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ABSTRACT

Analysis of the Continuity of the
Value Function of an Optimal

Stopping Problem

by

Samuel Morris Nehls

The University of Wisconsin-Milwaukee, August 2020
Under the Supervision of Professor Richard Stockbridge

In order to study model uncertainty of an optimal stopping problem of a stochastic process

with a given state dependent drift rate and volatility, we analyze the effects of perturbing

the parameters of the problem. This is accomplished by translating the original problem into

a semi-infinite linear program and its dual. We then approximate this dual linear program

by a countably constrained sub-linear program as well as an infinite sequence of finitely

constrained linear programs. We find that in this framework the value function will be lower

semi-continuous with respect to the parameters. If in addition we restrict ourselves to a

compact set of constraints and add smoothness conditions to the gain function, we have full

continuity of the value function.
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Chapter 1

Introduction

Stochastic optimal control theory has many different flavors, and is a generally well under-

stood area of probability. One of the most well studied implementations is optimal stopping.

In this case a stochastic process is allowed to proceed undisturbed for either a finite or in-

finite length of time and the only control we have is to choose when to stop the process, if

ever. The goal here is to implement a stopping rule that optimizes the expected value of

some objective function, most commonly maximizing revenue or minimizing cost. This can

be difficult to decide due to the inherent randomness in a stochastic process. That is, we

may know how the process is expected to behave on average but we cannot predict its exact

path.

The control theory currently used works under a few basic assumptions: that we have the

correct model, and that the parameters in our model are accurate. Now let us suppose that

these assumptions are not true. Perhaps the parameters in our model cannot be measured

accurately, or it is expensive and time consuming to measure them accurately but a close

approximation can be done cheaply. We would now be implementing a solution that is

designed for different parameters and may not be optimal for the true situation at hand. In

this case, how badly will this affect the outcome?

The first step to study the impact of the parameters on our optimal stopping problem

is to analyze the parameters of the model that affect the optimal value function. We will

study the continuity properties of the value function when we allow perturbations of these

parameters. We will do this by leveraging the relatively well known structure of the linear

program, both finite and infinite.

The motivating paper to this research was co-written by Kurt Helmes and my advisor

1



Richard Stockbridge (Helmes and Stockbridge, 2010). The major work of this paper was

analyzing the optimal stopping time of a one-dimensional diffusion. This stopping time

should maximize a given reward function which consists of a discounted running reward and

a terminal reward which is obtained upon stopping the process. This sounds simple, but

since we are working under a probability space we only know the dynamics of the process,

which tells us the expected future behavior. Therefore this optimal stopping time should

maximize the expected reward and we acknowledge that for certain individual outcomes it

will not be optimal. To be precise our one dimensional diffusion must satisfy the following

stochastic differential equation (SDE):

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x (1.1)

and the goal of the optimal stopping problem is to find a stopping rule τ and a value function

V which satisfies

V (x) = sup
τ∈T

J(τ ;x)

= sup
τ∈T

E
[∫ τ

0

e−α sr(Xs) ds+ e−α τg(Xτ )1τ<∞

]
.

(1.2)

The general idea will be to formulate the value function as the objective function in a

linear program which has probability measures as its variables. Then using strong duality,

the optimal value of that primal linear program (LP) will be equal to the optimal value of the

dual LP which is a semi-infinite linear program with three variables and uncountably many

constraints. We will then argue that because of the nature of this dual LP we can achieve

the same objective function by using a countable subset of the original constraints. Then

we will only have to consider a finite number of constraints, since the continuity of the value

function in finite linear programs is fairly well understood and we have several conditions

that will grant us continuity of our value function. Finally, we will argue that because of

the strong duality property of the original LP, these value functions of the finite LP and

dual LP should converge to the value function of the LP on the countable constraint system,

which should then be equal to our original value function. Additionally we will find that

under some additional structure of the infinite dual program, we will have more continuity

properties.

So, to summarize:

• Embed optimal stopping problem into a semi-infinite linear program with infinitely

many variables

2



• Construct the semi-infinite dual linear program with infinitely many constraints

• Construct a sub-linear dual program with countably many constraints

• Estimate countable dual program with a sequence of finitely constrained dual linear

programs

• Prove convergence of the sequence and determine continuity of the value function in

the parameter space

3



Chapter 2

Literature Review

2.1 Solution Methods for Optimal Stopping Problems

In this paper we will work with a continuous-time stochastic process (one-dimensional diffu-

sion to be precise) Xt(ω) : R+×Ω→ R defined on a filtered probability space (Ω, F , F, P).

If not specified we can take F to be the natural filtration FX generated by the process X,

that is, FX = σ{X−1
s (A) |A ∈ B(R), 0 ≤ s < ∞}. Alternatively, FX = σ(

⋃
t≥0FXt ) where

FXt = σ{X−1
s (A) |A ∈ B(R), 0 ≤ s ≤ t}.

Here we must mention the differing notations for the stochastic process. Properly, the

process is a function of time t and an outcome ω so it is common to see X(t, ω) or X(t;ω).

However many probabilists downplay the role of ω and frequently use X(t) or Xt and some

use these interchangably. We will use Xt or Xt(ω) if we wish to emphasize the role of the

sample space.

This process proceeds undisturbed until some stopping time τ . A stopping time is a

random variable defined by some stopping rule. For example, this could be to stop at a

fixed (deterministic) time, or to stop when the process reaches a certain state. The latter is

commonly called the first hitting time and we denote it as HE = inf{t |Xt ∈ E} to describe

the first time the process enters any state in E. We denote the set of all stopping times as

T = {τ : Ω → R+ | {τ(ω) ≤ t} ∈ Ft for all t} and allow for the possibility that τ = ∞. In

the case when τ =∞ we define f(Xτ ) = lim supt→∞ f(Xt) for any function f(x) where the

limit is defined. Some authors require that stopping times be finite and instead use the term

Markov times to include infinite stopping times. At τ , the gain g(Xτ ) is earned. We typically

require that g(Xτ ) be bounded from below and integrable (at a minimum). A common way

to achieve integrability is to require that Ex[supt g(Xt)] <∞.
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The goal of the optimal stopping problem is to find the stopping time which maximizes

the gain as well as find the value function corresponding to that stopping time. We define

the value function to be the maximal expected gain for the process given that X0 = x. That

is,

V (x) := sup
τ∈T

Ex [g(Xτ )] . (2.1)

Additionally, each Markov process has an associated infinitesimal generator which acts

on a function and is a way to understand the expected change in a process, similar to a

derivative. This is denoted LX or A depending on the author. We will primarily use LX .

This Chapter will detail three existing methods for solving the optimal stopping problem.

2.1.1 Majorizing Excessive Functions

The first of three methods for solving an optimal stopping problem was detailed by Shiryaev

(1978). Here we will takeXt to be a homogeneous, nonterminating, standard Markov process.

That means that X = (Xt, F , P) satisfies the following conditions.

1. For each A ∈ F , Px(A) is a B −measurable function for x;

2. For all x ∈ R, B ∈ B, s, t ≥ 0, Px(Xt+s ∈ B | Ft) = PXt(xs ∈ B);

3. Px(X0 = x) = 1, x ∈ E;

4. For each t > 0 and ω ∈ Ω there will be a unique ω′ ∈ Ω such that Xs(ω
′) = Xs+t(ω).

Shiryaev works with processes that take values in any semi-compact space but we will work

with real valued processes.

As a motivating example we consider functions that for all x satisfy Ex [g(Xτ )] ≤ g(x)

for any τ . For these functions, the supremum in (2.1) is achieved for τ ≡ 0 so in fact the

optimal stopping problem can be solved. In considering all other gain functions we introduce

the following definitions.

Definition 2.1.1. A function f is said to be regular (for the process Xt) if for any x and

τ , Ex[f(Xτ )] is defined and for any other stopping time σ such that Px(σ ≤ τ) = 1, then

Ex[f(Xτ )] ≤ Ex[f(Xσ)].

Definition 2.1.2. A function f is said to be excessive (for the process Xt) if for any x and

t ≥ 0, Ex[f(Xt)] ≤ f(x).

5



Notice that we can take σ ≡ 0 and τ the fixed stopping time t and see that a regular

function satisfies the condition to be excessive. In addition, for f excessive and bounded

from below, f(x) is regular. Additionally we can define g(x) := Ex[f(Xt)] and see that

g(Xs) is a version of E[f(Xt) |Xs]. Then since f is excessive, g(x) ≤ f(x) and substituting

x = Xs we have g(Xs) ≤ f(Xs) which implies that E[f(Xt) |Xs] ≤ f(Xs) so f(Xt) is a

supermartingale.

Definition 2.1.3. The excessive function f(x) is called the excessive majorant of the func-

tion g if f(x) ≥ g(x) for all x ∈ E. Moreover, we call f(x) the smallest excessive majorant

(of g) if for any other excessive majorant h(x) of g, we have h(x) ≥ f(x) ≥ g(x) for all x.

In the case where g is bounded from below Shiryaev showed the existence of a smallest

excessive majorant by construction.

First, set sn(x) = sup
τ∈Tn

Ex[g(Xτ )], where Tn is the set of stopping times taking values in N·2−n

and s(x) = lim
n→∞

sn(x).

Then by Lemma 3.3 in Shiryaev (1978) s(x) is the smallest excessive majorant of g(x).

Now we have the following inequality,

Ex[g(Xτ )] ≤ Ex[s(Xτ )] ≤ s(x).

The first is true because s(x) is a majorant of g and the second is true because s(x) is an

excessive (and therefore regular) function. Then,

sup
τ∈Tn

Ex[g(Xτ )] ≤ sup
τ∈T

Ex[g(Xτ )] ≤ s(x)

sn(x) ≤ V (x) ≤ s(x)

Since s(x) = limn→∞ sn(x), we have the following result.

Theorem 2.1.4. If Xt is a time-homogeneous Markov process and g(x) is bounded from

below then the value function V (x) = sup
τ∈T

Ex[g(Xτ )] is the smallest excessive majorant of

g(x).

So to solve our optimal stopping problem we must find the smallest excessive majorant

V (x) of the gain function. Then our stopping rule is as follows: τ ∗ = inf{t ≥ 0 |V (Xt) =

g(Xt)}. We call the set C = {x ∈ E |V (x) > g(x)} the continuation region and D = {x ∈
E |V (x) = g(x)} the stopping region.

6



2.1.2 Free-Boundary PDE

Peskir and Shiryaev (2006) describe a method to solve the optimal stopping problem as a

free boundary problem. Here we take Xt to be a strong Markov process (right-continuous

and left-continuous over stopping times). The idea behind this approach is that the value

function V should satisfy the free-boundary conditions:

LXV ≤ 0 (V minimal),

V ≥ g (V > g on C and V = g on D)
(2.2)

where LX is the infinitesimal generator of the process Xt and is defined as:

LXf(x) = lim
t↘0

Ex[f(Xt)]− f(x)

t
(2.3)

on functions f : E → R and is only defined for those functions for which the limit exists.

Notice that LXf(x) has a similar form as a derivative. However, since Xt and f(Xt)

are random processes, LXf(x) gives the expected forward change of f(Xt). In other words

Ex[f(Xt)] ≈ f(x) + tLXf(x) for small values of t. In the previous section we argued that

the value function should be excessive, or Ex[f(Xt)] ≤ f(x). This implies that LXf(x) ≤ 0

which is the motivation behind this approach.

