
University of Wisconsin Milwaukee University of Wisconsin Milwaukee

UWM Digital Commons UWM Digital Commons

Theses and Dissertations

August 2020

Sequencing Multiple-Spreader Crane Operations: Mathematical Sequencing Multiple-Spreader Crane Operations: Mathematical

Formulations and Heuristic Algorithms Formulations and Heuristic Algorithms

Shabnam Lashkari
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

 Part of the Industrial Engineering Commons, and the Operational Research Commons

Recommended Citation Recommended Citation
Lashkari, Shabnam, "Sequencing Multiple-Spreader Crane Operations: Mathematical Formulations and
Heuristic Algorithms" (2020). Theses and Dissertations. 2545.
https://dc.uwm.edu/etd/2545

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact open-access@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=dc.uwm.edu%2Fetd%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=dc.uwm.edu%2Fetd%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2545?utm_source=dc.uwm.edu%2Fetd%2F2545&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

SEQUENCING MULTIPLE-SPREADER CRANE OPERATIONS:

MATHEMATICAL FORMULATIONS AND HEURISTIC

ALGORITHMS

by

Shabnam Lashkari

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Engineering

at

The University of Wisconsin-Milwaukee

August 2020

ii

ABSTRACT

SEQUENCING MULTIPLE-SPREADER CRANE OPERATIONS:
MATHEMATICAL FORMULATIONS AND HEURISTIC ALGORITHMS

by

Shabnam Lashkari

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Matthew E.H. Petering

Maritime container shipping is one the oldest industries and plays a key role in transporting

freight all around the world. The International Maritime Organization (IMO) reports that more

than 90% of international trade across the world is carried by sea. This method of transportation is

by far the most cost-efficient among rail, road, air, and water transportation.

Today most overseas shipping of finished consumer goods is done via 20-, 40-, or 45-foot

long steel containers aboard deep-sea container vessels. Every day, tens of thousands of containers

are moved between different countries all around the world. In addition, the amount of meat, fish,

fruit, vegetables, and general foodstuffs shipped in refrigerated containers continues to increase.

As the volume of freight shipped via steel shipping containers grows, it is becoming increasingly

important to improve the operational efficiency of the port facilities where containerships are

unloaded and loaded.

In this research, we consider several new mathematical problems inspired by the unloading

of a containership. These problems are inspired by the recent development of a new kind of quay

crane—a multi-spreader quay crane—that can lift more than one 40-foot container from a

containership at the same time. This new crane has an extra strong steel structure that allows

iii

heavier lifts to be performed. In contrast to traditional cranes, this new crane may deploy two or

three spreaders simultaneously.

Multi-spreader quay cranes have the potential to significantly increase the productivity of

seaport container terminals. However, due to a paucity of scheduling approaches for such cranes,

this potential has not been fully realized. This motivates our research. In this dissertation, we define

new mathematical problems that are inspired by the scheduling of double-spreader and triple-

spreader quay cranes. These problems are called the dual-spreader crane and triple-spreader

crane scheduling problem respectively.

We formulate the above problems as integer linear programs and develop fast methods for

computing lower bounds on the optimal objective value in each case. In addition, we devise

simulated annealing, genetic algorithm, and dynamic programming methods to produce high

quality solutions for small, medium, large, and very large problem instances in a short amount of

time. Experimental results show the effectiveness of our proposed methods in attacking these

important logistics problems.

Chapter 1 starts with introducing container shipping history and how it has developed

through the years. We then discuss how modern container shipping has dominated world trade and

review some statistics to show how this industry affects the global transportation system. Finally,

we discuss related academic and industrial literature.

In Chapter 2, we investigate the problem of scheduling a dual-spreader crane that can

perform single container lifts and dual container lifts (in which the crane lifts two adjacent

containers). This chapter presents a mathematical model of the dual-spreader crane scheduling

problem (DSCSP) and describes a fast method for computing a lower bound on the optimal

objective value. Then, we introduce a simulated annealing heuristic method that tries to find good

iv

solutions to instances of the DSCSP within a short time. Finally, we describe the experimental

setup and discuss the experimental results for two solution methods—standard integer

programming and the simulated annealing—on a set of 120 problem instances.

Chapter 3 discusses the triple-spreader crane scheduling problem (TSCSP). A triple-

spreader crane can operate in three modes: single, double, and triple. When in (single, double,

triple) spreader mode, the crane can lift (1, 2, 3) adjacent containers respectively. The TSCSP is

formulated as an integer linear program. Later in the chapter, a method for calculating a lower

bound on the optimal objective value is introduced, a genetic algorithm that uses two different

gene generating subroutines is explained in detail, and the experimental setup and the experimental

results for a set of 120 problem instances are discussed.

Finally, Chapter 4 discusses final conclusions and future work.

v

© Copyright by Shabnam Lashkari, 2020
All Rights Reserved

vi

To my loving parents and sister,

who made all of this possible,

for all of their support and encouragement.

vii

TABLE OF CONTENTS

Abstract. ii

List of Figures. .ix

List of Tables. x

List of Abbreviations. xi

Acknowledgements. xii

CHAPTER

1. Introduction

1.1 The world before container shipping. 1

1.2 The birth of container shipping. .5

1.3 Globalization of container shipping. 5

1.4 Quay cranes in container terminals. 8

1.5 Literature review. 10

2. Dual-Spreader Crane Scheduling Problem

2.1 Problem description. 14

2.2 Mathematical model. 17

2.2.1 Mathematical formulation of the DSCSP . 18

2.2.2 Lower bound computation. 22

2.3 Heuristic approach . 25

2.4 Experimental setup, results, and discussion .36

3. Triple-Spreader Crane Scheduling Problem

3.1 Problem description . 44

3.2 Mathematical model. 46

3.3 Genetic algorithm (GA). 54

viii

3.3.1 Tier options . 55

3.3.2 Chromosome composition and fitness computation 60

3.3.3 GA procedure. .66

3.4 Lower bound computation . 70

3.5 Experimental setup, results, and discussion. .71

3.5.1 Experiment 1. 72

3.5.2 Experiment 2. 79

3.5.3 Experiment 3. 82

4. Conclusion

4.1 Concluding remarks. 94

4.2 Future work. 95

References. .97

Curriculum Vitae .101

ix

LIST OF FIGURES

Figure 1.1. Early containers. .4

Figure 1.2. Containership trade capacity in seaborne trade. 7

Figure 1.3. Annual world container port throughput. .7

Figure 1.4. Liner shipping connectivity index. .8

Figure 1.5. A container port. .9

Figure 1.6. Single, double and triple spreader handling containers. 10

Figure 2.1. Feasible crane lift sequence with makespan 28.2 minutes for a problem instance of
size 3 × 8 with wLimit = 10. 16

Figure 2.2. Conversion of problem instance (left) into binary array showing legal dual spreader
lifts (right), assuming wLimit = 10. .17

Figure 2.3. Illustration #1 of the constructive heuristic. The most recent activity in BASLDSL is
highlighted. Fixed values in BASLDSL are displayed in bold. .32

Figure 2.4. Illustration #2 of the constructive heuristic. The most recent activity in BASLDSL is
highlighted. Fixed values in BASLDSL are displayed in bold. .33

Figure 2.5. Overall logic of the simulated annealing metaheuristic. .35

Figure 3.1. Feasible unloading sequence with makespan 27.4 minutes for a problem instance of
size 3x8. 46

Figure 3.2. Conversion of problem instance (left) into binary array showing a) legal dual spreader
lifts and b) legal triple spreader lifts (right). .47

Figure 3.3. Greedy chromosome formation and objective value computation. 59

Figure 3.4. GA chromosome formation and objective value computation. 61

Figure 3.5. Overall logic of genetic algorithm. .68

x

LIST OF TABLES

Table 2.1. Input parameters for the constructive heuristic. 27

Table 2.2. Parameters settings for the heuristic method. .37

Table 2.3. Experimental results for DSCSP instances of size 3 × 8. .39

Table 2.4. Experimental results for DSCSP instances of size 5 × 10. .42

Table 2.5. Experimental results for DSCSP instances of size 10×23 and 50×50.43

Table 3.1. Indices, input parameters, decision variables and constraints in model TSCSP.49

Table 3.2. Math model TSCSP-Sub. 56

Table 3.3. Branch-and-bound method for computing the total spreader changeover cost of a
chromosome. .64

Table 3.4. Greedy Method for computing total spreader changeover cost of a chromosome.66

Table 3.5. GA parameter settings in Experiment 1. .73

Table 3.6. Experiment 1 results for TSCSP instances of size 3 × 8. .75

Table 3.7. Experiment 1 results for TSCSP instances of size 5 × 10. .77

Table 3.8. Experiment 1 results for TSCSP instances of size 10 × 23. .78

Table 3.9. Experiment 1 results for TSCSP instances of size 50 × 50. .80

Table 3.10. GA parameter settings in Experiment 2. .81

Table 3.11. Comparing SA and GA performance on the 120 DSCSP instances. 82

Table 3.12. DP algorithm for generating tier options with at least one dual and at least one triple
lift. .86

Table 3.13. DP algorithm generating tier options with at least one dual and no triple lift.87

Table 3.14. DP algorithm generating tier options with at least one triple and no dual lift.88

Table 3.15. Experiment 3 results for TSCSP instances of size 3 × 8. .89

xi

Table 3.16. Experiment 3 results for TSCSP instances of size 5 × 10. .90

Table 3.17. Experiment 3 results for TSCSP instances of size 10 × 23. .92

Table 3.18. Experiment 3 results for TSCSP instances of size 50 × 50. .93

xii

LIST OF ABBREVIATIONS

BASLDSL binary array showing legal dual-spreader lifts

DP dynamic programming

DSCSP dual-spreader crane scheduling problem

GA genetic algorithm

LB lower bound

QC quay cane

SA simulated annealing

TSCSP triple-spreader crane scheduling problem

xiii

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my amazing advisor, Dr. Matthew Petering, my

great mentor, who recognized my potential and gave me the biggest opportunity of my life to study

and do research in the field of operations research at the University of Wisconsin-Milwaukee. He

has constantly helped me recognize my skills and talent and improve my weak points. He

challenged me repeatedly over the course of my research and guided me through these challenges.

I have always appreciated his knowledge on the subject of this study and how much he helped me

explore its different aspects.

A tremendous thanks to Dr. Christine Cheng for offering her thoughtful insights and

providing suggestions to improve the methodology of this study’s experiments. Dr. Cheng’s input

increased the experiments’ efficiency and improved their results. She proposed a new method to

generate results, discussed the details of this new method, and helped me implement those

suggestions.

I would like to express my sincere gratitude to my committee members, Dr. Hamid

Seifoddini, Dr. Jaejin Jang, and Dr. Xiaohang Yue for generously offering their time, insights,

support, and guidance through the preparation of this study.

I want to thank the UWM Industrial & Manufacturing Engineering (IME) Department for

providing me with resources and supporting me through my studies and research. I am very

grateful to be a part of the IME family and to play a small role in the development of this

department. I have grown personally and professionally during my time in IME through teaching,

research, networking, and studying.

I also want to thank my dear friends who supported me endlessly and provided me with

valuable intuition and advice.

 1

Chapter 1:

Introduction

1.1 The world before container shipping

For centuries, mankind sailed across the world and moved goods from one place to another.

While exploring the world, they collected and shipped food, cotton, treasures and goods from lands

with abundant resources and brought them back to their own countries. Although the container

shipping industry belongs to the modern world, seaborn shipping and freight transportation existed

for millenia but was entirely different back then. With the invention and development of new types

of ships, shipping became more feasible and accessible across the world (North 1968).

In the early 1950s, when container shipping was not yet developed, the world’s biggest

commercial centers had docks at their hearts. The factories’ warehouses were located in close

proximity to the wharves for an easier raw materials delivery and to ship the final products faster

(Levinson 2016). The freight was carried piece by piece on trucks or railcars and transported to

the waterfront. Items of different shapes and sizes had to be unloaded separately, documented, and

stored in a transit shed. Later, these mixed items, known as break bulk cargo, were moved to the

dock and prepared for loading onto the ship. On the dock, workers assembled different boxes and

barrels into a draft, and a driver lifted and boarded the draft using a shipboard crane. Another group

of workers unhatched the boarded items, moved them to a secure place, and stored them (King

1936). The entire process of loading was tedious, time-consuming, and labor-intensive with no

standardization in place.

 2

The unloading process was not much different. Arriving ships were carrying mixed cargo,

from bags of sugar to steel coils. Depending on the product type, the unloading methods were

different, ranging from using winches to carrying items on the backs of workers. Even though

some machinary had arrived to facilitate this process, manpower was still needed throughout the

process and human injury was an inevitable part of it (University Press of Liverpool 1954).

Moreover, the unloading process, just as much as the loading process, was susceptible to other

risks, such as delays, pilfering, damage, loss, and blockages within ports. The mixed nature of the

cargo made it challenging to prevent damage to the goods.

Into the 1950s, break bulk shipping was used to transport and ship goods over long

distances. When using this method, goods were transported loose or packaged in bags, crates,

casks, barrels, or other small containers that varied in terms of the material and size (Kite-Powell

2001). This method had very high labor cost; it had been estimated that the portside costs and

cargo handling expenses were 37% to 75% of the total cost of transporting cargo (Levinson 2016).

Due to the complexity of break bulk shipping and lack of standardization, the waiting time for

ships was also extremely high and cargo ships usually were spending as much time in the port

being loaded and unloaded as they did sailing the oceans (Cudahy 2006 and Talley, 2000), while

dock workers had to manhandle most of the cargo into and out of tight spaces below decks.

Transportation and shipping a single type of good, such as oil, was cheaper than regular

break bulk shipping, due to specialized ships and port facilities for specific products. In the

maritime freight market, large oil tankers and dry-bulk carriers started operating more in synergy

and attempted to use modern cargo loading and unloading facilities to operationalize the shipping

processes in a larger scale. This specially designed bulk shipping had become more and more

 3

industrialized, in contrast to break bulk shipping of more diverse goods, where the process of

loading and unloading remained unchanged for decades (Broeze 2002).

The high costs of ocean shipping were a major obstacle for world trade. In 1961, ocean

freight costs accounted for 10% and 12% of the value of U.S. imports and exports respectively.

These costs made the international trade of some goods impractical. In 1960, the international trade

proportion of the U.S. economy was smaller than in 1950, or even in the Depression era of 1930

(Levinson 2016).

In an attempt to overcome these challenges, prior to World War II, US, British, and French

railway companies developed new methods for sealing goods in different shapes and boxes before

transportation. During World War II, the U.S. military started using metal shipping containers to

transport equipment to different sites. In 1947, the U.S. Transportation Corps developed the

Transporter which was a rigid, corrugated steel container with a 9,000 lb. capacity. During the

Korean War, the Transporter was used for moving equipment (Van Ham and Rijsenbrij, 2012).

However, the lack of specialized equipment for loading and unloading and other social challenges,

such as resistance to changes in work practices shown by unions, delayed the development of

container shipping until the mid-1950s (Bernhofen et al. 2016).

While military efforts were slow in developing a more efficient shipping method,

commercial attempts had far greater impact. Shipping companies within the U.S., particularly

those led by a former trucking company founder, Malcolm McLean, applied a rather simple idea.

In 1955, McLean recognized the inefficacy of the transportation industry, specifically the process

of loading and unloading cargo on and off ships. Being an entrepreneur on the lookout for

revolutionary ideas, McLean decided to move his business from a trucking company to a company

 4

that transported goods by water. He purchased a steamship company and established the modern

shipping container concept.

 Figure 1.1. Early containers (World Shipping Council 2020a)

McLean proposed to use metal shipping containers (Figure 1.1), similar to the ones that

were used by the U.S. military, in larger sizes and yet transportable by trucks or trains. Using this

new idea, the loading process could take place in two locations: one location close to the

manufacturer, where individual items were loaded into containers, and another at the dockside,

where the containers were loaded onto ships. Unloading was similar: goods were removed from

containers at the point of distribution or even sale, far removed from the docks (Levinson 2016).

McLean’s companies and another firm called Matson Navigation Company successfully utilized

this idea in different shipping routes in the 1950s (Van Ham and Rijsenbrij, 2012). McLean and

his colleagues started a revolution in transportation and world trade.

 5

1.2 The birth of container shipping

The need for shipping standardization arose from the fact that prior to container shipping,

the process of transporting goods across continents was complicated, slow, labor-intensive and

generally inefficient. Ships spent more time at the dock than sailing. Furthermore, problems such

as theft of goods, slow cargo transfer from the ships to the trains, and a general lack of standardized

processes to load and unload cargo resulted in logistics delays (Shipping Container History).

In 1956, McLean shipped his first container ship from port Newark to Houston. This ship,

carrying 58 containers as well as 15,000 tons of bulk petroleum, took 6 days to arrive at its

destination. This new technology completely revolutionized the transportation industry. The

containers could be stacked on top of each other, moved directly from top of the trucks or trains

onto the ship deck and vice versa without the need to be unpackaged, and it protected the cargo

both from being stolen and damaged (World Shipping Council, 2020a).

In 1959, the first quayside container crane called “Portainer” was employed to load

containers on ships. This new piece of equipment improved loading time significantly and cut

down costs, damage risks, and filching (Levine 2019).

1.3 Globalization of container shipping

In 1966 and 1967, the first transatlantic and transpacific container shipping services were

launched. In 1966 the first international containership left Port Elizabeth, New Jersey for

Rotterdam in The Netherlands, carrying 236 containers on board. This was indeed the beginning

of a significant economic growth in many countries. The world of trade became much more

connected than before as shipping goods became faster, less costly, and more secure. Ships

 6

transported goods from Asia to Europe and America, making many stops on the way, delivering

containers and loading more to deliver at the next ports in the shipping route (Levine 2019).

Modern container shipping has been around for 64 years. Nowadays, container ships

transport more than 60% of the value of sea-transported goods. As the global demand for sea

transportation grows, the size of vessels grows larger (UNCTAD Stat 2020b).

The United Nations Conference on Trade and Development (UNCTAD) published a report

in November 2019 in the Review of Maritime Transport 2019 showing the carrying capacity of the

global merchant fleet from 1980 to 2019. According to this report, the carrying capacity of the

global merchant fleet reached almost 2 billion deadweight tons (dwt: a measure of how much

weight a ship can carry) in 2019. Container shipping is responsible for 13.3% of this carrying

capacity in 2019 (266 million dwt). Figure 1.2 shows the containership trade capacity in seaborne

trade from 1980 to 2019.

Another way to measure containership capacity is by volume. In this regard, the standard

way to measure containership volume is in TEUs (twenty-Foot equivalent units). One TEU is

equivalent to the volume contained in one 20-Foot-long container that measures 20′ long, 8′ wide,

and 8.5′ high. Two other popular containers are 40-Foot-long and 45-Foot-long containers. One

40-Foot-long container counts as two TEUs, and one 45-Foot-long container counts as 2.25 TEUs.

It is worth mentioning that in 2019 global container shipping volume reached over 800 million

twenty-foot equivalent units (TEUs), which represents a 29% growth since 2012 (622 million

TEUs).

 7

Figure 1.2. Containership trade capacity in seaborne trade (Statista).

Figure 1.3 shows the growth of world global container port traffic from 2010 to 2018 as

reported by UNCTAD. Global container port traffic in 2018 is 793 million TEUs, which is a 42%

growth since 2010.

Figure 1.3. Annual world container port throughput (UNCTAD Stat 2020b).

11 20 26
44

64

98

169

228
244 246 253

266

0

50

100

150

200

250

300

1980 1985 1990 1995 2000 2005 2010 2015 2016 2017 2018 2019

Containership trade capacity in seaborne trade (million dwt)

500

550

600

650

700

750

800

850

2010 2011 2012 2013 2014 2015 2016 2017 2018

World container port throughput (TEU)

 8

Figure 1.4 shows the five countries that have been best connected to the global liner

shipping network during the past thirteen years (UNCTAD Stat 2020a). China and the Republic

of Korea have improved significantly in the past ten years compared to their competitors.

According to Figure 1.2−1.4, the container shipping industry continues to grow. In a recent video

report, How a Steel Box Changed the World: A Brief History of Shipping, the cost of shipping an

average TV from China to the U.S. is only about $2 (Di Fonzo and Costas Paris, 2018). This is a

small example of why container shipping is by far the most cost-effective form of freight

transportation.

Figure 1.4. Liner shipping connectivity index (UNCTAD STAT).

1.4 Quay cranes in container terminals

Loading and unloading of container ships takes place in container terminals (ports). These

facilities are magnificent lots consisting of different functionalities such as container handling,

60

70

80

90

100

110

120

130

140

150

160

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Liner shipping connectivity index, top five economies

China Korea, Republic of Malaysia Singapore United States of America

 9

terminal management, yard planning, traffic planning, etc., with many different kinds of

equipment, including quay cranes. The quay crane (QC) is the device that transfers containers

between ships and the shore. In a container terminal, after a ship docks next to one or multiple

QCs, they start unloading containers based on a predetermined plan. The next step is to store the

containers on the storage yard near the QCs, as shown in Figure 1.5. Later these containers are

staged to either be loaded on trucks or trains to be transported on land (imported) or to be loaded

onto another ship to be transported via sea (exported).

Figure 1.5. A container port (Colorado Springs Business Journal).

Much research has been done in the recent decades to improve the efficiency and

productivity of these facilities. This dissertation is mainly focused on unloading containers from

the tops of container ships using multiple-spreader (i.e. tandem lift) quay cranes. Multi-spreader

QCs can be equipped with one, two, or three spreaders (i.e. grappling devices) simultaneously,

with each spreader capable of lifting one 40-foot or two 20-foot containers. Figure 1.6 shows

 10

containers being lifted by one, two, and three spreaders respectively. It only takes a few minutes

for a multi-spreader QC to change the number of spreaders that it uses.

In this study, we investigate the problem of scheduling a multiple-spreader QC to unload

containers from the top of a container ship. We define two new optimization problems, propose

new mathematical models, and develop new heuristic algorithms to handle large instances of these

problems.

Figure 1.6. Single, double, and triple spreader handling of containers by QCs.

1.5 Literature review

The literature relevant to this research includes all published works in academic- and

industry-focused journals that discuss industrial crane systems. A thorough search of this literature

considered every item with a title containing the phrase “crane,” “spreader,” or “block relocation”

that was published by six academic publishers: Elsevier, Springer, INFORMS, Taylor & Francis,

Wiley, and Palgrave Macmillan. Industry journals were also searched. The results of this literature

review yielded several hundred articles, most of which concern the management of operations at

seaport container transshipment terminals. No article with a focus on a non-seaport-related crane

system was deemed relevant to this research.

Ten articles surveying the literature on seaport container terminal operations were

identified, including the works by Vis and De Koster (2003), Steenken, Voß, and Stahlbock (2004),

 11

Stahlbock and Voß (2008), Bierwirth and Meisel (2010), Angeloudis and Bell (2011), Carlo, Vis,

and Roodbergen (2014a, 2014b, 2015), Gharehgozli, Roy, and de Koster (2015), and Bierwirth

and Meisel (2015). Several of these articles mention multi-spreader quay cranes (QCs) as an

important new technology for container terminals. However, no article discusses a published paper

that proposes a method for scheduling multi-spreader cranes.

Various methods have been developed for scheduling single-spreader QCs and yard cranes

(YCs) at seaport container terminals. For example, Kim and Kim (1999) develop a math model

and exact solution method for routing a single yard crane (YC) at a seaport container terminal.

Wu, Li, Petering, Goh, and de Souza (2015) present methods for scheduling multiple YCs that

prevent YC interference and consider safety distance requirements. Regarding QCs, Imai, Chen,

Nishimura, and Papadimitriou (2008) introduce a math model of the simultaneous berth and QC

allocation problem and develop a genetic algorithm to find near-optimal solutions to the problem.

Meisel and Bierwirth (2013) develop methods for solving the integrated berth allocation, QC

allocation, and QC scheduling problem at seaport container terminals. Chen, Lee, and Cao (2011)

develop methods for scheduling QCs at indented berths. Kim and Park (2004) introduce a math

model for scheduling QCs at a regular berth and develop exact and heuristic methods for solving

problem instances. Moccia, Cordeau, Gaudioso, and Laporte (2006), Ng and Mak (2006), and

Unsal and Oguz (2013) also propose various QC scheduling methods. Tang, Zhao, and Liu (2014)

consider a joint QC and truck scheduling problem.

Discussions of multi-spreader (i.e. tandem-lift) QCs are uncommon in the literature. Chao

and Lin (2011) present a methodology that trades off the various features of advanced QCs

(including multi spreader QCs) in order to choose a suitable advanced QC for any given container

terminal. Xing, Yin, Quadrifoglio, and Wang (2012) and Chen, Cao, and Zhao (2014) develop

 12

methods for scheduling automated guided vehicles (AGVs) and yard trucks (YTs), respectively,

when tandem-lift QCs are used at a container terminal. Choi, Im, and Lee (2014) use a simulation

methodology to develop an operating system that can increase the productivity of a container

terminal where tandem-lift QCs are used. Several articles in industry journals—including those by

McCarthy, Jordan, and Wright (2007) and World Cargo News (2007)—contain general

discussions of tandem-lift QCs but do not present results related to the scheduling or productivity

of such cranes. On the other hand, Song (2011) discusses the productivity of tandem-lift QCs

during real-life experiments conducted at Pusan Newport and proposes methods for conducting

double cycling operations using such cranes. Goussiatiner (2007a, 2007b) generates plausible ship

stowage configurations in order to compare the productivity of unloading such ships using single

spreader, dual-spreader, and triple-spreader QCs. However, no methods for scheduling multi-

spreader cranes are proposed.

