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ABSTRACT 

 

SEQUENCING MULTIPLE-SPREADER CRANE OPERATIONS: 
MATHEMATICAL FORMULATIONS AND HEURISTIC ALGORITHMS 

 

by  

Shabnam Lashkari 

 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Matthew E.H. Petering 

 
 

Maritime container shipping is one the oldest industries and plays a key role in transporting 

freight all around the world. The International Maritime Organization (IMO) reports that more 

than 90% of international trade across the world is carried by sea. This method of transportation is 

by far the most cost-efficient among rail, road, air, and water transportation.  

Today most overseas shipping of finished consumer goods is done via 20-, 40-, or 45-foot 

long steel containers aboard deep-sea container vessels. Every day, tens of thousands of containers 

are moved between different countries all around the world. In addition, the amount of meat, fish, 

fruit, vegetables, and general foodstuffs shipped in refrigerated containers continues to increase. 

As the volume of freight shipped via steel shipping containers grows, it is becoming increasingly 

important to improve the operational efficiency of the port facilities where containerships are 

unloaded and loaded.  

In this research, we consider several new mathematical problems inspired by the unloading 

of a containership. These problems are inspired by the recent development of a new kind of quay 

crane—a multi-spreader quay crane—that can lift more than one 40-foot container from a 

containership at the same time. This new crane has an extra strong steel structure that allows 
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heavier lifts to be performed. In contrast to traditional cranes, this new crane may deploy two or 

three spreaders simultaneously. 

Multi-spreader quay cranes have the potential to significantly increase the productivity of 

seaport container terminals. However, due to a paucity of scheduling approaches for such cranes, 

this potential has not been fully realized. This motivates our research. In this dissertation, we define 

new mathematical problems that are inspired by the scheduling of double-spreader and triple-

spreader quay cranes. These problems are called the dual-spreader crane and triple-spreader 

crane scheduling problem respectively. 

We formulate the above problems as integer linear programs and develop fast methods for 

computing lower bounds on the optimal objective value in each case. In addition, we devise 

simulated annealing, genetic algorithm, and dynamic programming methods to produce high 

quality solutions for small, medium, large, and very large problem instances in a short amount of 

time. Experimental results show the effectiveness of our proposed methods in attacking these 

important logistics problems. 

Chapter 1 starts with introducing container shipping history and how it has developed 

through the years. We then discuss how modern container shipping has dominated world trade and 

review some statistics to show how this industry affects the global transportation system. Finally, 

we discuss related academic and industrial literature. 

In Chapter 2, we investigate the problem of scheduling a dual-spreader crane that can 

perform single container lifts and dual container lifts (in which the crane lifts two adjacent 

containers). This chapter presents a mathematical model of the dual-spreader crane scheduling 

problem (DSCSP) and describes a fast method for computing a lower bound on the optimal 

objective value. Then, we introduce a simulated annealing heuristic method that tries to find good 
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solutions to instances of the DSCSP within a short time. Finally, we describe the experimental 

setup and discuss the experimental results for two solution methods—standard integer 

programming and the simulated annealing—on a set of 120 problem instances. 

Chapter 3 discusses the triple-spreader crane scheduling problem (TSCSP). A triple-

spreader crane can operate in three modes: single, double, and triple. When in (single, double, 

triple) spreader mode, the crane can lift (1, 2, 3) adjacent containers respectively. The TSCSP is 

formulated as an integer linear program. Later in the chapter, a method for calculating a lower 

bound on the optimal objective value is introduced, a genetic algorithm that uses two different 

gene generating subroutines is explained in detail, and the experimental setup and the experimental 

results for a set of 120 problem instances are discussed. 

Finally, Chapter 4 discusses final conclusions and future work. 
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Chapter 1:  

Introduction 

 

1.1 The world before container shipping 

For centuries, mankind sailed across the world and moved goods from one place to another. 

While exploring the world, they collected and shipped food, cotton, treasures and goods from lands 

with abundant resources and brought them back to their own countries. Although the container 

shipping industry belongs to the modern world, seaborn shipping and freight transportation existed 

for millenia but was entirely different back then. With the invention and development of new types 

of ships, shipping became more feasible and accessible across the world (North 1968).  

In the early 1950s, when container shipping was not yet developed, the world’s biggest 

commercial centers had docks at their hearts. The factories’ warehouses were located in close 

proximity to the wharves for an easier raw materials delivery and to ship the final products faster 

(Levinson 2016). The freight was carried piece by piece on trucks or railcars and transported to 

the waterfront. Items of different shapes and sizes had to be unloaded separately, documented, and 

stored in a transit shed. Later, these mixed items, known as break bulk cargo, were moved to the 

dock and prepared for loading onto the ship. On the dock, workers assembled different boxes and 

barrels into a draft, and a driver lifted and boarded the draft using a shipboard crane. Another group 

of workers unhatched the boarded items, moved them to a secure place, and stored them (King 

1936). The entire process of loading was tedious, time-consuming, and labor-intensive with no 

standardization in place.  
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The unloading process was not much different. Arriving ships were carrying mixed cargo, 

from bags of sugar to steel coils. Depending on the product type, the unloading methods were 

different, ranging from using winches to carrying items on the backs of workers. Even though 

some machinary had arrived to facilitate this process, manpower was still needed throughout the 

process and human injury was an inevitable part of it (University Press of Liverpool 1954). 

Moreover, the unloading process, just as much as the loading process, was susceptible to other 

risks, such as delays, pilfering, damage, loss, and blockages within ports. The mixed nature of the 

cargo made it challenging to prevent damage to the goods.   

Into the 1950s, break bulk shipping was used to transport and ship goods over long 

distances. When using this method, goods were transported loose or packaged in bags, crates, 

casks, barrels, or other small containers that varied in terms of the material and size (Kite-Powell 

2001). This method had very high labor cost; it had been estimated that the portside costs and 

cargo handling expenses were 37% to 75% of the total cost of transporting cargo (Levinson 2016). 

Due to the complexity of break bulk shipping and lack of standardization, the waiting time for 

ships was also extremely high and cargo ships usually were spending as much time in the port 

being loaded and unloaded as they did sailing the oceans (Cudahy 2006 and Talley, 2000), while 

dock workers had to manhandle most of the cargo into and out of tight spaces below decks.  

Transportation and shipping a single type of good, such as oil, was cheaper than regular 

break bulk shipping, due to specialized ships and port facilities for specific products. In the 

maritime freight market, large oil tankers and dry-bulk carriers started operating more in synergy 

and attempted to use modern cargo loading and unloading facilities to operationalize the shipping 

processes in a larger scale. This specially designed bulk shipping had become more and more 
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industrialized, in contrast to break bulk shipping of more diverse goods, where the process of 

loading and unloading remained unchanged for decades (Broeze 2002).  

The high costs of ocean shipping were a major obstacle for world trade. In 1961, ocean 

freight costs accounted for 10% and 12% of the value of U.S. imports and exports respectively. 

These costs made the international trade of some goods impractical. In 1960, the international trade 

proportion of the U.S. economy was smaller than in 1950, or even in the Depression era of 1930 

(Levinson 2016).  

In an attempt to overcome these challenges, prior to World War II, US, British, and French 

railway companies developed new methods for sealing goods in different shapes and boxes before 

transportation. During World War II, the U.S. military started using metal shipping containers to 

transport equipment to different sites. In 1947, the U.S. Transportation Corps developed the 

Transporter which was a rigid, corrugated steel container with a 9,000 lb. capacity. During the 

Korean War, the Transporter was used for moving equipment (Van Ham and Rijsenbrij, 2012). 

However, the lack of specialized equipment for loading and unloading and other social challenges, 

such as resistance to changes in work practices shown by unions, delayed the development of 

container shipping until the mid-1950s (Bernhofen et al. 2016).  

While military efforts were slow in developing a more efficient shipping method, 

commercial attempts had far greater impact. Shipping companies within the U.S., particularly 

those led by a former trucking company founder, Malcolm McLean, applied a rather simple idea. 

In 1955, McLean recognized the inefficacy of the transportation industry, specifically the process 

of loading and unloading cargo on and off ships. Being an entrepreneur on the lookout for 

revolutionary ideas, McLean decided to move his business from a trucking company to a company 
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that transported goods by water. He purchased a steamship company and established the modern 

shipping container concept. 

 

                        

                      Figure 1.1. Early containers (World Shipping Council 2020a) 

 

McLean proposed to use metal shipping containers (Figure 1.1), similar to the ones that 

were used by the U.S. military, in larger sizes and yet transportable by trucks or trains. Using this 

new idea, the loading process could take place in two locations: one location close to the 

manufacturer, where individual items were loaded into containers, and another at the dockside, 

where the containers were loaded onto ships. Unloading was similar: goods were removed from 

containers at the point of distribution or even sale, far removed from the docks (Levinson 2016). 

McLean’s companies and another firm called Matson Navigation Company successfully utilized 

this idea in different shipping routes in the 1950s (Van Ham and Rijsenbrij, 2012). McLean and 

his colleagues started a revolution in transportation and world trade. 
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1.2 The birth of container shipping 

The need for shipping standardization arose from the fact that prior to container shipping, 

the process of transporting goods across continents was complicated, slow, labor-intensive and 

generally inefficient. Ships spent more time at the dock than sailing. Furthermore, problems such 

as theft of goods, slow cargo transfer from the ships to the trains, and a general lack of standardized 

processes to load and unload cargo resulted in logistics delays (Shipping Container History).  

In 1956, McLean shipped his first container ship from port Newark to Houston. This ship, 

carrying 58 containers as well as 15,000 tons of bulk petroleum, took 6 days to arrive at its 

destination. This new technology completely revolutionized the transportation industry. The 

containers could be stacked on top of each other, moved directly from top of the trucks or trains 

onto the ship deck and vice versa without the need to be unpackaged, and it protected the cargo 

both from being stolen and damaged (World Shipping Council, 2020a). 

In 1959, the first quayside container crane called “Portainer” was employed to load 

containers on ships. This new piece of equipment improved loading time significantly and cut 

down costs, damage risks, and filching (Levine 2019).  

 

1.3 Globalization of container shipping 

In 1966 and 1967, the first transatlantic and transpacific container shipping services were 

launched. In 1966 the first international containership left Port Elizabeth, New Jersey for 

Rotterdam in The Netherlands, carrying 236 containers on board. This was indeed the beginning 

of a significant economic growth in many countries. The world of trade became much more 

connected than before as shipping goods became faster, less costly, and more secure. Ships 
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transported goods from Asia to Europe and America, making many stops on the way, delivering 

containers and loading more to deliver at the next ports in the shipping route (Levine 2019).  

Modern container shipping has been around for 64 years. Nowadays, container ships 

transport more than 60% of the value of sea-transported goods. As the global demand for sea 

transportation grows, the size of vessels grows larger (UNCTAD Stat 2020b). 

The United Nations Conference on Trade and Development (UNCTAD) published a report 

in November 2019 in the Review of Maritime Transport 2019 showing the carrying capacity of the 

global merchant fleet from 1980 to 2019. According to this report, the carrying capacity of the 

global merchant fleet reached almost 2 billion deadweight tons (dwt: a measure of how much 

weight a ship can carry) in 2019. Container shipping is responsible for 13.3% of this carrying 

capacity in 2019 (266 million dwt). Figure 1.2 shows the containership trade capacity in seaborne 

trade from 1980 to 2019.  

Another way to measure containership capacity is by volume. In this regard, the standard 

way to measure containership volume is in TEUs (twenty-Foot equivalent units). One TEU is 

equivalent to the volume contained in one 20-Foot-long container that measures 20′ long, 8′ wide, 

and 8.5′ high. Two other popular containers are 40-Foot-long and 45-Foot-long containers. One 

40-Foot-long container counts as two TEUs, and one 45-Foot-long container counts as 2.25 TEUs. 

It is worth mentioning that in 2019 global container shipping volume reached over 800 million 

twenty-foot equivalent units (TEUs), which represents a 29% growth since 2012 (622 million 

TEUs). 



 7 

 

Figure 1.2. Containership trade capacity in seaborne trade (Statista). 

 

Figure 1.3 shows the growth of world global container port traffic from 2010 to 2018 as 

reported by UNCTAD. Global container port traffic in 2018 is 793 million TEUs, which is a 42% 

growth since 2010. 

 

    

Figure 1.3. Annual world container port throughput (UNCTAD Stat 2020b). 
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Figure 1.4 shows the five countries that have been best connected to the global liner 

shipping network during the past thirteen years (UNCTAD Stat 2020a). China and the Republic 

of Korea have improved significantly in the past ten years compared to their competitors. 

According to Figure 1.2−1.4, the container shipping industry continues to grow. In a recent video 

report, How a Steel Box Changed the World: A Brief History of Shipping, the cost of shipping an 

average TV from China to the U.S. is only about $2 (Di Fonzo and Costas Paris, 2018). This is a 

small example of why container shipping is by far the most cost-effective form of freight 

transportation.  

 

     

Figure 1.4. Liner shipping connectivity index (UNCTAD STAT). 
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terminal management, yard planning, traffic planning, etc., with many different kinds of 

equipment, including quay cranes. The quay crane (QC) is the device that transfers containers 

between ships and the shore. In a container terminal, after a ship docks next to one or multiple 

QCs, they start unloading containers based on a predetermined plan. The next step is to store the 

containers on the storage yard near the QCs, as shown in Figure 1.5. Later these containers are 

staged to either be loaded on trucks or trains to be transported on land (imported) or to be loaded 

onto another ship to be transported via sea (exported). 

 

       

Figure 1.5. A container port (Colorado Springs Business Journal). 

 

Much research has been done in the recent decades to improve the efficiency and 

productivity of these facilities. This dissertation is mainly focused on unloading containers from 

the tops of container ships using multiple-spreader (i.e. tandem lift) quay cranes. Multi-spreader 

QCs can be equipped with one, two, or three spreaders (i.e. grappling devices) simultaneously, 

with each spreader capable of lifting one 40-foot or two 20-foot containers. Figure 1.6 shows 
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containers being lifted by one, two, and three spreaders respectively. It only takes a few minutes 

for a multi-spreader QC to change the number of spreaders that it uses.  

In this study, we investigate the problem of scheduling a multiple-spreader QC to unload 

containers from the top of a container ship. We define two new optimization problems, propose 

new mathematical models, and develop new heuristic algorithms to handle large instances of these 

problems. 

 

   

Figure 1.6. Single, double, and triple spreader handling of containers by QCs. 

 

1.5 Literature review  

The literature relevant to this research includes all published works in academic- and 

industry-focused journals that discuss industrial crane systems. A thorough search of this literature 

considered every item with a title containing the phrase “crane,” “spreader,” or “block relocation” 

that was published by six academic publishers: Elsevier, Springer, INFORMS, Taylor & Francis, 

Wiley, and Palgrave Macmillan. Industry journals were also searched. The results of this literature 

review yielded several hundred articles, most of which concern the management of operations at 

seaport container transshipment terminals. No article with a focus on a non-seaport-related crane 

system was deemed relevant to this research.  

Ten articles surveying the literature on seaport container terminal operations were 

identified, including the works by Vis and De Koster (2003), Steenken, Voß, and Stahlbock (2004), 
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Stahlbock and Voß (2008), Bierwirth and Meisel (2010), Angeloudis and Bell (2011), Carlo, Vis, 

and Roodbergen (2014a, 2014b, 2015), Gharehgozli, Roy, and de Koster (2015), and Bierwirth 

and Meisel (2015). Several of these articles mention multi-spreader quay cranes (QCs) as an 

important new technology for container terminals. However, no article discusses a published paper 

that proposes a method for scheduling multi-spreader cranes.  

Various methods have been developed for scheduling single-spreader QCs and yard cranes 

(YCs) at seaport container terminals. For example, Kim and Kim (1999) develop a math model 

and exact solution method for routing a single yard crane (YC) at a seaport container terminal. 

Wu, Li, Petering, Goh, and de Souza (2015) present methods for scheduling multiple YCs that 

prevent YC interference and consider safety distance requirements. Regarding QCs, Imai, Chen, 

Nishimura, and Papadimitriou (2008) introduce a math model of the simultaneous berth and QC 

allocation problem and develop a genetic algorithm to find near-optimal solutions to the problem. 

Meisel and Bierwirth (2013) develop methods for solving the integrated berth allocation, QC 

allocation, and QC scheduling problem at seaport container terminals. Chen, Lee, and Cao (2011) 

develop methods for scheduling QCs at indented berths. Kim and Park (2004) introduce a math 

model for scheduling QCs at a regular berth and develop exact and heuristic methods for solving 

problem instances. Moccia, Cordeau, Gaudioso, and Laporte (2006), Ng and Mak (2006), and 

Unsal and Oguz (2013) also propose various QC scheduling methods. Tang, Zhao, and Liu (2014) 

consider a joint QC and truck scheduling problem.  

Discussions of multi-spreader (i.e. tandem-lift) QCs are uncommon in the literature. Chao 

and Lin (2011) present a methodology that trades off the various features of advanced QCs 

(including multi spreader QCs) in order to choose a suitable advanced QC for any given container 

terminal. Xing, Yin, Quadrifoglio, and Wang (2012) and Chen, Cao, and Zhao (2014) develop 
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methods for scheduling automated guided vehicles (AGVs) and yard trucks (YTs), respectively, 

when tandem-lift QCs are used at a container terminal. Choi, Im, and Lee (2014) use a simulation 

methodology to develop an operating system that can increase the productivity of a container 

terminal where tandem-lift QCs are used. Several articles in industry journals—including those by 

McCarthy, Jordan, and Wright (2007) and World Cargo News (2007)—contain general 

discussions of tandem-lift QCs but do not present results related to the scheduling or productivity 

of such cranes. On the other hand, Song (2011) discusses the productivity of tandem-lift QCs 

during real-life experiments conducted at Pusan Newport and proposes methods for conducting 

double cycling operations using such cranes. Goussiatiner (2007a, 2007b) generates plausible ship 

stowage configurations in order to compare the productivity of unloading such ships using single 

spreader, dual-spreader, and triple-spreader QCs. However, no methods for scheduling multi-

spreader cranes are proposed.  

In Cheng et al. (2020), the authors prove that the multi-spreader crane scheduling problem 

(MSCSP) is NP-hard when the crane has three or more modes.  In particular, the triple-spreader 

crane scheduling problem (TSCSP) is NP-hard. Cheng et al. (2020) also discuss, but leave open 

issues related to the computational complexity of the DSCSP (dual-spreader crane scheduling 

problem) that is investigated by Lashkari et al. (2017).  

To our knowledge, Lashkari et al. (2017) is the only published work to propose methods 

for scheduling a multi-spreader crane. That work presents a mathematical model and simulated-

annealing-based heuristic for sequencing the operations of a dual-spreader QC that is supposed to 

remove all containers from a container bay in minimum time. The authors develop a fast method 

for computing a lower bound on the optimal objective value and show that their heuristic finds 

feasible solutions whose objective values, on average, are within 6% of the lower bound across 
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four problem sizes—small, medium, large, and very large. Chapter 2 of this dissertation is nearly 

identical to Lashkari et al. (2017).  

Chapter 3 of this dissertation extends Lashkari et al. (2017) to the case of a triple-spreader 

crane. In Chapter 3, we propose a mathematical model and genetic algorithm (GA) for sequencing 

the operations of a triple spreader QC that should remove all containers from a container bay in 

minimum time. We also develop a new method for computing a lower bound on the optimal 

objective value which differs from that presented in Chapter 2. On average, the GA produces 

solutions to TSCSP instances whose objective values are within 7% of the lower bound. 

Furthermore, the GA outperforms the simulated-annealing-based heuristic proposed in Chapter 2 

on instances of the dual-spreader crane scheduling problem (DSCSP). To our knowledge, Chapter 

3 is the first study to consider the scheduling of a crane that can operate with three different 

numbers of spreaders. 
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Chapter 2:  

Dual-Spreader Crane Scheduling Problem 

 
2.1 Problem description 

We define the dual-spreader crane scheduling problem (DSCSP) as follows. Consider a set 

of identically sized containers (blocks, items) that are temporarily stored as inventory (e.g. on the 

deck of a ship). Due to space limitations, these containers are stacked directly on top of each other 

in a storage bay consisting of S stacks and T tiers. At time 0, there are 𝐸! containers in stack s. The 

weight of the container in stack 𝑠, tier t is given by 𝑊!". Consider the problem of sequencing the 

lifts made by one crane that will remove all containers from the bay. This crane can operate in two 

modes: single-spreader or dual-spreader mode. When in single-spreader mode, the crane may 

remove any single container from the top of any stack. This type of lift takes 𝐻# minutes. When in 

dual-spreader mode, the crane may simultaneously remove any two containers in the same tier 

from the top of any two adjacent stacks as long as the sum of their weights does not exceed 𝑤$%&%". 

This type of lift takes 𝐻' minutes. Furthermore, the changeover (i.e. setup) time between modes is 

C minutes. The crane can begin in either mode at time 0 with no initial setup cost. The goal is to 

sequence the individual lifts and changeovers of the crane to minimize the total time needed to 

remove all containers from the bay. To make the problem meaningful, we assume that 𝐻#< 𝐻'< 

2𝐻# and max{𝑊!"} < 𝑤$%&%"< 2 ∗ max{𝑊!"}.  

Figure 2.1 shows an instance of the DSCSP. In this instance, S = 8, T = 3, 𝐸! = 3 for all s, 

and the weights 𝑊!" of all containers in the bay are shown in the upper-left corner of the figure. In 

addition, we assume that 𝑤$%&%" = 10, 𝐻# = 1.5, 𝐻' = 1.8, and C = 2.1. Note that, even for this 

small instance, it is not easy to decide which containers should be lifted in single-spreader mode 
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and which containers should be lifted in dual-spreader mode. Figure 2.1 shows a feasible crane lift 

sequence for this instance. This sequence consists of five dual-spreader lifts followed by four 

single-spreader lifts followed by five dual-spreader lifts. Two changeovers between spreader 

modes are required, so the total time needed to empty the bay—the makespan—is 

10×1.8+4×1.5+2×2.1=28.2 minutes. We later show that this is not the optimal makespan for this 

instance. 

 



 16 

 

Figure 2.1. Feasible crane lift sequence with makespan 28.2 minutes for a problem instance of 
size 3 × 8 with wLimit = 10. 
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2.2 Mathematical model 

To facilitate the model development, we first convert an instance of the DSCSP into a 

“binary array showing legal dual-spreader lifts” (BASLDSL). Figure 2.2 depicts the conversion of 

the instance in Figure 2.1 to BASLDSL, where binary variables are used to indicate whether a 

dual-spreader lift could be performed on a pair of adjacent containers in the same tier. Without 

loss of generality, we use the left side of the pair to denote whether a “legal” dual-spreader lift can 

be performed within the given weight limit 𝑤$%&%". For example, the top-left ‘0’ in BASLDSL 

indicates that the first and the second containers (from the left side) in the top tier cannot be dual-

spreader lifted because their combined weight—12—exceeds 𝑤(%&%" = 10. Also, the ‘1’ adjacent 

to the top-left ‘0’ indicates that the second and the third containers (from the left) in the top tier 

can be dual-spreader lifted because their combined weight—8—does not exceed 𝑤$%&%". In the 

original problem instance, we number the tiers 1, ..., T from bottom to top and the stacks 1, ..., S 

from left to right. In BASLDSL, we use the terms tier (1, ..., T from bottom to top) and column (1, 

..., S−1 from left to right) to refer to various locations.  

 

 

Figure 2.2. Conversion of problem instance (left) into a binary array showing legal dual 
spreader lifts (BASLDSL) (right), assuming wLimit = 10. 
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2.2.1 Mathematical formulation of the DSCSP  

Our mathematical model of the DSCSP, model DSCSP, discretizes time into intervals. 

During each time interval, at most one (single-spreader or dual-spreader) lift may occur. The 

duration of an interval is therefore either 𝐻#or 𝐻' minutes depending on the type of operation 

performed. Between two consecutive intervals, at most one spreader changeover may occur 

(Figure 2.1).  

 

The indices in model DSCSP are as follows:   

s  Stack (i.e. column) (s = 1, 2, …, S).  

t  Tier (t = 1, 2, …, T).  

i  Time interval (i = 1, 2, …, I, I+1).  

