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ABSTRACT

The Second Law of Thermodynamics
and The Accumulation Theorem

by

Austin R. Maule

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Kevin McLeod

Abstract

In Serrin’s proof of the Accumulation Theorem, the presence of an ideal gas G is assumed.

In 1979 at the University of Naples, Serrin (allegedly) proved that the ideal system G can be

replaced by a more general ideal system and still have the Accumulation Theorem hold. In

this paper, we attempt to reconstruct Serrin’s proof and supply a proof for a more general

theorem stated in a paper of Coleman, Owen and Serrin.
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Introduction

I.1 Motivation of the Problem

Beginning in the middle of the 20th century, there was a great effort by mathematical

physicists to put Thermodynamics into an axiomatically sound, mathematically rigorous

framework. Despite the age of the subject, the field of Thermodynamics has been notorious

for lacking rigor in its proofs. Unlike other scientific disciplines, many of the scientific

laws in Thermodynamics are stated without any standard or usual mathematical formalism.

Consequently, adding precision and rigorous mathematical justification of Thermodynamic

principles became of interest to mathematical physicist’s in the 20th century.

According to [C1], when thermodynamical concepts and principles are employed in a

physical setting, one can isolate an assumption, called the Second Law. The Second Law

in some sense is equivalent to the assertion that the sum along a cyclic process of the ratio

of the heat gained to the absolute temperature at which it is gained cannot be positive.

Determining a precise but general rule for deciding what is meant by the ”sum along a

process of the ratio of the heat gained to the absolute temperature at which it is gained”

remained an open question. In order to answer this question, James Serrin introduced The

Accumulation Theorem, essentially providing an analytic formulation of the Second Law.

In his first statements of the Accumulation Theorem, Serrin hypothesizes the existence of a

distinguished ideal gas G . This is not a very realistic physical assumption, but the existence

of such a gas allows one to discuss the empirical temperature scale associated with G . This
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in turn allows one to have an absolute temperature scale for a thermodynamical system.

While Serrin’s Accumulation Theorem provides an analytic formulation for the Second

Law, it does come with several limitations. The first limitation of his Theorem is that it

relies on the existence of a distinguished ideal gas G . The existence of such a system in

nature is clearly very unlikely. The second limitation is that it places emphasis on a small

class of thermodynamical systems (namely those that possess a distinguished ideal gas).

During a lecture at the University of Naples, Serrin provided a new proof of his Accumu-

lation Theorem. In his revised proof, he showed that the Accumulation Theorem still holds

if one assumes the existence of a more general ideal system in place of the distinguished ideal

gas. Unfortunately, these lecture notes have been lost to history and it’s unknown whether

or not these notes were recorded elsewhere.

One of the primary goals of this paper will be demonstrating the proof of the Accumu-

lation Theorem for cycles; however, we show that a more general ideal system can be used

in place of the distinguished ideal gas G , essentially recovering Serrin’s arguments from his

University of Naples notes.

It is worth noting that Serrin’s results are re-stated and generalized without proof in

Section 6 of [C1]; in this thesis, we will provide proofs of the claims of [C1].
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Systems and States

II.1 Formal Structure of Thermodynamics

In this section, we introduce the formal structure of Thermodynamics and give several im-

portant definitions that will be used repeatedly throughout this paper. This material is

taken from [C1] and [S1].

When introducing the formal structure of Thermodynamics it is convenient to start with

the concept of hotness. Hotness is represented by a thermal manifold H , that is to say

an open topological line with one of its two natural orientations identified as the direction

of increasing hotness. Here, the points of H represent hotness levels L open to material

systems. The manifold H is a totally ordered set with the order relation ”>” corresponding

to increasing levels of hotness. In particular, if L1 and L2 are any two different hotness levels

in H , then either L1 > L2 or L2 < L1 (but not both). Moreover, if L1 > L2 and L2 > L3

then L1 > L3, that is, the order is transitive. The relation L1 > L2 will be read as ”L1 is

hotter than L2” or alternatively ”L2 is colder than L1”. We also write L1 ≥ L2 to indicate

that either L1 > L2 or L1 = L2.

A (empirical) temperature scale is a strictly increasing map from H into the reals R. If

ψ is a temperature scale then ψ(L) is called the temperature of L in the scale ψ.

A System is a pair (Σ,Π) of sets (with Σ called the set of states σ and Π the set of

processes P ) together with a function P → �P . The function P → �P assigns to each

process P a function �P : D(P ) → Σ. Here, D(P ) is a non-empty subset of Σ and the
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function �P is called the transformation induced by P . It is in accord with the present

use of the term ”process” to think of a pair (P, σ), with σ ∈ D(P ), as a ”bound process”;

the set of all such pairs is denoted by Π ⊕ Σ, where ”⊕” is understood to be the cartesian
product. We will refer to σ as the initial state and to �Pσ as the final state associated

with the bound process (P, σ).

We are now ready to define a thermodynamical system with states.

Definition 1. A Thermodynamical System(with states) is a triple L = (Σ,Π, Q), with

(Σ,Π) a system in the sense defined above and Q a real valued function on (Π ⊕ Σ) × H

(called the accumulation function for L ), such that, for each pair (P, σ) ∈ Π ⊕ Σ the

following hold:

(a). There is a pair of hotness levels Ll < Lu for which

Q(P, σ;L) =

⎧⎪⎨
⎪⎩

0 , L < Ll

Q(P, σ;Lu) , L ≥ Lu .
(1)

(b). The function L → Q(P, σ;L) from H into R is bounded and has at most a countable

number of points of discontinuity.

[C1] interpret the value Q(P, σ;L) of the accumulation function Q to be the net heat

transferred to L at levels of hotness at or below L in the process P starting at the state σ.

Here, a positive transfer means a gain of heat by L , while a negative transfer means a loss.

Note that (a) shows that the net heat transferred at or below L must be zero if L is below

Ll, and the net heat transferred at or below L must be the number Q(P, σ) = Q(P, σ;Lu)

whenever L is above Lu. For a given pair (P, σ), when Lu is as in part (a), Coleman, Owen

and Serrin state that (P, σ) operates at or below Lu. The number Q(P, σ) is the overall

net transfer of heat for (P, σ).

If an empirical temperature scale ψ is used to identify hotness levels L with real numbers

ξ = ψ(L), then Q(P, σ;ψ−1(ξ)) is the net heat transferred to L at temperatures (relative
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to ψ) at or below ξ when the system undergoes the process P starting at σ. Part (a) in the

previous definition implies that, for each pair (P, σ) and temperature scale ψ, Q(P, σ;ψ−1(ξ))

as a function of ξ is a bounded function with at most countably many discontinuities and

so, in particular, is locally Riemann integrable.