For functions f ∈ C2 it is known that the generator takes the form

LXf(x) = λ(x)f(x) + µ(x)f ′(x) +
1

2
σ2(x)f ′′(x) +

∫
R\{0}

[f(y)− f(x)− (y − x)f ′(x)]ν(x, dy).

(2.4)

In this formulation λ is the killing (or creation if negative) rate of the process, µ is the drift

rate, σ the diffusion (volatility), and ν is the compensator of the jump measure µ. In this

paper we work with continuous processes without killing (Itô Processes) in which case the

infinitesimal generator is simply

LXf(x) = µ(x)f ′(x) +
1

2
σ2(x)f ′′(x). (2.5)

Then in order to solve (2.2) we must find the appropriate function V and the region C.

So long as condition 2 from (2.2) is satisfied, E\D = C.

If, in addition we know that g is smooth and if Xt starts on the boundary of C it

immediately enters int(D) then we will have a smooth fit of V and g on the boundary of C.

That is,

V (x)|∂(C) = g(x)|∂(C) and V ′(x)|∂(C) = g′(x)|∂(C).

7



If however we do not have that condition satisfied for Xt, then we will simply have

continuous fit on the boundary. Knowing if V and g enjoy smooth fit can aid in the solution

process. For example, if we know that V is in the class of degree-2 polynomials, we may be

able to find the coefficients due to the smooth fit principle.

2.1.3 A Linear Programming Approach

As mentioned in the introduction, Helmes and Stockbridge (2010) describe how to model the

optimal stopping program in a Linear Programming framework and then utilize the structure

of the dual program in order to find a solution locally, rather than globally. They consider

one-dimensional diffusions which satisfy the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt, X0 = x (2.6)

and their goal is to find a stopping time τ and a value function V which satisfies

V (x) = sup
τ∈T

J(τ ;x)

= sup
τ∈T

E
[∫ τ

0

e−α sr(Xs) ds+ e−α τg(Xτ )1τ<∞

]
.

(2.7)

To accomplish this, they define an occupation measure µτ (G) = E[e−ατ1G(Xτ )1τ<∞] on

B[xl, xr] to transform the optimal stopping problem into the following linear program.

Maximize

∫
gr dµ

Subject to:

∫
φ dµ = φ(x),∫
ψ dµ = ψ(x),∫
1 dµ ≤ 1,

µ a non-negative measure

where gr is a function that captures both the total running reward accumulated and the

terminal reward. From here they construct the following dual program using standard linear

programming techniques.

8



Minimize φ(x) c1 + ψ(x) c2 + c3

Subject to: φ(y) c1 + ψ(y) c2 + c3 ≥ gr(y) ∀y ∈ [xl, xr]

c1, c2 free, c3 ≥ 0

In this dual program, φ, ψ are defined as follows (Rogers and Williams, 2000). Fix

q ∈ (xl, xr) arbitrarily and let Hz = inf{t ≥ 0 |Xt = z} denote the first hitting time of

z ∈ [xl, xr], then

φ(y) =

{
Ey[exp(−αHq)] y ≥ q

1/Eq[exp(−αHy)] y ≤ q

and

ψ(y) =

{
Ey[exp(−αHq)] y ≤ q

1/Eq[exp(−αHy)] y ≥ q.

Additionally they are continuously differentiable eigenfunctions. That is, they are so-

lutions to Af − αf = 0. The function φ is non-negative strictly decreasing and ψ is non-

negative, strictly increasing. The following is also true (Borodin and Salminen, 2002):

Ex[e−αHz ] =


ψ(x)

ψ(z)
, z ≥ x

φ(x)

φ(z)
, z ≤ x

Helmes and Stockbridge further show that their primal and dual programs enjoy strong

duality, which then allows us to solve the optimal stopping problem locally using the dual.

This is oftentimes done by appealing to the principle of smooth fit, depending on the par-

ticular gain function. More details to this approach will follow in Section 3.2.

One particularly interesting example was found in “Optimal stopping of oscillating Brow-

nian motion” by Mordecki and Salminen (2019). They found that for a diffusion process

with positive piecewise constant volatility changing at the point x = 0 and the gain function

((1 + x)+)2 there are certain parameters which lead to a disconnected stopping region. This

is of particular interest because for most of the possible parameters the stopping region is of

the form [c,∞) which could lead to interesting results once we analyze what could happen

if we allow the parameters to vary.

9



2.2 Stability of Semi-Infinite Programming

Further analysis of the structure of the semi-infinite linear programs led to a paper written

by Jongen et al. (1992). Their work was focused on analyzing how the feasible set of a semi-

infinite linear program changes under certain changes to the constraint system where the

constraints were given by a family of functions. Historically, work has been using a similar

formulation when there were finitely many constraints. However, they extended these results

to a constraint system indexed by a continuum.

In their paper, they consider semi-infinite linear programs in the form:

minimize f on M [H,G],

where M [H,G] = {x ∈ Rn |H(x) = 0, G(x, y) ≥ 0, for all y ∈ Y},

Y ⊂ Rr compact.

In this framework the mappings f : Rn → R, H : (h1, ..., hm) : Rn → Rm, m < n,

and G : Rn × Rr → R are assumed to be continuously differentiable. The differential

DH is defined as the matrix whose row vectors are DHi = ( ∂hi
∂x1
, ∂hi
∂x2
, ..., ∂hi

∂xn
) and DcG =

( ∂G
∂c1
, ∂G
∂c2
, ..., ∂G

∂cn
).

In the result that we have used, the authors use the notion of lower and upper semi-

continuity of a set valued mapping and define it as follows.

Definition 2.2.1. Let M be a mapping from a topological space T into the family P(Rn)

of all subsets of Rn. We call M lower semi-continuous at v̄ ∈ T if, for any open set U ⊂ Rn

with M (v̄)∩U 6= ∅, there exists a neighborhood V of v̄ such that M (v)∩U 6= ∅ whenever

v ∈ V . The mapping M is said to be upper semi-continuous at v̄ ∈ T if, for any open

set U ⊂ Rn with M (v̄) ⊂ U , there exists a neighborhood V of v̄ such that M (v) ⊂ U

whenever v ∈ V .

The conditions that need to be satisfied make up what are known as the extended

Mangasarian-Fromovitz constraint qualification (EMFCQ). This is said to hold at c ∈
M [H,G] if:

1) rank DH(c) = m

2) there exists a vector ξ ∈ Rn satisfying

DH(c) · ξ = 0,

DcG(c, y) · ξ > 0, for all y such that G(c, y) = 0.

10



If these conditions are satisfied, they have the following result:

Theorem 2.2.2. Let H ∈ C2(Rn,Rm), and suppose that EMFCQ is satisfied for all x ∈
M [H,G]. Then, there exists a C1

s - neighborhood O ⊂ C2(Rn,Rm) × C1(Rn × Rr,R) such

that the set-valued mappingM : (H̃, G̃) 7→M [H̃, G̃] is both upper semi-continuous and lower

semi-continuous at all (H̃, G̃) ∈ O.

They go on to conclude stronger results if compactness is assumed for various parts of

the framework, however those results do not fit the work done here and are not listed.

2.3 Perturbations of Finite-Dimensional Linear Pro-

gramming

The requirements to use the results above for the semi-infinite programs can be too strict for

certain models. Therefore we then explored finite linear programs to see what results could

be gained from looking at the continuity of a finite linear program and extending them to

the semi-infinite case.

Robinson (1977) deals with finite dimensional linear programs and analyzes the primal

and dual programs under arbitrary perturbations of the coefficients in the constraints and

objective function. His main result is listed below, and states that under suitable conditions

we have two results: the new perturbed system is still solvable and the optimal value of the

perturbed system is close to that of the original system. First, his framework for the primal

and dual programs is:

min 〈c, x〉
Ax− b ∈ Q∗

x ∈ P

max 〈u, b〉
c− uA ∈ P ∗

u ∈ Q,

where P ∗ = {z ∈ Rn | 〈z, x〉 ≥ 0 for each x ∈ P} and Q∗ is defined similarly. Additionally,

he introduces the following definition.

Definition 2.3.1. These systems are regular if b ∈ int{A(P )−Q∗} and c ∈ int{Q(A)+P ∗}
where P ∗ = {z ∈ Rn|〈z, x〉 ≥ 0 for each x ∈ P} and Q∗ = {z ∈ Rm|〈z, u〉 ≥ 0 for each

u ∈ Q}.

This then leads us to his main result.
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Theorem 2.3.2. The following are equivalent:

(a) The constraints of (P) and (D) are regular.

(b) The sets of optimal solutions of (P) and (D) are nonempty and bounded.

(c) There exists an ε0 > 0 such that for any A′, b′, and c′ with

ε′ ≡ max{||A′ − A||, ||b′ − b||, ||c′ − c||} < ε0,

the two dual problems

(P ′)
min〈c′, x〉

A′x− b′ ∈ Q∗, x ∈ P

(D′)
max〈u, b′〉

c′ − uA′ ∈ P ∗, u ∈ Q

are solvable.

If one of these conditions, and therefore all, are satisfied, then there exist constants ε1 ∈
(0, ε0] and γ such that for any A′, b′, and c′ with ε′ < ε1, any x′ solving (P ′), and any u′

solving (D′), one has d[(x′, u′), SP × SD] ≤ γε′, where SP and SD are the sets of optimal

solutions for (P ) and (D) respectively.

12



Chapter 3

Analysis of the Value Function of an
Optimal Stopping Problem.

3.1 Outline of the Problem

We will work using the same basic framework as Helmes and Stockbridge (2010), that is

we consider a one-dimensional diffusion process X which satisfies the stochastic differential

equation (SDE) in (2.6).

Our ultimate goal is to show that the value function,

V (x, θ) = sup
τ∈T

J(τ ;x, θ)

= sup
τ∈T

E
[∫ τ

0

e−α sr(Xs) ds+ e−α τg(Xτ )1τ<∞

] (3.1)

has certain continuity properties in terms of the parameters (θ) in the value function or those

of the dynamics where τ represents a stopping time of the process (in some acceptable set

of stopping times T ).

The obvious parameter in V (x) is α, the discount rate of future value. In the objective

function we have the functions r(X), the running reward rate of the process, and g(X),

the terminal reward obtained upon stopping the process. These functions will oftentimes

have parameters in them, such as the coefficients in a polynomial. We use θ to represent

the parameters in general. This will be important later when we begin analyzing the value

function in regards to the state space X or the parameter space Θ. One assumption we

will have to make is that the terminal reward function be continuous rather than upper

semi-continuous.
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The optimal stopping problem comes back to the value function:

V (x, θ) = sup
τ∈T

J(τ ;x, θ).

The objective is to select a stopping time τ which achieves the supremum of J(τ ;x, θ) over

all acceptable stopping times. In our case, such a stopping time exists. If that were not the

case we could explore what are known as ε-optimal stopping times.

3.2 The Linear Program

To begin, we first must see how it is possible to take the optimal stopping problem and

transform it into a linear program. The optimal stopping problem considers all stopping

times, which, being random variables can be quite complicated. However, the solution to a

linear program is simply an n-tuple of real numbers. To see this, we take this result from

Helmes and Stockbridge (2010).