In Cheng et al. (2020), the authors prove that the multi-spreader crane scheduling problem

(MSCSP) is NP-hard when the crane has three or more modes. In particular, the triple-spreader

crane scheduling problem (TSCSP) is NP-hard. Cheng et al. (2020) also discuss, but leave open

issues related to the computational complexity of the DSCSP (dual-spreader crane scheduling

problem) that is investigated by Lashkari et al. (2017).

To our knowledge, Lashkari et al. (2017) is the only published work to propose methods

for scheduling a multi-spreader crane. That work presents a mathematical model and simulated-

annealing-based heuristic for sequencing the operations of a dual-spreader QC that is supposed to

remove all containers from a container bay in minimum time. The authors develop a fast method

for computing a lower bound on the optimal objective value and show that their heuristic finds

feasible solutions whose objective values, on average, are within 6% of the lower bound across

 13

four problem sizes—small, medium, large, and very large. Chapter 2 of this dissertation is nearly

identical to Lashkari et al. (2017).

Chapter 3 of this dissertation extends Lashkari et al. (2017) to the case of a triple-spreader

crane. In Chapter 3, we propose a mathematical model and genetic algorithm (GA) for sequencing

the operations of a triple spreader QC that should remove all containers from a container bay in

minimum time. We also develop a new method for computing a lower bound on the optimal

objective value which differs from that presented in Chapter 2. On average, the GA produces

solutions to TSCSP instances whose objective values are within 7% of the lower bound.

Furthermore, the GA outperforms the simulated-annealing-based heuristic proposed in Chapter 2

on instances of the dual-spreader crane scheduling problem (DSCSP). To our knowledge, Chapter

3 is the first study to consider the scheduling of a crane that can operate with three different

numbers of spreaders.

 14

Chapter 2:

Dual-Spreader Crane Scheduling Problem

2.1 Problem description

We define the dual-spreader crane scheduling problem (DSCSP) as follows. Consider a set

of identically sized containers (blocks, items) that are temporarily stored as inventory (e.g. on the

deck of a ship). Due to space limitations, these containers are stacked directly on top of each other

in a storage bay consisting of S stacks and T tiers. At time 0, there are 𝐸! containers in stack s. The

weight of the container in stack 𝑠, tier t is given by 𝑊!". Consider the problem of sequencing the

lifts made by one crane that will remove all containers from the bay. This crane can operate in two

modes: single-spreader or dual-spreader mode. When in single-spreader mode, the crane may

remove any single container from the top of any stack. This type of lift takes 𝐻# minutes. When in

dual-spreader mode, the crane may simultaneously remove any two containers in the same tier

from the top of any two adjacent stacks as long as the sum of their weights does not exceed 𝑤$%&%".

This type of lift takes 𝐻' minutes. Furthermore, the changeover (i.e. setup) time between modes is

C minutes. The crane can begin in either mode at time 0 with no initial setup cost. The goal is to

sequence the individual lifts and changeovers of the crane to minimize the total time needed to

remove all containers from the bay. To make the problem meaningful, we assume that 𝐻#< 𝐻'<

2𝐻# and max{𝑊!"} < 𝑤$%&%"< 2 ∗ max{𝑊!"}.

Figure 2.1 shows an instance of the DSCSP. In this instance, S = 8, T = 3, 𝐸! = 3 for all s,

and the weights 𝑊!" of all containers in the bay are shown in the upper-left corner of the figure. In

addition, we assume that 𝑤$%&%" = 10, 𝐻# = 1.5, 𝐻' = 1.8, and C = 2.1. Note that, even for this

small instance, it is not easy to decide which containers should be lifted in single-spreader mode

 15

and which containers should be lifted in dual-spreader mode. Figure 2.1 shows a feasible crane lift

sequence for this instance. This sequence consists of five dual-spreader lifts followed by four

single-spreader lifts followed by five dual-spreader lifts. Two changeovers between spreader

modes are required, so the total time needed to empty the bay—the makespan—is

10×1.8+4×1.5+2×2.1=28.2 minutes. We later show that this is not the optimal makespan for this

instance.

 16

Figure 2.1. Feasible crane lift sequence with makespan 28.2 minutes for a problem instance of
size 3 × 8 with wLimit = 10.

7 5 3 2 6 9 5 4
1 2 4 3 1 2 9 2
6 2 3 6 8 2 7 3

7 5 9
1 2 4 3 1 2 9 2
6 2 3 6 8 2 7 3

7 9
1 2 1 2 9 2
6 2 3 6 8 2 7 3

7 9
1 2 1 2 9 2
6 2 8 2 7 3

9
1 2 1 2 9 2
6 2 8 2 7 3

7 6 9 5 4
1 2 4 3 1 2 9 2
6 2 3 6 8 2 7 3

9
1 2 1 2 9 2
6 2 8 2 7 3

1 2 1 2 2
6 2 8 2 7 3

1 2 1 2 9 2
6 2 8 2 7 3

1 2 1 2
6 2 8 2 7 3

1 2
6 2 8 2 7 3 6 2 8 2 7 3

8 2 7 3 7 3

Double lift = 1.8 min Double lift = 1.8 min

Double lift = 1.8 min

Double lift = 1.8 min

Double lift =
1.8 min

Double lift =
1.8 min

Double lift =
1.8 min

Changeover =
2.1 min
Single lift =
1.5 min

Single lift = 1.5 min Single lift = 1.5 min
Single lift =
1.5 min

Changeover = 2.1 min
Double lift = 1.8 min

FINISHED

2 4

4 3
3 6

7

Double lift = 1.8 min

Double lift = 1.8 min

 17

2.2 Mathematical model

To facilitate the model development, we first convert an instance of the DSCSP into a

“binary array showing legal dual-spreader lifts” (BASLDSL). Figure 2.2 depicts the conversion of

the instance in Figure 2.1 to BASLDSL, where binary variables are used to indicate whether a

dual-spreader lift could be performed on a pair of adjacent containers in the same tier. Without

loss of generality, we use the left side of the pair to denote whether a “legal” dual-spreader lift can

be performed within the given weight limit 𝑤$%&%". For example, the top-left ‘0’ in BASLDSL

indicates that the first and the second containers (from the left side) in the top tier cannot be dual-

spreader lifted because their combined weight—12—exceeds 𝑤(%&%" = 10. Also, the ‘1’ adjacent

to the top-left ‘0’ indicates that the second and the third containers (from the left) in the top tier

can be dual-spreader lifted because their combined weight—8—does not exceed 𝑤$%&%". In the

original problem instance, we number the tiers 1, ..., T from bottom to top and the stacks 1, ..., S

from left to right. In BASLDSL, we use the terms tier (1, ..., T from bottom to top) and column (1,

..., S−1 from left to right) to refer to various locations.

Figure 2.2. Conversion of problem instance (left) into a binary array showing legal dual
spreader lifts (BASLDSL) (right), assuming wLimit = 10.

Tier 3

Tier 2

Tier 1
Stack: 1 2 3 4 5 6 7 8 Column: 1 2 3 4 5 6 7

7 5 3 2 6 9 5 4
1 2 4 3 1 2 9 2
6 2 3 6 8 2 7 3

0 1 1 1 0 0 1
1 1 1 1 1 0 0
1 1 1 0 1 1 1

 18

2.2.1 Mathematical formulation of the DSCSP

Our mathematical model of the DSCSP, model DSCSP, discretizes time into intervals.

During each time interval, at most one (single-spreader or dual-spreader) lift may occur. The

duration of an interval is therefore either 𝐻#or 𝐻' minutes depending on the type of operation

performed. Between two consecutive intervals, at most one spreader changeover may occur

(Figure 2.1).

The indices in model DSCSP are as follows:

s Stack (i.e. column) (s = 1, 2, …, S).

t Tier (t = 1, 2, …, T).

i Time interval (i = 1, 2, …, I, I+1).

The input parameters in model DSCSP are as follows:

S Number of stacks in the storage bay. S ≥ 2 to avoid triviality.

T Number of tiers in the storage bay.

I Number of time intervals available (= S × T to be conservative).

Es Initial number of containers in stack s (integer, ≥ 0) (s = 1, 2, ..., S).

C Changeover time between single- and dual-spreader deployment (minutes).

H1 Handling time per lift using single spreader (minutes).

H2 Handling time per lift using dual spreader (minutes).

Lst = 1 if the left side of the dual spreader can be used at stack s, tier t in the original configuration

(binary) (s = 1, 2, …, S-1; t = 1, 2, …, T). This parameter equals the value of the item in

column s, tier t of BASLDSL.

 19

The decision variables in model DSCSP are as follows:

Xsi = 1 if a single-spreader lift is performed at the top of stack s during time interval i (binary)

(s = 1, 2, …, S; i = 1, 2, …, I).

Ysi = 1 if a dual-spreader lift is performed in which the left (right) spreader lifts the container

that is on the top of stack s (s+1) during time interval i (binary) (s = 1, 2, …, S-1; i = 1, 2,

…, I).

Gi = 1 if a spreader changeover is made between time intervals i−1 and i (binary) (i = 2, …, I).

Fi = 1 if all containers have been removed from the bay by the beginning of time

interval i (binary) (i = 1, 2, …, I+1).

Nsi Number of containers in stack s at the beginning of time interval i (integer, ≥ 0) (s = 1,

…, S; i = 1, 2, …, I+1).

Rti = 1 if containers are allowed to be removed from tier t during time interval i (binary) (t = 1,

2, …, T; i = 1, 2, …, I).

Objective function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 + ∑ 𝐺%𝐶)
%*' (1)

Subject to:

 i = 1, 2, …, I (2)

 (3)

å å å
= =

-

=

÷
ø

ö
ç
è

æ
+

I

i

S

s

S

s
sisi YHXH

1 1

1

1
21

1
1

11
=++åå

-

==
i

S

s
si

S

s
si FYX

1
1

1

³å
+

=

I

i
iF

 20

 i = 2, 3, …, I (4)

 i = 2, 3, …, I (5)

 i = 1, 2, …, I+1; s = 1, 2, …, S (6)

 s = 1, 2, …, S (7)

 i = 1, 2, …, I

 i = 1, 2, …, I ; s = 2,…, S-1 (8)

 i = 1, 2, …, I

 i = 1, 2, …, I
 i = 1, 2, …, I; s = 2,…, S-1 (9)

 i = 1, 2, …, I

 i = 1, 2, …, I (10)

 i = 1, 2, …, I; s = 1, 2, …, S (11)

 i = 1, 2, …, I; s = 1, 2, …, S-1

 i = 1, 2, …, I; s = 1, 2, …, S-1

 i = 1, 2, …, I; s = 1, 2, …, S-1; t = 1, 2, …, T (13)

åå
-

==
- £-+

1

11
1, 1

S

s
sii

S

s
is YGX

i

S

s
is

S

s
si GXY £-+åå

=
-

-

=

1
1

1,

1

1

åå
=

-

-

=

£-+
S

s
is

S

s
sii XYG

1
1,

1

1
1

åå
=

-

=
- £-+

S

s
sii

S

s
is XGY

1

1

1
1, 1

i

S

s
is

S

s
si GYX £-+åå

-

=
-

=

1
1

1
1,

1

åå
-

=
-

=

£-+
1

1
1,

1
1

S

s
is

S

s
sii YXG

)1(isi FTN -£

ss EN =1

iiii YXNN 1111,1 --=+

issisisiis YYXNN ,11, -+ ---=

iSSiSiiS YXNN ,11, -+ --=

iii NYX 111 £+

siissisi NYYX £++ - ,1

SiiSSi NYX £+ - ,1

1
1
å
=

=
T

t
tiR

)1()1(
1

sisi

T

t
tisi XTNtRXT -£-÷
ø

ö
ç
è

æ
£-- å

=

)1(*)1(
1

sisi

T

t
tisi YTNRtYT -£-÷
ø
ö

ç
è
æ£-- å

=

)1(*)1(,1
1

siis

T

t
tisi YTNRtYT -£-÷
ø
ö

ç
è
æ£-- +

=
å

sttisi LRY £-+ 1

(12)

 21

The objective function (1) minimizes the makespan, M, which is the sum of the container

handling and spreader changeover times. Constraint (2) ensures that at most one lift, either by the

single spreader or dual spreader, can be performed during any time interval i; if no lift is made,

then the “finished” binary variable 𝐹% should be set to 1. Constraint (3) ensures that the process of

removing containers from the bay is finished by the end of the last time interval. Constraint (4)

forces a changeover to happen when switching from dual-spreader to single-spreader mode. This

constraint has three expressions with the following structure: A + B − 1 ≤ C; C + A − 1 ≤ B; and

B + C − 1 ≤ A. These expressions ensure that if any two of the binary terms A, B, and C equal 1,

then the third term equals 1. Term A indicates if a dual-spreader lift is made during time interval

i−1; B indicates if a spreader changeover is made between time intervals i−1 and i; and C indicates

if a single-spreader lift is made during time interval i. Constraint (5) is the same as (4) except that

it considers the switch from single-spreader to dual-spreader mode.

Constraint (6) indicates that all stacks need to be empty before we can set 𝐹% 	to 1. Constraint

(7) initializes the stack heights for the first-time interval. Constraint (8) updates the stack heights

based on the lifts made during each time interval. Constraint (9) ensures that no lift is made from

an empty stack. Constraint (10) ensures that containers may be removed from only one tier during

each time interval. Constraints (11) and (12) enforce the physical limitation that containers can

only be picked up from the top tier. Constraints (10) and (12) together ensure that the dual spreader

may only lift two containers that are in the same tier. Constraint (13) ensures that dual-spreader

lifts do not violate the (weight-limit-respecting) binary values in BASLDSL. The decision variable

domains are included in the decision variable descriptions that precede the model.

 22

2.2.2 Lower bound computation

The DSCSP is a challenging optimization problem. Although the NP-hardness of this

problem is still an open question, the results in Section 2.4 indicate that an optimization approach

based on model DSCSP struggles to find proven optimal solutions to instances of modest size. In

such cases, it is good to have a lower bound on the optimal objective value in order to estimate the

quality of solutions produced by heuristic methods.

Algorithm 1 shows our approach for computing a lower bound on the optimal objective

value for the DSCSP. It starts from the top tier and works downwards iteratively tier-by-tier (line

2). The consideration of each tier starts at its left end (line 3). Adjacent containers are checked in

pairs to see whether they can be dual-spreader lifted (line 3). If so, the number of dual-spreader

lifts is increased by one and these two containers are marked as handled (lines 5 and 6); otherwise,

the number of single-spreader lifts is increased by one and only the left container of the pair is

marked as handled (lines 7 and 8). The counting continues from left to right in the current tier until

all containers in the tier are marked as handled, i.e. until the algorithm reaches the right side of the

tier (line 4). Then the next tier is considered (line 2).

Once all containers in the storage bay are marked as handled, the total number of dual-

spreader lifts is checked. If this number is not large enough to justify the cost of one spreader

changeover, the algorithm assumes that only single-spreader lifts are performed, and no

changeovers are made (line 10). Otherwise it assumes that one changeover and the counted number

of single-spreader and dual-spreader lifts are performed (line 12).

 23

Algorithm 1: Lower bound computation.

1 Set single-spreader and dual-spreader lift counters Ns = 0, Nd = 0;
2 for each tier do
3 Starting from the left side of the tier, check whether the next two containers can be lifted

together without violating 𝑤!"#"$;
4 while not reaching the right side of the tier do
5 if the next two unhandled containers can be dual-spreader lifted then
6 Nd = Nd + 1; mark the next two containers as handled;
7 else
8 Ns = Ns + 1; mark the next one container as handled;
9 if NdH2 + C > 2Nd H1 then
10 LB = H1 (Ns + 2Nd);
11 else
12 LB = Ns H1 + Nd H2 + C;
13 Report the lower bound LB;

Theorem 1. Algorithm 1 computes a true lower bound on the optimal objective value for

the DSCSP.

Proof. Note that one changeover is included in the lower bound computation if it is

profitable; otherwise no changeover is included (lines 9–12). Thus, Algorithm 1 assumes the bare

minimum number of changeovers. Consider the value of Nd after the completion of the large “for”

loop in Algorithm 1 (lines 2–8). We show that this value equals the maximum total number of

dual-spreader lifts (i.e. dual lifts) that can be made. This fact, combined with the stipulation 𝐻'<

2𝐻#, will prove the theorem.

Each dual lift is confined to a single tier. Thus, it suffices to show that the “greedy method”

in Algorithm 1—which accepts all candidate dual lifts as soon as they appear during a left-to-right

scan of a given tier—correctly computes the maximum number of dual lifts that can be made in

any given tier.

We prove the correctness of the greedy method by induction. Let 𝐷(𝑛)	be the maximum

number of dual lifts that can be made on the right-most n containers in the tier at hand. Clearly,

the greedy method correctly computes the maximum number of dual lifts that can be made on a

 24

set of 1 or 2 containers in isolation; thus, it correctly computes 𝐷(1) and 𝐷(2) when applied to the

right-most 1 or 2 containers in the tier at hand.

To complete the proof, we will show that, for n ≥ 3, if the greedy method correctly

computes 𝐷(𝑛 − 2) and 𝐷(𝑛 − 1), then it also correctly computes 𝐷(𝑛). There are two cases for

the n containers at hand. In case 1, the two left-most containers cannot be feasibly dual lifted, i.e.

they violate the weight limit. In this case, the greedy method skips over the left-most container;

continues scanning at the second container; and computes 𝐷(𝑛 − 1) as the number of dual lifts

made on the n containers. But this is a correct computation for 𝐷(𝑛). Indeed, the left-most

container is not eligible to participate in any dual lifts, so 𝐷(𝑛) 	= 	𝐷(𝑛 − 1) in this case. In case

2, the two left-most containers can be feasibly dual lifted. In this case, the greedy method accepts

the lift; skips over the two containers; continues scanning at the third container; and computes 1 +

𝐷(𝑛 − 2) as the number of dual lifts made on the n containers. Any non-greedy method, by

definition, would reject the dual lift; skip over the left-most container; continue scanning at the

second container; and compute at most 𝐷(𝑛 − 1) as the number of dual lifts made on the n

containers. However, it is a general rule that 𝐷(𝑛 − 1) 	≤ 	𝐷(𝑛 − 2) + 1. Indeed, the addition of

one container to the left-hand side of an existing row of n − 2 containers increases the total number

of dual lifts that can be performed on these containers by no more than one. This is because all

dual lifts, except possibly the left-most such lift, found in the “optimal” set of dual lifts for the set

of n − 1 containers can be found in the set of n − 2 containers. Thus, the dual lift tally computed

by any non-greedy method cannot be more than that computed by the greedy method. Thus, the

greedy method is “optimal” in case 2; it correctly computes 𝐷(𝑛) in this case. We have just proven

the statement that begins this paragraph. Thus, the greedy method correctly computes 𝐷(𝑛) for all

n ≥ 1. ∎

 25

2.3 Heuristic approach

Experimental results, discussed in Section 2.4, indicate that a direct math programming

approach based upon model DSCSP is not a satisfactory solution method for large DSCSP

instances with 50 or more containers. This motivates us to develop a heuristic method that can find

good solutions to large problem instances within a reasonable time. We now describe this heuristic

method.

Our overall method consists of a constructive heuristic embedded within a simulated

annealing (SA) metaheuristic. The constructive heuristic deterministically builds a feasible crane

lift sequence based on the values of six parameters. During each iteration of the SA algorithm, the

values of one or more parameters are changed to new, neighboring values, and a new feasible crane

lift sequence is generated and evaluated.

Among several available metaheuristic approaches−including simulated annealing (SA),

genetic algorithm (GA), tabu search (TS), and ant colony optimization (ACO)−we decided to use

SA because it offered a good trade-off between ease of use and expected solution quality. SA is

among the easiest metaheuristic techniques to implement, yet it usually still achieves good results.

In general, SA can be used in highly non-linear problems that have a large number of constraints.

SA is an extensible algorithm used to search for global optimality and it is easy to implement. The

performance of SA depends on the quality of solution construction (Suman and Kumar, 2006).

We now provide a general description of the constructive heuristic, followed by a detailed

description. Then we discuss the SA algorithm. The constructive heuristic is divided into two

stages. In stage 1, the type of lift (single-spreader or dual-spreader) for each container is decided.

In stage 2, a crane lift sequence—a list of individual lifts and spreader changeovers—is generated

based on the output from stage 1.

 26

Our general approach to stage 1 is to iteratively accept or reject the dual-spreader lift

opportunities that are shown in BASLDSL (right side of Figure 2.2). Note that the rejection of

some dual-lift opportunities is often necessary to guarantee feasibility. For example, at least one

of the dual-lift opportunities represented by two adjacent ‘ones’ in the same tier in BASLDSL

must be rejected; otherwise, the same container would be involved in two dual-spreader lifts—one

with the container on its left, and one with the container on its right. Importantly, the dual-lift

opportunities are not considered individually, but rather in batches of contiguous dual-lifts that are

aligned vertically (i.e. in batches of consecutive ‘ones’ in the same column in BASLDSL). The

consideration of such a batch often, but not always, results in all dual-lifts in the batch being

accepted. To maintain feasibility, every acceptance is followed by the immediate rejection of all

dual lift opportunities in the columns immediately to the right and left of the accepted batch’s

column in BASLDSL. The output from stage 1 is a modified, or fixed, version of BASLDSL in

which (1) the respective values are less than or equal to those in the initial BASLDSL and (2) there

are no adjacent ‘ones’ in the same tier.

In stage 2, we use the fixed BASLDSL to label each container in the bay with a “S” (“D”)

if it will be single-spreader (dual-spreader) lifted. Then we construct a feasible crane lift sequence

by iteratively removing containers from the tops of the stacks in the bay if they match the current

spreader being deployed. When no more lifts can be made using the current spreader, the spreader

is changed. Lifting then continues using the new spreader. This process continues until no more

containers remain in the bay. The makespan of the crane lift sequence is then computed.

We now describe the constructive heuristic in greater detail. Table 2.1 lists the six

parameters that guide this heuristic. Parameters 1 and 6 have two possible values; Parameter 2 has

 27

T possible values; and Parameters 3, 4, and 5 are long sequences of [0,1) real numbers. Parameters

1–5 are used in stage 1, and Parameter 6 is used in stage 2.

Table 2.1. Parameters that guide the constructive heuristic.

InitialDirection Equals 0 (1) if heuristic initially moves down from higher to lower tiers (up from
lower to higher tiers).

InitialTier Tier at which heuristic begins (= integer from 1 to T).
ColumnChooser[] The next value in this sequence of [0, 1) real numbers decides which column is

considered next if two or more columns c tie for having the greatest Depth(c).
FixFullDepthYN[] The next value in this sequence of [0, 1) real numbers is compared to

FullDepthChance to decide whether or not to fix Depth(c) dual-spreader lifts in
column c.

NumLiftsToFix[] If FixFullDepthYN indicates that fewer than Depth(c) dual-spreader lifts in column
c should be fixed, the next value in this sequence of [0, 1) real numbers decides how
many such lifts are fixed.

InitialSpreader Forms a feasible crane lift sequence from the values in the fixed BASLDSL. Equals
“S” (“D”) if the lifting begins in single-spreader (dual-spreader) mode.

Algorithm 2 shows the pseudocode for stage 1 of the constructive heuristic. In this code,

A[∗] indicates the first unused item in array A. In stage 1, BASLDSL is scanned in order to decide

which potential dual-spreader lifts should and should not be performed. During this scan, the initial

values in BASLDSL are gradually fixed to 1 or 0, where a 1 (0) means that the associated dual-

spreader lift will (will not) be performed. Parameter InitialTier in Table 2.1 specifies the starting

point for this scan, which proceeds tier by tier (line 1). Parameter InitialDirection specifies whether

the scan initially proceeds down from InitialTier to lower tiers or up from InitialTier to higher tiers

(line 1). We let BA[c, t] denote the value in column c and tier t in BASLDSL (line 2).

 28

Algorithm 2. Stage 1 of the constructive heuristic.

1 Set Phase = 1, Dir = InitialDirection, and Tier = InitialTier;
2 Let BA[c, t] denote the value in column c and tier t in BASLDSL;
3 Set Fixed[c, t] = no for all (c, t) in BASLDSL;
4 while Tier ≥ 1 (≤T) when Dir = 0 (1) do
5 Set Fixed[c, Tier] = yes for all c such that BA[c, Tier] = 0;
6 while Fixed[c, Tier] = no for any c from 1 to S−1 do
7 For all c∈1,..., S−1 for which Fixed[c, Tier] = no, let Depth(c) be the number of consecutive

‘ones’ that appear in column c in BASLDSL beginning with tier Tier and moving down
(up) if Dir = 0 (1). Let CGD be the column c with the greatest Depth(c). Break ties using
ColumnChooser[*];

8 if FixFullDepthYN[*] ≤ FullDepthChance then
9 DualLiftsFixed = Depth(CGD);
10 else
11 DualLiftsFixed = floor(Depth(CGD)×NumLiftsToFix[*]);
12 if DualLiftsFixed = 0 then
13 Set BA[CGD, Tier] = 0 and Fixed[CGD, Tier] = yes;
14 else
15 Fix DualLiftsFixed ‘ones’ in column CGD in direction Dir in BASLDSL. In other

words, set BA[CGD, t] = 1 and Fixed[CGD, t] = yes for all t from Tier to Tier-
DualLiftsFixed+1 if Dir = 0 or from Tier to Tier+DualLiftsFixed-1 if Dir = 1;

16 Fix DualLiftsFixed ‘zeros’ in the columns adjacent to column CGD in direction Dir in
BASLDSL;

17 Decrease (increase) Tier by 1 if Dir = 0 (1);
18 if Phase = 1 and Dir = 0 (1) and Tier = 0 (T + 1) and InitialTier < T (> 1) then
19 Set Phase = 2, Dir = 1 (0), and Tier = InitialTier;
20 Set Fixed[c, InitialTier] = no for all c from 1 to S − 1;
21 Report the BASLDSL with fixed values;

During the consideration of tier Tier in BASLDSL, the heuristic identifies the columns c

for which BA[c, Tier] = 1 and is not already fixed (line 6). The value Depth(c) is then computed

for each such column c. Depth(c) equals the number of consecutive ‘ones’ in column c that begin

at tier Tier and proceed upwards or downwards depending on the current scanning direction Dir

(line 7). The dual-spreader opportunities in the column c with the greatest Depth(c) are the first

candidates for acceptance. When two or more columns c tie for having the greatest Depth(c), the

next [0,1) real number in array ColumnChooser[] breaks the tie and selects the “column with the

greatest depth” (i.e. CGD) (line 7). In particular, if L columns are tied, then the nth such column

is selected if and only if (n − 1)/L ≤ ColumnChooser[∗] < n/L. The next [0,1) real number in array

 29

FixFullDepthYN[] is then compared to global parameter FullDepthChance (line 8) to decide if all

Depth(CGD) dual-spreader lift opportunities in column CGD are accepted (line 9) or not (lines 10

and 11). If not, the next [0,1) real number in array NumLiftsToFix[] indicates what fraction of the

dual-spreader lift opportunities are accepted, i.e. to what depth the ‘ones’ in the column are fixed.

