
University of Wisconsin Milwaukee University of Wisconsin Milwaukee 

UWM Digital Commons UWM Digital Commons 

Theses and Dissertations 

August 2020 

Late Paleozoic Climatic Reconstruction of Western Argentina: Late Paleozoic Climatic Reconstruction of Western Argentina: 

Glacial Extent and Deglaciation of Southwestern Gondwana Glacial Extent and Deglaciation of Southwestern Gondwana 

Kathryn N. Pauls 
University of Wisconsin-Milwaukee 

Follow this and additional works at: https://dc.uwm.edu/etd 

 Part of the Climate Commons, Geochemistry Commons, and the Geology Commons 

Recommended Citation Recommended Citation 
Pauls, Kathryn N., "Late Paleozoic Climatic Reconstruction of Western Argentina: Glacial Extent and 
Deglaciation of Southwestern Gondwana" (2020). Theses and Dissertations. 2576. 
https://dc.uwm.edu/etd/2576 

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more 
information, please contact open-access@uwm.edu. 

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/188?utm_source=dc.uwm.edu%2Fetd%2F2576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/157?utm_source=dc.uwm.edu%2Fetd%2F2576&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/156?utm_source=dc.uwm.edu%2Fetd%2F2576&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2576?utm_source=dc.uwm.edu%2Fetd%2F2576&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu


 

 

 

LATE PALEOZOIC CLIMATIC RECONSTRUCTION OF WESTERN ARGENTINA: 

GLACIAL EXTENT AND DEGLACIATION OF SOUTHWESTERN GONDWANA 

by 

 

Kathryn N. Pauls 

 

 

A Dissertation Submitted in 

Partial Fulfillment of the 

Requirements for the Degree of 

 

 

Doctor of Philosophy 

in Geosciences 

 

at 

The University of Wisconsin-Milwaukee 

August 2020



 

ii 

 

 ABSTRACT 

LATE PALEOZOIC CLIMATE RECONSTRUCTION OF WESTERN ARGENTINA: 

GLACIAL EXTENT AND DEGLACIATION OF SOUTHWESTERN GONDWANA 

by 

Kathryn N. Pauls 

 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor John L. Isbell 

 

Throughout its history Earth has experienced both icehouse and greenhouse conditions. Shifts 

and transitions from one end member to the other are driven by numerous driving mechanisms 

on global, orbital and more local scales. In particular, the late Paleozoic ice age (LPIA) is 

thought to have been driven by global drivers such as the drift of the Gondwanan continent 

across the South Pole, fluctuations in atmospheric CO2 concentrations, and Milankovitch cycles. 

It was also affected by more local and regional drivers such as active tectonism along 

accretionary margins and changes in atmospheric and oceanic circulation patterns. South 

American Gondwana provides an excellent opportunity to examine and evaluate the effects that 

global versus local driving mechanisms had on regional climates during the shift from icehouse 

to greenhouse conditions around the Carboniferous-Permian boundary. Of particular interest to 

this study are the margin and foreland basins of western Argentina in comparison to their 

paleolatitudinal counterparts of Brazil and eastern Argentina (i.e. the Chaco-Paraná and Paraná 

basins). This study focuses on determining the extent of glaciation during the Serpukhovian-

Bashkirian of the Paganzo and Calingasta-Uspallata basins, the subsequent and relatively early 

deglaciation and shift in climate from humid conditions to extreme aridity, and the driving 
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mechanisms for this change. This study tracks changes in facies, sediment dispersal, and climate 

indicators throughout the late Paleozoic strata in the Paganzo, Calingasta-Uspallata and Paraná 

basins, with special focus on the Paganzo Group strata. Here, we conclude that glaciation of the 

Paganzo and Calingasta-Uspallata basins was restricted to the Precordilleran region and 

nucleated on a significant uplift known as the Protoprecordillera and adjacent uplands. A 

paleoclimate reconstruction for the late Carboniferous using the Chemical Index of Alteration 