The input parameters in model DSCSP are as follows:   

S  Number of stacks in the storage bay. S ≥ 2 to avoid triviality.  

T  Number of tiers in the storage bay.  

I  Number of time intervals available (= S × T to be conservative).  

Es  Initial number of containers in stack s (integer, ≥ 0) (s = 1, 2, ..., S).  

C  Changeover time between single- and dual-spreader deployment (minutes).  

H1  Handling time per lift using single spreader (minutes).  

H2  Handling time per lift using dual spreader (minutes).  

Lst  = 1 if the left side of the dual spreader can be used at stack s, tier t in the original configuration 

(binary) (s = 1, 2, …, S-1; t = 1, 2, …, T). This parameter equals the value of the item in 

column s, tier t of BASLDSL.  
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The decision variables in model DSCSP are as follows:  

Xsi  = 1 if a single-spreader lift is performed at the top of stack s during time interval i (binary) 

(s = 1, 2, …, S; i = 1, 2, …, I).  

Ysi  = 1 if a dual-spreader lift is performed in which the left (right) spreader lifts the container 

that is on the top of stack s (s+1) during time interval i (binary) (s = 1, 2, …, S-1; i = 1, 2, 

…, I).  

Gi  = 1 if a spreader changeover is made between time intervals i−1 and i (binary) (i = 2, …, I).  

Fi  = 1 if all containers have been removed from the bay by the beginning of time 

interval i (binary) (i = 1, 2, …, I+1).  

Nsi  Number of containers in stack s at the beginning of time interval i (integer, ≥ 0) (s = 1, 

…, S; i = 1, 2, …, I+1).  

Rti  = 1 if containers are allowed to be removed from tier t during time interval i (binary) (t = 1, 

2, …, T; i = 1, 2, …, I).  

 

Objective function:     

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   + ∑ 𝐺%𝐶)
%*'                                                                     (1)                             

Subject to: 

                                          i = 1, 2, …, I                                                    (2) 

                                                                                                                                     (3) 
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                                      i = 2, 3, …, I                                                   (4) 

               

 

                 

                                      i = 2, 3, …, I                                                  (5) 

                 

 

                          i = 1, 2, …, I+1;  s = 1, 2, …, S                                                 (6) 

                                                               s = 1, 2, …, S                                                  (7) 

 

                                          i = 1, 2, …, I                                              

                               i = 1, 2, …, I ; s = 2,…, S-1                           (8) 

                                     i = 1, 2, …, I           
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The objective function (1) minimizes the makespan, M, which is the sum of the container 

handling and spreader changeover times. Constraint (2) ensures that at most one lift, either by the 

single spreader or dual spreader, can be performed during any time interval i; if no lift is made, 

then the “finished” binary variable 𝐹% should be set to 1. Constraint (3) ensures that the process of 

removing containers from the bay is finished by the end of the last time interval. Constraint (4) 

forces a changeover to happen when switching from dual-spreader to single-spreader mode. This 

constraint has three expressions with the following structure: A + B − 1 ≤ C; C + A − 1 ≤ B; and 

B + C − 1 ≤ A. These expressions ensure that if any two of the binary terms A, B, and C equal 1, 

then the third term equals 1. Term A indicates if a dual-spreader lift is made during time interval 

i−1; B indicates if a spreader changeover is made between time intervals i−1 and i; and C indicates 

if a single-spreader lift is made during time interval i. Constraint (5) is the same as (4) except that 

it considers the switch from single-spreader to dual-spreader mode.  

Constraint (6) indicates that all stacks need to be empty before we can set 𝐹% 	to 1. Constraint 

(7) initializes the stack heights for the first-time interval. Constraint (8) updates the stack heights 

based on the lifts made during each time interval. Constraint (9) ensures that no lift is made from 

an empty stack. Constraint (10) ensures that containers may be removed from only one tier during 

each time interval. Constraints (11) and (12) enforce the physical limitation that containers can 

only be picked up from the top tier. Constraints (10) and (12) together ensure that the dual spreader 

may only lift two containers that are in the same tier. Constraint (13) ensures that dual-spreader 

lifts do not violate the (weight-limit-respecting) binary values in BASLDSL. The decision variable 

domains are included in the decision variable descriptions that precede the model.  
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2.2.2 Lower bound computation  

The DSCSP is a challenging optimization problem. Although the NP-hardness of this 

problem is still an open question, the results in Section 2.4 indicate that an optimization approach 

based on model DSCSP struggles to find proven optimal solutions to instances of modest size. In 

such cases, it is good to have a lower bound on the optimal objective value in order to estimate the 

quality of solutions produced by heuristic methods.  

Algorithm 1 shows our approach for computing a lower bound on the optimal objective 

value for the DSCSP. It starts from the top tier and works downwards iteratively tier-by-tier (line 

2). The consideration of each tier starts at its left end (line 3). Adjacent containers are checked in 

pairs to see whether they can be dual-spreader lifted (line 3). If so, the number of dual-spreader 

lifts is increased by one and these two containers are marked as handled (lines 5 and 6); otherwise, 

the number of single-spreader lifts is increased by one and only the left container of the pair is 

marked as handled (lines 7 and 8). The counting continues from left to right in the current tier until 

all containers in the tier are marked as handled, i.e. until the algorithm reaches the right side of the 

tier (line 4). Then the next tier is considered (line 2).  

Once all containers in the storage bay are marked as handled, the total number of dual-

spreader lifts is checked. If this number is not large enough to justify the cost of one spreader 

changeover, the algorithm assumes that only single-spreader lifts are performed, and no 

changeovers are made (line 10). Otherwise it assumes that one changeover and the counted number 

of single-spreader and dual-spreader lifts are performed (line 12).  
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Algorithm 1: Lower bound computation. 
 
1 Set single-spreader and dual-spreader lift counters Ns = 0, Nd = 0; 
2 for each tier do  
3 Starting from the left side of the tier, check whether the next two containers can be lifted 

together without violating 𝑤!"#"$; 
4 while not reaching the right side of the tier do  
5 if the next two unhandled containers can be dual-spreader lifted then  
6 Nd = Nd + 1; mark the next two containers as handled;  
7 else  
8 Ns = Ns + 1; mark the next one container as handled;  
9 if NdH2 + C > 2Nd H1 then  
10 LB = H1 (Ns + 2Nd);  
11          else  
12 LB = Ns H1 + Nd  H2 + C;  
13          Report the lower bound LB; 
 

 
 

Theorem 1. Algorithm 1 computes a true lower bound on the optimal objective value for 

the DSCSP. 

Proof. Note that one changeover is included in the lower bound computation if it is 

profitable; otherwise no changeover is included (lines 9–12). Thus, Algorithm 1 assumes the bare 

minimum number of changeovers. Consider the value of Nd after the completion of the large “for” 

loop in Algorithm 1 (lines 2–8). We show that this value equals the maximum total number of 

dual-spreader lifts (i.e. dual lifts) that can be made. This fact, combined with the stipulation 𝐻'< 

2𝐻#, will prove the theorem.  

Each dual lift is confined to a single tier. Thus, it suffices to show that the “greedy method” 

in Algorithm 1—which accepts all candidate dual lifts as soon as they appear during a left-to-right 

scan of a given tier—correctly computes the maximum number of dual lifts that can be made in 

any given tier.  

We prove the correctness of the greedy method by induction. Let 𝐷(𝑛)	be the maximum 

number of dual lifts that can be made on the right-most n containers in the tier at hand. Clearly, 

the greedy method correctly computes the maximum number of dual lifts that can be made on a 
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set of 1 or 2 containers in isolation; thus, it correctly computes 𝐷(1) and 𝐷(2) when applied to the 

right-most 1 or 2 containers in the tier at hand.  

To complete the proof, we will show that, for n ≥ 3, if the greedy method correctly 

computes 𝐷(𝑛 − 2) and 𝐷(𝑛 − 1), then it also correctly computes 𝐷(𝑛). There are two cases for 

the n containers at hand. In case 1, the two left-most containers cannot be feasibly dual lifted, i.e. 

they violate the weight limit. In this case, the greedy method skips over the left-most container; 

continues scanning at the second container; and computes 𝐷(𝑛 − 1) as the number of dual lifts 

made on the n containers. But this is a correct computation for 𝐷(𝑛). Indeed, the left-most 

container is not eligible to participate in any dual lifts, so 𝐷(𝑛) 	= 	𝐷(𝑛 − 1) in this case. In case 

2, the two left-most containers can be feasibly dual lifted. In this case, the greedy method accepts 

the lift; skips over the two containers; continues scanning at the third container; and computes 1 +

𝐷(𝑛 − 2) as the number of dual lifts made on the n containers. Any non-greedy method, by 

definition, would reject the dual lift; skip over the left-most container; continue scanning at the 

second container; and compute at most 𝐷(𝑛 − 1) as the number of dual lifts made on the n 

containers. However, it is a general rule that 𝐷(𝑛 − 1) 	≤ 	𝐷(𝑛 − 2) + 1. Indeed, the addition of 

one container to the left-hand side of an existing row of n − 2 containers increases the total number 

of dual lifts that can be performed on these containers by no more than one. This is because all 

dual lifts, except possibly the left-most such lift, found in the “optimal” set of dual lifts for the set 

of n − 1 containers can be found in the set of n − 2 containers. Thus, the dual lift tally computed 

by any non-greedy method cannot be more than that computed by the greedy method. Thus, the 

greedy method is “optimal” in case 2; it correctly computes 𝐷(𝑛) in this case. We have just proven 

the statement that begins this paragraph. Thus, the greedy method correctly computes 𝐷(𝑛) for all 

n ≥ 1. ∎ 
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2.3 Heuristic approach  

Experimental results, discussed in Section 2.4, indicate that a direct math programming 

approach based upon model DSCSP is not a satisfactory solution method for large DSCSP 

instances with 50 or more containers. This motivates us to develop a heuristic method that can find 

good solutions to large problem instances within a reasonable time. We now describe this heuristic 

method.  

Our overall method consists of a constructive heuristic embedded within a simulated 

annealing (SA) metaheuristic. The constructive heuristic deterministically builds a feasible crane 

lift sequence based on the values of six parameters. During each iteration of the SA algorithm, the 

values of one or more parameters are changed to new, neighboring values, and a new feasible crane 

lift sequence is generated and evaluated.  

Among several available metaheuristic approaches−including simulated annealing (SA), 

genetic algorithm (GA), tabu search (TS), and ant colony optimization (ACO)−we decided to use 

SA because it offered a good trade-off between ease of use and expected solution quality. SA is 

among the easiest metaheuristic techniques to implement, yet it usually still achieves good results. 

In general, SA can be used in highly non-linear problems that have a large number of constraints. 

SA is an extensible algorithm used to search for global optimality and it is easy to implement. The 

performance of SA depends on the quality of solution construction (Suman and Kumar, 2006). 

We now provide a general description of the constructive heuristic, followed by a detailed 

description. Then we discuss the SA algorithm. The constructive heuristic is divided into two 

stages. In stage 1, the type of lift (single-spreader or dual-spreader) for each container is decided. 

In stage 2, a crane lift sequence—a list of individual lifts and spreader changeovers—is generated 

based on the output from stage 1.  
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Our general approach to stage 1 is to iteratively accept or reject the dual-spreader lift 

opportunities that are shown in BASLDSL (right side of Figure 2.2). Note that the rejection of 

some dual-lift opportunities is often necessary to guarantee feasibility. For example, at least one 

of the dual-lift opportunities represented by two adjacent ‘ones’ in the same tier in BASLDSL 

must be rejected; otherwise, the same container would be involved in two dual-spreader lifts—one 

with the container on its left, and one with the container on its right. Importantly, the dual-lift 

opportunities are not considered individually, but rather in batches of contiguous dual-lifts that are 

aligned vertically (i.e. in batches of consecutive ‘ones’ in the same column in BASLDSL). The 

consideration of such a batch often, but not always, results in all dual-lifts in the batch being 

accepted. To maintain feasibility, every acceptance is followed by the immediate rejection of all 

dual lift opportunities in the columns immediately to the right and left of the accepted batch’s 

column in BASLDSL. The output from stage 1 is a modified, or fixed, version of BASLDSL in 

which (1) the respective values are less than or equal to those in the initial BASLDSL and (2) there 

are no adjacent ‘ones’ in the same tier.  

In stage 2, we use the fixed BASLDSL to label each container in the bay with a “S” (“D”) 

if it will be single-spreader (dual-spreader) lifted. Then we construct a feasible crane lift sequence 

by iteratively removing containers from the tops of the stacks in the bay if they match the current 

spreader being deployed. When no more lifts can be made using the current spreader, the spreader 

is changed. Lifting then continues using the new spreader. This process continues until no more 

containers remain in the bay. The makespan of the crane lift sequence is then computed.  

We now describe the constructive heuristic in greater detail. Table 2.1 lists the six 

parameters that guide this heuristic. Parameters 1 and 6 have two possible values; Parameter 2 has 
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T possible values; and Parameters 3, 4, and 5 are long sequences of [0,1) real numbers. Parameters 

1–5 are used in stage 1, and Parameter 6 is used in stage 2.  

 

Table 2.1. Parameters that guide the constructive heuristic.  
 

InitialDirection Equals 0 (1) if heuristic initially moves down from higher to lower tiers (up from 
lower to higher tiers). 

InitialTier Tier at which heuristic begins (= integer from 1 to T). 
ColumnChooser[ ] The next value in this sequence of [0, 1) real numbers decides which column is 

considered next if two or more columns c tie for having the greatest Depth(c). 
FixFullDepthYN[ ] The next value in this sequence of [0, 1) real numbers is compared to 

FullDepthChance to decide whether or not to fix Depth(c) dual-spreader lifts in 
column c. 

NumLiftsToFix[ ]  If FixFullDepthYN indicates that fewer than Depth(c) dual-spreader lifts in column 
c should be fixed, the next value in this sequence of [0, 1) real numbers decides how 
many such lifts are fixed. 

InitialSpreader Forms a feasible crane lift sequence from the values in the fixed BASLDSL. Equals 
“S” (“D”) if the lifting begins in single-spreader (dual-spreader) mode.  

 

Algorithm 2 shows the pseudocode for stage 1 of the constructive heuristic. In this code, 

A[∗] indicates the first unused item in array A. In stage 1, BASLDSL is scanned in order to decide 

which potential dual-spreader lifts should and should not be performed. During this scan, the initial 

values in BASLDSL are gradually fixed to 1 or 0, where a 1 (0) means that the associated dual-

spreader lift will (will not) be performed. Parameter InitialTier in Table 2.1 specifies the starting 

point for this scan, which proceeds tier by tier (line 1). Parameter InitialDirection specifies whether 

the scan initially proceeds down from InitialTier to lower tiers or up from InitialTier to higher tiers 

(line 1). We let BA[c, t] denote the value in column c and tier t in BASLDSL (line 2).  
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Algorithm 2. Stage 1 of the constructive heuristic.  
 

1 Set Phase = 1, Dir = InitialDirection, and Tier = InitialTier;  
2 Let BA[c, t] denote the value in column c and tier t in BASLDSL; 
3 Set Fixed[c, t] = no for all (c, t) in BASLDSL;  
4 while Tier ≥ 1 (≤T) when Dir = 0 (1) do 
5       Set Fixed[c, Tier] = yes for all c such that BA[c, Tier] = 0; 
6       while Fixed[c, Tier] = no for any c from 1 to S−1 do  
7 For all c∈1,..., S−1 for which Fixed[c, Tier] = no, let Depth(c) be the number of consecutive 

‘ones’ that appear in column c in BASLDSL beginning with tier Tier and moving down 
(up) if Dir = 0 (1). Let CGD be the column c with the greatest Depth(c). Break ties using 
ColumnChooser[*];  

8             if FixFullDepthYN[*] ≤ FullDepthChance then  
9                    DualLiftsFixed = Depth(CGD);  
10                      else  
11                    DualLiftsFixed = floor(Depth(CGD)×NumLiftsToFix[*]);  
12             if DualLiftsFixed = 0 then  
13                    Set BA[CGD, Tier] = 0 and Fixed[CGD, Tier] = yes;  
14             else  
15 Fix DualLiftsFixed ‘ones’ in column CGD in direction Dir in BASLDSL. In other 

words, set BA[CGD, t] = 1 and Fixed[CGD, t] = yes for all t from Tier to Tier-
DualLiftsFixed+1 if Dir = 0 or from Tier to Tier+DualLiftsFixed-1 if Dir = 1;  

16  Fix DualLiftsFixed ‘zeros’ in the columns adjacent to column CGD in direction Dir in 
BASLDSL;  

17 Decrease (increase) Tier by 1 if Dir = 0 (1); 
18 if Phase = 1 and Dir = 0 (1) and Tier = 0 (T + 1) and InitialTier < T (> 1) then  
19 Set Phase = 2, Dir = 1 (0), and Tier = InitialTier; 
20 Set Fixed[c, InitialTier] = no for all c from 1 to S − 1;  
21 Report the BASLDSL with fixed values;  
 

 

During the consideration of tier Tier in BASLDSL, the heuristic identifies the columns c 

for which BA[c, Tier] = 1 and is not already fixed (line 6). The value Depth(c) is then computed 

for each such column c. Depth(c) equals the number of consecutive ‘ones’ in column c that begin 

at tier Tier and proceed upwards or downwards depending on the current scanning direction Dir 

(line 7). The dual-spreader opportunities in the column c with the greatest Depth(c) are the first 

candidates for acceptance. When two or more columns c tie for having the greatest Depth(c), the 

next [0,1) real number in array ColumnChooser[ ] breaks the tie and selects the “column with the 

greatest depth” (i.e. CGD) (line 7). In particular, if L columns are tied, then the nth such column 

is selected if and only if (n − 1)/L ≤ ColumnChooser[∗] < n/L. The next [0,1) real number in array 
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FixFullDepthYN[ ] is then compared to global parameter FullDepthChance (line 8) to decide if all 

Depth(CGD) dual-spreader lift opportunities in column CGD are accepted (line 9) or not (lines 10 

and 11). If not, the next [0,1) real number in array NumLiftsToFix[ ] indicates what fraction of the 

dual-spreader lift opportunities are accepted, i.e. to what depth the ‘ones’ in the column are fixed. 

In particular, the number of ‘ones’ that are fixed equals floor(Depth(CGD)× NumLiftsToFix[∗]) 

(line 11). If this equals 0 (line 12), the dual-lift opportunity in column CGD, tier Tier is rejected 

and the corresponding cell in BASLDSL is fixed to 0 (line 13). Otherwise, one or more dual-lift 

opportunities in column CGD are accepted (i.e. a sub-column of ‘ones’ in BASLDSL is fixed) 

(line 15), and the values in all cells on either side of this sub-column are fixed to 0 (line 16). The 

latter step ensures that two adjacent ‘ones’ in the same tier in BASLDSL are never both fixed. This 

concludes the handling of column CGD in the current tier. Other columns c are then considered 

one-at-a-time according to the ranking of their Depth(c) values, and the above process repeats until 

all values in the current tier in BASLDSL have been fixed to 1 or 0 (lines 6–16).  

The procedure then continues to the next tier in the current scanning direction Dir (line 

17). Eventually all tiers in direction Dir will be scanned. At this point, the second phase of the 

scanning commences: the procedure jumps back to tier InitialTier, un-fixes all values in that tier, 

and begins scanning in the direction opposite from InitialDirection (lines 19–20). This second 

phase is undertaken if and only if InitialTier is a middle tier (line 18). After completion of the 

second phase, all tiers in BASLDSL have been scanned and all cells in BASLDSL have been fixed 

(line 21). 
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Algorithm 3. The constructive heuristic.  
 

1 Convert the problem instance into BASLDSL (see Figure 2.2);  
2 Call Algorithm 2 to fix the values in BASLDSL; 
3 Convert BASLDSL into ContainerArray, an S × T array that shows the type of container occupying 

each cell in the storage bay. “S” (“D”) indicates a container that will be single-spreader (dual-
spreader) lifted. “n” indicates that no container is present. Let CA[s, t] denote the value in stack s 
and tier t in ContainerArray;  

4 Set CurrSpreader = InitialSpreader; 
5 while there is at least one “S” or “D” in ContainerArray do  
6 for t = T to 1 (decrease t by 1 each time) do  
7 for s = 1 to S (increase s by 1 each time) do  
8 if CA[s, t] = CurrSpreader = “S” and (CA[s, t+1] = “n” or does not exist) then  
9 Add a single-spreader lift to the end of the crane lift sequence and let CA[s, t] = 

“n”;  
10 if CA[s, t] = CurrSpreader = “D” then 
11 if CA[s, t+1] = CA[s+1, t+1] = “n” or neither value exists then  
12 Add a dual-spreader lift to the end of the crane lift sequence and let CA[s, t] 

= CA[s+1, t] = “n”;  
13    Increase s by 1 
14                Change CurrSpreader from “S” to “D” or vice versa;  
15 if the crane lift sequence has short, unprofitable subsequences of dual-spreader lifts that are not 

worth the changeover cost then  
16                  Convert the unprofitable dual-spreader lifts into single-spreader lifts in the crane lift sequence;  
17 Report the final crane lift sequence and its makespan M;  
 

 

The overall constructive heuristic is shown in Algorithm 3. This heuristic first calls 

Algorithm 2 to fix the values in BASLDSL (line 2). It then converts the fixed BASLDSL into a 

ContainerArray, an S × T array that shows which containers in the storage bay will be single-

spreader (“S”) and dual-spreader (“D”) lifted. A detailed crane lift sequence that starts using 

spreader InitialSpreader is then constructed in a straightforward manner using the values in 

ContainerArray (lines 4–14). If the end (middle) of the sequence contains short, unprofitable 

subsequences of dual-spreader lifts that are not worth the cost of one (two) spreader changeover(s), 

the unprofitable dual-spreader lifts are converted into single-spreader lifts (lines 15–16). Then the 

makespan of the resulting crane lift sequence is computed (line 17).  

Figures 2.3 and 2.4 show how the constructive heuristic generates two different crane lift 

sequences for the problem instance shown in Figure 2.2 for two different sets of input parameters. 
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In each figure, the original problem instance and its conversion into the initial, tentative BASLDSL 

are shown in the upper left. The values of the six input parameters are shown in the upper-right. 

The left side of each figure shows how Algorithm 2 gradually fixes the values in BASLDSL using 

the first five parameters. Note that only the first several values in arrays ColumnChooser[ ], 

FixFullDepthYN[ ], and NumLiftsToFix[ ] are utilized; the other values are not used. The 

conversion of the fixed BASLDSL into ContainerArray; the generation of a detailed crane lift 

sequence; and the makespan computation are shown in the bottom right. Notice that the fixed 

BASLDSL, ContainerArray, and makespan are quite different in the two figures. Indeed, the 

constructive heuristic is able to generate vastly different crane lift sequences when the input 

parameters are changed. It turns out that the makespan shown in Figure 2.4 is optimal.  
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Figure 2.3. Illustration #1 of the constructive heuristic. The most recent activity in BASLDSL is 

highlighted. Fixed values in BASLDSL are displayed in bold. 
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Figure 2.4.  Illustration #2 of the constructive heuristic. The most recent activity in BASLDSL is 
highlighted. Fixed values in BASLDSL are displayed in bold. 

ContainerArray: 

0 1 1 1 0 1 0  
1 1 1 1 1 0 0   
1 1 1 0 1 1 1   

0 1 1 1 0 1 0 

11 12 12 12 11 0 0 
  1 1 1 0 1 1 1 
  

7 3 5 2 6 5 9 4 
1 4 2 3 1 9 2 2 
6 3 2 6 8 7 2 3 

S D D D D D S D 
S D D D D S S S 
S D D S D D D D 

Six dual lifts = 6*1.5 min 
Changeover = 2.1 min 
Nine dual lifts = 9*1.8 min 

FINISHED 

Heuristic Input Parameters: 
 

InitialDirection = 1 
InitialTier = 2 
ColumnChooser = [.4, .8, .9, .7 … 
FixFullDepthYN  = [.7, 0, 0, .9, … 
NumLiftsToFix    = [.6, .9, … 
InitialSpreader = S 
 
Global Parameters: 
 

FullDepthChance = 0.5 
 

Makespan = 27.3 min 

All subsequences of dual-spreader 
lifts are worth the setup cost of the 
dual spreader 

Original problem instance 
 
 
 
Initial BASLDSL 
 
Note: Superscripts show Depth(c)          
for each column c. 
 
