cash flow news play a significant role, which is consistent
with the former paper as well. As these two news components fundamentally determine both
stock returns and volatilities, one is able to better figure out the structural forces that drive
the aforementioned idiosyncratic volatility puzzle by scrutinizing the news components.

In this paper, I reexamine the existence of the idiosyncratic volatility anomaly at the
quarterly horizon and investigate the relative importance of cash flow and discount rate news
in driving this anomaly. I estimate quarterly idiosyncratic volatilities using daily returns. I
also estimate a panel VAR model with quarterly CRSP and Compustat data obtained from
WRDS. Following the volatility literature (Ful, [2009; |Guo et al. [2014)), both discount rate
and cash flow news volatilities are computed using an out-of-sample EGARCH model. Two
decile portfolios sorted on respective volatilities are created. While the average return of the
arbitrage portfolio constructed with discount rate news volatilities is insignificant, the average

return of the arbitrage portfolio constructed with cash flow news volatilities is positive and
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significant after controlling the market factor (a=1.52%/quarter, t-statistic=2.24) or Fama—
French factors (a=1.21%/quarter, t-statistic=1.81). These results indicate that cash flow
news volatilities rather than discount rate news volatilities mainly drive the idiosyncratic
volatility anomaly.

Firstly, these findings are consistent with the results of [Vuolteenaho (2002) as cash flow
news components rather than discount rate news counterparts mostly drive the cross-section
of returns. Secondly, the findings are similar to the results of (Campbell and Vuolteenaho
(2004)) as only the systematic or idiosyncratic cash flow risks are priced in the cross-section,
while the systematic or idiosyncratic discount rate risks are not. Lastly but not leastly, these
findings are simultaneously consistent with existing papers about the volatility anomaly (Ang
et al., 2006, 2009) and those about the skewness preference (Boyer et al., 2010; Bali et al.|
2011)). Cash flow news components are right-skewed, while discount rate news counterparts
are not—correspondingly, idiosyncratic cash flow volatilities are priced negatively, while id-
iosyncratic discount rate counterparts are not. The findings suggest that the idiosyncratic
volatilities are priced in a meaningful way only when they contain information about skew-
ness. As idiosyncratic cash flow volatilities convey more information about return skewness,
they tend to be priced in the cross-section. Unlike these volatilities, idiosyncratic discount
rate volatilities less deliver such information, so they tend not to be priced. Collectively, this
evidence supports the argument concerning investors’ lottery preference.

Subsequent sections are organized in the following manner. Section I recalls the literature
related to the idiosyncratic volatility anomaly and the news decomposition methodology.
Section describes economic models employed. Section [2.3] illustrates the data analyzed.

Section demonstrates major findings. Section [2.5 concludes this paper.
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2.1 Literature Review

Many asset pricing theories articulate that the relation between idiosyncratic risks and sub-
sequent returns should be insignificant or at least positive (Merton, 1987; Xu and Malkiel,
2004). Early findings based on time-series data display the insignificant or positive relation
between them at the aggregate level (Longstaff, |1989; Lehmann| 1990; Goyal and Santa-
Clara, 2003)). However, recent cross-sectional studies exhibit the opposite relation between
them at the individual level. In the first subsection, I introduce several papers investigating
the idiosyncratic volatility anomaly, which is the main issue I explore. In the second sub-
section, I introduce another group of papers employing news decomposition methods with

which I dissect stock returns.

2.1.1 Cross-section of return and volatility

Fama and MacBeth| (1973)) use idiosyncratic volatilities as well as market betas in their
return regression models and exhibit that the coefficients for idiosyncratic volatilities are
insignificant in almost every specification. However, their research concentrates on market
betas rather than idiosyncratic volatilities hence constructs market beta-sorted portfolios to
mitigate measurement errors in market beta estimates. As a result, their coefficients for
idiosyncratic volatilities are biased and inconsistent as idiosyncratic volatility estimates are
subject to a measurement error problem.

In contrast, Ang et al.| (2006]) concentrate on idiosyncratic volatilities instead of market
betas and show the negative relation between idiosyncratic volatilities and subsequent returns
based on cross-sectional analyses. They use daily excess returns and Fama—French three-
factor model to compute monthly idiosyncratic volatilities and investigate the performance
of idiosyncratic volatility-sorted portfolios. The authors confirm that the arbitrage portfolio
constructed with idiosyncratic volatilities outperforms even after considering both risks and

characteristics. In addition, the outperformance survives in different L /M /N specifications
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and over various subsamples. This phenomenon is globally observed in the financial markets
of G7 countries as well (Ang et al., 2009).

Since monthly idiosyncratic volatilities are positively autocorrelated, [Fu (2009) introduces
an EGARCH model instead to estimate idiosyncratic volatilities and uses monthly returns
rather than daily counterparts. He demonstrates the positive relation between expected
idiosyncratic volatilities and subsequent returns. This positive relation is consistent with the
theoretical prediction that suggests the positive risk premium for an idiosyncratic volatility
under an underdiversification problem, which is more realistic according to empirical findings
(Campbell et al., 2001)). However, other subsequent papers point out a potential look-ahead
bias and demonstrate the opposite relation between returns and out-of-sample EGARCH
volatilities (Fink et al.| [2012; Guo et al.; 2014)), which are free from the aforementioned bias.

In order to explain this counterintuitive relation between idiosyncratic volatilities and
returns, previous research has adopted skewness preference (Barberis and Huang), 2008; Boyer
et al., [2010; Bali et al., 2011; Egginton and Hur, 2018]), liquidity cost (Han and Lesmond)
2011), return reversal (Huang et al., [2010), January effect (Huang et al., [2011)), arbitrage
asymmetry and investor sentiment (Stambaugh et al., 2015; |Cao and Hanl 2016)), etc. Hou
and Loh (2016)) assess the explanatory power of these candidates and confirm that, though
some explanations such as skewness preference and market friction partly justify the volatility

puzzle, a significant portion of this anomaly remains unexplained.

2.1.2 News decomposition of return and volatility

Inherently, stock returns are driven by both cash flow news components and discount rate
news counterparts. This is intuitive since the price is the expected value of discounted
payoff (i.e. p = E[mz]). Campbell and Shiller| (1988) firstly propose the way to disentangle
these two components by applying both log-linearized dividend-price ratio model and a
VAR model. They relate returns to dividend-price ratios as well as dividend growths and

use annual time-series data at the aggregate level. Though the authors confirm the relative
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importance of cash flow and discount rate news in their findings, they focus not on returns
but on the behavior of dividend-price ratios.

Other early studies also investigate cash flow and discount rate news at the aggregate
level (Campbell, 1991; Campbell and Ammer} [1993)). These studies report that stock returns
are largely determined by discount rate news components rather than cash flow news coun-
terparts at the aggregate level. On the other hand, (Vuolteenaho| 2002) suggest another way
to decompose by adopting log-linearized book-to-market ratio model and a VAR model. The
author relates returns to book-to-market ratio as well as return on equity and use annual
panel at the individual level. Unlike the former evidence from the aggregate level, the firm-
level result indicates that stock returns are mainly driven by cash flow news components
instead of discount rate news counterparts. Subsequent papers applying different methods
such as a Feltham—Ohlson clean surplus relation and an implied cost of capital approach
provide consistent results as well (Callen and Segal, 2004; |Chen et al., [2013]).

Since both aggregate level returns and firm-level counterparts can be disaggregated, the
interaction among the components has also been examined. |Campbell and Vuolteenaho
(2004) decompose the aggregate level data into cash flow and discount rate news, and intro-
duce two respective systematic risks. For individual returns, they use the two components
to estimate cash flow betas (i.e. “bad” betas) and discount rate betas (i.e. “good” betas)
separately. The authors show that value stocks tend to have high cash flow betas, and growth
stocks tend to have high discount rate betas. They also show that small stocks tend to have
high discount rate betas, while both small and large stocks tend to have comparable cash
flow betas. Overall, this justifies the failure of CAPM after 1963 because “bad” cash flow
betas are compensated more than “good” discount rate betas. |Campbell et al.| (2013]) adopt
a similar framework and compare the downturn of the early 2000s, which is largely driven
by discount rate news, and that of the late 2000s, which is mainly driven by cash flow news.

Campbell et al| (2010) further disaggregate the firm-level data into cash flow and dis-

count rate news. They use two aggregate level components CFm, DRm and two firm-level

o4



components CFi, DRi to estimate four different betas (i.e. CFi-CFm betas, DRi-CFm betas,
CFi-DRm betas, DRi-DRm betas). The authors demonstrate that, while value stocks tend
to have high CFi-CFm betas, growth stocks tend to have high CFi-DRm betas. In contrast,
they show that two firm-level discount rate betas of value stocks and growth counterparts
are not significantly different from each other.

Other details of news decomposition methods have also been studied by previous liter-
ature. (Chen and Zhao| (2009) point out several vulnerabilities of these VAR-based decom-
position methods and explore some methodological remedies. Engsted et al.| (2012)) suggest
another technical way to circumvent these issues. (Cenedese and Mallucci (2016) decom-
pose aggregate level international stock returns and report that the international returns are
largely driven by cash flow shocks rather than discount rate counterparts. [Lochstoer and
Tetlock (2019) decompose size, book-to-market, profitability, investment, and momentum
portfolio returns and show that cash flow news components drive these anomalies rather

than discount rate news counterparts.

2.2 Economic Model

2.2.1 Idiosyncratic volatility

Firstly, I estimate idiosyncratic volatilities using Fama—French model to check whether the
idiosyncratic volatility puzzle is consistent at a quarterly horizon or not. In detail, I estimate

the following time-series regression repeatedly.

Titd — Tfid = Qt + Bit (Tmtd — T jea) + 8uSM Big + hiyy HM Lyg + €44.

The subscripts 4, t and d stand for firm, quarter (or month) and day respectively. Overall, I
follow the details of Fama and French! (1993)) for regression variables and |Ang et al.| (2006]) for

idiosyncratic volatilities. Each quarter (month), I estimate this time-series regression using
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daily return data and compute Var [eita] on a quarterly (monthly) basis recursively. I
exclude idiosyncratic volatilities that are computed with less than 31 (11) daily observations
to address an errors-in-variables issue.

Secondly, I sort stocks based on these idiosyncratic volatility estimates at the end of
quarter (month) ¢ and construct value-weighted quintile portfolios for the quarter (month)
t+ 1, ie. 3/3 (1/1) strategy of |Jegadeesh and Titman| (1993b). Portfolios are rebalanced
each quarter (month). In addition, I construct zero investment portfolio by buying the first
(i.e. the least volatile) portfolio and selling the fifth (i.e. the most volatile) one.

Thirdly, I measure the performance of those portfolios based on their historical returns.
Tpt — Tft = O{p + /Bp (Tmt — Tft) + SPSMBt ‘I— thMLt + gpt'

For the portfolio p, I compute (i) sample statistics, (ii) CAPM statistics and (iii) Fama—

French model statistics by using its time-series.

2.2.2 News decomposition

To decompose firm-level stock returns, I adopt the framework of |[Vuolteenaho| (2002). Unlike
the method of |Campbell and Shiller| (1988), this framework incorporates book-to-market

ratio, return on equity and clean-surplus relation to disaggregate firm-level returns.

0= P — Y0 (s — fig)
j=0 J=0

Z 97 (€t+j — fi+5)

j=0

= Tt — Et—l [Tt] :AEt + Ry — AEt

Z PjTt+j]

—{Veft — Nr,t-

For simplicity, I omit firm subscripts. The function E;|-] represents the expected value

subject to the information set available at time ¢, i.e. E[-|{]. The function AE;[-] denotes
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the change of expectation at time ¢, i.e. E;[-] — E;_1[-]. The variables 6, r, e and f stand
for log book-to-market ratio, log excess return, log return on equity and log interest rate,
respectively. The coefficient p and the term x stand for discount factor and approximation,
respectively. Therefore, the returns are decomposed into two components, i.e. cash flow
news N, and discount rate news [V,. In addition, this return decomposition implies the

following variance decomposition simultaneously.
Var [ry — Ey_q [ry]] = Var [N.s.] + Var [N,.¢] — 2Cov [Negy, Nyt -

In practice, one is able to decompose the returns by assuming VAR process for state variables.

In particular, I assume the first-order VAR process rather than others.

z;, = I'z;_1 + .

-
The first element of the state vector z is r, i.e. z = (r . ) . This linear process implies

the recursive structure hence the change of expectation can be obtained as well.
AEt [Zt+j] = F]ut

Both discount rate news and cash flow news can be obtained by combining the change of

expectation with the news decomposition above.

N,+ =AE; ZPjTtﬂ‘]

Lj=1

=AE, Z pjelTI‘jut]

Lj=1

—el (I — pI') ! pT'u,

:ATut,
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and

Nepr =r — Eiq (7] + Nyt
—el'u, + ATy

:(e]_ + A)Tut.

-
The vector el contains 1 only for the first element and 0 for the others, i.e. el = (1 ()T) .
By defining ¥ as the variance of u;, ie. X = E [ututT }, one can rewrite the variance

decomposition above.

Var [N,;] =A"TA
Var [Ns;] =(el + ) (el + A)

Cov [Nyps, Nepi] =X (el + X).

The coefficient matrix I' and the variance matrix 3 are estimated using panel data. In order
to consider the time effect in the state vector z, I demean the observations cross-section by
cross-section and estimate both T' and ¥ using WLS with the weight 1/N; following Fama
and MacBeth| (1973). N, stands for the number of firms at time ¢. In addition, I adopt
a time-clustered standard error for both I' and 3 because it is robust to the time effect
(Petersen, [2009)). Following [Vuolteenaho| (2002)) and |Callen and Segal| (2004)), I employ 0.967

(0.967'/4) as the annual (quarterly) discount factor p.

2.2.3 EGARCH

Ang et al| (2006]) exploit daily data to compute idiosyncratic volatilities. Since the news
decomposition proposed by [Vuolteenaho| (2002) requires accounting data, neither daily nor
monthly news data are available. In addition, the aforementioned variance decomposition

is static so cannot alter traditional idiosyncratic volatilities. Instead, I apply an EGARCH
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model to estimate news volatilities since many papers studying idiosyncratic volatilities
adopt this model (Ful 2009; Fink et al., 2012). These papers use monthly data to calculate

EGARCH idiosyncratic volatilities.

Nig — T =Q; + Bz (Tmt - Tft) + SiSMBt +h;HML; + ¢y
p q c. 2
02 =exp (ai + Z bulno? | + Z o 16; (gzt—k;) o ( B %>] > .
=1 k=1 it—k

Since volatilities are correlated serially, an EGARCH model better reflects the time-varying

Eit—k

Oit—k

property. In order to avoid the look-ahead bias mentioned by Guo et al. (2014), I compute
out-of-sample EGARCH idiosyncratic volatilities recursively. Following above researches,
I combine an EGARCH model together with Fama—-French model. However, unlike these
researches, I only consider the case p = ¢ = 1, i.e. EGARCH(1,1), because quarterly data
provide less available observations than monthly data. Both maximum likelihood and Normal
distribution are employed to estimate this model. The log likelihood function is maximized
using TR (trust region) method in SAS. I set 32,767 (25 — 1) as the maximum number of

iterations.

2.3 Data Description

2.3.1 Raw data

I obtain all CRSP and Compustat data from WRDS. Firstly, I employ CRSP daily stock
file to calculate monthly (quarterly) idiosyncratic volatilities and CRSP monthly stock file
to construct monthly (quarterly) quintile portfolios sorted on past idiosyncratic volatilities.
CRSP daily stock file is from December 31, 1925 to December 31, 2015 and CRSP monthly
stock file is from December 1925 to December 2015, respectively. Secondly, I use both Com-
pustat fundamentals annual and Compustat fundamentals quarterly to attain the relevant

accounting information such as book-to-market ratio and return on equity. Compustat fun-
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damentals annual is from January 1950 to November 2016 and Compustat fundamentals
quarterly is from January 1961 to November 2016, respectively. Thirdly, I merge CRSP and
Compustat data by using the linking table of CRSP/Compustat merged. Fourthly, I exploit
daily and monthly Fama—French factors to apply CAPM and Fama—French model, which
enable to (i) compute an idiosyncratic volatility and (ii) measure the excess performance of

a portfolio after considering risk factors.

2.3.2 Volatility and news

Firstly, I estimate both monthly and quarterly idiosyncratic volatilities with daily data. In
depth, I regress firm-level excess returns (r; —rs) on the market factor (r,, —ry) and Fama-
French factors (SM B, HML) recursively and compute the sample standard deviation of
residuals ( Var [ei]). T exclude monthly volatilities estimated with less than 11 observations
and quarterly volatilities estimated with less than 31 observations. CRSP stocks are sorted
on one-month-lagged or one-quarter-lagged volatilities, but excluded if the volatilities are
unavailable. Value-weighted quintile portfolios are constructed and rebalanced each month
or each quarter.

Secondly, I estimate both annual and quarterly VAR models with annual and quarterly
data, respectively. For annual data, I only include the observations at time ¢ with (i) a
book equity available at ¢ — 1, t — 2, ¢t — 3, (ii) a net income available at ¢t — 1, t — 2, (iii)
a long-term debt available at ¢ — 1, ¢t — 2, (iv) a December fiscal-year end month, (v) a
market equity more than $10M and (vi) a log book-to-market ratio bigger than 1/100 but
smaller than 100. In order to compare the results conveniently, I follow these requirements
imposed by [Vuolteenaho| (2002) in the annual case. In contrast, I impose only two restric-
tions in the quarterly case, i.e. an observation must have (i) a log excess return (r), a log
book-to-market ratio (f) and a log excess return on equity (e) available at ¢ — 1 and (ii)
a December fiscal-year end month. Since idiosyncratic volatilities only require CRSP data,

their availabilities are more sufficient than the availabilities of news components that require
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both CRSP and Compustat data. By relaxing the requirements instead, more returns are
able to be decomposed into news components.

Thirdly, I estimate the idiosyncratic volatilities of both discount rate news and cash
flow news with the data above using an EGARCH model. In detail, I obtain out-of-sample
EGARCH volatilities firm by firm with all historical data available at that time, but only
include the volatilities computed with more than or equal to 12 quarterly observations (3
years). Since the estimation involves numerical procedures, one cannot be fully apart from
the threat of outliers. Following |Fu (2009), I winsorize the smallest and biggest 2.5% of news
volatilities quarter by quarter. Panel A and Panel B of Figure display the distributions

of discount rate and cash flow news idiosyncratic volatilities, respectively.