(CIA) indicates a shift from cold and arid to warm and humid following the deglaciation of the 

region, which is then succeeded by a drastic shift to an extremely arid environment. A 

provenance study using detrital zircon geochronology for selected units of the Paganzo Group 

strata indicates a restricted foreland basin setting in the early-middle Carboniferous that evolves 

and broadens through the Pennsylvanian and into the Permian as the active tectonic margin 

moves westward. With the accretion of a magmatic arc during the latest Carboniferous, the 

detrital zircon geochronology and the facies of the Paganzo Group record an enhancement, or an 

increase/expansion of the orographic effect originally created by the Protoprecordilleran range 

during the early-middle Carboniferous glaciation. 
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Chapter 1. Introduction 

The late Paleozoic ice age and Gondwana 

The late Paleozoic ice age (LPIA) was the longest-lived ice age (372-259 million years 

ago) of the Phanerozoic. The LPIA is the only example of when a vegetated and biologically 

complex Earth shifted from an icehouse to a greenhouse state (Gastaldo et al., 1996; Montañez et 

al., 2007; Fielding et al., 2008a; Isbell et al., 2012; Montañez and Poulsen, 2013). Therefore, the 

LPIA helps to develop an understanding of the drivers influencing changing climatic regimes, 

which, in turn, provides insight on how such drivers affect modern climate change. One of the 

longstanding questions of the late Paleozoic centers around how different regions (i.e. low 

paleolatitude versus high paleolatitude) of Earth responded to a global shift in climate. Thus, 

regional studies at high chronostratigraphic resolution will add to our understanding of 

environmental responses to changing global climate.  

Much of the research concerning the LPIA focuses on determining the timing and extent 

of the glaciations in Gondwana, the supercontinent that existed during the Paleozoic and 

Mesozoic, composed primarily of Africa, South America, Australia, India, and Antarctica (Fig. 

1). Traditional LPIA hypotheses and models centered around the idea that there was one large ice 

sheet that covered Gondwana, and that it persisted for the 100 Ma duration of the LPIA (i.e. from 

the late Devonian to the late Permian; Frakes, 1979; Veevers and Powell, 1987; Frakes and 

Francis, 1988; Scotese, 1999; Blakey, 2008). As more studies were conducted over time, 

regional evidence has shown that the LPIA glaciation was more dynamic and complex than 

previously understood (Crowell and Frakes, 1970; López-Gamundí, 1997; Visser, 1997; Isbell et 

al., 2003, 2008, 2012; Fielding et al., 2008a,b; Heckel, 2008; Rygel et al., 2008; Gulbranson et 
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al., 2010; Taboada, 2010). The glacial intervals most likely occurred on much smaller scales (i.e. 

approximately one to several million years in length) and in different local regions across 

Gondwana, beginning in South America and northern Africa during the late Devonian (i.e. the 

Frasnian or Famennian), before spreading across the rest of Gondwana during the Carboniferous 

and into the Permian (Caputo and Crowell, 1985; Veevers and Powell, 1987; Eyles, 1993;  

López-Gamundí, 1997; Isbell et al., 2003, 2012; Caputo et al., 2008; Pérez Loinaze et al., 2010; 

Fielding et al. 2008c; Limarino et al., 2014; Frank et al., 2015; Metcalfe et al., 2015). 

Additionally, studies have highlighted potential driving mechanisms (i.e. the drift of Gondwana 

across the paleo South Pole, changes in the configurations of the continental plates, changes in 

atmospheric CO2, and orogenic events) for these changing climatic conditions, focusing on the 

transition from icehouse to greenhouse conditions at the end of the LPIA (c.f. Caputo and 

Crowell, 1985; Eyles et al., 1993; Heckel, 1994, 2008; Isbell et al., 2003, 2008; 2012; Royer et 

al., 2004; Montañez et al., 2007; Rygel et al., 2008; Horton and Poulsen, 2009; Tabor and 

Poulsen, 2008; Gulbranson et al., 2010; Montañez and Poulsen, 2013; Limarino et al., 2014). 

Thus, an emerging perspective of the LPIA is forming, providing new insight into the glaciation-

climate relationship and the forcing and feedback mechanisms that drive such global change. 

However, there is still much to be gained by understanding the climate drivers on a regional 

scale.  