In particular, the number of ‘ones’ that are fixed equals floor(Depth(CGD)× NumLiftsToFix[∗])

(line 11). If this equals 0 (line 12), the dual-lift opportunity in column CGD, tier Tier is rejected

and the corresponding cell in BASLDSL is fixed to 0 (line 13). Otherwise, one or more dual-lift

opportunities in column CGD are accepted (i.e. a sub-column of ‘ones’ in BASLDSL is fixed)

(line 15), and the values in all cells on either side of this sub-column are fixed to 0 (line 16). The

latter step ensures that two adjacent ‘ones’ in the same tier in BASLDSL are never both fixed. This

concludes the handling of column CGD in the current tier. Other columns c are then considered

one-at-a-time according to the ranking of their Depth(c) values, and the above process repeats until

all values in the current tier in BASLDSL have been fixed to 1 or 0 (lines 6–16).

The procedure then continues to the next tier in the current scanning direction Dir (line

17). Eventually all tiers in direction Dir will be scanned. At this point, the second phase of the

scanning commences: the procedure jumps back to tier InitialTier, un-fixes all values in that tier,

and begins scanning in the direction opposite from InitialDirection (lines 19–20). This second

phase is undertaken if and only if InitialTier is a middle tier (line 18). After completion of the

second phase, all tiers in BASLDSL have been scanned and all cells in BASLDSL have been fixed

(line 21).

 30

Algorithm 3. The constructive heuristic.

1 Convert the problem instance into BASLDSL (see Figure 2.2);
2 Call Algorithm 2 to fix the values in BASLDSL;
3 Convert BASLDSL into ContainerArray, an S × T array that shows the type of container occupying

each cell in the storage bay. “S” (“D”) indicates a container that will be single-spreader (dual-
spreader) lifted. “n” indicates that no container is present. Let CA[s, t] denote the value in stack s
and tier t in ContainerArray;

4 Set CurrSpreader = InitialSpreader;
5 while there is at least one “S” or “D” in ContainerArray do
6 for t = T to 1 (decrease t by 1 each time) do
7 for s = 1 to S (increase s by 1 each time) do
8 if CA[s, t] = CurrSpreader = “S” and (CA[s, t+1] = “n” or does not exist) then
9 Add a single-spreader lift to the end of the crane lift sequence and let CA[s, t] =

“n”;
10 if CA[s, t] = CurrSpreader = “D” then
11 if CA[s, t+1] = CA[s+1, t+1] = “n” or neither value exists then
12 Add a dual-spreader lift to the end of the crane lift sequence and let CA[s, t]

= CA[s+1, t] = “n”;
13 Increase s by 1
14 Change CurrSpreader from “S” to “D” or vice versa;
15 if the crane lift sequence has short, unprofitable subsequences of dual-spreader lifts that are not

worth the changeover cost then
16 Convert the unprofitable dual-spreader lifts into single-spreader lifts in the crane lift sequence;
17 Report the final crane lift sequence and its makespan M;

The overall constructive heuristic is shown in Algorithm 3. This heuristic first calls

Algorithm 2 to fix the values in BASLDSL (line 2). It then converts the fixed BASLDSL into a

ContainerArray, an S × T array that shows which containers in the storage bay will be single-

spreader (“S”) and dual-spreader (“D”) lifted. A detailed crane lift sequence that starts using

spreader InitialSpreader is then constructed in a straightforward manner using the values in

ContainerArray (lines 4–14). If the end (middle) of the sequence contains short, unprofitable

subsequences of dual-spreader lifts that are not worth the cost of one (two) spreader changeover(s),

the unprofitable dual-spreader lifts are converted into single-spreader lifts (lines 15–16). Then the

makespan of the resulting crane lift sequence is computed (line 17).

Figures 2.3 and 2.4 show how the constructive heuristic generates two different crane lift

sequences for the problem instance shown in Figure 2.2 for two different sets of input parameters.

 31

In each figure, the original problem instance and its conversion into the initial, tentative BASLDSL

are shown in the upper left. The values of the six input parameters are shown in the upper-right.

The left side of each figure shows how Algorithm 2 gradually fixes the values in BASLDSL using

the first five parameters. Note that only the first several values in arrays ColumnChooser[],

FixFullDepthYN[], and NumLiftsToFix[] are utilized; the other values are not used. The

conversion of the fixed BASLDSL into ContainerArray; the generation of a detailed crane lift

sequence; and the makespan computation are shown in the bottom right. Notice that the fixed

BASLDSL, ContainerArray, and makespan are quite different in the two figures. Indeed, the

constructive heuristic is able to generate vastly different crane lift sequences when the input

parameters are changed. It turns out that the makespan shown in Figure 2.4 is optimal.

 32

Figure 2.3. Illustration #1 of the constructive heuristic. The most recent activity in BASLDSL is

highlighted. Fixed values in BASLDSL are displayed in bold.

0 1 1 1 0 1 0
1 1 1 1 1 0 0
1 1 1 0 1 1 1

0 13 13 12 0 11 0

1 1 1 1 1 0 0
1 1 1 0 1 1 1

7 3 5 2 6 5 9 4
1 4 2 3 1 9 2 2
6 3 2 6 8 7 2 3

S D D D D D S D
S D D D D S S S
S D D S D D D D

S S
S S S S
S S D D D D

D D D D

Six dual lifts = 6*1.8 min
Changeover = 2.1 min

Eight single lifts = 8*1.5 min
Changeover = 2.1 min

FINISHED

Two dual lifts = 2*1.8 min

Heuristic Input Parameters:

InitialDirection = 0
InitialTier = 3
ColumnChooser = [0, 0, 0, 0, …
FixFullDepthYN = [0, 0, 0, 0, …
NumLiftsToFix = [0, 0, 0, 0, …
InitialSpreader = D

Global Parameters:

FullDepthChance = 0.5

ContainerArray:

Makespan = 30.6 min

All subsequences of dual-spreader
lifts (the six lifts at the start, the two
lifts at the end) are worth the setup
cost of the dual spreader.

Original problem instance

Initial BASLDSL

Note: Superscripts show Depth(c)
for each column c.

Phase = 1
Dir = 0
Tier = 3

ColumnChooser[1] = 0
CGD = 2
FixFullDepthYN[1] = 0
DualLiftsFixed = 3

CGD = 4
FixFullDepthYN[2] = 0
DualLiftsFixed = 2

CGD = 7
FixFullDepthYN[3] = 0
DualLiftsFixed = 1

Tier = 2

Tier = 1

ColumnChooser[2] = 0
CGD = 5
FixFullDepthYN[4] = 0
DualLiftsFixed = 1

CGD = 7
FixFullDepthYN[5] = 0
DualLiftsFixed = 1

BASLDSL with
fixed values

0 0 1 12

0 11

0

0 0 1 1 1 0 0

0 0 1 0 1 1 1

0 0 1 1

0 11

0

0 0 1 1 0 0 0
0 0 1 0 1 1 1

0 0 1 1

0 1

0
0 0 1 1 0 0 0
0 0 1 0 1 1 1

0 0 1 1

0 1

0
0 0 1 1 0 0 0
0 0 1 0 1 1 1

0 0 1 1

0 1

0
0 01 1 0 0 0
0 0 1 0 11 11 11

0 0 1 1

0 1

0
0 0 1 1 0 0 0
0 0 1 0 1 11

0

0 0 1 1

0 1

0
0 0 1 1 0 0 0
0 0 1 0 1 1

0

0 0 1 1

0 1

0
0 0 1 1 0 0 0
0 0 1 0 1 1

0

InitialSpreader = D

 33

Figure 2.4. Illustration #2 of the constructive heuristic. The most recent activity in BASLDSL is
highlighted. Fixed values in BASLDSL are displayed in bold.

ContainerArray:

0 1 1 1 0 1 0
1 1 1 1 1 0 0
1 1 1 0 1 1 1

0 1 1 1 0 1 0

11 12 12 12 11 0 0
 1 1 1 0 1 1 1

7 3 5 2 6 5 9 4
1 4 2 3 1 9 2 2
6 3 2 6 8 7 2 3

S D D D D D S D
S D D D D S S S
S D D S D D D D

Six dual lifts = 6*1.5 min
Changeover = 2.1 min
Nine dual lifts = 9*1.8 min

FINISHED

Heuristic Input Parameters:

InitialDirection = 1
InitialTier = 2
ColumnChooser = [.4, .8, .9, .7 …
FixFullDepthYN = [.7, 0, 0, .9, …
NumLiftsToFix = [.6, .9, …
InitialSpreader = S

Global Parameters:

FullDepthChance = 0.5

Makespan = 27.3 min

All subsequences of dual-spreader
lifts are worth the setup cost of the
dual spreader

Original problem instance

Initial BASLDSL

Note: Superscripts show Depth(c)
for each column c.

Phase = 1
Dir = 1
Tier = 2

ColumnChooser[1] = .4
CGD = 3
FixFullDepthYN[1] = .7
NumLiftsToFix[1] = .6
DualLiftsFixed =
 floor(2*.6) = 1
ColumnChooser[2] = .8
CGD = 5
FixFullDepthYN[2] = 0
DualLiftsFixed = 1

CGD = 1
FixFullDepthYN[3] = 0
DualLiftsFixed = 1

Tier = 3

ColumnChooser[3] = .9
CGD = 7
FixFullDepthYN[4] = .9
NumLiftsToFix[2] = .9
DualLiftsFixed = floor(2*.9)
 = 0
ColumnChooser[4] = .7
CGD = 4
FixFullDepthYN[5] = 0
DualLiftsFixed = 1

CGD = 2
FixFullDepthYN[6] = 0
DualLiftsFixed = 1

Tier = 4
Phase = 2
Dir = 0
Tier = 2

0 1 1 1 0 1 0
11 1 0 0 11 0 0
1 1 1 0 1 1 1

0 1 1 1

0 1 0

11 1 0 0 1 0 0
1 1 1 0 1 1 1

0 1 1 1

0 1

0

1 1 0 0 1 0 0

1 1 1 0 1 1 1

0 11 11 11 0 11 0
 1 1 0 0 1 0 0

1 1 1 0 1 1 1

0 11 11 11 0 0 0

1 1 0 0 1 0 0
1 1 1 0 1 1 1

0 0 11 1

0 0 0

1 1 0 0 1 0 0
0 0 1 0 1 1 0

0 0 1 1

0 0 0

1 1 0 0 1 0 0
1 1 1 0 1 1

1

0 0 1 1

0 1
0

0
12 12 0 0 12 0 0
1 1 1 0 1 1

0

InitialSpreader = S

0 0 1 1 0 0 0
12 1 0 0 12 0 0
1 1 0 0 1 1 1

0 0 1 1 0 0 0
1 1 0 0 12 0 0
1 1 0 0 1 1 1

0 0 1 1 0 0 0
1 1 0 0 1 0 0
1 1 0 0 1 1 0

0 0 1 1 0 0 0
1 1 0 0 1 0 0
1 1 0 0 1 1 0

ClmChose[5] = .5
CGD = 3
FFDpthYN[7] = 0
DualLftsFixed = 2

ClmChose[6] = .2
CGD = 1
FFDpthYN[8] = 0
DualLftsFixed = 2

CGD = 5
FFDpthYN[9] = 0
DualLftsFixed = 2

Tier1

CGD = 7
FFDpthYN[10] = 0
DualLftsFixed = 1

 34

Figure 2.5 shows how the constructive heuristic is embedded within a simulated annealing

(SA) framework. The SA procedure begins by initializing the six input parameters, collectively

referred to as CurrParam, and converting them into a feasible crane lift sequence CurrSeq and

makespan CurrOV using the constructive heuristic. In each SA iteration, CurrParam is used to

generate a new set of parameter values NghborParam; the constructive heuristic converts

NghborParam into a feasible crane lift sequence; and the laws of simulated annealing decide if

NghborParam replaces CurrParam.

Two kinds of neighborhood moves—small moves and large moves—are utilized. In a small

move, a new, random combination of values for parameters 1 and 6—InitialDirection and

InitialSpreader—is considered and the other parameters remain unchanged. In a large move, a

new, random value for parameter (2, 3, 4, 5) is considered with probability (𝑝', 𝑝+, 𝑝,, 𝑝-) and a

new, random combination of values for parameters 1 and 6 is considered (𝑝'+	𝑝++ 𝑝,+	𝑝- = 1). A

small move is made whenever it can produce a new set of parameter values that has not yet been

explored. Otherwise, a large move is initiated. When a predefined time limit is reached, the SA

procedure terminates and the best crane lift sequence that was found is displayed.

 35

• Set the temperature CurrTemp = InitialTemp
• Set BestOV = 999,999,999.
• Let CurrParam be the following set of parameters:

1. InitialDirection = 0
2. InitialTier = T
3. ColumnChooser[] = [0, 0, 0, ... , 0]
4. FixFullDepthYN[] = [0, 0, 0, ... , 0]
5. NumLiftsToFix[] = [0, 0, 0, ... , 0]
6. InitialSpreader = S

• Convert CurrParam into a crane lift sequence, CurrSeq, and compute its objective value, CurrOV,
using the constructive heuristic (i.e. Alg. 3).

Figure 2.5. Overall logic of the simulated annealing metaheuristic.

No

No

Yes

Yes

Yes

Yes

No

No

No

Yes
Is CurrOV < BestOV? Set BestOV = CurrOV

Set BestParam = CurrParam
Set BestSeq = CurrSeq

Has the time limit been reached?	

Have all four possibilities of parameters (1, 6)—namely (0,S), (0,D), (1,S), (1,D)—been
explored for the current set of values of parameters (2, 3, 4, 5)? In other words, have all
four possibilities for CurrParam in the current sub-neighborhood been explored?

Large Nbhd Move: Set NghborParam
= CurrParam except that (i) new
parameter (2, 3, 4, 5) is set to a new,
randon value/array with probability (p2,
p3, p4, p5) and (ii) parameters (1, 6) are
set to new, random values.	

Small Nbhd Move: Set NghborParam
= CurrParam except that parameters (1,
6) are set to new, random ordered pair
that has not been explored during the
stay in this sub-neighborhood.	

Convert NghborParam into a crane lift sequence, NghborSeq, and compute its
objective value, NghborOV, using the constructive heuristic (i.e. Alg. 3).

Is NghborOV - CurrOV = Δ ≤ 0?

Is rand [0,1) ≤ e-Δ/CurrTemp ?	 Set CurrOV = NghborOV
Set CurrParam = NghborParam
Set CurrSeq = NghborSeq

Set CurrTemp = CurrTemp * TempFactor

Display BestOV, BestParam, BestSeq.

 36

2.4 Experimental setup, results, and discussion

The heuristic method from Section 2.3 and model DSCSP from Section 2.2 were coded

into MS Visual C++ 2010 Professional. IBM ILOG Concert Technology was used to define model

DSCSP within C++ and call the MILP solver IBM ILOG CPLEX 12.5 to solve instances defined

in text files. To avoid running out of memory, the CPLEX “node file storage parameter” is set to

3. That is, the information for every unexplored node in the CPLEX branch-and-cut tree is stored

on the hard disk and compressed. Otherwise, default CPLEX settings are used. All results are

obtained using a desktop computer with the Windows 7 Enterprise 64-bit operating system, an

Intel Core i7-4770 processor with eight 3.4 gigahertz cores, and 16 gigabytes of RAM.

We consider a total of 120 problem instances—30 instances for each of the problem sizes

3×8, 5×10, 10×23, and 50×50. A problem of size T × S has T tiers, S stacks, and T containers in

stack s at time 0 for all s. In all instances, we assume that the container weights 𝑊!"	take integer

values from 1 to 9. We also assume that 𝑤$%&%"	= 10, 𝐻#	= 1.5, 𝐻' = 1.8, and C = 2.1. Among the

30 instances for each problem size, (10, 10, 10) instances have (light, medium, heavy) container

weights. In the medium instances, the weight of each container follows a discrete uniform

distribution over the values {1, 2, 3, 4, 5, 6, 7, 8, 9}. In the light instances, the weight of each

container has a {15%, 15%, 15%, 15%, 20%, 5%, 5%, 5%, 5%} chance of taking the value {1, 2,

3, 4, 5, 6, 7, 8, 9}. In the heavy instances, the weight of each container has a {5%, 5%, 5%, 5%,

20%, 15%, 15%, 15%, 15%} chance of taking the value {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Table 2.2 shows the settings used in the heuristic algorithm for each of the four problem

sizes. Preliminary experiments were performed to determine these settings. The results of these

preliminary experiments, not shown here, indicated that performance was most consistent when

the neighbor probabilities (𝑝', 𝑝+, 𝑝,, 𝑝-) equal (.25, .25, .25, .25) (Fig. 2.5). We also found that

 37

performance improves with a higher FullDepthChance (line 8 of Algorithm 2, middle of Table

2.1) as the problem size increases. We hypothesize that this is because instances with more tiers

can have larger batches of dual lift opportunities that are aligned vertically (i.e. longer strings of

consecutive ‘ones’ in the same column in the initial BASLDSL). As the size of such a batch

increases, it may be increasingly important to accept all dual lift opportunities in the batch to

prevent “disrupting” the batch with a single rejected dual lift opportunity in its middle. Such a

disruption may add two unnecessary changeovers—to and from the single spreader—to the crane

lift sequence.

Table 2.2. Parameters settings for the heuristic method.

Problem size 3 ×	8 5 × 	10	 10 ×	23	 50	×	50	
Computational time limit (seconds) 10 60 600 600
FullDepthChance 0.5 0.7 0.8 0.99
Neighbor probabilities (p2, p3, p4, p5) All set to (.25, .25, .25, .25)
InitialTemp 10,000 100,000 10,000,000 100,000
TempFactor 0.9999 0.99999 0.999999 0.99999

Note that more computation time is allocated for attacking larger problems. Given this time

limit, parameters InitialTemp and TempFactor are set so the SA procedure consists of three phases

of roughly equal duration—(i) an initial exploration phase when almost any neighboring solution

is accepted; (ii) a middle phase when the algorithm gradually transitions from being very accepting

of neighbors to being very picky; and (iii) a final phase when virtually no inferior neighboring

solutions are accepted. The increase (decrease) in parameters InitialTemp and TempFactor when

going from problem size 3 × 8 to 10 × 23 (10 × 23 to 50 × 50) follows from the fact that the allotted

computation time grows at a faster (slower) rate than the problem size for these instances.

 38

Table 2.3 shows the results for the first set of experiments that consider the 30 small

problem instances of size 3 × 8. Each individual instance is specified by a code “TxSZnn” where

T is the number of tiers; S is the number of stacks; Z takes the value (L, M, H) according to the

container weight scenario (light, medium, heavy); and “nn” denotes the instance number from 1

to 10. Each instance is considered in three ways—(A) using standard integer programming (IP)

with no time limit (“CPLEX Alone”); (B) using the heuristic method with a 10 sec time limit; and

(C) using IP with no time limit where both the lower bound and the best solution found by the

heuristic are passed to the solver at the outset (“CPLEX + LB + UB”). The heuristic method

generates an average of eleven million neighboring solutions within the 10 second time limit. The

best objective value (i.e. makespan) found by methods A, B, and C are shown in columns	𝑀/0,

𝑀1, and 𝑀/023 	respectively. Column 𝑀1! shows the makespan of the initial feasible solution used

in the heuristic method, and column LB shows the lower bound.

 39

Table 2.3. Experimental results for DSCSP instances of size 3 × 8.

Instance

CPLEX Alone

Heuristic (10 seconds) CPLEX+LB+UB
𝐿𝐵

𝑀1 − 𝐿𝐵
𝑀1

𝑀/0 Time(s) 𝑀1 𝑀1!

𝑀1! −𝑀1

𝑀1
 𝑀/023 Time(s)

3x8L01 27.3 17 27.3 29.4 7.69% 27.3 15 26.1 4.40%
3x8L02 26.1 12 26.1 31.8 21.84% 26.1 0 26.1 0.00%
3x8L03 26.1 6 26.1 27.3 4.60% 26.1 1 26.1 0.00%
3x8L04 29.4 211 29.4 31.8 8.16% 29.4 112 27.3 7.14%
3x8L05 21.6 1 21.6 28.2 30.56% 21.6 1 21.6 0.00%
3x8L06 27.3 80 27.3 33.9 24.18% 27.3 71 26.1 4.40%
3x8L07 24.9 4 24.9 28.2 13.25% 24.9 0 24.9 0.00%
3x8L08 30.6 573 30.6 31.8 3.92% 30.6 157 28.5 6.86%
3x8L09 26.1 7 26.1 30.6 17.24% 26.1 0 26.1 0.00%
3x8L10 28.2 424 28.2 31.5 11.70% 28.2 75 26.1 7.45%
Average 26.8 133.5 26.8 30.5 14.31% 26.8 43.2 25.9 3.02%
3x8M01 30.6 8 30.6 31.8 3.92% 30.6 42 28.5 6.86%
3x8M02 30.9 37 30.9 30.9 0.00% 30.9 25 29.7 3.88%
3x8M03 27.3 29 27.3 31.8 16.48% 27.3 53 26.1 4.40%
3x8M04 34.2 76 34.2 35.7 4.39% 34.2 55 32.1 6.14%
3x8M05 30.9 109 30.9 33 6.80% 30.9 108 28.5 7.77%
3x8M06 27.3 7 27.3 33 20.88% 27.3 0 27.3 0.00%
3x8M07 30.9 56 30.9 33 6.80% 30.9 63 29.7 3.88%
3x8M08 32.1 17 32.1 33 2.80% 32.1 24 30.9 3.74%
3x8M09 34.2 14 34.2 34.2 0.00% 34.2 31 32.1 6.14%
3x8M10 28.5 6 28.5 30.6 7.37% 28.5 33 27.3 4.21%
Average 30.7 35.9 30.7 32.7 6.94% 30.7 43.4 29.2 4.70%
3x8H01 35.7 6 35.7 36 0.84% 35.7 19 34.5 3.36%
3x8H02 32.1 27 32.1 34.2 6.54% 32.1 40 30.9 3.74%
3x8H03 35.7 9 35.7 36 0.84% 35.7 12 34.5 3.36%
3x8H04 29.7 10 29.7 31.8 7.07% 29.7 0 29.7 0.00%
3x8H05 33.3 8 33.3 35.4 6.31% 33.3 1 33.3 0.00%
3x8H06 34.5 7 34.5 35.4 2.61% 34.5 19 33.3 3.48%
3x8H07 32.1 24 32.1 32.1 0.00% 32.1 38 30.9 3.74%
3x8H08 32.1 8 32.1 35.4 10.28% 32.1 16 30.9 3.74%
3x8H09 34.2 22 34.2 34.2 0.00% 34.2 25 32.1 6.14%
3x8H10 36 1 36 36 0.00% 36 1 36 0.00%
Average 33.5 12.2 33.5 34.7 3.45% 33.5 17.1 32.6 2.76%
Ovrl Avg. 30.3 60.5 30.3 32.6 8.24% 30.3 34.6 29.2 3.49%

 40

The results show that all three methods solve all instances to optimality. Indeed, method A

solves all instances to optimality within ten minutes; method B finds these optimal solutions within

ten seconds; and method C solves all instances to optimality within three minutes. Importantly, the

best solutions found by the heuristic (all of which happen to be optimal) are usually within 5% of

the lower bound. Also, the objective value of the best heuristic solution (30.3) is about 7% better

on average than that of the initial heuristic solution (32.6). Not surprisingly, the optimal values for

the light instances are typically less than those for the medium instances. The same holds for the

medium instances compared to the heavy instances.

Table 2.4 shows the results for the second set of experiments that consider the 30 medium-

sized instances of size 5 × 10. Here, each instance is considered in three ways—(A) using IP with

a one hour time limit (“CPLEX Alone”); (B) using the heuristic method with a 60 second time

limit; and (C) using IP with a one hour time limit where the lower bound and best solution found

by the heuristic are passed to the solver at the outset (“CPLEX+LB+UB”). The heuristic method

generates an average of 31 million neighboring solutions within the 60 sec time limit. Column

“Opt?” indicates if the associated solution is proven by CPLEX to be optimal or not.

The results for methods A and B show that the heuristic method performs better than IP.

Indeed, in every instance, the best solution found by the heuristic in one minute is at least as good

as the best solution found by CPLEX in an hour. Also, the average objective value of the best

heuristic solution (62.6) is about 1.4% better than that for CPLEX (63.5). Note that the best

solutions found by the heuristic (only two of which are known to be optimal) are about 6% higher

on average than the lower bound. Also, the results for method C show that CPLEX is unable, in

an hour, to improve upon the best heuristic solution provided to it at the outset for any instance.