Proposition 3.2.1. The optimal stopping problem is equivalent to solving the following pri-

mal LP (denoted P):

Maximize

∫
gr dµ

Subject to:

∫
φ dµ = φ(x),∫
ψ dµ = ψ(x),∫
1 dµ ≤ 1,

µ a non-negative measure

Or its dual LP, D:

Minimize φ(x) c1 + ψ(x) c2 + c3

Subject to: φ(y) c1 + ψ(y) c2 + c3 ≥ gr(y) ∀y ∈ [xl, xr]

c1, c2 free, c3 ≥ 0

Also, this primal and dual LP enjoy strong duality. That is, the optimal values for the primal

and dual programs are equal.
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Proof. See Helmes and Stockbridge (2010) for full details. Their work will be summarized

below.

First they show that

J(τ ;x) = Ex
[∫ τ

0

e−α sr(Xs) ds+ e−α τg(Xτ )1τ<∞

]
= Ex

[
e−α τ (fr + g)(Xτ )1τ<∞

]
− fr(x).

(3.2)

Where fr(x) = −Ex
[∫∞

0
e−α sr(Xs)ds

]
.

Then by defining gr = fr + g they see that the stopping problem is now to maximize

Jr(τ ;x) := E[e−ατgr(Xτ ) 1τ<∞]

Now, if Itô’s formula is applied to the function g(Xt) = e−αtf(Xt) for some f ∈ C2(xl, xr),

we get

e−αtf(Xt) = f(x) +

∫ t

0

e−αs[Af(Xs)− αf(Xs)] ds+

∫ t

0

e−αsf ′(Xs) dWs.

Then the optional sampling theorem is used to replace t with t∧ τ and upon rearrangement,

e−αt∧τf(Xt∧τ )− f(x)−
∫ t∧τ

0

e−αs[Af(Xs)− αf(Xs)] ds =

∫ t∧τ

0

e−αsf ′(Xs) dWs.

Notice that the right hand side is a stochastic integral, and therefore both sides are (mean

zero) martingales.

Then, taking expectation and letting t→∞ yields

Ex
[
e−ατf(Xτ )1τ<∞ −

∫ τ

0

e−αs[Af(Xs)− αf(Xs)] ds

]
= f(x).

If we replace f with the eigenfunctions φ and ψ and define the occupation measure

µτ (G) = E[e−ατ1G(Xτ )1τ<∞] for any G ∈ B[xl, xr] we have

Ex[e−ατφ(Xτ )] = φ(x)∫
φ dµτ = φ(x)

Ex[e−ατψ(Xτ )] = ψ(x)∫
ψ dµτ = ψ(x)

Then they argue that the original optimal stopping problem is embedded in the new LP

(P) and construct its dual LP naturally. Lastly, they prove (after considerable effort) that

the primal and dual enjoy strong duality.
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In order to ensure that the optimal stopping problem has a finite solution, that is, that

the optimal strategy is not to simply allow the process to proceed ad infinitum the following

restrictions are given to the new reward function gr:

1. gr is continuous

2. lim
y→xl

gr(y)

φ(y)
= 0

3. lim
y→xr

gr(y)

ψ(y)
= 0.

We also observe that gr(y) > 0 for some y. If not, then the optimal stopping strategy

is to never stop so that we obtain a reward of zero. Also, gr is not constant, otherwise the

optimal stopping strategy is to stop immediately because we would never obtain a better

reward.

If we consider the dual LP, we see that we have uncountably many constraints since our

constraints are indexed by y ∈ [xl, xr] ⊂ R. Note that one or both of these endpoints could

be infinite so it may not be a compact interval. Also, in proving the strong duality of the

primal and dual LPs, Helmes and Stockbridge prove the following result, which will be used

in some of the results here and as such when we refer to the programs P and D we will use

either form. Notice that the only difference is removing the third constraint from the primal

which then removes a variable from the dual.

Corollary 3.2.2. The programs P and D are equivalent to the following programs.

Maximize

∫
gr dµ

Subject to:

∫
φ dµ = φ(x),∫
ψ dµ = ψ(x),

µ a non-negative measure

Minimize φ(x) c1 + ψ(x) c2

Subject to: φ(y) c1 + ψ(y) c2 ≥ gr(y) ∀y ∈ [xl, xr]

c1, c2 free
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3.3 Countable and then Finite Sub-LP

Our next step will be to focus on a countably dense subset Y of [xl, xr] and only use those

countably many constraints. In fact we will take Y to be the dyadic rationals (those whose

denominator is a power of two) that fall in [xl, xr]. We will need to verify that the objective

function obtains the same value on Y as it does when the full constraint system is employed,

however due to the continuity properties of the eigenfunctions and the reward function this

is straightforward. Upon restricting ourselves to this smaller subset of constraints our dual

LP is as follows:

Minimize φ(x) c1 + ψ(x) c2 + c3

Subject to: φ(y) c1 + ψ(y) c2 + c3 ≥ gr(y) ∀y ∈ Y ⊂ [xl, xr]

c1, c2 free, c3 ≥ 0

And its resulting primal LP:

Maximize
∑
yi∈Y

digr(yi)

Subject to:
∑

di φ(yi) = φ(x),∑
di ψ(yi) = ψ(x),∑
di ≤ 1,

di ≥ 0

which can equivalently be thought of as:
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Maximize

∫
gr dµ

Subject to:

∫
φ dµ = φ(x),∫
ψ dµ = ψ(x),∫
1 dµ ≤ 1,

µ a non-negative measure on the set Y .

Now we have a semi-infinite linear program. The dual has countably many constraints

and the primal has countably many variables. We must verify that this subsystem still enjoys

strong duality.

From here forward I will focus on the dual LP. I will denote the countably infinite LP

P∞, and the finitely constrained LP (to be defined) PN . Similarly, their corresponding dual

LPs will be D∞ and DN respectively. Lastly I will denote the optimal value of P by V P(x; θ)

and likewise for the other primal and dual LPs.

Theorem 3.3.1. Denote the feasible region of D by F(D) with the feasible regions of the

other primal and dual LPs denoted similarly. Then F(D) = F(D∞)

Proof. One direction is obvious. Since every constraint in D∞ is also a constraint in D,

F(D) ⊆ F(D∞).

Now let (c1, c2, c3) ∈ F(D∞) be fixed and y ∈ [xl, xr] be chosen arbitrarily. We need to

show that φ(y) c1 + ψ(y) c2 + c3 ≥ gr(y).

Since Y is a dense subset of [xl, xr] there must be a sequence (yn) that converges to y.

Moreover we know that φ(yi) c1 + ψ(yi) c2 + c3 ≥ gr(yi) for all yi ∈ (yn) since (c1, c2, c3) ∈
F(D∞).

Then, since φ, ψ are continuous and gr is continuous we have:

φ(yi) c1 + ψ(yi) c2 + c3 ≥ gr(yi) ∀yi ∈ (yn)

lim
i→∞

[φ(yi) c1 + ψ(yi) c2 + c3] ≥ lim
i→∞

gr(yi)

φ(y) c1 + ψ(y) c2 + c3 ≥ gr(y).
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Since y was chosen arbitrarily, this inequality holds for all y ∈ [xl, xr]. Therefore (c1, c2, c3)

is feasible for D and F(D∞) ⊆ F(D).

Corollary 3.3.2. V D = V D
∞

Proof. D and D∞ have the same value functions. The theorem above gives us that they

have the same feasible region. Therefore the optimal value must also be equal.

Since Y is a countable subset of [xl, xr], Y = {y1, y2, y3, ...}. Assume that y1 < x < y2.

If not, reindex the set so that is true. We shall define the finite constraint system using the

following:

Definition 3.3.3. YN := ({−N,−N + 1
2N
,−N + 2

2N
, ..., N} ∪ {xl, x, xr |xl > −∞, xr <

∞}) ∩ [xl, xr].

Then we can see a natural definition of DN :

Minimize φ(x) c1 + ψ(x) c2 + c3

Subject to: φ(y) c1 + ψ(y) c2 + c3 ≥ gr(y) ∀y ∈ YN ⊂ [xl, xr]

c1, c2 free, c3 ≥ 0.

Theorem 3.3.4. (V D
N

(·))∞N=0 is a monotonically increasing sequence of functions which

converges pointwise to V D
∞

(·).

Proof. First notice that because of how the finite and countably constrained dual LPs were

formulated every single constraint in DN is also a constraint in DM for M > N , thus,

F(D1) ⊇ · · · ⊇ F(DN) ⊇ F(DN+1) ⊇ · · · ⊇ F(D∞). Because of this and the fact that the

objective functions are the same for all dual LPs, we have that V D
N

(·) ≤ V D
M

(·) ≤ V D
∞

(·)
for all M > N .

Then choose some z ∈ (xl, xr). The sequence (V D
N

(z))∞N=0 is monotonic as argued

above, thus limN→∞ V
DN (z) exists and will be denoted L(z). Moreover, L(z) ≤ V D∞(z) by

the inequality above.
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Due to how L(z) was defined, for any arbitrary ε > 0 there is some K so that |L(z) −
V DK (z)| < ε and |yi − yi+1| = 1/2K < ε for all yi ∈ YK . Let us take cK1 , c

K
2 , c

K
3 to be the

optimal coefficients from V DK and we can assume they are not feasible in D∞, otherwise

V DK (z) ≥ V D∞(z) and we would be done.

So then if cK1 , c
K
2 , c

K
3 are not feasible for D∞ there must be some collection of yi ∈ Y

where φ(yi)c
K
1 + ψ(yi)c

K
2 + cK3 ≥ gr(yi) is violated for each yi. Define

dKi := gr(yi)− [φ(yi)c
K
1 + ψ(yi)c

K
2 + cK3 ]

and

dK := sup
i
dKi .

This implies that cK1 , c
K
2 , (c

K
3 + dK) is now feasible for D∞ which means V DK (z) + dK =

φ(z)cK1 + ψ(z)cK2 + (cK3 + dK) > V D∞(z) and then dK > V D∞(z)− V DK (z).

We would like to utilize uniform continuity here, however the interval [xl, xr] may not

be compact. If the endpoints are finite, the functions φ and ψ have vertical asymptotes at

one of the endpoints and so are not bounded nor uniformly continuous. Even so, the only

thing that could give us trouble is if gr is unbounded at an endpoint because otherwise we

can argue that no such dK would be created near the boundaries. We then must consider

two cases.

Case 1. The boundary points xl and xr are both finite.

First define the following

ĉi := inf
m
{cmi |m ≥ K}, i = 1, 2, 3.

Notice that ĉ1, ĉ2, ĉ3 ≥ 0 since φ(y)cK1 + ψ(y)cK2 + cK3 ≥ gr(y) must hold true at the

boundaries and gr is bounded from below.

We will first analyze the left boundary. If ĉ1 > 0, the condition limy→xl
gr(y)
φ(y)

= 0 on the

gain function leads to the following:

lim
y→xl

gr(y)

φ(y)
= 0

lim
y→xl

gr(y)

ĉ1φ(y)
= 0

lim
y→xl

gr(y)

ĉ1φ(y) + ĉ2ψ(y) + ĉ3

= 0
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since ĉ1, ĉ2, ĉ3, φ, and ψ are all non-negative. This implies that there is some x1 > xl where

for any y < x1 we have gr(y) ≤ ĉ1φ(y) + ĉ2ψ(y) + ĉ3. We can find x2 in the same manner by

using limy→xr
gr(y)
ψ(y)

= 0.