 
 
Phase = 1 
Dir = 1  
Tier = 2  
 
ColumnChooser[1] = .4 
CGD = 3 
FixFullDepthYN[1] = .7 
NumLiftsToFix[1] = .6 
DualLiftsFixed =  
               floor(2*.6) = 1 
ColumnChooser[2] = .8 
CGD = 5 
FixFullDepthYN[2] = 0 
DualLiftsFixed = 1 
 
CGD = 1 
FixFullDepthYN[3] = 0 
DualLiftsFixed = 1 
 
 
 
Tier = 3 
  

 
 
ColumnChooser[3] = .9 
CGD = 7 
FixFullDepthYN[4] = .9 
NumLiftsToFix[2] = .9 
DualLiftsFixed = floor(2*.9)  
                           = 0 
ColumnChooser[4] = .7 
CGD = 4 
FixFullDepthYN[5] = 0 
DualLiftsFixed = 1 
 
CGD = 2 
FixFullDepthYN[6] = 0 
DualLiftsFixed = 1 
 
 
Tier = 4 
Phase = 2 
Dir = 0 
Tier = 2 

0 1 1 1 0 1 0 
11 1 0 0 11 0 0   
1 1 1 0 1 1 1   

0 1 1 1 

  
0 1 0 

11 1 0 0 1 0 0   
1 1 1 0 1 1 1   

0 1 1 1 
 
0 1 

  
0 

1 1 0 0 1 0 0 
  

1 1 1 0 1 1 1   

0 11 11 11 0 11 0 
  1 1 0 0 1 0 0 

1 1 1 0 1 1 1   

0 11 11 11 0 0 0 

  
1 1 0 0 1 0 0   
1 1 1 0 1 1 1 

0 0 11 1 
 

0 0 0 

  
1 1 0 0 1 0 0   
0 0 1 0 1 1 0 

0 0 1 1 
 

0 0 0 

  
1 1 0 0 1 0 0   
1 1 1 0 1 1 

  
1 

0 0 1 1 
 

0 1 
0

0   
12 12 0 0 12 0 0   
1 1 1 0 1 1 

 
0   

InitialSpreader = S 

0 0 1 1 0 0 0 
12 1 0 0 12 0 0   
1 1 0 0 1 1 1   

  

0 0 1 1 0 0 0 
1 1 0 0 12 0 0   
1 1 0 0 1 1 1   

  

0 0 1 1 0 0 0 
1 1 0 0 1 0 0   
1 1 0 0 1 1 0   

  

0 0 1 1 0 0 0 
1 1 0 0 1 0 0   
1 1 0 0 1 1 0   

  

ClmChose[5] = .5 
CGD = 3 
FFDpthYN[7] = 0 
DualLftsFixed = 2 
 

  

  

  

  

ClmChose[6] = .2 
CGD = 1 
FFDpthYN[8] = 0 
DualLftsFixed = 2 
  

CGD = 5 
FFDpthYN[9] = 0 
DualLftsFixed = 2 
 
Tier1 

CGD = 7 
FFDpthYN[10] = 0 
DualLftsFixed = 1 
  

  

  

  

  



 34 

Figure 2.5 shows how the constructive heuristic is embedded within a simulated annealing 

(SA) framework. The SA procedure begins by initializing the six input parameters, collectively 

referred to as CurrParam, and converting them into a feasible crane lift sequence CurrSeq and 

makespan CurrOV using the constructive heuristic. In each SA iteration, CurrParam is used to 

generate a new set of parameter values NghborParam; the constructive heuristic converts 

NghborParam into a feasible crane lift sequence; and the laws of simulated annealing decide if 

NghborParam replaces CurrParam.  

Two kinds of neighborhood moves—small moves and large moves—are utilized. In a small 

move, a new, random combination of values for parameters 1 and 6—InitialDirection and 

InitialSpreader—is considered and the other parameters remain unchanged. In a large move, a 

new, random value for parameter (2, 3, 4, 5) is considered with probability (𝑝', 𝑝+, 𝑝,, 𝑝-) and a 

new, random combination of values for parameters 1 and 6 is considered (𝑝'+	𝑝++ 𝑝,+	𝑝- = 1). A 

small move is made whenever it can produce a new set of parameter values that has not yet been 

explored. Otherwise, a large move is initiated. When a predefined time limit is reached, the SA 

procedure terminates and the best crane lift sequence that was found is displayed.  

 

 

 

 

 

 

 



 35 

• Set the temperature CurrTemp = InitialTemp 
• Set BestOV = 999,999,999. 
• Let CurrParam be the following set of parameters: 

1. InitialDirection = 0 
2. InitialTier = T 
3. ColumnChooser[ ] = [0, 0, 0, ... , 0] 
4. FixFullDepthYN[ ] = [0, 0, 0, ... , 0] 
5. NumLiftsToFix[ ] = [0, 0, 0, ... , 0] 
6. InitialSpreader = S 

• Convert CurrParam into a crane lift sequence, CurrSeq, and compute its objective value, CurrOV, 
using the constructive heuristic (i.e. Alg. 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.  Overall logic of the simulated annealing metaheuristic. 
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2.4 Experimental setup, results, and discussion  

The heuristic method from Section 2.3 and model DSCSP from Section 2.2 were coded 

into MS Visual C++ 2010 Professional. IBM ILOG Concert Technology was used to define model 

DSCSP within C++ and call the MILP solver IBM ILOG CPLEX 12.5 to solve instances defined 

in text files. To avoid running out of memory, the CPLEX “node file storage parameter” is set to 

3. That is, the information for every unexplored node in the CPLEX branch-and-cut tree is stored 

on the hard disk and compressed. Otherwise, default CPLEX settings are used. All results are 

obtained using a desktop computer with the Windows 7 Enterprise 64-bit operating system, an 

Intel Core i7-4770 processor with eight 3.4 gigahertz cores, and 16 gigabytes of RAM.  

We consider a total of 120 problem instances—30 instances for each of the problem sizes 

3×8, 5×10, 10×23, and 50×50. A problem of size T × S has T tiers, S stacks, and T containers in 

stack s at time 0 for all s. In all instances, we assume that the container weights 𝑊!"	take integer 

values from 1 to 9. We also assume that 𝑤$%&%"	= 10, 𝐻#	= 1.5, 𝐻' = 1.8, and C = 2.1. Among the 

30 instances for each problem size, (10, 10, 10) instances have (light, medium, heavy) container 

weights. In the medium instances, the weight of each container follows a discrete uniform 

distribution over the values {1, 2, 3, 4, 5, 6, 7, 8, 9}. In the light instances, the weight of each 

container has a {15%, 15%, 15%, 15%, 20%, 5%, 5%, 5%, 5%} chance of taking the value {1, 2, 

3, 4, 5, 6, 7, 8, 9}. In the heavy instances, the weight of each container has a {5%, 5%, 5%, 5%, 

20%, 15%, 15%, 15%, 15%} chance of taking the value {1, 2, 3, 4, 5, 6, 7, 8, 9}.  

Table 2.2 shows the settings used in the heuristic algorithm for each of the four problem 

sizes. Preliminary experiments were performed to determine these settings. The results of these 

preliminary experiments, not shown here, indicated that performance was most consistent when 

the neighbor probabilities (𝑝', 𝑝+, 𝑝,, 𝑝-) equal (.25, .25, .25, .25) (Fig. 2.5). We also found that 
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performance improves with a higher FullDepthChance (line 8 of Algorithm 2, middle of Table 

2.1) as the problem size increases. We hypothesize that this is because instances with more tiers 

can have larger batches of dual lift opportunities that are aligned vertically (i.e. longer strings of 

consecutive ‘ones’ in the same column in the initial BASLDSL). As the size of such a batch 

increases, it may be increasingly important to accept all dual lift opportunities in the batch to 

prevent “disrupting” the batch with a single rejected dual lift opportunity in its middle. Such a 

disruption may add two unnecessary changeovers—to and from the single spreader—to the crane 

lift sequence.  

 

Table 2.2. Parameters settings for the heuristic method. 
 
Problem size 3 ×	8 5 × 	10	 10 ×	23	 50	×	50	
Computational time limit (seconds) 10 60 600 600 
FullDepthChance 0.5 0.7 0.8 0.99 
Neighbor probabilities (p2, p3, p4, p5) All set to (.25, .25, .25, .25) 
InitialTemp 10,000 100,000 10,000,000 100,000 
TempFactor 0.9999 0.99999 0.999999 0.99999 

 

Note that more computation time is allocated for attacking larger problems. Given this time 

limit, parameters InitialTemp and TempFactor are set so the SA procedure consists of three phases 

of roughly equal duration—(i) an initial exploration phase when almost any neighboring solution 

is accepted; (ii) a middle phase when the algorithm gradually transitions from being very accepting 

of neighbors to being very picky; and (iii) a final phase when virtually no inferior neighboring 

solutions are accepted. The increase (decrease) in parameters InitialTemp and TempFactor when 

going from problem size 3 × 8 to 10 × 23 (10 × 23 to 50 × 50) follows from the fact that the allotted 

computation time grows at a faster (slower) rate than the problem size for these instances.  
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Table 2.3 shows the results for the first set of experiments that consider the 30 small 

problem instances of size 3 × 8. Each individual instance is specified by a code “TxSZnn” where 

T is the number of tiers; S is the number of stacks; Z takes the value (L, M, H) according to the 

container weight scenario (light, medium, heavy); and “nn” denotes the instance number from 1 

to 10. Each instance is considered in three ways—(A) using standard integer programming (IP) 

with no time limit (“CPLEX Alone”); (B) using the heuristic method with a 10 sec time limit; and 

(C) using IP with no time limit where both the lower bound and the best solution found by the 

heuristic are passed to the solver at the outset (“CPLEX + LB + UB”). The heuristic method 

generates an average of eleven million neighboring solutions within the 10 second time limit. The 

best objective value (i.e. makespan) found by methods A, B, and C are shown in columns	𝑀/0, 

𝑀1, and 𝑀/023 	respectively. Column 𝑀1! shows the makespan of the initial feasible solution used 

in the heuristic method, and column LB shows the lower bound.  
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Table 2.3. Experimental results for DSCSP instances of size 3 × 8. 
 

Instance 

 
CPLEX Alone 

Heuristic (10 seconds) CPLEX+LB+UB 
𝐿𝐵 

𝑀1 − 𝐿𝐵
𝑀1

 
𝑀/0 Time(s) 𝑀1 𝑀1! 

𝑀1! −𝑀1

𝑀1
 𝑀/023 Time(s) 

3x8L01 27.3 17 27.3 29.4 7.69% 27.3 15 26.1 4.40% 
3x8L02 26.1 12 26.1 31.8 21.84% 26.1 0 26.1 0.00% 
3x8L03 26.1 6 26.1 27.3 4.60% 26.1 1 26.1 0.00% 
3x8L04 29.4 211 29.4 31.8 8.16% 29.4 112 27.3 7.14% 
3x8L05 21.6 1 21.6 28.2 30.56% 21.6 1 21.6 0.00% 
3x8L06 27.3 80 27.3 33.9 24.18% 27.3 71 26.1 4.40% 
3x8L07 24.9 4 24.9 28.2 13.25% 24.9 0 24.9 0.00% 
3x8L08 30.6 573 30.6 31.8 3.92% 30.6 157 28.5 6.86% 
3x8L09 26.1 7 26.1 30.6 17.24% 26.1 0 26.1 0.00% 
3x8L10 28.2 424 28.2 31.5 11.70% 28.2 75 26.1 7.45% 
Average 26.8 133.5 26.8 30.5 14.31% 26.8 43.2 25.9 3.02% 
3x8M01 30.6 8 30.6 31.8 3.92% 30.6 42 28.5 6.86% 
3x8M02 30.9 37 30.9 30.9 0.00% 30.9 25 29.7 3.88% 
3x8M03 27.3 29 27.3 31.8 16.48% 27.3 53 26.1 4.40% 
3x8M04 34.2 76 34.2 35.7 4.39% 34.2 55 32.1 6.14% 
3x8M05 30.9 109 30.9 33 6.80% 30.9 108 28.5 7.77% 
3x8M06 27.3 7 27.3 33 20.88% 27.3 0 27.3 0.00% 
3x8M07 30.9 56 30.9 33 6.80% 30.9 63 29.7 3.88% 
3x8M08 32.1 17 32.1 33 2.80% 32.1 24 30.9 3.74% 
3x8M09 34.2 14 34.2 34.2 0.00% 34.2 31 32.1 6.14% 
3x8M10 28.5 6 28.5 30.6 7.37% 28.5 33 27.3 4.21% 
Average 30.7 35.9 30.7 32.7 6.94% 30.7 43.4 29.2 4.70% 
3x8H01 35.7 6 35.7 36 0.84% 35.7 19 34.5 3.36% 
3x8H02 32.1 27 32.1 34.2 6.54% 32.1 40 30.9 3.74% 
3x8H03 35.7 9 35.7 36 0.84% 35.7 12 34.5 3.36% 
3x8H04 29.7 10 29.7 31.8 7.07% 29.7 0 29.7 0.00% 
3x8H05 33.3 8 33.3 35.4 6.31% 33.3 1 33.3 0.00% 
3x8H06 34.5 7 34.5 35.4 2.61% 34.5 19 33.3 3.48% 
3x8H07 32.1 24 32.1 32.1 0.00% 32.1 38 30.9 3.74% 
3x8H08 32.1 8 32.1 35.4 10.28% 32.1 16 30.9 3.74% 
3x8H09 34.2 22 34.2 34.2 0.00% 34.2 25 32.1 6.14% 
3x8H10 36 1 36 36 0.00% 36 1 36 0.00% 
Average 33.5 12.2 33.5 34.7 3.45% 33.5 17.1 32.6 2.76% 
Ovrl Avg. 30.3 60.5 30.3 32.6 8.24% 30.3 34.6 29.2 3.49% 
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The results show that all three methods solve all instances to optimality. Indeed, method A 

solves all instances to optimality within ten minutes; method B finds these optimal solutions within 

ten seconds; and method C solves all instances to optimality within three minutes. Importantly, the 

best solutions found by the heuristic (all of which happen to be optimal) are usually within 5% of 

the lower bound. Also, the objective value of the best heuristic solution (30.3) is about 7% better 

on average than that of the initial heuristic solution (32.6). Not surprisingly, the optimal values for 

the light instances are typically less than those for the medium instances. The same holds for the 

medium instances compared to the heavy instances.  

Table 2.4 shows the results for the second set of experiments that consider the 30 medium-

sized instances of size 5 × 10. Here, each instance is considered in three ways—(A) using IP with 

a one hour time limit (“CPLEX Alone”); (B) using the heuristic method with a 60 second time 

limit; and (C) using IP with a one hour time limit where the lower bound and best solution found 

by the heuristic are passed to the solver at the outset (“CPLEX+LB+UB”). The heuristic method 

generates an average of 31 million neighboring solutions within the 60 sec time limit. Column 

“Opt?” indicates if the associated solution is proven by CPLEX to be optimal or not.  

The results for methods A and B show that the heuristic method performs better than IP. 

Indeed, in every instance, the best solution found by the heuristic in one minute is at least as good 

as the best solution found by CPLEX in an hour. Also, the average objective value of the best 

heuristic solution (62.6) is about 1.4% better than that for CPLEX (63.5). Note that the best 

solutions found by the heuristic (only two of which are known to be optimal) are about 6% higher 

on average than the lower bound. Also, the results for method C show that CPLEX is unable, in 

an hour, to improve upon the best heuristic solution provided to it at the outset for any instance. 

Finally, we observe that the objective value of the best heuristic solution (62.6) is about 5% lower 
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on average than that of the initial heuristic solution (65.7). Overall, the above results indicate that 

our IP framework is not a suitable solution method for instances with 50 or more containers. Thus, 

IP is not considered in the following experiments that consider larger problem instances.  

Table 2.5 shows the results for the 60 largest problem instances—30 large instances of size 

10 × 23 and 30 very large instances of size 50 × 50. The results for the large (very large) instances 

are on the left (right). For each instance, we show the lower bound; the objective value of the best 

solution found by the heuristic method within a 600 second time limit; and the objective value of 

the initial heuristic solution. The heuristic method generates an average of 39 (1.9) million 

neighboring solutions within the 600 second time limit for the instances of size 10 × 23 (50 × 50).  

The results show that the heuristic is finding near-optimal solutions to these instances. 

Indeed, the average objective value of the best heuristic solution for the instances of size 10 × 23 

and 50 × 50—275.2 and 2936.8 respectively—is about 4% higher than the average lower bound—

263.8 and 2828.9 respectively—for these instances. Also, note that the quality of the heuristic 

solution improves as containers get heavier; on average, the makespan of the best heuristic solution 

is roughly 5%, 4%, and 3% above the lower bound for the light, medium, and heavy instances 

respectively. This may be due to the fact that there are fewer opportunities for using the dual 

spreader—and therefore fewer choices—when containers are heavier. Overall, the heuristic 

method is effective in tackling a variety of instances of the DSCSP. 

 

 

 

 



 

Table 2.4. Experimental results for DSCSP instances of size 5 × 10. 
 

Instance CPLEX Alone  Heuristic (10 seconds)  CPLEX+LB+UB  𝐿𝐵 𝑀! − 𝐿𝐵
𝑀!

 
𝑀"# Time(s) Opt? 𝑀! 𝑀!! 𝑀!! −𝑀!

𝑀!
 𝑀"#$% Time(s) Opt

? 
5x10L01 62.1 3861 ? 61.2 63 2.94% 61.2 3605 ? 56.7 7.35% 
5x10L02 55.2 3915 ? 55.2 63.6 15.22% 55.2 3610 ? 53.1 3.80% 
5x10L03 57.3 4001 ? 56.4 61.2 8.51% 56.4 3608 ? 53.1 5.85% 
5x10L04 56.1 3726 ? 55.2 58.8 6.52% 55.2 3607 ? 51.9 5.98% 
5x10L05 50.7 3673 ? 50.7 60 18.34% 50.7 3603 ? 49.5 2.37% 
5x10L06 66 3665 ? 63.3 67.8 7.11% 63.3 3605 ? 57.9 8.53% 
5x10L07 56.1 3850 ? 56.1 61.2 9.09% 56.1 3604 ? 51.9 7.49% 
5x10L08 56.4 4114 ? 56.4 57.6 2.13% 56.4 3605 ? 53.1 5.85% 
5x10L09 51.6 3604 ? 51.6 58.8 13.95% 51.6 3779 ? 49.5 4.07% 
5x10L10 51.6 3600 ? 51.6 59.4 15.12% 51.6 3663 ? 49.5 4.07% 
Avg. 56.3 3800.9  55.8 61.1 9.89% 55.8 3628.9  52.6 5.54% 
5x10M01 67.8 3602 ? 64.8 66.6 2.78% 64.8 3605 ? 60.3 6.94% 
5x10M02 63.9 3766 ? 62.4 66 5.77% 62.4 3604 ? 57.9 7.21% 
5x10M03 63.9 3611 ? 63.6 66 3.77% 63.6 3606 ? 60.3 5.19% 
5x10M04 64.8 3769 ? 64.8 67.2 3.70% 64.8 3606 ? 61.5 5.09% 
5x10M05 66 3658 ? 64.8 64.8 0.00% 64.8 3607 ? 61.5 5.09% 
5x10M06 62.1 3669 ? 57.6 59.7 3.65% 57.6 3603 ? 54.3 5.73% 
5x10M07 60.6 3625 ? 59.7 63 5.53% 59.7 3604 ? 54.3 9.05% 
5x10M08 68.1 3726 ? 66.9 69.9 4.48% 66.9 3607 ? 61.5 8.07% 
5x10M09 64.2 3652 ? 62.1 63.3 1.93% 62.1 3606 ? 57.9 6.76% 
5x10M10 57.3 3602 ? 55.5 61.8 11.35% 55.5 3604 ? 51.9 6.49% 
Avg. 63.9 3668  62.2 64.8 4.30% 62.2 3605.2  58.1 6.56% 
5x10H01 74.4 223 yes 74.4 74.4 0.00% 74.4 114 yes 72.3 2.82% 
5x10H02 69.9 3641 ? 69.3 70.5 1.73% 69.3 3608 ? 65.1 6.06% 
5x10H03 70.2 3606 ? 66.9 68.1 1.79% 66.9 3603 ? 62.7 6.28% 
5x10H04 69.3 3608 ? 66.9 67.8 1.35% 66.9 3604 ? 61.5 8.07% 
5x10H05 75 41 yes 75 75 0.00% 75 104 yes 73.5 2.00% 
5x10H06 72.9 3690 ? 72.9 73.2 0.41% 72.9 3607 ? 66.3 9.05% 
5x10H07 69.6 3602 ? 69.6 72 3.45% 69.6 3608 ? 66.3 4.74% 
5x10H08 62.4 3669 ? 62.4 65.7 5.29% 62.4 3623 ? 59.1 5.29% 
5x10H09 69.6 3609 ? 69.6 72 3.45% 69.6 3606 ? 66.3 4.74% 
5x10H10 70.8 3616 ? 70.8 71.7 1.27% 70.8 3606 ? 67.5 4.66% 
Avg. 70.4 2930.5  69.8 71 1.87% 69.8 2908.3  66.1 5.37% 
Ovrl Avg. 63.5 3466.5  62.6 65.7 5.35% 62.6 3380.8  58.9 5.82% 
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Table 2.5. Experimental results for DSCSP instances of size 10 × 23 (left) and 50 × 50 (right). 
 

 
Instance 

 
LB 

 
𝑀! 

 
𝑀!! 

 
𝑀!! −𝑀!

𝑀!
 

 
𝑀! − 𝐿𝐵
𝑀!

 

 
Instance 

 
LB 

 
𝑀! 

 
𝑀!! 

 
𝑀!! −𝑀!

𝑀!
 

 
𝑀! − 𝐿𝐵
𝑀!