Finally, we observe that the objective value of the best heuristic solution (62.6) is about 5% lower

 41

on average than that of the initial heuristic solution (65.7). Overall, the above results indicate that

our IP framework is not a suitable solution method for instances with 50 or more containers. Thus,

IP is not considered in the following experiments that consider larger problem instances.

Table 2.5 shows the results for the 60 largest problem instances—30 large instances of size

10 × 23 and 30 very large instances of size 50 × 50. The results for the large (very large) instances

are on the left (right). For each instance, we show the lower bound; the objective value of the best

solution found by the heuristic method within a 600 second time limit; and the objective value of

the initial heuristic solution. The heuristic method generates an average of 39 (1.9) million

neighboring solutions within the 600 second time limit for the instances of size 10 × 23 (50 × 50).

The results show that the heuristic is finding near-optimal solutions to these instances.

Indeed, the average objective value of the best heuristic solution for the instances of size 10 × 23

and 50 × 50—275.2 and 2936.8 respectively—is about 4% higher than the average lower bound—

263.8 and 2828.9 respectively—for these instances. Also, note that the quality of the heuristic

solution improves as containers get heavier; on average, the makespan of the best heuristic solution

is roughly 5%, 4%, and 3% above the lower bound for the light, medium, and heavy instances

respectively. This may be due to the fact that there are fewer opportunities for using the dual

spreader—and therefore fewer choices—when containers are heavier. Overall, the heuristic

method is effective in tackling a variety of instances of the DSCSP.

Table 2.4. Experimental results for DSCSP instances of size 5 × 10.

Instance CPLEX Alone Heuristic (10 seconds) CPLEX+LB+UB 𝐿𝐵 𝑀! − 𝐿𝐵
𝑀!

𝑀"# Time(s) Opt? 𝑀! 𝑀!! 𝑀!! −𝑀!

𝑀!
 𝑀"#$% Time(s) Opt

?
5x10L01 62.1 3861 ? 61.2 63 2.94% 61.2 3605 ? 56.7 7.35%
5x10L02 55.2 3915 ? 55.2 63.6 15.22% 55.2 3610 ? 53.1 3.80%
5x10L03 57.3 4001 ? 56.4 61.2 8.51% 56.4 3608 ? 53.1 5.85%
5x10L04 56.1 3726 ? 55.2 58.8 6.52% 55.2 3607 ? 51.9 5.98%
5x10L05 50.7 3673 ? 50.7 60 18.34% 50.7 3603 ? 49.5 2.37%
5x10L06 66 3665 ? 63.3 67.8 7.11% 63.3 3605 ? 57.9 8.53%
5x10L07 56.1 3850 ? 56.1 61.2 9.09% 56.1 3604 ? 51.9 7.49%
5x10L08 56.4 4114 ? 56.4 57.6 2.13% 56.4 3605 ? 53.1 5.85%
5x10L09 51.6 3604 ? 51.6 58.8 13.95% 51.6 3779 ? 49.5 4.07%
5x10L10 51.6 3600 ? 51.6 59.4 15.12% 51.6 3663 ? 49.5 4.07%
Avg. 56.3 3800.9 55.8 61.1 9.89% 55.8 3628.9 52.6 5.54%
5x10M01 67.8 3602 ? 64.8 66.6 2.78% 64.8 3605 ? 60.3 6.94%
5x10M02 63.9 3766 ? 62.4 66 5.77% 62.4 3604 ? 57.9 7.21%
5x10M03 63.9 3611 ? 63.6 66 3.77% 63.6 3606 ? 60.3 5.19%
5x10M04 64.8 3769 ? 64.8 67.2 3.70% 64.8 3606 ? 61.5 5.09%
5x10M05 66 3658 ? 64.8 64.8 0.00% 64.8 3607 ? 61.5 5.09%
5x10M06 62.1 3669 ? 57.6 59.7 3.65% 57.6 3603 ? 54.3 5.73%
5x10M07 60.6 3625 ? 59.7 63 5.53% 59.7 3604 ? 54.3 9.05%
5x10M08 68.1 3726 ? 66.9 69.9 4.48% 66.9 3607 ? 61.5 8.07%
5x10M09 64.2 3652 ? 62.1 63.3 1.93% 62.1 3606 ? 57.9 6.76%
5x10M10 57.3 3602 ? 55.5 61.8 11.35% 55.5 3604 ? 51.9 6.49%
Avg. 63.9 3668 62.2 64.8 4.30% 62.2 3605.2 58.1 6.56%
5x10H01 74.4 223 yes 74.4 74.4 0.00% 74.4 114 yes 72.3 2.82%
5x10H02 69.9 3641 ? 69.3 70.5 1.73% 69.3 3608 ? 65.1 6.06%
5x10H03 70.2 3606 ? 66.9 68.1 1.79% 66.9 3603 ? 62.7 6.28%
5x10H04 69.3 3608 ? 66.9 67.8 1.35% 66.9 3604 ? 61.5 8.07%
5x10H05 75 41 yes 75 75 0.00% 75 104 yes 73.5 2.00%
5x10H06 72.9 3690 ? 72.9 73.2 0.41% 72.9 3607 ? 66.3 9.05%
5x10H07 69.6 3602 ? 69.6 72 3.45% 69.6 3608 ? 66.3 4.74%
5x10H08 62.4 3669 ? 62.4 65.7 5.29% 62.4 3623 ? 59.1 5.29%
5x10H09 69.6 3609 ? 69.6 72 3.45% 69.6 3606 ? 66.3 4.74%
5x10H10 70.8 3616 ? 70.8 71.7 1.27% 70.8 3606 ? 67.5 4.66%
Avg. 70.4 2930.5 69.8 71 1.87% 69.8 2908.3 66.1 5.37%
Ovrl Avg. 63.5 3466.5 62.6 65.7 5.35% 62.6 3380.8 58.9 5.82%

42

Table 2.5. Experimental results for DSCSP instances of size 10 × 23 (left) and 50 × 50 (right).

Instance

LB

𝑀!

𝑀!!

𝑀!! −𝑀!

𝑀!

𝑀! − 𝐿𝐵
𝑀!

Instance

LB

𝑀!

𝑀!!

𝑀!! −𝑀!

𝑀!

𝑀! − 𝐿𝐵
𝑀!

10x23L01 228.3 237.9 249.6 4.92% 4.04% 50x50L01 2496.9 2628.6 2676.6 1.83% 5.01%
10x23L02 225.9 234.6 242.4 3.32% 3.71% 50x50L02 2471.7 2605.5 2659.8 2.08% 5.14%
10x23L03 231.9 241.8 254.7 5.33% 4.09% 50x50L03 2500.5 2625.9 2661.9 1.37% 4.78%
10x23L04 228.3 239.4 253.5 5.89% 4.64% 50x50L04 2490.9 2621.1 2667.3 1.76% 4.97%
10x23L05 231.9 243.9 258.9 6.15% 4.92% 50x50L05 2492.1 2645.7 2689.2 1.64% 5.81%
10x23L06 230.7 240.6 246.3 2.37% 4.11% 50x50L06 2514.9 2644.8 2692.5 1.80% 4.91%
10x23L07 235.5 247.5 260.4 5.21% 4.85% 50x50L07 2505.3 2621.4 2658 1.40% 4.43%
10x23L08 229.5 243 249.6 2.72% 5.56% 50x50L08 2472.9 2593.2 2632.8 1.53% 4.64%
10x23L09 237.9 248.7 266.7 7.24% 4.34% 50x50L09 2494.5 2616 2668.5 2.01% 4.64%
10x23L10 237.9 247.5 259.5 4.85% 3.88% 50x50L10 2489.7 2632.8 2684.4 1.96% 5.44%
Average 231.8 242.5 254.2 4.80% 4.41% Average 2492.9 2623.5 2669.1 1.74% 4.98%
10x23M01 264.3 278.1 281.4 1.19% 4.96% 50x50M01 2792.1 2902.5 2925 0.78% 3.80%
10x23M02 259.5 273.6 280.8 2.63% 5.15% 50x50M02 2789.7 2899.2 2919.6 0.70% 3.78%
10x23M03 263.1 274.8 283.2 3.06% 4.26% 50x50M03 2801.7 2902.5 2929.8 0.94% 3.47%
10x23M04 260.7 272.4 279.6 2.64% 4.30% 50x50M04 2834.1 2944.8 2970 0.86% 3.76%
10x23M05 269.1 279.9 284.4 1.61% 3.86% 50x50M05 2818.5 2915.7 2940.6 0.85% 3.33%
10x23M06 265.5 279.3 285.6 2.26% 4.94% 50x50M06 2810.1 2918.4 2942.1 0.81% 3.71%
10x23M07 264.3 274.8 277.2 0.87% 3.82% 50x50M07 2793.3 2915.7 2931 0.52% 4.20%
10x23M08 255.9 264.3 272.4 3.06% 3.18% 50x50M08 2780.1 2912.4 2931.9 0.67% 4.54%
10x23M09 261.9 273.6 279.6 2.19% 4.28% 50x50M09 2819.7 2940.9 2958 0.58% 4.12%
10x23M10 261.9 273.6 274.8 0.44% 4.28% 50x50M10 2772.9 2889.6 2902.2 0.44% 4.04%
Average 262.6 274.4 279.9 2.00% 4.30% Average 2801.2 2914.2 2935 0.72% 3.88%
10x23H01 293.1 304.8 309.6 1.57% 3.84% 50x50H01 3208.5 3294 3300.3 0.19% 2.60%
10x23H02 294.3 306.9 308.1 0.39% 4.11% 50x50H02 3188.1 3268.2 3287.4 0.59% 2.45%
10x23H03 299.1 309.6 315.3 1.84% 3.39% 50x50H03 3196.5 3272.7 3279.6 0.21% 2.33%
10x23H04 296.7 309.3 311.4 0.68% 4.07% 50x50H04 3167.7 3258.6 3273 0.44% 2.79%
10x23H05 300.3 310.8 314.4 1.16% 3.38% 50x50H05 3186.9 3264.6 3277.8 0.40% 2.38%
10x23H06 295.5 308.1 308.1 0.00% 4.09% 50x50H06 3216.9 3290.4 3302.4 0.36% 2.23%
10x23H07 294.3 306.9 307.2 0.10% 4.11% 50x50H07 3204.9 3281.1 3289.2 0.25% 2.32%
10x23H08 299.1 310.8 315.6 1.54% 3.76% 50x50H08 3201.3 3286.5 3297.6 0.34% 2.59%
10x23H09 297.9 308.4 308.4 0.00% 3.40% 50x50H09 3189.3 3265.5 3277.8 0.38% 2.33%
10x23H10 299.1 309.6 315.3 1.84% 3.39% 50x50H10 3165.3 3246.3 3256.2 0.30% 2.50%
Average 296.9 308.5 311.3 0.91% 3.75% Average 3192.5 3272.8 3284.1 0.35% 2.45%
Ovrl Avg. 263.8 275.2 281.8 2.57% 4.16% Ovrl Avg. 2828.9 2936.8 2962.8 0.93% 3.77%

43

 44

Chapter 3:

Triple-Spreader Crane Scheduling Problem

3.1 Problem description

This chapter discusses the triple-spreader crane scheduling problem (TSCSP). We define

the TSCSP as follows. Consider the deck of a ship on which is placed a set of identically sized

containers (blocks, items). Due to space limitations, these containers are placed directly on top of

each other in a storage bay (i.e. bay) occupying no more than S stacks and T tiers. At time 0, there

are 𝐸! containers in stack s (𝐸! ≤ T). The weight of the container in stack s, tier t is given by 𝑊!".

Consider the problem of sequencing the lifts made by one crane that will remove all containers

from the bay. This crane can operate in three modes: single-spreader, dual-spreader, or triple-

spreader mode. When in single-spreader mode, the crane may remove any single container from

the top of any stack. This type of lift takes 𝐻# minutes. When in dual-spreader mode, the crane

may simultaneously remove two containers in the same tier from the top of any two adjacent stacks

as long as the sum of their weights does not exceed 𝐿$. This type of lift takes 𝐻$ minutes. When

in triple-spreader mode, the crane may simultaneously remove three containers in the same tier

from the top of any three adjacent stacks as long as the sum of their weights does not exceed L3.

This type of lift takes 𝐻% minutes. Furthermore, the time required to change from operating in 𝑝-

spreader mode to operating in 𝑞-spreader mode—the spreader changeover time (i.e. changeover

time)—is 𝐶&' minutes (1 ≤ 𝑝, 𝑞 ≤ 3). The crane can begin in any mode at time 0 with no initial

setup cost. The goal is to sequence the individual lifts and changeovers of the crane so as to

minimize the total time needed to remove all containers from the bay. To make the problem

 45

meaningful, we assume that S ≥ 3, 𝐻$ < 2𝐻#, 𝐻% < 3𝐻#, 𝐿$ < 2∗max{𝑊!"}, and 𝐿% < 3∗max{𝑊!"}.

Figure 3.1 shows an instance of the TSCSP. In this instance, S = 8, T = 3, 𝐸!" = 3 for all s, and the

weights 𝑊!" of all containers in the bay are shown in the upper-left corner of the figure. In addition,

we assume that 𝐿$ = 10, 𝐿% = 12, 𝐻# = 1.5, 𝐻$ = 1.8, 𝐻% = 2.2, and 𝐶&' = 2.7 for all 𝑝 and 𝑞. Note

that, even for this small instance, it is not easy to decide how the containers should be lifted. Figure

3.1 shows a feasible crane lift sequence for this instance. This sequence consists of four dual-

spreader lifts followed by four single-spreader lifts and four triple-spreader lifts. Two changeovers

between spreader modes take place, so the total time needed to empty the bay—the makespan—is

4×1.8 + 4×1.5 + 4×2.2 + 2×2.7 = 27.4 minutes. We later show that this is not the optimal makespan

for this instance. Note that, in Cheng et al. (2020), the authors prove that the multi-spreader crane

scheduling problem (MSCSP) is NP-hard when the crane has three or more modes. In particular,

the TSCSP is NP-hard.

 46

Figure 3.1. Feasible unloading sequence with makespan 27.4 minutes for a problem instance of

size 3x8.

3.2 Mathematical model

We now present a math model of the TSCSP. To facilitate model development, we first

convert the problem instance into two binary matrices: one indicating the legal dual-spreader lifts

(𝐿2), and one indicating the legal triple-spreader lifts (𝐿3). Figure 3.2 depicts the conversion of

the problem instance from Figure 3.1, where binary variables indicate whether a dual-spreader

9 3 4 3 2 1 4 5
6 5 2 5 3 2 7 1
4 3 5 3 3 5 8 5

9 3
6 5 2 5 3 2 7 1
4 3 5 3 3 5 8 5

9 3
6 5 7 1
4 3 5 3 3 5 8 5

9 3
6 5 2 5

4 3

4 3 3 5 8 5 5
6 5 2
3 4 3

4 3 3 5 8 5

9 4 3 4 5
6 5 2 5 3 2 7 1
4 3 5 3 3 5 8 5

2
5

5 5
3

3 4

4 3 3 5 8 5

3
5
5
2
3 4 3 3 5

4
5 5 5 2

3 4

3 5 3 3 5 4 5

2 5
5 3 4 3 3 5
5

5 3 4 3 3 5 4 3 5

Double lift = 1.8 min Double lift = 1.8 min

Double lift = 1.8 min

Double lift =
1.8 min

Triple lift =
2.2 min

Single lift =
1.5 min

Single lift = 1.5 min Single lift = 1.5 min
Changeover =
2.7 min
Triple lift = 2.2 min

Triple lift = 2.2 min

FINISHED

3 3

2

5
5 3

5

Changeover =
2.7 min
Single lift = 1.5 min

Triple lift = 2.2 min

4

3 3 3

4 3

3

 47

(triple-spreader) lift could be performed on a pair (trio) of adjacent containers in the same tier.

Without loss of generality, we use the left-most container in the set of adjacent containers to denote

whether a legal dual-spreader or a triple-spreader lift can be performed within the given weight

limit 𝐿$ or 𝐿%. For example, the top-left ‘0’ in Figure 3.2(a) indicates that the first and the second

containers (from the left side) in the top tier cannot be dual-spreader lifted because their combined

weight—12—exceeds 𝐿$ = 10. Also, the ‘1’ to the right of the top-left ‘0’ indicates that the second

and the third containers (from the left) in the top tier can be dual-spreader lifted because their

combined weight—7—does not exceed 𝐿$. Similarly, in Figure 3.2(b), the top-left ‘0’ indicates

that the first, second, and third containers (from the left) in the top tier cannot be triple-spreader

lifted because their combined weight—16—exceeds 𝐿% = 12. Also, the ‘1’ adjacent to the top-left

‘0’ indicates that the second, third, and fourth containers (from the left) in the top tier can be triple-

spreader lifted because their combined weight—10—does not exceed 𝐿%. In the original problem

instance and the binary matrices, we number the tiers 1, …, T from bottom to top and the stacks 1,

…, S from left to right.

Figure 3.2. Conversion of problem instance (left) into binary array showing (a) legal dual

spreader lifts (upper-right) and (b) legal triple spreader lifts (lower-right) assuming L2 = 10 and

L3 = 12.

0 1 1 1 1 1
0 1 1 1 1 1
1 1 1 1 0 0

0 1 1 1 1 1 1
0 1 1 1 1 1 1
1 1 1 1 1 0 0 9 3 4 3 2 1 4 5

6 5 2 5 3 2 7 1
4 3 5 3 3 5 8 5

(a)

(b)

Tier 3

Tier 2

Tier 1

Stack: 1 2 3 4 5 6 7 8

L2

L3

 48

Our mathematical model, model TSCSP, discretizes time into intervals. During each time

interval, at most one (single-spreader, dual-spreader, or triple-spreader) lift may occur. The

duration of an interval is therefore 𝐻#, 𝐻$, or 𝐻% minutes depending on the type of operation

performed. Between two consecutive intervals, at most one changeover may occur.

Table 3.1 shows the indices, input parameters, and decision variables in model TSCSP.

Input parameters S, T, 𝐸!, 𝐶&' and 𝐻&	were discussed in Section 3.1. Input parameters 𝐿2!" and

𝐿3!" refer to values in the aforementioned binary matrices 𝐿2 and 𝐿3 respectively (Figure 3.2).

Parameter I—the number of time intervals available for lifting containers—is conservatively set

to S × T: the number of time intervals needed if the storage bay begins full and the crane only

operates in single-spreader mode.

Decision variables 𝑋!(, 𝑌!(, and 𝑍!(indicate the type of lift conducted during each time

interval and above which stack(s) the lift is performed. Variable 𝑅"(indicates the tier (if any) from

which containers are lifted during each time interval. Variable 𝐺&'(indicates if a changeover

occurs between two consecutive time intervals. Variable 𝑁!(tracks the height of the container

stacks at the beginning of each time interval, and 𝐹(indicates whether the lifting is finished (= 1)

or not (= 0) by the beginning of time interval i.

 49

Table 3.1. Indices, input parameters, and decision variables in model TSCSP
Indices
s Stack (i.e. column) (s = 1, 2, …, S).
t Tier (t = 1, 2, …, T).
i Time interval (i = 1, 2, …, I, I+1).
p, q Spreader type (p, q = 1, 2, or 3) (1 = single spreader; 2 = dual spreader; 3 = triple

spreader).
Input parameters
S Number of stacks in the storage bay. S ≥ 3 to avoid triviality.
T Number of tiers in the storage bay.
I Number of time intervals available (= S × T to be conservative).
Es Initial number of containers in stack s (integer, ≥ 0) (s = 1, 2, ..., S).
Cpq Changeover time from spreader type p to spreader type q (minutes) (real, ≥ 0) (p, q = 1,

2, or 3).
Hp Handling time per lift using spreader type p (minutes) (real, ≥ 0) (p = 1, 2, or 3).
L2st = 1 if the two containers occupying stacks s and s+1 in tier t can be lifted together using

the dual spreader without violating the weight limit (binary) (s = 1, 2, …, S-1; t = 1, 2,
…, T).

L3st = 1 if the three containers occupying stacks s, s+1, and s+2 in tier t can be lifted together
using the triple spreader without violating the weight limit (binary) (s = 1, 2, …, S-2; t =
1, 2, …, T).

Decision variables
Xsi = 1 if a single-spreader lift is performed at the top of stack s during time interval i (binary)

(s = 1, 2, …, S; i = 1, 2, …, I).
Ysi = 1 if a dual-spreader lift is performed in which the left (right) spreader lifts the container

that is on the top of stack s (s+1) during time interval i (binary) (s = 1, 2, …, S-1; i = 1,
2, …, I).

Zsi = 1 if a triple-spreader lift is performed in which the (left, center, right) spreader lifts the
container that is on the top of stack (s, s+1, s+2) during time interval i (binary) (s = 1, 2,
…, S-2; i = 1, 2, …, I).

Gpqi = 1 if a changeover from spreader type p to spreader type q is made between time intervals
i-1 and i (binary) (p, q = 1, 2, or 3; i = 2, 3, …, I).

Fi = 1 if all containers have been removed from the bay by the beginning of time interval i
(binary) (i = 1, 2, …, I+1).

Nsi Number of containers in stack s at the beginning of time interval i (integer, ≥ 0) (s = 1,
2, …, S; i = 1, 2, …, I+1).

Rti = 1 if any container(s) is removed from tier t during time interval i (binary) (t = 1, 2, …,
T; i = 1, 2, …, I).

 50

Objective function:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 + (1)

Subject to:

 i = 1, 2, …, I (2)

 (3)

 i = 2, 3, …, I (4a)

 i = 2, 3, …, I (4b)

 i = 2, 3, …, I (5a)

 i = 2, 3, …, I (5b)

å å åå
= =

-

=

-

=

÷
ø
ö

ç
è
æ ++

I

i

S

s

S

s
si

S

s
sisi ZHYHXH

1 1

2

1
3

1

1
21 å å

¹= =):31,(2qptoqp

I

i
pqipqGC

1
2

1

1

11

=+++ ååå
-

=

-

==
i

S

s
si

S

s
si

S

s
si FZYX

1
1

1

³å
+

=

I

i
iF

åå
-

==
- £-+

1

1
12

1
1, 1

S

s
sii

S

s
is YGX

i

S

s
is

S

s
si GXY 12

1
1,

1

1

1£-+åå
=

-

-

=

åå
=

-

-

=

£-+
S

s
is

S

s
sii XYG

1
1,

1

1
12 1

åå
=

-

=
- £-+

S

s
sii

S

s
is XGY

1
21

1

1
1, 1

i

S

s
is

S

s
si GYX 21

1

1
1,

1

1£-+åå
-

=
-

=

åå
-

=
-

=

£-+
1

1
1,

1
21 1

S

s
is

S

s
sii YXG

åå
-

==
- £-+

2

1
13

1
1, 1

S

s
sii

S

s
is ZGX

i

S

s
is

S

s
si GXZ 13

1
1,

2

1

1£-+åå
=

-

-

=

åå
=

-

-

=

£-+
S

s
is

S

s
sii XZG

1
1,

2

1
13 1

åå
=

-

=
- £-+

S

s
sii

S

s
is XGZ

1
31

2

1
1, 1

i

S

s
is

S

s
si GZX 31

2

1
1,

1

1£-+åå
-

=
-

=

åå
-

=
-

=

£-+
2

1
1,

1
31 1

S

s
is

S

s
sii ZXG

 51

 i = 2, 3, …, I (6a)

 i = 2, 3, …, I (6b)

 i = 2, 3, …, I (7)

 i = 1, 2, …, I+1; s = 1, 2, …, S (8)

 s = 1, 2, …, S (9)

 i = 1, 2, …, I (10a)

 i = 1, 2, …, I (only applies if S = 3) (10b)
 i = 1, 2, …, I (only applies if S ≥ 4) (10c)

 i = 1, 2, …, I; s = 3, 4, …, S-2 (10d)

 i = 1, 2, …, I (only applies if S ≥ 4) (10e)

 i = 1, 2, …, I (10f)

 i = 1, 2, …, I (11a)

 i = 1, 2, …, I (only applies if S = 3) (11b)
 i = 1, 2, …, I (only applies if S ≥ 4) (11c)

 i = 1, 2, …, I; s = 3, 4, …, S-2 (11d)

 i = 1, 2, …, I (only applies if S ≥ 4) (11e)

 i = 1, 2, …, I (11f)

åå
-

=

-

=
- £-+

2

1
23

1

1
1, 1

S

s
sii

S

s
is ZGY

i

S

s
is

S

s
si GYZ 23

1

1
1,

2

1

1£-+åå
-

=
-

-

=

åå
-

=
-

-

=

£-+
1

1
1,

2

1
23 1

S

s
is

S

s
sii YZG

åå
-

=

-

=
- £-+

1

1
32

2

1
1, 1

S

s
sii

S

s
is YGZ

i

S

s
is

S

s
si GZY 32

2

1
1,

1

1

1£-+åå
-

=
-

-

=

åå
-

=
-

-

=

£-+
2

1
1,

1

1
32 1

S

s
is

S

s
sii ZYG

å
¹=

£
):31,(
1

qptoqp
pqiG

)1(isi FTN -£

ss EN =1

iiiii ZYXNN 11111,1 ---=+

iiiiii ZYYXNN 121221,2 ----=+

iiiiiii ZZYYXNN 2121221,2 -----=+

siisissiissisiis ZZZYYXNN ------= ---+ ,1,2,11,

iSiSiSiSiSiSiS ZZYYXNN ,2,3,1,2,1,11,1 ------+- -----=

iSiSSiSiiS ZYXNN ,2,11, --+ ---=

iiii NZYX 1111 £++

iiiii NZYYX 21212 £+++

iiiiii NZZYYX 221212 £++++

sisiisissiissi NZZZYYX £+++++ --- ,1,2,1

iSiSiSiSiSiS NZZYYX ,1,2,3,1,2,1 ------ £++++

SiiSiSSi NZYX £++ -- ,2,1

 52

 i = 1, 2, …, I (12)

 i = 1, 2, …, I; s = 1, 2, …, S (13a)

 i = 1, 2, …, I; s = 1, 2, …, S-1

 i = 1, 2, …, I; s = 1, 2, …, S-1

 i = 1, 2, …, I; s = 1, 2, …, S-2

 i = 1, 2, …, I; s = 1, 2, …, S-2 (13c)

 i = 1, 2, …, I; s = 1, 2, …, S-2

 i = 1, 2, …, I; s = 1, 2, …, S-1; t = 1, 2, …, T (14a)

 i = 1, 2, …, I; s = 1, 2, …, S-2; t = 1, 2, …, T (14b)

 i = 1, 2, …, I-1 (15)

The objective function (1) minimizes the makespan, M, which is the sum of the container

handling and spreader changeover times. Constraint (2) ensures that at most one lift is performed

during each time interval i; if no lift is made, then the “finished” binary variable 𝐹(should equal

1. Constraint (3) ensures that the process of removing containers from the bay is finished by the

end of the last time interval. Constraint (4a) forces a changeover to happen when switching from

single-spreader to dual-spreader mode. This constraint has three expressions with the following

structure: A + B − 1 ≤ C; C + A − 1 ≤ B; and B + C − 1 ≤ A. These expressions ensure that if any

two of the binary terms A, B, and C equal 1, then the third term equals 1. Term A indicates if a

i

T

t
ti FR -=å

=

1
1

)1(*)1(
1

sisi

T

t
tisi XTNRtXT -£-÷
ø
ö

ç
è
æ£-- å

=

)1(*)1(
1

sisi

T

t
tisi YTNRtYT -£-÷
ø
ö

ç
è
æ£-- å

=

)1(*)1(,1
1

siis

T

t
tisi YTNRtYT -£-÷
ø
ö

ç
è
æ£-- +

=
å

)1(*)1(
1

sisi

T

t
tisi ZTNRtZT -£-÷
ø
ö

ç
è
æ£-- å

=

)1(*)1(,1
1

siis

T

t
tisi ZTNRtZT -£-÷
ø
ö

ç
è
æ£-- +

=
å

)1(*)1(,2
1

siis

T

t
tisi ZTNRtZT -£-÷
ø
ö

ç
è
æ£-- +

=
å

sttisi LRY 21£-+

sttisi LRZ 31£-+

åååååå
-

=
+

-

=
+

=
+

-

=

-

==

++³++
2

1
1,

1

1
1,

1
1,

2

1

1

11

S

s
is

S

s
is

S

s
is

S

s
si

S

s
si

S

s
si ZYXZYX

(13b)

 53

single-spreader lift is made during time interval i−1; B indicates if a changeover from single-

spreader to dual-spreader mode is made between time intervals i−1 and i; and C indicates if a dual-

spreader lift is made during time interval i. Constraint (4b) is the same as (4a) except that it

considers the switch from dual-spreader to single-spreader mode. Constraints (5a-5b) work just

like (4a-4b) but instead consider the switch between single-spreader and triple-spreader mode.

