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ABSTRACT

Earth Mover’s Distance between

Grade Distribution Data with Fixed Mean

by

Jan Kretschmann

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Jeb Willenbring

The Earth Mover’s Distance (EMD) is examined on all theoretically possible grade distri-

butions with the same grade point average (GPA). The numbers of distributions with the

same EMD and GPA are encoded in the coefficients of a generating function. The theoret-

ical mean EMD for grade distributions, that are sampled uniformly and independently at

random, is computed from this function, and compared to real world grade data taken from

several years. The data is further examined regarding the appearance of clusters that change

when varying the distance threshold.
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Introduction

This thesis will examine the expected value of the Earth Mover’s Distance (EMD). To

formally define the EMD, it is necessary to first define the set of joint distribution (see

[BW19]) :

Jµν =

J ∈ Rn×n :
J is a non-negative real number n by n matrix such that∑n

i=1 Jij = µj for all j and
∑n

j=1 Jij = νi for all i

 .

where Pn is the set of all probability measures on a set of numbers {0, 1, . . . , n} and µ, ν ∈ Pn.

The EMD is defined as

EMD(µ, ν) = inf
J∈Jµν

n∑
i,j=1

|i− j|Jij.

In this thesis, the practical use of the EMD will be to measure the distance between grade

distributions, specifically of classes with 30 students and the grades A, B, C, D and F. Each

letter grade is assigned a number by the standard Grade Point Average (GPA): A is 4.0, B

is 3.0, C is 2.0, D is 1.0 and F corresponds to 0. In order to compute the relative distance

between two grades, it is only necessary to compute the absolute value of the point grade

difference: for example, the distance of a B (3.0) to a D is |3.0 − 1.0| = 2 . Some useful

examples are given in [BW19]: suppose there is a class with 30 students and the five grades

1



A-F. Three possible grade distributions are given by

A B C D F

X 0 19 8 2 1

Y 12 2 5 11 0

Z 2 20 2 3 3

Comparing distributions X and Y , one notices they were identical if 12 A grades in Y were

changed to B, 5 C grades changed to B, 8 D grades changed to C, and one D grade changed

down to F. The grade movement is encoded in the matrix



0 0 0 0 0

12 2 5 0 0

0 0 0 8 0

0 0 0 2 0

0 0 0 1 0


where the columns and rows correspond to (A, B, C, D, F) and entry (i, j) stands for the

number of grades that were moved from position i in X to position j in Y . The diagonal

entries represent no grade change. The row sums return the X distribution, while the column

sums return the Y distribution. The total EMD value is 26, which corresponds to the sum

of the off-diagonal.

The grade movements between Y and Z are encoded in the matrix



2 10 0 0 0

0 2 0 0 0

0 5 0 0 0

0 3 2 3 3

0 0 0 0 0


.
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with the EMD 23, and the movements between X and Z are encoded in



0 0 0 0 0

2 17 0 0 0

0 3 2 3 0

0 0 0 0 2

0 0 0 0 1


.

with the EMD 10. All the above distributions have the same GPA of 2.5, which shows

that the EMD will distinguish between grade distributions even if the GPA is the same.

In [BW19] there are three additional example distributions:

A B C D F

U 13 13 0 0 4

V 9 1 13 2 5

W 9 7 8 6 0

this time with different GPAs, that are used to give an example for a distance matrix:

EMD U V W X Y Z

U 0 24 20 24 24 18

V 24 0 12 26 16 22

W 20 12 0 16 10 16

X 24 26 16 0 26 10

Y 24 16 10 26 0 26

Z 18 22 16 10 26 0

This thesis will focus on the EMD of grade distributions with a fixed GPA. Fixing the

number of students to 30 and the number of grades to 5, gives a finite number of possible dis-
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tributions, which will be examined theoretically. Additionally, there will be an examination

of real world data from the University of Wisconsin-Milwaukee. Grade distributions from

the years 2014 to 2018 will be investigated, and considering only classes with 30 students

and a fixed GPA allows for a comparison to the theoretical result. Finally, the classes from

one year will be examined in more detail. If some grade distributions have a particularly low

EMD, they will form a connected component that is persistent through a varying number of

distance thresholds. These components will be visual in EMD-based clustering of the grade

data.
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Background on Formal Power Series

II.1 Generating Function for the EMD

The approach in [BW19] was to encode the distribution of the discrete EMD in the coefficients

of a formal power series, which is called a generating function. Let a0, a1, a2, ... be any

sequence of numbers, then the generating function for this sequence is

a0s
0 + a1s

1 + a2s
2 + ...

or simply f(s) =
∑∞

n=0 ans
n. If there is an n∗ ∈ N such that ∀n > n∗ : an = 0, the series is

also called generating polynomial [Lan03].