 

10x23L01 228.3 237.9 249.6 4.92% 4.04% 50x50L01 2496.9 2628.6 2676.6 1.83% 5.01% 
10x23L02 225.9 234.6 242.4 3.32% 3.71% 50x50L02 2471.7 2605.5 2659.8 2.08% 5.14% 
10x23L03 231.9 241.8 254.7 5.33% 4.09% 50x50L03 2500.5 2625.9 2661.9 1.37% 4.78% 
10x23L04 228.3 239.4 253.5 5.89% 4.64% 50x50L04 2490.9 2621.1 2667.3 1.76% 4.97% 
10x23L05 231.9 243.9 258.9 6.15% 4.92% 50x50L05 2492.1 2645.7 2689.2 1.64% 5.81% 
10x23L06 230.7 240.6 246.3 2.37% 4.11% 50x50L06 2514.9 2644.8 2692.5 1.80% 4.91% 
10x23L07 235.5 247.5 260.4 5.21% 4.85% 50x50L07 2505.3 2621.4 2658 1.40% 4.43% 
10x23L08 229.5 243 249.6 2.72% 5.56% 50x50L08 2472.9 2593.2 2632.8 1.53% 4.64% 
10x23L09 237.9 248.7 266.7 7.24% 4.34% 50x50L09 2494.5 2616 2668.5 2.01% 4.64% 
10x23L10 237.9 247.5 259.5 4.85% 3.88% 50x50L10 2489.7 2632.8 2684.4 1.96% 5.44% 
Average 231.8 242.5 254.2 4.80% 4.41% Average 2492.9 2623.5 2669.1 1.74% 4.98% 
10x23M01 264.3 278.1 281.4 1.19% 4.96% 50x50M01 2792.1 2902.5 2925 0.78% 3.80% 
10x23M02 259.5 273.6 280.8 2.63% 5.15% 50x50M02 2789.7 2899.2 2919.6 0.70% 3.78% 
10x23M03 263.1 274.8 283.2 3.06% 4.26% 50x50M03 2801.7 2902.5 2929.8 0.94% 3.47% 
10x23M04 260.7 272.4 279.6 2.64% 4.30% 50x50M04 2834.1 2944.8 2970 0.86% 3.76% 
10x23M05 269.1 279.9 284.4 1.61% 3.86% 50x50M05 2818.5 2915.7 2940.6 0.85% 3.33% 
10x23M06 265.5 279.3 285.6 2.26% 4.94% 50x50M06 2810.1 2918.4 2942.1 0.81% 3.71% 
10x23M07 264.3 274.8 277.2 0.87% 3.82% 50x50M07 2793.3 2915.7 2931 0.52% 4.20% 
10x23M08 255.9 264.3 272.4 3.06% 3.18% 50x50M08 2780.1 2912.4 2931.9 0.67% 4.54% 
10x23M09 261.9 273.6 279.6 2.19% 4.28% 50x50M09 2819.7 2940.9 2958 0.58% 4.12% 
10x23M10 261.9 273.6 274.8 0.44% 4.28% 50x50M10 2772.9 2889.6 2902.2 0.44% 4.04% 
Average 262.6 274.4 279.9 2.00% 4.30% Average 2801.2 2914.2 2935 0.72% 3.88% 
10x23H01 293.1 304.8 309.6 1.57% 3.84% 50x50H01 3208.5 3294 3300.3 0.19% 2.60% 
10x23H02 294.3 306.9 308.1 0.39% 4.11% 50x50H02 3188.1 3268.2 3287.4 0.59% 2.45% 
10x23H03 299.1 309.6 315.3 1.84% 3.39% 50x50H03 3196.5 3272.7 3279.6 0.21% 2.33% 
10x23H04 296.7 309.3 311.4 0.68% 4.07% 50x50H04 3167.7 3258.6 3273 0.44% 2.79% 
10x23H05 300.3 310.8 314.4 1.16% 3.38% 50x50H05 3186.9 3264.6 3277.8 0.40% 2.38% 
10x23H06 295.5 308.1 308.1 0.00% 4.09% 50x50H06 3216.9 3290.4 3302.4 0.36% 2.23% 
10x23H07 294.3 306.9 307.2 0.10% 4.11% 50x50H07 3204.9 3281.1 3289.2 0.25% 2.32% 
10x23H08 299.1 310.8 315.6 1.54% 3.76% 50x50H08 3201.3 3286.5 3297.6 0.34% 2.59% 
10x23H09 297.9 308.4 308.4 0.00% 3.40% 50x50H09 3189.3 3265.5 3277.8 0.38% 2.33% 
10x23H10 299.1 309.6 315.3 1.84% 3.39% 50x50H10 3165.3 3246.3 3256.2 0.30% 2.50% 
Average 296.9 308.5 311.3 0.91% 3.75% Average 3192.5 3272.8 3284.1 0.35% 2.45% 
Ovrl Avg. 263.8 275.2 281.8 2.57% 4.16% Ovrl Avg. 2828.9 2936.8 2962.8 0.93% 3.77% 
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Chapter 3: 
 

Triple-Spreader Crane Scheduling Problem 

 

3.1 Problem description  

This chapter discusses the triple-spreader crane scheduling problem (TSCSP). We define 

the TSCSP as follows. Consider the deck of a ship on which is placed a set of identically sized 

containers (blocks, items). Due to space limitations, these containers are placed directly on top of 

each other in a storage bay (i.e. bay) occupying no more than S stacks and T tiers. At time 0, there 

are 𝐸! containers in stack s (𝐸! ≤  T). The weight of the container in stack s, tier t is given by 𝑊!". 

Consider the problem of sequencing the lifts made by one crane that will remove all containers 

from the bay. This crane can operate in three modes: single-spreader, dual-spreader, or triple-

spreader mode. When in single-spreader mode, the crane may remove any single container from 

the top of any stack. This type of lift takes 𝐻# minutes. When in dual-spreader mode, the crane 

may simultaneously remove two containers in the same tier from the top of any two adjacent stacks 

as long as the sum of their weights does not exceed 𝐿$. This type of lift takes 𝐻$ minutes. When 

in triple-spreader mode, the crane may simultaneously remove three containers in the same tier 

from the top of any three adjacent stacks as long as the sum of their weights does not exceed L3. 

This type of lift takes 𝐻% minutes. Furthermore, the time required to change from operating in 𝑝-

spreader mode to operating in 𝑞-spreader mode—the spreader changeover time (i.e. changeover 

time)—is 𝐶&'  minutes (1 ≤ 𝑝, 𝑞 ≤ 3). The crane can begin in any mode at time 0 with no initial 

setup cost. The goal is to sequence the individual lifts and changeovers of the crane so as to 

minimize the total time needed to remove all containers from the bay. To make the problem 
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meaningful, we assume that S ≥ 3, 𝐻$ < 2𝐻#, 𝐻% < 3𝐻#, 𝐿$  < 2∗max{𝑊!"}, and 𝐿%  < 3∗max{𝑊!"}. 

Figure 3.1 shows an instance of the TSCSP. In this instance, S = 8, T = 3, 𝐸!" = 3 for all s, and the 

weights 𝑊!" of all containers in the bay are shown in the upper-left corner of the figure. In addition, 

we assume that 𝐿$ = 10, 𝐿% = 12, 𝐻# = 1.5, 𝐻$ = 1.8, 𝐻% = 2.2, and 𝐶&'  = 2.7 for all 𝑝 and 𝑞. Note 

that, even for this small instance, it is not easy to decide how the containers should be lifted. Figure 

3.1 shows a feasible crane lift sequence for this instance. This sequence consists of four dual-

spreader lifts followed by four single-spreader lifts and four triple-spreader lifts. Two changeovers 

between spreader modes take place, so the total time needed to empty the bay—the makespan—is 

4×1.8 + 4×1.5 + 4×2.2 + 2×2.7 = 27.4 minutes. We later show that this is not the optimal makespan 

for this instance. Note that, in Cheng et al. (2020), the authors prove that the multi-spreader crane 

scheduling problem (MSCSP) is NP-hard when the crane has three or more modes.  In particular, 

the TSCSP is NP-hard. 
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Figure 3.1. Feasible unloading sequence with makespan 27.4 minutes for a problem instance of 

size 3x8. 
 
 
3.2 Mathematical model 

We now present a math model of the TSCSP. To facilitate model development, we first 

convert the problem instance into two binary matrices: one indicating the legal dual-spreader lifts 

(𝐿2), and one indicating the legal triple-spreader lifts (𝐿3). Figure 3.2 depicts the conversion of 

the problem instance from Figure 3.1, where binary variables indicate whether a dual-spreader 
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(triple-spreader) lift could be performed on a pair (trio) of adjacent containers in the same tier. 

Without loss of generality, we use the left-most container in the set of adjacent containers to denote 

whether a legal dual-spreader or a triple-spreader lift can be performed within the given weight 

limit 𝐿$ or 𝐿%. For example, the top-left ‘0’ in Figure 3.2(a) indicates that the first and the second 

containers (from the left side) in the top tier cannot be dual-spreader lifted because their combined 

weight—12—exceeds 𝐿$ = 10. Also, the ‘1’ to the right of the top-left ‘0’ indicates that the second 

and the third containers (from the left) in the top tier can be dual-spreader lifted because their 

combined weight—7—does not exceed 𝐿$. Similarly, in Figure 3.2(b), the top-left ‘0’ indicates 

that the first, second, and third containers (from the left) in the top tier cannot be triple-spreader 

lifted because their combined weight—16—exceeds 𝐿% = 12. Also, the ‘1’ adjacent to the top-left 

‘0’ indicates that the second, third, and fourth containers (from the left) in the top tier can be triple-

spreader lifted because their combined weight—10—does not exceed 𝐿%. In the original problem 

instance and the binary matrices, we number the tiers 1, …, T from bottom to top and the stacks 1, 

…, S from left to right.  

 
 
 
 

 
 
 
 
 

 

 

 

 

Figure 3.2. Conversion of problem instance (left) into binary array showing (a) legal dual 

spreader lifts (upper-right) and (b) legal triple spreader lifts (lower-right) assuming L2 = 10 and 

L3 = 12. 

0 1 1 1 1 1   
0 1 1 1 1 1   
1 1 1 1 0 0   

0 1 1 1 1 1 1  
0 1 1 1 1 1 1  
1 1 1 1 1 0 0  9 3 4 3 2 1 4 5 

6 5 2 5 3 2 7 1 
4 3 5 3 3 5 8 5 

(a) 

(b) 

Tier 3 

Tier 2 

Tier 1 

Stack:    1       2      3      4      5     6      7      8 

L2 

L3 
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Our mathematical model, model TSCSP, discretizes time into intervals. During each time 

interval, at most one (single-spreader, dual-spreader, or triple-spreader) lift may occur. The 

duration of an interval is therefore 𝐻#, 𝐻$, or 𝐻% minutes depending on the type of operation 

performed. Between two consecutive intervals, at most one changeover may occur.  

Table 3.1 shows the indices, input parameters, and decision variables in model TSCSP. 

Input parameters S, T, 𝐸!, 𝐶&' and 𝐻&	were discussed in Section 3.1. Input parameters 𝐿2!" and 

𝐿3!" refer to values in the aforementioned binary matrices 𝐿2 and 𝐿3 respectively (Figure 3.2). 

Parameter I—the number of time intervals available for lifting containers—is conservatively set 

to S × T: the number of time intervals needed if the storage bay begins full and the crane only 

operates in single-spreader mode.  

Decision variables 𝑋!(, 𝑌!(, and 𝑍!( indicate the type of lift conducted during each time 

interval and above which stack(s) the lift is performed. Variable 𝑅"( indicates the tier (if any) from 

which containers are lifted during each time interval. Variable 𝐺&'( 	indicates if a changeover 

occurs between two consecutive time intervals. Variable 𝑁!(	tracks the height of the container 

stacks at the beginning of each time interval, and 𝐹( 	indicates whether the lifting is finished (= 1) 

or not (= 0) by the beginning of time interval i.  
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Table 3.1. Indices, input parameters, and decision variables in model TSCSP 
Indices 
s Stack (i.e. column) (s = 1, 2, …, S). 
t Tier (t = 1, 2, …, T). 
i Time interval (i = 1, 2, …, I, I+1). 
p, q Spreader type (p, q = 1, 2, or 3) (1 = single spreader; 2 = dual spreader; 3 = triple 

spreader). 
Input parameters 
S Number of stacks in the storage bay. S ≥ 3 to avoid triviality. 
T Number of tiers in the storage bay. 
I Number of time intervals available (= S × T to be conservative). 
Es Initial number of containers in stack s (integer, ≥ 0) (s = 1, 2, ..., S). 
Cpq Changeover time from spreader type p to spreader type q (minutes) (real, ≥ 0) (p, q = 1, 

2, or 3). 
Hp Handling time per lift using spreader type p (minutes) (real, ≥ 0) (p = 1, 2, or 3). 
L2st = 1 if the two containers occupying stacks s and s+1 in tier t can be lifted together using 

the dual spreader without violating the weight limit (binary) (s = 1, 2, …, S-1; t = 1, 2, 
…, T). 

L3st = 1 if the three containers occupying stacks s, s+1, and s+2 in tier t can be lifted together 
using the triple spreader without violating the weight limit (binary) (s = 1, 2, …, S-2; t = 
1, 2, …, T). 

Decision variables 
Xsi = 1 if a single-spreader lift is performed at the top of stack s during time interval i (binary) 

(s = 1, 2, …, S; i = 1, 2, …, I). 
Ysi = 1 if a dual-spreader lift is performed in which the left (right) spreader lifts the container 

that is on the top of stack s (s+1) during time interval i (binary) (s = 1, 2, …, S-1; i = 1, 
2, …, I). 

Zsi = 1 if a triple-spreader lift is performed in which the (left, center, right) spreader lifts the 
container that is on the top of stack (s, s+1, s+2) during time interval i (binary) (s = 1, 2, 
…, S-2; i = 1, 2, …, I). 

Gpqi = 1 if a changeover from spreader type p to spreader type q is made between time intervals 
i-1 and i (binary) (p, q = 1, 2, or 3; i = 2, 3, …, I). 

Fi = 1 if all containers have been removed from the bay by the beginning of time interval i 
(binary) (i = 1, 2, …, I+1). 

Nsi Number of containers in stack s at the beginning of time interval i (integer, ≥ 0) (s = 1, 
2, …, S; i = 1, 2, …, I+1). 

Rti = 1 if any container(s) is removed from tier t during time interval i (binary) (t = 1, 2, …, 
T; i = 1, 2, …, I). 
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Objective function:  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒   +                         (1) 

Subject to: 

                               i = 1, 2, …, I                                                    (2) 

                                                                                                                                       (3)  

                 

                                      i = 2, 3, …, I                                                 (4a) 

               

 

                 

                                      i = 2, 3, …, I                                                 (4b) 

              

   

                 

                                     i = 2, 3, …, I                                                  (5a) 

              

    

                 

                                     i = 2, 3, …, I                                                 (5b) 
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                                      i = 2, 3, …, I                                                 (6a) 

             

     

                 

                                      i = 2, 3, …, I                                                 (6b) 

         

         
                                                      i = 2, 3, …, I                                                  (7) 

                         i = 1, 2, …, I+1;  s = 1, 2, …, S                                                   (8) 

                                                                s = 1, 2, …, S                                                  (9) 

 
                                     i = 1, 2, …, I                                               (10a) 

                            i = 1, 2, …, I  (only applies if S = 3)          (10b) 
                    i = 1, 2, …, I  (only applies if S ≥ 4)          (10c) 

    i = 1, 2, …, I;  s = 3, 4, …, S-2                  (10d) 

 
                                                                              i = 1, 2, …, I    (only applies if S ≥ 4)        (10e) 

                             i = 1, 2, …, I                                               (10f) 

 

                                                i = 1, 2, …, I                                               (11a) 

                                       i = 1, 2, …, I  (only applies if S = 3)          (11b) 
                               i = 1, 2, …, I  (only applies if S ≥ 4)          (11c) 

               i = 1, 2, …, I;  s = 3, 4, …, S-2                   (11d) 

            i = 1, 2, …, I  (only applies if S ≥ 4)           (11e) 

                                        i = 1, 2, …, I                                                (11f) 
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                                                       i = 1, 2, …, I                                                  (12) 

          i = 1, 2, …, I;  s = 1, 2, …, S                      (13a)  

             i = 1, 2, …, I;  s = 1, 2, …, S-1                    

          i = 1, 2, …, I;  s = 1, 2, …, S-1 

 

           i = 1, 2, …, I;  s = 1, 2, …, S-2 

        i = 1, 2, …, I;  s = 1, 2, …, S-2                    (13c) 

        i = 1, 2, …, I;  s = 1, 2, …, S-2 

 
                         i = 1, 2, …, I;  s = 1, 2, …, S-1;  t = 1, 2, …, T                   (14a) 

                        i = 1, 2, …, I;  s = 1, 2, …, S-2;  t = 1, 2, …, T                    (14b) 
 

         i = 1, 2, …, I-1                                  (15)                                                                                                
 

 

The objective function (1) minimizes the makespan, M, which is the sum of the container 

handling and spreader changeover times. Constraint (2) ensures that at most one lift is performed 

during each time interval i; if no lift is made, then the “finished” binary variable 𝐹( should equal 

1. Constraint (3) ensures that the process of removing containers from the bay is finished by the 

end of the last time interval. Constraint (4a) forces a changeover to happen when switching from 

single-spreader to dual-spreader mode. This constraint has three expressions with the following 

structure: A + B − 1 ≤ C; C + A − 1 ≤ B; and B + C − 1 ≤ A. These expressions ensure that if any 

two of the binary terms A, B, and C equal 1, then the third term equals 1. Term A indicates if a 
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single-spreader lift is made during time interval i−1; B indicates if a changeover from single-

spreader to dual-spreader mode is made between time intervals i−1 and i; and C indicates if a dual-

spreader lift is made during time interval i. Constraint (4b) is the same as (4a) except that it 

considers the switch from dual-spreader to single-spreader mode. Constraints (5a-5b) work just 

like (4a-4b) but instead consider the switch between single-spreader and triple-spreader mode. 

Constraints (6a-6b) work just like (4a-4b) but instead consider the switch between dual-spreader 

and triple-spreader mode. Constraint (7) ensures that at most one changeover is performed between 

any two time intervals. 

Constraint (8) sets 𝐹( = 0 when any 𝑁!( ≠ 0, i.e. when at least one stack is non-empty. 

Constraint (9) initializes the stack heights at the start of the first time interval. Constraints (10a-

10f) update the stack heights based on the lifts made during each time interval. Constraints (11a-

11f) ensure that no lift is made from an empty stack. Constraint (12) ensures that containers are 

not removed from any tier during any time interval after the lifting is finished. Also, while the 

lifting is not finished, containers are removed from exactly one tier during each time interval. 

Constraint (13a) enforces the physical limitation that a single-spreader lift can only be made from 

the top tier of a stack. This “sandwich” constraint is of the form Left ≤ Middle ≤ Right. If 𝑋!( = 0, 

Left is very negative and Right is very positive, so there is no meaningful constraint on Middle. If 

𝑋!( = 1, Left = Right = 0, so Middle must equal 0, i.e. the tier from which containers are removed 

must equal the height of the stack from which containers are removed (𝑁!(). Constraint (13b), 

similar to (13a), enforces the physical limitation that a dual-spreader lift can only be made from 

the top tier of two adjacent stacks. This constraint also requires the heights of these two adjacent 

stacks to be equal. Constraint (13c), similar to (13b), enforces the physical limitation that (i) a 

triple-spreader lift can only be made from the top tier of three adjacent stacks and (ii) the heights 
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of these three adjacent stacks must be equal. Constraints (14a-14b) ensure that dual- and triple-

spreader lifts do not violate the weight-limit-respecting binary values in matrices 𝐿2	and 

𝐿3	respectively. Finally, constraint (15) ensures that no lifts are made during time interval i+1 if 

no lifts are made during interval i. In other words, the crane can never transition from an idle state 

to a non-idle state. This constraint is redundant but helps the solver find an optimal solution more 

quickly. 

 

3.3 Genetic algorithm (GA)  

We developed a genetic algorithm for attacking large instances of the TSCSP. A genetic 

algorithm (GA) is one the most commonly used metaheuristic techniques. Like other 

metaheuristics, it sacrifices optimality for quicker and more efficient results. GAs are easy to 

implement and have lots of potential to be applied to different problem types and optimization 

problems with nonlinear objective functions and/or constraints (Ezugwu et al. 2020). GAs can be 

faster than other algorithms if the implementation is done correctly and efficiently. In the TSCSP, 

the chromosome representation we use is a great match for GA. Mutation and crossover operations 

can be done without the concern of infeasibility. However, GAs have some limitations such as 

getting stuck in a local optimum (Fernández 2018). Since GAs don’t have a termination criterion, 

we use a time limit to terminate our GA.  

In the GA we developed for the TSCSP, each feasible solution is represented by a 

chromosome consisting of a sequence of T genes (g1, g2, g3, …, gT)—where gt is the gene for tier 

t. The gene for tier t specifies how each container in tier t is handled. In other words, gt specifies 

which containers are single-, dual-, and triple-spreader lifted in tier t. The fitness (i.e. objective 

value, makespan) of a chromosome is computed by (a) forming a feasible crane lift sequence that 
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agrees with its genes and (b) evaluating the makespan of this sequence. The setup and procedure 

of our GA is summarized in Tables 3.2, 3.3, and 3.4 and Figures 3.3, 3.4, and 3.5. Table 3.2 and 

Figures 3.3 and 3.4 show how the genes and chromosomes are constructed. Tables 3.3 and 3.4 

show the two methods we use for evaluating chromosome fitness. Figure 3.5 shows the overall 

GA procedure. A detailed discussion of the GA now follows.  

 

3.3.1 Tier options  

Significant preliminary work is performed before the GA procedure commences. This 

work consists of creating a predefined set of lifting options (i.e. tier options, options, genes) for 

each tier of the instance at hand. A lifting option for tier t specifies which containers are single-, 

dual-, and triple-spreader lifted in tier t. The options for tier t, for each t from 1 to T, are created 

by solving variations of the tier t sub-problem, i.e. the single-tier TSCSP formed by considering 

only the containers in tier t in the original TSCSP and ignoring spreader changeover costs.  

Table 3.2 shows our math model—model TSCSP-Sub—of the tier t sub-problem. The 

objective function (16) minimizes total container handling time. Constraints (17-22) ensure that 

(a) exactly one lift is made in stack s if there is a container in stack s and (b) no lift is made in stack 

s if there is no container in stack s. Constraints (23-24) ensure that the dual- and triple-spreader 

lifts do not violate the binary values in matrices 𝐿2	and 𝐿3	respectively. An optimal solution to 

model TSCSP-Sub can be obtained within a few seconds using standard integer programming 

software when S ≤ 50.  
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Table 3.2. Indices, input parameters, and decision variables in math model TSCSP-Sub. 
 

Indices 

s Stack (s = 1, 2, …, S). 

p Spreader type (p = 1, 2, or 3) (1 = single spreader; 2 = dual spreader; 3 = triple spreader). 

Input parameters 

t Tier under consideration. 

S Number of stacks in the storage bay. 

Es 

 

= 1 if there is a container in stack s and tier t in the original TSCSP instance (binary) 

(s = 1, 2, ..., S). 

Hp Handling time per lift using spreader type p (minutes) (real, ≥ 0) (p = 1, 2, or 3). 

L2st = 1 if the two containers occupying stacks s and s+1 in tier t in the original TSCSP 

instance can be lifted together in dual-spreader mode without violating the weight limit 

(binary) (s = 1, 2, …, S-1). 

L3st = 1 if the three containers occupying stacks s, s+1, and s+2 in tier t in the original 

TSCSP instance can be lifted together in triple-spreader mode without violating the 

weight limit (binary) (s = 1, 2, …, S-2). 

Decision Variables 

Xs = 1 if a single-spreader lift is performed in stack s (binary) (s = 1, 2, …, S). 

Ys = 1 if a dual-spreader lift is performed in which the left (right) spreader lifts the 

container in stack s (s+1) (binary) (s = 1, 2, …, S-1). 

Zs = 1 if a triple-spreader lift is performed in which the (left, center, right) spreader lifts 

the container in stack (s, s+1, s+2) (binary) (s = 1, 2, …, S-2). 

 

Objective: 

Minimize: ∑ 𝐻#𝑋! +*
!+# ∑ 𝐻$𝑌! +*,#

!+#  ∑ 𝐻%𝑍!*,$
!+#                                                   (16) 

 

Constraints: 

𝑋# + 𝑌# + 𝑍# = 𝐸#
  (17) 

𝑋$ + 𝑌# + 𝑌$ + 𝑍# = 𝐸$
 (𝑜𝑛𝑙𝑦	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑖𝑓	𝑆	 = 	3) (18) 

𝑋$ + 𝑌# + 𝑌$ + 𝑍# + 𝑍$ = 𝐸$
 (𝑜𝑛𝑙𝑦	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑖𝑓	𝑆	 ≥ 	4) (19) 
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𝑋! + 𝑌!,# + 𝑌! + 𝑍!,$ + 𝑍!,# + 𝑍! = 𝐸!
 𝑓𝑜𝑟	𝑠	 = 	3, 4, … , 𝑆 − 2. (20) 

𝑋*,# + 𝑌*,$ + 𝑌*,# + 𝑍*,% + 𝑍*,$ = 𝐸*,#
 (𝑜𝑛𝑙𝑦	𝑎𝑝𝑝𝑙𝑖𝑒𝑠	𝑖𝑓	𝑆	 ≥ 	4) (21) 

𝑋* + 𝑌*,# + 𝑍*,$ = 𝐸*
  (22) 

𝑌! ≤ 𝐿2*"
 𝑓𝑜𝑟	𝑠	 = 	1, 2, … , 𝑆 − 1 (23) 

𝑍! ≤ 𝐿3*"
 𝑓𝑜𝑟	𝑠	 = 	1, 2, … , 𝑆 − 2 (24) 

 

 

The lifting options we create are divided into four categories: options in which (1) at least 

one dual-spreader and at least one triple-spreader lift is made; (2) at least one dual-spreader lift but 

no triple spreader lift is made; (3) at least one triple-spreader lift but no dual-spreader lift is made; 

and (4) no dual spreader or triple-spreader lifts are made in that tier. The options in category (1, 2, 

3, 4) are created by solving math program TSCSP-Sub (Table 3) with the additional constraints 

(b+d, b+c, a+d, a+c) shown in equation (25) below: 

 

∑ 𝑌! = 0	*,#
!+#   (a);     ∑ 𝑌! ≥ 1	*,#

!+#   (b);     ∑ 𝑍! = 0	*,$
!+#   (c);     ∑ 𝑍! ≥ 1	*,$

!+#   (d)          (25).    