Our functions gr, φ, ψ are continuous and bounded on the compact interval [x1, x2] and

thus they are uniformly continuous. Then for our arbitrary ε > 0 there exist finite δg, δφ,

and δψ so that |yi − yj| < δg implies |gr(yi) − gr(yj)| < ε and similarly for δφ and δψ. If

needed, increase K so that 1/2K < min{δg, δφ, δψ}. Also notice that ĉ1φ(y) + ĉ2ψ(y) + ĉ3 ≤
cm1 φ(y)+cm2 ψ(y)+cm3 for all y ∈ [xl, xr] and allm ≥ K. Since we know that ĉ1φ(y)+ĉ2ψ(y)+ĉ3

majorizes gr in the intervals [xl, x1] ∪ [x2, xr], no dKi will be created from any point outside

of [x1, x2].

Then for any yi where dKi > 0 (i.e. where the constraint fails), there must be some

yk, yk+1 ∈ YK ∩ [x1, x2] where yk < yi < yk+1. Notice that yk+1 − yk < ε as well as

φ(yk)c
K
1 + ψ(yk)c

K
2 + cK3 ≥ gr(yk) is true since our coefficients are feasible for DK . In

addition, since our functions gr, φ, and ψ are continuous there is some ŷ ∈ [yk, yi]∩Y so that

|gr(ŷ)− [φ(ŷ)cK1 + ψ(ŷ)cK2 + cK3 ]| < ε by the Intermediate Value Theorem.

Combining these and using a triangle inequality argument,

dKi = gr(yi)− [φ(yi)c
K
1 + ψ(yi)c

K
2 + cK3 ]

< |gr(yi)− gr(ŷ)|+ |gr(ŷ)− [φ(yi)c
K
1 + ψ(yi)c

K
2 + cK3 ]|

< ε+ |gr(ŷ)− [φ(ŷ)cK1 + ψ(ŷ)cK2 + cK3 ]|

+ |[φ(ŷ)cK1 + ψ(ŷ)cK2 + cK3 ]− [φ(yi)c
K
1 + ψ(yi)c

K
2 + cK3 ]|

< ε+ ε+ cK1 ε+ cK2 ε

= ε(2 + cK1 + cK2 ).

Since dKi < ε(2 + cK1 + cK2 ) for each i, it must be true that dK ≤ ε(2 + cK1 + cK2 ). Also,

cn1φ(z) + cn2ψ(z) ≤ c∞1 φ(z) + c∞2 ψ(z) + c∞3 <∞ for all n so we can assume cn1 + cn2 is bounded

by some M for all n.

Therefore, 0 < V D∞(z)−V DK (z) < dK < ε(2 +M). Let K go to infinity, and V D∞(z)−
L(z) < ε(2 +M). Therefore V D∞(z) = L(z) at z and since z was arbitrary, V D∞(y) = L(y)

as functions.

If ĉ1 = 0, then ĉ1φ(y) + ĉ2ψ(y) + ĉ3 → ĉ3 as y → xl so limy→xl gr(y) ≤ ĉ3 and there is

some x1 where y < x1 implies gr(y) < ĉ3 + ε.

From here we use an identical argument as above for any dKi created from yi > x1.

However, there could be some dKi created from yi ∈ [xl, x1] but since cK1 φ(y)+cK2 ψ(y)+cK3 ≥ 0
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and gr(y) < ĉ3 + ε we see that dki ≤ ε. Also, ε < ε(2 + M) so once again 0 < V D∞(z) −
V DK (z) < dK < ε(2 +M) and our result follows.

Case 2. Exactly one of xl, xr are infinite.

Without loss of generality, assume xl = −∞. Our argument will be similar to that in case

1, however we will use

c̃1 = lim inf
m→∞

{cm1 |m ≥ K}.

The need to use the limit inferior comes from the fact that when the boundary point is

infinite, our finite collection of points is bounded and so some cN1 , c
N
2 could be negative.

Since xl = −∞ and we used the limit inferior rather than the infimum we know that

there is some Kl > K so that | infm{cm1 |m ≥ Kl}− c̃1| < ε. Now choose ĉi := infm{cmi |m ≥
Kl}, i = 1, 2, 3. If ĉ1 > 0, we will again use the condition limy→xl

gr(y)
φ(y)

= 0 to find x1 so for

any y < x1 we have gr(y) ≤ ĉ1φ(y) + ĉ2ψ(y) + ĉ3.

This implies that for all m ≥ Kl and y < x1:

ĉ1φ(y) + ĉ2ψ(y) + ĉ3 ≤ cm1 φ(y) + cm2 ψ(y) + cm3

gr(y) ≤ ĉ1φ(y) + ĉ2ψ(y) + ĉ3 ≤ cm1 φ(y) + cm2 ψ(y) + cm3

and so no dmi will be created.

If c̃1 ≤ 0 then limy→−∞ gr(y) ≤ 0 and there is some x1 ≤ Kl so gr(y) < ε for all y < x1

and then any dKi created by yi < x1 must be less than ε. Then using the same argument as

case 1 we can show

dKi < ε(2 + cK1 + ck2).

So once again, V D∞(y) = L(y).

Case 3. Both of the boundary points are infinite.

This case proceeds similarly to case 2 except that the limit inferior is used to find both x1

and x2.

Theorem 3.3.5. V P
∞

= V P

Proof. One of the major results from Helmes and Stockbridge (2010) is that the uncountably

constrained primal and dual LPs have strong duality, so we know that V P = V D. Also

V P
N

= V D
N

since for each N , PN and DN are finite linear programs.
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Even though we do not yet have strong duality for the countable linear programs, every

primal and dual LP enjoy weak duality. That, combined with the inequalities and equalities

above give:

V D
N

= V P
N ≤V P∞ ≤ V D

∞

V D
N ≤V P∞ ≤ V D

∞
.

Since these inequalities are true for every N, we can pass to the limit and use Corollary 3.3.2

to see
V D

∞ ≤ V P
∞ ≤ V D

∞

V P
∞

= V D
∞
.

Corollary 3.3.2 gives us V D
∞

= V D so we see V P
∞

= V D. Lastly use strong duality of the

original primal and dual LP to get V P
∞

= V P , our desired result.

Corollary 3.3.6. Strong duality holds for P∞ and D∞.

Proof. This is a direct result of the proof above. In particular, it is given by the equation

V D
∞

= V P
∞

.

3.4 Continuity of the Value Function in Finite LPs

At this point we would like to use results in the paper by Robinson (1977) to show continuity

of V (x; θ) under small perturbations of the parameters (θ) of the model. Theorem 2.3.2 from

his paper gives three conditions under which that would be true. However, this only applies

to finite linear programs (finite variables and constraints). Theorem 2.3.2 (Robinson, 1977)

states that for finite linear programs, if the constraints of the primal and dual systems

are regular then the optimal solution sets are continuous under small perturbations of the

parameters. For our problem, V (x) is continuous in x so then we can conclude that V P
N

is

continuous in the parameters provided our systems are regular.

Robinson works with primal linear programs of the form:

min 〈c, x〉

Ax− b ∈ Q∗

x ∈ P

23



and their duals

max 〈u, b〉

c− uA ∈ P ∗

u ∈ Q.

Recalling Definition 2.3.1, these linear programs are regular if b ∈ int{A(P )−Q∗} and c ∈
int{Q(A)+P ∗} where P ∗ = {z ∈ Rn|〈z, x〉 ≥ 0 for each x ∈ P} and Q∗ = {z ∈ Rm|〈z, u〉 ≥ 0

for each u ∈ Q}.
For our systems we have the following:

A =

φ(y1) ψ(y1) 1
...

...
...

φ(yn) ψ(yn) 1

 b =

gr(y1)
...

gr(yn)

 c =

φ(x)
ψ(x)

1



P = R2 × R+ P ∗ = {z ∈ R3 | 〈z, x〉 ≥ 0 for each x ∈ P} = ~0×~0× R+

Q = Rn
+ Q∗ = {z ∈ Rn | 〈z, u〉 ≥ 0 for each u ∈ Q} = Rn

+

Theorem 3.4.1. The constraints for the finite system PN and its dual DN are regular.

Proof. To establish regularity we need to verify that b ∈ int{A(P )−Q∗} and

c ∈ int{(Q)A+P ∗}. The first condition is straight forward. Consider A(P )−Q∗. Let ~p ∈ P
and ~q∗ ∈ Q∗.

Then A~p− ~q∗ =

φ(y1)p1 + ψ(y1)p2 + p3 − q1∗
...

φ(yn)p1 + ψ(yn)p2 + p3 − qn∗


where p1, p2 are free and p3, q

∗
i are non-negative. Let p1 = p2 = 0 and we see that

A(P )−Q∗ = Rn, which is an open set and therefore the first regularity condition is satisfied.

The second condition requires more work. We must show that

φ(x)
ψ(x)

1

 ∈ int
 q

φ(y1) ψ(y1) 1
...

...
...

φ(yn) ψ(yn) 1

+ p∗
∣∣∣∣ q ∈ Rn

+, p
∗ ∈ ~0×~0× R+

 .
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Recall that y1 < x < y2 by construction. Now let us only consider q of the form

(q1, q2, 0, 0, ..., 0). I will show that the interior of this smaller set contains c and so therefore

the interior of the full set does as well. In other words,[
φ(x) ψ(x) 1

]
∈ int

 [q1 q2 0 · · · 0
] φ(y1) ψ(y1) 1

...
...

...
φ(yn) ψ(yn) 1

+ p∗
∣∣∣∣ q1, q2 ∈ R+, p

∗ ∈ ~0×~0× R+

 .

Performing the matrix operations in this set we get (rewritten as a column vector for

clarity in reading):φ(x)
ψ(x)

1

 ∈ int

φ(y1)q1 + φ(y2)q2

ψ(y1)q1 + ψ(y2)q2

q1 + q2 + p

 ∣∣∣∣ q1, q2, p ≥ 0

 .

Since φ, ψ are strictly convex, we have φ(y) < φ(y1)q1 + φ(y2)q2 and ψ(y) < ψ(y1)q1 +

ψ(y2)q2 where q1 + q2 = 1 and y1 ≤ y ≤ y2. Recall that x ∈ [y1, y2] by construction.

Now let δ = min{φ(y1)q1 + φ(y2)q2 − φ(x), ψ(y1)q1 + ψ(y2)q2 − ψ(x)}.
Then we have that,φ(x)

ψ(x)
1

 ∈

φ(y1)q1 + φ(y2)q2

ψ(y1)q1 + ψ(y2)q2

q1 + q2 + p

 for q1 ∈ (0, 1), q2 ∈ (0, 1− q1), 0 < p < δ + 1


which is an open set, and is actually contained inside of the set {(Q)A + P ∗} and so is

contained within its interior.

Therefore, the finite primal and dual constraints satisfy the regularity conditions.

Theorem 3.4.2. V P
N

(y, ·) and V D
N

(y, ·) are continuous.

Proof. This is a direct result of Theorem 2.3.1 (Robinson, 1977). Since we have established

that PN and DN are regular systems we get this result.

Corollary 3.4.3. V D
∞

(y, ·) is lower semi-continuous.
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Proof. By the construction of the finite and countably infinite LPs as well as the results from

Theorem 3.3.4 we have

V D
∞

(y, θ) = lim
N→∞

V D
N

(y, θ) = sup
N
V D

N

(y, θ).

Theorem 3.4.2 gives the continuity of V D
N

(y, ·) and the supremum of a family of continuous

functions is lower semi-continuous so we have our result.

Theorem 3.4.4. V D(y, ·) is lower semi-continuous.

Proof. This is a result of Corollaries 3.3.2 which gives V D(y, θ) = V D
∞

(y, θ) and 3.4.3 which

gives the lower semi-continuity of V D(y, ·).