The power series to encode values of the EMD is defined as

Hp,q(z, t) :=
∞∑
s=0

 ∑
(µ,ν)∈C(s,p)×C(s,q)

zEMDs(µ,ν)

 ts,

where t, z are indeterminates and C(s, n) are the weak compositions of s into n parts, or

C(s, n) = {(a1, a2, · · · , an) ∈ Nn : a1 + · · ·+ an = s}.

The coefficient of ts is a polynomial in z, which records the distribution of the discrete EMD

values.

Hp,q is computed by:
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Theorem 2.1. For positive integers p and q,

Hp,q(z, t) =
Hp−1,q(z, t) +Hp,q−1(z, t)−Hp−1,q−1(z, t)

1− z|p−q|t

if (p, q) 6= (1, 1) and H1,1 = 1
1−t .

Proof. The proof is given in [BW19].

For p = q = 3, this results in

H3,3(t, z) =
−t3z4 − t2(2z + 1)z2 + t(z + 2)z + 1

(1− t)3(1− tz)2 (1− tz2)
.

Expanding until t2 gives the polynomial:

H3,3(t, z) = 1 + t
(
2z2 + 4z + 3

)
+ 2t2

(
z4 + 2z3 + 6z2 + 6z + 3

)
+O

(
t3
)

Now, we can see that the coefficient of, for example, t2 is

C(z) = 2z4 + 4z3 + 12z2 + 12z + 6z0

a polynomial in z. In the context of grade distributions, we are looking at 3 possible grades

(H3,3) and classes of 2 students (t2). Now, the monomials are structured as follows: nzk

means, that there are n possible pairs of distributions, that have an EMD of k. For example,

there are 2 possible distributions with an EMD of 4.

Computing the weak compositions of 2, that consist of 3 elements gives us all the possible

distributions in our scenario. Table II.1 shows a list of all the compositions.

In accordance with the polynomial C, there are only two possible pairs with an EMD of

4: {(2, 0, 0), (0, 0, 2)} and the inverse {(0, 0, 2), (2, 0, 0)}.

6




2 0 0
1 1 0
1 0 1
0 2 0
0 1 1
0 0 2


Table II.1: Weak compositions of 2 with 3 elements.
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Main Result

To achieve the goal of recording information on the GPA in the generating function, first

define T (µ) as a weighted total of a distribution µ with elements {µ1, . . . , µn}, specifically

T (µ) =
n−1∑
i=0

iµi+1

where n is the number of elements in µ. To include information on T , extend the power

series in [BW19] to:

Hp,q(z, t, g1, g2) :=
∞∑
s=0

 ∑
(µ,ν)∈C(s,p)×C(s,q)

g
T (µ)
1 g

T (ν)
2 zEMDs(µ,ν)

 ts,

Now, the coefficient of ts in Hp,q is a polynomial in z, g1 and g2 whose coefficients record

the distribution of the values of EMDs(µ, ν), given the values of T (µ) and T (ν) saved in the

exponents of g1 and g2.

To compute values of Hp,q, consider the following Theorem 3.2.

Theorem 3.2. For positive integers p and q,

Hp,q(z, t, g1, g2) =
Hp−1,q(z, t, g1, g2) +Hp,q−1(z, t, g1, g2)−Hp−1,q−1(z, tg1, g2)

1− z|p−q|tgp−11 gq−12

if p > 1 and q > 1, H1,1 = 1
1−t and Hp,q = 0 if p < 1 or q < 1.
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Proof. Let

Rs
p,q :=

{
J ∈Mp,q : (∀i, j), Jij ∈ N,

∑
i,j

Jij = s and support(J) is a chain

}
.

be the vector space of all degree s homogeneous polynomials on p by q matrices, Mp,q.

By [BW19], we get a basis for (Rs
p,q) by considering the monomials

p∏
i=1

q∏
j=1

x
Jij
ij

where J is a non negative integer matrix with support on a chain.