  

For each combination of category and tier, we identify the 

Max#OptionsPerCategoryPerTier best lifting options—having the lowest makespans—by 

repeatedly solving math program TSCSP-Sub and adding the constraint “sum of (the 𝑋!, 𝑌!, and 

𝑍! variables that equaled one in the previous optimal solution) ≤ (the number of 𝑋!, 𝑌!, and 𝑍! 

variables that equaled one in the previous optimal solution) – 1” to the model after each new 

optimal solution is found. Spreader changeover costs are ignored when the makespan is computed. 

Fewer than Max#OptionsPerCategoryPerTier options are constructed for a given tier and category 

if the number of feasible solutions is less than this value.  
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The left half of Figure 3.3 shows a partial list of the feasible tier option for each tier for the 

problem instance from Figures 3.1 and 3.2. The options for each tier t have been categorized and 

numbered from 1 to numOptions(t) where numOptions(t) is the total number of options created for 

tier t. Note that a total of (24, 44, and 44) options have been created for tier (1, 2, 3). In tier 1, (6, 

12, 5, 1) options have been created for category (1, 2, 3, 4). In tier 2, (15, 20, 8, 1) options have 

been created for category (1, 2, 3, 4). The number of options created for each category in tier 3 

equals that in tier 2 because 𝐿2	and 𝐿3	have identical values in these two tiers (Figure 3.2). Within 

each category, the tier options are ordered from best to worst. For example, tier 1 option 7 has a 

lower makespan than tier 1 option 8, and tier 1 option 19 has a lower makespan than tier 1 option 

20. Note that the number of feasible options in category 1, 2, or 3 for a given tier could range from 

0 (if no feasible options exist) to millions (if S is large). However, there is always exactly one 

feasible option in category 4 for each tier.  
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Figure 3.3. Example 1 of GA chromosome formation and objective value computation. 

At least 1 double & 1 triple lift 
1   (S, T, T, T, D, D, D, D)  Objective = 7.3 
2   (S, D, D, D, D, T, T, T)  Objective = 7.3 . . . 
At least 1 double & no triples lift 
16 (S, D, D, D, D, D, D, S)  Objective = 8.4 
17 (S, S, D, D, D, D, D, D)  Objective = 8.4 . . . 
At least 1 triple & no doubles lift 
37 (S, S, T, T, T, T, T, T)    Objective = 7.4 
38 (S, T, T, T, T, T, T, S)    Objective = 7.4 . . . 
No doubles and no triples lift 
44 (S, S, S, S, S, S, S, S)      Objective = 12 
 

At least 1 double & 1 triple lift 
1   (S, T, T, T, D, D, D, D)  Objective = 7.3 
2   (S, D, D, D, D, T, T, T)  Objective = 7.3 . . . 
At least 1 double & no triples lift 
16 (S, D, D, D, D, D, D, S)  Objective = 8.4 
17 (S, D, D, D, D, S, D, D)  Objective = 8.4 . . . 
At least 1 triple & no doubles lift 
36 (S, S, T, T, T, T, T, T)    Objective = 7.4 
37 (S, T, T, T, T, T, T, S)    Objective = 7.4 . . . 
No doubles and no triples lift 
44 (S, S, S, S, S, S, S, S)      Objective = 12 
 
 

At least 1 double & 1 triple lift 
1   (D, D, T, T, T, S, S, S)    Objective = 8.5 
2   (T, T, T, D, D, S, S, S)    Objective = 8.5 . . . 
At least 1 double & no triples lift 
7  (D, D, D, D, D, D, S, S)   Objective = 8.4 
8  (S, D, D, S, D, D, S, S)    Objective = 9.6 . . . 
At least 1 triple & no doubles lift 
19 (T, T, T, T, T, T, S, S)    Objective = 7.4 
20 (T, T, T, S, S, S, S, S)     Objective = 9.7 
21 (S, T, T, T, S, S, S, S)     Objective = 9.7 . . . 
No doubles and no triples lift 
24 (S, S, S, S, S, S, S, S)       Objective = 12 
 

T T T 

Initial spreader = D 
4 double lifts = 4*1.8min 
Changeover = 2.7 min 

4 triple lifts = 4*2.2 
min 
 Makespan: 27.4 min 

S 
S 
T T T S S 

T T 
T T 
T T T 

T 
T 

Problem 
Instance 

Tier 3 Options (Categorized & Ranked) 

Tier 2 Options (Categorized & Ranked) 

Tier 1 Options (Categorized & Ranked) 

1 
1 
19 

S T T T D D D D 
S T T T D D D D 
T T T T T T S S 

Chromosome (19, 1, 1) 

T T T 
T T T 
T T T 

9 3 4 3 2 1 4 5 
6 5 2 5 2 7 1 
4 3 5 3 3 5 8 5 

3 

4 single lifts = 4*1.5min 
Changeover = 2.7min 
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3.3.2 Chromosome composition and fitness computation  

A chromosome (g1, g2, g3, …, gT) consists of a sequence of T tier options or genes—one 

for each tier—where gt is the tier option number used for tier t. The middle-right portion of Figure 

3.3 shows chromosome (19, 1, 1) for the instance at hand. Here, option 19 is used for tier 1; option 

1 is used for tier 2; and option 1 is used for tier 3. This is a greedy chromosome because it combines 

the best (i.e. least cost) options for the individual tiers (ignoring changeover costs). Note that this 

would be an optimal solution if all changeover costs were zero. The middle-right portion of Figure 

3.4 shows chromosome (21, 37, 37) for the same instance. Here, option 21 is used for tier 1; option 

37 is used for tier 2; and option 37 is used for tier 3.  

Chromosome fitness is computed by (a) finding a feasible crane lift sequence that agrees 

with the lift type of each container—single-spreader, dual-spreader, or triple-spreader—specified 

by the chromosome and then (b) evaluating the makespan of this sequence. To eliminate dominated 

solutions, we require in each feasible crane lift sequence that the use of a given spreader mode 

continues until no more containers matching that spreader mode can be feasibly lifted from the top 

of any stack.  
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At least 1 double & 1 triple lift 
1   (S, T, T, T, D, D, D, D)   Objective = 7.3 
2   (S, D, D, D, D, T, T, T)   Objective = 7.3 . . . 
At least 1 double & no triples lift 
16 (S, D, D, D, D, D, D, S)   Objective = 8.4 
17 (S, S, D, D, D, D, D, D)   Objective = 8.4 . . . 
At least 1 triple & no doubles lift 
36 (S, S, T, T, T, T, T, T)     Objective = 7.4 
37 (S, T, T, T, T, T, T, S)     Objective = 7.4 . . . 
No doubles and no triples lift 
44 (S, S, S, S, S, S, S, S)       Objective = 12 
 

At least 1 double & 1 triple lift 
1   (S, T, T, T, D, D, D, D)   Objective = 7.3 
2   (S, D, D, D, D, T, T, T)   Objective = 7.3 . . . 
At least 1 double & no triples lift 
16 (S, D, D, D, D, D, D, S)  Objective = 8.4 
17 (S, D, D, D, D, S, D, D)  Objective = 8.4 . . . 
At least 1 triple & no doubles lift 
36 (S, S, T, T, T, T, T, T)     Objective = 7.4 
37 (S, T, T, T, T, T, T, S)     Objective = 7.4 . . . 
No doubles and no triples lift 
44 (S, S, S, S, S, S, S, S)      Objective = 12 
 
 

At least 1 double & 1 triple lift 
1   (D, D, T, T, T, S, S, S)    Objective = 8.5 
2   (T, T, T, D, D, S, S, S)    Objective = 8.5 . . . 
At least 1 double & no triple lift 
7  (D, D, D, D, D, D, S, S)   Objective = 8.4 
8  (S, D, D, S, D, D, S, S)    Objective = 9.6 . . . 
At least 1 triple & no doubles lift 
19 (T, T, T, T, T, T, S, S)     Objective = 7.4 
20 (T, T, T, S, S, S, S, S)     Objective = 9.7 
21 (S, T, T, T, S, S, S, S)     Objective = 9.7 . . . 
No doubles and no triples lift 
24 (S, S, S, S, S, S, S, S)       Objective = 12 
 

S S 
S S 
S S S S S 

Initial Spreader = T 
5 Triple Lifts = 5*2.2min 
Changeover = 2.7 min 

9 Single Lifts = 9*1.5min 
 

Makespan: 27.2 min (Optimal) 

S 
S 
S 

S 
S 

S S S S 

T T T T 
T T T T T 
T T T 

T T 
T 

Problem Instance 

Tier 3 Options (Categorized & Ranked) 

Tier 2 Options (Categorized & Ranked) 

Tier 1 Options (Categorized & Ranked) 
37 
37 
21 

9 3 4 3 2 1 4 5 
6 5 2 5 3 2 7 1 
4 3 5 3 3 5 8 5 

Chromosome (21, 37, 37) 

Figure 3.4. Example 2 of GA chromosome formation and objective value computation. 
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Note that the makespan equals (i) total handling time plus (ii) total spreader changeover 

time. Item (i) is already given by the chromosome, so the challenge is to compute (ii). Note that a 

crane lift sequence for a given chromosome can be summarized by a spreader mode sequence 𝑀#-

𝑀$-𝑀%- … where 𝑀- 	is the spreader mode used during phase j of the lifting. The value of 𝑀- is (S, 

D, T) when the crane operates in (single-spreader, dual-spreader, triple-spreader) mode 

respectively. For example, the crane lift sequence shown beneath chromosome (19, 1, 1) in Figure 

3.3 is summarized by the spreader mode sequence D-S-T. According to this sequence, the crane 

first operates in dual-spreader mode, then in single-spreader mode, and then in triple-spreader 

mode. In each mode, the crane lifts as many containers as possible from the tops of the stacks 

without violating the chromosome values and the need to keep containers that are part of the same 

multi-spreader lift together. If 𝐶&'= 2.7 for all p and q, then sequence D-S-T is the most efficient 

spreader mode sequence for this chromosome because it empties the bay after only three phases 

(i.e. two changeovers). No other spreader mode sequence is this efficient. On the other hand, T-S-

T-D-T-S is an inefficient spreader mode sequence for this chromosome. This sequence has six 

phases (i.e. five changeovers): two triple lifts are performed, then two single lifts, then one triple 

lift, then four dual lifts, then one triple lift, and then two single lifts.  

The above discussion shows that, for each chromosome, care must be taken to find a good 

spreader mode sequence in which the total changeover time is minimized to the extent possible. 

Keeping this in mind, we developed two methods—a branch-and-bound method and greedy 

method—to compute the total changeover time associated with a given chromosome.  

Table 3.3 shows the logic in the branch-and-bound method. This method identifies an 

optimal spreader mode sequence upon termination. The method works by building up spreader 

mode subsequences one phase at a time. It begins with three subsequences, each with a single 
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phase: S, D, and T (line 5). Only subsequences that are feasible—having at least one lift performed 

during each phase of the subsequence—are extended to form longer subsequences. Each feasible 

subsequence is branched, i.e. extended in two ways, corresponding to the two spreader modes that 

can theoretically follow the mode which ends the subsequence. Eventually, one subsequence will 

be finished, i.e. will result in an empty bay, and the total changeover time for this subsequence is 

stored in the variable minChangeoverCost (line 25). This value establishes an upper bound which 

is used to eliminate any unfinished subsequence s from consideration whose associated total 

changeover costs is already greater than minChangeoverCost. Every time a new subsequence is 

finished, minChangeoverCost is updated if necessary (lines 23-25). The process continues until 

there are no more unfinished subsequences s such that costs is less than minChangeoverCost. Upon 

termination, minChangeoverCost is the optimal total changeover time. Lines 9-22 in Table 3.3 

show the procedure for computing the total changeover time of each spreader mode subsequence 

and identifying which subsequences are feasible and/or finished. Lines 26-41 show the procedure 

for branching each feasible, unfinished, N-phase subsequence into two (N+1)-phase subsequences. 

The fitness value of a chromosome equals (i) the total handling time plus (ii) the final value of 

minChangeoverCost. 
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Table 3.3. Branch-and-bound method for computing the total spreader changeover cost of a chromosome. 
 
1   Convert chromosome (g1, g2, …, gT) into ContainerArray, an 𝑆 × 𝑇 array that indicates the spreader mode 

used to lift each container (“1” indicates single-spreader mode, “2” indicates dual-spreader mode, “3” 
indicates triple-spreader mode.  

2   Let S = 3 = number of spreader mode sequences currently being investigated. 
3   Let N = 1 = length of each sequence currently being investigated (i.e. the number of spreader phases in each 

subsequence). 
4   Let Msn = spreader mode used (1, 2, or 3) during nth phase of subsequence s (for all s = 1 to S and all n = 1 to 

N). 
5   Initially M11 = 1, M21 = 2 and M31 = 3. 
6   Let minChangeoverCost = ∞ 
7   Let done = true 
8   while done = false do 
9         for s = 1 to S do 
10            Restore ContainerArray to its original form 
11            Let finisheds = false, feasibles = true, and costs = 0. 
12            Let n = 1 
13            while n ≤ N and feasibles = true do 
14                   if n ≥ 2 then 
15                          costs = costs + 𝐶("!,#$%),("!#) 

16                   Lift as many containers as possible from top of the 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝐴𝑟𝑟𝑎𝑦 using spreader Msn,    
ensuring that containers that are supposed to be part of the same multi-spreader lift are kept 
together. 

17                   Let liftsn = the number of lifts made. 
18                   if liftsn = 0 then  
19                          feasibles = false 
20           else if there are no more containers in ContainerArray then 
21 finisheds = true 
22                   n = n+1 
23       for s = 1 to S do 
24            if finisheds = true and costs < minChangeoverCost then 
25     minChangeoverCost = costs 
26      done = true 
27      Let p = 1 
28      for s = 1 to S do 
29     if finisheds = false and feasibles = true and costs < minChangeoverCost then 
30                    done = false 
31                    for n = 1 to N do 
32                          Qpn = Qp+1,n = Msn 
33                     if MsN = 1 then Qp,N+1 = 2 and Qp+1,N+1 = 3 
34                     else if MsN = 2 then Qp,N+1 = 1 and Qp+1,N+1 = 3 
35                     else if MsN = 3 then Qp,N+1 = 1 and Qp+1,N+1  = 2 
36                      p = p + 2 
37       N = N+1 
38       S = p-1 
39      for s = 1 to S do 
40            for n = 1 to N do 
41        Msn = Qsn  
42  output minChangeoverCost 
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Table 3.4 shows the logic in the greedy method. This method constructs a spreader mode 

sequence one phase at a time. The spreader mode used in the next phase is the mode that can lift 

the greatest number of containers from the bay. This method is not guaranteed to find the minimum 

total changeover time but uses much less computation time than the branch-and-bound method. In 

this method, the fitness value of a chromosome equals (i) the total handling time plus (ii) the final 

value of changeoverCost (lines 3, 35).  
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Table 3.4. Greedy method for computing the total spreader changeover cost of a chromosome. 
 

1   Convert chromosome (g1, g2, …, gT) into ContainerArray, an 𝑆 × 𝑇 array that indicates the spreader 
mode used to lift each container (“1” indicates single-spreader mode, “2” indicates dual-spreader mode, 
“3” indicates triple-spreader mode. 

2    Let currMode Î{1,2,3} be the spreader mode that can lift the greatest number of containers from the 
top of ContainerArray. Ties are broken arbitrarily. 

3    Let changeoverCost = 0 
4    while there’s at least one “1”, “2” or “3” in ContainerArray (i.e. while at least one container is still 

present) 
5          Lift as many unblocked containers as possible from the top of ContainerArray using spreader mode 

currMode 
6          if there are no more containers in ContainerArray 
7  Go to line 35 
8          if currMode = 1 
9                Let 𝑁%	= number of containers that can now be lifted from the top of ContainerArray using 

spreader mode 2 
10              Let 𝑁& 	= number of containers that can now be lifted from the top of ContainerArray using 

spreader mode 3 
11              if 𝑁% ≥  𝑁& then 
12                      𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 2 
13              changeoverCost = changeoverCost + C12 
14              else 
15                      𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 3 
16       changeoverCost = changeoverCost + C13 

17        else if currMode = 2 
18               Let 𝑁'	= number of containers that can now be lifted from the top of ContainerArray using 

spreader mode 1 
19              Let 𝑁& 	= number of containers that can now be lifted from the top of ContainerArray using 

spreader mode 3 
20              if 𝑁' ≥  𝑁& then 
21                      𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 1 
22              changeoverCost = changeoverCost + C21 
23              else 
24                      𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 3 
25                       changeoverCost = changeoverCost + C23 

26        else if currMode = 3 
27  Let 𝑁'	= number of containers that can now be lifted from the top of ContainerArray using 

spreader mode 1 
28              Let 𝑁%	= number of containers that can now be lifted from the top of ContainerArray using 

spreader mode 2 
29              if 𝑁' ≥  𝑁% then 
30                      𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 1 
31                       changeoverCost = changeoverCost + C31 
32              else 
33                      𝑐𝑢𝑟𝑟𝑀𝑜𝑑𝑒 = 2 
34                       changeoverCost = changeoverCost + C32 

35  output changeoverCost 
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The bottom-right portion of Figures 3.3 and 3.4 show the fitness evaluation of 

chromosomes (19, 1, 1) and (21, 37, 37) respectively. In Figure 3.3, the branch-and-bound method 

is used; this method yields a spreader mode sequence of D-S-T which produces a total makespan 

of 27.4 minutes. The greedy method applied to this chromosome would have resulted in a spreader 

mode sequence of D-T-S-T and a makespan of 30.1 minutes. In Figure 3.4, both fitness evaluation 

methods result in a makespan of 27.2 minutes. Note that the chromosome in Figure 3.4 has a better 

makespan than the one in Figure 3.3 even though its tier options are each inferior to those in Figure 

3.3. Chromosome (21, 37, 37) achieves the optimal makespan for this instance: 27.2 minutes.  

 

3.3.3 GA procedure  

Figure 3.5 shows the overall GA procedure. The first step is to use the method from Section 

3.3.1 to generate the options (i.e. genes) for each tier t from 1 to T. Each option in tier t is numbered 

from 1 to numOptions(t) where numOptions(t) is the total number of options created for tier t (see 

left side of Figures 3.3 and 3.4). The second step is to build N chromosomes in the first generation. 

In each such chromosome, the gene for tier t is a random integer from 1 to numOptions(t).  
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Has the time 
limit been 
reached? 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

No 

Yes 

Forming new generation 

Yes 

•  For each tier t from 1 to T, use the method from Section 3.3.1 to generate tier 
options in 4 categories: (a) at least 1 D & 1 T lift, (b) at least 1 D & no T lift, (c) 
at least 1 T & no D lift, and (d) no D & no T lift. 

• The options in tier t are numbered from 1 to numOptions(t) where numOptions(t) 
is the total number of options for tier t (see left side of Figures 3.3 and 3.4). 

• Build first generation consisting of N randomly generated chromosomes. 
• In each chromosome, the gene used for tier t is a random integer from 1 to 
numOptions(t). 

• The chromosomes must not be identical. 

Use branch-and-bound method to 
calculate the makespan of each 
chromosome in current generation 

Use greedy method to calculate 
the makespan of each 

chromosome in current generation 

Sort chromosomes in current generation based on their makespan 

Copy 𝑵𝟎 best 
chromosomes to 
next generation 

• Select a random chromosome in 
current generation, mutate it and 
add it to next generation if it is 
not identical to any chromosome 
in the next generation. 

• Repeat until 𝑵𝟏mutated 
chromosomes are added to the 
next generation. 

• Select 2 chromosomes and 
perform a crossover to generate 2 
children. 

• Parent selection probability is 
proportional to its ranking in the 
current generation (N is the best 
chromosome). 

• Repeat until 𝑵𝟐 children are added 
to the next generation. 

Copy next generation into current generation 

Display best chromosome 
found, its makespan, and 

the associate crane lift 
sequence. 

No 

Figure 3.5. Overall logic of genetic algorithm. 

Is the instance 
10 x 23 or 
smaller? 
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The iterative portion of the GA commences immediately after the first generation of 

chromosomes is formed. In step A of each iteration, the makespan (i.e. fitness) of each 

chromosome in the current generation is evaluated. This is done using the greedy (branch-and-

bound) method from Section 3.3.2 if the initial storage bay has more (no more) than 230 containers. 

In step B, the chromosomes are sorted based on their makespans.  

In step C, the 𝑁/	best chromosomes in the current generation are copied into the next 

generation. In step D, 𝑁#	mutated chromosomes are created and added to the next generation. Each 

mutated chromosome is formed by selecting a random chromosome in the current generation and 

then, for each t from 1 to T, changing its tier t gene to a new, random tier t gene with probability 

mProb. In step E, parent chromosomes from the current generation are mated, and a total of 𝑁$ (= 

𝑁 – 𝑁/– 𝑁#) children are added to the next generation. In each crossover operation, two parent 

chromosomes (g11, g12, g13, …, g1T) and (g21, g22, g23, …, g2T) are mated—forming two 

children—by performing a crossover operation at a random position p (1 ≤ p ≤ T-1) in the parent 

chromosomes. Random variable p follows a discrete uniform distribution with minimum value 1 

and maximum value T-1. The resulting children are (g11, …, g1p, g2(p+1), …, g2T) and (g21, …, 

g2p, g1(p+1), …, g1T). Each parent’s selection probability is proportional to its fitness ranking in 

current generation where the chromosome in the current generation with the lowest (highest) 

makespan (ties are broken randomly) has ranking N (1). Unless it is impossible to do so (i.e. unless 

there are fewer than N unique chromosomes), we require that every chromosome in each 

generation be unique. When a predefined time limit is reached, the GA procedure terminates and 

the best chromosome that has been found—and its corresponding makespan and crane lift 

sequence—is displayed. 

 



 70 

3.4 Lower bound computation  

We compute a lower bound on the TSCSP’s optimal objective value as follows. First, we 

use math model TSCSP-Sub (Table 3.2) to find the best option in each category for each tier t from 

1 to T (Section 3.3.1). The best option in category (1, 2, 3, 4) is created by solving math program 

TSCSP-Sub (Table 3.2) with the additional constraints (b+d, b+c, a+d, a+c) shown in (25). Let 

Subtc be the optimal objective value for problem TSCSP-Sub when tier t category c is considered. 

We assume this is +∞ if the problem is infeasible. Also, let N1tc be the total number of single-

spreader lifts made in the optimal solution to problem TSCSP-Sub when tier t category c is 

considered. This variable is undefined if the problem is infeasible.  

We use Subtc and N1tc to compute four lower bounds—LB1, LB2, LB3, LB4—where LBy is 

a lower bound on the best makespan among the type y feasible solutions (i.e. crane lift sequences). 

A type 1 feasible solution has at least one dual-spreader and at least one triple-spreader lift. A type 

2 (3) feasible solution has at least one dual-spreader (triple-spreader) lift but no triple-spreader 

(dual-spreader) lifts. A type 4 feasible solution has no dual-spreader and no triple-spreader lifts. 

These solution types encompass all feasible solutions, so 𝐿𝐵	 = 	𝑚𝑖𝑛{𝐿𝐵#, 𝐿𝐵$, 	𝐿𝐵%, 	𝐿𝐵0} is a 

lower bound on the optimal value of the TSCSP.  