II.2 Ideal Gases

Simple but important examples of thermodynamical systems are ideal gases. These can be

thought of as gaseous bodies (of unit mass) which are restricted to spatially homogeneous

conditions. An ideal gas G is an ”ideal material” or ”homogeneous fluid body” in the sense

that each state is a pair (v, τ), with τ a value of an empirical temperature scale φ̄ and v

the volume, and the gain of heat along a path in the state space ΣG can be calculated by

integrating a differential form,

q = cdτ + fdv, (2)

in which the heat capacity c and the latent heat f are continuous functions on ΣG .

The defining property of an ideal gas G is the form of the pressure, p, given by

p =
Rτ

v
. (3)

In Serrin’s original formulation of the Accumulation Theorem (to be stated later) he assumes

the existence of an ideal gas G . The physical existence of such an object in nature is very

unlikely. It then becomes natural to question whether this ideal gas G can be replaced by a

more general ideal system and still have the accumulation theorem hold.
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The First Law of Thermodynamics

Although the goal of this paper is to prove results about the Second Law, we will briefly

discuss the First Law in this section.

We say a process P is cyclic if the initial and final state of the system is the same. We

define a thermodynamical universe to be a set U of thermodynamical systems L .

Every thermodynamical system L comes endowed with a set P(L ) of processes, typi-

cally denoted by P,R, S, etc., which the system may undergo, together with a subset Pc(L )

of cyclic processes of the system. To every process P ∈ P(L ) there correspond real numbers

W̄ (P ) and Q̄(P ), called the total work done by the process P and the total heat used by

the process P . Formally, we can write

W̄ : P(L ) → R (4)

Q̄ : P(L ) → R (5)

We adopt the standard sign convention that W̄ (P ) > 0 if work is done by the system on the

exterior environment and W̄ (P ) < 0 if the exterior environment deos work on the system.

Similarly Q̄(P ) > 0 if heat is supplied to the system, while Q̄(P ) < 0 means that the system

has supplied heat to the environment.

A particularly valuable idea that is used throughout the study of thermodynamics is that

of a product of thermodynamical systems. To make this idea precise, we record the following

definition:
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Definition 2. Let L1 and L2 be a pair of thermodynamical systems. The product system,

L1 ⊕ L2, is characterized by its processes and their work and heat functions, which are

required to satisfy the following conditions:

1. P(L1 ⊕ L2) = P(L1)× P(L2)

2. Pc(L1 ⊕ L2) = Pc(L1)× P(L2)

3. W̄ (P1 ⊕ P2) > 0 provided that W̄ (P1) + W̄ (P2) > 0

4. Q̄(P1 ⊕ P2) < 0 provided that Q̄(P1) + Q̄(P2) < 0

5. Q(P1 ⊕ P2, •) ≥ 0 provided that Q(P1, •) +Q(P2, •) ≥ 0.

Note that the function Q in 5 refers to the accumulation function associated with the given

process. Here, • represents the argument for the accumulation function (namely a particular
hotness level L ∈ H ). In this context, P1 ⊕ P2 denotes the union process (in P(L1 ⊕L2))

corresponding to the pair of processes P1 ∈ P(L1) and P2 ∈ P(L2). Additionally, × is

used to denote the Cartesian product.

It is natural to question whether the concept of a product system should be meaningful

for all conceivable pairs of thermodynamical systems. To avoid confusion, we shall restrict

the formation of product systems only to special and distinguished pairs of systems, called

thermodynamically compatible systems (or simply compatible systems). Thus, if L1 and L2

are a pair of compatible systems, then the product system L1 ⊕ L2 is itself assumed to be

a meaningful thermodynamical system satisfying the laws of thermodynamics.

If U is a thermodynamical universe, we shall say that U is compatible with a thermo-

dynamical system K if and only if K ∈ U and each system L in U is compatible with

K .
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Definition 3. We will say that a process P of a thermodynamic system L is weakly

reversible if there exists at least one associated process P
′
of L such that:

1. W̄ (P
′
) = −W̄ (P )

2. Q̄(P
′
) = −Q̄(P )

3. Q(P
′
, •) = −Q(P, •)

4. P
′ ∈ Pc(L ) provided that P ∈ Pc(L ).

The process P
′
will be called a weak reversal of P . Observe that there is no requirement

that P
′
be unique for a given reversible process P or that it should follow some ”path”

reverse to the ”path” of P . In general, this will certainly not be the case.

At last, with the previous definitions in place, we are able to discuss the first law of

thermodynamics.

The First Law of Thermodynamics is intimately connected to the principle of conservation

of energy. In fact, the first law is often taken to be a statement of interconvertibility of work

and heat, such as:

For any cyclic process of any thermodynamical system, the total work done by the system

is equal to the heat supplied to the system. In our notation, we can express this as:

W̄ (P ) = Q̄(P ) for any P ∈ Pc(L ). (6)

When one is studying thermodynamics, one often sees the equation W̄ (P ) = J Q̄(P ) instead

of the equation written above. The constant J is called Joule’s Constant and J = 1

means that we are measuring heat in mechanical units. It was discovered by Silhavy [Si1]

that the equation W̄ (P ) = Q̄(P ) can actually be deduced from weaker assumptions. This

brings us to the Weak First Law for Cycles.

Weak First Law for Cycles: If W̄ (P ) > 0 for a cyclic process P of a thermodynamical

system L , then Q̄(P ) > 0.

8



In this form, the first law simply says that a cyclic process cannot do work without the

supply of some heat. It’s perfectly reasonable to believe that a supply of heat is not only

necessary but sufficient for a cyclic process to do work. This leads us to consider what is

called the Strong First Law for Cycles.

Strong First Law for Cycles: W̄ (P ) > 0 for a cyclic process P of a thermodynamical

system L if and only if Q̄(P ) > 0.

Definition 4. A thermodynamical system R is called a reversible heat engine if there

exists at least one weakly reversible cyclic process R of R, such that W̄ (R) �= 0.

Theorem 5 (The Energy Inequality). Let U be a thermodynamical universe which is com-

patible with a reversible heat engine. If the weak first law holds in U , then there exists a

unique universal constant J > 0 such that for every cyclic process P of every thermody-

namical system L ∈ U , we have W̄ (P ) ≤ J Q̄(P ).

Proof. Let R be a reversible heat engine which is compatible with U , and let R be a weakly

reversible cyclic process of R with W̄ (R) �= 0, and weak reversal R′. By interchanging the

roles of R and R′, if necessary, we can assume W̄ (R) > 0. By the weak first law for cycles,

Q̄(R) > 0, and so we may define the positive quantity

J =
W (R)

Q(R)
. (7)

Let P be a cyclic process of an arbitrary system L ∈ U , and suppose for contradiction that

W̄ (P ) > J Q̄(P ). (8)

Let P (m) denote the cycle R repeated m times, and R(n) the cycle R repeated n times.