Assigning each monomial the expression zEMDs(µ,ν)g
T (µ)
1 g

T (ν)
2 ts and summing them as a

formal power series, the Hilbert series is obtained:

∞∑
s=0

 ∑
(u,v)∈C(s,p)×C(s,q)

zEMDs(u,v)g
T (u)
1 g

T (v)
2

 ts

which coincides with the definition of Hp,q(z, t, g1, g2). Like in [BW19], each monomial has

non negative integer matrix J with support on a chain as exponents. For p by q matrices, this

chain terminates at or before x
Jp,q
p,q . To factor in the cost of moving an element from position

p to q in a distribution, the indeterminate z has to be multiplied with z|p−q|. Additionally, to

achieve the weighting of the totals in the exponents of gi, the monomial has to be multiplied

with gp−11 gq−12 . So in total, each monomial is multiplied with

z|p−q|gp−11 gq−12 t

and contributes
∑∞

Jp,q=0(z
|p−q|gp−11 gq−12 t)Jp,q to all monomials.

Like in [BW19], xpj ⊂ Hp,q−1 for some 1 ≤ j ≤ q, and xiq ⊂ Hp−1,q for some 1 ≤ i ≤ p.

Since the exponent matrix has support on a chain, the monomials cannot be counted in both

polynomials H.
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The sum Hp,q−1 + Hp−1,q counts all monomials, but if there exists a Jij > 0 with i < p

and j < q it is counted twice, so it has to be subtracted once by subtracting Hp−1,q−1 from

the total, leaving

Hp,q−1 +Hp−1,q −Hp−1,q−1

All monomials are counted exactly once and weighted correctly in the product:

Hp−1,q(z, t, g1, g2) +Hp,q−1(z, t, g1, g2)−Hp−1,q−1(z, tg1, g2)

1− z|p−q|tgp−11 gq−12

For p = q = 3, the adjusted formula for H expanded to a series in t was computed using

Mathematica:

H3,3(z, t, g1, g2) = 1 + t(g1
2g2

2 + g1
2g2z + g1

2z2 + g1g2
2z + g1g2 + g1z + g2

2z2 + g2z + 1)+

t2(g1
4g2

4 + g1
4g2

3z + 2g1
4g2

2z2 + g1
4g2z

3 + g1
4z4+

g1
3g2

4z + g1
3g2

3 + 2g1
3g2

2z + g1
3g2z

2 + g1
3z3 + 2g1

2g2
4z2 + 2g1

2g2
3z+

2g1
2g2

2z2 + 2g1
2g2

2 + 2g1
2g2z + 2g1

2z2 + g1g2
4z3 + g1g2

3z2 + 2g1g2
2z+

g1g2 + g1z + g2
4z4 + g2

3z3 + 2g2
2z2 + g2z + 1) +O(t3)

Now, the coefficient of t2 contains the indeterminates g1 and g2 as well:

C(z, g1, g2) = g41g
4
2 + g41g

3
2z + 2g41g

2
2z

2 + g41g2z
3 + g41z

4 + g31g
4
2z + g31g

3
2 + 2g31g

2
2z + g31g2z

2+

g31z
3 + 2g21g

4
2z

2 + 2g21g
3
2z + 2g21g

2
2z

2 + 2g21g
2
2 + 2g21g2z + 2g21z

2+

g1g
4
2z

3 + g1g
3
2z

2 + 2g1g
2
2z + g1g2 + g1z + g42z

4 + g32z
3 + 2g22z

2 + g2z + 1

Each of the monomials in C has the structure ngi1g
j
2z
k, which encodes the number n of

composition pairs with an EMD of k. However, in this case the compositions are restricted

10



by i and j, which specify the value of T of the compositions counted. Specifically, gi1 means,

that T (µ) = i must apply to the composition µ considered in the exponenet of g1.

Given this information, in order to examine the EMD of compositions with a fixed value

of T , the coefficient of not only t2, but of gi1g
j
2t

2 has to be copmuted. Let i = j = 2, this

results again in a polynomial of z:

P (z) = 2z2 + 2

Which means that there are 2 pairs of compositions with weighted total of 2 and a distance of

2, and there are 2 pairs of compositions with a weighted total of 0 and a distance of 0. As seen

in Table II.1, the first monomial refers to the pairs {(1, 0, 1), (0, 2, 0)} and {(0, 2, 0), (1, 0, 1)},

the second monomial to the two pairs {(1, 0, 1), (1, 0, 1)} and {(0, 2, 0), (0, 2, 0)}.