2.4 Main Result

2.4.1 Idiosyncratic volatility

Table shows the month by month (1/0/1) performance of quintile portfolios sorted on
lagged idiosyncratic volatilities. The first column is the portfolio with lowest volatility
and vice versa. In addition, the sixth column is the zero cost portfolio formed by sell-
ing the most volatile and buying the least volatile. The first three rows contain sample
means, corresponding t-statistics and standard deviations of quintile portfolios, respectively.
While the average return of the least volatile quintile is positive (0.67%/month) and signif-
icant (Z-statistic=4.71), that of the most volatile quintile is marginal (0.15%/month) and
insignificant (¢-statistic=0.53). The average return of the arbitrage portfolio is positive
(0.53%/month) and significant (¢-statistic=2.65). Though this return is smaller than what is
reported by |Ang et al. (2006) (1.06%/month), its significance is close enough (Newey—West
t-statistic=3.10). Though unreported, the result from matching subsample is consistent
(0.94%/month, Newey—West t-statistic=2.89).

The second four rows and last eight rows include the results from CAPM and Fama—
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French model, respectively. While the CAPM « of quintile 1 is positive (0.13%/month) and
significant (¢-statistic=3.97), that of quintile 5 is negative (—0.74%/month) and significant
(t-statistic=—4.69). The CAPM « of the 1—5 portfolio is positive (0.87%/month) and
significant ({-statistic=4.84). Since the CAPM g of this portfolio is negative (—0.53), the
abnormal performance cannot be justified by the market risk. Furthermore, this pattern
is obvious with Fama—French model as well. The Fama—French model a of the arbitrage
portfolio is positive (0.97%/month) and significant (¢-statistic=6.90). Risk loadings are
also negative (f=—0.31, s=—1.19) or insignificant (t(h)-statistic=0.59) so cannot justify the
abnormal return. In a nutshell, this confirms the consistency of the results and implies the
existence of the idiosyncratic volatility anomaly.

Table [2.2[ shows the performance of quintile portfolios quarter by quarter (3/0/3) instead.
The format of this table is identical to that of Table 2.1} Unlike the case of Table 2.1], the
average return of the 1—5 portfolio is negative (—0.81%/quarter). However, this average
return is insignificant (¢-statistic=—0.78). In contrast, the results from both models indicate
that the abnormal return is positive (acapm=1.27%/quarter, app=1.17%/quarter) and more
significant (¢ (acapm)-statistic=1.45, t (app)-statistic=1.61) after controlling other factors.
Though unreported, this abnormal performance is even more significant with the subsample
after 1963 (Ang et al., 2006). With the average return 1.90 percent, both CAPM «a and
FF « are positive (acapm=4.19%/quarter, app=4.09%/quarter) and significant (¢ (ccapm)-
statistic=3.51, ¢ (apr)-statistic=4.01). The signs of risk loadings are consistent with those
in Table and the magnitudes are bigger than them. In particular, the CAPM g of the
quarterly 1—5 portfolio is —0.99 (—1.44 with the post-1963 subsample), which is about twice
bigger than that of the monthly counterpart (—0.54). Likewise, the coefficients of Fama—
French model from quarterly data (5=-0.54, s=—1.74, h=0.23) are bigger than those from
monthly data (f=—0.31, s=—1.19, h=0.02). In short, this implies that the idiosyncratic

volatility anomaly is consistent in quarterly data as well.
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2.4.2 News decomposition

Table displays the descriptive statistics computed from annual data. In order to compare
the results conveniently, I record both all sample statistics and subsample counterparts. In
detail, all sample is from 1954 to 2015 with 58,554 firm-years and subsample is from 1954
to 1996 with 33,302 firm-years. As aforementioned, observations are demeaned cross-section
by cross-section to address time fixed effects. Panel A and Panel B exhibit the descriptive
statistics obtained from all sample raw data and all sample demeaned data, respectively.
Panel C and Panel D present the descriptive statistics calculated from subsample raw data
and subsample demeaned data, respectively. All statistics are calculated from pooled data.
For three variables r (log excess return), 6 (log book-to-market ratio) and e (log excess
return on equity), I estimate sample mean, standard deviation, maximum, minimum and
three quartiles. While the demeaning reduces the variations in r and 6 significantly (0.48
versus 0.44, 0.94 versus 0.91), the reduced portion of the variation in e is marginal (0.41
versus 0.41).

Table [2.4] contains the estimates of annual VAR models. In depth, I analyze both all
sample (1954-2015) and subsample (1954-1996). Panel A and Panel B report the results
obtained from all sample. Panel C and Panel D present the results attained from subsample.
The first 3-by-3 square of Panel A displays the VAR(1) coefficient matrix. Firstly, three
coefficients in the first row suggest the positive and significant relation between log return
(riz) and three state variables lagged one year (ri—1, 01, €x—1). (1,1), (1,2), and (1,3)
coefficients are respectively 0.0543, 0.0519, and 0.0660 and all significant. These coefficients
are consistent with a momentum effect (Carhart} |1997)), a high book-to-market effect (Fama
and French, |1992)), and a high profitability effect (Fama and French| [2016)), respectively.
Secondly, the (2,2) and (3,3) coefficients imply the positive autocorrelation of log book-to-
market ratio and log return on equity. The second 3-by-3 square of Panel A demonstrates
the variance matrix. Log return shocks are negatively correlated to log book-to-market ratio

shocks, but positively correlated to log return on equity. Panel B shows the result of static
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news variance decomposition. The ratio of discount rate news variance to cash flow news
variance is about 11.35% (0.0157/0.1383). This result indicates that firm-level returns are
mainly driven not by discount rate news but by cash flow news. The format of Panel C and
Panel D is identical to that of Panel A and Panel B. By and large, the sign and significance
of the estimates are comparable. Only the (1,3) and (3,2) coefficients have different results
(0.0660 versus —0.0104, 0.0133 versus —0.0049). The ratio between discount rate news
variance and cash flow news variance is about 9.91% (0.0077/0.0777). In summary, these
findings are consistent with those of [Vuolteenaho| (2002) and Callen and Segal (2004)).

Table exhibits the descriptive statistics computed from quarterly data instead. The
format of this table is identical to that of Table 2.3} The sample is from March 1972 to
December 2015 (176 quarters) with 235,704 firm-quarters. To address time fixed effects,
observations are demeaned cross-section by cross-section. Panel A displays the descriptive
statistics calculated from raw data and Panel B demonstrates the descriptive statistics ob-
tained from demeaned data, respectively. All statistics are calculated from pooled data. I
estimate sample mean, standard deviation, maximum, minimum and three quartiles for three
variables r,  and e. Similar to the case of Table [2.3] the demeaning reduces the variations
in 7 and 0 (0.29 versus 0.26, 0.98 versus 0.93), but does not reduce the variation in e (0.18
versus 0.18).

Table 2.0 contains the estimates of a quarterly VAR model. Panel A exhibits the estimates
of both coefficient matrix and variance matrix and Panel B displays the result of static news
variance decomposition. In general, the differences are marginal compared to Table [2.4], and
(1,1), (1,2), and (1,3) coefficients still exhibit momentum, book-to-market, and profitability
effects, respectively. In the quarterly VAR model, the (1,1) and (1,2) coefficients are smaller
than the counterparts in the annual VAR model (0.0543 versus 0.0288, 0.0519 versus 0.0084).
In contrast, the (1,3) coefficient is bigger than the counterpart in the annual VAR model
(0.0660 versus 0.0975). This is natural since this VAR model requires quarterly returns

instead of annual returns. By and large, both momentum and book-to-market effects are
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weaker in the short run and researchers often use a past 11-month return from ¢t —2 to t — 12
months for a momentum effect and a book-to-market ratio from ¢ — 1 accounting year. On
the other hand, the profitability effect is clearer in the short run (Hou et al., 2015). Panel
B shows the result of static news variance decomposition. The ratio of discount rate news
variance to cash flow news variance is about 7.60% (0.0040/0.0526), which is smaller than
the ratio computed using annual data (11.35%) and the ratio from the subsample (9.91%).
Again, this result emphasizes the role of cash flow news in determining quarterly returns.
Overall, this result is consistent with what Table [2.4]exhibits and justifies the use of quarterly

data in decomposing quarterly firm-level returns.

2.4.3 News volatility

Table shows the performance of quarterly decile portfolios sorted on EGARCH id-
iosyncratic volatilities of discount rate news. The format of this table is identical to
that of Table 2.2 The average return of the 110 portfolio is negative (—0.04%/quar-
ter) but insignificant (¢-statistic=—0.06). Likewise, both CAPM and Fama-French alphas
of this portfolio are positive (acapm=0.58%/quarter, app=0.09%/quarter) but insignificant
(t (capm)-statistic=0.88, ¢ (app)-statistic=0.14). Like the case of Table , both CAPM
and Fama—French betas are negative (Scapm=-—0.32, Spr=-—0.26) and significant (¢ (Scapm)-
statistic=—4.20, ¢ (Bpr)-statistic=—3.03). Unlike the case of Table [2.2] however, the HM L
coefficient instead the SM B coefficient is positive (0.36) and significant (¢-statistic=3.27).
This implies that the stocks in the first portfolio and those in the fifth counterpart are not
much different in terms of size. This is not a surprising result as I impose more restrictions
here. In contrast, traditional idiosyncratic volatility portfolios impose relatively less restric-
tions, so smaller firms are included more. In short, this indicates the difference between the
portfolios sorted on traditional idiosyncratic volatilities and the portfolios sorted on discount
rate news idiosyncratic volatilities.

Table shows the performance of quarterly decile portfolios sorted on EGARCH id-
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iosyncratic volatilities of cash flow news. The format of this table is identical to that of
Table . The average return of the zero investment portfolio is positive (0.76%/quar-
ter) but insignificant (t¢-statistic=1.08). However, both CAPM and Fama-French alphas
of this portfolio are positive (acapm=1.52%/quarter, app=1.21%/quarter) and significant
(t (capm)-statistic=2.24, ¢ (app)-statistic=1.81). Like the case of Table 2.2 both CAPM
and Fama—French betas are negative (Scapy=-—0.39, Spr=-0.23) and significant (¢ (Scapm)-
statistic=—4.95, t (Opr)-statistic=—2.69). The sign and significance of Fama-French coef-
ficients are identical as well. The SM B coefficient is negative (—0.46, t-statistic=—3.18)
and the HML coefficient is positive (0.30, ¢-statistic=2.74). Unlike the case of Table [2.7]
the portfolios sorted on cash flow news idiosyncratic volatilities are comparable with those
sorted on discount rate news idiosyncratic volatilities. Therefore, one can confirm that the
behavior of the arbitrage portfolio using cash flow news idiosyncratic volatilities is similar to
that of the arbitrage portfolio using traditional idiosyncratic volatilities, while the behavior
of the arbitrage portfolio using discount rate news idiosyncratic volatilities is different from
the other two.

This result suggests that not all idiosyncratic volatilities are priced in the cross-section,
and that investors price cash flow news idiosyncratic volatilities and discount rate news
idiosyncratic volatilities differently due to some reasons such as skewness preference and
distress preference. According to the result, investors tend to underprice less volatile stocks
but overprice more volatile counterparts in terms of either traditional idiosyncratic volatilities
or cash flow news idiosyncratic volatilities. In contrast, such a tendency dissapears when

one introduces discount rate news idiosyncratic volatilities instead.

2.5 Conclusion

Throughout this paper, I revisit the idiosyncratic volatility anomaly of |Ang et al.| (2006)

using quarterly data and compare the relative importance of discount rate and cash flow
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news volatilities in driving the volatility puzzle based on the predictive regression-based
approach proposed by [Vuolteenaho (2002). There have been many suggestions concerning
why investors price the idiosyncratic volatilities in a counterintuitive way in the cross-section,
but researchers have seldom paid attention to the respective role of cash flow and discount
rate volatilities in explaining the anomaly.

First, I estimate monthly and quarterly idiosyncratic volatilities using daily data and
construct respective quintile portfolios sorted on these volatilities. The arbitrage portfolio
collects 0.9 percent (1.3 percent) alpha returns per month (quarter) on average after consid-
ering the market factor and does 1.0 percent (1.2 percent) alpha returns per month (quarter)
on average after considering Fama-French factors, respectively. The result shows that the
anomaly is consistent in both monthly and quarterly data. Second, I estimate annual and
quarterly VAR models to decompose firm-level stock returns into discount rate news com-
ponents and cash flow news counterparts. Overall, the estimates from annual and quarterly
data are consistent with each other and suggest that cash flow news components rather than
discount rate news counterparts play a more critical role in driving returns.

To see if both cash flow and discount rate idiosyncratic volatilities are priced, I estimate
these volatilities using an out-of-sample EGARCH model on a quarterly basis and investigate
the cross-section of returns following [Fu| (2009). I create two decile portfolios sorted on
discount rate and cash flow news volatilities, correspondingly. The average return of the 1—10
portfolio from discount rate news volatilities is insignificant, but the corresponding portfolio
from cash flow news volatilities acquires about 1.5 percent (1.2 percent) alpha returns per
quarter on average after controlling the market factor (Fama—French factors). These findings
indicate that cash flow news volatilities rather than discount rate news counterparts are the
main driving force of the volatility anomaly. In other words, investors do not equally value
cash flow and discount rate idiosyncratic volatilities, but cherry-pick and overvalue the former
volatilities, while do not price the latter volatilities in the cross-section.

Skewness preference partly vindicates this tendency. If cash flow shocks are more skewed
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then discount rate counterparts, then cash flow idiosyncratic volatilities will deliver some
information about how much returns are skewed, while discount rate idiosyncratic volatilities
will not convey such information. Another candidate explanation regarding the volatility
anomaly is distress preference. Because overcoming financial distress is a positive signal
for investors, they tend to consider stocks under distress as unscratched lottery tickets and
correspondingly overvalue them. Further discussions and investigations will be worthwhile
as the volatility anomaly is prevalent apparently, while economic theories supporting the

volatility anomaly are relatively weaker yet.
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Table 2.1. Monthly Idiosyncratic Volatility-Sorted Portfolio

This table reports the performance of monthly idiosyncratic volatility-sorted quintile portfolios. I construct
these quintile portfolios by using lagged monthly idiosyncratic volatilities. The volatilities are estimated
from daily returns and Fama-French model, i.e.

ri—rf =05+ (rm —rp) +5SMB+h;HML +¢,.

For notational convenience, I omit time subscripts. 1 estimate +/Varleg;] for all firms month by
month and construct quintile portfolios recursively (1/0/1). Idiosyncratic volatilities computed
with less than 11 daily observations are excluded. The sample is from December 31, 1925 to
December 31, 2015. 5 portfolios are from August 1926 to December 2015 (1,073 months). The
first row displays quintiles column by column. The last column is the zero investment portfolio
(i.e. constructed by buying the first and selling the fifth). The second partition include sample
means and standard deviations. The third and fourth partitions contain both CAPM and Fama-
French model estimates, respectively. Corresponding t¢-statistics are reported by using round brackets.

Quintile 1 2 3 4 5 1-5
Mean 0.0067 0.0071 0.0076 0.0052 0.0015 0.0053
(4.7129) (3.8419) (3.4983) (2.1295) (0.5280) (2.6515)
St. dev. 0.0466 0.0606 0.0715 0.0804 0.0900 0.0648
CAPM o 0.0013 0.0000 —0.0006 —0.0036 —0.0074 0.0087
(3.9674) (0.0032) (—1.1564) (—3.6459) (—4.6909) (4.8436)
CAPM B 0.8430 1.1020 1.2830 1.3670 1.3720 —0.5294
(143.2530)  (159.6910)  (125.0570) (75.2020) (47.1820)  (—16.0576)
FF « 0.0013 —0.0004 —0.0013 —0.0043 —0.0084 0.0097
(4.5894) (—1.2072) (—2.7654) (—5.8466) (—6.6785) (6.9000)
FF 3 0.8660 1.0810 1.2070 1.2290 1.1730 —0.3074
(159.4050)  (158.7280)  (131.4350) (84.1420) (47.0550)  (—11.0391)
FF s —0.1687 —0.0092 0.2923 0.7003 1.0214 ~1.1902
(—18.9814) (—0.8220) (19.4516) (29.2910) (25.0326)  (—26.1115)
FF h 0.0550 0.1466 0.1306 0.0309 0.0308 0.0243
(6.8963) (14.6702) (9.6842) (1.4401) (0.8399) (0.5932)
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Table 2.2. Quarterly Idiosyncratic Volatility-Sorted Portfolio

This table reports the performance of quarterly idiosyncratic volatility-sorted quintile portfolios. I construct
these quintile portfolios by using lagged quarterly idiosyncratic volatilities. The volatilities are estimated
from daily returns and Fama-French model, i.e.

ri—rf =05+ (rm —rp) +5SMB+h;HML +¢,.

For notational convenience, I omit time subscripts. 1 estimate /Varl[e;] for all firms quarter by
quarter and construct quintile portfolios recursively (3/0/3). Idiosyncratic volatilities computed
with less than 31 daily observations are excluded. The sample is from December 31, 1925 to De-
cember 31, 2015. 5 portfolios are from September 1926 to December 2015 (358 quarters). The
first row displays quintiles column by column. The last column is the zero investment portfolio
(i.e. constructed by buying the first and selling the fifth). The second partition include sample
means and standard deviations. The third and fourth partitions contain both CAPM and Fama-
French model estimates, respectively. Corresponding t¢-statistics are reported by using round brackets.

Quintile 1 2 3 4 5 1-5
Mean 0.0204 0.0227 0.0273 0.0248 0.0285 —0.0081
(4.1454) (3.0555) (2.9126) (2.3107) (2.1512) (—0.7767)
St. dev. 0.0933 0.1406 0.1773 0.2029 0.2507 0.1965
CAPM o 0.0034 —0.0030 —0.0047 ~0.0105 —0.0093 0.0127
(3.2583) (—1.9531) (—1.8782) (—2.6013) (—1.1681) (1.4525)
CAPM B 0.8170 1.2314 1.5314 1.6875 1.8102 —0.9933
(89.8724) (90.0240) (69.3692) (47.5046) (25.7498)  (—12.9130)
FF « 0.0029 —0.0049 —0.0062 ~0.0110 —0.0087 0.0117
(3.1553) (—3.8043) (—3.0571) (—3.5278) (—1.3149) (1.6066)
FF 3 0.8478 1.1589 1.3680 1.4232 1.3849 ~0.5372
(86.6026) (86.1318) (63.7162) (43.4302) (19.8181) (—7.0312)
FF s —0.1495 0.0970 0.4530 0.9106 1.5917 —1.7412
(—8.6259) (4.0700) (11.9160) (15.6914) (12.8622)  (—12.8691)
FF h 0.0617 0.2203 0.1609 0.0053 —0.1721 0.2337
(4.6777) (12.1592) (5.5649) (0.1199) (—1.8281) (2.2713)
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Table 2.3. Annual Sample Descriptive Statistic

This table displays the descriptive statistics obtained from annual data. I report both all sample and
subsample statistics for convenient comparison. All sample is from 1954 to 2015 (58,554 firm-years) and
subsample is from 1954 to 1996 (33,302 firm-years). The variables are demeaned each year to address time
fixed effects, i.e.