Constraints (6a-6b) work just like (4a-4b) but instead consider the switch between dual-spreader

and triple-spreader mode. Constraint (7) ensures that at most one changeover is performed between

any two time intervals.

Constraint (8) sets 𝐹(= 0 when any 𝑁!(≠ 0, i.e. when at least one stack is non-empty.

Constraint (9) initializes the stack heights at the start of the first time interval. Constraints (10a-

10f) update the stack heights based on the lifts made during each time interval. Constraints (11a-

11f) ensure that no lift is made from an empty stack. Constraint (12) ensures that containers are

not removed from any tier during any time interval after the lifting is finished. Also, while the

lifting is not finished, containers are removed from exactly one tier during each time interval.

Constraint (13a) enforces the physical limitation that a single-spreader lift can only be made from

the top tier of a stack. This “sandwich” constraint is of the form Left ≤ Middle ≤ Right. If 𝑋!(= 0,

Left is very negative and Right is very positive, so there is no meaningful constraint on Middle. If

𝑋!(= 1, Left = Right = 0, so Middle must equal 0, i.e. the tier from which containers are removed

must equal the height of the stack from which containers are removed (𝑁!(). Constraint (13b),

similar to (13a), enforces the physical limitation that a dual-spreader lift can only be made from

the top tier of two adjacent stacks. This constraint also requires the heights of these two adjacent

stacks to be equal. Constraint (13c), similar to (13b), enforces the physical limitation that (i) a

triple-spreader lift can only be made from the top tier of three adjacent stacks and (ii) the heights

 54

of these three adjacent stacks must be equal. Constraints (14a-14b) ensure that dual- and triple-

spreader lifts do not violate the weight-limit-respecting binary values in matrices 𝐿2	and

𝐿3	respectively. Finally, constraint (15) ensures that no lifts are made during time interval i+1 if

no lifts are made during interval i. In other words, the crane can never transition from an idle state

to a non-idle state. This constraint is redundant but helps the solver find an optimal solution more

quickly.

3.3 Genetic algorithm (GA)

We developed a genetic algorithm for attacking large instances of the TSCSP. A genetic

algorithm (GA) is one the most commonly used metaheuristic techniques. Like other

metaheuristics, it sacrifices optimality for quicker and more efficient results. GAs are easy to

implement and have lots of potential to be applied to different problem types and optimization

problems with nonlinear objective functions and/or constraints (Ezugwu et al. 2020). GAs can be

faster than other algorithms if the implementation is done correctly and efficiently. In the TSCSP,

the chromosome representation we use is a great match for GA. Mutation and crossover operations

can be done without the concern of infeasibility. However, GAs have some limitations such as

getting stuck in a local optimum (Fernández 2018). Since GAs don’t have a termination criterion,

we use a time limit to terminate our GA.

In the GA we developed for the TSCSP, each feasible solution is represented by a

chromosome consisting of a sequence of T genes (g1, g2, g3, …, gT)—where gt is the gene for tier

t. The gene for tier t specifies how each container in tier t is handled. In other words, gt specifies

which containers are single-, dual-, and triple-spreader lifted in tier t. The fitness (i.e. objective

value, makespan) of a chromosome is computed by (a) forming a feasible crane lift sequence that

 55

agrees with its genes and (b) evaluating the makespan of this sequence. The setup and procedure

of our GA is summarized in Tables 3.2, 3.3, and 3.4 and Figures 3.3, 3.4, and 3.5. Table 3.2 and

Figures 3.3 and 3.4 show how the genes and chromosomes are constructed. Tables 3.3 and 3.4

show the two methods we use for evaluating chromosome fitness. Figure 3.5 shows the overall

GA procedure. A detailed discussion of the GA now follows.

3.3.1 Tier options

Significant preliminary work is performed before the GA procedure commences. This

work consists of creating a predefined set of lifting options (i.e. tier options, options, genes) for

each tier of the instance at hand. A lifting option for tier t specifies which containers are single-,

dual-, and triple-spreader lifted in tier t. The options for tier t, for each t from 1 to T, are created

by solving variations of the tier t sub-problem, i.e. the single-tier TSCSP formed by considering

only the containers in tier t in the original TSCSP and ignoring spreader changeover costs.

Table 3.2 shows our math model—model TSCSP-Sub—of the tier t sub-problem. The

objective function (16) minimizes total container handling time. Constraints (17-22) ensure that

(a) exactly one lift is made in stack s if there is a container in stack s and (b) no lift is made in stack

s if there is no container in stack s. Constraints (23-24) ensure that the dual- and triple-spreader

lifts do not violate the binary values in matrices 𝐿2	and 𝐿3	respectively. An optimal solution to

model TSCSP-Sub can be obtained within a few seconds using standard integer programming

software when S ≤ 50.

 56

Table 3.2. Indices, input parameters, and decision variables in math model TSCSP-Sub.

Indices

s Stack (s = 1, 2, …, S).

p Spreader type (p = 1, 2, or 3) (1 = single spreader; 2 = dual spreader; 3 = triple spreader).

Input parameters

t Tier under consideration.

S Number of stacks in the storage bay.

Es

= 1 if there is a container in stack s and tier t in the original TSCSP instance (binary)

(s = 1, 2, ..., S).

Hp Handling time per lift using spreader type p (minutes) (real, ≥ 0) (p = 1, 2, or 3).

L2st = 1 if the two containers occupying stacks s and s+1 in tier t in the original TSCSP

instance can be lifted together in dual-spreader mode without violating the weight limit

(binary) (s = 1, 2, …, S-1).

L3st = 1 if the three containers occupying stacks s, s+1, and s+2 in tier t in the original

TSCSP instance can be lifted together in triple-spreader mode without violating the

weight limit (binary) (s = 1, 2, …, S-2).

Decision Variables

Xs = 1 if a single-spreader lift is performed in stack s (binary) (s = 1, 2, …, S).

Ys = 1 if a dual-spreader lift is performed in which the left (right) spreader lifts the

container in stack s (s+1) (binary) (s = 1, 2, …, S-1).

Zs = 1 if a triple-spreader lift is performed in which the (left, center, right) spreader lifts

the container in stack (s, s+1, s+2) (binary) (s = 1, 2, …, S-2).

Objective:

Minimize: ∑ 𝐻#𝑋! +*
!+# ∑ 𝐻$𝑌! +*,#

!+# ∑ 𝐻%𝑍!*,$
!+# (16)

Constraints:

𝑋# + 𝑌# + 𝑍# = 𝐸#
 (17)

𝑋$ + 𝑌# + 𝑌$ + 𝑍# = 𝐸$
 (𝑜𝑛𝑙𝑦	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑖𝑓	𝑆	 = 	3) (18)

𝑋$ + 𝑌# + 𝑌$ + 𝑍# + 𝑍$ = 𝐸$
 (𝑜𝑛𝑙𝑦	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑖𝑓	𝑆	 ≥ 	4) (19)

 57

𝑋! + 𝑌!,# + 𝑌! + 𝑍!,$ + 𝑍!,# + 𝑍! = 𝐸!
 𝑓𝑜𝑟	𝑠	 = 	3, 4, … , 𝑆 − 2. (20)

𝑋*,# + 𝑌*,$ + 𝑌*,# + 𝑍*,% + 𝑍*,$ = 𝐸*,#
 (𝑜𝑛𝑙𝑦	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑖𝑓	𝑆	 ≥ 	4) (21)

𝑋* + 𝑌*,# + 𝑍*,$ = 𝐸*
 (22)

𝑌! ≤ 𝐿2*"
 𝑓𝑜𝑟	𝑠	 = 	1, 2, … , 𝑆 − 1 (23)

𝑍! ≤ 𝐿3*"
 𝑓𝑜𝑟	𝑠	 = 	1, 2, … , 𝑆 − 2 (24)

The lifting options we create are divided into four categories: options in which (1) at least

one dual-spreader and at least one triple-spreader lift is made; (2) at least one dual-spreader lift but

no triple spreader lift is made; (3) at least one triple-spreader lift but no dual-spreader lift is made;

and (4) no dual spreader or triple-spreader lifts are made in that tier. The options in category (1, 2,

3, 4) are created by solving math program TSCSP-Sub (Table 3) with the additional constraints

(b+d, b+c, a+d, a+c) shown in equation (25) below:

∑ 𝑌! = 0	*,#
!+# (a); ∑ 𝑌! ≥ 1	*,#

!+# (b); ∑ 𝑍! = 0	*,$
!+# (c); ∑ 𝑍! ≥ 1	*,$

!+# (d) (25).

For each combination of category and tier, we identify the

Max#OptionsPerCategoryPerTier best lifting options—having the lowest makespans—by

repeatedly solving math program TSCSP-Sub and adding the constraint “sum of (the 𝑋!, 𝑌!, and

𝑍! variables that equaled one in the previous optimal solution) ≤ (the number of 𝑋!, 𝑌!, and 𝑍!

variables that equaled one in the previous optimal solution) – 1” to the model after each new

optimal solution is found. Spreader changeover costs are ignored when the makespan is computed.

Fewer than Max#OptionsPerCategoryPerTier options are constructed for a given tier and category

if the number of feasible solutions is less than this value.

 58

The left half of Figure 3.3 shows a partial list of the feasible tier option for each tier for the

problem instance from Figures 3.1 and 3.2. The options for each tier t have been categorized and

numbered from 1 to numOptions(t) where numOptions(t) is the total number of options created for

tier t. Note that a total of (24, 44, and 44) options have been created for tier (1, 2, 3). In tier 1, (6,

12, 5, 1) options have been created for category (1, 2, 3, 4). In tier 2, (15, 20, 8, 1) options have

been created for category (1, 2, 3, 4). The number of options created for each category in tier 3

equals that in tier 2 because 𝐿2	and 𝐿3	have identical values in these two tiers (Figure 3.2). Within

each category, the tier options are ordered from best to worst. For example, tier 1 option 7 has a

lower makespan than tier 1 option 8, and tier 1 option 19 has a lower makespan than tier 1 option

20. Note that the number of feasible options in category 1, 2, or 3 for a given tier could range from

0 (if no feasible options exist) to millions (if S is large). However, there is always exactly one

feasible option in category 4 for each tier.

 59

Figure 3.3. Example 1 of GA chromosome formation and objective value computation.

At least 1 double & 1 triple lift
1 (S, T, T, T, D, D, D, D) Objective = 7.3
2 (S, D, D, D, D, T, T, T) Objective = 7.3 . . .
At least 1 double & no triples lift
16 (S, D, D, D, D, D, D, S) Objective = 8.4
17 (S, S, D, D, D, D, D, D) Objective = 8.4 . . .
At least 1 triple & no doubles lift
37 (S, S, T, T, T, T, T, T) Objective = 7.4
38 (S, T, T, T, T, T, T, S) Objective = 7.4 . . .
No doubles and no triples lift
44 (S, S, S, S, S, S, S, S) Objective = 12

At least 1 double & 1 triple lift
1 (S, T, T, T, D, D, D, D) Objective = 7.3
2 (S, D, D, D, D, T, T, T) Objective = 7.3 . . .
At least 1 double & no triples lift
16 (S, D, D, D, D, D, D, S) Objective = 8.4
17 (S, D, D, D, D, S, D, D) Objective = 8.4 . . .
At least 1 triple & no doubles lift
36 (S, S, T, T, T, T, T, T) Objective = 7.4
37 (S, T, T, T, T, T, T, S) Objective = 7.4 . . .
No doubles and no triples lift
44 (S, S, S, S, S, S, S, S) Objective = 12

At least 1 double & 1 triple lift
1 (D, D, T, T, T, S, S, S) Objective = 8.5
2 (T, T, T, D, D, S, S, S) Objective = 8.5 . . .
At least 1 double & no triples lift
7 (D, D, D, D, D, D, S, S) Objective = 8.4
8 (S, D, D, S, D, D, S, S) Objective = 9.6 . . .
At least 1 triple & no doubles lift
19 (T, T, T, T, T, T, S, S) Objective = 7.4
20 (T, T, T, S, S, S, S, S) Objective = 9.7
21 (S, T, T, T, S, S, S, S) Objective = 9.7 . . .
No doubles and no triples lift
24 (S, S, S, S, S, S, S, S) Objective = 12

T T T

Initial spreader = D
4 double lifts = 4*1.8min
Changeover = 2.7 min

4 triple lifts = 4*2.2
min
 Makespan: 27.4 min

S
S
T T T S S

T T
T T
T T T

T
T

Problem
Instance

Tier 3 Options (Categorized & Ranked)

Tier 2 Options (Categorized & Ranked)

Tier 1 Options (Categorized & Ranked)

1
1
19

S T T T D D D D
S T T T D D D D
T T T T T T S S

Chromosome (19, 1, 1)

T T T
T T T
T T T

9 3 4 3 2 1 4 5
6 5 2 5 2 7 1
4 3 5 3 3 5 8 5

3

4 single lifts = 4*1.5min
Changeover = 2.7min

 60

3.3.2 Chromosome composition and fitness computation

A chromosome (g1, g2, g3, …, gT) consists of a sequence of T tier options or genes—one

for each tier—where gt is the tier option number used for tier t. The middle-right portion of Figure

3.3 shows chromosome (19, 1, 1) for the instance at hand. Here, option 19 is used for tier 1; option

1 is used for tier 2; and option 1 is used for tier 3. This is a greedy chromosome because it combines

the best (i.e. least cost) options for the individual tiers (ignoring changeover costs). Note that this

would be an optimal solution if all changeover costs were zero. The middle-right portion of Figure

3.4 shows chromosome (21, 37, 37) for the same instance. Here, option 21 is used for tier 1; option

37 is used for tier 2; and option 37 is used for tier 3.

Chromosome fitness is computed by (a) finding a feasible crane lift sequence that agrees

with the lift type of each container—single-spreader, dual-spreader, or triple-spreader—specified

by the chromosome and then (b) evaluating the makespan of this sequence. To eliminate dominated

solutions, we require in each feasible crane lift sequence that the use of a given spreader mode

continues until no more containers matching that spreader mode can be feasibly lifted from the top

of any stack.

 61

At least 1 double & 1 triple lift
1 (S, T, T, T, D, D, D, D) Objective = 7.3
2 (S, D, D, D, D, T, T, T) Objective = 7.3 . . .
At least 1 double & no triples lift
16 (S, D, D, D, D, D, D, S) Objective = 8.4
17 (S, S, D, D, D, D, D, D) Objective = 8.4 . . .
At least 1 triple & no doubles lift
36 (S, S, T, T, T, T, T, T) Objective = 7.4
37 (S, T, T, T, T, T, T, S) Objective = 7.4 . . .
No doubles and no triples lift
44 (S, S, S, S, S, S, S, S) Objective = 12

At least 1 double & 1 triple lift
1 (S, T, T, T, D, D, D, D) Objective = 7.3
2 (S, D, D, D, D, T, T, T) Objective = 7.3 . . .
At least 1 double & no triples lift
16 (S, D, D, D, D, D, D, S) Objective = 8.4
17 (S, D, D, D, D, S, D, D) Objective = 8.4 . . .
At least 1 triple & no doubles lift
36 (S, S, T, T, T, T, T, T) Objective = 7.4
37 (S, T, T, T, T, T, T, S) Objective = 7.4 . . .
No doubles and no triples lift
44 (S, S, S, S, S, S, S, S) Objective = 12

At least 1 double & 1 triple lift
1 (D, D, T, T, T, S, S, S) Objective = 8.5
2 (T, T, T, D, D, S, S, S) Objective = 8.5 . . .
At least 1 double & no triple lift
7 (D, D, D, D, D, D, S, S) Objective = 8.4
8 (S, D, D, S, D, D, S, S) Objective = 9.6 . . .
At least 1 triple & no doubles lift
19 (T, T, T, T, T, T, S, S) Objective = 7.4
20 (T, T, T, S, S, S, S, S) Objective = 9.7
21 (S, T, T, T, S, S, S, S) Objective = 9.7 . . .
No doubles and no triples lift
24 (S, S, S, S, S, S, S, S) Objective = 12

S S
S S
S S S S S

Initial Spreader = T
5 Triple Lifts = 5*2.2min
Changeover = 2.7 min

9 Single Lifts = 9*1.5min

Makespan: 27.2 min (Optimal)

S
S
S

S
S

S S S S

T T T T
T T T T T
T T T

T T
T

Problem Instance

Tier 3 Options (Categorized & Ranked)

Tier 2 Options (Categorized & Ranked)

Tier 1 Options (Categorized & Ranked)
37
37
21

9 3 4 3 2 1 4 5
6 5 2 5 3 2 7 1
4 3 5 3 3 5 8 5

Chromosome (21, 37, 37)

Figure 3.4. Example 2 of GA chromosome formation and objective value computation.

 62

Note that the makespan equals (i) total handling time plus (ii) total spreader changeover

time. Item (i) is already given by the chromosome, so the challenge is to compute (ii). Note that a

crane lift sequence for a given chromosome can be summarized by a spreader mode sequence 𝑀#-

𝑀$-𝑀%- … where 𝑀- 	is the spreader mode used during phase j of the lifting. The value of 𝑀- is (S,

D, T) when the crane operates in (single-spreader, dual-spreader, triple-spreader) mode

respectively. For example, the crane lift sequence shown beneath chromosome (19, 1, 1) in Figure

3.3 is summarized by the spreader mode sequence D-S-T. According to this sequence, the crane

first operates in dual-spreader mode, then in single-spreader mode, and then in triple-spreader

mode. In each mode, the crane lifts as many containers as possible from the tops of the stacks

without violating the chromosome values and the need to keep containers that are part of the same

multi-spreader lift together. If 𝐶&'= 2.7 for all p and q, then sequence D-S-T is the most efficient

spreader mode sequence for this chromosome because it empties the bay after only three phases

(i.e. two changeovers). No other spreader mode sequence is this efficient. On the other hand, T-S-

T-D-T-S is an inefficient spreader mode sequence for this chromosome. This sequence has six

phases (i.e. five changeovers): two triple lifts are performed, then two single lifts, then one triple

lift, then four dual lifts, then one triple lift, and then two single lifts.

The above discussion shows that, for each chromosome, care must be taken to find a good

spreader mode sequence in which the total changeover time is minimized to the extent possible.

Keeping this in mind, we developed two methods—a branch-and-bound method and greedy

method—to compute the total changeover time associated with a given chromosome.

Table 3.3 shows the logic in the branch-and-bound method. This method identifies an

optimal spreader mode sequence upon termination. The method works by building up spreader

mode subsequences one phase at a time. It begins with three subsequences, each with a single

 63

phase: S, D, and T (line 5). Only subsequences that are feasible—having at least one lift performed

during each phase of the subsequence—are extended to form longer subsequences. Each feasible

subsequence is branched, i.e. extended in two ways, corresponding to the two spreader modes that

can theoretically follow the mode which ends the subsequence. Eventually, one subsequence will

be finished, i.e. will result in an empty bay, and the total changeover time for this subsequence is

stored in the variable minChangeoverCost (line 25). This value establishes an upper bound which

is used to eliminate any unfinished subsequence s from consideration whose associated total

changeover costs is already greater than minChangeoverCost. Every time a new subsequence is

finished, minChangeoverCost is updated if necessary (lines 23-25). The process continues until

there are no more unfinished subsequences s such that costs is less than minChangeoverCost. Upon

termination, minChangeoverCost is the optimal total changeover time. Lines 9-22 in Table 3.3

show the procedure for computing the total changeover time of each spreader mode subsequence

and identifying which subsequences are feasible and/or finished. Lines 26-41 show the procedure

for branching each feasible, unfinished, N-phase subsequence into two (N+1)-phase subsequences.

The fitness value of a chromosome equals (i) the total handling time plus (ii) the final value of

minChangeoverCost.

 64

Table 3.3. Branch-and-bound method for computing the total spreader changeover cost of a chromosome.

1 Convert chromosome (g1, g2, …, gT) into ContainerArray, an 𝑆 × 𝑇 array that indicates the spreader mode

used to lift each container (“1” indicates single-spreader mode, “2” indicates dual-spreader mode, “3”
indicates triple-spreader mode.

2 Let S = 3 = number of spreader mode sequences currently being investigated.
3 Let N = 1 = length of each sequence currently being investigated (i.e. the number of spreader phases in each

subsequence).
4 Let Msn = spreader mode used (1, 2, or 3) during nth phase of subsequence s (for all s = 1 to S and all n = 1 to

N).
5 Initially M11 = 1, M21 = 2 and M31 = 3.
6 Let minChangeoverCost = ∞
7 Let done = true
8 while done = false do
9 for s = 1 to S do
10 Restore ContainerArray to its original form
11 Let finisheds = false, feasibles = true, and costs = 0.
12 Let n = 1
13 while n ≤ N and feasibles = true do
14 if n ≥ 2 then
15 costs = costs + 𝐶("!,#$%),("!#)

16 Lift as many containers as possible from top of the 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦 using spreader Msn,
ensuring that containers that are supposed to be part of the same multi-spreader lift are kept
together.

17 Let liftsn = the number of lifts made.
18 if liftsn = 0 then
19 feasibles = false
20 else if there are no more containers in ContainerArray then
21 finisheds = true
22 n = n+1
23 for s = 1 to S do
24 if finisheds = true and costs < minChangeoverCost then
25 minChangeoverCost = costs
26 done = true
27 Let p = 1
28 for s = 1 to S do
29 if finisheds = false and feasibles = true and costs < minChangeoverCost then
30 done = false
31 for n = 1 to N do
32 Qpn = Qp+1,n = Msn
33 if MsN = 1 then Qp,N+1 = 2 and Qp+1,N+1 = 3
34 else if MsN = 2 then Qp,N+1 = 1 and Qp+1,N+1 = 3
35 else if MsN = 3 then Qp,N+1 = 1 and Qp+1,N+1 = 2
36 p = p + 2
37 N = N+1
38 S = p-1
39 for s = 1 to S do
40 for n = 1 to N do
41 Msn = Qsn
42 output minChangeoverCost

 65

Table 3.4 shows the logic in the greedy method. This method constructs a spreader mode

sequence one phase at a time. The spreader mode used in the next phase is the mode that can lift

the greatest number of containers from the bay. This method is not guaranteed to find the minimum

total changeover time but uses much less computation time than the branch-and-bound method. In

this method, the fitness value of a chromosome equals (i) the total handling time plus (ii) the final

value of changeoverCost (lines 3, 35).

 66

Table 3.4. Greedy method for computing the total spreader changeover cost of a chromosome.

1 Convert chromosome (g1, g2, …, gT) into ContainerArray, an 𝑆 × 𝑇 array that indicates the spreader
mode used to lift each container (“1” indicates single-spreader mode, “2” indicates dual-spreader mode,
“3” indicates triple-spreader mode.

2 Let currMode Î{1,2,3} be the spreader mode that can lift the greatest number of containers from the
top of ContainerArray. Ties are broken arbitrarily.