3.5 Continuity of V P(·)

At this point we have established the continuity (in the parameter space) of the finite value

functions as well as lower semi-continuity of the value function for the full linear program.

We would then like to introduce some ground work that will establish continuity of the

infinite value function under certain conditions.

A paper by Jongen et al. (1992) explores the structure and stability of the feasible set of

semi-infinite optimization. Recall that the optimization problems that fit this structure are

of the form

minimize f on M [H,G],

where M [H,G] = {x ∈ Rn |H(x) = 0, G(x, y) ≥ 0, for all y ∈ Y},

Y ⊂ Rr compact.

In this formulation, the functions f : Rn → R, H = (h1, ..., hm) : Rn → Rm, m < n, and

G : Rn ×Rr → R are assumed to be continuously differentiable. We will now match D (our

infinitely constrained dual problem) to this format.

Recall that D is given by:

Minimize φ(x) c1 + ψ(x) c2

Subject to: φ(y) c1 + ψ(y) c2 ≥ gr(y) ∀y ∈ [xl, xr]

c1, c2 free

and that x is not a variable but instead reserved for the starting point of the stochastic

process. Also notice that c3 has been removed from the dual problem, but this is because
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Helmes and Stockbridge (2010) showed that the value of this sub-LP is in fact equal to the

value of the full LP.

So then f(c1, c2) = φ(x) c1 + ψ(x) c2, G(c1, c2, y) = φ(y) c1 + ψ(y) c2 − gr(y) and

(n,m, r) = (2, 0, 1). Since our problem does not have any equality constraints, we define

H : R2 → R0 to be the zero function. Lastly we have M [H,G] = {c ∈ R2 |φ(y) c1 +ψ(y) c2−
gr(y) ≥ 0}.

One of the main results of Jongen et al. (1992) states that under certain conditions on H

and G the set-valued mapping (H̃, G̃) 7→M [H̃, G̃] is both upper and lower semi-continuous

in a neighborhood of H,G under a specific topology. This tells us that if we perturb the

functions H,G a small amount, the feasible region M [H,G] will undergo a small perturbation

as well. This is due to lower semi-continuous part of definition 2.2.1 which tells us that this

mapping is lower semi-continuous with respect to θ at (0, φθ(y) c1 + ψθ(y) c2 − gr,θ(y)).

The conditions that need to be satisfied make up what are known as the extended

Mangasarian-Fromovitz constraint qualification.

Definition 3.5.1. A point c in the feasible set M [H,G] of a semi-infinite linear program

satisfies the extended Mangasarian-Fromovitz constraint qualification (EMFCQ) if:

1) rank DH(c) = m

2) there exists a vector ξ ∈ Rn satisfying

DH(c) · ξ = 0,

DcG(c, y) · ξ > 0, for all y such that G(c, y) = 0.

Condition 1 is true since m = 0 and DH(c) = 0.

Condition 2 is satisfied by the vector ξ = (1, 1). Since DcG(c, y) = (φ(y), ψ(y)) and

φ(y) > 0, ψ(y) > 0 for all y we have DcG(c, y) · ξ > 0 for all y not just for those in that small

set. Now that we have established that our problem is of the right structure and satisfies

this condition we can now introduce our result.

Definition 3.5.2. We say that a linear program D is perturbable if it satisfies the following

conditions:

1. D has the structure of

minimize f on M [H,G],

where M [H,G] = {x ∈ Rn |H(x) = 0, G(x, y) ≥ 0, for all y ∈ Y},

Y ⊂ Rr compact;

27



2. The functions f : Rn → R, H = (h1, ..., hm) : Rn → Rm, m < n, and G : Rn×Rr → R
are continuously differentiable;

3. rank(DH(c)) = m;

4. There exists a vector ξ ∈ Rn satisfying

DH(c) · ξ = 0,

DcG(c, y) · ξ > 0, for all y such that G(c, y) = 0.

5. The functions φθ(y), ψθ(y), and gr,θ(y) are continuous with respect to θ.

Theorem 3.5.3. If D is perturbable, then V D(x, ·) is continuous.

Proof. Fix θ arbitrarily and let ε > 0. Assume for this proof that ε < 1.

For this proof we will be referring to three different linear programs. LP (1) is:

Minimize φθ(x) c1 + ψθ(x) c2

Subject to: φθ(y) c1 + ψθ(y) c2 ≥ gr,θ(y) ∀y ∈ [xl, xr]

c1, c2 free.

By the results in Jongen et al. (1992) we can choose some θ̂ near θ to perturb the

constraint functions in our linear program. This new program will be LP (2):

Minimize φθ(x) d1 + ψθ(x) d2

Subject to: φθ̂(y) d1 + ψθ̂(y) d2 ≥ gr,θ̂(y) ∀y ∈ [xl, xr]

d1, d2 free.

We must be careful about how θ̂ is chosen. So we will choose δ > 0 so that the following

are true if |θ − θ̂| < δ:

1. δ < ε
2K

where K = φθ(x) + ψθ(x).

2. For any c in F(1) there is some d̃ in F(2) so |c− d̃| < ε
2K

.

3. For any d in F(2) there is some c̃ in F(1) so |d− c̃| < ε
2K

.

4. |φθ̂(x)− φθ(x)|+ |ψθ̂(x)− ψθ(x)| < ε
8M

where

M = c∗1(1 + φθ(x)
ψθ(x)

) + c∗2(1 + ψθ(x)
φθ(x)

) + (1/φθ(x) + 1/ψθ(x)).
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Conditions 2,3, and 4 above are accomplished by the lower semi-continuity on the set-

valued mapping M as well as the assumption that φθ(y), ψθ(y), and gr,θ(y) are continuous

with respect to θ.

Then lastly LP (3) is defined as:

Minimize φθ̂(x) e1 + ψθ̂(x) e2

Subject to: φθ̂(y) e1 + ψθ̂(y) e2 ≥ gr,θ̂(y) ∀y ∈ [xl, xr]

e1, e2 free.

Notice that (1) and (2) have the same objective functions but different feasible regions

(F(1) 6= F(2)) because the constraints are different functions. Whereas F(2) = F(3) but

(2) and (3) have different objective functions. Denote the objective function for (1) and (2)

as fθ(·) and that of (3) as fθ̂(·) where these are now functions on the feasible sets.

The goal will be to show that the optimal value for (1) and (3) are close which would

show that the new linear program we create by perturbing the parameters slightly will have

an optimal value close to that of the original. This is in fact continuity in the parameter

space.

Claim 1. The optimal values of (1) and (2) are within ε/2.

Proof of claim. Let c∗ and d∗ be the optimal solutions to (1) and (2) respectively and let c

and d be as described so d(c∗, d) < ε
2K

and |d∗ − c| < ε
2K

. Then, since c∗ and c are feasible

in (1) and c∗ is the optimal solution we know that fθ(c
∗) ≤ fθ(c). Similarly, since d∗ and d

are feasible in (2), fθ(d
∗) ≤ fθ(d).

Additionally,

|fθ(c∗)− fθ(d)| = |[φθ(x) c∗1 + ψθ(x) c∗2]− [φθ(x) d1 + ψθ(x) d2]|

= |φθ(x) (c∗1 − d1) + ψθ(x) (c∗2 − d2)|

≤ φθ(x)|c∗1 − d1|+ ψθ(x)|c∗2 − d2|

< (φθ(x) + ψθ(x))
ε

2K
.

Then |fθ(c∗)− fθ(d)| < ε/2 and likewise |fθ(d∗)− fθ(c)| < ε/2.

Suppose fθ(c
∗) ≤ fθ(d

∗).

Then fθ(c
∗) ≤ fθ(d

∗) ≤ fθ(d) so in fact |fθ(c∗)− fθ(d∗)| ≤ |fθ(c∗)− fθ(d)| < ε/2.

Suppose fθ(d
∗) < fθ(c

∗).

Then fθ(d
∗) < fθ(c

∗) ≤ fθ(c) so in fact |fθ(d∗)− fθ(c∗)| ≤ |fθ(d∗)− fθ(c)| < ε/2.
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In either case, the optimal values fθ(c
∗) and fθ(d

∗) for (1) and (2) respectively are within

ε/2.

Claim 2. The optimal values for (2) and (3) are within ε/2.

Proof of claim. Now we have two problems with the same feasible solutions. Recall d∗ is the

optimal solution for (2) and let e∗ be that of (3).

By the results in claim 1,

φθ(x) d∗1 + ψθ(x) d∗2 < φθ(x) c∗1 + ψθ(x) c∗2 + ε/2

φθ(x) d∗1 < φθ(x) c∗1 + ψθ(x) c∗2 + ε/2

d∗1 < c∗1 +
ψθ(x)

φθ(x)
c∗2 +

ε

2φθ(x)

and likewise

d∗2 <
φθ(x)

ψθ(x)
c∗1 + c∗2 +

ε

2ψθ(x)
.

So then we have d∗1 + d∗2 < c∗1(1 + φθ(x)
ψθ(x)

) + c∗2(1 + ψθ(x)
φθ(x)

) + ε
2
(1/φθ(x) + 1/ψθ(x)) < M .

We also know fθ(d
∗) ≤ fθ(e

∗) and fθ̂(e
∗) ≤ fθ̂(d

∗) since d∗ and e∗ are optimal for their

respective linear programs. Then

|fθ(d∗)− fθ̂(d
∗)| = |[φθ(x) d∗1 + ψθ(x) d∗2]− [φθ̂(x) d∗1 + ψθ̂(x) d∗2]|

= |[φθ(x)− φθ̂(x)]d∗1 + [ψθ(x)− ψθ̂(x)]d∗2|

≤ |[φθ(x)− φθ̂(x)]d∗1|+ |[ψθ(x)− ψθ̂(x)]d∗2|

<
ε(d∗1 + d∗2)

4M

<
ε

4
<
ε

2
.

Suppose fθ(d
∗) ≤ fθ̂(e

∗), then fθ(d
∗) ≤ fθ̂(e

∗) ≤ fθ̂(d
∗) and in fact |fθ(d∗)−fθ̂(e∗)| < ε/2

is true.

Suppose fθ(d
∗) ≥ fθ̂(e

∗). We will assume φθ̂(x) > φθ(x)/2 and ψθ̂(x) > ψθ(x)/2. By a

similar argument as above we can show

φθ̂(x) e∗1 + ψθ̂(x) e∗2 < φθ(x) d∗1 + ψθ(x) d∗2

φθ̂(x) e∗1 + ψθ̂(x) e∗2 < φθ(x) c∗1 + ψθ(x) c∗2 + ε/2

e∗1 <
φθ(x) c∗1 + ψθ(x) c∗2 + ε/2

φθ̂(x)

e∗1 < 2
φθ(x) c∗1 + ψθ(x) c∗2 + ε/2

φθ(x)
.
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Then e∗1 + e∗2 < 2c∗1(1 + φθ(x)
ψθ(x)

) + 2c∗2(1 + ψθ(x)
φθ(x)

) + 2 ε
2
(1/φθ(x) + 1/ψθ(x)) < 2M .

Additionally,

|fθ(e∗)− fθ̂(e
∗)| = |[φθ(x) e∗1 + ψθ(x) e∗2]− [φθ̂(x) e∗1 + ψθ̂(x) e∗2]|

= |[φθ(x)− φθ̂(x)]e∗1 + [ψθ(x)− ψθ̂(x)]e∗2|

≤ |[φθ(x)− φθ̂(x)]e∗1|+ |[ψθ(x)− ψθ̂(x)]e∗2|

<
ε(e∗1 + e∗2)

4M

<
ε

2
.