III.1 Theoretical Mean EMD Example

To get the theoretical average EMD of classes with 30 students, where only the grades A

through F (no +/-) are given out, the polynomial H5,5(t, z, g1, g2) has to be computed and

expanded in t to degree 30. Because this way of computing the polynomial requires more

resources than available, the polynomial will be computed in a way similar to what was briefly

shown in Section II.1. Instead of finding the entire polynomial H5,5(t, z, g1, g2) , the weak

compositions of 30 with 5 elements were computed in Python, see Listing V.4. From all the

compositions, only those with a weighted total value T of 90 were considered (corresponding

to a B or 3.0 average grade). The required polynomial in z was then computed by counting

the number n of pairs with distance i, put together to the monomials nzi.

11



P (z) = 297z0 + 2480z2 + 6398z4 + 9534z6 + 11386z8 + 11272z10 + 10412z12+

8676z14 + 7220z16 + 5562z18 + 4372z20 + 3184z22 + 2408z24+

1684z26 + 1218z28 + 820z30 + 552z32 + 348z34 + 206z36 + 108z38 + 50z40 + 18z42

Examining the structure of P (z), it can be seen that the coefficients of z sum up to

the number of all pairs examined. Since the sum of these coefficients is the same as P (1),

the number of pairs can be acquired by computing that: P (1) = 88205. See Figure III.1

for a histogram showing the distributions of EMDs between all the possible compositions.

Additionally, since the EMD encoded in the exponent k of nzk is the distance between all

the n distribution pairs, it follows that the coefficients n of the derivative of P with respect

to z, P ′, sum up to a total that weighs the number of pairs by the distance between each of

their elements.

This implies, that to compute the average EMD between all possible distributions con-

sisting of 30 grades that sum up to 90, it suffices to divide the weighted sum of the numbers

of pairs P ′(1) by the total number of pairs P (1), which results in:

P ′(1)

P (1)
=

1115148

88205
≈ 12.64268

To compare this result to [BW19], it is necessary to compute the unit normalized result for

the mean EMD. To achieve that, the value P ′(z)
P (z)

has to be divided by the maximum possible

EMD. Regarding compositions of 30 with 5 elements, the highest distance is found between

the distributions [30, 0, 0, 0, 0] and [0, 0, 0, 0, 30], which have an EMD of 120. Therefore, the

unit normalized mean EMD of classes with 30 students and 5 grades is given by:

P ′(z)

120P (z)
=

1115148

120 · 88205
≈ 0.10536

12



Figure III.1: Histogram of the distribution of EMDs between all possible compositions

The unit normalized EMD for classes of 30 students without grade restrictions has a value of

0.2191 and was computed in [BW19]. One can see, that the theoretical mean EMD between

classes of 30 students is almost exactly twice as high when there are no grade restrictions,

compared to when the GPA is restricted to be a 3.0.

13



Real Grade Data

In this chapter, the theoretical results of the mean EMD with a fixed GPA are compared to

a real world dataset, coming from the Section Attrition and Grade Report published by the

Office of Assessment and Institutional Research at the University of Wisconsin-Milwaukee

[oAR20]. It contains the grade distributions of classes in the fall semesters from 2014 to

2018. In the last chapter, we computed the theoretical mean EMD for grade distributions

of classes with 30 students, average GPA of 3.0, where only five grades given out, which

corresponds to the letter grades A through F without plus or minus.

To compare the theoretical result to the real world data, the dataset has to be subjected

to similar restrictions, without shrinking so much in size to become insubstantial.

IV.1 Examining Collected Grade Data

The dataset for the fall semester of 2018 contains data from about 3300 grade distributions.

Restricting the data to only classes with exactly 30 students and an exact GPA of 3.0 leaves

fewer than 10 results, so the limitations were broadened to 25 - 35 students with a GPA

between 2.9 and 3.1.

Applying these restrictions leaves 71 classes to be further examined. Table IV.1 shows

the first 10 entries of the data for 2018.

The data was examined using Python, and the EMD of years 2014 through 2018 can be

seen in table IV.2.