For n < 0, define R(n) = (R′)(−n); i.e. the cycle R′ repeated −n > 0 times. By the axioms

for union systems

W̄ (P (m) ⊕R(n)) = mW̄ (P ) + nW̄ (R) (9)
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and

Q̄(P (m) ⊕R(n)) = mQ̄(P ) + nQ̄(R), (10)

at least when n > 0, and the definition of the weak reversal R′ implies that these equations

remain true for n < 0. The weak first law applied to P (m) ⊕R(n) therefore implies that

mQ̄(P ) + nQ̄(R) > 0 whenever mW̄ (P ) + nW̄ (R) > 0. (11)

Now consider the vectorsA, B in R2 given byA = (W̄ (P ), W̄ (R)), B = (J Q̄(P ),J Q̄(R)).

Their second components are equal and positive, and their first components satisfy W̄ (P ) >

J Q̄(P ). Drawing a figure shows easily that there is a vector C = (m,n) with m,n ∈ Z,

m > 0, n �= 0, such that A · C > 0 and B · C < 0, contradicting (11).

To prove that J is unique, suppose that J ′ is another constant satisfying W̄ (P ) ≤
J ′Q̄(P ) for all cyclic processes P of systems L in U . Choose for P the special cyclic

processes R and R′ of R. Then, in particular,

W̄ (R) ≤ J ′Q̄(R) and W̄ (R′) ≤ J ′Q̄(R′). (12)

On the other hand, by properties of R and R′, we have

W̄ (R)

Q̄(R)
=
W̄ (R′)
Q̄(R′)

= J , (13)

where Q̄(R) > 0 and Q̄(R′) < 0. Thus the two inequalities (12) imply both J ≤ J ′ and

J ′ ≤ J .

Note that it can be shown that the energy inequality implies the weak first law for cycles,

and so these two principles are equivalent, given the existence of a reversible heat engine. If

the strong first law is assumed, then we have the following result:
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Corollary 6 (Interconvertibility of Work and Heat). Let U be a thermodynamical universe

which is compatible with a reversible heat engine. If the strong first law holds in U , then

there exists a unique universal constant J > 0 such that for every cyclic process P of every

thermodynamical system L ∈ U , we have W̄ (P ) = J Q̄(P ).

A very important observation here is that we do not need to assume the strong first law

to deduce interconvertibility of work and heat in many cases. To show this, suppose that

the weak first law holds, and P is a weakly reversible cyclic process with weak reversal P
′
.

By the energy inequality, we have

W̄ (P ) ≤ J Q̄(P ) (14)

and

W̄ (P
′
) ≤ J Q̄(P

′
). (15)

Since

W̄ (P
′
) = −W̄ (P ) (16)

and

Q̄(P
′
) = −Q̄(P ), (17)

it follows that

W̄ (P ) = J Q̄(P ). (18)

For many simple systems (common examples are that of ideal gases and van der Waal

fluids) every process is (weakly) reversible. As a result, interconvertibility of work and heat

follows for all processes of such systems.
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Second Law for Systems with Cycles

IV.1 Statement of Second Law for Systems with Cycles

In this section we record versions of the Second Law for cycles as stated in [S2] and [C1].

Second Law (Serrin)-The condition Q(P, σ;L) ≥ 0 can occur for a cyclic process P of a

thermodynamical system L only in the exceptional case when Q(P, σ;L) ≡ 0.

Definition 7. An absorptive cycle is a cycle in which we have Q(P, σ;L) ≥ 0 for every

L ∈ H .

It is obvious that Serrin’s formulation of the Second Law is a strong statement regarding

the accumulation function for a cyclic process. In particular, Serrin’s formulation prohibits

the first two of the accumulation function graphs from occuring:

H

Q

H

Q

H

Q

Notice that the third graph is prohibited from occuring for cyclic processes with W̄ (P ) ≥ 0,

by the Weak First Law and The Energy Inequality.

Serrin’s formulation of the Second Law is derived from the physical idea that if heat

should be so strongly added to a thermodynamical system that the accumulation function

is non-negative at every hotness level, and positive at least at some hotness levels, then the

system must necessarily move away from its initial condition. There is an interesting duality
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that exists between the First and Second Law of Thermodynamics. Namely, when W̄ (P ) > 0

for a cyclic process P the First Law requires a positive value for Q̄(P ) while the Second Law

implies a negative value for Q(P, σ;L) at some hotness level.

The Second Law is an intrinsic statement about the relation between heat and hotness in

cyclic processes. Exactly in the case of the First Law, the Second Law also has an equivalent

analytical formulation that is incredibly useful. This formulation of the Second Law is called

The Accumulation Theorem.

Theorem 8 ( Serrin’s Accumulation Theorem ). Let U be a thermodynamical universe

which is thermodynamically compatible with a perfect gas G . Then there exists an (absolute)

temperature scale T̃ on the hotness manifold H , with T̃ (H ) ≡ R+, such that for every

cyclic process P of every thermodynamic system L in U we have

∫ ∞

0

Q(P, L)

T 2
dT ≤ 0, (19)

where L = L̃(T ) is the hotness level associated with the temperature T in the scale T̃ . Any

temperature scale T̃ with the above property either agrees with the perfect gas scale of G or

is a positive constant multiple of this scale.

Here, Q(P, L) denotes the limiting value of the accumulation function. The importance of

The Accumulation Theorem is that it accomplishes two major goals: it establishes the con-

cept of absolute temperature without ambiguity, and it characterizes the allowable behavior

of the accumulation function of any cyclic process.

It is true that the accumulation inequality(inequality located above) implies the Second

Law, for if Q(P, σ;L) ≥ 0 in a cyclic process P then the accumulation integral above will of

necessity be positive unless Q(P, σ;L) ≡ 0.

[C1] provides a more relaxed formulation of the Second Law, namely:

Second Law (Coleman, Owen, Serrin)- If Q(P, σ;L) ≥ 0 for all L ∈ H for some cyclic

process P , then Q(P, σ) = 0.
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One key difference between the two formulations is that [C1] allows the 2nd accumulation

function graph to occur, whereas Serrin’s formulation prohibits this graph from occuring.

Serrin’s stronger notion of the Second Law rules out the possibility of an accumulation

function with two jumps, say at L1 < L2 with the jump at L2 being equal and opposite

to the jump of L1, so that Q(P, σ) = 0 even though Q(P, σ;L) is not identically 0. This

subtlety between the formulations allows for a different type of behavior of Q(P, σ;L) (case

b) in the first major Theorem of the next section).