Then fθ̂(e
∗) ≤ fθ(d

∗) ≤ fθ(e
∗) and |fθ̂(e∗)− fθ(d∗)| ≤ |fθ(e∗)− fθ̂(e∗)| <

ε
2
.

In either case, the optimal values for (2) and (3) are within ε/2.

Combining claims 1 and 2 we have that the optimal value of LPs (1) and (3) are within

ε which finishes our proof.
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Chapter 4

Examples

4.1 Forest Harvest with Carbon Credits

This problem was analyzed as example 6.2 in Helmes and Stockbridge (2010). They found

the closed form expression of the value function, we go further to examine the effects of

allowing the parameters to vary. This example illustrates that if we are able to find a closed

form expression of the value function with respect to the parameters of the model, we are

able to analyze continuity directly without using the results of this paper. In this example

we are examining a geometric Brownian motion process Xt which satisfies the stochastic

differential equation

dXt = µXt dt+ σXt dWt, X0 = x > 0, µ, σ > 0. (4.1)

In this example Xt represents the quantity of lumber in a forest. While the forest stands,

it earns carbon credits for the owner proportional to the size of the forest. So the running

reward is r(y) = Ryβ with β > 0. Upon harvesting the lumber, the owner receives a

terminal reward of g(y) = k1y
β−k2 where k1, k2 > 0. Here we assume that all of the lumber

is harvested at the terminal time and the process Xt has reached zero.

The objective then, is to choose a stopping time τ that would maximize the combined

earnings of the carbon credits along with the profit from harvesting. Each reward is dis-

counted at rate α, otherwise the optimal solution would be simply collect the running reward

forever. The value function is then

V (x) = sup
τ

Ex
[∫ τ

0

e−αtr(Xt) dt+ e−ατg(Xτ )

]
= sup

τ
Ex
[∫ τ

0

e−αtRXβ
t dt+ e−ατ (k1X

β
τ − k2)

]
.

(4.2)
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Through the method developed by Helmes and Stockbridge, they showed that the optimal

stopping time is τb∗ = inf{t ≥ 0 | Xt ≥ b∗} which then leads to a closed form expression of

the value function, namely:

V (x) =


(
k3(b∗)β − k2

(b∗)γ2
− R

(σ2/2)β(β − 1) + µβ − α

)
xγ2 for x ≤ b∗

k1x
β − k2 for x ≥ b∗

(4.3)

Where γ2 =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2α

σ2
< 0 (there is a γ1 in general, but in this

example it does not appear in the value function because it is a one-sided stopping region),

b∗ =

(
k2γ2

k3(γ2 − β)

) 1
β

, and k3 = k1 +
R

1
2
σ2β(β − 1) + µβ − α

.

This closed form expression better allows us to analyze the value function in terms of the

parameter space. That is we can think of V (x) as V (x, θ) where θ = (µ, σ, α,R, β, k1, k2).

To summarize, the parameters are:

µ - the drift rate of the process,

σ - the volatility of the process, a way to measure its randomness,

α - discount rate of the reward,

R - carbon credit reward multiplier,

β - power of the size of the forest for running and terminal reward (β < γ2),

k1 - terminal reward multiplier,

k2 - cost of harvest.

Unless stated otherwise, each parameter is assumed to be positive. In addition, the restric-

tion that (β < γ2) is required to insure a finite maximum, otherwise any arbitrarily large

reward could be attained by waiting until the forest is large enough (which is not necessarily

realistic). Any one of these parameters could change so we are interested in the continuity

of the value function with respect to each of them.

There is a lot to unravel to show the continuity that we are looking for. We will examine

three cases. First, let ε > 0 and recall that throughout this we are assuming that x = X0 is

a fixed positive quantity.

Case 1: x > b∗ + ε

In this region V (x, θ) = k1x
β − k2 and is clearly continuous with respect to k1, k2, and β.
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Case 2: x < b∗ − ε
In this region V (x, θ) = [(k3(b∗)β − k2)/(b∗)γ2 − R/((σ2/2)β(β − 1) + µβ − α)]xγ2 and we

have lots of different layers to unravel before we can claim continuity.

First we want to show that the optimal stopping level, b∗ is continuous under small

perturbations of θ. Since b∗ = (k2γ2/k3(γ2 − β))1/β, showing this will essentially involve

everything we need to show continuity of the value function for this case.

We will begin with the continuity of γ2. We have γ2 = 1
2
− µ

σ2 +
√(

1
2
− µ

σ2

)2
+ 2α

σ2 . The

only possible issues with γ2 are if σ = 0 or if the term inside the root is negative. By

assumption σ > 0, and also (1
2
− µ

σ2 )2 + 2α
σ2 >

2α
σ2 > 0 since α > 0. So γ2 is continuous with

respect to the parameters.

Now onto k3 = k1 + R/(1
2
σ2β(β − 1) + µβ − α). The only potential problem here is the

possibility of 1
2
σ2β(β− 1) +µβ−α = 0. This however is not an issue due to our assumption

that β < γ2:

β < γ2 =
1

2
− µ

σ2
+

√(
1

2
− µ

σ2

)2

+
2α

σ2(
β −

(
1

2
− µ

σ2

))2

<

(
1

2
− µ

σ2

)2

+
2α

σ2

β2 − 2β

(
1

2
− µ

σ2

)
+

(
1

2
− µ

σ2

)2

<

(
1

2
− µ

σ2

)2

+
2α

σ2

β2 − 2β

(
1

2
− µ

σ2

)
<

2α

σ2

σ2β(β − 1) + 2µβ − 2α < 0

The last part that could cause concern for b∗ is if k3(γ2−β) = 0. By assumption γ2−β 6= 0

and to ensure the existence of a finite stopping time it’s assumed k1[α−βµ−(σ2/2)β(β−1)] >

R so k3 = k1 + R/(1
2
σ2β(β − 1) + µβ − α) > 0. Thus we have continuity of b∗ with respect

to the parameters.

Back to the value function V (x, θ) =

(
k3(b∗)β − k2

(b∗)γ2
− R

(σ2/2)β(β − 1) + µβ − α

)
xγ2 we

notice that we have taken care of all aspects of this function that could lead to discontinuities

save for one, if b∗ = 0. This could occur if either k2 or γ2 are zero. However, γ2 > 0 and k2

corresponds to the cost of harvesting so realistically it will never be zero. Therefore V (x, θ)

is continuous with respect to θ in this case.
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Case 3: x ∈ (b∗ − ε, b∗ + ε)

We have shown continuity for each region individually, now the concern is if the parameter

space begins to vary and causes the value function to shift from one region to the next.

To simplify notation, denote V (x, θ) in the region of case 1 as V1 and that of case 2 as

V2. Now for any particular θ1 and θ2, |V1(x, θ1)− V2(x, θ1)| and |V1(x, θ2)− V2(x, θ2)| can be

made arbitrarily small for any x ∈ (b∗ − ε, b∗ + ε) by making ε smaller. This is due to the

construction of V (x) as a continuous pasting of V1 and V2 in Helmes and Stockbridge (2010).

Then so long as θ1 and θ2 are close enough then |V1(x, θ1)−V1(x, θ2)| and |V2(x, θ1)−V2(x, θ2)|
will be small as shown in cases 1 and 2 above. Then a simple triangularization argument

shows that |V1(x, θ1)− V2(x, θ2)| and |V2(x, θ1)− V1(x, θ2)| will also be small. That is:

|V1(x, θ1)− V2(x, θ2)| < |V1(x, θ1)− V1(x, θ2)|+ |V1(x, θ2)− V2(x, θ2)| and

|V2(x, θ1)− V1(x, θ2)| < |V2(x, θ1)− V1(x, θ1)|+ |V1(x, θ1)− V1(x, θ2)|

Therefore for this example the value function is in fact continuous when taking into

account perturbations in the parameters.

4.2 Oscillating Brownian Motion

The examples from this section were taken from Mordecki and Salminen (2019) in which

they explored the stopping regions of the oscillating Brownian motion using two similar gain

functions. They were able to partially solve these problems in general using methods from

analysis. We will show how to solve them completely for any particular problem using our

linear programming method and a graphical approach.

The process Xt is the strong solution to the SDE:

dXt = [σ1 1{Xt<0} + σ2 1{X≥0}] dWt,

where 0 < σ1 ≤ σ2.

The infinitesimal generator of the process is

Af(x) =

{
0.5σ2

2 f
′′(x), x ≥ 0

0.5σ2
1 f
′′(x), x < 0

and the eigenfunctions φ and ψ that solve Af − αf = 0 are:
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φ(x) =


σ2 + σ1

2σ2

exp

(
−
√

2r

σ1

x

)
+
σ2 − σ1

2σ2

exp

(√
2r

σ1

x

)
x < 0

exp

(
−
√

2r

σ2

x

)
x ≥ 0

ψ(x) =


exp

(√
2r

σ1

x

)
x < 0

σ1 + σ2

2σ1

exp

(√
2r

σ2

x

)
+
σ1 − σ2

2σ1

exp

(
−
√

2r

σ2

x

)
x ≥ 0.

4.2.1 Piecewise Linear Gain Function

We will analyze two different gain functions for the oscillating Brownian motion process.

The first of which is g1(x) = (1 + x)+. Transferring this problem into the Linear Program

framework we have the primal LP:

maximize

∫
(1 + x)+ dµ

subject to

∫
φ dµ = φ(x)∫
ψ dµ = ψ(x)∫
dµ ≤ 1

µ a non-negative measure

as well as the Dual LP:

minimize c1φ(x) + c2ψ(x)

subject to c1φ(y) + c2ψ(y) ≥ (1 + y)+ for all y ∈ R

c1, c2 free.

First recall that φ and ψ are unbounded, monotone functions and gr(y) = (1 + y)+ is

bounded from below so c1 and c2 must be non-negative in order to satisfy the constraints.

We know that (−∞,−1] must be in the continuation region because waiting until we

receive some positive reward is always better than stopping and receiving a reward of zero.

One approach to find the stopping region is to appeal to the principle of smooth fit because

for any x in the stopping region we expect to find c1, c2 so that the constraints are satisfied

and that c1φ(x) + c2ψ(x) = gr(x) and c1φ
′(x) + c2ψ

′(x) = g′r(x). Solving this system of
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equations we find:

c1 =
(1 + x)ψ′(x)− ψ(x)

φ(x)ψ′(x)− φ′(x)ψ(x)
, c2 =

φ(x)− (1 + x)φ′(x)

φ(x)ψ′(x)− φ′(x)ψ(x)
. (4.4)

Substituting φ and ψ we have:

c1 =



σ2√
2r(σ2+σ1)

e
√
2r
σ1

x
[(1 + x)

√
2r − σ1], x < 0

1√
2r(σ2+σ1)

(
e
√
2r
σ2

x
((1 + x)

√
2r − σ2)(σ1 + σ2)

+e
−
√
2r

σ2
x
((1 + x)

√
2r + σ2)(σ2 − σ1)

)
, x ≥ 0.

and

c2 =



1√
2r(σ2+σ1)

(
e
−
√
2r

σ1
x
((1 + x)

√
2r + σ1)(σ1 + σ2)

−e
√
2r
σ1

x
((1 + x)

√
2r − σ1)(σ2 − σ1)

)
, x < 0

σ1√
2r(σ2+σ1)

e
−
√
2r

σ2
x
[(1 + x)

√
2r + σ2], x ≥ 0

For x < 0 we see that c1 < 0 if x < σ1√
2r
− 1. This tells us that if σ1√

2r
− 1 > 0 then our

continuation region contains (−∞, 0) and if σ1√
2r
−1 < 0 then the continuation region contains

(−∞, σ1√
2r
− 1).