 

The values LB1, LB2, LB3, LB4 are computed as follows:  

                    T 

LB1 = å(min c {Subtc }) + min{C12+C23, C13+C32, C21+C13, C23+C31, C31+C12, C32+C21} 
                t =1 

         if N1tc > 0 for any (t,c) (t = 1…T, c = 1…4) in which Subtc = min{Subt1, Subt2, Subt3, Subt4}           (26a) 
                    T 

       = å(min c {Subtc }) + min{C23, C32} 
                t =1 

       if N1tc = 0 for all (t,c) (t = 1…T, c = 1…4) in which Subtc = min{Subt1, Subt2, Subt3, Subt4}              (26b) 
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                    T 

LB2 = å(min{ Subt 2 , Subt 4 }) + min{C12, C21} if N1t2 > 0 for any t from 1 to T                       (27a) 
                 t =1 

                     T 

       =  å Subt 2 if N1t2 = 0 for all t from 1 to T                        (27b) 
                  t =1 
 
                   T 

LB3 = å(min{ Subt3 , Subt4 }) + min{C13, C31} if N1t3 > 0 for any t from 1 to T                       (28a) 
                t =1 

                     T 

       =  å Subt 3 if N1t3 = 0 for all t from 1 to T                        (28b) 
                  t =1 
 
                     T 

LB4 =  å Subt 4                                                                                                                                                                                                                                (29) 
                  t =1 

 

Equation (26a) refers to the case in which all three spreader modes are used. Equation (26b) 

refers to the case in which dual-spreader and triple-spreader modes are used but single-spreader 

mode is not used. Equation (27a) refers to the case in which single-spreader and dual-spreader 

modes are used but triple-spreader mode is not used. Equation (27b) refers to the case in which 

only dual-spreader mode is used. Equation (28a) refers to the case in which single-spreader and 

triple-spreader modes are used but dual-spreader mode is not used. Equation (28b) refers to the 

case in which only triple-spreader mode is used. Equation (29) refers to the case in which only 

single-spreader mode is used. The above equations assume (i) the bare minimum number of 

changeovers—2, 1, or 0—needed to transition between the spreader modes that are used and (ii) 

the most efficient spreader mode sequence among the theoretical alternatives. For the instance 

shown in Figures 3.1, 3.2, 3.3, and 3.4 (LB1, LB2, LB3, LB4) = (27.4, 27.9, 24.9, 36), so LB = 24.9. 

 

3.5 Experimental setup, results, and discussion 

The lower bound procedure from Section 3.4, genetic algorithm (GA) from Section 3.3, 

and model TSCSP from Section 3.2 were coded into MS Visual C++ 2010 Professional. IBM 
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ILOG Concert Technology was used to define model TSCSP within C++ and call the MILP solver 

IBM ILOG CPLEX 12.5 to solve instances defined in text files. To avoid running out of memory, 

the CPLEX “node file storage parameter” was set to 3. Otherwise, default CPLEX settings were 

used. All results were obtained on a desktop computer with the Windows 7 Enterprise 64-bit 

operating system, an Intel Core i7-4770 processor with eight 3.4 gigahertz cores, and 16 GB of 

RAM.  

We perform three experiments. In Experiment 1, we test the math model and GA on 120 

instances of the TSCSP. In Experiment 2, we compare the performance of the GA to that of the 

simulated annealing-heuristic introduced in Chapter 2 on the 120 instances of the dual-spreader 

crane scheduling problem (DSCSP) considered in Chapter 2. In experiment 3, we use dynamic 

programming to create tier options for the GA and then re-test the GA on the 120 instances of the 

TSCSP considered in experiment 1.  

 

3.5.1 Experiment 1  

In this experiment we consider a total of 120 problem instances—30 instances for each of 

the problem sizes 3×8, 5×10, 10×23, and 50×50. Problem size T×S has T tiers, S stacks, and T 

containers in stack s at time 0 for all s. In all instances, we assume that the container weights 

𝑊!"	take integer values from 1 to 9. We also assume that the weight limits are 𝐿$ = 10 for dual-

spreader lifts and 𝐿%	= 12 for triple-spreader lifts. We also assume that 𝐻#	= 1.5, 𝐻$	= 1.8, 𝐻%	= 

2.2 and 𝐶&' 	= 2.7 for all p and q. Among the 30 instances for each problem size, (10, 10, 10) 

instances have (light, medium, heavy) container weights. In the medium instances, the weight of 

each container follows a discrete uniform distribution over the values {1, 2, 3, 4, 5, 6, 7, 8, 9}. In 

the light instances, the weight of each container has a {15%, 15%, 15%, 15%, 20%, 5%, 5%, 5%, 
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5%} chance of taking the value {1, 2, 3, 4, 5, 6, 7, 8, 9}. In the heavy instances, the weight of each 

container has a {5%, 5%, 5%, 5%, 20%, 15%, 15%, 15%, 15%} chance of taking the value {1, 2, 

3, 4, 5, 6, 7, 8, 9}. 

Table 3.5 shows the GA parameter settings used in this experiment. These settings were 

chosen based on preliminary experiments whose results are not shown here. Note that more 

computation time is allocated for attacking larger problems. A nontrivial portion of this time is 

spent solving instances of math program TSCSP-Sub (Table 3.2) in order to create the tier options, 

particularly for problem instances of size 10×23 and 50×50. Each generation has 50 chromosomes: 

5 copied from the previous generation, 15 formed by mutation, and 30 formed by the crossover 

operation. The gene mutation probability, mProb, is set to 0.2. The maximum number of options 

per category per tier, Max#OptionsPerCategoryPerTier, is 100 for every problem size. This value 

limits the time spent creating the tier options but still allows a variety of excellent tier options to 

be considered by the GA. Makespan is computed via the greedy method for instances of size 

50×50; otherwise the branch-and-bound method is used (Section 3.3.2).  

 

Table 3.5. GA parameter settings in Experiment 1. 
 

Problem Size 3 x 8 5 x 10 10 x 23 50 x 50 
Computational time limit (seconds) 30 120 600 600 
𝑵 50 50 50 50 
𝑵𝟎 5 5 5 5 
𝑵𝟏 15 15 15 15 
𝑵𝟐 30 30 30 30 
Gene mutation probability (mProb) 0.2 0.2 0.2 0.2 
Max#OptionsPerCategoryPerTier 100 100 100 100 
Evaluation of spreader changeover cost Branch+Bound Branch+Bound Branch+Bound Greedy 

 

Table 3.6 shows the results for the 30 small problem instances of size 3×8. Each individual 

instance is specified by a code “TxSZnn” where T is the number of tiers; S is the number of stacks; 
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Z takes the value (L, M, H) according to the container weight scenario (light, medium, heavy); and 

“nn” denotes the instance number from 1 to 10. Instance “3x8L03” is depicted in Figures 3.1 and 

3.2. Each instance is considered using (A) CPLEX’s default integer programming (IP) solver with 

no time limit and (B) the GA with a 30 sec time limit. The GA creates and evaluates an average of 

133,000 generations (6.7 million chromosomes) within the time limit. The best objective value 

(i.e. makespan) found by methods A and B are shown in columns MCP and MGA. Column M0 shows 

the makespan of a greedy chromosome which combines the best options for the individual tiers 

(ties are broken arbitrarily). Column LB shows the lower bound.  

The results show that both methods solve all instances to optimality. Indeed, method A 

solves all instances to optimality within eleven minutes, and method B finds these optimal 

solutions within 30 seconds. Importantly, the best solutions found by the GA (all of which happen 

to be optimal) are usually within 10% of the lower bound. Also, the average makespan of the best 

solution found by the GA (31.1) is about 7% better than that of the greedy solution (33.5). Not 

surprisingly, the optimal makespans for the light (medium) instances are typically less than those 

for the medium (heavy) instances.  
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Table 3.6. Experiment 1 results for TSCSP instances of size 3 × 8. 
 

Instance CPLEX Heuristic (30 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵   

 
𝑀34 

 
 

Time (s)  
𝑀12 𝑀/ 

 
𝑀/ −𝑀12

𝑀/
 

 
3x8L01 28.6 549 28.6 31.2 8.33% 27.9 2.51% 
3x8L02 30.3 635 30.3 33.9 10.62% 27.9 8.60% 
3x8L03 27.2 71 27.2 27.4 0.73% 24.9 9.24% 
3x8L04 23.3 22 23.3 24.0 2.92% 21.3 9.39% 
3x8L05 27.2 169 27.2 32.7 16.82% 26.7 1.87% 
3x8L06 30.3 365 30.3 35.0 13.43% 29.1 4.12% 
3x8L07 25.5 25 25.5 28.8 11.46% 25.5 0.00% 
3x8L08 25.5 102 25.5 28.8  11.46 % 25.5 0.00% 
3x8L09 24.9 49 24.9 27.8 10.43% 24.9 0.00% 
3x8L10 30.3 344 30.3 33.9 10.62% 28.5 6.32% 
Average 27.3 233.1 27.3 30.4 9.68% 26.2 4.20% 
3x8M01 29.1 47 29.1 29.6 1.69% 29.1 0.00% 
3x8M02 33.9 9 33.9 35.4 7.63% 32.7 3.67% 
3x8M03 29.5 18 29.5 30.9 4.53% 29.5 0.00% 
3x8M04 32.2 40 32.2 34.8 15.23% 29.5 9.15% 
3x8M05 35.1 238 35.1 35.7 15.13% 30.3 15.84% 
3x8M06 25.5 19 25.5 28.8 11.46% 25.5 0.00% 
3x8M07 33.9 176 33.9 35.9 8.91% 32.7 3.67% 
3x8M08 29.1 51 29.1 32.3 9.91% 29.1 0.00% 
3x8M09 35.4 140 35.4 38.6 15.28% 32.7 8.26% 
3x8M10 33.0 581 33.0 36.2 18.51% 29.5 11.86% 
Average 31.7 131.9 31.7 33.8 10.83% 30.1 5.25% 
3x8H01 35.4 42 35.4 35.4 0.00% 32.7 8.26% 
3x8H02 35.1 30 35.1 39.7 11.59% 32.7 7.34% 
3x8H03 30.3 51 30.3 31.8 4.72% 29.1 4.12% 
3x8H04 35.1 373 35.1 38.5 8.83% 31.5 11.43% 
3x8H05 32.7 412 32.7 35.8 8.66% 31.5 3.81% 
3x8H06 33.9 57 33.9 35.7 5.04% 30.3 11.88% 
3x8H07 35.4 16 35.4 35.4 0.00% 32.7 8.26% 
3x8H08 36.0 84 36.0 40.9 11.98% 33.9 6.19% 
3x8H09 36.0 9 36.0 36.6 1.64% 33.9 6.19% 
3x8H10 32.7 7 32.7 34.2 4.39% 31.5 3.81% 
Average 34.3 108.1 34.3 36.4 5.68% 32.0 7.13% 
Overall 31.1 157.7 31.1 33.5 8.73% 29.4 5.53% 
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Table 3.7 shows the results for the 30 instances of size 5×10. Here, each instance is 

considered using (A) CPLEX with a one-hour time limit and (B) the GA with a 120 second time 

limit. The GA creates and evaluates an average of 332,000 generations (16.6 million 

chromosomes) within the time limit. The results for methods A and B show that the GA performs 

better than CPLEX. Indeed, in every instance, the best solution found by the GA in two minutes 

is at least as good as the best solution found by CPLEX in an hour. Also, the average makespan of 

the best GA solution (62.2) is about 2.4% better than that for CPLEX (63.7). Note that the best 

solutions found by the GA are about 7% higher on average than the lower bound. Finally, we 

observe that the average makespan of the best GA solution (62.2) is about 7% lower than that of 

the greedy solution (67.1). These results indicate that standard IP is not a suitable solution method 

for instances with 50 or more containers. Thus, IP is not used in the following experiments that 

consider larger problem instances.  

Table 3.8 shows the results for the large problem instances of size 10×23. For each 

instance, we show the makespan of the best solution found by the GA within 600 seconds; the 

makespan of a greedy solution; and the lower bound. The GA creates and evaluates an average of 

34,000 generations (1.7 million chromosomes) within the time limit. The results show that the GA 

finds near-optimal solutions to these instances. Indeed, the average makespan of the best GA 

solution (270.2) is about 8% higher than the average lower bound (249.4). Note that the quality of 

the GA solution improves as containers get heavier; on average, the makespan of the best GA 

solution is roughly 11%, 10%, and 6% above the lower bound for the light, medium, and heavy 

instances respectively. This may be due to the fact that there are fewer opportunities for operating 

in dual-spreader and triple-spreader mode—and therefore fewer choices—when containers are 

heavier. 
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Table 3.7. Experiment 1 results for TSCSP instances of size 5 × 10. 
 

Instance CPLEX Heuristic (120 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵   

 
𝑀34 

 
 

Time (s)  
𝑀12 𝑀/ 

 
𝑀/ −𝑀12

𝑀/
 

 
5x10L01 50.7 3734 49.0 58.5 16.24% 47.7 2.73% 
5x10L02 56.5 3637 55.4 63.5 12.76% 50.0 10.80% 
5x10L03 50.5 3656 49.1 53.2 7.71% 47.8 2.72% 
5x10L04 57.3 3603 50.9 55.8 8.78% 47.7 6.71% 
5x10L05 48.7 3603 48.7 54.1 9.98% 48.7 0.00% 
5x10L06 58.5 3612 58.5 64.2 8.88% 53.4 9.55% 
5x10L07 58.8 3620 56.5 62.4 9.46% 48.9 15.54% 
5x10L08 57.6 3612 54.7 58.7 6.81% 53.3 2.63% 
5x10L09 46.5 3614 46.5 51.9 10.40% 46.5 0.00% 
5x10L10 50.5 3600 49.2 57.1 13.84% 47.8 2.93% 
Average 53.6 3629.1 51.8 57.9 10.49% 49.2 5.36% 

5x10M01 69.6 3616 68.7 74.6 7.91% 63.3 8.53% 
5x10M02 62.0 3621 58.8 65.3 9.95% 54.5 7.89% 
5x10M03 66.0 3600 64.2 68.5 6.28% 60.4 6.29% 
5x10M04 67.5 3601 64.8 67.3 3.71% 59.2 9.46% 
5x10M05 65.1 3661 59.7 67.0 10.90% 53.5 11.59% 
5x10M06 68.6 3600 68.6 71.0 3.38% 62.9 9.06% 
5x10M07 62.1 3603 62.1 68.6 9.48% 57.3 8.38% 
5x10M08 69.3 3602 67.2 74.9 10.28% 60.9 10.34% 
5x10M09 66.0 3606 66.0 69.6 5.17% 61.5 7.32% 
5x10M10 61.2 3601 61.2 70.4 13.07% 56.9 7.56% 
Average 65.7 3611.1 64.1 69.7 8.01% 59.0 8.64% 
5x10H01 70.5 3601 69.6 75.5 7.81% 66.9 4.04% 
5x10H02 72.9 3601 72.9 73.9 1.35% 66.9 8.97% 
5x10H03 71.7 3647 71.7 75.4 4.91% 65.7 9.13% 
5x10H04 72.0 3601 69.6 71.1 2.11% 65.7 5.94% 
5x10H05 72.0 3606 68.4 70.0 2.29% 65.7 4.11% 
5x10H06 72.9 3616 72.9 76.3 4.46% 69.3 5.19% 
5x10H07 74.4 3618 74.4 75.9 1.98% 70.5 5.53% 
5x10H08 68.4 3727 66.9 70.3 4.84% 63.3 5.69% 
5x10H09 75.0 3600 75.0 77.2 2.85% 72.9 2.88% 
5x10H10 67.2 3612 66.0 72.3 8.71% 61.5 7.32% 
Average 71.7 3622.9 70.7 73.8 4.13% 66.8 5.88% 
Overall 63.7 3621.0 62.2 67.1 7.54% 58.4 6.63% 
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Table 3.8. Experiment 1 results for TSCSP instances of size 10 × 23. 
 

Instance Heuristic (600 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵  

𝑀12 𝑀/ 
 

𝑀/ −𝑀12

𝑀/
 

 
10x23L01 237.4 243.9 2.67% 216.9 9.45% 
10x23L02 229.1 234.2 2.18% 204.5 12.03% 
10x23L03 216.6 220.9 1.95% 196.6 10.17% 
10x23L04 236.5 238.2 0.71% 213.9 10.57% 
10x23L05 228.5 236.5 3.38% 206.8 10.49% 
10x23L06 219.8 225.0 2.31% 198.0 11.01% 
10x23L07 226.1 230.1 1.74% 203.1 11.32% 
10x23L08 223.1 230.2 3.08% 203.2 9.79% 
10x23L09 225.7 232.8 3.05% 205.8 9.67% 
10x23L10 232.7 234.7 0.85% 207.7 12.04% 

Average 227.5 232.7 2.19% 205.6 10.65% 
10x23M01 264.5 270.3 2.15% 237.9 11.18% 
10x23M02 265.7 270.3 1.70% 240.6 10.43% 
10x23M03 268.5 276.5 2.89% 244.1 10.00% 
10x23M04 279.0 286.4 2.58% 254.0 9.84% 
10x23M05 268.3 272.0 1.36% 242.3 10.73% 
10x23M06 271.4 279.5 2.90% 249.8 8.65% 
10x23M07 276.4 283.4 2.47% 253.7 8.95% 
10x23M08 274.5 283.3 3.11% 253.6 8.24% 
10x23M09 274.2 278.0 1.37% 248.3 10.43% 
10x23M10 274.0 278.9 1.76% 254.6 7.62% 
Average 271.6 277.9 2.23% 247.9 9.61% 
10x23H01 310.8 317.0 1.96% 294.9 5.39% 
10x23H02 312.2 318.0 1.82% 299.1 4.38% 
10x23H03 306.7 311.2 1.45% 284.2 7.92% 
10x23H04 314.1 318.7 1.44% 300.9 4.39% 
10x23H05 307.1 313.5 2.04% 291.9 5.21% 
10x23H06 317.4 323.6 1.92% 299.3 6.05% 
10x23H07 311.8 316.4 1.45% 292.1 6.74% 
10x23H08 314.1 321.5 2.30% 297.2 5.69% 
10x23H09 307.9 315.4 2.38% 291.1 5.77% 
10x23H10 310.8 314.5 1.18% 295.6 5.14% 
Average 311.3 317.0 1.79% 294.6 5.67% 
Overall 270.2 276.9 2.05% 249.4 8.64% 
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Table 3.9 shows the results for the very large problem instances of size 50×50. This table 

has the same structure as Table 3.8. Here, the GA time limit is also 600 seconds. The GA creates 

and evaluates an average of 8200 generations (410,000 chromosomes) within the time limit. The 

results show that the GA finds near-optimal solutions to these instances. Indeed, the average 

makespan of the best GA solution (2810.8) is about 6.6% higher than the average lower bound 

(2637.2). On average, the makespan of the best GA solution is roughly 9%, 7%, and 5% above the 

lower bound for the light, medium, and heavy instances respectively. Overall, the GA appears to 

be an effective method for attacking the TSCSP.  

 

3.5.2 Experiment 2  

We now compare the performance of the GA to that of the simulated annealing algorithm 

(i.e. method “H”) proposed in Chapter 2 (i.e. by Lashkari et al. 2017) on the 120 instances of the 

DSCSP considered in Chapter 2. Similar to the TSCSP instances, the DSCSP instances are broken 

into twelve categories corresponding to four problem sizes—3×8, 5×10, 10×23, 50×50—and three 

container weight scenarios—light, medium, and heavy—with ten instances in each category. Text 

files defining all DSCSP instances can be found in the supplementary material accompanying 

Lashkari et al. (2017). As in Chapter 2, we assume that 𝐻#= 1.5, 𝐻$ = 1.8, 𝐶#$ = 𝐶$# = 2.1, and the 

weight limit 𝐿$	for dual spreader lifts is 10.  

Table 3.10 shows the GA settings used in this experiment. The computation times allocated 

to methods GA and H are identical and match the computation times used by Lashkari et al. (2017). 

As in Experiment 1, each generation has 50 chromosomes: 5 copied, 15 mutated, and 30 formed 

by crossover. Also, mProb is set to 0.2.  
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Table 3.9. Experiment 1 results for TSCSP instances of size 50 × 50. 
 

Instance Heuristic (600 seconds) LB 𝑀12 − 𝐿𝐵
𝐿𝐵  

𝑀12 𝑀/ 
 

𝑀/ −𝑀12

𝑀/
 

 
50x50L01 2333.4 2363.0 1.25% 2160.5 8.00% 
50x50L02 2322.6 2361.8 1.66% 2145.8 8.24% 
50x50L03 2361.2 2390.8 1.24% 2177.5 8.44% 
50x50L04 2418.1 2443.7 1.05% 2222.3 8.81% 
50x50L05 2332.8 2373.8 1.73% 2149.7 8.52% 
50x50L06 2391.7 2427.4 1.47% 2211.4 8.15% 
50x50L07 2345.1 2390.6 1.90% 2158.4 8.65% 
50x50L08 2370.5 2419.6 2.03% 2182.0 8.64% 
50x50L09 2392.7 2421.2 1.18% 2205.2 8.50% 
50x50L10 2358.5 2393.2 1.45% 2163.7 9.00% 
Average 2362.7 2398.5 1.50% 2177.6 8.50% 
50x50M01 2801.4 2812.7 0.40% 2621.0 6.88% 
50x50M02 2779.1 2800.6 0.77% 2595.4 7.08% 
50x50M03 2779.3 2808.7 1.05% 2598.1 6.97% 
50x50M04 2797.4 2814.6 0.61% 2620.2 6.76% 
50x50M05 2837.5 2845.0 0.26% 2650.7 7.05% 
50x50M06 2855.9 2873.3 0.61% 2670.8 6.93% 
50x50M07 2838.7 2864.8 0.91% 2651.5 7.06% 
50x50M08 2844.0 2872.0 0.97% 2669.5 6.54% 
50x50M09 2829.4 2864.5 1.23% 2645.8 6.94% 
50x50M10 2797.5 2822.9 0.90% 2628.5 6.43% 
Average 2816.0 2837.9 0.77% 2635.1 6.86% 
50x50H01 3250.8 3288.5 1.15% 3096.8 4.97% 
50x50H02 3238.5 3282.7 1.35% 3085.6 4.96% 
50x50H03 3275.3 3324.8 1.49% 3127.7 4.72% 
50x50H04 3237.4 3276.4 1.19% 3073.9 5.32% 
50x50H05 3269.8 3310.2 1.22% 3113.1 5.03% 
50x50H06 3264.7 3304.2 1.20% 3109.8 4.98% 
50x50H07 3239.3 3293.2 1.64% 3085.3 4.99% 
50x50H08 3275.8 3322.2 1.40% 3125.1 4.82% 
50x50H09 3242.1 3275.9 1.03% 3092.3 4.84% 
50x50H10 3243.4 3279.4 1.10% 3079.6 5.32% 
Average 3253.7 3295.8 1.28% 3098.9 4.99% 
Overall 2810.8 2844.1 1.18% 2637.2 6.78% 
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The last two rows of Table 3.10 require an explanation. In the DSCSP there are no triple-

spreader lifts. Thus, there are only two categories of tier options—(1) those with at least one dual-

spreader lift and (2) those with no dual-spreader lifts. The value Max#OptionsPerCategoryPerTier 

in Table 3.10 refers to the maximum number of options in category 1 that are generated per tier. 

(The number of options in category 2 that are generated per tier is always 1.) The value of this 

parameter—which was set based on preliminary experiments—allows a variety of good tier 

options to be created at the outset and leaves enough time for the GA to find good combinations 

of these options (i.e. good chromosomes) within the predetermined overall time limit. This 

parameter has a larger value here than in Experiment 1 because there are only two tier option 

categories to consider. Note that Max#OptionsPerCategoryPerTier for problem sizes 3×8 and 

5×10 is large enough to include all unique, feasible tier options. The term “Basic” in the final row 

of Table 3.10 refers to a method that selects the better of the two possible spreader mode sequences: 

S-D-S-D-S-… and D-S-D-S-D-….  

Table 3.10. GA parameter settings in Experiment 2.  

Problem Size 3 x 8 5 x 10 10 x 23 50 x 50 
Computational time limit (seconds) 10 60 600 600 
𝑵 50 50 50 50 
𝑵𝟎 5 5 5 5 
𝑵𝟏 15 15 15 15 
𝑵𝟐 30 30 30 30 
Gene mutation probability (mProb) 0.2 0.2 0.2 0.2 
Max#TierOptionsPerCategoryPerTier 200 200 200 200 
Evaluation of spreader changeover cost  Basic Basic Basic Basic 

 

Table 3.11 shows the overall results from this experiment. Here, results are aggregated 

according to problem category. The twelve problem categories are shown in column 1, and the 

allowed computation time for each instance is shown in column 2. The results for method H and 

the lower bound on the optimal objective value—which are copied from Chapter 2—are shown in 
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columns 3 and 5 respectively. The results for the GA are shown in column 4. Note that the GA 

performs at least as well as method H for every problem category. On average, the solutions found 

by the GA are 0.48% better than method H. The solutions found by the GA are 4.07% above the 

lower bound on average. These results demonstrate the GA’s effectiveness in addressing the 

DSCSP. 