This dissertation aims to evaluate the effects that local tectonic changes in western 

Argentina had on the climate of the late Paleozoic strata in the Paganzo and Calingasta-Uspallata 

basins (Fig. 1). These strata, deposited in basins forming as result of the tectonic activity along 

the western (i.e. Panthalassan) margin of Gondwana, record drastic shifts in climate from glacial 

to temperate to desert during the Pennsylvanian, millions of years prior to the climatic shift 
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recorded in the Permian of more interior South American basins (i.e. Chaco-Paraná and Paraná 

basins of eastern Argentina Brazil; Fig. 1). 

Significance of western Gondwana basins 

South American Gondwanan basins provide ideal locations for an in-depth study of 

climate dynamics on a regional scale. Many of these basins contain glacial deposits and 

demonstrate a variation in the duration and timing of these glacial episodes (Crowell and Frakes, 

1970; Visser, 1997; Isbell et al., 2003, 2012; Fielding et al., 2008a, 2008b; Henry et al., 2008, 

2010; Rocha-Campos et al., 2008; Gonzalez and Diaz Saravia, 2010; Gulbranson et al., 2010; 

Taboada, 2010; Limarino et al., 2014; Fig. 2). Basins in Africa and Brazil experienced glaciation 

during the latest Devonian (late Famennian), but these centers diminished during the earliest 

Carboniferous (Caputo and Crowell, 1985). Glaciation, or local centers of ice, are recorded in the 

basins of western Argentina (i.e. Rio Blanco, Calingasta-Uspallata, and western Paganzo Basins) 

during the Mississippian (Visean), which is interpreted to be the onset of widespread glaciation 

across Gondwana, including glaciation occurring in the Paraná Basin in Brazil (López-Gamundí 

et al., 1994; López-Gamundí, 1997; Caputo et al. 2008; Henry et al., 2008; Holz and Iannuzzi, 

2008; Rocha Campos et al., 2008; Limarino et al., 2014; Rosa et al., 2019). While glaciation in 

the Paraná Basin in Brazil appears to have continued until the Carboniferous-Permian boundary, 

and perhaps into the Early Permian, the western Argentina basins at similar paleolatitudes 

(Paganzo, Calingasta-Uspallata, and Rio Blanco Basins) experienced a climate shift from glacial 

to wet and humid conditions by the early Bashkirian stage and then to arid conditions during the 

late Pennsylvanian (Henry et al., 2008; Rocha-Campos et al., 2008; Holz et al., 2010; Césari et 

al., 2011; Limarino et al., 2014). Reasons are not known as to why terminal glaciation occurred 
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at different times across central South America. However, addressing this problem may provide 

important information on causes of long-term differences in climate change on a regional scale. 

Paganzo Basin 

The Paganzo Basin of western Argentina first developed as a relatively restricted foreland 

basin as the tectonic activity along the western (i.e. Panthalassan) margin of Gondwana created 

the Protoprecordillera uplift due to the collision of the Chilenia terrane into the Cuyania terrane 

on the western margin of Gondwana (Fig. 4 A). As subduction shifted westward toward the 

Panthalassan Ocean, extensional tectonics commenced, and the terranes that made up the 

highlands that bounded the basin—the Protoprecordillera in the west and the Famatina and 

Pampeanas Systems in the east— are interpreted to have collapsed and the Panganzo Basin 

evolved into a broader back-arc basin (Fig. 4 B; Ramos, 1988; Jordan et al., 1989; Lopéz-

Gamundí et al., 1994; Limarino and Spalletti, 2006; Limarino et al., 2014).   

However, there are differing interpretations of Paganzo Basin topographic and glaciation 

development.  In one view, the paleotopography of the interior of the basin is thought to have 

been peneplained due to an overriding ice sheet that existed around 320 Ma (Astini et al., 2009). 