IV.2 Carnot Systems and Carnot Cycles

In this section we discuss carnot cycles and give neccessary background that will be used

in our proof of Theorem 14. Before we move into key definitions, we first must discuss the

mathematical structure of ”ideal” systems.

We say a thermodynamical system L = (Σ,Π, Q) is ideal if it has the following type:

The set Σ is an open connected set in Rk with the associated Euclidean topology; for the

states σ ∈ Σ we write σ = x = (x1, ..., xk). The collection Π of processes of L is the set of

all piecewise continuous functions,

Pt : [0, t) → Rk, t > 0, (20)

for which there is at least one element σ0 of Σ such that

σ̄(s) ≡ σ0 +

∫ s

0

Pt(u)du ∈ Σ, for all s ∈ [0, t]. (21)

For each Pt ∈ Π, D(Pt) is the set of all states for which the line above holds. As in the case

of an ideal gas, the function s → σ̄(s), s ∈ [0, t], determines a parameterized path Γ(Pt, σ)

in Σ.

For an ideal system the function Q (accumulation function) is determined by a differential
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form,

q = Yidxi (22)

with the function σ → Y (σ) = (Y1(σ), ..., Yk(σ)) continuous on Σ. We assume that such a

form is given, and for each Pt ∈ Π and σ ∈ D(Pt), we put

Q(Pt, σ;L) =

∫

S(Pt,σ;L)

Y ((σ̄(s))) · Pt(s) ds (23)

where

S(Pt, σ;L) = {s ∈ [0, t] | L′
(σ̄(s)) < L}. (24)

In this construction it is understood that the state space Σ is equipped not only with the

differential form q, but also with a continuous function L
′
: Σ→ H defined by

σ → L
′
(σ) ∈ H (25)

that associates a level of hotness L = L
′
(σ) with each point σ of Σ. Here any component (in

this sense we mean maximal connected subset) of a level set of L
′
is an isothermal surface.

In particular, if the dimension of our state space is 2, then these components are called

isotherms.

A particularly useful class of ideal thermodynamical systems are called Carnot systems.

These systems are general enough to describe the behavior of many materials and yet have

enough special structure to allow a large family of Carnot cycles.

Definition 9. We will say a thermodynamical system C is a Carnot system if it has the

following properties:

1. The state space Σ of C has dimension k = 2.

2. The differential form q is non-degenerate, that is, Y (σ) �= 0 for all states σ.

3. Each isotherm in Σ is a C1 curve.
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4. Along each adiabat in Σ the associated hotness level L
′
is a strictly monotone function

of distance along the curve.

Here, an adiabat is a trajectory of the differential form q = Yidxi, so that no heat

is transferred as the process traverses an adiabat. The physical meaning of 2 is that the

adiabatic trajectories of the system have no singularities, whereas 3 tells us that isothermal

reversible processes exist. The physical meaning of 4 is that adiabatic reversible processes

of the system must produce either a cooling or a heating of the system. If 4 were satisfied

for no ideal system, then reversible adiabatic heating and cooling would be excluded from

physical occurrence. Thus, the existence of Carnot systems is a very reasonable assumption.

An ideal gas is an example of a Carnot system in which the isotherms are horizontal straight

lines and the adiabats are curves sloping downward to the right.

For a general Carnot system, a Carnot cycle is, exactly as in the case of an ideal

gas, a path Γ(Pt, σ) composed of two adiabatic parts joined by two isothermal parts. The

accumulation function of a Carnot cycle (Pt, σ) can be characterized as a step function with

exactly 2 jumps, say at L1 < L2. In any Carnot cycle, the magnitude of the jump at L2

must be greater than or equal that at L1.

Before recording a few observations about Carnot cycles, we first introduce the notion of

a ”subcycle” of a Carnot cycle.

Definition 10. A subcycle of a Carnot cycle is a Carnot cycle which operates within the

hotness interval defined by the isotherms of the original cycle, and whose adiabatic portions

lie on the same adiabats as those of the original cycle.

We will always assume that the orientation at which subcycles are traversed is the same

as the original Carnot cycle. Then, we have the following lemmas:

Lemma 11. For a given Carnot system C with state space Σ, there exists a unique adiabatic

curve through any point σ0 ∈ Σ.
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Proof. Along any adiabat, the net heat added to the system is 0. Thus, the heat form q is

0. So we have the equation

q = Y1dx1 + Y2dx2 = 0 (26)

It is important to note here that Y1 and Y2 cannot both be equal to zero at σ0 (this is

impossible for a Carnot system). So, assume wlog that Y1 �= 0 at σ0; then, by continuity,

Y1 �= 0 in some neighborhood of σ0. We will work in this neighborhood from now on. Thus,

rearranging the above equation yields:

dx1
dx2

= −Y2
Y1
. (27)

Note that the RHS of the equation above is continuous since it is the ratio of two continuous

functions. Hence, the existence of an adiabat through σ0 follows from the theory of differ-

ential equations. Next, we show uniqueness.

If there are two distinct adiabats through some point σ0, we can construct a closed path γ

in Σ consisting of portions of these adiabats and a single isothermal segment. The accumu-

lation function of any cycle C corresponding to γ is a step function with a single jump, but

a step function with a single jump is prohibited by [C1] formulation of the second law, as

either C or a reversal of C will contradict the second law.

Lemma 12. Given σ0 ∈ Σ, ∃ a Carnot cycle C with an operating hotness interval [L1, L2]

with L1 < L
′
(σ0) < L2.

Proof. Let σ0 ∈ Σ. Consider two points σ1, σ2 ∈ Σ that lie on the isotherm L
′
(σ0), where

σ1, σ2 are sufficiently close to σ0. By the previous lemma, there exists unique adiabats

through σ1, σ2. We can construct a closed path in the state space by joining these adiabats

via two isotherms, say at hotness levels L1 and L2, with L1 < L
′
(σ0) < L2. Hence, we have

a carnot cycle that operates in the hotness interval [L1, L2].
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Lemma 13. 1. Let (P, σ) be a Carnot cycle operating between hotness levels L1 < L2. Let

Q1 and Q2 be the heat supplied to the system at hotness levels L1 and L2 respectively.

Then

Q1Q2 < 0 and | Q2 |≥| Q1 | (28)

2. Let (P1, σ1) and (P2, σ2) be Carnot cycles operating between hotness levels L1 < L2.

Then

Q1

Q
′
1

=
Q2

Q
′
2

(29)

3. If a Carnot cycle C has Q = 0, then any subcycle of C also has Q = 0.

Proof. 1. For a given Carnot cycle, the associated accumulation function is a step function

with two jumps. Namely, a jump of Q1 at hotness level L1, and a jump of Q2 at hotness

level L2 > L1. If both jumps are positive, then the associated accumulation function would

be non-negative with Q > 0 (here, Q is the limiting value of the accumulation function

as L → ∞). This clearly violates the second law. On the other hand, if both jumps are

negative then reversing the cycle multiplies the accumulation function by −1. Thus, the

reversed cycle has two positive jumps and again we reach a contradiction. Hence, the two

jumps must have opposite sign and it follows that Q1Q2 < 0.