In almost all the years examined, the mean EMD is always more than 20% higher than the

14



Cla Subject Ldesc Class Enrollment GPA A B C D F
0 Music 127 35 2.98 11 14 7 1 1
1 Business Administration 335 30 3.047 12 9 3 3 1
2 Business Administration 404 34 3.019 11 14 8 0 1
3 Business Administration 404 25 2.987 6 13 5 0 0
4 Business Administration 409 31 2.956 5 20 4 1 1
5 Business Administration 409 34 2.961 3 27 4 0 0
6 Business Administration 451 29 2.913 3 20 2 2 0
7 Business Administration 453 25 2.988 11 9 2 2 1
8 Business Administration 454 27 3.013 7 11 7 0 0
9 Business Administration 551 34 2.921 11 12 8 3 0
...

...
...

...
...

...
...

...
...

...

Table IV.1: First entries of the Fall 2018 data, restricted to classes with 25-35 students and
a GPA between 2.9 and 3.1

2014 2015 2016 2017 2018 Theory
EMD 16.2634 15.8075 13.1865 15.4164 16.3264 12.6427
Difference 28.6390% 25.0329% 4.3015% 21.9396% 29.1371%
Classes 79 63 84 77 72

Table IV.2: Mean EMD for the Fall Semesters 2014 through 2018, compared to the theoret-
ical result

theoretical result, with the largest striking differences recorded in 2014 and 2018 with EMD

values that are about 28.6% and 29.1% larger. At least part of the difference is accounted

for by the varying class sizes that had to be considered in the real world data. For example if

the two classes compared have 25 and 35 students, the difference in the number of students

for a pair of classes is 10, which adds a value of 10 to the absolute EMD between this pair.

The only exception is the year of 2016, where the mean EMD was only 4.3% larger than the

theoretical result.

IV.2 Observations

To further examine the given grade data, it can be represented as a graph, which contains

each class as a vertex. Let t be a threshold value for the EMD and define two vertices to be

connected by an edge, if the EMD of two classes is less than or equal to t.

15



Figure IV.2: Distance threshold versus number of connected components
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Figure IV.3: Cluster with threshold 0.035

A connected component, per definition, is a set of vertices in a graph that are connected

by a walk [POM09]. Figures IV.2-IV.5 refer to the dataset of Fall 2018, and shows the number

of connected components as the threshold t increases. With threshold t = 0, every pair of

vertices is disconnected and builds an individual connected component. As the threshold

increases, there is an increasing number of edges, up to a point where the entire graph builds

one connected component, at around t = 0.05.

Figure IV.3 shows the graph when t = 0.035, which is about half of the unit normalized

mean EMD of Fall 2018, shown in table IV.2. Still, there are only 3 connected components

left, with one big component containing every vertex except for {40, 67} and {34}. For more

information on the class each vertex represents, see table F.1 in chapter IV.2.

17



Figure IV.4: Cluster with threshold 0.0185
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Figure IV.5: Cluster with threshold 0.017

Looking at Figure IV.2, there is a striking persistence in the number of connected com-

ponents when t ∈ [0.017, 0.0185]. Figures IV.4 and IV.5 show graphs with threshold values

at boths ends of the interval, and it can be seen that some of the connected components

in Figure IV.4 are split apart in Figure IV.5. For instance, while {2, 8, 32, 48, 58} form a

connected component in Figure IV.4, they are broken apart into the components {2, 8, 32}

and {48, 58} in Figure IV.5.

Ranges of persistence, for example [0.017, 0.0185], can be compared to the theoretical

mean EMD. The lower endpoint of the interval is 16%, the upper is approximately 18% of

the theoretical mean EMD.

In general, Figures IV.3-IV.5 show the breaking apart of connected components with decreas-
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ing distance threshold. The clustering allows to examine the most persistent components

among the graph with varying threshold. The two vertices with identifiers 66 and 39 built

a single connected component, which turned out to be the most persistent one. For ev-

ery t ∈ [0, 0.0229], the component consisted of only those two vertices, which represent the

classes Nursing 673 and English 205 respectively, see Table F.1 in the Appendix.
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Data Science Approach

The dataset was examined in Python, using the library pandas. Among others, pandas

includes functions to read the dataset from the given comma-separated-value (csv) format

into a table, called a dataframe.

Dataframes consist of columns, that can be named with strings, and indexed rows, as vis-

ible in table IV.1. pandas includes Create-Read-Update-Delete (CRUD) operations for

dataframes.

CRUD refers to the major functions of relational database management systems, and corre-

sponding operations are also provided by the Structured Query Language (SQL, see [DD93])

or the Hypertext Transfer Protocol (HTTP, see [FGM+99]).