As the uplift of the Protoprecordillera occurred due to the collision of the Cuyania and Chilenia 

terranes, this ice sheet is thought to have diminished in size, leaving behind alpine glaciers 

carving out U-shaped valleys in both the eastern and western margins of the basin (Sterren and 

Martínez, 1996; Carignano et al., 1999; Astini et al., 2009; Astini, 2010). In an alternate view, 

these pleneplained surfaces, though, were created later, and are much younger features than the 

late Paleozoic, more likely of  Jurassic to Cenozoic age (cf. Carignano et al., 1999; Rabassa, 

2014; Rabassa et al., 2014). ).  Further data in support of this alternate view is that while there is 
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abundant evidence for fjord-like and U-shaped valleys on the western margin of the Paganzo 

Basin (cf. Dykstra et al., 2006; Henry et al., 2008; Isbell et al., 2012; Aquino et al., 2014; 

Limarino et al., 2014), there is limited evidence for the same on the eastern margin of the basin 

(Sterren and Martinez, 1996; Net and Limarino, 1999; Net et al., 2002; Net and Limarino, 2006; 

Socha et al., 2014). Instead, much of this evidence comes from an isolated paleovalley that runs 

through the Sierra de Chepes and Sierra de Los Llanos, and the time-equivalent strata has 

recently been reinterpreted as non-glacigenic (cf. Moxness et al., 2018). The Paganzo Basin 

contains the Paganzo Group, which has been subdivided into numerous formations of time-

equivalent strata. These different units are usually correlated using radiometric ages determined 

from the western units, along with palynological and fossil plant records from the various 

sections and the facies associated with each succession (Fig. 2.; cf. Gulbranson et al., 2010, 

2015; Césari et al., 2011).  

In the western portion of the Paganzo Basin, for example, the Paganzo Group is divided 

into the Guandacol (middle Serpukhovian-middle Baskirian), Tupe (middle Bashkirian-early 

Moscovian), and the Patquía (early Moscovian-early Permian) Formations (Limarino et al., 

2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et al., 2014). In the central Paganzo 

Basin, the Paganzo Group is divided into two formations: Lagares Formation (middle 

Serpukhovian-late Moscovian) and La Colina Formation (late Moscovian-Wuchiapingian) 

(Limarino et al., 2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et al., 2014). In the 

eastern portion of the basin, the group is subdivided into the Malanzán Formation (middle 

Serpukhovian-middle Baskirian), Loma Larga Formation (middle Bashkirian-early Moscovian), 

Solca (middle Moscovian-late Moscovian), Arroyo Totoral (middle Moscovian-Wuchiapingian), 
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and La Colina Formation (late Moscovian-Wuchiapingian) (Pérez Loinaze, 2009; Césari et al., 

2011; Limarino et al., 2014).  

Within the Paganzo Basin, several formations have been interpreted as glacigenic. In the 

western Paganzo Basin, the base of the Guandacol Formation contains ice-proximal and 

subglacial deposits (Limarino et al., 2014). Diamictites identified in the eastern Paganzo Basin at 

the base of the Malanzán Formation within the Olta-Malanzán paleovalley are also interpreted as 

glacial deposits (Socha et al., 2014; Enkelmann et al., 2015; Enkelmann and Garver, 2015). For 

this reason, it has been inferred that there was widespread glaciation throughout the Paganzo 

Basin during the late Mississippian to early Pennsylvanian (Limarino et al., 2014). It is only 

recently that the diamictites of the Malanzán Formation were identified as non- glacigenic, 

formed as the result of debris flows associated with slope failure and mass transportation 

deposits off of the steep walls of the paleovalley (cf. Moxness et al., 2018). 

The middle units (i.e. Tupe, Lagares, and Loma Larga Formations) are interpreted to be 

comprised of fluvial deposits that succeed the lowermost units (Andreis et al., 1986; Limarino et 

al., 2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et al., 2014). Additionally, coal 

deposits are described from various levels within the middle units, which has led to the 

interpretation of a more humid post-glacial climate (Limarino et al., 2006; Guena et al., 2010; 

Tedesco et al., 2010; Limarino et al., 2014). In the eastern Paganzo Basin, the Solca Formation, 

which overlies the Loma Larga Formation, consists of mostly conglomeratic units and has a 

contentious interpretation history. It appears most similar in color (e.g. white sandstones 

alternating with red mudstones) and appearance to the lowermost Patquía Formation in the 

western part of the basin, but it is difficult to place the Carboniferous-Permian boundary within 

it. The uppermost units, Patquía and La Colina Formations, are found throughout the Paganzo 
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Basin (Limarino et al., 2006; Guena et al., 2010; Césari et al., 2011; Limarino et al., 2014). 