Ny
demeaned __ raw
X3 = XI™ = X /Ny
Jj=1

The subscripts ¢ and ¢ stand for firm and year, respectively. The variables r, 6 and e are log excess return,
log book-to-market ratio and log excess return on equity, respectively. Panel A-D contain the descriptive
statistics of raw data from all sample, those of demeaned data from all sample, those of raw data from
subsample and those of demeaned data from subsample, respectively. To be included in the data, an
observation must have (i) a book equity available at ¢ — 1, t — 2, ¢ — 3, (ii) a net income available at
t—1,¢t—2, (iii) a long-term debt available at ¢t — 1, t — 2, (iv) a December fiscal-year end month, (v) a
market equity more than $10M and (vi) a log book-to-market ratio bigger than 1/100 but smaller than 100.

Variable Mean St. dev. Minimum 1Q Median 3Q Maximum
Panel A. All sample raw data
rigv —0.0076 0.4831 —3.9068 —0.2297 0.0284 0.2568 3.3388
o —0.3640 0.9402 —4.6024 —0.8689 —0.3232 0.1679 4.5943
e —0.0490 0.4132 —2.3026 —0.0426 0.0328 0.0907 4.3625
Panel B. All sample demeaned data
pemeaned 0 0.4435 —3.8314 —0.2047 0.0181 0.2362 3.1295
gilemeancd 0 0.9061 —4.5725 —0.4605 0.0457 0.4633 5.1649
efemeaned 0 0.4078 —2.3617 —0.0260 0.0582 0.1549 4.3760
Panel C. Subsample raw data
v 0.0349 0.4071 —3.2730 —0.1755 0.0409 0.2524 3.3388
o —0.2778 0.8149 —4.5156 —0.7087 —0.1926 0.2383 4.5803
eV —0.0032 0.2940 —2.3026 —0.0180 0.0364 0.0843 4.3625
Panel D. Subsample demeaned data
rdemeaned 0 0.3646 —-3.1734 —0.1904 0.0024 0.1926 3.1295
ggemeancd 0 0.7684 —4.1723 —0.3815 0.0804 0.4546 5.0759
efemeaned 0 0.2907 —2.3617 —0.0292 0.0266 0.0923 4.3760

it
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Table 2.4. Annual VAR Model Estimate

Panel A and Panel C of this table report the estimates of annual firm-level VAR models, i.e.

zit =Lz 1 + uy
Y =E [uitum .

Subscripts ¢ and t stand for firm and year, respectively. Above z;; is the vector of three state variables 7,
0;: and e;+, which are log excess return, log book-to-market ratio and log excess return on equity. To address
time fixed effects, all state variables are demeaned year by year. I report both all sample and subsample
estimates in Panel A and Panel C. All sample is from 1954 to 2015 (58,554 firm-years) and subsample is
from 1954 to 1996 (33,302 firm-years). I estimate both I" and ¥ by using WLS with the weight 1/N;. The
first and second 3-by-3 squares include the estimates of I' and X, respectively. Corresponding ¢-statistics
are computed with time-clustered standard errors (Petersen, 2009) and reported by using round brackets.

Panel A. All sample VAR model

r 3
Tit—1 Oit—1 €it—1 Tit Oit €it
Tit 0.0543 0.0519 0.0660 7 0.1516 —0.1242 0.0225
(3.1081) (6.2696) (2.9213) (11.5505) (—11.5470) (8.2013)
;¢ 0.1412 0.8278 0.0633 6, —0.1242 0.2043 0.0147
(7.3666) (59.7793) (2.4752) (—11.5470) (11.2931) (4.9005)
€t 0.1178 0.0133 0.4993 e 0.0225 0.0147 0.0775
(7.1741) (2.3366) (19.5019) (8.2013) (4.9005) (8.4908)
Panel B. All sample variance decomposition
Var [N,] Var [N,f] —2 x Cov [Ny, Nef] Corr [Ny, Nf]
0.0157 0.1383 —0.0024 0.0259
[0.1035] [0.9124] [-0.0159]
Panel C. Subsample VAR model
r b))
Tit—1 Oit—1 €it—1 Tit Oit eit
Tt 0.0434 0.0567 —0.0104 7 0.1007 —0.0844 0.0121
(2.5414) (5.4237)  (—0.4520) (10.6608) (—10.3151) (6.9688)
0t 0.1147 0.8150 0.0921 6 —0.0844 0.1373 0.0073
(5.1928) (35.4021) (2.6917) (—10.3151) (8.6025) (2.6708)
it 0.0868 —0.0049 0.3846 ey 0.0121 0.0073 0.0388
(4.1457)  (—0.6027) (7.5094) (6.9688) (2.6708) (5.8756)
Panel D. Subsample variance decomposition
Var [N, ] Var [Ney] —2 x Cov [Ny, Ney] Corr [N, Nef]
0.0077 0.0777 0.0153 —0.3117
[0.0769] [0.7713] [0.1518]
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Table 2.5. Quarterly Sample Descriptive Statistic

This table displays the descriptive statistics obtained from quarterly data. The sample is from March 1972
to December 2015 (176 quarters, 235,704 firm-quarters). The variables are demeaned each quarter to address
time fixed effects, i.e.

Ny
demeaned __ raw
Xit = X _Zth/Nt-
Jj=1

The subscripts ¢ and ¢ stand for firm and quarter, respectively. The variables r, 6 and e are
log excess return, log book-to-market ratio and log excess return on equity, respectively. Panel A,
B contain the descriptive statistics of raw data and those of demeaned data, respectively. In or-
der for an observation to be included in the data, here I impose two requirements, i.e. an ob-
servation must have (i) r, # and e available at ¢t — 1 and (ii) a December fiscal-year end month.

Variable Mean St. dev. Minimum 1Q Median 3Q Maximum
Panel A. Raw data
rigv —0.0196 0.2938 —4.6771 —0.1353 0.0021 0.1242 2.5846
o —0.3422 0.9777 —8.4217 —0.8697 —0.3024 0.2052 9.8809
e —0.0228 0.1842 —2.3026 —0.0146 0.0075 0.0233 4.9245
Panel B. Demeaned data
piemeaned 0 0.2649 —4.3816 —0.1113 0.0082 0.1280 2.5366
gilemeancd 0 0.9259 —8.3662 —0.4717 0.0431 0.4796 10.5509
efemeaned 0 0.1826 —2.3052 —0.0046 0.0223 0.0511 4.9665

1t
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Table 2.6. Quarterly VAR Model Estimate

Panel A of this table reports the estimates of a quarterly firm-level VAR model, i.e.
Zit = I'zit—1 + Wiz

Subscripts 7 and ¢ stand for firm and quarter, respectively. Above z;; is the vector of three state variables r;;,
0;: and e;;, which are log excess return, log book-to-market ratio and log excess return on equity, respectively,
ie. z; = (rit 0 eit)—r. To address time fixed effects, all state variables are demeaned quarter by quarter.
The sample is from March 1972 to December 2015 (176 quarters, 235,704 firm-quarters). I estimate both T’
and ¥ by using WLS with the weight 1/N;. The first 3-by-3 square includes the estimate of I'. The second
3-by-3 square contains the estimate of 3. Corresponding t¢-statistics are computed with time-clustered
standard errors (Petersen), 2009) and reported by using round brackets. Panel B of this table states the
variance decomposition, i.e.

Var [N,] =AT =X
Var [N.f] =(el +A) (el + )
Cov [Ny, Neg] =AT2(el + N).

Note that el = (1 OT)T and A = pI'" ((prl")*l)Tel. For notational convenience, I omit time
subscripts. NV, and N.; stand for discount rate news and cash flow news, respectively. The first
row contains the estimates of Var[N,], Var[N.], —2 x Cov[N,, N and Corr[N,, Nes|]. The ra-
tio of each component to the total variance is reported in the second row with a square bracket.

Panel A. VAR model

r 3
Tit—1 Oit—1 €it—1 Tit O €it
Tit 0.0288 0.0084 0.0975 1y 0.0605 —0.0557 0.0046
(1.8182) (2.8660) (6.6187) (17.6341) (—17.1722) (9.0500)
0 0.0421 0.9525 0.0426 6 —0.0557 0.1003 0.0089
(2.4363)  (245.0869) (1.8873) (—=17.1722) (19.8868) (11.0361)
€it 0.0648 0.0057 0.4597 e 0.0046 0.0089 0.0233
(10.2844) (3.4727) (21.6617) (9.0500) (11.0361) (15.5855)
Panel B. Variance decomposition
Var [N, ] Var [Ney] —2 x Cov [Ny, Ney] Corr [N, Ny
0.0040 0.0526 0.0039 —0.1331
[0.0657] [0.8706] [0.0637]
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Figure 2.1. Distributions of Discount Rate and Cash Flow News Volatilities

This figure displays the distribution of discount rate news volatilities (o [N,,i;]) and that of cash flow
news volatilities (ot [INey,i]). 1 first estimate the news data using a panel VAR model with accounting
variables following [Vuolteenaho| (2002)) and second estimate the volatilities using an EGARCH model with
Fama—French factors following [Fu (2009). For each distribution, I estimate a shape parameter k& and a scale
parameter 6 of a gamma distribution using the following probability density function.

(@) = et~ exn (<) e (@)

The mean and variance of the distribution are defined as kf and k62, respectively. Idiosyncratic volatilities
computed with less than 12 quarterly observations are excluded. The smallest and biggest 2.5% of respective
news volatilities are winsorized quarter by quarter to remedy potential measurement errors from intense
numerical processes. The sample is from December 1974 to December 2015 (165 quarters, 152,099 firm-
quarters).

Panel A. Discount rate news volatilities Panel B. Cash flow news volatilities
(k=1.7096, 6 = 0.0181) (k=1.9618, 6 = 0.0735)
301 81
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Chapter 3

Multiway Clustered Standard Errors

in Finite Samples

3.1 Econometric Model

Throughout this paper, I assume that neither multicollinearity (Cov [z, x| = 0 Vk # k')
nor endogeneity (E [u|zy] = 0 Vk) exists and focus only on the issues related to clustered
standard errors in panel data. Suppose that there exists a panel regression below with N

firms, T times, and K regressors.

Yit =X38 + it (3.1)
y =XB+1, (3.3)

where ¢ and ¢ are firm and time, respectively. (3.1)—(3.3|) express the same regression and
are interchangeable. (3.1]) denotes the model at the observation level. (3.2)) aggregates the

observations firm by firm and ({3.3)) further aggregates them. In many cases, clustering issues
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are closely related to (3.3]). Suppose that both regressors and errors are clustered by firm.

(

RKXK i:i/

Cov [x;¢, Xp¢/] € (3.4)
0y i#d

R i=7

{0} 77

Cov [uit; ui’t’] -

and impose no parametric assumption and hence allow heterogeneity across clus-
ters.

What is important in estimating clustered standard errors is the number of nonzero
elements in the expected value of the outer product of u. When the errors are clustered at
the firm level, the number of the nonzero elements to be considered is equal to f(N,T) =
NT?. Hence f increases linearly with N since 0f/ON = T? and quadratically with T since
0?f/0T? = 2N. In addition, f subject to g(N,T) = NT is minimized at N* = g and
T* = 1. That is, one is able to deal with this clustering by maximizing N and minimizing
T, a cross-sectional regression.

Figure |3.1] visualizes four different assumptions regarding regression errors using N = 2
and T = 5. As shown in the first panel, E [uuT] is diagonal when the observations are
clustered by neither firm nor time. When they are clustered at the firm level, however, the
expected value of the error outer product is instead block diagonal as shown in the second
panel. The expected value, in contrast, is diagonal block by block as shown in the third
panel when the data are subject to time effects.

When there exists a clustering by firm, the OLS estimator B has the limiting distribution

79



below.

B=(X"X)"'XTy (3.6)
VN (,B — ﬁ) AN (O, Avar [B]) (3.7)
Avar || =plim N (X7X)™' X Tuu X (XTX) (3.8)

N T N T T
X <Z Z E [u?txitX;H + Z Z Z E [uituit'XitXiTt/}>

=1 ¢t

X (i i E [Xitxﬂ> : : (3.9)

@
|
—
o
Il
R
-
Il
—
o

One is able to further simplify by assuming higher moments for x and wu.

When the errors are not clustered at the firm level, the second filling of the sand-
wich Avar [B] above is equal to zero. Here one can consider the OLS variance estimator
s*(XTX)~™! when the errors are homoskedastic and the heteroskedasticity-consistent vari-
ance estimator otherwise (White, [1980). White estimator is v/ N-consistent but biased when
N is finite. There exist several alternatives that adjust the estimator using degrees of free-
dom (Hinkley, [1977)), leverages (Horn et al., [1975) or the jackknife (Efron, 1982) to address
this bias issue. MacKinnon and White| (1985)) compare the alternatives and conclude that
the jackknife adjustment better performs than the other two adjustments in estimating the
variance.

When the second term is nonzero, however, one must modify the estimator for Avar [B} to
reflect the second filling. One can consider the variance estimator below, which is consistent
under the clustering (Rogers, [1993; Petersen, 2009)). Here I define 1 as the matrix whose
ijth element is equal to 1 for all is and js and 1V as the matrix whose ijth element is equal

to 1 when both ith and jth observations come from the same firm, that is, the observations
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are clustered by firm.

T —1
Fien ] = (33w
N T
( Z Z Z aitai’t’lgyt/xitx;t/>
N T
X (Z Z XX, (3.10)
' -1, N N -1
= (Z XZ.TXZ-) (Z XiTﬁiﬁiTXi> (Z X X) (3.11)
i i =1

1

= (X'X) "' XT (aa’ 0 1VM) X (XTX) ', (3.12)

where @NCR[B] is the clustered variance estimator by firm and o is the Hadamard product
operator. f express the same estimator and are interchangeable. denotes
the estimator at the observation level using a scalar indicator and corresponds to ({3.1).
aggregates this estimator using residual vectors at the firm level and corresponds to

(3.2)). (3.11) further aggregates this using the indicator matrix 1% and corresponds to (3.3)).

Figure |3.2] visualizes four different standard error estimators using the last panel of
Figure Each sandwich estimator uses (XTX)_1 X" and X (XTX)_1 as its bun and
the highlighted elements among the residual outer product ti' as its fillings. While the
heteroskedasticity-consistent estimator in the first panel includes the diagonal elements only,
the cluster-robust estimator by firm in the second panel includes the block diagonal elements
together.

This cluster-robust estimator is v/ N-consistent so one is able to employ asymptotic theory
when N is large. When N is small, however, one must change the fillings of the sandwich
because E [aa" o 1V] is the biased estimator of E [uu']. (Bell and McCaffrey, 2002) address
this bias issue using the bias reduced linearization. Resampling techniques such as the
jackknife (Shao and Rao, [1993)) or the bootstrap (Cameron et al., 2008) have also been

employed.
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Suppose, more generally, that both x and w are doubly clustered by both firm and time.

.
RFEXE G =d'Ut =t

Cov [Xz’ta Xi’t/] € (313)
{0} 1V Nt£Y

\

(
R i=1Tut=t

Cov [ug, upy] € ) (3.14)

{0} i#iNnt#At

That is, two different xs (or us) are uncorrelated only when they come from different firms
(1 # ¢') and (N) different times (¢t # t'). When the data are subject to both firm and time
effects, E [uuT} is not only block diagonal but also diagonal block by block as shown in the
last panel of Figure|3.1

When the observations are clustered at both dimensions, the number of nonzero elements
to be considered in E [uu'] is equal to f(N,T) = NT(N + T — 1). Therefore, f increases
quadratically with both N and T since 0%f/ON? = 2T and 0*f/0T% = 2N. Unlike the
singly clustered environment above, f subject to g is minimized at N* =T" = ,/g. That is,
one is not able to handle this two-way clustering by maximizing N and minimizing 7'.

Figure [3.3| compares the coverage of two one-way clustered standard error estimators
under two-way clustering. When 7' > N, a one-way clustered standard error estimator by
firm covers most of the residuals so performs well. In contrast, a one-way clustered standard
error estimator by time covers the residuals mostly when N > T'. In order for the one-way
estimators to be able to alter the the two-way estimators under two-way clustering, the
panel regression must have an extreme N x T' combination. That is, the one-way estimator
underperforms the two-way estimator significantly when N and T are moderate, so the
two-way estimator is necessary as long as there exists two-way clustering.

A lot of finance data are unfortunately closer to an extreme combination—for example,
N > T in corporate finance and 7' > N in asset pricing—rather than a moderate combina-

tion (Skoulakis, 2008). The variance estimator below is still consistent when the observations
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are clustered by both firm and time (Cameron et al., 2011; Thompson, 2011)).

Varyror [B] = (XTX) ' X7 (@i’ 0 1M7) X (X7X) ! (3.15)
—(XTX) "' X" (@ o1V +aa 017 —aa’ o 1N X (XTX) T (3.16)
=Varncr [B} + Varrer [B} — Varyc [B] ; (3.17)

where \ETCR [B] is the clustered variance estimator by time and \//a\rHc [B] is the
heteroskedasticity-consistent variance estimator. The first, second, third, and last panels
of Figure visualizes @HC [B}, @NCR [B], \//E;“TCR [B], and @NTCR [B], respectively.

So the two-way clustered variance estimator @NTCR [B} has the sandwich representation
and the formula is its easy recipe. As shown in the last panel of Figure ,
the indicator matrix 1VY7 = 1V + 17 — 177 i5 symmetric but neither diagonal nor block
diagonal and hence this two-way clustered variance estimator is always symmetric but not
always positive semi-definite unlike its one-way counterpart above. One is able to address

this issue using eigendecomposition (Cameron et al., 2011} [Politis, |2011)).