If the first jump were positive and the second jump negative but with smaller magnitude,

the associated accumulation function is still non-negative with Q > 0. Again, a contradiction

of the second law. If the second jump has magnitude equal to the first, then Q = 0. This is in

accordance with the C-O-S formulation of the second law. Hence, we have that | Q2 |≥| Q1 |.
2.

Let γ1 and γ2 be the paths corresponding to (P1, σ1) and (P2, σ2) respectively, and consider

a path γ3 consisting of γ1 traversed m times and γ2 traversed n times, with a smooth joining

path, making γ3 as a whole closed. Here, m,n ∈ Z and we interpret negative values in the

obvious way.
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The accumulation function of the corresponding process (P3, σ3) is

Q(P3, σ3;L) = mQ(P1, σ1;L) + nQ(P2, σ2;L). (30)

Now, suppose the equality hypothesized fails. Then the vectors (Q1, Q
′
1) and (Q2, Q

′
2) in R2

are non-collinear. Thus, there exists integers m and n such that

mQ1 + nQ
′
1 > 0 and mQ2 + nQ

′
2 > 0. (31)

But this shows that Q(P3, σ3;L) = mQ(P1, σ1;L)+nQ(P2, σ2;L) ≥ 0, which contradicts the

second law since the net heat transferred for the system is not identically zero.

3.

We will prove the simpler case of when two subcycles are produced. The general case follows

by induction. Consider a Carnot cycle C which operates in some hotness interval and contains

the isotherm L
′
= L0 in its interior. Let C1 and C2 denote the subcycles produced.

Then, by 1. we have the following:

� Q1Q2 < 0 and | Q2 | ≥ | Q1 |

� Q
(1)
1 Q

(1)
2 < 0 and | Q(1)

2 | ≥ | Q(1)
1 |

� Q
(2)
1 Q

(2)
2 < 0 and | Q(2)

2 | ≥ | Q(2)
1 |

for the cycles C, C1, and C2 respectively. It is clear from the notation that Q1 and Q2 denote

the heat added or lost along the isotherms in the Carnot cycle C. Here, the superscript

notation is intended to indicate the heat added or lost along the isotherms in the associated

Carnot subcycles.

Now, suppose that | Q1 | = | Q2 |. Then

| Q1 | = | Q(1)
1 | ≤ | Q(1)

2 | = | Q(2)
1 | ≤ | Q(2)

2 | = | Q2 | . (32)
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However, since | Q1 | = | Q2 | our chain of inequality’s become equality. Hence,

| Q1 | = | Q(1)
1 | = | Q(2)

1 | = | Q(1)
2 | = | Q(2)

2 | = | Q2 | (33)

and the result is established.

IV.3 The Accumulation Integral for Carnot Systems

With the preceding facts about Carnot cycles established, we are now ready to prove Theorem

6.1 from section 6 in [C1].

Theorem 14. If C is a Carnot system obeying the Second Law and L0 is a hotness level

satisfying L
′
(σ0) = L0 for some σ0 in the state space of C , then there is an open interval V

of the hotness manifold which contains L0 and is such that either:

(a). There is a unique (up to a positive constant multiple) locally absolute empirical tem-

perature scale L→ Θ(L), with domain V , such that

∫ ∞

0

Q(P, σ; Θ−1(θ))
θ2

dθ = 0 (34)

for every Carnot cycle (P, σ) of C which operates in the range of V , or:

(b). Q(P, σ) = 0 for every Carnot cycle (P, σ) of C operating in the range of V .

Proof. Suppose that the hypothesis of the Theorem holds and let F denote the collection of

Carnot cycles (P, σ) in which (P, σ) has operating hotness levels L1 and L2 with L1 < L0 <

L2. From lemma 12 in the previous section, F is non-empty. Since F is non-empty, there

are two cases to consider:
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1. ∃(P, σ) ∈ F with Q(P, σ) = 0.

2. �(P, σ) ∈ F with Q(P, σ) = 0.

Suppose that case 1 holds. That is suppose (P, σ) ∈ F with Q(P, σ) = 0. Then, by lemma

13 part 3, we know that any subcycle constructed with the same adiabats as (P, σ) will have

Q = 0. Now notice that the restriction that subcycles follow the same adiabats as the original

cycle can (actually) be removed. By lemma 13 part 2, for any two Carnot cycles operating in

the same hotness interval, the ratio of the heat gained or lost along the respective isotherms

for both cycles is the same. Thus, if any Carnot cycle has a net heat gain of zero, then any

other Carnot cycle operating with the same hotness interval will also have a net heat gain of

zero. In particular, any other Carnot cycle operating with the same hotness interval as (P, σ)

must have Q = 0. Thus, the interior of the hotness interval for (P, σ) is a neighbourhood V

of L0 in which every Carnot cycle has Q = 0, showing that part b of the Theorem holds.

Now suppose that case 2 holds. That is suppose there is no (P, σ) ∈ F with Q(P, σ) = 0.

Then | Q2 | > | Q1 | for every cycle. Define

Θ(L) =

∫

γL

| Y1dx1
ds

+ Y2
dx2
ds

| ds (35)

where L ∈ [L1, L2] and γL denotes the isotherm corresponding to L. We claim that Θ is

continuous, positive, and strictly increasing. This will show that Θ can be used as a local

empirical temperature scale.

Proof. It is obvious from the definition that Θ is positive and continuous.

Let L3, L4 ∈ [L1, L2], with L3 < L4. Note that if we choose the cycle small enough, we

can arrange that Y1
dx1

ds
+ Y2

dx2

ds
has one sign on all of γ. Now, if we choose the direction

of our cycle appropriately, the heat transfers in the cycle are given by Q3 = Θ(L3) and

Q4 = −Θ(L4). Then, by lemma 13 part 1, we have that Θ(L3) < Θ(L4), so that Θ is strictly

increasing.

21



Hence, Θ can be used as a temperature scale on the hotness interval for which our family

of Carnot cycles operates.

Lemma 15. Let C
′
be any Carnot cycle of C whose operating hotness levels are L3 < L4 in

[L1, L2]. Then

Q
′
3

Θ(L3)
= − Q

′
4

Θ(L4)
. (36)

Proof. This follows immediately from lemma 13 part 2.