The biggest downfall of this method is that we might expect x to be in the stopping region

if c1, c2 are both non-negative. However, that does not guarantee that c1φ(y) + c2ψ(y) ≥
(1 + y)+ for all y. What we have used so far is that if either c1 or c2 are negative, then

that inequality clearly fails. Showing in generality that c1φ(y) + c2ψ(y) majorizes our gain

function for any particular c1 and c2 has proven to be difficult in general. However, if we

choose the parameters r, σ1, σ2 then we can use a graphing utility to find the value function

for any particular x.
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Figure 4.1: X0 = 0

Consider Figure 4.1 above. The parameters chosen are r = 0.2, σ1 = 0.4, and σ2 = 1.

If we solve (4.4) with a starting value of x = 0 we see that the function c1φ(y) + c2ψ(y) is

smoothly fit to gr(y) at (0, 1) and majorizes gr(y) everywhere. This implies that 0 is in the

stopping region and V (0) = gr(0). However, the figure below illustrates what happens when

we try the same approach for a starting value of x = −0.5. Immediately we see that even

though we have smooth fit, c1φ(y) + c2ψ(y) ≥ gr(y) is violated for some y. Thus −0.5 is in

the continuation region and V (−0.5) > gr(−0.5).

Figure 4.2: X0 = −0.5

So then the question is, where does the stopping region begin? The stopping region
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begins at the smallest x value where c1 ≥ 0. For these particular parameters that occurs

when x = σ1√
2r
− 1 ≈ −0.3675. As shown below, for x = σ1√

2r
− 1 we can achieve smooth fit

while keeping c1φ(y) + c2ψ(y) ≥ gr(y) true for all y. In fact we can achieve smooth fit and

satisfy the constraints so long as x ≥ σ1√
2r
− 1. However, if x < σ1√

2r
− 1 then we cannot.

Figure 4.3: X0 = σ1√
2r
− 1

Therefore our value function is:

Figure 4.4: Value Function
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4.2.2 Piecewise Quadratic Gain Function

Once again we appeal to the principle of smooth fit and are able to assume that c1 and c2

must be non-negative. Solving a similar system of equations as the linear gain function we

find:

c1 =
(1 + x)2ψ′(x)− 2(1 + x)ψ(x)

φ(x)ψ′(x)− φ′(x)ψ(x)
, c2 =

2(1 + x)φ(x)− (1 + x)2φ′(x)

φ(x)ψ′(x)− φ′(x)ψ(x)
.

Substituting φ and ψ we have:

c1 =



(1+x)σ2√
2r(σ2+σ1)

e
√
2r
σ1

x
[(1 + x)

√
2r − 2σ1], x < 0

(1+x)

2
√

2r(σ2+σ1)

(
e
√
2r
σ2

x
((1 + x)

√
2r − 2σ2)(σ1 + σ2)

+e
−
√
2r

σ2
x
((1 + x)

√
2r + 2σ2)(σ2 − σ1)

)
, x ≥ 0

and

c2 =



(1+x)

2
√

2r(σ2+σ1)

(
e
−
√
2r

σ1
x
((1 + x)

√
2r + 2σ1)(σ1 + σ2)

−e
√

2r
σ1

x
((1 + x)

√
2r − 2σ1)(σ2 − σ1)

)
, x < 0

(1+x)σ1√
2r(σ2+σ1)

e
−
√
2r

σ2
x
[(1 + x)

√
2r + 2σ2], x ≥ 0.

First we will analyze c1 to identify the areas that are known to be in the continuation

region. When x < 0 we see that c1 is negative when (1+x)
√

2r−2σ1 < 0 or x < σ1

√
2/r−1.

When r > 2σ2
1 this value is negative and the interval (−∞, σ1

√
2/r − 1) is contained in the

continuation region. When r ≤ 2σ2
1 the value is non-negative and due to the piecewise nature

of c1 all we can assure is that (−∞, 0) is in the continuation region.

Now when x = 0, c1 = σ2(
√

2r−σ1)/(2
√

2r(σ2+σ1)) and we see that this value is negative

if r < 2σ2
1 so the continuation region extends (at least) until the zero of (1+x)ψ′(x)−2ψ(x).

However, the most interesting case happens when we have 2σ2
1 < r < σ2

2. Mordecki and

Salminen (2019) refer to this as “the bubble”.
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Figure 4.5: The Bubble

Here we solve the system of equations using parameters r = 3.9, σ1 = 1 and σ2 = 4.

We are able to achieve smooth fit at two different values simultaneously, x ≈ −0.1136 and

x ≈ 1.4869. These values are found by setting up a graphing utility as follows. We graph

the gain function gr(y) and define c1(t), c2(t) as above but now they are functions where t is

the value for which we would like to see smooth fit. Then we graph the following function

z = c1(t)φ(y) + c2(t)ψ(y) and use a slider on t.

In this particular case we begin with t = 0 are are able to observe that c1(0)φ(y) +

c2(0)ψ(y) ≥ gr(y) are violated for some y so then x = 0 is in the continuation region. Then

we can slide t towards −1 and observe the first time which the constraints are satisfied for

all y, and then do the same in the positive direction. Perhaps unsurprisingly based on the

graph above, we notice that c1(−0.1136) = c1(1.4869) and c2(−0.1136) = c2(1.4869).

In short, unlike most cases where we have a stopping region of the form [c,∞), here

we have a stopping region with disjoint intervals [a, b] ∪ [c,∞) where a, b < 0 and c > 0.

This method gives a quick and dirty way to find the stopping and continuation regions for

particular starting values of the process. For a more exact method, we can use numerical

solvers. For the case where we have a bubble, we use the fact that there are some a < 0 and

b > 0 where c1(a) = c1(b) and c2(a) = c2(b) and have the following system of equations to
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solve:

c1φ(a) + c2ψ(a) = gr(a)

c1φ
′(a) + c2ψ

′(a) = g′r(a)

c1φ(b) + c2ψ(b) = gr(b)

c1φ
′(b) + c2ψ

′(b) = g′r(b)

−1 < a < 0, b > 0.

This system can be easily solved using a numerical solver such as Mathematica, the code for

which is in Appendix A.1. Solving this system using the parameters listed above verifies the

results that are found using the graphical method.

The most fascinating aspect of this example is that if we allow the parameters r, σ1, and

σ2 to vary not only does the value function change but the form of the stopping rule can

change. Based on the results in Mordecki and Salminen (2019) there is some r0 > 2σ2
1 so that

as long as r ∈ [r0, σ
2
2) we have this bubble and the stopping region is of the form [a, b]∪ [c,∞)

but once r leaves that interval, the stopping region is (c,∞). However, if r = r0 then we do

have a bubble but a = b and the stopping region is {a} ∪ [c,∞).

Using the results of Theorem 3.4.3 we know that the value function is lower semi-

continuous with respect to the parameters. If we focus on r, we can look at the behavior

of the value function when we allow r to leave the interval [r0, σ
2
2). Since V (x, θ) is lower

semi-continuous with respect to θ = (r, σ1, σ2) we know that for fixed σ1 and σ2 we have

lim
r↗σ2

2

V (x, r, σ1, σ2) ≥ V (x, σ2
2, σ1, σ2).

As r approaches σ2
2 we expect there to be a bubble in the value function, and once r = σ2

2

the bubble is gone. We could expect the value function to jump up but the inequality above

suggests that does not happen so we suspect full continuity at r = σ2
2. We would like to

make a similar argument for r = r0 but at that point, there is a bubble so we cannot.

However, for the values σ1 = 1 and σ2 = 4 we can simulate the finitely constrained and

compactly supported linear programs by using the python lp solver in Appendix A.2. Now

we must understand that due to our previous results, this finitely contrained and compactly

supported value function is continuous with respect to the parameters.
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Figure 4.6: Continuity of Value function with respect to r when x = −0.2.

These graphs suggest that r0 ≈ 3.228 and that we do in fact have continuity when r = r0.

4.2.3 Long Term Average Criterion with Linear Quadratic Gaus-
sian Control

This example shows that we can extend this work to more classes of stochastic control. Here

we have a long term average rather than a discounted gain function and our control is linear

quadratic Gaussian instead of optimal stopping.

Let C : E × U → R be a cost rate function and let (X,Λ) be a relaxed weak solution of

the martingale problem for (A, ν). We say (X,Λ) is a relaxed weak solution for (A, ν) if:

f(Xt)− f(x)−
∫ t

0

∫
U

Af(Xs, u)Λs(du)ds (4.5)

is a martingale. Note: Λs is a P(U)-valued process.

Define the long term average criterion to be

J(X,Λ) = lim sup
t→∞

1

t
Ex
[∫ t

0

∫
U

C(Xs, u)Λs(du)ds

]
(4.6)

and the lta (long term average) problem is to minimize J(X,Λ) over relaxed solutions (X,Λ)

of the martingale problem for A.

For this particular LQG (Linear Quadratic Gaussian) control problem the process Xt

satisfies the SDE dXt = utdt+ σdWt, X0 = x, so the generator of the process is Af(x, u) =

uf ′(x) + 0.5σ2f ′′(x) and the cost rate function is C(x, u) = mx2 + nu2.
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Now, for a given (X,Λ) we define the average occupation measure µt by

µt(G1 ×G2) =
1

t
Ex
[∫ t

0

∫
U

IG1×G2(Xs, u)Λs(du)ds

]
This measure allows us to rewrite (4.6) as

J(X,Λ) = lim sup
t→∞

∫
E×U

C(x, u)µt(dx× du)

=

∫
E×U

C(x, u)µ∞(dx× du)

where µ∞ is defined to be a weak limit of (µt). Next, if we take equation 4.5 and rewrite it

using this new measure, take expectations, and let t→∞ we obtain∫
E×U

Af(x, u)µ∞(dx× du) = 0 ∀f ∈ dom(A)

Finally we can rewrite our lta problem as a linear program,

minimize

∫
C(x, u)µ(dx× du)

subject to

∫
Af(x, u)µ(dx× du) = 0 ∀f ∈ dom(A)

µ ∈ P(E × U)

So then for our particular LQG we have:

minimize

∫
[mx2 + nu2]µ(dx× du)

subject to

∫
[uf ′(x) + 0.5σ2f ′′(x)]µ(dx× du) = 0 ∀f ∈ dom(A)

µ ∈ P(E × U)

(4.7)

One way to solve this problem is through exploiting the constraints and using carefully

chosen functions. First for any measure µ on E × U we factor it into its marginal and

conditional probabilities. ∫
[uf ′(x) + 0.5σ2f ′′(x)]µ(dx× du) = 0∫ ∫

[uf ′(x) + 0.5σ2f ′′(x)] η(x, du)µE(dx) = 0∫
[ūf ′(x) + 0.5σ2f ′′(x)]µE(dx) = 0∫
[ūf ′(x) + 0.5σ2f ′′(x)] p(x)dx = 0
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where ū =
∫
u η(du) and µE(dx) = p(x)dx (we assume µE is absolutely continuous with

respect to Lebesgue measure).