—_— -/\-

VarNTCR ,3 :\/‘./\\/_1

=Vdiag (A1, -, \g) V! (3.18)

—t M

Varyreg [B| =VATV!

=Vdiag (max (A1,0),--- ,max (Ag,0)) V1, (3.19)

where V and A are the orthonormal matrix of the eigenvectors of \//a\rNTCR [B] and the
diagonal matrix of the eigenvalues of \//a\rNTCR [B], respectively. Since AT is non-negative
and diagonal, \//'EE"JNrTCR [B} is always positive semi-definite.

Though this two-way clustered variance estimator is consistent, it is biased since
E[aa" 01"7T] # E[uu']|. This problem is mainly due to the difference between the

regression errors u and the corresponding residuals ti. The residuals are neither indepen-
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dent nor identically distributed even with independent and identically distributed errors
since 01 = (INT - X (XTX)_1 XT) u consists of both X and u. One is able to adjust the
clustered estimator using degrees of freedom when the errors are homoskedastic. When the
errors are heteroskedastic, however, one has to consider either leverages, the jackknife, or
the bootstrap instead to adjust the estimator.

MacKinnon and White (1985) compare the performance of three heteroskedasticity-
consistent variance estimators that are adjusted using degrees of freedom (HC1), leverages
(HC2), and the jackknife (HC3), respectively. |Cameron et al. (2008) likewise compare the
performance of several cluster-robust variance estimators including the jackknife estimator
(CR3) proposed by Bell and McCaffrey (2002). Following these studies, I hereafter define
CRO as the cluster-robust variance estimator with no adjustment, CR1 as the estimator
adjusted using degrees of freedom, CR2 as the estimator adjusted using leverages, and CR3
as the estimator adjusted using the jackknife, respectively.

Using these single clustered variance estimators, one is able to consider either firm effects
or time effects but not both (Petersen) 2009; Thompson, 2011). I further attach the prefix
N (or the superscript N) if the single clustered variance estimator considers firm effects
or the prefix T (or the superscript T') if the estimator considers time effects, respectively.
These two estimators are equivalent to each other fundamentally hence only the first one
is discussed hereafter. Table demonstrates the recipes for heteroskedasticity-consistent
variance estimators (HCO-HC3) and cluster-robust ones (CRO-CR3) in detail.

Table exhibits the variance estimators together. The first column is the lineup of
the estimators—OLS, HC, NCR, and NTCR, respectively. The second column shows the
assumptions correspond to the estimators. The third column contains the formulae of the
estimators. The fourth column introduces the ways to adjust regression residuals. I employ
>V and 37 to simplify firm and time effects, respectively, but they can be generalized when
there exists heterogeneity among clusters.

Table consists of three partitions. The first partition of Table displays OLS
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variance estimator. In detail, OLS estimator assumes that the errors are homoskedastic
and uncorrelated with each other. Due to this assumption, OLS estimator does not have a
sandwich form anymore. In addition, OLS estimator employs s?, which is a consistent and
unbiased estimator of o2.

The second partition displays heteroskedasticity-consistent variance estimators. These
estimators still assume that the errors are uncorrelated with each other, but allow the exis-
tence of heteroskedasticity. Therefore, the filling inside the sandwich form is not cancelled.
HCO estimator employs the diagonal elements of the outer product i, which is a consis-
tent but biased estimator of 3 (White, 1980). HC1 estimator adjusts this unbiasedness using
degrees of freedom. HC2 and HC3 estimators adjust this using leverages. In particular, the
way HC3 estimator adjusts the unbiasedness is similar to that of the jackknife estimator
(MacKinnon and White, 1985; |Davidson and MacKinnon| 2004)).

The third partition displays firm clustered variance estimators. These estimators not only
allow heteroskedastic errors, but also assume that the errors are clustered due to firm effects.
I assume both balanced panel and homogeneous covariance across clusters for simplicity but
these assumptions can be easily generalized. Like HCO estimator, CRO estimator employs
the block diagonal elements of the outer product ati’ (Rogers, 1993) hence it is consistent
but biased (Cameron et al., 2008). CR1, CR2 and CR3 estimators respectively adjust this
unbiasedness using degrees of freedom, leverages and the jackknife but they adjust block
diagonal elements rather than just diagonal elements.

The last partition displays double clustered variance estimators. These estimators as-
sume that there exist both firm and time effects. Figure 6 of |Petersen (2009) visualizes this
assumption. Like single CRO estimator, double CRO estimator employs (i) all elements in
diagonal blocks and (ii) diagonal elements in off-diagonal blocks of the outer product G’
(Cameron et all 2011) hence they are fundamentally equivalent. This sandwich estima-
tor can be rewritten conveniently using two single CRO estimators and one HCO estimator

(Thompson|, 2011; (Cameron and Miller, 2015). This recipe is practically useful because one
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cannot directly adjust @1 using I — P o 1VYT here since it is not always invertible.
Overall, these estimators rely on the modified residual @ rather than the residual . The
following NCR3 estimator, for instance, adjusts the residual using the jackknife approach

(Cameron and Miller, [2015)).

Vaters [B] = (X7X) " (f; X, i1, X) (XTX)™" (3.20)
i, =/Cy I-P) 0y (3.21)
Oy — % (3.22)
P, =X, (X'X) ' X/. (3.23)

Where P = X (XTX) ~'XT is the projection matrix and P; is its ith diagonal entry, respec-
tively. Without such correction, the estimator tends to be biased downward (Davidson and
MacKinnon, 2004; Cameron et al., |2008) because the outer product Gi' is also biased. As
aforementioned, one is able to further aggregate the filling of the sandwich estimator (|3.20))

using Hadamard product as follows.

Vategs [B] = (X7X) ' XT (@¥6T 0 1Y) X (XTX) (3.24)
¥ =/Cy (I-Po1¥) & (3.25)

And its T-clustered counterpart likewise can be written as follows.

Varers [B] = (X7%) 7' X7 (@8l 017) X (XTX) ! (3.26)
o =\/Cr(1-Po1") (3.27)

In addition, one can consider a double clustered variance estimator using these two when

there exist both firm and time effects. Here one must add these two and subtract their
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intersection to avoid double counting. The intersection can be written as follows.

Vategs [B] = (XTX) 7 X7 @Ta T o 18T) X (XTX) (3.28)
a7 =\/Cxer (T-Ho 1V7) (3.29)

Because there exist only two clusters N and 7T here, 1" and Cnnr are equal to Iyr and
NT/(NT —1), respectively. The following estimator is therefore identical to HC3 estimator.
Similar to the estimator (3.17)) above, the double clustered variance estimator can be written

as follows.

—NUT [ » —N ~ —T ~ —NNT [~
Vatcrs |[B] =Varens [B] + Varcr, 8] - Varen, |8] (3.30)
- (XTX) X7
x (ﬁNﬁNT o 1N + ﬁTﬁTT o 1T o ﬁNﬁTﬁNﬂTT o 1NQT)
x X (XTX) . (3.31)

The cluster-robust estimator not only considers both firm and time effects, but also
addresses the underestimation issue above using the jackknife method. This estimator is thus
superior to both the single clustered CR3 estimator (Bell and McCaffrey, [2002; Cameron
et al., |2008)) and the double clustered CRO estimator |Cameron et al.| (2011)); 'Thompson
(2011)). It is impossible to further aggregate the filling inside the sandwich estimator (3.31])

NOT are different with each other.

above because three modified residuals u”, a’ and @
Unlike single clustered variance estimators such as (3.24)), double clustered variance esti-
mators such as (3.30]) adjust themselves cluster by cluster. Instead of this pesky expression,

one can directly generalize single clustered variance estimators to derive double clustered
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variance estimators as follows.

Vatens [B] = (XTX) 7' XT @ TaMT o 187 X (XTX) (3.32)
o —/NT/(N = 1)(T — 1)) (1—P o 1" "4 (3.33)

Unlike the estimator ([3.31f), which adjusts the original estimator cluster by cluster, the esti-
mator tunes the residual based on one multiplication, so is a more natural generaliza-
tion, which alters the indicator matrix 1V by 1“7, However, this version has some practical
concerns. First, the inverse of the matrix I — P o1¥Y" does not always exist. In practice, one
can use eigendecomposition similar to the method in , but the finite sample properties
can be more complicated. Second, inverting an NT" x NT matrix is numerically expensive
as it requires significant computing time. On the other hand, estimating CR3 is cheaper
because the computational complexity of matrix inversion is O (n?). Therefore, I compare

the performance of these cluster-by-cluster and multiple-cluster estimators in this paper.

3.1.1 The Model

Here I impose additional assumptions to derive several asymptotic and finite sample prop-
erties. I assume a single regression below in particular with N firms, T times, and K = 1

regressor to pursue simplicity.

Yit =Tt + Uy (3.34)
yi =% + u; (3.35)
y =x0( + u, (3.36)

88



where

Tip =V; + Uy + Uy (3.37)

Uiy =€; + € + Eit. (3.38)

f express the same regression and are interchangeable. vs and es are assumed
to be independent and identically distributed with zero mean without loss of generality. I
assume es and vs to have finite second and fourth moments, respectively. The regressor x
and the error u are clustered by firm and time together according to this specification. First,
v; (g;) is the source of firm effects since both x; (u;) and z; (uy) consist of it. Second,
v (g¢) is the source of time effects since both x;; (u;) and @y (w;) consist of it. Third, v

(€¢) is the source of idiosyncratic effects. In detail, the covariance of z and that of u are

(

EpZ ) +EpL ] +Epiy] i=int=1

E ] i=iNt£t

Cov [z, Typ] = (3.39)
E[vi ] i#iNt="t
0 PPNt At

E [612:1] +E [5t2=1] +E [51215:11] i=iNt="1

E[eZ ] i=iNt#t

Cov [uit, uprp] = , (3.40)
E[e2,] i A Nt=t
0 iFiNt#EL
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and correspondingly the correlation of x and that of u are

(
1 =i Nt="t
E[szzl] . -/ ’
=17 Nt#t
Corr [w, Ty = Blvi 4B 4B ] (3.41)
g i Nt="¢
E[”?:l]+E[”§:1]+E[Vi2t:11]
0 i Aid Ot AT
\
(
1 i=iNt="t
Bl i=i'NtAT
2 2 2
Corr [uit’ ui’t’] = E[Eil]JrE[‘Et;l];E[sitll] . (342)
BElei_, . -/ oy
SEMr e R
0 1£dNtE

\

While vs and es are independent and identically distributed, xs and us are neither indepen-
dent nor identically distributed, so this model violates the classical assumptions. and
govern the intensity of firm and time effects of xs and us, respectively. This model is
clustered by firm when both E [v2 ] and E[¢Z,] are nonzero, clustered by time when both
E[v2,] and E [¢2_,] are nonzero, and clustered by both firm and time when these four second
moments are collectively nonzero.

This model allows zs and us to be clustered differently as well. For example, the regression
can simultaneously have x and u that are exclusively clustered by either firm or time. When
there exists such a misalignment, both firm and time effects do not inflate the standard error
of the estimator of 5 (Petersen|, 2009). In practice, however, the cacophony rarely happens
because (i) many dependent variables that appear in finance literature are clustered by both
firm and time, and (ii) most finance researchers employ regression models with multiple

independent variables (Thompson, 2011)).

Though fixed and random effects models are applicable, I only examine clustered standard
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errors in this study following the literature. The OLS estimator of [ is

A

B = ( T )_1 xTy (343)
= (Z xiTXl) Z X,y (3.44)
(EE) £

i=1 t=1 i=1 t=1

3.1.2 Asymptotic Property

Since vs and es inside z and u are independent and identically distributed, one can apply

some asymptotic theorems such as the law of large numbers and the central limit theorem.
Proposition 3.1 (Consistency). § % 8 as (N, T) — (00, 0).

Proof. See Appendix [3.A.1]

Proposition is not surprising since there is no endogeneity concern in this model.
However, the proposition is important as the consistency of the estimator separately demands
N — oo and T' — oo. In other words, just NT — oo does not guarantee the estimator to
be consistent since it is not a sufficient but a necessary condition of (N, T) — (00, 00). This
is problematic when N and T are disproportionate, and such an imbalance is common in

many cases as aforementioned (Skoulakis, 2008).
Proposition 3.2 (Asymptotic normality). As (N,T) — (o0, 00),
VNT (8- 5)
o []

4 N(0, 1),

where Avar [B] =NT (XTX)il x' (aa' o 1MV x (xTx)fl.
Proof. See Appendix
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It is noteworthy that Avar [BA} is not a consistent estimator of Avar [BA} in this
model. Though most econometric studies articulate asymptotic normality by demonstrating
VN (é — 0) AN (O, Avar [é] ), the asymptotic variance of B diverges to infinity as N and
T separately diverge to infinity and hence B per se does not directly converge in distribution
to a normal distribution. Such behavior is distinct from how one-way clustered standard er-
ror estimators behave because a standard error estimator clustered by firm is v/ N-consistent
and its counterpart clustered by time is v/T-consistent, respectively (Petersen, 2009). For-
tunately, however, its asymptotic normality is well preserved after scaling by the seemingly

asymptotic variance estimator.

3.1.3 Finite Sample Property

Though the variance estimator is inconsistent, asymptotic inference still works based on
Propositions and The variance estimator is also biased in finite samples as E [ﬁﬁw
is a biased estimator of E [uuT].

Proposition 3.3. Bias[ta",E[uu’]] = E[ua"—uu'] = E[PE[uu|P] -

E[P]E [uu'] —E [uu"] E[P], where P = x (x"x X7

Proof. ﬁ:y—XB:y—Py:Xﬂ+u—PX6—Pu:(INT—P)u,so

E[aa'] =E [Iyr — P)uu' (Iyr — P)]
=E [uuT +Puu'P — Puu' — uuTP}
=E[uu'|+E[PE[uu'|P] —E[P]E [uu'] —E [uu' | E[P],
as u and x are independent. O

E [0 "] often underestimates E [uu']. One toy model with u and x that are independent
and identically distributed standard normal demonstrates the downward bias. In this toy

model, E [uuT] ,E[P], and E [PE [uuT} P} are Iyr, Iny/NT, and E [P] = Iyr, respectively,
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so Bias [ﬁﬁT, E [uuT]] = —Ing/NT, which converges to Oyr as either N or T diverges to

infinity, is negative definite.

One remedy for this underestimation tunes @ by multiplying /NT/(NT — 1), s0 E [ﬁﬁw

with @ = \/NT/(NT — 1)t is unbiased when zs are balanced. This remedy works with

V/NT/(NT — K) for a multiple regression but doesn’t work for a regression with unbalanced

xs. Another remedy employs leverages to tune the estimator. That is, this remedy divides

iy by /1 — 22/ (xTx) or \/ 1 —x; (XTX) 'xy for a multiple regression. In other words,
the remedy tunes @ by multiplying diag(M)~'/?, where M = Iyy — P, so E [au'] with
0 = diag(M)~'/2a. This estimator is unbiased even with unbalanced xs but biased under
heteroskedasticity. It is an almost unbiased estimator instead as the bias disappears with
correct weighting (Horn et al., [1975).

Though E [ﬁﬁw is almost unbiased, it is not always the best choice in estimating correct
standard errors. For example, MacKinnon and White (1985) introduce not only the HC2

estimator based on diag(IM)~!/2

u but also the HC3 counterpart, the jackknife estimator,
based on diag(M) ™!, though the latter overcorrects t1 and hence is further biased upward.
Despite this overestimation, |Long and Ervin| (2000)), Davidson and MacKinnon| (2004]), [Haus-
man and Palmer| (2012)), MacKinnon| (2013)), as well as|MacKinnon and White (1985) report
that HC3 rather than HC2 exhibits more accurate simulated P-values when heteroskedas-
ticity exists and hence outperforms HC2 in finite samples. Likewise, |Cribari-Neto, (2004]),
Cribari-Neto and Limal (2009), and [Poirier| (2011) propose the HC4 estimator, which is not
almost unbiased but consistent and considers high leverage effects, and advocate the use of
HC4 over HC2 based on its preferrable behavior in finite samples.

Similar to this heteroskedasticity literature, the research about clustered standard errors
provides consistent estimators that asymptotically work first and finite sample adjustments
that improve these estimators second. For example, |Froot| (1989)), |Rogers (1993), and Pe-

tersen| (2009)) offer a one-way clustered standard error estimator, or the CRO estimator, that

is consistent but biased, and demonstrate simulation evidence that supports the use of this
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estimator against other inconsistent estimators without clustering. In contrast, Shao and
Rao (1993)), Bell and McCaffrey| (2002), Cameron et al.| (2008), [Webb| (2008), and |Cameron
and Miller| (2015) examine how biased CRO is in finite samples, and propose a few remedies
such as CR3, which adopts diag (My, - -- , My) " 1 rather than diag(M) '@ of HC3, where
M; = I;-X; (XTX) - X", or some nonparametric variants such as WB, the wild bootstrap,
to minimize the bias. (Cameron et al.| (2008) report that these finite sample adjustments,
especially the wild bootstrap, rather than CR0 exhibit more accurate simulated P-values.
Though the clustered standard error literature such as Petersen| (2009)), Cameron et al.
(2011), Thompson (2011), and |Cameron and Miller, (2015) offer a non-nested multiway
clustered standard error estimator and compare the performance of the estimator and other
competitors by simulating multiway clustering, its finite sample properties have not been
highlighted in detail and no further finite sample adjustment has been discussed yet. First,
Figure of [Petersen| (2009) displays the simulated P-values from a two-way clustered
standard error estimator as well as two one-way clustered estimators by firm and time,
respectively. Despite the 1% significance level, about 5% of the two-way clustered simulated
statistics falsely reject the true null hypothesis when N = 10 and T = 1,000, and when
N = 1,000 and T' = 10, respectively. On the other hand, about 1% of the statistics reject the
null hypothesis when N =T = 100. As u with no adjustment understates u in finite samples,
the consistent two-way clustered standard error estimator is biased downward and hence the
true null hypothesis is falsely over-rejected. Second, Table 1 of Cameron et al.|(2011]) displays
the simulated P-values from an OLS standard error estimator, a one-way clustered standard
error estimator, a two-way random effects standard error estimator, three different two-way
clustered standard error estimators, respectively. Consistent with the first result, about
18.4%, 13.7%, and 11.3% of the two-way simulated statistics regarding B falsely reject the
true null hypothesis concerning 5, when z1s and us are one-way clustered by firm and two-
way clustered by firm and time, respectively, and (N, T') is equal to (10,10), (10,50), and

(10,100), respectively. As the asymptotic properties require (IN,T) — (00, 00) rather than
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NT — oo, the underestimation and over-rejection problems of the two-way estimator even
worsen in finite samples. Third, Table 1 of Thompson| (2011)) displays the simulated P-values
from an OLS standard error estimator, two one-way clustered standard error estimators, two
one-way clustered standard error estimators with another-way fixed effects, and two different
two-way clustered standard error estimators, respectively. Consistent with the first and
second cases, Panels B and C exhibit that, even with the two-way clustered standard error
estimators, more than 5% of the simulated statistics falsely reject the true null hypothesis in
finite samples. Among others, five worst case scenarios display 20.1%, 17.6%, 17.4%, 16.2%,
and 14.5%, respectively, despite the 5% significance level.