Note that Q(P, σ; Θ−1(θ)) is a step function function with two jumps, say at L1 and L2.

Here, we will denote Θ−1(θ) = L. Then we have that

Q(P, σ;L) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 , L < L1

Q1 , L1 ≤ L < L2

Q1 +Q2 , L ≥ L2 .

Thus, we have

∫ ∞

0

Q(P, σ; Θ−1(θ))
θ2

dθ =

∫ L1

0

0

θ2
dθ +

∫ L2

L1

Q1

θ2
dθ +

∫ ∞

L2

Q1 +Q2

θ2
dθ. (37)

Performing this computation, we arrive at:

∫ ∞

0

Q(P, σ; Θ−1(θ))
θ2

dθ =
Q1

L1

+
Q2

L2

= 0. (38)

The last equality follows from a direct application of the previous Lemma. Lastly, we show

uniqueness of the temperature scale Θ.

Let Θ be as described before and let Θ̃ be another temperature scale operating on the

same hotness interval as Θ. Let U = (L1, L2) and let (P, σ) be a Carnot cycle of the

corresponding thermodynamical system C , with operating hotness levels L1 < L, where

L ∈ U .

22



Combining previous lemma’s and letting Θ−1(θ) = L, we have that:

0 =

∫ ∞

0

Q(P, σ; Θ−1(θ))
θ2

dθ =

∫ ∞

0

Q(P, σ;L)

θ2
dθ =

Q1

Θ(L1)
+

Q

Θ(L)
. (39)

Similarly, we have

0 =
Q1

Θ̃(L1)
+

Q

Θ̃(L)
. (40)

Then, eliminating Q/Q1, we have

Θ̃(L) =
Θ̃(L1)

Θ(L1)
Θ(L). (41)

It follows that Θ̃(L) = αΘ(L) in U , where α = Θ̃(L1)/Θ(L1) (a positive constant). Hence,

Θ and Θ̃ differ at most by a positive constant and it follows that the temperature scale Θ is

unique on U . Then, case 2 leads to part a) of Theorem 14, and the proof of the Theorem is

complete.

Note that part b) of the previous Theorem can be ruled out by supposing the Thermo-

metric Axiom: to each hotness level L0 in H there corresponds a system C in the family

whose state space Σ contains a point σ0 with L
′
(σ0) = L0. Under this assumption, case b)

is precluded, and, therefore, a) must hold.

We are now able to construct an absolute temperature scale ϑ by stitching together local

empirical temperature scales on different hotness intervals. We are able to cover H with

a locally finite collection of closed hotness intervals {Un}∞n=1, where the open intervals Un

correspond to the local empirical temperature scales Θn described previously, and such that

(i) The open intervals Un overlap;

(ii) For each Un there are a corresponding Cn and Θn;

(iii) Θn : Un → R+.
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We can now multiply each Θn by a positive constant αn, if required, to obtain a continuous

function ϑ : H → R, such that ϑ|Un = Θn.

IV.4 Proof of the Accumulation Theorem for Cycles

In this section, we give a proof of the Accumulation Theorem for Cycles with a more gen-

eralized ideal system. We in fact show that the ideal gas G in Serrin’s original formulation

of the Accumulation Theorem can be replaced by a more general ideal system, namely that

of a Carnot System described earlier in the paper. We believe this is likely to be the result

Serrin obtained in 1979.

We restate the Accumulation Theorem with the appropiate modifications:

Theorem 16 ( The Accumulation Theorem ). Let U be a thermodynamical universe which

contains a special family of Carnot systems that satisfy the Thermometric Axiom. Then there

exists an (absolute) temperature scale T̃ on the hotness manifold H , with T̃ (H ) ≡ R+, such

that for every cyclic process P of every thermodynamic system L in U we have

∫ ∞

0

Q(P, L)

T 2
dT ≤ 0, (42)

where L = L̃(T ) is the hotness level associated with the temperature T in the scale T̃ . Any

temperature scale T̃ with the above property either agrees with the ideal scale of C or is a

positive constant multiple of this scale.

Part 1: Uniqueness. Suppose that ϑ, as constructed above, satisfies the Accumulation The-

orem, and let ϑ be another absolute temperature scale which satisfies the Accumulation

Theorem. Following the same argument used in showing that Θ was unique, it follows that

the absolute temperature scale ϑ is unique.
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Part 2: Existence

Lemma 17. Let φ : ϑ(H ) → R be a right-continuous step function, such that

(i) φ(ϑ) ≡ 0 for ϑ < ϑl, for some ϑl > 0;

(ii) φ(ϑ) ≡ Q (constant) for ϑ ≥ ϑu, for some ϑu > ϑl;

(iii)

∫ ∞

0

φ(ϑ)

ϑ2
dϑ = 0 .

Then there exists a finite collection {Cn}Nn=1 of Carnot systems, and a finite collection

{(Pm, σm)}Mm=1 of Carnot cycles, not necessarily distinct, such that

M∑
m=1

Q(Pm, σm;ϑ) = φ(ϑ)

Proof. Consider the closed interval [Ll, Lu] of H , where Ll = ϑ−1(ϑl) and Lu = ϑ−1(ϑu).

Let {ai} be the (finite) set of discontinuities of φ, and let {bj} be the (finite) set of endpoints
of the intervals {Un} which lie in [Ll, Lu]. Let ϑ1, ϑ2, . . . , ϑK denote the points of {ai}∪{bj},
listed in increasing order. Each Carnot cycle (Pm, σm) will have operating temperatures ϑk

and ϑk+1 for some k, which is possible, since each interval [ϑk, ϑk+1] is contained in one of

the hotness intervals Un corresponding to a single thermodynamical system.

We start by choosing a Carnot cycle (P1, σ1), with operating temperatures ϑ1 and ϑ2,

such that

Q1,(P1,σ1) = φ(ϑ1), Q2,(P1,σ1) = −ϑ1

ϑ2

φ(ϑ2)

Additionally, we have from Theorem 14 that

∫ ∞

0

Q(P1, σ1;ϑ
−1(θ))

θ2
dθ = 0. (43)

Note that Q(P1, σ1;ϑ
−1(θ)) = φ(ϑ)for ϑ < ϑ2.
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Now, we choose the cycle (P2, σ2) with operating temperatures ϑ2 and ϑ3, so that

Q1,(P2,σ2) = φ(ϑ2) +
ϑ1

ϑ2

φ(ϑ2),

and Q2,(P2,σ2) equal to the value determined by lemma 15. Then we have

∫ ∞

0

Q(P2, σ2;ϑ
−1(θ))

θ2
dθ = 0 (44)

and Q(P1, σ1;ϑ
−1(θ)) +Q(P2, σ2;ϑ

−1(θ)) = φ(ϑ) for ϑ < ϑ3. We proceed inductively in this

manner until, after k − 1 steps, we reach the last partition point ϑk. At this point we have

∫ ∞

0

∑k−1
m=1 Q(Pm, σm;ϑ)

ϑ2
dϑ = 0

and
k−1∑
m=1

Q(Pm, σm;ϑ) = φ(ϑ) for ϑ < ϑk.