 

Table 3.11. Comparing SA and GA performance on the 120 DSCSP instances (average for each instance 
category shown). 
 

Instance 
Category 

Heuristic 
Runtime 

(s) 𝑀5 𝑀12 𝐿𝐵 
𝑀5 −𝑀12

𝑀5
 𝑀12 − 𝐿𝐵

𝐿𝐵  

       
3x8L 10 26.8 26.8 25.9 0.00% 3.47% 
3x8M 10 30.7 30.7 29.2 0.00% 5.14% 
3x8H 10 33.5 33.5 32.6 0.00% 2.76% 
Average 10 30.3 30.3 29.2 0.00% 3.79% 
5x10L 60 55.8 55.8 52.6 0.00% 6.08% 
5x10M 60 62.2 62.2 58.1 0.00% 7.06% 
5x10H 60 69.8 69.8 66.1 0.00% 5.60% 
Average 60 62.6 62.6 58.9 0.00% 6.25% 
10x23L 600 242.5 239.9 231.8 1.07% 3.49% 
10x23M 600 274.4 274.2 262.6 0.07% 4.42% 
10x23H 600 308.5 308.5 296.9 0.00% 3.91% 
Average 600 275.2 274.2 263.8 0.38% 3.94% 
50x50L 600 2623.5 2547.0 2492.9 2.92% 2.17% 
50x50M 600 2914.2 2871.6 2801.2 1.46% 2.51% 
50x50H 600 3272.8 3263.5 3192.5 0.28% 2.22% 
Average 600 2936.8 2894.0 2828.9 1.55% 2.30% 
Overall - - - - 0.48% 4.07% 

 
 

3.5.3 Experiment 3 

In Section 3.3.1 we introduced an algorithm to create tier options. This preliminary step 

generates genes that are basically feasible ways to lift the containers in a tier. 
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Every chromosome consists of one gene per tier, and each chromosome is fed to the GA for 

evaluation and makespan computation.  

In experiment 1, CPLEX generates tier options in four categories to provide a variety of 

genes in terms of combining single, dual, and triple lifts. For each category and each tier, the 100 

best tier options were generated and indexed from the best lift time to the worst. This is particularly 

important because the first chromosome in the first generation always consists of the best gene for 

each tier.  

For small problem instances, CPLEX performed efficiently and provided tier 

options quickly. Indeed, for small-size problems (3×8 and 5×10), the majority of computation 

time was spent forming new GA generations and assessing the fitness of chromosomes. However, 

for larger problem instances (10×23 and 50×50), the majority of computation time was spent 

generating tier options prior to the main GA routine. This led to relatively few GA generations 

being created, and it limited the chances of finding solutions with small makespans.  

To rectify this problem, we introduce dynamic programming (DP). Dynamic 

programming breaks down a complex optimization problem into smaller incremental 

steps and tries to solve each step using the best solutions that were identified in previous steps 

(Allison, 2020). In this experiment, we deploy dynamic programming to find the best tier options 

for the TSCSP. We expect a DP-based method to generate tier options more quickly than an integer 

programming based-method, leaving additional computation time for the main part of the GA 

routine. 

Without loss of generality, we focus on tier t and assume that the options for tier t need to 

be generated. Tier t consists of S stacks. A feasible tier option for tier t consists of a series of single 

(S), dual (D), and triple (T) lifts that agree with the rules of legal binary 
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dual/triple spreader lifts. At every step, dynamic programming evaluates legal spreader options 

based on the binary information contained in matrices L2 and L3 (Figure 3.2), calculates the partial 

tier option lift time, and ranks the solutions. 

In the TSCSP, we have at most three comparisons when deciding on the type of spreader 

for stack s. If neither the dual nor triple lifts are possible, the container on tier t stack s would be 

lifted by a single spreader (S). If a dual lift is legal but a triple lift is not, the algorithm compares a 

single lift to a dual lift and chooses the smaller lift time. A dual lift is legal when the corresponding 

value matrix 𝐿2 = 1. Another scenario is when a triple lift is legal (the 𝐿3 = 1) and a dual lift is not. 

In this case, a comparison between the time it takes to lift the container in stack s with a single 

spreader and the time it takes to lift the containers in stacks s-2, s-1 and s with a triple-spreader 

takes place. The final scenario is where all three spreaders can be used to lift the container in stack 

s. As mentioned above, the dynamic programming algorithm looks at previous steps to make the 

best decision for the current state.   

Let OPT[s] be the minimum handling time for the first s containers in tier t (spreader 

changeover time is ignored). In our basic DP, we use the formula below to calculate the best 

objective value at each step.  

 

OPT[s] = Minimum {OPT[s−1] + singleSpreaderOptionForDP, 

                                      OPT[s−2] + dualSpreaderOptionForDP, 

                                      OPT[s−3] + tripleSpreaderOptionForDP} 

Where: 

singleSpreaderOptionForDP	=	𝐻#	

dualSpreaderOptionForDP	=	S𝐻$										𝑖𝑓				𝐿2!,#," 	= 	1
∞																						otherwise	

]      									(t = 1, …, T) 

tripleSpreaderOptionForDP	=	S𝐻%										𝑖𝑓				𝐿3!,$," 	= 	1
∞																						otherwise	

]															(t = 1, …, T)	
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This above recursion formula finds the optimal tier option for tier t. However, in our 

advanced DP algorithm, which is a combination of enumeration and dynamic programming, we 

are interested in generating the Max#OptionsPerCategoryPerTier (= 100 as in experiment 1) best 

tier options for each tier. Let OPT[m][s] be the handling time (spreader changeover time is ignored) 

for the mth best (unique) option (m = 1, …, Max#OptionsPerCategoryPerTier) for handling the 

first s containers in tier t. The values of OPT[m][s] for m = 1 to Max#OptionsPerCategoryPerTier 

can be derived from the values of OPT[m][s-1], OPT[m][s-2], and OPT[m][s-3] from m = 1 to 

Max#OptionsPerCategoryPerTier using a recursive procedure similar to that shown above. 

Table 3.12, 3.13, and 3.14 show the algorithms we developed to generate tier options in 3 

categories: at least one dual and at least one triple lift, at least one dual and no triple lift, and at 

least one triple and no dual. In these tables, 𝐿′2!" is equal to 1 if the two containers occupying 

stacks s and s-1 in tier t can be lifted together using the dual spreader without violating the weight 

limit (binary) (s = 1, 2, …, S-1; t = 1, 2, …, T). 𝐿′3!" is equal to 1 if the three containers occupying 

stacks s, s-1, and s-2 in tier t can be lifted together using the triple spreader without violating the 

weight limit (binary) (s = 1, 2, …, S-2; t = 1, 2, …, T). SpreaderVector[m][s] stores the sequence 

of lifts (S, D, T) that are made from left to right for the mth best option for handling the first s 

containers in tier t. For example, if we are generating tier options with at least one triple lift and 

no dual lifts, then SpreaderVector[1][8] = (T, T, S, S) for tier 1 in the example shown in the Figures 

3.3 and 3.4. In other words, the best way to lift the first 8 containers in tier 1 in the example shown 

in Figures 3.3 and 3.4 is to lift the first 3 containers using the triple spreader, the next 3 containers 

using the triple spreader, and the last 2 containers each with a single spreader. This is tier option 

19 (for tier 1), and the corresponding lifting time for this, OPT[1][8] is 7.4 minutes. 
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Table 3.12. DP algorithm for generating options for tier t with at least one dual and at least one triple lift. 
 

1    Set OPT[1][1] = H1 and Let SpreaderVector[1][1] = “S” 
2     Set OPT[m][1] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier 
3    if 𝐿′2() = 1 then  
4          OPT[1][2] = H2 and let SpreaderVector[1][2] = “D” 
5          OPT[2][2] = 2H1 and let SpreaderVector[2][2] = “SS”                         
6    else OPT[1][2] = 2H1 and let SpreaderVector[1][2] = “SS” 
7     Set the rest of OPT[m][2] = +∞ for m = 2 or 3, …, Max#OptionsPerCategoryPerTier 
8    for s = 3 to S do 
9          Set n1 = n2 = n3 = 1 
10        for m = 1 to Max#OptionsPerCategoryPerTier do 
11                if 𝐿′3*) = 1 then tripleSpreaderOptionForDP = H3 else tripleSpreaderOptionForDP = ∞ 
12                if 𝐿′2*) = 1 then dualSpreaderOptionForDP = H2 else dualSpreaderOptionForDP = ∞ 
13              singleSpreaderOptionForDP = H1 
14              OPT[m][s] = Minimum {OPT[n1][s-1] + singleSpreaderOptionForDP, 
                                                         OPT[n2][s-2] + dualSpreaderOptionForDP, 
                                                         OPT[n3][s-3] + tripleSpreaderOptionForDP} 
15              if the minimum comes from using tripleSpreaderOptionForDP then 
16                  n3  = n3 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n3][s-3] with a “T” added to the 

end of it. 
17              else if the minimum comes from using dualSpreaderOptionForDP then 
18                    n2  = n2 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n2][s-2] with a “D” added to the 

end of it. 
19              else if the minimum comes from using singleSpreaderOptionForDP then 
20                     n1  = n1 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n1][s-1] with an “S” added to the 

end of it. 
21                else if no more options for comparison remain among previous stacks then  
22                         Set OPT[n][s] = +∞ for all n from m to Max#OptionsPerCategoryPerTier 
23  for m = 1 to Max#OptionsPerCategoryPerTier do  
24        if SpreaderVector[m][S] doesn’t have at least one “D” and at least one “T” in it then 
25              remove SpreaderVector[m][S] and OPT[m][S] 
26  output all OPT[m][S] and corresponding SpreaderVector[m][S] values that haven’t been removed. 
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Table 3.13. DP algorithm for generating options for tier t with at least one dual and no triple lift. 
 

1    Set OPT[1][1] = H1 and let SpreaderVector[1][1] = “S” 
2     Set OPT[m][1] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier 
3    if 𝐿′2() = 1 then  
4          OPT[1][2] = H2 and let SpreaderVector[1][2] = “D” 
5          OPT[2][2] = 2H1 and let SpreaderVector[2][2] = “SS”                 
6    else OPT[1][2] = 2H1 and let SpreaderVector[1][2] = “SS” 
7     Set the rest of OPT[m][2] = +∞ for m = 2 or 3, …, Max#OptionsPerCategoryPerTier 
8    for s = 3 to S do 
9          Set n1 = n2 = 1 
10        for m = 1 to Max#OptionsPerCategoryPerTier do 
11              if 𝐿′2*) = 1 then dualSpreaderOptionForDP = H2 else dualSpreaderOptionForDP = ∞ 
12              singleSpreaderOptionForDP = H1 
13              OPT[m][s] = Minimum {OPT[n1][s-1] + singleSpreaderOptionForDP, 
                                                         OPT[n2][s-2] + dualSpreaderOptionForDP} 
14              if the minimum comes from using dualSpreaderOptionForDP then 
15                    n2  = n2 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n2][s-2] with a “D” added to the 

end of it. 
16              else if the minimum comes from using singleSpreaderOptionForDP then 
17                     n1  = n1 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n1][s-1] with an “S” added to the 

end of it. 
18                else if no more options for comparison remain among previous stacks then  
19                         Set OPT[n][s] = +∞ for all n from m to Max#OptionsPerCategoryPerTier 
20  for m = 1 to Max#OptionsPerCategoryPerTier do  
21        if SpreaderVector[m][S] doesn’t have at least one “D” in it then 
22              remove SpreaderVector[m][S] and OPT[m][S] 
23  output all OPT[m][S] and corresponding SpreaderVector[m][S] values that haven’t been removed 
 

 

Table 3.15 shows the experimental results for using GA to attack the TSCSP instances of 

size 3×8 when using dynamic programming to generate tier options. The table has the same format 

as Table 3.6 except that in this table MDP shows the best objective value found by the DP-supported 

GA within the time limit. On average 220,000 generations (11 million chromosomes) were 

generated within the time limit which is 1.8 times more than in experiment 1. Similar to Table 3.6, 

the CPLEX-based method (column 𝑀34) solves all instances to optimality within 11 minutes, and 

the GA (using DP) finds these optimal solutions within 30 seconds. All results in Table 3.15 match 

those for the IP-based GA in Table 3.6. The best solutions found by the DP-based GA are usually 

within 10% of the lower bound. Also, the average makespan of the best solution found by the GA 

(using DP) is about 7% better than that of the greedy solution. 
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Table 3.14. DP algorithm for generating options for tier t with at least one triple and no dual lift. 
 

1    Set OPT[1][1] = H1 and let SpreaderVector[1][1] = “S” 
2     Set OPT[m][1] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier 
3    Set OPT[1][2] = 2H1 and let SpreaderVector[1][2] = “SS” 
4     Set the rest of OPT[m][2] = +∞ for m = 2, …, Max#OptionsPerCategoryPerTier 
5    for s = 3 to S do 
6          Set n1 = n3 = 1 
7          for m = 1 to Max#OptionsPerCategoryPerTier do 
8                if 𝐿′3*) = 1 then tripleSpreaderOptionForDP = H3 else tripleSpreaderOptionForDP = ∞ 
9                singleSpreaderOptionForDP = H1 
10                OPT[m][s] = Minimum {OPT[n1][s-1] + singleSpreaderOptionForDP, 
                                                         OPT[n3][s-3] + tripleSpreaderOptionForDP} 
11              if the minimum comes from using tripleSpreaderOptionForDP then 
12                    n3  = n3 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n3][s-3] with a “T” added to the 

end of it. 
13              else if the minimum comes from using singleSpreaderOptionForDP then 
14                     n1  = n1 + 1 & let SpreaderVector[m][s] equal SpreaderVector[n1][s-1] with an “S” added to the 

end of it. 
15                else if no more options for comparison remain among previous stacks then  
16                         Set OPT[m][s] = +∞ for all n from m to Max#OptionsPerCategoryPerTier 
17  for m = 1 to Max#OptionsPerCategoryPerTier do  
18        if SpreaderVector[m][S] doesn’t have at least one “T” in it then 
19              remove SpreaderVector[m][S] and OPT[m][S] 
20  output all OPT[m][S] and corresponding SpreaderVector[m][S] values that haven’t been removed 
 

 

Table 3.16 shows the results for 5×10 instances. This table compares the CPLEX method 

with a one-hour time limit and the DP-supported GA with a 120 second time limit. The GA creates 

and evaluates an average of 360,000 generations (18 million chromosomes) within the time limit. 

The results for the DP-supported GA are very similar to the results in Table 3.7. Although the GA 

with DP-based tier generation creates 1.14 times more chromosomes compared to the method in 

Section 3.3.1, the results are identical to those in table 3.7 except for one instance in which DP-

based GA finds a better makespan compared to IP-based GA. The best solutions found by the GA 

are about 7% higher on average than the lower bound. Finally, we observe that the average 

makespan of the best GA solution is about 7% lower than that of the greedy solution. 
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Table 3.15. Experiment 3 results for TSCSP instances of size 3 × 8. 
 

 
Instance CPLEX GA (using DP) (30 seconds) LB 𝑀74 − 𝐿𝐵

𝐿𝐵   
 
𝑀34 

 
 

Time (s)  
𝑀74 𝑀/ 

 
𝑀/ −𝑀74

𝑀/
 

 
3x8L01 28.6 549 28.6 31.2 8.33% 27.9 2.51% 
3x8L02 30.3 635 30.3 33.9 10.62% 27.9 8.60% 
3x8L03 27.2 71 27.2 27.4 0.73% 24.9 9.24% 
3x8L04 23.3 22 23.3 24.0 2.92% 21.3 9.39% 
3x8L05 27.2 169 27.2 32.7 16.82% 26.7 1.87% 
3x8L06 30.3 365 30.3 35.0 13.43% 29.1 4.12% 
3x8L07 25.5 25 25.5 28.8 11.46% 25.5 0.00% 
3x8L08 25.5 102 25.5 28.8  11.46 % 25.5 0.00% 
3x8L09 24.9 49 24.9 27.8 10.43% 24.9 0.00% 
3x8L10 30.3 344 30.3 33.9 10.62% 28.5 6.32% 
Average 27.3 233.1 27.3 30.4 9.68% 26.2 4.20% 
3x8M01 29.1 47 29.1 29.6 1.69% 29.1 0.00% 
3x8M02 33.9 9 33.9 35.4 7.63% 32.7 3.67% 
3x8M03 29.5 18 29.5 30.9 4.53% 29.5 0.00% 
3x8M04 32.2 40 32.2 34.8 15.23% 29.5 9.15% 
3x8M05 35.1 238 35.1 35.7 15.13% 30.3 15.84% 
3x8M06 25.5 19 25.5 28.8 11.46% 25.5 0.00% 
3x8M07 33.9 176 33.9 35.9 8.91% 32.7 3.67% 
3x8M08 29.1 51 29.1 32.3 9.91% 29.1 0.00% 
3x8M09 35.4 140 35.4 38.6 15.28% 32.7 8.26% 
3x8M10 33.0 581 33.0 36.2 18.51% 29.5 11.86% 
Average 31.7 131.9 31.7 33.8 10.83% 30.1 5.25% 
3x8H01 35.4 42 35.4 35.4 0.00% 32.7 8.26% 
3x8H02 35.1 30 35.1 39.7 11.59% 32.7 7.34% 
3x8H03 30.3 51 30.3 31.8 4.72% 29.1 4.12% 
3x8H04 35.1 373 35.1 38.5 8.83% 31.5 11.43% 
3x8H05 32.7 412 32.7 35.8 8.66% 31.5 3.81% 
3x8H06 33.9 57 33.9 35.7 5.04% 30.3 11.88% 
3x8H07 35.4 16 35.4 35.4 0.00% 32.7 8.26% 
3x8H08 36.0 84 36.0 40.9 11.98% 33.9 6.19% 
3x8H09 36.0 9 36.0 36.6 1.64% 33.9 6.19% 
3x8H10 32.7 7 32.7 34.2 4.39% 31.5 3.81% 
Average 34.3 108.1 34.3 36.4 5.68% 32.0 7.13% 
Overall 31.1 157.7 31.1 33.5 8.73% 29.4 5.53% 
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Table 3.16. Experiment 3 results for TSCSP instances of size 5 × 10 (* indicates a better result 
than in experiment 1). 
 

Instance CPLEX GA (using DP) (30 seconds) LB 𝑀74 − 𝐿𝐵
𝐿𝐵   

 
𝑀34 

 
 

Time (s)  
𝑀74 𝑀/ 

 
𝑀/ −𝑀74

𝑀/
 

 
5x10L01 50.7 3734 49.0 58.5 16.24% 47.7 2.73% 
5x10L02 56.5 3637 55.4 63.5 12.76% 50.0 10.80% 
5x10L03 50.5 3656 49.1 53.2 7.71% 47.8 2.72% 
5x10L04 57.3 3603 50.9 55.8 8.78% 47.7 6.71% 
5x10L05 48.7 3603 48.7 54.1 9.98% 48.7 0.00% 
5x10L06 58.8 3612 58.5 64.2 8.88% 53.4 9.55% 
5x10L07 57.6 3620 56.3* 62.4 9.78% 48.9 15.13% 
5x10L08 54.4 3612 54.7 58.7 6.81% 53.3 2.63% 
5x10L09 46.5 3614 46.5 51.9 10.40% 46.5 0.00% 
5x10L10 50.5 3600 49.2 57.1 13.84% 47.8 2.93% 
Average 53.6 3629.1 51.8 57.9 10.49% 49.2 5.35% 

5x10M01 69.6 3616 68.7 74.6 7.91% 63.3 8.53% 
5x10M02 62.0 3621 58.8 65.3 9.95% 54.5 7.89% 
5x10M03 66.0 3600 64.2 68.5 6.28% 60.4 6.29% 
5x10M04 67.5 3601 64.8 67.3 3.71% 59.2 9.46% 
5x10M05 65.1 3661 59.7 67.0 10.90% 53.5 11.59% 
5x10M06 68.6 3600 68.6 71.0 3.38% 62.9 9.06% 
5x10M07 62.1 3603 62.1 68.6 9.48% 57.3 8.38% 
5x10M08 69.3 3602 67.2 74.9 10.28% 60.9 10.34% 
5x10M09 66.0 3606 66.0 69.6 5.17% 61.5 7.32% 
5x10M10 61.2 3601 61.2 70.4 13.07% 56.9 7.56% 
Average 65.7 3611.1 64.1 69.7 8.01% 59.0 8.64% 
5x10H01 70.5 3601 69.6 75.5 7.81% 66.9 4.04% 
5x10H02 72.9 3601 72.9 73.9 1.35% 66.9 8.97% 
5x10H03 71.7 3647 71.7 75.4 4.91% 65.7 9.13% 
5x10H04 72.0 3601 69.6 71.1 2.11% 65.7 5.94% 
5x10H05 72.0 3606 68.4 70.0 2.29% 65.7 4.11% 
5x10H06 72.9 3616 72.9 76.3 4.46% 69.3 5.19% 
5x10H07 74.4 3618 74.4 75.9 1.98% 70.5 5.53% 
5x10H08 68.4 3727 66.9 70.3 4.84% 63.3 5.69% 
5x10H09 75.0 3600 75.0 77.2 2.85% 72.9 2.88% 
5x10H10 67.2 3612 66.0 72.3 8.71% 61.5 7.32% 
Average 71.7 3622.9 70.7 73.8 4.13% 66.8 5.88% 
Overall 63.7 3621.0 62.2 67.1 7.54% 58.4 6.63% 
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Table 3.17 shows the results for the large problem instances of size 10×23. The GA creates 

and evaluates an average of 60,000 generations (3 million chromosomes) within the time limit, 

which is 1.76 times more than in Table 3.8. The results show that the DP-based GA is not only 

creating more generations but also is finding slightly better makespans on average (0.26%), 

especially for lighter instances (0.35%). Among 30 instances in categories light, medium, and 

heavy, 21 instances have improved makespans using DP for tier generation. The remaining 9 

makespans are as good as the IP-based GA. The average makespan of the best GA solution (269.5) 

is about 8% higher than the average lower bound (249.4). Note that the quality of the GA solution 

improves as containers get heavier; on average, the makespan of the best GA solution is roughly 

10%, 9%, and 6% above the lower bound for the light, medium, and heavy instances respectively.  

Table 3.18 shows the results for the very large problem instances of size 50×50. The DP-

supported GA creates and evaluates an average of 23,000 generations (1.15 million chromosomes) 

within the time limit. The results show that the DP-supported GA not only creates more 

chromosomes (2.8 times more) but also finds solutions with better makespans on average (0.15%). 

Among the 30 instances of size 50×50, 28 instances have better makespans when using DP for tier 

generation. The other two instances have worse makespans than the IP-based GA (heavy 

instances). The average makespan of the best GA solution (2806.5) is about 6.6% higher than the 

average lower bound (2637.2). On average, the makespan of the best GA solution is roughly 8%, 

7%, and 5% above the lower bound for the light, medium, and heavy instances respectively. 

Overall, DP generates tier options more quickly than integer programming, and the performance 

of the GA is slightly enhanced when the tier options for TSCSP instances are generated using DP 

instead of integer programming. 
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Table 3.17. Experiment 3 results for TSCSP instances of size 10 × 23 (* indicates a better result 
than in experiment 1). 
 