Overall, these findings confirm that, despite the asymptotic properties of the existing
multiway clustered standard error estimators, their finite sample problems can be more
critical in finite samples as the asymptotic properties require more stringent conditions under
multiway clustering. Following this literature, I suggest several multiway clustered standard
error estimators in this paper by generalizing these heteroskedasticity-consistent estimators

and cluster-robust counterparts introduced above.

3.2 Monte Carlo Simulation

As the main purpose of this paper is to provide a multiway clustered standard error estimator
that preserves the existing asymptotic properties of the consistent estimators while presents
a better finite sample property, I explain the details of the Monte Carlo simulations used
in this paper. Using the outcomes of these Monte Carlo simulations, I compare the finite
sample performance of the candidate estimators numerically. I experiment both two-way

clustered model and three-way clustered model.
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3.2.1 Two-Way Clustered Model

I start with a balanced panel regression model with non-nested two-way clustering first as
there already exists a corresponding clustered standard error estimator that is consistent but
biased downward on average. Following the literature, I include a regression error clustered
by both firm and time to check whether the two-way estimators I suggest are accurate under
two-way clustering. Unlike the literature, however, I include together (i) a constant, (ii) a
regressor without clustering, (iii) a regressor clustered by firm, (iv) a regressor clustered by
time, and (v) a regressor clustered by both firm and time to check whether the estimators

are robust under misspecification. Overall, the regression I simulate is

Y =X B8 +uy, i € {1,--- N} te{l,--- T}, (3.46)
T
where Xit:(l Tl Tigz  Tiez $it4)

.
B=O111 O : (3.47)
and

where z;,1 =V
Tito =+/PaVie + /1 — pavis3
Titg =+/P3Vi + /1 — p3lis

Tig =7/ pY Vi + \/ pXvr + /1= p} — plvus

Ui =\/plein + v/ plew + /1 — pl — pleys, (3.48)
where v, e ~N (0,1), (3.49)

where NN is the number of firms and 7" is the number of years. I simulate the regression (|3.46|)

S = 5,000 times for each of 28 combinations from N > T € {10, 20, 30, 40, 50, 75,100} and 3

additional combinations from <N T) € {(17000 5> , <500 1()> , <250 2()> } Using
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the simulated statistics, I test the null hypothesis that § = 1 as exhibits. (3.48)|)
displays the recipe of the regressors and the regression error based on the ingredients in
(13-49).

As each regressor weights its standard normal building blocks correspondingly, the regres-
sors and the regression error respectively are also standard normal and hence the regressand
is N(1,5) as well. Moreover, there exists neither multicollinearity nor endogeneity as the
building blocks are independent and identically distributed. Furthermore, one can better
contrast the performance of the competing clustered standard error estimators as the five
regressors are clustered in five different ways. First, the inference for 5, and [, requires
a two-way clustered standard error estimator as the corresponding regressors are clustered
by both firm and time. Second, the inference for g and (3 demands a one-way clustered
standard error estimator as the corresponding regressors are clustered by either firm or time.
Third, the inference for 5, does not require a clustered standard error estimator as the cor-
responding regressor is not clustered. In practice, the existing two-way clustered standard
error estimators consider multiway clustering but ignore finite sample bias, while the existing
one-way clustered standard error estimators consider finite sample bias but ignore multiway
clustering. In the spirit of MacKinnon and White| (1985) and |(Cameron et al.| (2008), I suggest
a few multiway clustered standard error estimators that improve finite sample properties and
examine whether one estimator outperforms another.

The error u is a random variable and has both firm effects and fixed effects, i.e.

uir ~N (0,07) (3.50)

Corr [uit, ujs] = < ) (3.51)
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[ exploit pYY = pI' = 1/3 hence uy is normal with zero mean and unit variance, and p; =
ps = 1/2 and p} = pI' = 1/3 hence each element except the first is normal with zero mean
and unit variance.

I further aggregate the regression model using the following notation to sketch the big

picture.
y=XB+u (3.52)
T
x* = ($11k Tiok - CL’NTk) ~ N (0,3) (3.53)
u~N(0,3,) (3.54)
3, =02 (Int + piIn ® (1r — Ir) + pL (1y — Iy) @ Ir) (3.55)
Ir + py (17 — Ir) palr E pLlr
T N T
pelr puly o Ip+pf (1 —1p)

Where ® is Kronecker product operator. 3, in summarizes above and exhibits
the variance structure of u entirely. In detail, the first term Iyr is diagonal hence implies
homoskedasticity. The second term pfj Iy ® (17 —Ir) is a block diagonal matrix with Os
in the diagonal hence implies firm effects. The last term pl (1y — Iy) ® Ip is the matrix
of diagonal matrices in off-diagonal blocks hence implies time effects. (13.56|) provides more
details by further expanding .

In addition, x* in summarizes the regressors variable by variable hence exhibits

the variance structure of each independent variable. This variance structure can be written
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as follows.

¥ =c?Iyr (3.57)
Yy =05 (Int + poly @ (17 — Ir)) (3.58)
3 =03 (Iny + ps (Iy — Iy) @ I) (3.59)
Sy =0; Inr + oy In®@ (17 — Ir) + p; (Iy — In) @ 17). (3.60)

Firstly, ¥3; in is a diagonal matrix hence x! has neither firm effects nor time effects.
Secondly, 3y in is a block diagonal matrix hence x? only has firm effects. Thirdly,
33 in is the matrix of diagonal matrices everywhere hence x® only has time effects.
Lastly, 34 in is equivalent to X, in above hence x* has both firm and time
effects.

Instead of the variable by variable approach above, one is able to consider the variance
structure E [XitXiT/t/] across the regressors as well. Since they are independent of each other,
there exists no multicollinearity hence the covariance among them is straightforward. Due
to firm and time effects, however, there also exist both the covariance among firm clusters

and the covariance among time clusters. These structures can be written as follows.

(

SNT =y ut="

N oi=int#£t
E [xix;,]| = (3.61)
>t i4dut=t

0 i iUt £t
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and

0062 0 0 0
=10 0 o2 0 0 (3.62)
00 0 o2 0
00 0 0 o
10 0 0 0
00 0 0 0
V=100 po?2 0 0 (3.63)
00 0 0 0
00 0 0 plo?
100 0 0
000 0 0
> =looo0o 0o o0 (3.64)
000 pgo? O
000 0 plo?

Where M7 is the covariance among regressors, 3V is the covariance among firm clusters
and X7 is the covariance among time clusters, respectively. As aforementioned, these struc-
tures are diagonal and the asymptotic variance of the estimator 3 is therefore diagonal as

well. That is, according to Proposition , B is asymptotically normal with the following

distribution.
B AN(B Loj (ZNT)—l + T- 1pN02 (ZNT)—l sV (ENT)—l
"NT NT "™ "
+ %pgai (=) =T (2NT) ) (3.65)
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Since the variance above is diagonal, this distribution can be rewritten separately as follows.

b 2 (o2 (1 (0= D+ (Y - 1) ) (3.66)
B ~N (ﬁl, Nﬁf%) (3.67)
By “N (ﬁa, N?U% (1+(T - 1)p{jp2)) (3.68)
By SN (ﬁs, N;iag (14 (N - 1)p5p3)> (3.69)
By AN (54, Nﬁﬁ (L+ (T =Dpi' ot + (N~ 1)/)5/}5)) : (3.70)

Using simulated panels, I estimate both s and their standard errors. fs are estimated
using OLS estimator and their standard errors are estimated using 19 different estimators
including OLS, HC and CR. Then I compute 19 different t-statistics for each 5 to test
the null hypothesis that it is equal to one. Whether the null hypothesis is rejected or not is
determined with P-value equal to 10%, 5%, and 1%. First, I investigate if the size of each test
statistic is accurate. Second, I test the normality of each sample using Kolmogorov—-Smirnov

D and Anderson-Darling A? statistics.

3.2.2 Three-Way Clustered Model

I also simulate a non-nested three-way panel regression to investigate if these improved clus-

tered standard error estimators still work when higher order clustering exists. The regression
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18

Yijk :xijkﬁ—'—uijk; (NS {1727 7]}7 jE {172a 7‘]}a ke {1727 aK} (371)

(

o2 i=iNj=jiNk=F
Elzijraijw] =9 peo? (i=iUj=7Uk=K)\(i=¢Nj=jNk=Fk) (3.73)
0 PPN A7 Nk#K
o2 i=i'Nj=7Nk=F

Elujeuijw] = po? (i=iUj=7Uk=k)\(i=iNj=jNk=F): (3.74)

0  iiNj#iNk£FK

In other words, there exists three clustering effects due to the clusters with respect to I, J
and K. That is, each observation has three indices 7, j and k here and any pair of xs or us

a
are clustered when they share at least one index. By defining x = | 2, -+ 27 JK> and

-
u= <U111 . uUK) , one can rewrite the second moments (3.73|) and (3.74) as follows.

E [XXT] :O'i <I[JK +€xI[ ® (1JK - IJK)

I-cluster effects

T (L —1) @I, @1k) +po (1 - 1) @ (1, - L) ® IKZ) (3.75)
J-clust:); effects K-clust:erlr effects

E [uuT] =02 (IIJK + guIJ ® (1yx — IJK)I

I-cluster effects

J-clust?a?eﬁ"ects K-Clust:; effects

For both E [XXT} and E [uuT} , the number of nonzero elements is the function of the size of

the clusters I, J and K, ie. f(I,J,K)isequal to IJK(I(J—-1)+J(K—-1)+ K —1)+1).
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Hence f increases quadratically with I, J and K and f subject to g(I,J,K) = [JK is
therefore minimized at I* = J* = K* = {/g. I simulate 5,000 panels using four different
I x J x K(= 1,728) combinations: (3,24,24), (6,12,24), (8,8,12) and (12,12,12). With
g = 1,728, f is equal to 1,157,760 for the first combination, whereas it is equal to 686,016
for the last combination. The former is about 70% bigger than the latter hence its standard

error estimator may perform worse than its counterpart.

I generate x and u as follows. First, I compute the second moments (3.75)) and (3.76])

2

using all parameters: I, J, K, 02, p,, 02, and p,. Though this setup employs only one
parameter p that governs all clustering effects, it can be easily generalized. I exploit p, =
pu = 0.03 because there exist a lot of off-diagonal elements. Second, I compute two lower

triangular matrices L, and L, that respectively correspond to E [XXT] and E [uuT] using
Cholesky decomposition. Third, I generate two independent [.JK-dimensional standard
normal random vectors €; and €5. Fourth, I generate x = L,e; and u = L,&5 using them
hence both x and u have zero mean and unit variance, respectively.

The estimator B here is asymptotically normal as well with the following distribution.

0.2

Ban <ﬁ, e (L = 1) I = 1) 4 (- 1>>pxps>) NG

and I compute three-way clustered variance estimates using the sandwich estimator

(Cameron and Miller}, 2015|) with no finite sample adjustment as follows.

—INJNK [ »
ar ]

= (xTx)f1 x' (4’ o 177K x (XTX)il . (3.78)
This estimator is not always positive because there exist too many nonzero elements to be
considered in the fillings of the sandwich estimator. I simulate 5,000 panels but exploit
each panel only when its variance estimate is positive. About 5% (234 panels from the last
combination) to 10% (479 panels from the first combination) of 5,000 panels are deleted as

a result.
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3.3 Main Result

In this section, I report the findings from the Monte Carlo simulations I introduce above. I
discuss the result from the two-way clustered model first and the result from the three-way
clustered model second. Section [B.3] contains further details of the models and Table

contains the estimators I employ.

3.3.1 Two-Way Clustered Model

As aforementioned, I simulate the two-way clustered model with 31 different N x T" combi-
nations first. 5,000 panels are generated for each combination.

Table demonstrates the findings from the (170()0 5) combination, which is the
most extreme one. The very first row contains the s and the very first column contains the
estimators I compute.

This table consists of five partitions. The first partition has two rows and focuses on the
estimates of the #s. The second partition has 21 rows and focuses on the estimates of the
standard errors. I compute t-statistics using the estimates above but there is no summary
for these statistics in this table. Each of the last three partitions has 20 rows and focuses
on the size. For each simulation, I use the null hypothesis that § is equal to 1 and reject it
when the P-value of the t-statistic is less than 10%, 5%, and 1%, respectively.

The first row of the first partition of Table [3.2] contains 3 I exploit. The second row
of this partition contains the average of 5,000 simulated 3 estimates. There exists neither
multicollinearity nor endogeneity hence the OLS estimator of 3 is unbiased and consistent.

As a result, the average is close to the true parameter.

3.3.1.1 Standard Error

The first row of the second partition of Table |3.2| contains the asymptotic standard error of 3

I exploit. The second row of this partition contains the standard deviation of the simulated

104



estimates. Here the OLS estimator of 3 is "asymptotically” normal hence its asymptotic
standard error and the standard deviation from finite samples may not match closely. The
standard deviation of fys is 0.2627 hence about 1% bigger than its asymptotic reference.
In contrast, the standard deviations of 543 and B5S are 0.1636 and 0.1279 hence about 11%
and 15% smaller than their counterparts, respectively. When there exist both firm and time
effects, asymptotic properties require both N and T to go to infinity as I analyze above.
This affects Bgs and 845 in particular because there exist time effects in x5 and x4 but T'=5
is too small here.

The third row of this partition contains the average of 5,000 simulated OLS standard
error estimates. Here the OLS estimator underestimates the true standard deviation of fi
except Bl. 21 has neither firm effects nor time effects hence, according to (3.67)), v does not
affect 3, even when it is doubly clustered. In addition, the average of the OLS estimates of
Bgs is about 27% smaller than its asymptotic reference while that of Bgs is about 92% smaller
than the counterpart. According to (3.68|) and , these asymptotic standard errors are
determined by N and T'. Because T' =5 is smaller than N = 1,000, the OLS estimator less
underestimates the former.

The next four rows display the performance of four HC standard error estimators. Since
the regression errors are homoskedastic, the performance of these estimators is nearly identi-
cal to that of the OLS estimator. In addition, none of the finite sample adjustments improves
the performance.

The next four rows display the performance of four NCR standard error estimators. These
NCR estimators outperform the HC estimators with an intercept, x5 and x4. According to
, and 1) the estimators Bo, BQ and 34 are affected by the firm effects of
u. Because these NCR estimators capture the firm effects, they do not underestimate the
asymptotic standard error of 52 and less underestimate the asymptotic standard errors of
Bo and 34. Yet the NCR estimators still show three shortcomings. Though N = 1,000 is

too large here, these estimators ignore the time effects hence (i) still underestimate their
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asymptotic references (o, f4), (i) even underperform when there exists not firm effects but
time effects (f3) and (iii) the adjustments still are ineffective.

The next four rows display the performance of four TCR standard error estimators.
TCRO estimator outperform in estimating the asymptotic standard errors of BO, Bg and 54. In
particular, the average of the TCRO estimates of Bg is 0.0962 hence it is only 47% smaller than
its asymptotic reference. Though this improvement from 91% to 47% is noticeable, TCRO
estimator still underestimates its counterpart. In addition, this estimator underperforms
with 21 and x5. The average of the TCRO estimates of Bg is 0.0092 hence it is 50% smaller
than the asymptotic standard error.

Unlike HC and NCR estimators, TCR estimators are effectively improved by the ad-
justments. Firstly, TCR1 estimator reduces this underestimation using degrees of freedom.
On average, it underestimates the asymptotic standard error of Bg by about 41%. Sec-
ondly, TCR2 estimator uses leverages and it underestimates its counterpart by about 19%.
Lastly, TCR3 estimator uses the jackknife and it overestimates the counterpart by about
12%. According to this result, TCR2 and TCR3 are more effective than TCR1.

The last four rows of this partition display the performance of four NTCR standard
error estimators. NTCR captures both firm and time effects exactly since the errors are
doubly clustered. First, NTCRO estimator underestimate its asymptotic reference on average
by about 27% (30), 24% (B1), 22% (Ba), 48% (Bs) and 51% (f4), respectively. That is,
NTCRO estimator tends to underestimate the asymptotic standard error in particular when
the regressors have time effects. Second, NTCR1 estimator underestimates its counterpart on
average by about 18%, 16%, 18%, 41% and 45%, respectively. NTCR1 estimator outperforms
NTCRO estimator everywhere but still underestimates the asymptotic standard errors of Bg,
and 34. Third, NTCR2 estimator underestimates the counterpart on average by about
11%, 13%, 16%, 28% and 33%, respectively. NTCR2 estimator even outperforms NTCR1
estimator everywhere. Fourth, NTCR3 estimator underestimates the asymptotic standard

error of 3, on average by 3% and overestimates the rest by 23% (5o), 14% (51), 12% (Bs)
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and 2% (54), respectively. This result is ambiguous because NTCR3 estimator outperforms
NTCR2 estimator with zs, x3 and x4 but underperforms it with an intercept and x;. Fifth,
the performance of NTCR2 and that of NTCR4 are matching, and the performance of
NTCR3 and that of NTCR5 are matching as well.

3.3.1.2 P-Value

As aforementioned, the third, fourth, and fifth partitions of Table displays the perfor-
mance of 19 P-values computed using 19 standard error estimators. Though standard error
estimates are important, they are often employed as a means to test hypotheses. 1 examine
whether these standard errors a posteriori replicate the size I intend a priori.

The third partition displays the performance of these P-values at a 10% significance level.
The first row of this partition contains the P-value I intend ex ante. If one standard error is
accurate, then the simulation must replicate this P-value ex post as well. In other words, I
must reject the true null hypothesis about 500 times since 5,000 panels are simulated.