Now put

ψ(ϑ) =
k−1∑
m=1

Q(Pm, σm;ϑ)− φ(ϑ)

for all ϑ > 0. Clearly, ψ(ϑ) ≡ 0 for ϑ < ϑk, and ψ(ϑ) is constant for ϑ ≥ ϑk. But

∫ ∞

0

ψ(ϑ)

ϑ2
dϑ = 0,

so ψ(ϑ) ≡ 0, and the lemma is proved.

To complete the proof of the Accumulation Theorem, suppose (for a contradiction) that

there is some cyclic process (P, σ) for which

A ≡
∫ ∞

0

Q(P, σ;ϑ−1(θ))
θ2

dθ =

∫ ∞

0

Q(P, σ;L)

θ2
dθ > 0.
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Suppose that the operating limits of (P, σ) are ϑl < ϑu. Given ε > 0, we can find a step

function f , such that f(ϑ) ≥ − Q(P, σ;ϑ) for ϑ ∈ [ϑl, ϑu], and such that

∫ ϑu

ϑl

| f(ϑ) + Q(P, σ;ϑ) | dϑ < ε. (45)

Extend f to all of R in the natural way: f(ϑ) ≡ 0 for ϑ < ϑl, f(ϑ) ≡ − Q(P, σ;ϑ) ≡
−Q(P, σ) for ϑ ≥ ϑu. Then

∫ ∞

0

f(ϑ)

ϑ2
dϑ = −

∫ ∞

0

Q(P, σ;ϑ)

ϑ2
dϑ+

∫ ϑu

ϑl

f(ϑ) + Q(P, σ;ϑ)

ϑ2
dϑ ≤ −A+

ε

ϑ2
l

. (46)

Now choose ε so small that ∫ ∞

0

f(ϑ)

ϑ2
dϑ < 0. (47)

Put

B = −ϑl

∫ ∞

0

f(ϑ)

ϑ2
dϑ > 0, (48)

and

φ(ϑ) =

⎧⎪⎨
⎪⎩

f(ϑ), ϑ < ϑl

f(ϑ) + B, ϑ ≥ ϑl.
(49)

Now φ satisfies the conditions of the Lemma recently proved above, and so we can find

Carnot cycles {(Pm, σm)}Mm=1 described in that lemma so that the union process

(P
′
, σ

′
) = (P1, σ1)⊕ · · · ⊕ (PM , σM) (50)

satisfies

Q(P
′
, σ

′
;ϑ) = φ(ϑ). (51)
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But then the process

(P̃ , σ̃) = (P, σ)⊕ (P1, σ1)⊕ · · · ⊕ (PM , σM) (52)

satisfies the following:

Q(P̃ , σ̃;ϑ) = Q(P, σ;ϑ) + φ(ϑ) (53)

= Q(P, σ;ϑ) +

⎧⎪⎨
⎪⎩

f(ϑ), ϑ < ϑl

f(ϑ) + B, ϑ ≥ ϑl

(54)

≥ Q(P, σ;ϑ) +

⎧⎪⎨
⎪⎩

0, θ < ϑl

− Q(P, σ;ϑ) + B, ϑ ≥ ϑl

(55)

≥ 0, (56)

and so we have

Q(P̃ , σ̃) = Q(P, σ) + (−Q(P, σ) + B) = B > 0. (57)

This contradicts the Second Law, and thus completes the proof of the Accumulation

Theorem.
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Second Law for Systems with Approx-

imate Cycles

There are many physical systems with very few exact cycles (such as materials with memory).

For these systems, the First and Second laws for cycles give very little information, so [C1]

developed a theory for systems with approximate cycles. Approximate Cycles, as discussed

in [C1], is a generalization of the notion of a cycle. Prior to this point, cycles have been

defined to be processes in which the initial and final states are the same. In an approximate

cycle, the final state is not equal to the initial state. However, the final state is ”close to”

the initial state.

The theory for systems with approximate cycles follows the same formulation as that

discussed in chapter 2 section 1. Namely:

A System is now a pair (Σ,Π) of sets (with Σ called the set of states σ and Π the set of

processes P ) together with a topology on Σ and a function P → �P . The function P → �P

assigns to each process P a function �P : D(P ) → Σ, where D(P ) is a non-empty subset of

Σ.

With the notion of a topology in place, we are now ready to state the Second Law as it

applies to approximate cycles:
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Second Law for thermodynamical systems- Let L = (Σ,Π, Q) be a thermodynam-

ical system. For each state σ in Σ, for each ε > 0, and for each hotness level L̄ in H , there

is a neighborhood A = A (σ, ε, L̄) of σ such that

0 ≤ Q(P, σ) < ε (58)

for every process P for which (P, σ) is absorptive, operates at or below L̄, and has its final

state �Pσ in A .

With Theorem 14 in hand, it is possible to obtain a generalization of the Accumulation

Theorem as it applies to approximate cycles. Consider a thermodynamical universe U which

contains a special family of Carnot systems for which

L ∈ U =⇒ L ⊕ C ∈ U (59)

for any system C in the family. Note that this ideal system C is the same ideal system

discussed last chapter. Suppose further that the Thermometric Axiom holds. We are now

ready to state and prove Theorem 6.2 from [C1], a generalization of the Accumulation

Theorem to that of approximate cycles:

Theorem 18 (Generalized Accumulation Theorem). Let U be a universe of thermodynam-

ical systems with states which satisfy the Second Law. Assume that U contains a special

family of Carnot systems such that the following hold:

1. L ∈ U =⇒ L ⊕ C ∈ U

2. the thermometric axiom

3. for each neighborhood V of each level L in H , there is a cycle (P, σ) of a Carnot

system C in U with Ll and Lu in V and Q(P, σ) > 0.

Then there is an empirical temperature scale Φ such that, for every system L = (Σ,Π, Q)

in U , for every state σ in Σ, for every hotness level L̄ in H , and for every ε > 0, there is
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a neighborhood O = O(σ, ε, L̄) of σ for which

∫ ∞

0

Q(P, σ; Φ−1(θ))
θ2

dθ < ε (60)

whenever the pair (P, σ) operates at or below L̄ and has its final state in O. Moreover, any

other scale Φ with this property must be a constant positive multiple of Φ.