3 Let changeoverCost = 0
4 while there’s at least one “1”, “2” or “3” in ContainerArray (i.e. while at least one container is still

present)
5 Lift as many unblocked containers as possible from the top of ContainerArray using spreader mode

currMode
6 if there are no more containers in ContainerArray
7 Go to line 35
8 if currMode = 1
9 Let 𝑁%	= number of containers that can now be lifted from the top of ContainerArray using

spreader mode 2
10 Let 𝑁& 	= number of containers that can now be lifted from the top of ContainerArray using

spreader mode 3
11 if 𝑁% ≥ 𝑁& then
12 𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 2
13 changeoverCost = changeoverCost + C12
14 else
15 𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 3
16 changeoverCost = changeoverCost + C13

17 else if currMode = 2
18 Let 𝑁'	= number of containers that can now be lifted from the top of ContainerArray using

spreader mode 1
19 Let 𝑁& 	= number of containers that can now be lifted from the top of ContainerArray using

spreader mode 3
20 if 𝑁' ≥ 𝑁& then
21 𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 1
22 changeoverCost = changeoverCost + C21
23 else
24 𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 3
25 changeoverCost = changeoverCost + C23

26 else if currMode = 3
27 Let 𝑁'	= number of containers that can now be lifted from the top of ContainerArray using

spreader mode 1
28 Let 𝑁%	= number of containers that can now be lifted from the top of ContainerArray using

spreader mode 2
29 if 𝑁' ≥ 𝑁% then
30 𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 1
31 changeoverCost = changeoverCost + C31
32 else
33 𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 2
34 changeoverCost = changeoverCost + C32

35 output changeoverCost

 67

The bottom-right portion of Figures 3.3 and 3.4 show the fitness evaluation of

chromosomes (19, 1, 1) and (21, 37, 37) respectively. In Figure 3.3, the branch-and-bound method

is used; this method yields a spreader mode sequence of D-S-T which produces a total makespan

of 27.4 minutes. The greedy method applied to this chromosome would have resulted in a spreader

mode sequence of D-T-S-T and a makespan of 30.1 minutes. In Figure 3.4, both fitness evaluation

methods result in a makespan of 27.2 minutes. Note that the chromosome in Figure 3.4 has a better

makespan than the one in Figure 3.3 even though its tier options are each inferior to those in Figure

3.3. Chromosome (21, 37, 37) achieves the optimal makespan for this instance: 27.2 minutes.

3.3.3 GA procedure

Figure 3.5 shows the overall GA procedure. The first step is to use the method from Section

3.3.1 to generate the options (i.e. genes) for each tier t from 1 to T. Each option in tier t is numbered

from 1 to numOptions(t) where numOptions(t) is the total number of options created for tier t (see

left side of Figures 3.3 and 3.4). The second step is to build N chromosomes in the first generation.

In each such chromosome, the gene for tier t is a random integer from 1 to numOptions(t).

 68

Has the time
limit been
reached?

No

Yes

Forming new generation

Yes

• For each tier t from 1 to T, use the method from Section 3.3.1 to generate tier
options in 4 categories: (a) at least 1 D & 1 T lift, (b) at least 1 D & no T lift, (c)
at least 1 T & no D lift, and (d) no D & no T lift.

• The options in tier t are numbered from 1 to numOptions(t) where numOptions(t)
is the total number of options for tier t (see left side of Figures 3.3 and 3.4).

• Build first generation consisting of N randomly generated chromosomes.
• In each chromosome, the gene used for tier t is a random integer from 1 to
numOptions(t).

• The chromosomes must not be identical.

Use branch-and-bound method to
calculate the makespan of each
chromosome in current generation

Use greedy method to calculate
the makespan of each

chromosome in current generation

Sort chromosomes in current generation based on their makespan

Copy 𝑵𝟎 best
chromosomes to
next generation

• Select a random chromosome in
current generation, mutate it and
add it to next generation if it is
not identical to any chromosome
in the next generation.

• Repeat until 𝑵𝟏mutated
chromosomes are added to the
next generation.

• Select 2 chromosomes and
perform a crossover to generate 2
children.

• Parent selection probability is
proportional to its ranking in the
current generation (N is the best
chromosome).

• Repeat until 𝑵𝟐 children are added
to the next generation.

Copy next generation into current generation

Display best chromosome
found, its makespan, and

the associate crane lift
sequence.

No

Figure 3.5. Overall logic of genetic algorithm.

Is the instance
10 x 23 or
smaller?

 69

The iterative portion of the GA commences immediately after the first generation of

chromosomes is formed. In step A of each iteration, the makespan (i.e. fitness) of each

chromosome in the current generation is evaluated. This is done using the greedy (branch-and-

bound) method from Section 3.3.2 if the initial storage bay has more (no more) than 230 containers.

In step B, the chromosomes are sorted based on their makespans.

In step C, the 𝑁/	best chromosomes in the current generation are copied into the next

generation. In step D, 𝑁#	mutated chromosomes are created and added to the next generation. Each

mutated chromosome is formed by selecting a random chromosome in the current generation and

then, for each t from 1 to T, changing its tier t gene to a new, random tier t gene with probability

mProb. In step E, parent chromosomes from the current generation are mated, and a total of 𝑁$ (=

𝑁 – 𝑁/– 𝑁#) children are added to the next generation. In each crossover operation, two parent

chromosomes (g11, g12, g13, …, g1T) and (g21, g22, g23, …, g2T) are mated—forming two

children—by performing a crossover operation at a random position p (1 ≤ p ≤ T-1) in the parent

chromosomes. Random variable p follows a discrete uniform distribution with minimum value 1

and maximum value T-1. The resulting children are (g11, …, g1p, g2(p+1), …, g2T) and (g21, …,

g2p, g1(p+1), …, g1T). Each parent’s selection probability is proportional to its fitness ranking in

current generation where the chromosome in the current generation with the lowest (highest)

makespan (ties are broken randomly) has ranking N (1). Unless it is impossible to do so (i.e. unless

there are fewer than N unique chromosomes), we require that every chromosome in each

generation be unique. When a predefined time limit is reached, the GA procedure terminates and

the best chromosome that has been found—and its corresponding makespan and crane lift

sequence—is displayed.

 70

3.4 Lower bound computation

We compute a lower bound on the TSCSP’s optimal objective value as follows. First, we

use math model TSCSP-Sub (Table 3.2) to find the best option in each category for each tier t from

1 to T (Section 3.3.1). The best option in category (1, 2, 3, 4) is created by solving math program

TSCSP-Sub (Table 3.2) with the additional constraints (b+d, b+c, a+d, a+c) shown in (25). Let

Subtc be the optimal objective value for problem TSCSP-Sub when tier t category c is considered.

We assume this is +∞ if the problem is infeasible. Also, let N1tc be the total number of single-

spreader lifts made in the optimal solution to problem TSCSP-Sub when tier t category c is

considered. This variable is undefined if the problem is infeasible.

We use Subtc and N1tc to compute four lower bounds—LB1, LB2, LB3, LB4—where LBy is

a lower bound on the best makespan among the type y feasible solutions (i.e. crane lift sequences).

A type 1 feasible solution has at least one dual-spreader and at least one triple-spreader lift. A type

2 (3) feasible solution has at least one dual-spreader (triple-spreader) lift but no triple-spreader

(dual-spreader) lifts. A type 4 feasible solution has no dual-spreader and no triple-spreader lifts.

These solution types encompass all feasible solutions, so 𝐿𝐵	 = 	𝑚𝑖𝑛{𝐿𝐵#, 𝐿𝐵$, 	𝐿𝐵%, 	𝐿𝐵0} is a

lower bound on the optimal value of the TSCSP.

The values LB1, LB2, LB3, LB4 are computed as follows:

 T

LB1 = å(min c {Subtc }) + min{C12+C23, C13+C32, C21+C13, C23+C31, C31+C12, C32+C21}
 t =1

 if N1tc > 0 for any (t,c) (t = 1…T, c = 1…4) in which Subtc = min{Subt1, Subt2, Subt3, Subt4} (26a)
 T

 = å(min c {Subtc }) + min{C23, C32}
 t =1

 if N1tc = 0 for all (t,c) (t = 1…T, c = 1…4) in which Subtc = min{Subt1, Subt2, Subt3, Subt4} (26b)

 71

 T

LB2 = å(min{ Subt 2 , Subt 4 }) + min{C12, C21} if N1t2 > 0 for any t from 1 to T (27a)
 t =1

 T

 = å Subt 2 if N1t2 = 0 for all t from 1 to T (27b)
 t =1

 T

LB3 = å(min{ Subt3 , Subt4 }) + min{C13, C31} if N1t3 > 0 for any t from 1 to T (28a)
 t =1

 T

 = å Subt 3 if N1t3 = 0 for all t from 1 to T (28b)
 t =1

 T

LB4 = å Subt 4 (29)
 t =1

Equation (26a) refers to the case in which all three spreader modes are used. Equation (26b)

refers to the case in which dual-spreader and triple-spreader modes are used but single-spreader

mode is not used. Equation (27a) refers to the case in which single-spreader and dual-spreader

modes are used but triple-spreader mode is not used. Equation (27b) refers to the case in which

only dual-spreader mode is used. Equation (28a) refers to the case in which single-spreader and

triple-spreader modes are used but dual-spreader mode is not used. Equation (28b) refers to the

case in which only triple-spreader mode is used. Equation (29) refers to the case in which only

single-spreader mode is used. The above equations assume (i) the bare minimum number of

changeovers—2, 1, or 0—needed to transition between the spreader modes that are used and (ii)

the most efficient spreader mode sequence among the theoretical alternatives. For the instance

shown in Figures 3.1, 3.2, 3.3, and 3.4 (LB1, LB2, LB3, LB4) = (27.4, 27.9, 24.9, 36), so LB = 24.9.

3.5 Experimental setup, results, and discussion

The lower bound procedure from Section 3.4, genetic algorithm (GA) from Section 3.3,

and model TSCSP from Section 3.2 were coded into MS Visual C++ 2010 Professional. IBM

 72

ILOG Concert Technology was used to define model TSCSP within C++ and call the MILP solver

IBM ILOG CPLEX 12.5 to solve instances defined in text files. To avoid running out of memory,

the CPLEX “node file storage parameter” was set to 3. Otherwise, default CPLEX settings were

used. All results were obtained on a desktop computer with the Windows 7 Enterprise 64-bit

operating system, an Intel Core i7-4770 processor with eight 3.4 gigahertz cores, and 16 GB of

RAM.

We perform three experiments. In Experiment 1, we test the math model and GA on 120

instances of the TSCSP. In Experiment 2, we compare the performance of the GA to that of the

simulated annealing-heuristic introduced in Chapter 2 on the 120 instances of the dual-spreader

crane scheduling problem (DSCSP) considered in Chapter 2. In experiment 3, we use dynamic

programming to create tier options for the GA and then re-test the GA on the 120 instances of the

TSCSP considered in experiment 1.

3.5.1 Experiment 1

In this experiment we consider a total of 120 problem instances—30 instances for each of

the problem sizes 3×8, 5×10, 10×23, and 50×50. Problem size T×S has T tiers, S stacks, and T

containers in stack s at time 0 for all s. In all instances, we assume that the container weights

𝑊!"	take integer values from 1 to 9. We also assume that the weight limits are 𝐿$ = 10 for dual-

spreader lifts and 𝐿%	= 12 for triple-spreader lifts. We also assume that 𝐻#	= 1.5, 𝐻$	= 1.8, 𝐻%	=

2.2 and 𝐶&' 	= 2.7 for all p and q. Among the 30 instances for each problem size, (10, 10, 10)

instances have (light, medium, heavy) container weights. In the medium instances, the weight of

each container follows a discrete uniform distribution over the values {1, 2, 3, 4, 5, 6, 7, 8, 9}. In

the light instances, the weight of each container has a {15%, 15%, 15%, 15%, 20%, 5%, 5%, 5%,

 73

5%} chance of taking the value {1, 2, 3, 4, 5, 6, 7, 8, 9}. In the heavy instances, the weight of each

container has a {5%, 5%, 5%, 5%, 20%, 15%, 15%, 15%, 15%} chance of taking the value {1, 2,

3, 4, 5, 6, 7, 8, 9}.

Table 3.5 shows the GA parameter settings used in this experiment. These settings were

chosen based on preliminary experiments whose results are not shown here. Note that more

computation time is allocated for attacking larger problems. A nontrivial portion of this time is

spent solving instances of math program TSCSP-Sub (Table 3.2) in order to create the tier options,

particularly for problem instances of size 10×23 and 50×50. Each generation has 50 chromosomes:

5 copied from the previous generation, 15 formed by mutation, and 30 formed by the crossover

operation. The gene mutation probability, mProb, is set to 0.2. The maximum number of options

per category per tier, Max#OptionsPerCategoryPerTier, is 100 for every problem size. This value

limits the time spent creating the tier options but still allows a variety of excellent tier options to

be considered by the GA. Makespan is computed via the greedy method for instances of size

50×50; otherwise the branch-and-bound method is used (Section 3.3.2).

Table 3.5. GA parameter settings in Experiment 1.

Problem Size 3 x 8 5 x 10 10 x 23 50 x 50
Computational time limit (seconds) 30 120 600 600
𝑵 50 50 50 50
𝑵𝟎 5 5 5 5
𝑵𝟏 15 15 15 15
𝑵𝟐 30 30 30 30
Gene mutation probability (mProb) 0.2 0.2 0.2 0.2
Max#OptionsPerCategoryPerTier 100 100 100 100
Evaluation of spreader changeover cost Branch+Bound Branch+Bound Branch+Bound Greedy

Table 3.6 shows the results for the 30 small problem instances of size 3×8. Each individual

instance is specified by a code “TxSZnn” where T is the number of tiers; S is the number of stacks;

 74

Z takes the value (L, M, H) according to the container weight scenario (light, medium, heavy); and

“nn” denotes the instance number from 1 to 10. Instance “3x8L03” is depicted in Figures 3.1 and

3.2. Each instance is considered using (A) CPLEX’s default integer programming (IP) solver with

no time limit and (B) the GA with a 30 sec time limit. The GA creates and evaluates an average of

133,000 generations (6.7 million chromosomes) within the time limit. The best objective value

(i.e. makespan) found by methods A and B are shown in columns MCP and MGA. Column M0 shows

the makespan of a greedy chromosome which combines the best options for the individual tiers

(ties are broken arbitrarily). Column LB shows the lower bound.

The results show that both methods solve all instances to optimality. Indeed, method A

solves all instances to optimality within eleven minutes, and method B finds these optimal

solutions within 30 seconds. Importantly, the best solutions found by the GA (all of which happen

to be optimal) are usually within 10% of the lower bound. Also, the average makespan of the best

solution found by the GA (31.1) is about 7% better than that of the greedy solution (33.5). Not

surprisingly, the optimal makespans for the light (medium) instances are typically less than those

for the medium (heavy) instances.

 75

Table 3.6. Experiment 1 results for TSCSP instances of size 3 × 8.

Instance CPLEX Heuristic (30 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵

𝑀34

Time (s)
𝑀12 𝑀/

𝑀/ −𝑀12

𝑀/

3x8L01 28.6 549 28.6 31.2 8.33% 27.9 2.51%
3x8L02 30.3 635 30.3 33.9 10.62% 27.9 8.60%
3x8L03 27.2 71 27.2 27.4 0.73% 24.9 9.24%
3x8L04 23.3 22 23.3 24.0 2.92% 21.3 9.39%
3x8L05 27.2 169 27.2 32.7 16.82% 26.7 1.87%
3x8L06 30.3 365 30.3 35.0 13.43% 29.1 4.12%
3x8L07 25.5 25 25.5 28.8 11.46% 25.5 0.00%
3x8L08 25.5 102 25.5 28.8 11.46 % 25.5 0.00%
3x8L09 24.9 49 24.9 27.8 10.43% 24.9 0.00%
3x8L10 30.3 344 30.3 33.9 10.62% 28.5 6.32%
Average 27.3 233.1 27.3 30.4 9.68% 26.2 4.20%
3x8M01 29.1 47 29.1 29.6 1.69% 29.1 0.00%
3x8M02 33.9 9 33.9 35.4 7.63% 32.7 3.67%
3x8M03 29.5 18 29.5 30.9 4.53% 29.5 0.00%
3x8M04 32.2 40 32.2 34.8 15.23% 29.5 9.15%
3x8M05 35.1 238 35.1 35.7 15.13% 30.3 15.84%
3x8M06 25.5 19 25.5 28.8 11.46% 25.5 0.00%
3x8M07 33.9 176 33.9 35.9 8.91% 32.7 3.67%
3x8M08 29.1 51 29.1 32.3 9.91% 29.1 0.00%
3x8M09 35.4 140 35.4 38.6 15.28% 32.7 8.26%
3x8M10 33.0 581 33.0 36.2 18.51% 29.5 11.86%
Average 31.7 131.9 31.7 33.8 10.83% 30.1 5.25%
3x8H01 35.4 42 35.4 35.4 0.00% 32.7 8.26%
3x8H02 35.1 30 35.1 39.7 11.59% 32.7 7.34%
3x8H03 30.3 51 30.3 31.8 4.72% 29.1 4.12%
3x8H04 35.1 373 35.1 38.5 8.83% 31.5 11.43%
3x8H05 32.7 412 32.7 35.8 8.66% 31.5 3.81%
3x8H06 33.9 57 33.9 35.7 5.04% 30.3 11.88%
3x8H07 35.4 16 35.4 35.4 0.00% 32.7 8.26%
3x8H08 36.0 84 36.0 40.9 11.98% 33.9 6.19%
3x8H09 36.0 9 36.0 36.6 1.64% 33.9 6.19%
3x8H10 32.7 7 32.7 34.2 4.39% 31.5 3.81%
Average 34.3 108.1 34.3 36.4 5.68% 32.0 7.13%
Overall 31.1 157.7 31.1 33.5 8.73% 29.4 5.53%

 76

Table 3.7 shows the results for the 30 instances of size 5×10. Here, each instance is

considered using (A) CPLEX with a one-hour time limit and (B) the GA with a 120 second time

limit. The GA creates and evaluates an average of 332,000 generations (16.6 million

chromosomes) within the time limit. The results for methods A and B show that the GA performs

better than CPLEX. Indeed, in every instance, the best solution found by the GA in two minutes

is at least as good as the best solution found by CPLEX in an hour. Also, the average makespan of

the best GA solution (62.2) is about 2.4% better than that for CPLEX (63.7). Note that the best

solutions found by the GA are about 7% higher on average than the lower bound. Finally, we

observe that the average makespan of the best GA solution (62.2) is about 7% lower than that of

the greedy solution (67.1). These results indicate that standard IP is not a suitable solution method

for instances with 50 or more containers. Thus, IP is not used in the following experiments that

consider larger problem instances.

Table 3.8 shows the results for the large problem instances of size 10×23. For each

instance, we show the makespan of the best solution found by the GA within 600 seconds; the

makespan of a greedy solution; and the lower bound. The GA creates and evaluates an average of

34,000 generations (1.7 million chromosomes) within the time limit. The results show that the GA

finds near-optimal solutions to these instances. Indeed, the average makespan of the best GA

solution (270.2) is about 8% higher than the average lower bound (249.4). Note that the quality of

the GA solution improves as containers get heavier; on average, the makespan of the best GA

solution is roughly 11%, 10%, and 6% above the lower bound for the light, medium, and heavy

instances respectively. This may be due to the fact that there are fewer opportunities for operating

in dual-spreader and triple-spreader mode—and therefore fewer choices—when containers are

heavier.

 77

Table 3.7. Experiment 1 results for TSCSP instances of size 5 × 10.

Instance CPLEX Heuristic (120 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵

𝑀34

Time (s)
𝑀12 𝑀/

𝑀/ −𝑀12

𝑀/

5x10L01 50.7 3734 49.0 58.5 16.24% 47.7 2.73%
5x10L02 56.5 3637 55.4 63.5 12.76% 50.0 10.80%
5x10L03 50.5 3656 49.1 53.2 7.71% 47.8 2.72%
5x10L04 57.3 3603 50.9 55.8 8.78% 47.7 6.71%
5x10L05 48.7 3603 48.7 54.1 9.98% 48.7 0.00%
5x10L06 58.5 3612 58.5 64.2 8.88% 53.4 9.55%
5x10L07 58.8 3620 56.5 62.4 9.46% 48.9 15.54%
5x10L08 57.6 3612 54.7 58.7 6.81% 53.3 2.63%
5x10L09 46.5 3614 46.5 51.9 10.40% 46.5 0.00%
5x10L10 50.5 3600 49.2 57.1 13.84% 47.8 2.93%
Average 53.6 3629.1 51.8 57.9 10.49% 49.2 5.36%

5x10M01 69.6 3616 68.7 74.6 7.91% 63.3 8.53%
5x10M02 62.0 3621 58.8 65.3 9.95% 54.5 7.89%
5x10M03 66.0 3600 64.2 68.5 6.28% 60.4 6.29%
5x10M04 67.5 3601 64.8 67.3 3.71% 59.2 9.46%
5x10M05 65.1 3661 59.7 67.0 10.90% 53.5 11.59%
5x10M06 68.6 3600 68.6 71.0 3.38% 62.9 9.06%
5x10M07 62.1 3603 62.1 68.6 9.48% 57.3 8.38%
5x10M08 69.3 3602 67.2 74.9 10.28% 60.9 10.34%
5x10M09 66.0 3606 66.0 69.6 5.17% 61.5 7.32%
5x10M10 61.2 3601 61.2 70.4 13.07% 56.9 7.56%
Average 65.7 3611.1 64.1 69.7 8.01% 59.0 8.64%
5x10H01 70.5 3601 69.6 75.5 7.81% 66.9 4.04%
5x10H02 72.9 3601 72.9 73.9 1.35% 66.9 8.97%
5x10H03 71.7 3647 71.7 75.4 4.91% 65.7 9.13%
5x10H04 72.0 3601 69.6 71.1 2.11% 65.7 5.94%
5x10H05 72.0 3606 68.4 70.0 2.29% 65.7 4.11%
5x10H06 72.9 3616 72.9 76.3 4.46% 69.3 5.19%
5x10H07 74.4 3618 74.4 75.9 1.98% 70.5 5.53%
5x10H08 68.4 3727 66.9 70.3 4.84% 63.3 5.69%
5x10H09 75.0 3600 75.0 77.2 2.85% 72.9 2.88%
5x10H10 67.2 3612 66.0 72.3 8.71% 61.5 7.32%
Average 71.7 3622.9 70.7 73.8 4.13% 66.8 5.88%
Overall 63.7 3621.0 62.2 67.1 7.54% 58.4 6.63%

 78

Table 3.8. Experiment 1 results for TSCSP instances of size 10 × 23.

Instance Heuristic (600 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵

𝑀12 𝑀/

𝑀/ −𝑀12

𝑀/

10x23L01 237.4 243.9 2.67% 216.9 9.45%
10x23L02 229.1 234.2 2.18% 204.5 12.03%
10x23L03 216.6 220.9 1.95% 196.6 10.17%
10x23L04 236.5 238.2 0.71% 213.9 10.57%
10x23L05 228.5 236.5 3.38% 206.8 10.49%
10x23L06 219.8 225.0 2.31% 198.0 11.01%
10x23L07 226.1 230.1 1.74% 203.1 11.32%
10x23L08 223.1 230.2 3.08% 203.2 9.79%
10x23L09 225.7 232.8 3.05% 205.8 9.67%
10x23L10 232.7 234.7 0.85% 207.7 12.04%

Average 227.5 232.7 2.19% 205.6 10.65%
10x23M01 264.5 270.3 2.15% 237.9 11.18%
10x23M02 265.7 270.3 1.70% 240.6 10.43%
10x23M03 268.5 276.5 2.89% 244.1 10.00%
10x23M04 279.0 286.4 2.58% 254.0 9.84%
10x23M05 268.3 272.0 1.36% 242.3 10.73%
10x23M06 271.4 279.5 2.90% 249.8 8.65%
10x23M07 276.4 283.4 2.47% 253.7 8.95%
10x23M08 274.5 283.3 3.11% 253.6 8.24%
10x23M09 274.2 278.0 1.37% 248.3 10.43%
10x23M10 274.0 278.9 1.76% 254.6 7.62%
Average 271.6 277.9 2.23% 247.9 9.61%
10x23H01 310.8 317.0 1.96% 294.9 5.39%
10x23H02 312.2 318.0 1.82% 299.1 4.38%
10x23H03 306.7 311.2 1.45% 284.2 7.92%
10x23H04 314.1 318.7 1.44% 300.9 4.39%
10x23H05 307.1 313.5 2.04% 291.9 5.21%
10x23H06 317.4 323.6 1.92% 299.3 6.05%
10x23H07 311.8 316.4 1.45% 292.1 6.74%
10x23H08 314.1 321.5 2.30% 297.2 5.69%
10x23H09 307.9 315.4 2.38% 291.1 5.77%
10x23H10 310.8 314.5 1.18% 295.6 5.14%
Average 311.3 317.0 1.79% 294.6 5.67%
Overall 270.2 276.9 2.05% 249.4 8.64%

 79

Table 3.9 shows the results for the very large problem instances of size 50×50. This table

has the same structure as Table 3.8. Here, the GA time limit is also 600 seconds. The GA creates

and evaluates an average of 8200 generations (410,000 chromosomes) within the time limit. The

results show that the GA finds near-optimal solutions to these instances. Indeed, the average

makespan of the best GA solution (2810.8) is about 6.6% higher than the average lower bound

(2637.2). On average, the makespan of the best GA solution is roughly 9%, 7%, and 5% above the

lower bound for the light, medium, and heavy instances respectively. Overall, the GA appears to

be an effective method for attacking the TSCSP.