The second row of this partition displays the performance of OLS P-value. Though only
about 10% of fis are significant here, OLS P-value incorrectly rejects the null hypothesis
too ofte. In particular, it rejects the true null hypothesis 5y = 1 almost always with 92.6%
probability.

The next four rows display the performance of HC P-values but none of them outperforms
OLS P-value since there exists no heteroskedasticity. All Three finite sample adjustments
are ineffective.

The next four rows display the performance of NCR P-values and they outperform with
Zo, which has firm effects only. However, they still reject the true null too often when the
regressors have time effects. All three finite sample adjustments are ineffective as well.

The next four rows display the performance of TCR P-values. TCRO P-value outperforms
NCR P-values when the regressors have time effects but underperform otherwise. However,

the adjustments are so effective that TCR3 P-value closely replicate the true P-value.
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The last four rows of this partition displays the performance of NTCR P-values. First,
NTCRO P-value underperforms TCR3 counterpart everywhere except the third column. In
particular, NTCRO P-value incorrectly rejects the null hypotheses o = 1, 3 = 1 and
B4 = 1 about 4 to 6 times more than the true P-value. Second, NTCR1 P-value outperforms
NTCRO counterpart everywhere but still underperforms TCR3 counterpart everywhere ex-
cept the third column. Third, NTCR2 P-value even outperforms NTCR1 counterpart but
still underperforms TCR3 counterpart everywhere except the third column. Fourth, NTCR3
P-value outperforms TCR3 counterpart everywhere. Fifth, consistent with the previous find-
ings, NTCR2 and NTCR4 perform similarly in terms of the size. Likewise, NTCR3 and
NTCRS perform similarly with marginal difference.

The fourth and fifth partitions adopts 5% and 1% in rejecting the null hypothesis, re-
spectively, rather than 10%. Though some estimators such as NCRs at 35 and TCR3 at f,
B3, and [, are somewhat impressive, they exhibit unreasonable numbers at the rest. On the
other hand, both NTCR3 and NTCR5 behave similarly and display the best performance
among others. With a 5% significance level, both NTCR3 and NTCR5 reject the null hy-
pothesis 7.34% at most and 3.42% at least. With a 1% significance level, both NTCR3 and
NTCRS5 reject the null hypothesis 3.56% at most and 0.98% at least. In addition, both
NTCR2 and NTCR4 present the second best performance. Both reject the null hypothesis
15.60% at most and 9.78% at least with a 5% significance level, and 8.08% at most and
3.22% at least with a 1% significance level, respectively.

These findings imply that even when the regression error u is doubly clustered, double
clustered standard errors are not always the best. When there is no finite sample adjustment
but 7' (N) is too small, double clustered standard errors are not noticeably different from
time (firm) clustered standard errors. According to , the asymptotic standard error
of 3, consists of the firm effects (T'— 1)pNpY and the time effects (N — 1)pZpT. When T
(N) is smaller than N (7'), the time (firm) effects determines the asymptotic standard error

more. Because time (firm) clustered standard errors capture these time (firm) effects, they
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less underperform double clustered standard errors.

Moreover, the findings present the monotonic relation among the finite sample adjust-
ments. For instance, double clustered standard errors monotonically increase from NTCRO
to NTCR3 on average. NTCRI1 outperforms NTCR0O, NTCR2 outperforms NTCR1, and
NTCR3 outperforms NTCR2 on average as well in terms of size. NTCR3, however, over-
estimates the asymptotic standard error while NTCR2 rather than NTCR3 displays more
accurate estimates on average. In addition, these finite sample adjustments are more effec-
tive when there exist only few clusters. For example, the adjustments improve time clustered
standard errors dramatically while they are ineffective for firm clustered standard errors.

Furthermore, this result, all things considered, indicates that NTCR3 and NTCR5 mostly
outperform the others on average. Two potential challengers are NTCR2 and NTCR4 but
they still have the over-rejection problem, despite their more accurate standard error esti-
mates on average. For example, hey do not overestimate the standard errors of Bo and Bg
on average hence is less biased. However, they reject the true null hypothesis about 2 to 3

times more than the true P-value everywhere.

3.3.1.3 t-Statistic

Since I compute t-statistics already, I further investigate the distribution of each sample and
test its normality using Kolmogorov-Smirnov D, Cramér-von Mises W?, and Anderson—
Darling A2. They test the null hypothesis that the observations are standard normally
distributed. Previous studies primarily suggest either NTCRO (Thompson, 2011) or NTCR1
(Cameron et all [2011; |Cameron and Miller, 2015) when there exist both firm and time
effects. |Petersen| (2009) even suggests NCR1 when there exist these effects but N > T.
Figure 3.3/ above discusses the use of one-way estimators under two-way clustering. Focusing
in particular on B3 and (4, I compare two t-statistics computed using two double clustered
standard errors NTCR1 and NTCR3.

Figure displays the histograms of the t-statistics of 343 generated using 4 different
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N x T(=5,000) combinations and 3 different two-way clustered standard error estimators.
This figure consists of 4 left histograms from NTCR1, 4 middle histograms from NTCR3, and

4 right histograms from NTCRS5, respectively. The 4 N x T combinations are (1, 000 5),

(50() 10), <250 2()> , and (1()0 50), respectively. Each histogram provides the standard

normal density as well as two test statistics.

The upper-left histogram, i.e. the (1,1) histogram hereafter, indicates that the ¢-statistics
computed using NTCR1 estimates are not standard normally distributed. About 22% of
the t¢-statistics incorrectly reject the null hypothesis 84, = 1 at a 5% significance level. In
addition, Kolmogorov—Smirnov, Cramér—von Mises, and Anderson—Darling tests reject the
null hypothesis at 1% significance level.

Though the (1,2) histogram also indicates that the t-statistics computed using NTCR3
estimates are not standard normally distributed, the behavior of these t-statistics is differ-
ent in detail. About 3.4% of the t¢-statistics reject the true null at 5% significance level.
Kolmogorov—Smirnov, Cramér—von Mises, and Anderson—Darling tests reject the null at 1%
significance level as well but the tests statistics are noticeably smaller than those above. D
decreases from 0.13 to 0.04, W? decreases from 37.80 to 2.13, and A? decreases from 468.12
to 19.12. In addition, both variance and excess kurtosis of the observations decrease from
2.91 to 0.82 and from 1.58 to 0.49, respectively. According to these findings, the latter his-
togram is closer to the standard normal density than the former one. Consistent with the
previous findings, the outcomes from NTCRS5, the (1,3) histogram, are similar to those from
NTCR3 and marginally different.

The (2,1) histogram still exhibits that the ¢-statistics computed using NTCR1 estimates
are not standard normally distributed. D, W2, and A? reject the null hypothesis at 1%
significance level. On the other hand, the (2,2) and (2,3) histograms exhibit that the ¢-
statistics computed using NTCR3 and NTCRb5 estimators are standard normally distributed.
As T increases from 5 to 10, D, W2, and A? decrease from 0.07 to 0.01, 11.84 to 0.11, and

126.31 to 0.86 (0.87), respectively. NTCR3 and NTCRS5, in a nutshell, outperform NTCRI.
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The other six histograms are consistent with the first six histograms as well. Both the
(3,1) and the (4,1) histograms reject the null hypothesis that the ¢-statistics computed using
NTCR1 are standard normally distributed at 1% significance level, though D, W2, and A?
decrease from 0.07 to 0.03 to 0.02, from 11.84 to 2.12 to 0.83, and from 126.31 to 20.95 to
6.94 as T increases from 10 to 20 to 50. In contrast, the (4,2) histogram does not reject the
null hypothesis. The histogram only rejects the null hypothesis of of Anderson—Darling test
at 10% significance level but does not reject at 5% significance level. The (4,3) histogram
exhibits the numbers similar to the (4,2) histogram, but the Cramér—von Mises test does
not reject the null hypothesis as well.

Because I use N > T, the time effects dominates the firm effects in determining the
asymptotic standard error. Since there exist time effects in 3, I further focus on 5. Figure
displays the histograms of the t-statistics of Bss generated using 12 different combinations.
This figure is consistent with Figure [3.4] First, all the histograms in the first column reject
the null hypothesis of Kolmogorov—Smirnov, Cramér—von Mises, and Anderson—Darling tests
at least at a 5% significance level while the last two histograms in the second and third
columns do not reject the null hypothesis even at 10% level. Second, D, W2, and A? decrease
as T increases in Panel A. Third, the finite sample adjustment becomes less effective as T’
increases. In short, NTCR3 and NTCR5 outperform NTCRO, though they overestimate the

asymptotic standard error.

3.3.1.4 Asymptotic Property

Figures and indicate that both NTCR1 and NTCR3 standard errors are improved as
T increase. Since there exists both firm and time effects, both N and T determine the asymp-
totic behavior. First, I examine this asymptotic behavior using different N x T'(= 5,000)
combinations. Second, focusing in particular on (4, I track the performance of the double
clustered standard errors using several N > T' combinations from {10, 20, 30, 40, 50, 75, 100}.

Tables replicate Table but increase T' from 5 to 10 to 20 to 50, respectively
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hence N decreases from 1,000 to 500 to 200 to 100 as a result. First, both OLS and HC
standard errors become better in the first, fourth and fifth columns but become worse in
the third column as T increases. According to , the asymptotic standard error of
BQ increases as T increases. Because OLS and HC standard errors capture neither firm
effects nor time effects, they therefore more underestimate the asymptotic standard error
as T increases. According to , , and , in contrast, each of the asymptotic
standard errors decreases as N decreases. Because the decrease of N is faster than the
increase of T', the asymptotic standard errors of Bo and 5’4 decrease as N decreases Thus,
OLS and HC standard errors less underestimate their references as N decreases.

Second, NCR standard errors become better everywhere except the third column as T’
increases. As I analyze above, the influence of the firm (time) effects increase (decrease) as
T increases. Because the influence of the time effects becomes smaller, NCR standard errors
less underestimate this influence as T" increases. On the other hand, NCR standard errors
capture the influence of firm effects hence they track this influence as 7" increases but lose
asymptotic properties as N decreases.

Third, TCR standard errors demonstrate mixed findings. According to , the filling
inside the TCR sandwich estimator exploits 5,000,000 elements inside the outer product of
the residual when N = 1,000 and 7" = 5 while, according to , the filling inside the
NTCR one exploits 5,020,000 elements. TCR standard errors therefore are not noticeably
different from NTCR ones when N > T. There is a trade-off as T" increases. They get
asymptotic properties as 71" increases but lose the coverage as N decreases. When N = 100
and T = 50, the filling inside the TCR estimator exploits 500,000 elements while that
inside the NTCR estimator exploits 745,000 elements. Due to this trade-off, TCR standard
error estimators become better first and then become worse in the first and the last columns.
They become better in the fourth column since they get asymptotic properties as T' increases
while become worse in the third column since the influence of the firm effects increases as T’

increases.
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Fourth, NTCR standard errors by and large converge to the true P-value as T' increases
and NTCRO standard error in particular converges dramatically. Unlike the other standard
errors, NTCR3 and NTCR5 are close to the true P-value even when N > T'. In general,
NTCR3 and NTCRb5 by and large performs best in all combinations.

As aforementioned Table [3.6] in particular focuses on 5, and summarizes these findings.
This table begins from the 10 x 10 combination and increases N from 10 to 100. Then it
begins from the 20 x 20 combination again and increases N from 20 to 100 and so forth.
Like Tables 3.0, Table displays the average and standard deviation of 3 estimates,
the average of 6 NTCR standard error estimates and the percentage of incorrectly significant
t-statistics computed using these estimates.

According to the panel with T" = 10 of this table, NTCRO standard error estimator on
average underestimates the asymptotic standard error by about 29% when N = 10 and
about 25% when N = 100. The percentage of incorrectly significant t-statistics computed
using NTCRO estimates is 0.1944 when N = 10 and 0.1414 when N = 100. In contrast,
NTCR3 estimator on average overestimates the asymptotic standard error by about 14%
when N = 10 and about 4% when N = 100. The percentage of incorrectly significant
t-statistics computed using NTCR3 estimates is 0.0528 when N = 10 and 0.0544 when
N = 100. Consistent with the previous findings, NTCR5 exhibits reasonable properties
similar to NTCR3.

These findings indicate that increasing N does not solve this problem. For instance,
NTCRO underestimates the asymptotic standard error by about 25% and rejects the true
null hypothesis about three to four times more than the true P-value as long as 7' = 10. On
the other hand, NTCR3 does not distort the size a lot, though it overestimates the asymptotic
standard error a bit. Instead, the standard error estimators are noticeably improved as one
goes from one to the next panel. According to the panel with 7' = 100, both NTCRO and
NTCRS estimate the asymptotic standard error exactly and do not distort the size a lot,

though NTCRO rejects the true null about 20% more than its reference. This result implies
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that one must think of the panel as ”finite” (i) if the regression error is doubly clustered and

(ii) the panel contains only few clusters in one dimension.

3.3.2 Three-Way Clustered Model

I further simulate the triple clustered model with four different I x J x K(= 1,728) com-
binations: (3,24,24), (6,12,24), (8,8,27) and (12,12,12). 5,000 panels are generated for each
combination. Here I do not use any finite sample adjustment but focus on the problem that
occurs when the panel has only ”finite” clusters. Though the triple clustered standard error
is consistent, it may be vulnerable to this problem.

Figure displays the histograms of the t-statistics of Bs generated using 4 different
I x J x K(=1,728) combinations. The first, second, third, and fourth histograms are from
the triples (3,24,24), (6,12,24), (8,8,27) and (12,12,12), respectively. As I analyze above, the
number of the nonzero elements of E [uuT} for each triple is 1,157,760, 800,064, 784,512 and
686,016, respectively. Since the first (last) triple is worst (best) balanced, the t-statistics
from this triple may underperform (outperform) those from the other three.

The first histogram consists of 4,521 Bs while the fourth histogram consists of 4,766 Bs.
There exists no problem in estimating s, but estimating the asymptotic standard error
is less stable. The average of the triple clustered standard errors for the first triple on
average underestimates the asymptotic standard error by 24% while that for the last triple
underestimates the reference by about 14%. Likewise the t-statistics for the first triple reject
the true null hypothesis about 4 times more than the true P-value while those for the last
triple reject the null about 3 times more than the reference.

Collectively, this result implies that (i) the performance of one standard error is deter-
mined by the number of nonzero elements inside the expected value of the outer product of
the error, (ii) even a small amount amount of correlation such as p, = p, = 0.03 largely
affects the performance when the clusters are 3-dimensional and (iii) though the sandwich

form without any finite sample adjustment is easy to use, it is vulnerable not to the ”finite
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sample” problem but to the ”finite cluster” problem. As aforementioned, the finite sample
adjustment here may not be straightforward because I — P o 17%/YK is not always invertible.
Instead, the natural extension of the CR3 recipe (3.30]) for practical purposes can be written

as follows.

—IUJUK ~ —I A —J A —K ~
arcps [ﬁ} =Varcgs [,3] + Vargps [,3] + Varcgs [,8]
—INJ [~ _——INK [~ —JNK [~ ———INJNK [ -
— Vatcpy |B| — Vatcy |B] — Varen; |B] +Varews 8], (3.79)

3.4 Conclusion

In this paper, I discuss the bias of the well-known clustered standard error estimators, or non-
standard standard error estimators. As introduced in many econometrics textbooks so far
(Angrist and Pischke, 2008; |(Cameron and Trivedi, 2005; |(Campbell et al., 1997; |Greene| [2003;
Wooldridge, 2010), these standard error estimators exhibit reasonable asymptotic properties
such as asymptotic normality. However, when there exists multiway clustering, asymptotic
properties require harsh conditions to researchers, so the finite sample properties of the
estimators get more important. There have been many attempts to investigate the bias
and the size of the estimators in finite sample so far. Because of the extensive use of the
clustered standard error estimators, their finite sample properties have been studied when
there exists one-way clustering only. This paper extends this literature by comparing many
candidate estimators that can address the bias issue and comparing their performance in
finite sample using Monte Carlo simulations. All things considered, the NTCR3 estimator,
the cluster-by-cluster jackknife estimator, and the NTCRS5 estimators, the multiple-cluster
jackknife estimator, exhibit the best performance in various finite sample environments. In
particular, NTCR5 is attractive as more general, while NTCR3 is more practical as saves
expensive numerical computations. Further research deserves as the Monte Carlo setup I

employ only considers standard linear regressions.
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3.A Proofs

3.A.1 Proof of Proposition

Proof. From ({3.45)),

i=1 t=1

SO

and

and hence 3 converges in probability to 3 as (N, T) diverges to (0o, 00).
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3.A.2 Proof of Proposition

Proof. From Proposition (3.1}

and
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and
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where C5 =TE [%‘2:1] E [6?:1} +E [1/1-2:1} E [5?21] +E [Vz_l] E [5?t:11]
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as C1/C5 converges to unity and Cs diverges to infinity as (N, T") diverges to (0o, 00).
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Table 3.2. Result of Monte Carlo Simulation with S =15,000, N =1,000 and T' =5

This table displays the performance of different standard error estimators computed using simulated panel
data sets. I simulate a panel of N = 1,000 and 7' = 5 with a regression model y;; = x,\3 + u; 5,000
times. x;; includes 4 different regressors with a constant. x;;; = 1441 has neither firm effects nor time effects.
Tit2 = \/Wm-g + \/WVM, only has firm effects. x;3 = \/1/721/,54 + \/WVM only has time effects. z;4 =
\/WVZ@—F \/WV”—&— \/1/73yit8 has both firm and time effects. The error u;; = \/WEil + \/mgtg—i— m&itg
also has both firm and time effects. All 8 vs and 3 es are i.i.d. standard normal and hence both x and
u have zero mean and unit variance. I report (i) the averages and standard deviations of the simulated
coefficient estimates, (ii) the averages of the simulated standard error estimates and (iii) the percentages of
the simulated t-statistics computed with these standard error estimates that reject the null hypothesis § = 1
at 10%, 5% and 1% significance levels, respectively. I enclose all true counterparts as well.