Proof. [C1] Suppose first that the accumulation integral (located above) holds, and let L̄

in H , L = (Σ,Π, Q) in U , σ in Σ and ε > 0 be given. Then there is is a neighborhood

O = O(σ, ε, L̄) of σ such that, if (P, σ) operates at or below L̄ and �Pσ is in O, then

∫ Φ(L̄)

Φ(Ll)

Q(P, σ; Φ−1(θ))
θ2

dθ +
Q(P, σ)

Φ(L)
< ε. (61)

If, in addition, (P, σ) is absorptive, then this inequality implies

0 ≤ Q(P, σ) < εΦ(L̄). (62)

Replacement of ε with ε
Φ(L)

(and hence O(σ, ε, L̄) with O(σ, ε
Φ(L)

, L̄)) here yields the assertion

that whenever (P, σ) is absorptive, operates at or below L̄, and has its final state �Pσ in

A ≡ O(σ, ε
Φ(L)

, L̄), there holds

0 ≤ Q(P, σ) <
ε

Φ(L)
Φ(L) = ε, (63)

and hence L obeys the Second Law.
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In order to prove the converse statement, i.e., to show that the Second Law implies the

accumulation integral, we wish to show the contrapositive assertion: if the accumulation

integral fails to hold somewhere in U , then so does the Second Law. Thus, suppose that

the accumulation integral is false. That is, suppose there is a system L0 = (Σ0,Π0, Q0), a

hotness level L0, a state σ0 in Σ0, and a positive number ε0 such that, for each neighborhood

O of σ0, there is a corresponding process P = P (O) for which

�Pσ0 ∈ O and (P, σ0) operates at or below L0, (64)

and ∫ ∞

0

Q0(P, σ0; Φ
−1(θ))

θ2
dθ ≥ ε0. (65)

For the pair (P, σ0), let L
u = L0; furthermore, let θ

′
= Φ(Ll) and θ

′′
= Φ(L0), and let

τ0 ∈ ΣC be any fixed state for C of the form (x0, θ
′′
). By definition, the function

f : R+ → R, (66)

defined by

f(θ) = −Q0(P, σ0; Φ
−1(θ)), (67)

is bounded, has only countably many points of discontinuity, and satisfies:

f(θ) =

⎧⎪⎨
⎪⎩

0, 0 < θ < θ
′

−Q0(P, σ0), θ
′′ ≤ θ.

(68)

The fact that f is Riemann integrable implies that there is a right-continuous step func-

tion q : [θ
′
, θ

′′
) → R such that

f(θ) ≤ q(θ) for θ
′ ≤ θ < θ

′′
(69)
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and ∫ θ
′′

θ′
q(θ) dθ ≤

∫ θ
′′

θ′
f(θ) dθ +

ε0
2
θ
′2
. (70)

As C is the ideal system for U , and τ0 is the state for C selected earlier, there is a cycle

(Pt, τ0) for (a finite collection of Carnot systems) such that Lemma 17 holds. Note that τ0

depends only on L0, whereas Pt depends upon O, ε0, σ0 and L0.

Now consider the union system L0 ⊕ C = (Σ0 × ΣC ,Π0 × ΠC , Q0 +QC ).

By the assumed properties of U , L0⊕C is in U and (σ0, τ0) is in Σ0×ΣC , i.e., (σ0, τ0) is a

state of L0⊕C . For each neighborhood A of (σ0, τ0) (with respect to the product topology

on Σ0 × ΣC ), there are neighborhoods O and OC of σ0 and τ0, respectively, such that

O × OC ⊂ A . (71)

Now, it follows that the pair ((P, Pt), (σ0, τ0)), with P = P (O), operates at or below L0

and has its final state (�Pσ0, �Ptτ0) in A . By previous facts and Lemma 17 we see that for

L < L0

Q((P, Pt), (σ0, τ0);L) = Q0(P, σ0;L) + QC (Pt, τ0;L) ≥ 0. (72)

Moreover, by Lemma 17, the definition of f(θ), and some algebra,

Q0(P, σ0) +QC (Pt, τ0) = Q(P, σ0;L0) +QC (Pt, τ0;L0)

= Q0(P, σ0;L0) + θ
′′
∫ θ

′′

θ′
Q0(P, σ0; Φ

−1(θ))θ−2 dθ

+QC (Pt, τ0;L0) + θ
′′
∫ θ

′′

θ′
QC (Pt, τ0; Φ

−1(θ))θ−2 dθ

− θ
′′
∫ θ

′′

θ′
(q(θ)− f(θ))θ−2 dθ.

(73)

The sum of the first two terms after the second sign of equality is

θ
′′
∫ ∞

0

Q0(P, σ0; Φ
−1(θ))θ−2 dθ; (74)
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the sum of the next two terms is zero because of Theorem 14; and, in view of the properties

of the step function q, we have

∫ θ
′′

θ′
(q(θ)− f(θ))θ−2 dθ ≤ ε0

2
. (75)

Therefore, we have that

Q0(P, σ0) +QC (Pt, τ0) ≥ θ
′′
∫ ∞

0

Q0(P, σ0; Φ
−1(θ))θ−2 dθ − 1

2
θ
′′
ε0 (76)

and hence

Q((P, Pt), (σ0, τ0)) ≥ ε0θ
′′ − 1

2
ε0θ

′′
=

1

2
ε0Φ(L0) > 0. (77)

This and the fact that Q((P, Pt), (σ0, τ0);L) ≥ 0 shows that the pair ((P, Pt), (σ0, τ0)) is

absorptive. It has already been stated that this pair operates at or below L0 and has its

final state in A . Moreover, by the line above, its overall net transfer of heat is no less than

1
2
ε0Φ(L0).

To summarize, for each neighborhood A of (σ0, τ0), the pair ((P, Pt), (σ0, τ0)) operates

at or below the fixed level L0, is absorptive, has a positive net transfer of heat, and has its

final state in A . Consequently, the Second Law fails to hold for L0 ⊕ C when L̄ = L0,

ε = 1
2
ε0Φ(L0) and σ = (σ0, τ0), and the proof is complete.
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Summary and Conclusion

Serrin’s Accumulation Theorem is of great importance as it provides an analytical formu-

lation of the Second Law. It accomplishes two major goals: it establishes the concept of

absolute temperature without ambiguity, and it also characerizes the allowable behavior of

the accumulation function of any cyclic process. We showed in this paper that it is possible

to prove the Accumulation Theorem for cycles by using a more generalized ideal system

(namely Carnot systems). Moreover, we showed that The Accumulation Theorem holds for

more general cycles, known as approximate cycles. However, there is more to be done. In

a footnote, [C1] claim that the proof of The Accumulation Theorem can be made to go

through with an even more general class of systems (in place of Carnot Systems).

.
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