3.5.2 Experiment 2

We now compare the performance of the GA to that of the simulated annealing algorithm

(i.e. method “H”) proposed in Chapter 2 (i.e. by Lashkari et al. 2017) on the 120 instances of the

DSCSP considered in Chapter 2. Similar to the TSCSP instances, the DSCSP instances are broken

into twelve categories corresponding to four problem sizes—3×8, 5×10, 10×23, 50×50—and three

container weight scenarios—light, medium, and heavy—with ten instances in each category. Text

files defining all DSCSP instances can be found in the supplementary material accompanying

Lashkari et al. (2017). As in Chapter 2, we assume that 𝐻#= 1.5, 𝐻$ = 1.8, 𝐶#$ = 𝐶$# = 2.1, and the

weight limit 𝐿$	for dual spreader lifts is 10.

Table 3.10 shows the GA settings used in this experiment. The computation times allocated

to methods GA and H are identical and match the computation times used by Lashkari et al. (2017).

As in Experiment 1, each generation has 50 chromosomes: 5 copied, 15 mutated, and 30 formed

by crossover. Also, mProb is set to 0.2.

 80

Table 3.9. Experiment 1 results for TSCSP instances of size 50 × 50.

Instance Heuristic (600 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵

𝑀12 𝑀/

𝑀/ −𝑀12

𝑀/

50x50L01 2333.4 2363.0 1.25% 2160.5 8.00%
50x50L02 2322.6 2361.8 1.66% 2145.8 8.24%
50x50L03 2361.2 2390.8 1.24% 2177.5 8.44%
50x50L04 2418.1 2443.7 1.05% 2222.3 8.81%
50x50L05 2332.8 2373.8 1.73% 2149.7 8.52%
50x50L06 2391.7 2427.4 1.47% 2211.4 8.15%
50x50L07 2345.1 2390.6 1.90% 2158.4 8.65%
50x50L08 2370.5 2419.6 2.03% 2182.0 8.64%
50x50L09 2392.7 2421.2 1.18% 2205.2 8.50%
50x50L10 2358.5 2393.2 1.45% 2163.7 9.00%
Average 2362.7 2398.5 1.50% 2177.6 8.50%
50x50M01 2801.4 2812.7 0.40% 2621.0 6.88%
50x50M02 2779.1 2800.6 0.77% 2595.4 7.08%
50x50M03 2779.3 2808.7 1.05% 2598.1 6.97%
50x50M04 2797.4 2814.6 0.61% 2620.2 6.76%
50x50M05 2837.5 2845.0 0.26% 2650.7 7.05%
50x50M06 2855.9 2873.3 0.61% 2670.8 6.93%
50x50M07 2838.7 2864.8 0.91% 2651.5 7.06%
50x50M08 2844.0 2872.0 0.97% 2669.5 6.54%
50x50M09 2829.4 2864.5 1.23% 2645.8 6.94%
50x50M10 2797.5 2822.9 0.90% 2628.5 6.43%
Average 2816.0 2837.9 0.77% 2635.1 6.86%
50x50H01 3250.8 3288.5 1.15% 3096.8 4.97%
50x50H02 3238.5 3282.7 1.35% 3085.6 4.96%
50x50H03 3275.3 3324.8 1.49% 3127.7 4.72%
50x50H04 3237.4 3276.4 1.19% 3073.9 5.32%
50x50H05 3269.8 3310.2 1.22% 3113.1 5.03%
50x50H06 3264.7 3304.2 1.20% 3109.8 4.98%
50x50H07 3239.3 3293.2 1.64% 3085.3 4.99%
50x50H08 3275.8 3322.2 1.40% 3125.1 4.82%
50x50H09 3242.1 3275.9 1.03% 3092.3 4.84%
50x50H10 3243.4 3279.4 1.10% 3079.6 5.32%
Average 3253.7 3295.8 1.28% 3098.9 4.99%
Overall 2810.8 2844.1 1.18% 2637.2 6.78%

 81

The last two rows of Table 3.10 require an explanation. In the DSCSP there are no triple-

spreader lifts. Thus, there are only two categories of tier options—(1) those with at least one dual-

spreader lift and (2) those with no dual-spreader lifts. The value Max#OptionsPerCategoryPerTier

in Table 3.10 refers to the maximum number of options in category 1 that are generated per tier.

(The number of options in category 2 that are generated per tier is always 1.) The value of this

parameter—which was set based on preliminary experiments—allows a variety of good tier

options to be created at the outset and leaves enough time for the GA to find good combinations

of these options (i.e. good chromosomes) within the predetermined overall time limit. This

parameter has a larger value here than in Experiment 1 because there are only two tier option

categories to consider. Note that Max#OptionsPerCategoryPerTier for problem sizes 3×8 and

5×10 is large enough to include all unique, feasible tier options. The term “Basic” in the final row

of Table 3.10 refers to a method that selects the better of the two possible spreader mode sequences:

S-D-S-D-S-… and D-S-D-S-D-….

Table 3.10. GA parameter settings in Experiment 2.

Problem Size 3 x 8 5 x 10 10 x 23 50 x 50
Computational time limit (seconds) 10 60 600 600
𝑵 50 50 50 50
𝑵𝟎 5 5 5 5
𝑵𝟏 15 15 15 15
𝑵𝟐 30 30 30 30
Gene mutation probability (mProb) 0.2 0.2 0.2 0.2
Max#TierOptionsPerCategoryPerTier 200 200 200 200
Evaluation of spreader changeover cost Basic Basic Basic Basic

Table 3.11 shows the overall results from this experiment. Here, results are aggregated

according to problem category. The twelve problem categories are shown in column 1, and the

allowed computation time for each instance is shown in column 2. The results for method H and

the lower bound on the optimal objective value—which are copied from Chapter 2—are shown in

 82

columns 3 and 5 respectively. The results for the GA are shown in column 4. Note that the GA

performs at least as well as method H for every problem category. On average, the solutions found

by the GA are 0.48% better than method H. The solutions found by the GA are 4.07% above the

lower bound on average. These results demonstrate the GA’s effectiveness in addressing the

DSCSP.

Table 3.11. Comparing SA and GA performance on the 120 DSCSP instances (average for each instance
category shown).

Instance
Category

Heuristic
Runtime

(s) 𝑀5 𝑀12 𝐿𝐵
𝑀5 −𝑀12

𝑀5
 𝑀12 − 𝐿𝐵

𝐿𝐵

3x8L 10 26.8 26.8 25.9 0.00% 3.47%
3x8M 10 30.7 30.7 29.2 0.00% 5.14%
3x8H 10 33.5 33.5 32.6 0.00% 2.76%
Average 10 30.3 30.3 29.2 0.00% 3.79%
5x10L 60 55.8 55.8 52.6 0.00% 6.08%
5x10M 60 62.2 62.2 58.1 0.00% 7.06%
5x10H 60 69.8 69.8 66.1 0.00% 5.60%
Average 60 62.6 62.6 58.9 0.00% 6.25%
10x23L 600 242.5 239.9 231.8 1.07% 3.49%
10x23M 600 274.4 274.2 262.6 0.07% 4.42%
10x23H 600 308.5 308.5 296.9 0.00% 3.91%
Average 600 275.2 274.2 263.8 0.38% 3.94%
50x50L 600 2623.5 2547.0 2492.9 2.92% 2.17%
50x50M 600 2914.2 2871.6 2801.2 1.46% 2.51%
50x50H 600 3272.8 3263.5 3192.5 0.28% 2.22%
Average 600 2936.8 2894.0 2828.9 1.55% 2.30%
Overall - - - - 0.48% 4.07%

3.5.3 Experiment 3

In Section 3.3.1 we introduced an algorithm to create tier options. This preliminary step

generates genes that are basically feasible ways to lift the containers in a tier.

 83

Every chromosome consists of one gene per tier, and each chromosome is fed to the GA for

evaluation and makespan computation.

In experiment 1, CPLEX generates tier options in four categories to provide a variety of

genes in terms of combining single, dual, and triple lifts. For each category and each tier, the 100

best tier options were generated and indexed from the best lift time to the worst. This is particularly

important because the first chromosome in the first generation always consists of the best gene for

each tier.

For small problem instances, CPLEX performed efficiently and provided tier

options quickly. Indeed, for small-size problems (3×8 and 5×10), the majority of computation

time was spent forming new GA generations and assessing the fitness of chromosomes. However,

for larger problem instances (10×23 and 50×50), the majority of computation time was spent

generating tier options prior to the main GA routine. This led to relatively few GA generations

being created, and it limited the chances of finding solutions with small makespans.

To rectify this problem, we introduce dynamic programming (DP). Dynamic

programming breaks down a complex optimization problem into smaller incremental

steps and tries to solve each step using the best solutions that were identified in previous steps

(Allison, 2020). In this experiment, we deploy dynamic programming to find the best tier options

for the TSCSP. We expect a DP-based method to generate tier options more quickly than an integer

programming based-method, leaving additional computation time for the main part of the GA

routine.

Without loss of generality, we focus on tier t and assume that the options for tier t need to

be generated. Tier t consists of S stacks. A feasible tier option for tier t consists of a series of single

(S), dual (D), and triple (T) lifts that agree with the rules of legal binary

 84

dual/triple spreader lifts. At every step, dynamic programming evaluates legal spreader options

based on the binary information contained in matrices L2 and L3 (Figure 3.2), calculates the partial

tier option lift time, and ranks the solutions.

In the TSCSP, we have at most three comparisons when deciding on the type of spreader

for stack s. If neither the dual nor triple lifts are possible, the container on tier t stack s would be

lifted by a single spreader (S). If a dual lift is legal but a triple lift is not, the algorithm compares a

single lift to a dual lift and chooses the smaller lift time. A dual lift is legal when the corresponding

value matrix 𝐿2 = 1. Another scenario is when a triple lift is legal (the 𝐿3 = 1) and a dual lift is not.

In this case, a comparison between the time it takes to lift the container in stack s with a single

spreader and the time it takes to lift the containers in stacks s-2, s-1 and s with a triple-spreader

takes place. The final scenario is where all three spreaders can be used to lift the container in stack

s. As mentioned above, the dynamic programming algorithm looks at previous steps to make the

best decision for the current state.

Let OPT[s] be the minimum handling time for the first s containers in tier t (spreader

changeover time is ignored). In our basic DP, we use the formula below to calculate the best

objective value at each step.

OPT[s] = Minimum {OPT[s−1] + singleSpreaderOptionForDP,

 OPT[s−2] + dualSpreaderOptionForDP,

 OPT[s−3] + tripleSpreaderOptionForDP}

Where:

singleSpreaderOptionForDP	=	𝐻#	

dualSpreaderOptionForDP	=	S𝐻$										𝑖𝑓				𝐿2!,#," 	= 	1
∞																						otherwise	

] 									(t = 1, …, T)

tripleSpreaderOptionForDP	=	S𝐻%										𝑖𝑓				𝐿3!,$," 	= 	1
∞																						otherwise	

]															(t = 1, …, T)	

 85

This above recursion formula finds the optimal tier option for tier t. However, in our

advanced DP algorithm, which is a combination of enumeration and dynamic programming, we

are interested in generating the Max#OptionsPerCategoryPerTier (= 100 as in experiment 1) best

tier options for each tier. Let OPT[m][s] be the handling time (spreader changeover time is ignored)

for the mth best (unique) option (m = 1, …, Max#OptionsPerCategoryPerTier) for handling the

first s containers in tier t. The values of OPT[m][s] for m = 1 to Max#OptionsPerCategoryPerTier

can be derived from the values of OPT[m][s-1], OPT[m][s-2], and OPT[m][s-3] from m = 1 to

Max#OptionsPerCategoryPerTier using a recursive procedure similar to that shown above.

Table 3.12, 3.13, and 3.14 show the algorithms we developed to generate tier options in 3

categories: at least one dual and at least one triple lift, at least one dual and no triple lift, and at

least one triple and no dual. In these tables, 𝐿′2!" is equal to 1 if the two containers occupying

stacks s and s-1 in tier t can be lifted together using the dual spreader without violating the weight

limit (binary) (s = 1, 2, …, S-1; t = 1, 2, …, T). 𝐿′3!" is equal to 1 if the three containers occupying

stacks s, s-1, and s-2 in tier t can be lifted together using the triple spreader without violating the

weight limit (binary) (s = 1, 2, …, S-2; t = 1, 2, …, T). SpreaderVector[m][s] stores the sequence

of lifts (S, D, T) that are made from left to right for the mth best option for handling the first s

containers in tier t. For example, if we are generating tier options with at least one triple lift and

no dual lifts, then SpreaderVector[1][8] = (T, T, S, S) for tier 1 in the example shown in the Figures

3.3 and 3.4. In other words, the best way to lift the first 8 containers in tier 1 in the example shown

in Figures 3.3 and 3.4 is to lift the first 3 containers using the triple spreader, the next 3 containers

using the triple spreader, and the last 2 containers each with a single spreader. This is tier option

19 (for tier 1), and the corresponding lifting time for this, OPT[1][8] is 7.4 minutes.

 86

Table 3.12. DP algorithm for generating options for tier t with at least one dual and at least one triple lift.

1 Set OPT[1][1] = H1 and Let SpreaderVector[1][1] = “S”
2 Set OPT[m][1] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier
3 if 𝐿′2() = 1 then
4 OPT[1][2] = H2 and let SpreaderVector[1][2] = “D”
5 OPT[2][2] = 2H1 and let SpreaderVector[2][2] = “SS”
6 else OPT[1][2] = 2H1 and let SpreaderVector[1][2] = “SS”
7 Set the rest of OPT[m][2] = +∞ for m = 2 or 3, …, Max#OptionsPerCategoryPerTier
8 for s = 3 to S do
9 Set n1 = n2 = n3 = 1
10 for m = 1 to Max#OptionsPerCategoryPerTier do
11 if 𝐿′3*) = 1 then tripleSpreaderOptionForDP = H3 else tripleSpreaderOptionForDP = ∞
12 if 𝐿′2*) = 1 then dualSpreaderOptionForDP = H2 else dualSpreaderOptionForDP = ∞
13 singleSpreaderOptionForDP = H1
14 OPT[m][s] = Minimum {OPT[n1][s-1] + singleSpreaderOptionForDP,
 OPT[n2][s-2] + dualSpreaderOptionForDP,
 OPT[n3][s-3] + tripleSpreaderOptionForDP}
15 if the minimum comes from using tripleSpreaderOptionForDP then
16 n3 = n3 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n3][s-3] with a “T” added to the

end of it.
17 else if the minimum comes from using dualSpreaderOptionForDP then
18 n2 = n2 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n2][s-2] with a “D” added to the

end of it.
19 else if the minimum comes from using singleSpreaderOptionForDP then
20 n1 = n1 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n1][s-1] with an “S” added to the

end of it.
21 else if no more options for comparison remain among previous stacks then
22 Set OPT[n][s] = +∞ for all n from m to Max#OptionsPerCategoryPerTier
23 for m = 1 to Max#OptionsPerCategoryPerTier do
24 if SpreaderVector[m][S] doesn’t have at least one “D” and at least one “T” in it then
25 remove SpreaderVector[m][S] and OPT[m][S]
26 output all OPT[m][S] and corresponding SpreaderVector[m][S] values that haven’t been removed.

 87

Table 3.13. DP algorithm for generating options for tier t with at least one dual and no triple lift.

1 Set OPT[1][1] = H1 and let SpreaderVector[1][1] = “S”
2 Set OPT[m][1] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier
3 if 𝐿′2() = 1 then
4 OPT[1][2] = H2 and let SpreaderVector[1][2] = “D”
5 OPT[2][2] = 2H1 and let SpreaderVector[2][2] = “SS”
6 else OPT[1][2] = 2H1 and let SpreaderVector[1][2] = “SS”
7 Set the rest of OPT[m][2] = +∞ for m = 2 or 3, …, Max#OptionsPerCategoryPerTier
8 for s = 3 to S do
9 Set n1 = n2 = 1
10 for m = 1 to Max#OptionsPerCategoryPerTier do
11 if 𝐿′2*) = 1 then dualSpreaderOptionForDP = H2 else dualSpreaderOptionForDP = ∞
12 singleSpreaderOptionForDP = H1
13 OPT[m][s] = Minimum {OPT[n1][s-1] + singleSpreaderOptionForDP,
 OPT[n2][s-2] + dualSpreaderOptionForDP}
14 if the minimum comes from using dualSpreaderOptionForDP then
15 n2 = n2 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n2][s-2] with a “D” added to the

end of it.
16 else if the minimum comes from using singleSpreaderOptionForDP then
17 n1 = n1 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n1][s-1] with an “S” added to the

end of it.
18 else if no more options for comparison remain among previous stacks then
19 Set OPT[n][s] = +∞ for all n from m to Max#OptionsPerCategoryPerTier
20 for m = 1 to Max#OptionsPerCategoryPerTier do
21 if SpreaderVector[m][S] doesn’t have at least one “D” in it then
22 remove SpreaderVector[m][S] and OPT[m][S]
23 output all OPT[m][S] and corresponding SpreaderVector[m][S] values that haven’t been removed

Table 3.15 shows the experimental results for using GA to attack the TSCSP instances of

size 3×8 when using dynamic programming to generate tier options. The table has the same format

as Table 3.6 except that in this table MDP shows the best objective value found by the DP-supported

GA within the time limit. On average 220,000 generations (11 million chromosomes) were

generated within the time limit which is 1.8 times more than in experiment 1. Similar to Table 3.6,

the CPLEX-based method (column 𝑀34) solves all instances to optimality within 11 minutes, and

the GA (using DP) finds these optimal solutions within 30 seconds. All results in Table 3.15 match

those for the IP-based GA in Table 3.6. The best solutions found by the DP-based GA are usually

within 10% of the lower bound. Also, the average makespan of the best solution found by the GA

(using DP) is about 7% better than that of the greedy solution.

 88

Table 3.14. DP algorithm for generating options for tier t with at least one triple and no dual lift.

1 Set OPT[1][1] = H1 and let SpreaderVector[1][1] = “S”
2 Set OPT[m][1] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier
3 Set OPT[1][2] = 2H1 and let SpreaderVector[1][2] = “SS”
4 Set the rest of OPT[m][2] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier
5 for s = 3 to S do
6 Set n1 = n3 = 1
7 for m = 1 to Max#OptionsPerCategoryPerTier do
8 if 𝐿′3*) = 1 then tripleSpreaderOptionForDP = H3 else tripleSpreaderOptionForDP = ∞
9 singleSpreaderOptionForDP = H1
10 OPT[m][s] = Minimum {OPT[n1][s-1] + singleSpreaderOptionForDP,
 OPT[n3][s-3] + tripleSpreaderOptionForDP}
11 if the minimum comes from using tripleSpreaderOptionForDP then
12 n3 = n3 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n3][s-3] with a “T” added to the

end of it.
13 else if the minimum comes from using singleSpreaderOptionForDP then
14 n1 = n1 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n1][s-1] with an “S” added to the

end of it.
15 else if no more options for comparison remain among previous stacks then
16 Set OPT[m][s] = +∞ for all n from m to Max#OptionsPerCategoryPerTier
17 for m = 1 to Max#OptionsPerCategoryPerTier do
18 if SpreaderVector[m][S] doesn’t have at least one “T” in it then
19 remove SpreaderVector[m][S] and OPT[m][S]
20 output all OPT[m][S] and corresponding SpreaderVector[m][S] values that haven’t been removed

Table 3.16 shows the results for 5×10 instances. This table compares the CPLEX method

with a one-hour time limit and the DP-supported GA with a 120 second time limit. The GA creates

and evaluates an average of 360,000 generations (18 million chromosomes) within the time limit.

The results for the DP-supported GA are very similar to the results in Table 3.7. Although the GA

with DP-based tier generation creates 1.14 times more chromosomes compared to the method in

Section 3.3.1, the results are identical to those in table 3.7 except for one instance in which DP-

based GA finds a better makespan compared to IP-based GA. The best solutions found by the GA

are about 7% higher on average than the lower bound. Finally, we observe that the average

makespan of the best GA solution is about 7% lower than that of the greedy solution.

 89

Table 3.15. Experiment 3 results for TSCSP instances of size 3 × 8.

Instance CPLEX GA (using DP) (30 seconds) LB 𝑀74 − 𝐿𝐵

𝐿𝐵

𝑀34

Time (s)
𝑀74 𝑀/

𝑀/ −𝑀74

𝑀/

3x8L01 28.6 549 28.6 31.2 8.33% 27.9 2.51%
3x8L02 30.3 635 30.3 33.9 10.62% 27.9 8.60%
3x8L03 27.2 71 27.2 27.4 0.73% 24.9 9.24%
3x8L04 23.3 22 23.3 24.0 2.92% 21.3 9.39%
3x8L05 27.2 169 27.2 32.7 16.82% 26.7 1.87%
3x8L06 30.3 365 30.3 35.0 13.43% 29.1 4.12%
3x8L07 25.5 25 25.5 28.8 11.46% 25.5 0.00%
3x8L08 25.5 102 25.5 28.8 11.46 % 25.5 0.00%
3x8L09 24.9 49 24.9 27.8 10.43% 24.9 0.00%
3x8L10 30.3 344 30.3 33.9 10.62% 28.5 6.32%
Average 27.3 233.1 27.3 30.4 9.68% 26.2 4.20%
3x8M01 29.1 47 29.1 29.6 1.69% 29.1 0.00%
3x8M02 33.9 9 33.9 35.4 7.63% 32.7 3.67%
3x8M03 29.5 18 29.5 30.9 4.53% 29.5 0.00%
3x8M04 32.2 40 32.2 34.8 15.23% 29.5 9.15%
3x8M05 35.1 238 35.1 35.7 15.13% 30.3 15.84%
3x8M06 25.5 19 25.5 28.8 11.46% 25.5 0.00%
3x8M07 33.9 176 33.9 35.9 8.91% 32.7 3.67%
3x8M08 29.1 51 29.1 32.3 9.91% 29.1 0.00%
3x8M09 35.4 140 35.4 38.6 15.28% 32.7 8.26%
3x8M10 33.0 581 33.0 36.2 18.51% 29.5 11.86%
Average 31.7 131.9 31.7 33.8 10.83% 30.1 5.25%
3x8H01 35.4 42 35.4 35.4 0.00% 32.7 8.26%
3x8H02 35.1 30 35.1 39.7 11.59% 32.7 7.34%
3x8H03 30.3 51 30.3 31.8 4.72% 29.1 4.12%
3x8H04 35.1 373 35.1 38.5 8.83% 31.5 11.43%
3x8H05 32.7 412 32.7 35.8 8.66% 31.5 3.81%
3x8H06 33.9 57 33.9 35.7 5.04% 30.3 11.88%
3x8H07 35.4 16 35.4 35.4 0.00% 32.7 8.26%
3x8H08 36.0 84 36.0 40.9 11.98% 33.9 6.19%
3x8H09 36.0 9 36.0 36.6 1.64% 33.9 6.19%
3x8H10 32.7 7 32.7 34.2 4.39% 31.5 3.81%
Average 34.3 108.1 34.3 36.4 5.68% 32.0 7.13%
Overall 31.1 157.7 31.1 33.5 8.73% 29.4 5.53%

 90

Table 3.16. Experiment 3 results for TSCSP instances of size 5 × 10 (* indicates a better result
than in experiment 1).

Instance CPLEX GA (using DP) (30 seconds) LB 𝑀74 − 𝐿𝐵
𝐿𝐵

𝑀34

Time (s)
𝑀74 𝑀/

𝑀/ −𝑀74

𝑀/

5x10L01 50.7 3734 49.0 58.5 16.24% 47.7 2.73%
5x10L02 56.5 3637 55.4 63.5 12.76% 50.0 10.80%
5x10L03 50.5 3656 49.1 53.2 7.71% 47.8 2.72%
5x10L04 57.3 3603 50.9 55.8 8.78% 47.7 6.71%
5x10L05 48.7 3603 48.7 54.1 9.98% 48.7 0.00%
5x10L06 58.8 3612 58.5 64.2 8.88% 53.4 9.55%
5x10L07 57.6 3620 56.3* 62.4 9.78% 48.9 15.13%
5x10L08 54.4 3612 54.7 58.7 6.81% 53.3 2.63%
5x10L09 46.5 3614 46.5 51.9 10.40% 46.5 0.00%
5x10L10 50.5 3600 49.2 57.1 13.84% 47.8 2.93%
Average 53.6 3629.1 51.8 57.9 10.49% 49.2 5.35%

5x10M01 69.6 3616 68.7 74.6 7.91% 63.3 8.53%
5x10M02 62.0 3621 58.8 65.3 9.95% 54.5 7.89%
5x10M03 66.0 3600 64.2 68.5 6.28% 60.4 6.29%
5x10M04 67.5 3601 64.8 67.3 3.71% 59.2 9.46%
5x10M05 65.1 3661 59.7 67.0 10.90% 53.5 11.59%
5x10M06 68.6 3600 68.6 71.0 3.38% 62.9 9.06%
5x10M07 62.1 3603 62.1 68.6 9.48% 57.3 8.38%
5x10M08 69.3 3602 67.2 74.9 10.28% 60.9 10.34%
5x10M09 66.0 3606 66.0 69.6 5.17% 61.5 7.32%
5x10M10 61.2 3601 61.2 70.4 13.07% 56.9 7.56%
Average 65.7 3611.1 64.1 69.7 8.01% 59.0 8.64%
5x10H01 70.5 3601 69.6 75.5 7.81% 66.9 4.04%
5x10H02 72.9 3601 72.9 73.9 1.35% 66.9 8.97%
5x10H03 71.7 3647 71.7 75.4 4.91% 65.7 9.13%
5x10H04 72.0 3601 69.6 71.1 2.11% 65.7 5.94%
5x10H05 72.0 3606 68.4 70.0 2.29% 65.7 4.11%
5x10H06 72.9 3616 72.9 76.3 4.46% 69.3 5.19%
5x10H07 74.4 3618 74.4 75.9 1.98% 70.5 5.53%
5x10H08 68.4 3727 66.9 70.3 4.84% 63.3 5.69%
5x10H09 75.0 3600 75.0 77.2 2.85% 72.9 2.88%
5x10H10 67.2 3612 66.0 72.3 8.71% 61.5 7.32%
Average 71.7 3622.9 70.7 73.8 4.13% 66.8 5.88%
Overall 63.7 3621.0 62.2 67.1 7.54% 58.4 6.63%

 91

Table 3.17 shows the results for the large problem instances of size 10×23. The GA creates

and evaluates an average of 60,000 generations (3 million chromosomes) within the time limit,

which is 1.76 times more than in Table 3.8. The results show that the DP-based GA is not only

creating more generations but also is finding slightly better makespans on average (0.26%),

especially for lighter instances (0.35%). Among 30 instances in categories light, medium, and

heavy, 21 instances have improved makespans using DP for tier generation. The remaining 9

makespans are as good as the IP-based GA. The average makespan of the best GA solution (269.5)

is about 8% higher than the average lower bound (249.4). Note that the quality of the GA solution

improves as containers get heavier; on average, the makespan of the best GA solution is roughly

10%, 9%, and 6% above the lower bound for the light, medium, and heavy instances respectively.