The accordance of pandas with the CRUD principles allows for efficient filtering and extract-

ing of relevant parts of the dataset. An example for these functions can be seen in listing

V.1. The data set is loaded into a dataframe in line 3.

The first filtering operation is seen in line 6, where every row in the dataframe, that does

not have a value between 25 and 35 in the column Enrollment, is removed. That is achieved

by using the function loc[], which returns a set of all rows that match the given condition,

which is in this case: |e − 30| < 5, for all e entries of the column Enrollment. After the

data is filtered for all the restrictions, it has to be brought into the format necessary for

the comparison to the theoretical result from chapter 2. Only the 5 grades A to F, without

plus or minus, were considered in the theoretical approach. To get the corresponding format

with the given data, all the plus and minus grades were counted as their base grade. pandas

supports accessing entire columns by their name, as seen in lines 9 to 11, which merge the
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grade columns accordingly. The last line of listing V.1 extracts only the necessary grade

columns from the data, that can then be used to calculate the EMD.

1 import pandas as pd

2

3 # Load data into pandas dataframe

4 data = pd.read_csv(’data.csv’)

5

6 # Filtering for classes with 25-35 students

7 data = data.loc[abs(data[’Enrollment ’] - 30) <= 5]

8

9 # Merge plus/minus grades and base grade , eg. B+, B and B- all get

10 # counted as B

11 for letter in ’BCD’:

12 data[letter] = data[letter+’+’] + data[letter] + data[letter+’-’]

13 data[’A’] = data[’A’] + data[’A-’]

14 data[’F’] = data[’F, F+’]

15

16 # Extract only grade information from dataset

17 data = data[[’A’, ’B’, ’C’, ’D’, ’F’]]

18

Listing V.1: Examples for CRUD operations in Python using pandas
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1 def EMD(dist1 , dist2):

2 dif = dist1 -dist2

3 result = 0

4

5 for i in range(len(dif)):

6 # Sum difference in each iteration to account for the cost

7 # of moving an element further than one row/column

8 result += abs(np.sum(dif[:i]))

9 return result

10

Listing V.2: Python code to compute the absolute EMD of two distributions
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1 def build_distance_matrix(grades):

2 # Initializing an empty matrix to save the time

3 # needed to e.g. initialize everything with 0

4 distance_matrix = np.empty ((len(grades),

5 len(grades)))

6 for i in range(len(grades)):

7 # Since matrix was initialized with "random" values ,

8 # the diagonal elements have to be set to zero here

9 distance_matrix[i, i] = 0

10 for j in range(i+1, len(grades)):

11 # Distance Matrix is symmetric , so entry ij=ji

12 distance_matrix[i, j] =

13 distance_matrix[j, i] =

14 EMD(grades.iloc[i]. to_numpy(

15 dtype=np.float64),

16 grades.iloc[j]. to_numpy(dtype=

17 np.float64))

18 return distance_matrix

19

Listing V.3: Python code to compute the distance matrix of a set of grade distributions,

given as a pandas Series object
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1 import scipy.special

2

3 def rec_compositions(n, k, current , all_comps):

4 # Save composition if it sums to the right number

5 # and has the correct length

6 if sum(current) == n and len(current) == k:

7 all_comps.append(current)

8 # If not , start new recursive step with every possible

9 # number appended to the composition

10 for i in range(n-sum(current)+1):

11 if len(current) < k and (current +[i]) not in all_comps:

12 rec_compositions(n, k, current + [i], all_comps)

13 return all_comps

14

15

16 def compositions(n, k):

17 comps = rec_compositions(n, k, [], [])

18 # The number of weak compositions of n with k elements

19 # is known , so it can be checked here

20 assert len(comps) == scipy.special.binom(n+k-1, k-1)

21 return comps

22

Listing V.4: Python code to compute the distance matrix of a set of grade distributions,

given as a pandas Series object.
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Appendix Fall 2018 Grade Dataset

Table F.1: Complete Fall 2018 grade dataset, restricted
to classes with 25-35 students and 2.9-3.1 GPA