Panel A. Bo B1 B2 B3 Ba

True regression coefficient 1.0000 1.0000 1.0000 1.0000 1.0000
Estimate 0.9958 0.9999 1.0001 0.9968 1.0014
Asymptotic standard error 0.2590 0.0141 0.0183 0.1830 0.1500
Estimate 0.2627 0.0135 0.0172 0.1636 0.1279
OLS 0.0146 0.0133 0.0133 0.0146 0.0142
HCO 0.0145 0.0133 0.0133 0.0144 0.0140
HC1 0.0145 0.0133 0.0133 0.0144 0.0140
HC2 0.0145 0.0133 0.0133 0.0144 0.0140
HC3 0.0145 0.0133 0.0133 0.0144 0.0140
NCRO 0.0211 0.0133 0.0171 0.0130 0.0166
NCR1 0.0211 0.0133 0.0171 0.0130 0.0166
NCR2 0.0211 0.0133 0.0171 0.0131 0.0166
NCR3 0.0212 0.0133 0.0171 0.0131 0.0167
TCRO 0.1895 0.0106 0.0092 0.0962 0.0732
TCR1 0.2120 0.0119 0.0102 0.1076 0.0819
TCR2 0.2572 0.0137 0.0117 0.1477 0.1115
TCR3 0.3182 0.0160 0.0137 0.2055 0.1531
NTCRO 0.1903 0.0107 0.0143 0.0960 0.0741
NTCRI1 0.2127 0.0119 0.0150 0.1074 0.0827
NTCR2 0.2307 0.0123 0.0153 0.1319 0.1004
NTCR3 0.3186 0.0161 0.0177 0.2054 0.1536
NTCR4 0.2305 0.0123 0.0149 0.1318 0.1002
NTCR5 0.3186 0.0161 0.0177 0.2052 0.1535
True P-value 0.1000 0.1000 0.1000 0.1000 0.1000
OLS 0.9260 0.1042 0.2030 0.8790 0.8420
HCO 0.9258 0.1032 0.2056 0.8808 0.8438
HC1 0.9258 0.1032 0.2056 0.8808 0.8434
HC2 0.9258 0.1032 0.2056 0.8808 0.8434
HC3 0.9258 0.1032 0.2048 0.8806 0.8434
NCRO 0.8886 0.1036 0.1030 0.8902 0.8122
NCR1 0.8886 0.1034 0.1030 0.8902 0.8120
NCR2 0.8886 0.1034 0.1028 0.8900 0.8118
NCR3 0.8886 0.1032 0.1024 0.8900 0.8116
TCRO 0.2880 0.2312 0.3982 0.3678 0.3794
TCR1 0.2460 0.1880 0.3522 0.3206 0.3196
TCR2 0.1754 0.1376 0.2940 0.1810 0.1694
TCR3 0.1142 0.0944 0.2320 0.0770 0.0640
NTCRO 0.2854 0.2302 0.1790 0.3700 0.3676
NTCRI1 0.2434 0.1894 0.1616 0.3214 0.3106
NTCR2 0.2102 0.1798 0.1548 0.2302 0.2144
NTCR3 0.1132 0.0944 0.1128 0.0772 0.0620
NTCR4 0.2106 0.1794 0.1646 0.2308 0.2148
NTCR5 0.1130 0.0932 0.1130 0.0772 0.0622
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Panel B. Bo B1 B2 B3 Ba

True P-value 0.0500 0.0500 0.0500 0.0500 0.0500
OLS 0.9106 0.0572 0.1308 0.8608 0.8136
HCO 0.9110 0.0572 0.1320 0.8622 0.8152
HC1 0.9110 0.0570 0.1316 0.8622 0.8152
HC2 0.9110 0.0570 0.1314 0.8620 0.8152
HC3 0.9110 0.0570 0.1310 0.8620 0.8150
NCRO 0.8708 0.0560 0.0516 0.8722 0.7780
NCR1 0.8706 0.0556 0.0516 0.8718 0.7778
NCR2 0.8706 0.0556 0.0512 0.8716 0.7776
NCR3 0.8702 0.0556 0.0512 0.8714 0.7774
TCRO 0.2200 0.1678 0.3266 0.2932 0.2878
TCR1 0.1800 0.1302 0.2808 0.2406 0.2344
TCR2 0.1250 0.0916 0.2190 0.1168 0.1064
TCR3 0.0746 0.0606 0.1712 0.0434 0.0360
NTCRO 0.2166 0.1666 0.1166 0.2942 0.2778
NTCRI1 0.1778 0.1276 0.1026 0.2420 0.2238
NTCR2 0.1536 0.1174 0.0978 0.1558 0.1356
NTCR3 0.0734 0.0590 0.0672 0.0440 0.0342
NTCR4 0.1540 0.1178 0.1066 0.1560 0.1362
NTCR5 0.0734 0.0594 0.0680 0.0440 0.0342
True P-value 0.0100 0.0100 0.0100 0.0100 0.0100
OLS 0.8832 0.0116 0.0482 0.8168 0.7558
HCO 0.8836 0.0116 0.0480 0.8190 0.7564
HC1 0.8836 0.0116 0.0476 0.8190 0.7564
HC2 0.8836 0.0116 0.0474 0.8190 0.7564
HC3 0.8836 0.0114 0.0474 0.8190 0.7564
NCRO 0.8378 0.0116 0.0110 0.8328 0.7126
NCR1 0.8378 0.0114 0.0110 0.8328 0.7122
NCR2 0.8378 0.0114 0.0110 0.8326 0.7118
NCR3 0.8378 0.0114 0.0110 0.8326 0.7110
TCRO 0.1340 0.0908 0.2124 0.1740 0.1602
TCR1 0.1024 0.0692 0.1768 0.1344 0.1216
TCR2 0.0618 0.0452 0.1354 0.0526 0.0446
TCR3 0.0368 0.0282 0.0994 0.0182 0.0114
NTCRO 0.1314 0.0874 0.0424 0.1770 0.1484
NTCRI1 0.1008 0.0678 0.0348 0.1354 0.1134
NTCR2 0.0808 0.0618 0.0322 0.0776 0.0576
NTCR3 0.0356 0.0284 0.0182 0.0184 0.0098
NTCR4 0.0808 0.0612 0.0378 0.0776 0.0578
NTCR5 0.0356 0.0282 0.0208 0.0188 0.0098
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Table 3.3. Result of Monte Carlo Simulation with S = 5,000, N =500 and T = 10

This table displays the performance of different standard error estimators computed using simulated panel
data sets. I simulate a panel of N = 500 and T = 10 with a regression model y;; = X;ﬁ + ug¢ 5,000
times. x;; includes 4 different regressors with a constant. x;;; = 1441 has neither firm effects nor time effects.
Tito = \/Wm-g + \/WVM, only has firm effects. x;3 = \/1/721/,54 + \/WVM only has time effects. z;4 =
\/WVZ@—F \/WV”—&— \/1/73yit8 has both firm and time effects. The error u;; = \/WEil + \/mgtg—i— m&itg
also has both firm and time effects. All 8 vs and 3 es are i.i.d. standard normal and hence both x and
u have zero mean and unit variance. I report (i) the averages and standard deviations of the simulated
coefficient estimates, (ii) the averages of the simulated standard error estimates and (iii) the percentages of
the simulated t-statistics computed with these standard error estimates that reject the null hypothesis § = 1
at 10%, 5% and 1% significance levels, respectively. I enclose all true counterparts as well.

Panel A. Bo B1 B2 B3 Ba

True regression coefficient 1.0000 1.0000 1.0000 1.0000 1.0000
Estimate 0.9987 1.0003 1.0005 0.9985 0.9982
Asymptotic standard error 0.1846 0.0141 0.0224 0.1297 0.1072
Estimate 0.1863 0.0138 0.0212 0.1232 0.1020
OLS 0.0143 0.0137 0.0137 0.0144 0.0141
HCO 0.0143 0.0137 0.0137 0.0142 0.0140
HC1 0.0143 0.0137 0.0137 0.0142 0.0140
HC2 0.0143 0.0137 0.0137 0.0142 0.0140
HC3 0.0143 0.0137 0.0137 0.0142 0.0140
NCRO 0.0275 0.0136 0.0215 0.0124 0.0194
NCR1 0.0276 0.0137 0.0215 0.0124 0.0194
NCR2 0.0276 0.0137 0.0216 0.0124 0.0195
NCR3 0.0277 0.0137 0.0216 0.0124 0.0195
TCRO 0.1583 0.0123 0.0104 0.0942 0.0755
TCR1 0.1669 0.0129 0.0110 0.0994 0.0797
TCR2 0.1834 0.0139 0.0118 0.1163 0.0927
TCR3 0.2024 0.0151 0.0127 0.1367 0.1081
NTCRO 0.1602 0.0122 0.0196 0.0940 0.0770
NTCRI1 0.1687 0.0129 0.0200 0.0991 0.0811
NTCR2 0.1757 0.0132 0.0202 0.1101 0.0892
NTCR3 0.2039 0.0151 0.0212 0.1366 0.1092
NTCR4 0.1756 0.0132 0.0200 0.1100 0.0891
NTCR5 0.2041 0.0151 0.0216 0.1365 0.1092
True P-value 0.1000 0.1000 0.1000 0.1000 0.1000
OLS 0.9052 0.1028 0.2910 0.8456 0.8110
HCO 0.9054 0.1054 0.2922 0.8470 0.8126
HC1 0.9052 0.1052 0.2918 0.8470 0.8124
HC2 0.9052 0.1050 0.2918 0.8470 0.8122
HC3 0.9052 0.1048 0.2914 0.8468 0.8122
NCRO 0.8172 0.1028 0.0938 0.8678 0.7538
NCR1 0.8166 0.1026 0.0936 0.8678 0.7536
NCR2 0.8158 0.1022 0.0924 0.8674 0.7532
NCR3 0.8156 0.1016 0.0914 0.8672 0.7528
TCRO 0.1838 0.1698 0.4312 0.2422 0.2454
TCR1 0.1654 0.1518 0.4048 0.2188 0.2214
TCR2 0.1310 0.1230 0.3710 0.1558 0.1564
TCR3 0.0978 0.0966 0.3380 0.1038 0.1016
NTCRO 0.1790 0.1708 0.1314 0.2446 0.2346
NTCRI1 0.1612 0.1530 0.1232 0.2196 0.2094
NTCR2 0.1444 0.1428 0.1212 0.1802 0.1672
NTCR3 0.0946 0.0968 0.1076 0.1044 0.0952
NTCR4 0.1444 0.1426 0.1238 0.1806 0.1676
NTCR5 0.0946 0.0966 0.1012 0.1044 0.0952
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Panel B. Bo B1 B2 B3 Ba

True P-value 0.0500 0.0500 0.0500 0.0500 0.0500
OLS 0.8846 0.0492 0.2078 0.8166 0.7822
HCO 0.8852 0.0494 0.2064 0.8188 0.7836
HC1 0.8850 0.0488 0.2064 0.8188 0.7836
HC2 0.8850 0.0486 0.2062 0.8188 0.7836
HC3 0.8850 0.0486 0.2058 0.8188 0.7836
NCRO 0.7822 0.0506 0.0454 0.8418 0.7080
NCR1 0.7822 0.0504 0.0452 0.8414 0.7080
NCR2 0.7820 0.0502 0.0446 0.8412 0.7072
NCR3 0.7812 0.0494 0.0444 0.8412 0.7064
TCRO 0.1186 0.1068 0.3460 0.1680 0.1652
TCR1 0.1016 0.0892 0.3248 0.1472 0.1460
TCR2 0.0752 0.0730 0.2924 0.0966 0.0944
TCR3 0.0536 0.0548 0.2588 0.0584 0.0556
NTCRO 0.1140 0.1070 0.0734 0.1694 0.1548
NTCRI1 0.0970 0.0900 0.0684 0.1490 0.1346
NTCR2 0.0850 0.0842 0.0664 0.1136 0.1026
NTCR3 0.0522 0.0548 0.0522 0.0586 0.0508
NTCR4 0.0850 0.0848 0.0684 0.1136 0.1030
NTCR5 0.0518 0.0554 0.0492 0.0586 0.0504
True P-value 0.0100 0.0100 0.0100 0.0100 0.0100
OLS 0.8556 0.0086 0.0960 0.7600 0.7206
HCO 0.8562 0.0086 0.0978 0.7628 0.7232
HC1 0.8560 0.0086 0.0978 0.7626 0.7228
HC2 0.8560 0.0086 0.0978 0.7624 0.7226
HC3 0.8556 0.0086 0.0974 0.7622 0.7224
NCRO 0.7108 0.0088 0.0098 0.7890 0.6198
NCR1 0.7096 0.0088 0.0098 0.7884 0.6192
NCR2 0.7092 0.0088 0.0098 0.7882 0.6170
NCR3 0.7076 0.0086 0.0094 0.7882 0.6160
TCRO 0.0486 0.0422 0.2246 0.0758 0.0746
TCR1 0.0400 0.0344 0.1996 0.0634 0.0602
TCR2 0.0278 0.0246 0.1726 0.0388 0.0310
TCR3 0.0180 0.0182 0.1484 0.0198 0.0152
NTCRO 0.0444 0.0426 0.0190 0.0770 0.0660
NTCRI1 0.0370 0.0348 0.0172 0.0648 0.0528
NTCR2 0.0324 0.0314 0.0166 0.0476 0.0334
NTCR3 0.0166 0.0186 0.0132 0.0200 0.0140
NTCR4 0.0324 0.0316 0.0172 0.0480 0.0334
NTCR5 0.0162 0.0192 0.0114 0.0200 0.0140
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Table 3.4. Result of Monte Carlo Simulation with S = 5,000, N = 250 and T = 20

This table displays the performance of different standard error estimators computed using simulated panel
data sets. I simulate a panel of N = 250 and T = 20 with a regression model y;; = X;ﬁ + ug¢ 5,000
times. x;; includes 4 different regressors with a constant. x;;7 = ;41 has neither firm effects nor time effects.
Tipg = \/WVQ + \/WVM only has firm effects. x;;3 = Jl/ﬁum + \/WV% only has time effects. x4 =
\/WVZ»(;—I— \/WVH—&— \/l/i?witg has both firm and time effects. The error u;; = mgil + \/mgtg—i— mgitg
also has both firm and time effects. All 8 vs and 3 es are i.i.d. standard normal and hence both x and
u have zero mean and unit variance. I report (i) the averages and standard deviations of the simulated
coefficient estimates, (ii) the averages of the simulated standard error estimates and (iii) the percentages of
the simulated t-statistics computed with these standard error estimates that reject the null hypothesis 5 = 1
at 10%, 5% and 1% significance levels, respectively. I enclose all true counterparts as well.

Panel A. Bo b1 B2 B3 Ba

True regression coefficient 1.0000 1.0000 1.0000 1.0000 1.0000
Estimate 0.9986 1.0000 1.0002 0.9994 0.9996
Asymptotic standard error 0.1344 0.0141 0.0289 0.0922 0.0785
Estimate 0.1370 0.0140 0.0279 0.0904 0.0740
OLS 0.0142 0.0139 0.0139 0.0142 0.0141
HCO 0.0142 0.0139 0.0139 0.0141 0.0140
HC1 0.0142 0.0139 0.0139 0.0141 0.0141
HC2 0.0142 0.0139 0.0139 0.0141 0.0141
HC3 0.0142 0.0139 0.0139 0.0141 0.0141
NCRO 0.0375 0.0138 0.0280 0.0120 0.0242
NCR1 0.0376 0.0139 0.0281 0.0120 0.0242
NCR2 0.0378 0.0139 0.0282 0.0120 0.0244
NCR3 0.0379 0.0140 0.0284 0.0121 0.0245
TCRO 0.1210 0.0131 0.0111 0.0793 0.0635
TCR1 0.1242 0.0135 0.0113 0.0814 0.0652
TCR2 0.1301 0.0140 0.0118 0.0881 0.0704
TCR3 0.1366 0.0146 0.0122 0.0956 0.0760
NTCRO 0.1261 0.0131 0.0267 0.0789 0.0668
NTCR1 0.1291 0.0134 0.0269 0.0810 0.0684
NTCR2 0.1317 0.0136 0.0271 0.0856 0.0717
NTCR3 0.1411 0.0146 0.0277 0.0953 0.0789
NTCR4 0.1316 0.0136 0.0270 0.0855 0.0716
NTCR5 0.1415 0.0146 0.0281 0.0954 0.0791
True P-value 0.1000 0.1000 0.1000 0.1000 0.1000
OLS 0.8648 0.1010 0.4126 0.8010 0.7562
HCO 0.8646 0.1024 0.4130 0.8012 0.7588
HC1 0.8646 0.1024 0.4128 0.8012 0.7588
HC2 0.8646 0.1022 0.4128 0.8012 0.7588
HC3 0.8646 0.1022 0.4124 0.8010 0.7586
NCRO 0.6672 0.1022 0.1022 0.8290 0.5992
NCR1 0.6656 0.1018 0.1014 0.8288 0.5980
NCR2 0.6650 0.1008 0.1004 0.8284 0.5960
NCR3 0.6644 0.0992 0.0980 0.8280 0.5946
TCRO 0.1544 0.1274 0.5158 0.1644 0.1832
TCR1 0.1458 0.1178 0.5048 0.1548 0.1732
TCR2 0.1262 0.1068 0.4898 0.1256 0.1440
TCR3 0.1124 0.0946 0.4720 0.0994 0.1124
NTCRO 0.1366 0.1300 0.1214 0.1668 0.1598
NTCR1 0.1276 0.1210 0.1176 0.1564 0.1478
NTCR2 0.1214 0.1158 0.1154 0.1378 0.1314
NTCR3 0.0994 0.0940 0.1068 0.1000 0.0958
NTCR4 0.1216 0.1156 0.1166 0.1384 0.1320
NTCR5 0.0990 0.0952 0.1012 0.1000 0.0952
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Panel B. Bo B1 B2 B3 Ba