Instances GA (using DP) (600 seconds) LB 𝑀74 − 𝐿𝐵
𝐿𝐵  

𝑀74 𝑀/ 
 

𝑀/ −𝑀74

𝑀/
 

 
10x23L01 237.3* 243.9 2.71% 216.9 9.41% 
10x23L02 228.8* 234.2 2.31% 204.5 11.88% 
10x23L03 215.9* 220.9 2.26% 196.6 9.82% 
10x23L04 235.8* 238.2 1.01% 213.9 10.24% 
10x23L05 227.5* 236.5 3.81% 206.8 10.01% 
10x23L06 219.2* 225.0 2.58% 198.0 10.71% 
10x23L07 224.7* 230.1 2.35% 203.1 10.64% 
10x23L08 223.1 230.2 3.08% 203.2 9.79% 
10x23L09 224.7* 232.8 3.48% 205.8 9.18% 
10x23L10 229.9* 234.7 2.05% 207.7 10.69% 
Average 226.7* 232.7 2.58% 205.6 10.26% 
10x23M01 264.4* 270.3 2.18% 237.9 11.14% 
10x23M02 263.7* 270.3 2.55% 240.6 9.48% 
10x23M03 267.9* 276.5 3.11% 244.1 9.75% 
10x23M04 278.7* 286.4 2.69% 254.0 9.72% 
10x23M05 267.5* 272.0 1.65% 242.3 10.40% 
10x23M06 271.1* 279.5 3.01% 249.8 8.53% 
10x23M07 274.9* 283.4 3.00% 253.7 8.36% 
10x23M08 274.5 283.3 3.11% 253.6 8.24% 
10x23M09 272.9* 278.0 1.83% 248.3 9.91% 
10x23M10 273.3* 278.9 2.01% 254.6 7.34% 
Average 270.9* 277.9 2.53% 247.9 9.26% 
10x23H01 310.8 317.0 1.96% 294.9 5.39% 
10x23H02 310.5* 318.0 2.36% 299.1 3.81% 
10x23H03 306.7 311.2 1.45% 284.2 7.92% 
10x23H04 314.1 318.7 1.44% 300.9 4.39% 
10x23H05 306.9* 313.5 2.11% 291.9 5.14% 
10x23H06 317.4 323.6 1.92% 299.3 6.05% 
10x23H07 311.7* 316.4 1.49% 292.1 6.71% 
10x23H08 314.1 321.5 2.30% 297.2 5.69% 
10x23H09 307.9 315.4 2.38% 291.1 5.77% 
10x23H10 310.8 314.5 1.18% 295.6 5.14% 
Average 311.1* 317.0 1.86% 294.6 5.60% 
Overall 269.5* 276.9 2.31% 249.4 8.37% 
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Table 3.18. Experiment results for TSCSP instances of size 50 × 50 (*/∆ indicates a better/worse 
result than in experiment 1). 
 

Instances GA (using DP) (600 seconds) LB 𝑀74 − 𝐿𝐵
𝐿𝐵  

𝑀74 𝑀/ 
 

𝑀/ −𝑀74

𝑀/
 

 
50x50L01 2328.5* 2363.0 1.46% 2160.5 7.78% 
50x50L02 2321.7* 2361.8 1.70% 2145.8 8.20% 
50x50L03 2360.7* 2390.8 1.26% 2177.5 8.41% 
50x50L04 2407.6* 2443.7 1.48% 2222.3 8.34% 
50x50L05 2316.8* 2373.8 2.40% 2149.7 7.77% 
50x50L06 2384.5* 2427.4 1.77% 2211.4 7.83% 
50x50L07 2344.9* 2390.6 1.91% 2158.4 8.64% 
50x50L08 2357.9* 2419.6 2.55% 2182.0 8.06% 
50x50L09 2391.7* 2421.2 1.22% 2205.2 8.46% 
50x50L10 2341.8* 2393.2 2.15% 2163.7 8.23% 
Average 2355.6* 2398.5 1.79% 2177.6 8.17% 
50x50M01 2796.9* 2812.7 0.56% 2621.0 6.71% 
50x50M02 2778.6* 2800.6 0.79% 2595.4 7.06% 
50x50M03 2778.2* 2808.7 1.09% 2598.1 6.93% 
50x50M04 2797.1* 2814.6 0.62% 2620.2 6.75% 
50x50M05 2830.0* 2845.0 0.53% 2650.7 6.76% 
50x50M06 2851.8* 2873.3 0.75% 2670.8 6.78% 
50x50M07 2830.4* 2864.8 1.20% 2651.5 6.75% 
50x50M08 2840.1* 2872.0 1.11% 2669.5 6.39% 
50x50M09 2828.2* 2864.5 1.27% 2645.8 6.89% 
50x50M10 2795.6* 2822.9 0.97% 2628.5 6.36% 
Average 2812.7* 2837.9 0.89% 2635.1 6.74% 
50x50H01 3246.9* 3288.5 1.27% 3096.8 4.85% 
50x50H02 3236.5* 3282.7 1.41% 3085.6 4.89% 
50x50H03 3273.8* 3324.8 1.53% 3127.7 4.67% 
50x50H04 3233.7* 3276.4 1.30% 3073.9 5.20% 
50x50H05 3268.0* 3310.2 1.27% 3113.1 4.98% 
50x50H06 3264.6* 3304.2 1.20% 3109.8 4.98% 
50x50H07 3236.3* 3293.2 1.73% 3085.3 4.89% 
50x50H08 3276.5∆ 3322.2 1.38% 3125.1 4.84% 
50x50H09 3242.2∆ 3275.9 1.03% 3092.3 4.85% 
50x50H10 3233.7* 3279.4 1.39% 3079.6 5.00% 
Average 3251.2 3295.8 1.35% 3098.9 4.92% 
Overall 2806.5 2844.1 1.34% 2637.2 6.61% 
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Chapter 4: 

Conclusion 

 

4.1 Concluding remarks 

In this dissertation, we investigated two new crane scheduling problems—the dual-

spreader crane scheduling problem (DSCSP) and triple-spreader crane scheduling problem 

(TSCSP)—which are inspired by the multi-spreader (i.e. tandem-lift) quay crane (QC), an 

emerging technology for handling cargo at seaport container terminals. The efficient operation of 

such cranes may allow containerships to be unloaded more quickly and thereby improve overall 

container terminal efficiency. 

In Chapter 2, we formulated the DSCSP as a mixed-integer linear program, developed a 

tight lower bound on the optimal value, and devised a heuristic approach for handling large 

problem instances. The heuristic approach begins with an excellent initial feasible solution that 

effectively utilizes the problem structure. A simulated annealing framework was used to improve 

upon the initial feasible solution. Numerical experiments indicate that the heuristic approach finds 

the same optimal solutions as CPLEX for small-sized instances. For medium-sized instances, the 

heuristic outperforms CPLEX. The comparison between the optimal value and lower bound for 

small-sized instances suggests that the lower bound is tight, providing a good guide for solution 

quality. Overall, the heuristic approach produces crane schedules whose makespans, on average, 

are within 6% of the lower bound for each of the four problem sizes considered.  

In Chapter 3, we formulated the TSCSP as an integer linear program, calculated a tight 

lower bound on the optimal value, and deployed a genetic algorithm (GA) with an embedded 
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dynamic programming (DP) routine for attacking large problem instances. The genes in the GA 

chromosomes are tier options that are constructed based on knowledge of the problem structure. 

Numerical experiments indicate that the GA finds the same optimal solutions as CPLEX for small 

problem instances. For instances with at least 50 containers, the GA outperforms CPLEX. On 

average, the GA finds crane schedules whose makespans are within (5.53%, 6.63%, 8.37%, 6.61%) 

of the lower bound for (small, medium-sized, large, very large) problem instances—an overall 

average of 6.8% above the lower bound. The GA also outperforms the simulated-annealing-based 

method proposed in Chapter 2 on instances of the dual-spreader crane scheduling problem 

(DSCSP). Overall, the GA appears to be an effective method for addressing both the TSCSP and 

DSCSP.  

Although we solely consider the unloading of a storage bay, our approach can apply to the 

loading of a storage bay. Indeed, reversing the sequence of operations—single-spreader lifts, dual-

spreader lifts, triple-spreader lifts, and changeovers—creates a schedule for loading a storage bay 

in the same amount of time in which it is unloaded.  

 

4.2 Future work 

Future work might proceed in several directions. First, the NP-hardness of the DSCSP (or 

lack thereof) could be established. Second, the problem of scheduling multiple quay cranes to 

unload containers from the deck of a containership to minimize total unloading time can be 

investigated. This problem may include constraints on the movement of the quay cranes. 

Third, DSCSP and TSCSP instances with other container weight distributions; lift weight 

limits L2 and L3; lift durations H1, H2, and H3; and spreader changeover times Cpq could be 

considered. Perhaps most importantly, more realistic variations of this problem—that consider 
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more realistic positions of heavy and light containers, multiple QCs working together to unload a 

vessel, additional real-world constraints, and/or the distance moved by the spreader—might be 

considered.  

Finally, the solutions developed in this study might be integrated into an end-to-end 

container shipping transportation problem. This problem might focus on a containership that 1) 

loads containers at an origin seaport, 2) stops at multiple intermediate ports to unload some 

onboard containers and load new containers, and 3) travels all the way to a final destination port 

to unload the remaining containers. In this complex problem, many new factors must be taken into 

account. First and foremost, loading containers must follow a schedule subject to the destination 

of each container. In order to have an optimal 3D deck layout, the position of each container should 

be a variable in the mathematical model. In addition, the weight distribution of containers should 

follow certain standards to keep the vessel balanced while it is at port and traveling the high seas. 



 97 

References 

 
1. Allison, L. (2020). Dynamic Programming, accessed on July 19th 2020, Retrieved from 

http://users.monash.edu/~lloyd/tildeAlgDS/Dynamic/ 

2. Angeloudis, P., & Bell, M. G. (2011). A review of container terminal simulation models. 
Maritime Policy & Management, 38 (5), 523–540. 

3. Bernhofen, D. M., El-Sahli, Z. & Kneller, R. (2016). Estimating the effects of the container 
revolution on world trade. Journal of International Economics, 98, 36–50. 

4. Bierwirth, C., & Meisel, F. (2010). A survey of berth allocation and quay crane scheduling 
problems in container terminals. European Journal of Operational Research, 202 (3), 615–
627.  

5. Bierwirth, C., & Meisel, F. (2015). A follow-up survey of berth allocation and quay crane 
scheduling problems in container terminals. European Journal of Operational Research, 244 
(3), 675–689. 

6. Broeze, F. (2002). The Globalization of the Oceans: Containerization from the 1950s to the 
Present. 23, Oxford University Press. 

7. Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014a). Storage yard operations in container 
terminals: Literature overview, trends, and research directions. European Journal of 
Operational Research, 235 (2), 412–430. 

8. Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2014b). Transport operations in container 
terminals: Literature overview, trends, research directions and classification scheme. 
European Journal of Operational Research, 236 (1), 1–13. 

9. Carlo, H. J., Vis, I. F., & Roodbergen, K. J. (2015). Seaside operations in container terminals: 
Literature overview, trends, and research directions. Flexible Services and Manufacturing 
Journal, 27 (2–3), 224–262. 

10. Chao, S.-L., & Lin, Y.-J. (2011). Evaluating advanced quay cranes in container terminals. 
Transportation Research Part E: Logistics and Transportation Review, 47 (4), 432–445.  

11. Chen, J. H., Lee, D.-H., & Cao, J. X. (2011). Heuristics for quay crane scheduling at in- dented 
berth. Transportation Research Part E: Logistics and Transportation Review, 47 (6), 1005–
1020. 

12. Chen, L. H., Cao, J. X., & Zhao, Q. Y. (2014). Tandem lift quay cranes and yard trucks 
scheduling problem at container terminals. In Applied mechanics and materials: 505(pp. 927–
930). Trans Tech Publ. 



 98 

13. Cheng, C., Petering, M. E. H., & Wu, Y. (2020).  The multi-spreader crane scheduling 
problem: partitions and supersequences.  Submitted to Discrete Applied Mathematics. 

14. Choi, S.-H., Im, H., & Lee, C. (2014). Development of an operating system for optimization 
of the container terminal by using the tandem-lift quay crane. In J. J. Park, I. Stojmenovic, M. 
Choi, & F. Xhafa (Eds.), Future information technology (pp. 399–404). Berlin: Springer.  

15. Colorado Springs Business Journal, Imports at container ports set new monthly record, 
accessed on May 29th, 2020, https://www.csbj.com/2018/12/12/imports-at-container-ports-
set-new-monthly-record/ 

16. Cudahy, B. J. Box boats: How container ships changed the world, Fordham Univ Press, 2006. 

17. Di Fonzo, T., Costas Paris, L. (2018). How a Steel Box Changed the World: A Brief History 
of Shipping. Retrieved from www.wsj.com/video/series/a-brief-history-of/how-a-steel-box-
changed-the-world-a-brief-history-of-shipping/CF460889-9984-483E-AF44-
324330B89ECA. 

18. Ezugwu, A.E., Adeleke, O.J., Akinyelu, A.A., Viriri, S. (2020). A conceptual comparison of 
several metaheuristic algorithms on continuous optimisation problems. Neural Computing & 
Applications, 32, 6207–6251. 

19. Fernández, A. (2018). Understanding Genetic Algorithms. A Use Case in the Organizational 
Field. Medium, Becoming Human: Artificial Intelligence Magazine, accessed on 12 Nov. 
2018, becominghuman.ai/understanding-genetic-algorithms-a-use-case-in-organizational-
field-2087c30fb61e. 

20. Gharehgozli, A. H., Roy, D., & de Koster, R. (2015). Sea container terminals: New 
technologies and or models. Maritime Economics & Logistics.  

21. Goussiatiner, A. (2007a). In pursuit of productivity. Container Management August. 

22. Goussiatiner, A. (2007b). In pursuit of productivity 2. Container Management September. 

23. Imai, A., Chen, H. C., Nishimura, E., & Papadimitriou, S. (2008). The simultaneous berth and 
quay crane allocation problem. Transportation Research Part E: Logistics and 
Transportation Review, 44 (5), 900–920.  

24. Kim, K. H., & Kim, K. Y. (1999). An optimal routing algorithm for a transfer crane in port 
container terminals. Transportation Science, 33 (1), 17–33.  

25. Kim, K. H., & Park, Y.-M. (2004). A crane scheduling method for port container terminals. 
European Journal of Operational Research, 156 (3), 752–768.  

26. King, R. C., Adams, G. M. & Wilson, G. L. (1936). The freight container as a contribution to 
efficiency in transportation. The ANNALS of the American Academy of Political and Social 
Science 187, 27–36. 



 99 

27. Kite-Powell, H. (2001) Shipping and ports, Academic Press. 

28. Lashkari, S., Wu, Y., Petering, M. E. H. (2017). Sequencing dual-spreader crane operations: 
Mathematical formulation and heuristic algorithm. European Journal of Operational 
Research, 262 (2), 521–534. 

29. Levine, J. (2019). The History of the Shipping Container, accessed on June 12st, 2020, 
Retrieved from https://www.freightos.com/the-history-of-the-shipping-container/ 

30. Levinson, M. (2016). The Box: How the Shipping Container Made the World Smaller and the 
World Economy Bigger, Princeton University Press. 

31. Liu, C.I., H. Jula, K. Vukadinovic, and P.A. Ioannou. Comparing Different Technologies for 
Containers Movement in Marine Container Terminals. Proc. 3rd IEEE International 
Conference on Intelligent Transportation Systems, pp. 488–493. 

32. McCarthy, P. W., Jordan, M. A., & Wright, L. (2007). Dual-hoist, tandem 40 crane 
considerations. Port Technology International, 34, 111–113. 

33. Meisel, F., & Bierwirth, C. (2013). A framework for integrated berth allocation and crane 
operations planning in seaport container terminals. Transportation Science, 47 (2), 131–147.  

34. Moccia, L., Cordeau, J.-F., Gaudioso, M., & Laporte, G. (2006). A branch-and-cut algorithm 
for the quay crane scheduling problem in a container terminal. Naval Research Logistics 
(NRL), 53 (1), 45–59.  

35. Ng, W., & Mak, K. (2006). Quay crane scheduling in container terminals. Engineering 
Optimization, 38 (6), 723–737. 

36. North, D. C. (1968). Sources of productivity change in ocean shipping, 1600-1850. Journal 
of Political Economy, 76, 953–970. 

37. Shipping Container History: Boxes to Buildings. (2020), accessed on June 22st, 2020, 
Retrieved from https://www.discovercontainers.com/a-complete-history-of-the-shipping-
container/ 

38. Song, J.-H. (2011). Tandem operation and double cycling in container terminals. Port 
Technology International, 51, 73–79.  

39. Stahlbock, R., & Voß, S. (2008). Operations research at container terminals: a literature 
update. OR Spectrum, 30 (1), 1–52.  

40. Statista, Capacity of container ships in seaborne trade, accessed on June 18th, 2020, 
https://www.statista.com/statistics/267603/capacity-of-container-ships-in-the-global-
seaborne-trade/ 

41. Steenken, D., Voß, S., & Stahlbock, R. (2004). Container terminal operation and operations 
research-a classification and literature review. OR spectrum, 26 (1), 3–49.  



 100 

42. Suman, B., and Kumar, P., (2006). A Survey of Simulated Annealing as a Tool for Single and 
Multi-Objective Optimization. The Journal of the Operational Research Society, 57, 1143 –
1160. 

43. Talley, W. K. (2000). Ocean container shipping: impacts of a technological improvement. 
Journal of economic issues 34, 933–948. 

44. Tang, L., Zhao, J., & Liu, J. (2014). Modeling and solution of the joint quay crane and truck 
scheduling problem. European Journal of Operational Research, 236 (3), 978–990.  

45. UNCTAD Stat (2020a), Liner shipping connectivity index, accessed on June 11th, 2020, 
https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=92. 

46. UNCTAD Stat (2020b), World seaborne trade by types of cargo and by group of economies, 
annual, accessed on June 19th, 2020, 
https://unctadstat.unctad.org/wds/TableViewer/tableView.aspx?ReportId=32363. 

47. University press of Liverpool. (1954) The Dock Worker: An Analysis of Conditions of 
Employment in the Port of Manchester. 

48. Unsal, O., & Oguz, C. (2013). Constraint programming approach to quay crane scheduling 
problem. Transportation Research Part E: Logistics and Transportation Review, 59, 108–
122. 

49. Van Ham, H., Rijsenbrij, J. (2012). Development of containerization: Success through vision, 
drive and technology, IOS Press. 

50. Vis, I. F., & De Koster, R. (2003). Transshipment of containers at a container terminal: an 
overview. European Journal of Operational Research, 147 (1), 1–16.  

51. World Cargo News (2007). Make mine a double – or even a triple. Wu, Y., Li, W.-K., 
Petering, M., Goh, M., & de Souza, R. (2015). Scheduling multiple yard cranes with crane 
interference and safety distance requirement. Transportation Science, 49 (4), 990–1005.  

52. World Shipping Council, (2020a). Partners in Trade (n.d.), accessed on June 22st, 2020. 
Retrieved from http://www.worldshipping.org/about-the-industry/containers. 

53. World Shipping Council, (2020b). The birth of intermodalism, accessed on June 21st, 2020. 
http://www.worldshipping.org/about-the-industry/history-of-containerization/the-birth-of-
intermodalism.  

54. Wu, Y., Li, W., Petering, M. E. H., Goh, M., de Souza, R. (2015). Scheduling multiple yard 
cranes with crane interference and safety distance requirement. Transportation Science, 49, 
990–1005. 

55. Xing, Y., Yin, K., Quadrifoglio, L., & Wang, B. (2012). Dispatch problem of automated 
guided vehicles for serving tandem lift quay crane. Transportation Research Record, (2273), 
79–86. 



 

 101 

CURRICULUM VITAE 
 

 
Shabnam Lashkari 
 
Education    
 

PhD in Industrial Engineering | GPA: 3.82, University of Wisconsin Milwaukee   2014 – 2020 
• Thesis: Sequencing multiple-spreader crane operations: mathematical formulation and heuristic algorithm 
• Advisor: Dr. Matthew E.H. Petering | Minor: Business Administration  

 

BSc. in Industrial Engineering | GPA: 3.35, Iran University of Science & Technology 2012 
 
Career Summary 
 

Senior DevOps Engineer, CCC Information Services                                                         September 2019 – Present 
- Development of multi-staged pipeline 
- Automation of data ingestion that prepares raw data for training models, resulting in the creation and 

deployment of intelligent Deep Learning based solutions 
- Automation of monitoring systems across on-premise GPUs, AWS and Oracle Cloud services 
- Infrastructure architecture design in AWS enterprise account 

 

DevOps Intern, CCC Information Services                                                                               July – September 2019 
- Developing monitoring system and integrating the UI with AI-Pipeline used across the Architecture division 
- Automation of scheduling big data download and pre-processing using Airflow and Python 

 

Operations Research Analyst, University of Wisconsin Milwaukee 2014 – August 2020 
 

• Operations Research 
- Sequencing Multiple–Spreader Crane Operations: Mathematical Formulations and Heuristic Algorithms: 

Devised innovative strategies for scheduling a multiple-spreader quay crane; developed mathematical 
models, determined optimal objective value, and designed simulated annealing and genetic heuristic 
algorithms. 
 

• Data Analytics 
- Predicted average time to crime across 50 states by modeling and analyzing ‘time to crime’ data. Predicted 

the impact of variable values by performing multiple regression analysis and using Quantile and Ridge 
regression models. 
 

• Machine Learning 
-  Predicted arrival and departure delays in national flights by modeling the “flight data” extracted from Bureau 

of Transportation using machine learning methods such as logistics, decision trees, random forest, clustering, 
SMO, neural networks and ensembles using Weka software.  
 

• Supply Chain Management 
-     SAP-ERP Network Modeling and Analysis Improved revenue for a manufacturing company by defining 

business intelligence strategies, analyzing data collected from SAP and produced 6 types of serials in the 
market with multiple vendor suppliers. 
 

•     Non–linear Optimization 
- Optimized inventory placement cost in a supply chain network by using non-linear optimization techniques 

to minimize transportation cost resulted in 25% cost reduction. 



 

 102 

 

Instructor & Teaching Assistant, University of Wisconsin Milwaukee 2014 – 2019  
 

• Collaborated with Rockwell Automation Company to teach a course on IoT. Brainstormed new solutions, 
designed equipment, and aided in time study and analysis for the Methods Engineering lab. 
 

• Teaching the course ‘Intro to Operations Analysis’ as an instructor to a class of 27 undergraduate students.  
 

• Taught ProModel on real-world manufacturing and service system problems in the simulation methodology 
lab.  

• Recognized as the best TA in the IME Department for bringing interactive learning opportunities for students. 
 

Supply Planning Analyst, Kalleh Co. 2012 – 2013 
• Established an optimal inventory plan by forecasting demand for 1000+ products. Oversaw supply planning 

and developed a predictive model based on time series analysis. Presented monthly data reports by analyzing 
sales records. 

 

Data Analyst Intern, ArmanSanat Company Summer 2009 
• Facilitated change in management strategies for improved innovation appreciation and feedback system 

implementation across 3 companies. Evaluated creative management methods, designed questionnaires, and 
collected data for analysis. 

 

Technical Skills 
 

Industrial Skills: Linux, Docker, Kubernetes, Prometheus, Grafana, Airflow, AWS Architecture Design, Packer, 
Terraform, Ansible, Database Support, OCI, Git, Apache, SQL 
 

Academic Skills 
• Programming: C++, Python 
• Industrial tools: CPLEX, ProModel, SAP, Tableau, Weka, Minitab, Mixed Integer Programming, LP, NLP, 

Non-Linear Optimization, Data Modeling, Data mining, Statistical & Predictive Analysis, Machine Learning, 
Algorithm Design and Complexity Analysis, Simulation Modeling, Supply Chain Technology & Simulation 

• Tools: Advanced Excel, Powerpoint, Word, Access 
 

Publications 
 

• Lashkari, S., Wu, Y., Petering, M.E.H. (2017) “Sequencing dual-spreader crane operations: mathematical 
formulation and heuristic algorithm,” European Journal of Operational Research, 262(2), 521-534.  

• Petering, M.E.H, Lashkari, S., Wu, Y. “Sequencing triple-spreader crane operations: mathematical 
formulation and heuristic algorithm,” European Journal of Operational Research [Under review]. 

 

Honors & Awards 
 

• Graduate Student Excellence Fellowship (top 1% graduate student), UWM Graduate School                    2018 
• Honorable Mention Award in Poster Competition, UWM College of Engineering & Applied Science      2018 
• Finalist in 3-Minute Thesis Competition, UWM Graduate School                                                               2018 
• Graduate Student Travel Award, UWM Graduate School                                                                            2017 
• 3-Times Chancellor’s Award Winner, UWM Industrial & Manufacturing Department                   2015 – 2018 
• Ranked best teaching assistant in IME department, UWM                                                               2016 – 2017 


	Sequencing Multiple-Spreader Crane Operations: Mathematical Formulations and Heuristic Algorithms
	Recommended Citation

	tmp.1617736683.pdf.Z3lZO