Table 3.18 shows the results for the very large problem instances of size 50×50. The DP-

supported GA creates and evaluates an average of 23,000 generations (1.15 million chromosomes)

within the time limit. The results show that the DP-supported GA not only creates more

chromosomes (2.8 times more) but also finds solutions with better makespans on average (0.15%).

Among the 30 instances of size 50×50, 28 instances have better makespans when using DP for tier

generation. The other two instances have worse makespans than the IP-based GA (heavy

instances). The average makespan of the best GA solution (2806.5) is about 6.6% higher than the

average lower bound (2637.2). On average, the makespan of the best GA solution is roughly 8%,

7%, and 5% above the lower bound for the light, medium, and heavy instances respectively.

Overall, DP generates tier options more quickly than integer programming, and the performance

of the GA is slightly enhanced when the tier options for TSCSP instances are generated using DP

instead of integer programming.

 92

Table 3.17. Experiment 3 results for TSCSP instances of size 10 × 23 (* indicates a better result
than in experiment 1).

Instances GA (using DP) (600 seconds) LB 𝑀74 − 𝐿𝐵
𝐿𝐵

𝑀74 𝑀/

𝑀/ −𝑀74

𝑀/

10x23L01 237.3* 243.9 2.71% 216.9 9.41%
10x23L02 228.8* 234.2 2.31% 204.5 11.88%
10x23L03 215.9* 220.9 2.26% 196.6 9.82%
10x23L04 235.8* 238.2 1.01% 213.9 10.24%
10x23L05 227.5* 236.5 3.81% 206.8 10.01%
10x23L06 219.2* 225.0 2.58% 198.0 10.71%
10x23L07 224.7* 230.1 2.35% 203.1 10.64%
10x23L08 223.1 230.2 3.08% 203.2 9.79%
10x23L09 224.7* 232.8 3.48% 205.8 9.18%
10x23L10 229.9* 234.7 2.05% 207.7 10.69%
Average 226.7* 232.7 2.58% 205.6 10.26%
10x23M01 264.4* 270.3 2.18% 237.9 11.14%
10x23M02 263.7* 270.3 2.55% 240.6 9.48%
10x23M03 267.9* 276.5 3.11% 244.1 9.75%
10x23M04 278.7* 286.4 2.69% 254.0 9.72%
10x23M05 267.5* 272.0 1.65% 242.3 10.40%
10x23M06 271.1* 279.5 3.01% 249.8 8.53%
10x23M07 274.9* 283.4 3.00% 253.7 8.36%
10x23M08 274.5 283.3 3.11% 253.6 8.24%
10x23M09 272.9* 278.0 1.83% 248.3 9.91%
10x23M10 273.3* 278.9 2.01% 254.6 7.34%
Average 270.9* 277.9 2.53% 247.9 9.26%
10x23H01 310.8 317.0 1.96% 294.9 5.39%
10x23H02 310.5* 318.0 2.36% 299.1 3.81%
10x23H03 306.7 311.2 1.45% 284.2 7.92%
10x23H04 314.1 318.7 1.44% 300.9 4.39%
10x23H05 306.9* 313.5 2.11% 291.9 5.14%
10x23H06 317.4 323.6 1.92% 299.3 6.05%
10x23H07 311.7* 316.4 1.49% 292.1 6.71%
10x23H08 314.1 321.5 2.30% 297.2 5.69%
10x23H09 307.9 315.4 2.38% 291.1 5.77%
10x23H10 310.8 314.5 1.18% 295.6 5.14%
Average 311.1* 317.0 1.86% 294.6 5.60%
Overall 269.5* 276.9 2.31% 249.4 8.37%

 93

Table 3.18. Experiment results for TSCSP instances of size 50 × 50 (*/∆ indicates a better/worse
result than in experiment 1).

Instances GA (using DP) (600 seconds) LB 𝑀74 − 𝐿𝐵
𝐿𝐵

𝑀74 𝑀/

𝑀/ −𝑀74

𝑀/

50x50L01 2328.5* 2363.0 1.46% 2160.5 7.78%
50x50L02 2321.7* 2361.8 1.70% 2145.8 8.20%
50x50L03 2360.7* 2390.8 1.26% 2177.5 8.41%
50x50L04 2407.6* 2443.7 1.48% 2222.3 8.34%
50x50L05 2316.8* 2373.8 2.40% 2149.7 7.77%
50x50L06 2384.5* 2427.4 1.77% 2211.4 7.83%
50x50L07 2344.9* 2390.6 1.91% 2158.4 8.64%
50x50L08 2357.9* 2419.6 2.55% 2182.0 8.06%
50x50L09 2391.7* 2421.2 1.22% 2205.2 8.46%
50x50L10 2341.8* 2393.2 2.15% 2163.7 8.23%
Average 2355.6* 2398.5 1.79% 2177.6 8.17%
50x50M01 2796.9* 2812.7 0.56% 2621.0 6.71%
50x50M02 2778.6* 2800.6 0.79% 2595.4 7.06%
50x50M03 2778.2* 2808.7 1.09% 2598.1 6.93%
50x50M04 2797.1* 2814.6 0.62% 2620.2 6.75%
50x50M05 2830.0* 2845.0 0.53% 2650.7 6.76%
50x50M06 2851.8* 2873.3 0.75% 2670.8 6.78%
50x50M07 2830.4* 2864.8 1.20% 2651.5 6.75%
50x50M08 2840.1* 2872.0 1.11% 2669.5 6.39%
50x50M09 2828.2* 2864.5 1.27% 2645.8 6.89%
50x50M10 2795.6* 2822.9 0.97% 2628.5 6.36%
Average 2812.7* 2837.9 0.89% 2635.1 6.74%
50x50H01 3246.9* 3288.5 1.27% 3096.8 4.85%
50x50H02 3236.5* 3282.7 1.41% 3085.6 4.89%
50x50H03 3273.8* 3324.8 1.53% 3127.7 4.67%
50x50H04 3233.7* 3276.4 1.30% 3073.9 5.20%
50x50H05 3268.0* 3310.2 1.27% 3113.1 4.98%
50x50H06 3264.6* 3304.2 1.20% 3109.8 4.98%
50x50H07 3236.3* 3293.2 1.73% 3085.3 4.89%
50x50H08 3276.5∆ 3322.2 1.38% 3125.1 4.84%
50x50H09 3242.2∆ 3275.9 1.03% 3092.3 4.85%
50x50H10 3233.7* 3279.4 1.39% 3079.6 5.00%
Average 3251.2 3295.8 1.35% 3098.9 4.92%
Overall 2806.5 2844.1 1.34% 2637.2 6.61%

 94

Chapter 4:

Conclusion

4.1 Concluding remarks

In this dissertation, we investigated two new crane scheduling problems—the dual-

spreader crane scheduling problem (DSCSP) and triple-spreader crane scheduling problem

(TSCSP)—which are inspired by the multi-spreader (i.e. tandem-lift) quay crane (QC), an

emerging technology for handling cargo at seaport container terminals. The efficient operation of

such cranes may allow containerships to be unloaded more quickly and thereby improve overall

container terminal efficiency.

In Chapter 2, we formulated the DSCSP as a mixed-integer linear program, developed a

tight lower bound on the optimal value, and devised a heuristic approach for handling large

problem instances. The heuristic approach begins with an excellent initial feasible solution that

effectively utilizes the problem structure. A simulated annealing framework was used to improve

upon the initial feasible solution. Numerical experiments indicate that the heuristic approach finds

the same optimal solutions as CPLEX for small-sized instances. For medium-sized instances, the

heuristic outperforms CPLEX. The comparison between the optimal value and lower bound for

small-sized instances suggests that the lower bound is tight, providing a good guide for solution

quality. Overall, the heuristic approach produces crane schedules whose makespans, on average,

are within 6% of the lower bound for each of the four problem sizes considered.

In Chapter 3, we formulated the TSCSP as an integer linear program, calculated a tight

lower bound on the optimal value, and deployed a genetic algorithm (GA) with an embedded

 95

dynamic programming (DP) routine for attacking large problem instances. The genes in the GA

chromosomes are tier options that are constructed based on knowledge of the problem structure.

Numerical experiments indicate that the GA finds the same optimal solutions as CPLEX for small

problem instances. For instances with at least 50 containers, the GA outperforms CPLEX. On

average, the GA finds crane schedules whose makespans are within (5.53%, 6.63%, 8.37%, 6.61%)

of the lower bound for (small, medium-sized, large, very large) problem instances—an overall

average of 6.8% above the lower bound. The GA also outperforms the simulated-annealing-based

method proposed in Chapter 2 on instances of the dual-spreader crane scheduling problem

(DSCSP). Overall, the GA appears to be an effective method for addressing both the TSCSP and

DSCSP.

Although we solely consider the unloading of a storage bay, our approach can apply to the

loading of a storage bay. Indeed, reversing the sequence of operations—single-spreader lifts, dual-

spreader lifts, triple-spreader lifts, and changeovers—creates a schedule for loading a storage bay

in the same amount of time in which it is unloaded.

4.2 Future work

Future work might proceed in several directions. First, the NP-hardness of the DSCSP (or

lack thereof) could be established. Second, the problem of scheduling multiple quay cranes to

unload containers from the deck of a containership to minimize total unloading time can be

investigated. This problem may include constraints on the movement of the quay cranes.

Third, DSCSP and TSCSP instances with other container weight distributions; lift weight

limits L2 and L3; lift durations H1, H2, and H3; and spreader changeover times Cpq could be

considered. Perhaps most importantly, more realistic variations of this problem—that consider

 96

more realistic positions of heavy and light containers, multiple QCs working together to unload a

vessel, additional real-world constraints, and/or the distance moved by the spreader—might be

considered.

Finally, the solutions developed in this study might be integrated into an end-to-end

container shipping transportation problem. This problem might focus on a containership that 1)

loads containers at an origin seaport, 2) stops at multiple intermediate ports to unload some

onboard containers and load new containers, and 3) travels all the way to a final destination port

to unload the remaining containers. In this complex problem, many new factors must be taken into

account. First and foremost, loading containers must follow a schedule subject to the destination

of each container. In order to have an optimal 3D deck layout, the position of each container should

be a variable in the mathematical model. In addition, the weight distribution of containers should

follow certain standards to keep the vessel balanced while it is at port and traveling the high seas.

 97

References

1. Allison, L. (2020). Dynamic Programming, accessed on July 19th 2020, Retrieved from

http://users.monash.edu/~lloyd/tildeAlgDS/Dynamic/

2. Angeloudis, P., & Bell, M. G. (2011). A review of container terminal simulation models.
Maritime Policy & Management, 38 (5), 523–540.

3. Bernhofen, D. M., El-Sahli, Z. & Kneller, R. (2016). Estimating the effects of the container
revolution on world trade. Journal of International Economics, 98, 36–50.

4. Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling
problems in container terminals. European Journal of Operational Research, 202 (3), 615–
627.

5. Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay crane
scheduling problems in container terminals. European Journal of Operational Research, 244
(3), 675–689.

6. Broeze, F. (2002). The Globalization of the Oceans: Containerization from the 1950s to the
Present. 23, Oxford University Press.

7. Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014a). Storage yard operations in container
terminals: Literature overview, trends, and research directions. European Journal of
Operational Research, 235 (2), 412–430.

8. Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014b). Transport operations in container
terminals: Literature overview, trends, research directions and classification scheme.
European Journal of Operational Research, 236 (1), 1–13.

9. Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2015). Seaside operations in container terminals:
Literature overview, trends, and research directions. Flexible Services and Manufacturing
Journal, 27 (2–3), 224–262.

10. Chao, S.-L., & Lin, Y.-J. (2011). Evaluating advanced quay cranes in container terminals.
Transportation Research Part E: Logistics and Transportation Review, 47 (4), 432–445.

11. Chen, J. H., Lee, D.-H., & Cao, J. X. (2011). Heuristics for quay crane scheduling at in- dented
berth. Transportation Research Part E: Logistics and Transportation Review, 47 (6), 1005–
1020.

12. Chen, L. H., Cao, J. X., & Zhao, Q. Y. (2014). Tandem lift quay cranes and yard trucks
scheduling problem at container terminals. In Applied mechanics and materials: 505(pp. 927–
930). Trans Tech Publ.

 98

13. Cheng, C., Petering, M. E. H., & Wu, Y. (2020). The multi-spreader crane scheduling
problem: partitions and supersequences. Submitted to Discrete Applied Mathematics.

14. Choi, S.-H., Im, H., & Lee, C. (2014). Development of an operating system for optimization
of the container terminal by using the tandem-lift quay crane. In J. J. Park, I. Stojmenovic, M.
Choi, & F. Xhafa (Eds.), Future information technology (pp. 399–404). Berlin: Springer.

15. Colorado Springs Business Journal, Imports at container ports set new monthly record,
accessed on May 29th, 2020, https://www.csbj.com/2018/12/12/imports-at-container-ports-
set-new-monthly-record/

16. Cudahy, B. J. Box boats: How container ships changed the world, Fordham Univ Press, 2006.

17. Di Fonzo, T., Costas Paris, L. (2018). How a Steel Box Changed the World: A Brief History
of Shipping. Retrieved from www.wsj.com/video/series/a-brief-history-of/how-a-steel-box-
changed-the-world-a-brief-history-of-shipping/CF460889-9984-483E-AF44-
324330B89ECA.

18. Ezugwu, A.E., Adeleke, O.J., Akinyelu, A.A., Viriri, S. (2020). A conceptual comparison of
several metaheuristic algorithms on continuous optimisation problems. Neural Computing &
Applications, 32, 6207–6251.

19. Fernández, A. (2018). Understanding Genetic Algorithms. A Use Case in the Organizational
Field. Medium, Becoming Human: Artificial Intelligence Magazine, accessed on 12 Nov.
2018, becominghuman.ai/understanding-genetic-algorithms-a-use-case-in-organizational-
field-2087c30fb61e.

20. Gharehgozli, A. H., Roy, D., & de Koster, R. (2015). Sea container terminals: New
technologies and or models. Maritime Economics & Logistics.

21. Goussiatiner, A. (2007a). In pursuit of productivity. Container Management August.

22. Goussiatiner, A. (2007b). In pursuit of productivity 2. Container Management September.

23. Imai, A., Chen, H. C., Nishimura, E., & Papadimitriou, S. (2008). The simultaneous berth and
quay crane allocation problem. Transportation Research Part E: Logistics and
Transportation Review, 44 (5), 900–920.

24. Kim, K. H., & Kim, K. Y. (1999). An optimal routing algorithm for a transfer crane in port
container terminals. Transportation Science, 33 (1), 17–33.

25. Kim, K. H., & Park, Y.-M. (2004). A crane scheduling method for port container terminals.
European Journal of Operational Research, 156 (3), 752–768.

26. King, R. C., Adams, G. M. & Wilson, G. L. (1936). The freight container as a contribution to
efficiency in transportation. The ANNALS of the American Academy of Political and Social
Science 187, 27–36.

 99

27. Kite-Powell, H. (2001) Shipping and ports, Academic Press.

28. Lashkari, S., Wu, Y., Petering, M. E. H. (2017). Sequencing dual-spreader crane operations:
Mathematical formulation and heuristic algorithm. European Journal of Operational
Research, 262 (2), 521–534.

29. Levine, J. (2019). The History of the Shipping Container, accessed on June 12st, 2020,
Retrieved from https://www.freightos.com/the-history-of-the-shipping-container/

30. Levinson, M. (2016). The Box: How the Shipping Container Made the World Smaller and the
World Economy Bigger, Princeton University Press.

31. Liu, C.I., H. Jula, K. Vukadinovic, and P.A. Ioannou. Comparing Different Technologies for
Containers Movement in Marine Container Terminals. Proc. 3rd IEEE International
Conference on Intelligent Transportation Systems, pp. 488–493.

32. McCarthy, P. W., Jordan, M. A., & Wright, L. (2007). Dual-hoist, tandem 40 crane
considerations. Port Technology International, 34, 111–113.

33. Meisel, F., & Bierwirth, C. (2013). A framework for integrated berth allocation and crane
operations planning in seaport container terminals. Transportation Science, 47 (2), 131–147.

34. Moccia, L., Cordeau, J.-F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm
for the quay crane scheduling problem in a container terminal. Naval Research Logistics
(NRL), 53 (1), 45–59.

35. Ng, W., & Mak, K. (2006). Quay crane scheduling in container terminals. Engineering
Optimization, 38 (6), 723–737.

36. North, D. C. (1968). Sources of productivity change in ocean shipping, 1600-1850. Journal
of Political Economy, 76, 953–970.

37. Shipping Container History: Boxes to Buildings. (2020), accessed on June 22st, 2020,
Retrieved from https://www.discovercontainers.com/a-complete-history-of-the-shipping-
container/

38. Song, J.-H. (2011). Tandem operation and double cycling in container terminals. Port
Technology International, 51, 73–79.

39. Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature
update. OR Spectrum, 30 (1), 1–52.

40. Statista, Capacity of container ships in seaborne trade, accessed on June 18th, 2020,
https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-global-
seaborne-trade/

41. Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations
research-a classification and literature review. OR spectrum, 26 (1), 3–49.

 100

42. Suman, B., and Kumar, P., (2006). A Survey of Simulated Annealing as a Tool for Single and
Multi-Objective Optimization. The Journal of the Operational Research Society, 57, 1143 –
1160.

43. Talley, W. K. (2000). Ocean container shipping: impacts of a technological improvement.
Journal of economic issues 34, 933–948.

44. Tang, L., Zhao, J., & Liu, J. (2014). Modeling and solution of the joint quay crane and truck
scheduling problem. European Journal of Operational Research, 236 (3), 978–990.

45. UNCTAD Stat (2020a), Liner shipping connectivity index, accessed on June 11th, 2020,
https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=92.

46. UNCTAD Stat (2020b), World seaborne trade by types of cargo and by group of economies,
annual, accessed on June 19th, 2020,
https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=32363.

47. University press of Liverpool. (1954) The Dock Worker: An Analysis of Conditions of
Employment in the Port of Manchester.

48. Unsal, O., & Oguz, C. (2013). Constraint programming approach to quay crane scheduling
problem. Transportation Research Part E: Logistics and Transportation Review, 59, 108–
122.

49. Van Ham, H., Rijsenbrij, J. (2012). Development of containerization: Success through vision,
drive and technology, IOS Press.

50. Vis, I. F., & De Koster, R. (2003). Transshipment of containers at a container terminal: an
overview. European Journal of Operational Research, 147 (1), 1–16.

51. World Cargo News (2007). Make mine a double – or even a triple. Wu, Y., Li, W.-K.,
Petering, M., Goh, M., & de Souza, R. (2015). Scheduling multiple yard cranes with crane
interference and safety distance requirement. Transportation Science, 49 (4), 990–1005.

52. World Shipping Council, (2020a). Partners in Trade (n.d.), accessed on June 22st, 2020.
Retrieved from http://www.worldshipping.org/about-the-industry/containers.

53. World Shipping Council, (2020b). The birth of intermodalism, accessed on June 21st, 2020.
http://www.worldshipping.org/about-the-industry/history-of-containerization/the-birth-of-
intermodalism.

54. Wu, Y., Li, W., Petering, M. E. H., Goh, M., de Souza, R. (2015). Scheduling multiple yard
cranes with crane interference and safety distance requirement. Transportation Science, 49,
990–1005.

55. Xing, Y., Yin, K., Quadrifoglio, L., & Wang, B. (2012). Dispatch problem of automated
guided vehicles for serving tandem lift quay crane. Transportation Research Record, (2273),
79–86.

 101

CURRICULUM VITAE

Shabnam Lashkari

Education

PhD in Industrial Engineering | GPA: 3.82, University of Wisconsin Milwaukee 2014 – 2020
• Thesis: Sequencing multiple-spreader crane operations: mathematical formulation and heuristic algorithm
• Advisor: Dr. Matthew E.H. Petering | Minor: Business Administration

BSc. in Industrial Engineering | GPA: 3.35, Iran University of Science & Technology 2012

Career Summary

Senior DevOps Engineer, CCC Information Services September 2019 – Present
- Development of multi-staged pipeline
- Automation of data ingestion that prepares raw data for training models, resulting in the creation and

deployment of intelligent Deep Learning based solutions
- Automation of monitoring systems across on-premise GPUs, AWS and Oracle Cloud services
- Infrastructure architecture design in AWS enterprise account

DevOps Intern, CCC Information Services July – September 2019
- Developing monitoring system and integrating the UI with AI-Pipeline used across the Architecture division
- Automation of scheduling big data download and pre-processing using Airflow and Python

Operations Research Analyst, University of Wisconsin Milwaukee 2014 – August 2020

• Operations Research
- Sequencing Multiple–Spreader Crane Operations: Mathematical Formulations and Heuristic Algorithms:

Devised innovative strategies for scheduling a multiple-spreader quay crane; developed mathematical
models, determined optimal objective value, and designed simulated annealing and genetic heuristic
algorithms.

• Data Analytics
- Predicted average time to crime across 50 states by modeling and analyzing ‘time to crime’ data. Predicted

the impact of variable values by performing multiple regression analysis and using Quantile and Ridge
regression models.

• Machine Learning
- Predicted arrival and departure delays in national flights by modeling the “flight data” extracted from Bureau

of Transportation using machine learning methods such as logistics, decision trees, random forest, clustering,
SMO, neural networks and ensembles using Weka software.

• Supply Chain Management
- SAP-ERP Network Modeling and Analysis Improved revenue for a manufacturing company by defining

business intelligence strategies, analyzing data collected from SAP and produced 6 types of serials in the
market with multiple vendor suppliers.

• Non–linear Optimization
- Optimized inventory placement cost in a supply chain network by using non-linear optimization techniques

to minimize transportation cost resulted in 25% cost reduction.

 102

Instructor & Teaching Assistant, University of Wisconsin Milwaukee 2014 – 2019

• Collaborated with Rockwell Automation Company to teach a course on IoT. Brainstormed new solutions,
designed equipment, and aided in time study and analysis for the Methods Engineering lab.

• Teaching the course ‘Intro to Operations Analysis’ as an instructor to a class of 27 undergraduate students.

• Taught ProModel on real-world manufacturing and service system problems in the simulation methodology
lab.

• Recognized as the best TA in the IME Department for bringing interactive learning opportunities for students.

Supply Planning Analyst, Kalleh Co. 2012 – 2013
• Established an optimal inventory plan by forecasting demand for 1000+ products. Oversaw supply planning

and developed a predictive model based on time series analysis. Presented monthly data reports by analyzing
sales records.

Data Analyst Intern, ArmanSanat Company Summer 2009
• Facilitated change in management strategies for improved innovation appreciation and feedback system

implementation across 3 companies. Evaluated creative management methods, designed questionnaires, and
collected data for analysis.

Technical Skills

Industrial Skills: Linux, Docker, Kubernetes, Prometheus, Grafana, Airflow, AWS Architecture Design, Packer,
Terraform, Ansible, Database Support, OCI, Git, Apache, SQL

Academic Skills
• Programming: C++, Python
• Industrial tools: CPLEX, ProModel, SAP, Tableau, Weka, Minitab, Mixed Integer Programming, LP, NLP,

Non-Linear Optimization, Data Modeling, Data mining, Statistical & Predictive Analysis, Machine Learning,
Algorithm Design and Complexity Analysis, Simulation Modeling, Supply Chain Technology & Simulation

• Tools: Advanced Excel, Powerpoint, Word, Access

Publications

• Lashkari, S., Wu, Y., Petering, M.E.H. (2017) “Sequencing dual-spreader crane operations: mathematical
formulation and heuristic algorithm,” European Journal of Operational Research, 262(2), 521-534.

• Petering, M.E.H, Lashkari, S., Wu, Y. “Sequencing triple-spreader crane operations: mathematical
formulation and heuristic algorithm,” European Journal of Operational Research [Under review].

Honors & Awards

• Graduate Student Excellence Fellowship (top 1% graduate student), UWM Graduate School 2018
• Honorable Mention Award in Poster Competition, UWM College of Engineering & Applied Science 2018
• Finalist in 3-Minute Thesis Competition, UWM Graduate School 2018
• Graduate Student Travel Award, UWM Graduate School 2017
• 3-Times Chancellor’s Award Winner, UWM Industrial & Manufacturing Department 2015 – 2018
• Ranked best teaching assistant in IME department, UWM 2016 – 2017

	Sequencing Multiple-Spreader Crane Operations: Mathematical Formulations and Heuristic Algorithms
	Recommended Citation

	tmp.1617736683.pdf.Z3lZO