Subject Class Enrollment GPA A B C D F
1 Music 127 35 2.98 11 14 7 1 1
2 Business Administration 335 30 347 12 9 3 3 1
3 Business Administration 404 34 319 11 14 8 0 1
4 Business Administration 404 25 2.987 6 13 5 0 0
5 Business Administration 409 31 2.956 5 20 4 1 1
6 Business Administration 409 34 2.961 3 27 4 0 0
7 Business Administration 451 29 2.913 3 20 2 2 0
8 Business Administration 453 25 2.988 11 9 2 2 1
9 Business Administration 454 27 313 7 11 7 0 0
10 Business Administration 551 34 2.921 11 12 8 3 0
11 Business Administration 600 35 391 9 22 0 1 1
12 Business Administration 703 25 2.986 10 6 6 0 1
13 Business Management 705 27 387 11 10 5 0 1
14 Curriculum and Instruction 112 30 387 12 9 4 1 1
15 Curriculum and Instruction 301 30 2.954 10 13 3 1 2
16 Curriculum and Instruction 650 30 2.953 15 5 4 1 3
17 Educational Psychology 330 35 31 10 15 7 1 0
18 Exceptional Education 303 26 354 6 15 4 0 0
19 Exceptional Education 330 31 345 4 20 5 0 0
20 Civil & Envrnmntal Engineering 456 26 338 7 13 6 0 0
21 Industrial/Manufacturing Engr 583 25 38 10 8 7 0 0
22 Mechanical Engineering 469 30 2.918 7 12 7 3 0
23 Commun Sciences & Disorders 380 29 336 15 6 6 1 1
24 Kinesiology 200 29 2.947 10 4 1 2 2
25 Information Studies 310 35 359 16 12 2 1 3
26 Information Studies 370 26 342 8 12 3 0 1
27 African & African Diaspora St 125 25 2.95 8 7 3 0 2
28 Anthropology 403 28 2.975 6 14 6 0 0
29 Art History 250 33 2.92 12 5 5 1 2
30 Art History 472 34 2.951 13 5 7 0 2
31 Biological Sciences 529 28 34 11 7 6 0 1
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32 Chemistry and Biochemistry 341 33 311 14 10 4 3 1
33 Communication 101 27 3 6 13 1 1 1
34 Communication 363 25 397 10 7 4 0 0
35 Communication 410 25 2.917 7 9 1 2 1
36 Economics 210 26 2.937 13 7 3 1 2
37 Economics 325 35 2.918 12 11 7 1 1
38 English 205 26 354 7 13 5 0 0
39 English 205 26 2.903 4 16 2 1 1
40 English 205 26 2.957 14 4 0 0 5
41 English 205 25 2.914 12 6 1 1 3
42 English 215 26 3 7 12 4 1 0
43 English 215 25 344 9 10 2 1 1
44 English 233 25 2.954 8 9 2 0 3
45 English 310 25 33 7 11 5 0 0
46 English 517 25 2.931 7 12 3 2 0
47 Food & Beverage Studies 101 25 2.934 10 9 3 1 2
48 Geosciences 106 31 313 12 8 2 2 2
49 Linguistics 210 26 326 9 11 5 1 0
50 Linguistics 210 25 398 11 10 0 1 2
51 Mathematical Sciences 98 28 3 16 4 4 1 3
52 Mathematical Sciences 98 30 345 15 7 5 1 2
53 Mathematical Sciences 98 29 336 10 12 4 1 1
54 Mathematical Sciences 105 28 339 13 6 5 1 1
55 Mathematical Sciences 105 28 2.936 9 10 4 2 1
56 Mathematical Sciences 105 27 387 12 5 3 2 1
57 Mathematical Sciences 108 25 2.933 9 7 6 3 0
58 Mathematical Sciences 232 32 349 12 8 3 2 2
59 Mathematical Sciences 233 32 311 10 14 5 2 0
60 Philosophy 101 29 359 11 5 6 1 0
61 Philosophy 243 25 335 7 8 2 2 0
62 Philosophy 250 30 317 10 8 1 0 2
63 Political Science 361 33 311 8 17 2 3 0
64 Sociology 361 33 392 10 14 4 0 1
65 Women’s and Gender Studies 201 35 343 11 13 6 0 1
66 Nursing 673 28 348 5 21 2 0 0
67 Criminal Justice 105 28 2.988 18 3 0 1 5
68 Criminal Justice 460 32 2.969 15 9 4 1 2
69 Criminal Justice 662 28 2.904 9 9 8 1 1
70 Social Work 753 31 2.964 7 14 6 0 1
71 Architecture 380 27 2.987 5 16 4 0 1
72 Urban Planning 316 28 343 7 14 2 1 0
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