True P-value 0.0500 0.0500 0.0500 0.0500 0.0500
OLS 0.8418 0.0508 0.3304 0.7686 0.7110
HCO 0.8428 0.0506 0.3300 0.7698 0.7128
HC1 0.8426 0.0506 0.3298 0.7698 0.7126
HC2 0.8426 0.0506 0.3298 0.7698 0.7126
HC3 0.8426 0.0506 0.3298 0.7698 0.7124
NCRO 0.6082 0.0534 0.0492 0.8000 0.5260
NCR1 0.6076 0.0534 0.0490 0.7996 0.5254
NCR2 0.6066 0.0520 0.0474 0.7992 0.5234
NCR3 0.6050 0.0512 0.0462 0.7986 0.5208
TCRO 0.0920 0.0748 0.4406 0.1014 0.1138
TCR1 0.0840 0.0696 0.4276 0.0930 0.1036
TCR2 0.0734 0.0588 0.4102 0.0728 0.0802
TCR3 0.0624 0.0482 0.3922 0.0548 0.0568
NTCRO 0.0784 0.0774 0.0644 0.1034 0.0908
NTCRI1 0.0726 0.0706 0.0622 0.0946 0.0816
NTCR2 0.0668 0.0662 0.0604 0.0794 0.0690
NTCR3 0.0536 0.0482 0.0552 0.0554 0.0456
NTCR4 0.0670 0.0666 0.0608 0.0796 0.0692
NTCR5 0.0530 0.0498 0.0508 0.0554 0.0448
True P-value 0.0100 0.0100 0.0100 0.0100 0.0100
OLS 0.7972 0.0112 0.2054 0.6884 0.6344
HCO 0.7968 0.0112 0.2056 0.6908 0.6348
HC1 0.7966 0.0110 0.2054 0.6908 0.6348
HC2 0.7966 0.0110 0.2054 0.6908 0.6348
HC3 0.7966 0.0106 0.2048 0.6906 0.6346
NCRO 0.4932 0.0126 0.0106 0.7402 0.4142
NCR1 0.4926 0.0126 0.0106 0.7392 0.4124
NCR2 0.4900 0.0126 0.0102 0.7380 0.4090
NCR3 0.4876 0.0122 0.0094 0.7370 0.4078
TCRO 0.0320 0.0224 0.3190 0.0378 0.0366
TCR1 0.0292 0.0204 0.3078 0.0332 0.0324
TCR2 0.0228 0.0168 0.2900 0.0240 0.0214
TCR3 0.0188 0.0138 0.2714 0.0166 0.0152
NTCRO 0.0262 0.0254 0.0140 0.0388 0.0244
NTCRI1 0.0230 0.0218 0.0134 0.0344 0.0214
NTCR2 0.0206 0.0198 0.0128 0.0276 0.0168
NTCR3 0.0144 0.0140 0.0120 0.0174 0.0106
NTCR4 0.0206 0.0198 0.0130 0.0276 0.0168
NTCR5 0.0140 0.0146 0.0098 0.0170 0.0106
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Table 3.5. Result of Monte Carlo Simulation with S = 5,000, N =100 and T = 50

This table displays the performance of different standard error estimators computed using simulated panel
data sets. I simulate a panel of N = 100 and T = 50 with a regression model y;; = X;ﬁ + ug¢ 5,000
times. x;; includes 4 different regressors with a constant. x;;; = 1441 has neither firm effects nor time effects.
Tito = \/Wm-g + \/WVM, only has firm effects. x;3 = \/1/721/,54 + \/WVM only has time effects. z;4 =
\/WVZ@—F \/WV”—&— \/1/73yit8 has both firm and time effects. The error u;; = \/WEil + \/mgtg—i— m&itg
also has both firm and time effects. All 8 vs and 3 es are i.i.d. standard normal and hence both x and
u have zero mean and unit variance. I report (i) the averages and standard deviations of the simulated
coefficient estimates, (ii) the averages of the simulated standard error estimates and (iii) the percentages of
the simulated t-statistics computed with these standard error estimates that reject the null hypothesis § = 1
at 10%, 5% and 1% significance levels, respectively. I enclose all true counterparts as well.

Panel A. Bo B1 B2 B3 Ba

True regression coefficient 1.0000 1.0000 1.0000 1.0000 1.0000
Estimate 1.0006 1.0000 1.0003 1.0011 1.0017
Asymptotic standard error 0.1003 0.0141 0.0428 0.0592 0.0591
Estimate 0.1025 0.0142 0.0424 0.0588 0.0590
OLS 0.0142 0.0140 0.0141 0.0142 0.0141
HCO 0.0142 0.0140 0.0140 0.0141 0.0141
HC1 0.0142 0.0140 0.0141 0.0141 0.0141
HC2 0.0142 0.0140 0.0141 0.0141 0.0141
HC3 0.0142 0.0140 0.0141 0.0141 0.0141
NCRO 0.0577 0.0138 0.0411 0.0117 0.0343
NCR1 0.0580 0.0139 0.0414 0.0118 0.0345
NCR2 0.0585 0.0140 0.0420 0.0119 0.0350
NCR3 0.0591 0.0141 0.0427 0.0120 0.0356
TCRO 0.0802 0.0137 0.0115 0.0555 0.0458
TCR1 0.0811 0.0138 0.0116 0.0561 0.0462
TCR2 0.0826 0.0141 0.0118 0.0580 0.0477
TCR3 0.0842 0.0143 0.0120 0.0599 0.0492
NTCRO 0.0980 0.0135 0.0404 0.0550 0.0558
NTCRI1 0.0988 0.0137 0.0406 0.0556 0.0563
NTCR2 0.0995 0.0138 0.0411 0.0569 0.0573
NTCR3 0.1020 0.0144 0.0421 0.0594 0.0594
NTCR4 0.0995 0.0138 0.0411 0.0568 0.0572
NTCR5 0.1026 0.0144 0.0424 0.0596 0.0597
True P-value 0.1000 0.1000 0.1000 0.1000 0.1000
OLS 0.8218 0.1054 0.5856 0.6962 0.6944
HCO 0.8216 0.1072 0.5876 0.6968 0.6968
HC1 0.8216 0.1072 0.5876 0.6966 0.6968
HC2 0.8216 0.1072 0.5876 0.6966 0.6966
HC3 0.8212 0.1062 0.5876 0.6966 0.6962
NCRO 0.3564 0.1146 0.1142 0.7470 0.3462
NCR1 0.3536 0.1130 0.1126 0.7460 0.3430
NCR2 0.3492 0.1092 0.1084 0.7424 0.3352
NCR3 0.3434 0.1054 0.1038 0.7402 0.3292
TCRO 0.2006 0.1164 0.6658 0.1326 0.2104
TCR1 0.1962 0.1130 0.6628 0.1302 0.2044
TCR2 0.1882 0.1084 0.6576 0.1174 0.1918
TCR3 0.1808 0.1032 0.6534 0.1068 0.1772
NTCRO 0.1214 0.1288 0.1212 0.1376 0.1232
NTCRI1 0.1202 0.1218 0.1188 0.1330 0.1200
NTCR2 0.1182 0.1180 0.1158 0.1246 0.1160
NTCR3 0.1096 0.1052 0.1078 0.1092 0.1040
NTCR4 0.1182 0.1180 0.1162 0.1252 0.1160
NTCR5 0.1074 0.1060 0.1060 0.1088 0.1026
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Panel B. Bo B1 B2 B3 Ba

True P-value 0.0500 0.0500 0.0500 0.0500 0.0500
OLS 0.7884 0.0568 0.5156 0.6398 0.6380
HCO 0.7888 0.0570 0.5172 0.6424 0.6426
HC1 0.7888 0.0568 0.5170 0.6422 0.6426
HC2 0.7888 0.0568 0.5166 0.6420 0.6426
HC3 0.7886 0.0566 0.5162 0.6418 0.6424
NCRO 0.2706 0.0628 0.0634 0.6996 0.2624
NCR1 0.2684 0.0610 0.0618 0.6980 0.2602
NCR2 0.2636 0.0588 0.0588 0.6960 0.2528
NCR3 0.2588 0.0572 0.0546 0.6928 0.2478
TCRO 0.1328 0.0658 0.6022 0.0756 0.1376
TCR1 0.1284 0.0638 0.5986 0.0740 0.1336
TCR2 0.1232 0.0596 0.5928 0.0652 0.1220
TCR3 0.1166 0.0554 0.5844 0.0554 0.1120
NTCRO 0.0678 0.0716 0.0684 0.0782 0.0720
NTCRI1 0.0658 0.0664 0.0662 0.0758 0.0684
NTCR2 0.0630 0.0636 0.0634 0.0704 0.0644
NTCR3 0.0544 0.0540 0.0596 0.0566 0.0536
NTCR4 0.0638 0.0638 0.0640 0.0708 0.0644
NTCR5 0.0536 0.0546 0.0576 0.0562 0.0522
True P-value 0.0100 0.0100 0.0100 0.0100 0.0100
OLS 0.7160 0.0114 0.3918 0.5436 0.5376
HCO 0.7168 0.0118 0.3938 0.5440 0.5416
HC1 0.7164 0.0118 0.3938 0.5440 0.5414
HC2 0.7164 0.0118 0.3938 0.5440 0.5412
HC3 0.7162 0.0118 0.3932 0.5438 0.5410
NCRO 0.1510 0.0136 0.0164 0.6130 0.1414
NCR1 0.1490 0.0130 0.0158 0.6110 0.1382
NCR2 0.1464 0.0118 0.0140 0.6080 0.1334
NCR3 0.1406 0.0108 0.0128 0.6044 0.1266
TCRO 0.0486 0.0136 0.4884 0.0174 0.0560
TCR1 0.0464 0.0128 0.4848 0.0166 0.0528
TCR2 0.0434 0.0122 0.4776 0.0126 0.0458
TCR3 0.0386 0.0100 0.4718 0.0094 0.0392
NTCRO 0.0142 0.0186 0.0192 0.0186 0.0172
NTCRI1 0.0132 0.0168 0.0182 0.0176 0.0170
NTCR2 0.0132 0.0162 0.0170 0.0152 0.0160
NTCR3 0.0104 0.0124 0.0134 0.0100 0.0120
NTCR4 0.0132 0.0164 0.0172 0.0154 0.0160
NTCR5 0.0100 0.0124 0.0132 0.0098 0.0114
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Figure 3.1. Expected Value of the Error Outer Product uu' with Different Assumptions

This figure shows the matrices of E [uu'], the expected value of the outer product of the regression error,
with four assumptions. This visualization uses N = 2 and T = 5, respectively. First, the upper-left case
assumes neither firm nor time effects, that is, both cross and serial correlations are zero and hence the matrix
is diagonal with 10 nonzero elements. Second, the upper-right case assumes only firm effects, that is, cross
correlations are zero and hence the matrix is block diagonal with 50 nonzero elements. Third, the lower-left
case assumes only time effects, that is, serial correlations are zero and hence the matrix is diagonal block
by block with 20 nonzero elements. Fourth, the lower-right case assumes both firm and time effects, that is,
neither cross nor serial correlations are zero and hence the matrix has 60 nonzero elements.

u?, 0 0 0 0 0 0 0 0 0
0 w O 0 0 0 0 0 0 0
0 0 w3 O0 0 o0 O 0 0 O
0 0 0 w? 0 0 0 0 0 0
0 0 0 0 ui O 0 0 0 0
0 0 0 0 0 w3 O 0 0 0
0 0 0 0 0 0 ud O 0 0
o 0o 0 0 0 0 0 w3 0 O
0 0 0 0 0 0 0 0 u% 0
0 0 0 0 0 0 0 0 0 udg

Neither firm nor time effects (NT = 10)

u?; U1UI2  UIIUIZ ULIUI4 ULLULS 0 0 0 0 0
U12U11 u?y U12U13  UI2UI4  UI2ULS 0 0 0 0 0
U13ULT UL3UL2 u%3 uU13UI4L  UL3ULS 0 0 0 0 0
UL4UTL  UL4UI2  UL4U13 Uiy U14U15 0 0 0 0 0
UIsUIL  UIBUL2  UISUI3  UI5UL4 uZg 0 0 0 0 0

0 0 0 0 0 uZ; U21U22  U1U2Z  U2TU24 U21U25
0 0 0 0 0 U22U21 u2y U22U23  U22U24  U22US
0 0 0 0 0 U23U1  U23U22 u34 U23U4  U23U25
0 0 0 0 0 U24U21  U4U22  U4U23 u3, U24U25
0 0 0 0 0 U25U21 UBU22  U5U23 U25U24 ug5
Only firm effects (NT? = 50)
u?, 0 0 0 0 u11U21 0 0 0 0
0 u?, 0 0 0 0 u12U22 0 0 0
0 0 uZy 0 0 0 0 u13U23 0 0
0 0 0 u?, 0 0 0 0 u14U24 0
0 0 0 0 ulyg 0 0 0 0 u15U23
U21UT1 0 0 0 0 uZ, 0 0 0 0
0 u22U12 0 0 0 0 u3, 0 0 0
0 0 u23u13 0 0 0 0 uZy 0 0
0 0 0 U24U14 0 0 0 0 u2, 0
0 0 0 0 u25ULs 0 0 0 0 u3yg
Only time effects (N2T = 20)

u?y UIUI2  UIIULZ  UIIUI4 UIIULS  ULIU2]L 0 0 0 0
uU12U11 u?y U12U13  UI2UI4  UI2ULE 0 U12U22 0 0 0
U13ULL  UI3UL2 uZy U13UL4  UI3ULE 0 0 U13U23 0 0
U4UL] UI4UI2  UI4UIS u?y U14U15 0 0 0 U14U24 0
UIsUIL  UIBUI2  UISUIZ  UI5UL4 uZyg 0 0 0 0 U15U25
u21U11 0 0 0 0 u3, U21U2  ULU2Z  UU24  U1U25

0 U22U12 0 0 0 U22U21 u3y U22U23  U2U24  U2U25
0 0 u23u13 0 0 U23U21  U23U22 u3g U23U4  U23U2H
0 0 0 U24U14 0 U24U21  U4U22  U24U23 u3, U24U25
0 0 0 0 U5ULS  UBU2L UBU2  UBU23  UEU4 u3g

Both firm and time effects (NT(N +T — 1) = 60)
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Figure 3.2. Structure of Residual Outer Product with Different Standard Error Estimators

This figure visualizes four standard error estimators: heteroskedasticity-consistent, cluster-robust by firm,
cluster-robust by time and cluster-robust by both firm and time estimators, respectively. I uses N = 2
and T = 5 and assume both firm and time effects and hence the matrix E [uuT] has 60 nonzero elements.
Each estimator estimates the standard error using highlighted elements. First, the upper-left one visualizes
a heteroskedasticity-consistent standard error estimator, which uses 10 diagonal elements out of 60 nonzero
elements. Second, the upper-right one visualizes a cluster-robust standard error estimator by firm, which
uses 50 block diagonal elements. Third, the lower-left one visualizes a cluster-robust standard error estimator
by time, which block by block uses 5 diagonal elements, that is, 20 elements. Fourth, the lower-right one
visualizes a two-way cluster-robust standard error estimator, which uses 25 elements from diagonal blocks
and 5 elements from off-diagonal blocks, that is, 60 elements.

= U11UI2  UIIUIZ UIIUI4 UIIULS  ULIU2] 0 0 0 0
w12U11 ) U12U13  UI2U14  UI2UL5 0 U12U22 0 0 0
U13ULL  U13UL2 o7 U13UL4  UI3ULE 0 0 U13U23 0 0
U4UL] UI4UI2  UI4UIS u?, U14U15 0 0 0 U14U24 0
UIsUIL  UIBUI2  UISUIZ  UI5UL4 zA 0 0 0 0 U15U25
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Figure 3.3. Comparison of Clustered Standard Error Estimators by Firm and by Time
This figure displays the percentage of the nonzero elements of E [uuT] that are correctly captured by
four standard error estimators when there exist both firm and time effects. For example, when N = 50
and T = 100, the expected value of the outer product uu' has 745,000 nonzero elements. First, a
heteroskedasticity-consistent standard error estimator exploits the diagonal elements from the outer product
and hence the percentage is equal to 5,000/745,000=0.67%. Second, a clustered standard error estimator
by firm exploits the block diagonal elements from the outer product and hence the percentage is equal to
500,000/745,000=67.11%. Third, a clustered standard error estimator by time exploits the diagonal ele-
ments from the outer product block by block and hence the percentage is equal to 250,000/745,000=33.56%.
Fourth, a two-way clustered standard error estimator exploits all 60 elements from the outer product and
hence the percentage correctly captured by the estimator is equal to 745,000/745,000=100%. Here the hor-
izontal axis represents NN, the number of firms per year and the number of observations g(N,T) = NT is
equal to 5,000 with N,T € N.

100%1 """""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
80%1
60% 1
40%1

20%1

0%] T T T T T
0 50 100 150 200 250

Heteroskedasticity-consistent One-way cluster-robust by firm

One-way cluster-robust by time Two-way cluster-robust

133



Figure 3.4. Distribution of t-Statistics for B4s by Monte Carlo Simulation with S = 5,000

This figure displays the histograms of the ¢-statistics of S4s simulated with four different N x T = 5,000
combinations. I specify each combination using the first column. The second, third and fourth columns
use NTCR1, NTCR3 and NTCR5 estimates for t-statistics, respectively. For each distribution, I compute
Kolmogorov—Smirnov D, Cramér-von Mises W? and Anderson-Darling A2 statistics to test its normality. I
attach * (10%), ** (5%) and *** (1%) to indicate significance levels.
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Figure 3.5. Distribution of t-Statistics for B4s by Monte Carlo Simulation with S = 5,000

This figure displays the histograms of the ¢-statistics of S4s simulated with four different N x T = 5,000
combinations. I specify each combination using the first column. The second, third and fourth columns use
HC3, NCR3 and TCR3 estimates for t-statistics, respectively. For each distribution, I compute Kolmogorov—-
Smirnov D, Cramér—von Mises W?2 and Anderson—Darling A2 statistics to test its normality. I attach * (10%),
** (5%) and *** (1%) to indicate significance levels.
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Figure 3.6. Distribution of t-Statistics for Bgs by Monte Carlo Simulation with S = 5,000

This figure displays the histograms of the ¢-statistics of B3s simulated with four different N x T = 5,000
combinations. I specify each combination using the first column. The second, third and fourth columns
use NTCR1, NTCR3 and NTCR5 estimates for t-statistics, respectively. For each distribution, I compute
Kolmogorov—Smirnov D, Cramér-von Mises W? and Anderson-Darling A2 statistics to test its normality. I
attach * (10%), ** (5%) and *** (1%) to indicate significance levels.
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Figure 3.7. Power of t-Tests with Some Two-Way Clustered Standard Error Estimators

This figure displays the power of t-tests for 84 with six different two-way clustered standard error estimators.
Table introduces these estimators in detail. I simulate a regression model with N = 100 and T' = 10
S = 5,000 times using 21 B4s from 0 to 2 by 0.1 and then test the null hypothesis 3, = 1 at a 5% significance
level using t-statistics for B4s with six standard error estimates. For example, NTCRO and NTCR1 reject the
hypothesis 54 = 1 707 (14.14%) and 628 (12.56%) out of 5,000 times, respectively when 8, = 1, while NTCR5
and NTCR3 reject it 330 (6.60%) and 272 (5.44%) out of 5,000 times, respectively. Here the horizontal axis
represents B4 € [0, 2].
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