Then for functions f(x) where f(∞) = f(−∞) = 0 (e.g. Schwartz functions, functions

of compact support, etc) we have∫
[ūf ′(x) + 0.5σ2f ′′(x)] p(x)dx = 0∫

f(x)[0.5σ2p′′(x)− (ū(x)p(x))′] dx = 0.

If that is to be true for all such functions f , then [0.5σ2p′′(x) − (ū(x)p(x))′] = 0 must be

true. The solution to this differential equation is p(x) = c exp
(∫ x

0
2ū(v)
σ2 dv

)
where c is the

constant so that
∫
p(x) dx = 1. Now we can revisit the objective function:∫

E×U
[mx2 + nu2]µ(dx× du)

=

∫ ∞
−∞

∫
U

[mx2 + nu2] η(x, du)µE(dx)

=

∫ ∞
−∞

[mx2 + nū2]µ(dx)

=

∫ ∞
−∞

[mx2 + nū2] p(x)dx

=

∫ ∞
−∞

[mx2 + nū2] c exp

(∫ x

0

2ū(v)

σ2
dv

)
dx

Recall that our goal is to find the optimal control ū(x) to minimize the objective function. For

now let us assume that ū(x) = −kx for some constant k. Then p(x) is a normal distribution

and c can be calculated easily:

p(x) =c exp

(∫ x

0

−2kv

σ2
dv

)
=c exp

(
−kx2

σ2

)

=c exp

 −x2

2
(

σ√
2k

)2

 .

This shows that p(x) is the distribution function for a normal distribution with mean zero

and standard deviation σ/
√

2k, which implies that c =
√
k/(πσ2) and the objective function
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is: ∫ ∞

−∞

[mx2 + n(−kx)2]

√
k

πσ2
exp

 −x2

2
(

σ√
2k

)2

 dx

=(m+ nk2)

∫ ∞

−∞

x2

√
k

πσ2
exp

 −x2

2
(

σ√
2k

)2

 dx

=(m+ nk2)

(
σ2

2k

)
the last equality holds because the integral in line two is calculating the second moment

of this normal distribution and since it has mean zero, the second moment is equal to the

variance. Once again we wish to minimize this objective function. In this case our choice

of control is simply to choose the value for k. The minimal value for k is easily found to

be
√
m/n and the value of the objective function is σ2

√
mn. If we think of the value as a

function of the parameters, i.e. J(x, θ) = σ2
√
mn we see that J is clearly continuous with

respect to the parameters σ,m, and n.

This solution seems unsatisfying because we ignore the possibility of having a different

optimal control, such as quadratic. However, we can show that a linear control is in fact

optimal by solving the problem a different way. First consider the Itô equation for the process

X, for any suitable function f we have

f(Xt) = f(X0) +

∫ t

0

ūsf
′(Xs) + 0.5σ2f ′′(Xs) ds+

∫ t

0

σf ′(Xs) dWs.

Then take expectation and divide each term by t,

1

t
E[f(Xt)] =

1

t
E[f(X0)] +

1

t
E
[∫ t

0

ūsf
′(Xs) + 0.5σ2f ′′(Xs) ds

]
+ 0

1

t
E[f(Xt)] =

1

t
E[f(X0)] +

1

t
E
[∫ t

0

Af(x, ū) ds

]
where the last integral in Itô’s equation is a mean zero martingale and we used the definition

of the generator in the last line. Then the Hamilton-Jacobi-Bellman equation for the long

term average criterion is min
u
{AV (x, u)+mx2 +nu2} = λ where λ is some constant. So then
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for any control u we have:

1

t
E[V (Xt)] ≥

1

t
E[V (X0)] +

1

t
E
[∫ t

0

λ− (mX2
s + nu2

s) ds

]
lim
t→∞

1

t
E[V (Xt)] ≥ lim

t→∞

1

t
E[V (X0)] + lim

t→∞

1

t
E
[∫ t

0

λ− (mX2
s + nu2

s) ds

]
0 ≥ λ− lim

t→∞

1

t
E
[∫ t

0

(mX2
s + nu2

s) ds

]
Notice that for the optimal control u∗, we would have equality throughout, and the last line

would show that λ is in fact the long term average value. Returning to the HJB equation,

min
u
{0.5σ2V ′′(x) + uV ′(x) + mx2 + nu2} = λ we have an equation that is quadratic in u so

the minimum is easily found to be u∗ = −V ′(x)/(2n). Then from the HJB equation,

1

2
σ2V ′′(x)− (V ′(x))2

2n
+mx2 +

n(V ′(x))2

4n2
= λ

1

2
σ2V ′′(x)− (V ′(x))2

4n
+mx2 = λ

and it is clear that V (x) must be of the form ax2+bx+c. Inserting this into the HJB equation

yields aσ2−a2x2/n−abx/n−b2/(4n)+mx2 = λ. From here we find that V (x) =
√
mnx2 +c

which gives u∗ = −x
√
m/n and λ = σ2

√
mn which agree with our previous solution. We

can rule out a = −
√
mn as a possible solution because that would give a negative value for

λ, and the cost function makes this impossible.
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Chapter 5

Future Directions and Conclusion

5.1 Future Directions

5.1.1 General Optimal Control

Our work so far has focused on optimal stopping as the implemented control. However,

optimal control theory allows for a wide variety of more complicated controls. This work can

be extended into analyzing continuity of the value function when we allow for other controls.

One such example was analyzed previously in Section 4.2.3 where the cost function used a

long term average instead of a discount, and the controls were linear quadratic Gaussian

instead of choosing a stopping rule.

5.1.2 Risk Measures

Risk Measures are a well studied tool from the field of actuarial sciences. They are typi-

cally used as a way to quantify risk using historical statistical data. Future research would

involve finding a distribution on our parameter space, and then we could use the same tools

to quantify how badly the value function could change under perturbations of the model

parameters.

5.2 Conclusion

To summarize, we have analyzed the value function for the optimal stopping of a one dimen-

sional diffusion process. The main results from Helmes and Stockbridge (2010) show how

to embed this optimal stopping problem into a semi-infinite linear program and they also
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show how to construct the dual program. Additionally, they prove that the primal and dual

programs enjoy strong duality. In this paper, we first constructed an approximation to the

semi-infinite dual program by only using countably many constraints. One of our results

was showing that the optimal value for this approximation agreed with the optimal value of

the semi-infinite dual program.

We then constructed a sequence of finitely constrained dual programs. We proved that

the sequence of value functions for their respective dual programs converged pointwise to

the value function of the semi-infinite dual program. We also proved that the value function

for any finite dual program was continuous in the parameter space, which then led to our

first continuity result. The value function for the semi-infinite dual program is lower semi-

continuous in the parameters.

Our last result required us to instill further structure to the dual program. If our con-

straint system was indexed over a compact set and we had some additional smoothness of

the gain functions then we showed that the value function enjoyed full continuity in the

parameter space.
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{r, s1, s2} = {2.49, 1, 2.5};

l1 =
Sqrt[2 * r]

s1
;

l2 = -Sqrt[2 * r]  s1;

l3 = Sqrt[2 * r]  s2;

l4 = -Sqrt[2 * r]  s2;

A1 =
1 + s1  s2

2
;

A2 =
1 - s1  s2

2
;

B1 =
1 + s2  s1

2
;

B2 =
1 - s2  s1

2
;

phi[x_] := Piecewise[{{A1 * Exp[l2 * x] + A2 * Exp[l1 * x], x < 0}, {Exp[l4 * x], x ≥ 0}}];

psi[x_] := Piecewise[{{Exp[l1 * x], x < 0}, {B1 * Exp[l3 * x] + B2 * Exp[l4 * x], x ≥ 0}}];

g[x_] := Piecewise1 + x^2, x ≥ -1, {0, x < -1};

t = FindRoot[{c * phi[a] + d * psi[a] - g[a], c * phi'[a] + d * psi'[a] - g'[a],

c * phi[b] + d * psi[b] - g[b], c * phi'[b] + d * psi'[b] - g'[b]},

{a, -0.1, -1, 0}, {b, 0.8, 0, 100}, {c, 1}, {d, 1}, WorkingPrecision → 30];

{c, d, e1, e2} = t[[All, 2]];

Plot[{e1 * phi[x] + e2 * psi[x], g[x]},

{x, -1, 1}, PlotRange → {-0.5, 3}, PlotLegends -> "Expressions"];

Printed by Wolfram Mathematica Student Edition

Appendix A

Code

A.1 Mathematica
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import numpy as np
import math
from pulp import *
import matplotlib.pyplot as plt

#Define Parameters
#r=3.3
s1=1
s2=4
z=-0.114

#Gain function
def g(y):
    if y<= -1:
        return 0
    if y > -1:
        return (1+y)**2
        
#Phi function
def phi(y,r):
    if y < 0:
        return 
((s2+s1)/(2*s2))*math.exp(-y*math.sqrt(2*r)/s1)+((s2-s1)/(2*s2))*math.exp(y*math.sqr
t(2*r)/s1)
    if y >= 0:
        return math.exp(-y*math.sqrt(2*r)/s2) 
        
#Psi function
def psi(y,r):
    if y < 0:
        return math.exp(y*math.sqrt(2*r)/s1)
    if y >= 0:
        return 
((s2+s1)/(2*s1))*math.exp(y*math.sqrt(2*r)/s2)+((s1-s2)/(2*s1))*math.exp(-y*math.sqr
t(2*r)/s2)
        
#LP Solver the LP
def linsolve(r,lb,ub,meshsize):
    c1 = LpVariable("c1",lowBound=0)
    c2 = LpVariable("c2",lowBound=0)
    prob = LpProblem("myProblem", LpMinimize)
    prob+= phi(z,r)*c1 + psi(z,r)*c2
    A = np.linspace(lb,ub,meshsize).tolist()
    for a in A:
        prob+= LpConstraint(e=c1*phi(a,r) + c2*psi(a,r), sense=LpConstraintGE, 
name=None, rhs=g(a))
    status=prob.solve()
    return value(prob.objective)    

A.2 Python
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Appendix B

Other Results

The following theorem was proved when we thought the primal problem would be the key

to our main results and were toying with using the finitely supported measures.

Theorem B.0.1. Given any measure µ ∈ F(P) there exists a sequence of measures on Y∞

which converge strongly to µ.

Proof. Let µ ∈ F(P) be arbitrary. Assume without loss of generality that YN is ordered.

Define a measure µN on YN as follows:

µN({yi}) = µ((yi−1, yi]), i ≥ 1

µN({y0}) = µ({y0})

We can extend µN to a measure on B([xl, xr]) by:

µN(A) =
N∑
i=0

{µN({yi})| yi ∈ A}

Define µ̂ as the limit of the µN measures. That is,

µ̂(A) = lim
N→∞

µN(A)

Claim. µ̂(A) = µ(A) ∀A ∈ B([xl, xr]).

Proof of claim. Since A ∈ B([xl, xr]) it suffices to prove this for sets of the form (x1, x2)

which generate the Borel σ-algebra.
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Then

µ̂((x1, x2)) = lim
N→∞

µN((x1, x2))

= lim
N→∞

N∑
i=0

{µN({yi}) |x1 < yi < x2}

= lim
N→∞

N∑
i=0

{µ((yi−1, yi]) |x1 < yi < x2}

= lim
N→∞

{µ((yi−1, yj]) | yi−1 < x1 < yi and yj < x2 < yj+1}

= µ((x1, x2))
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