These formations are interpreted to be indicative of eolian, ephemeral riverine and playa 

depositional environments. Additionally, the red beds of the La Colina and Patquía Formations 

indicate a drastic trend towards an arid climate that occurs in the western basins sooner than in 

the intracratonic basins, such as the Paraná, during the Permian. 

Calingasta-Uspallata Basin 

The Calingasta-Uspallata Basin is an arc-related basin formed in a tectonically and 

magmatically active region of the western Gondwana margin (Fig. 1). This basin is bounded in 

part to the east by the Protoprecordillera and to the west by a volcanic arc, which was located in 

present-day Chile (cf. Azcuy, 1999). Subsidence occurred in the basin from the Early 

Carboniferous through the late Carboniferous, until the early Permian, during the San Rafael 

orogeny, caused by continued subduction to the west (Lopéz-Gamundí et al., 1994; Azcuy et al., 

1999; Limarino et al., 2014). The basin fill is predominantly marine in origin and contains a 

complete succession of the glacial to post-glacial stages (Limarino et al., 2014). 

For a comparison of the glacial-to-post-glacial succession with the Paganzo Basin, one 

locality was chosen in the Calingasta-Uspallata Basin: the Agua de Jagüel locality (López 

Gamundí, 1984; López Gamundí et al., 1994; Henry et al., 2008; Fig. 2). The Agua de Jagüel 

contains three identified sequences that encompass the glacial to post glacial succession, and is 

approximately coeval to the Paganzo Group strata on the other side of the Protoprecordillera 

(Amos and Rolleri, 1965; Frakes and Crowell, 1969; González, 1981; López Gamundí, 1984; 

López Gamundí et al., 1994; Azcuy et al., 1999; Henry, 2007; Henry et al., 2008, 2010; Limarino 

et al., 2014; Fig. 2). However, not much information is published on the depositional 
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environments of the upper two sequences found at the Agua de Jagüel locality, so an in-depth 

study could provide insights into the progression of depositional and climatic shifts through the 

remainder of the LPIA. 

Paraná Basin 

The region of the intracratonic Paraná Basin stretches from present-day south-central 

Brazil southward into Paraguay, Argentina, and Uruguay, and during the late Paleozoic was 

adjacent to the western coast of Namibia, Africa (see Fig. 4 of Eyles and Eyles, 1993; Eyles et 

al., 1993; França, 1994; Milani et al., 1994; Rocha-Campos et al., 2008). To limit the variables 

considered for this study, only the southern portion of the Paraná Basin (i.e. the area of Rio 

Grande do Sul State; Fig. 3) will be considered. This region throughout the late Paleozoic 

experienced a wide variety of environments, including glaciation and the transgression and 

regression of an intracratonic sea. The Itararé Group is composed of intercalations of diamictite, 

mudstone, and sandstone (Rocha-Campos et al., 2008; Fig. 2). There are many names and 

varying subdivisions of the Itararé Group, but this project focuses on strata from the southeastern 

part of the basin (i.e. Rio Grande do Sul State). Overlying the uppermost Taciba Formation is the 

Rio Bonito Formation, which consists of fluvial sandstones, estuarine sandstones and shales, and 

coal packages. It is interpreted to represent the post-glacial succession and a shift to a more 

humid environment. The Palermo Formation interfingers with the Rio Bonito Formation in 

certain locations of the Paraná Basin, and contains deep-water and offshore deposits that are 

interpreted as an overall transgressive package. 
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The Significance of the Protoprecordillera 

 Numerous studies have found that mountain belts play an extremely important role in the 

moisture flow patterns across continents (Broccoli and Manabe, 1997; Ruddiman and Prell, 

2007; Ruddiman et al., 1997; Newell et al., 1999; Tabor and Poulsen, 2008; Godard et al., 2014; 

Isbell et al., 2012; Limarino et al., 2014). Not only do  mountain belts affect regions via the 

orographic effect and contribute to rain shadow regions, but they can also affect atmospheric 

circulation on a larger scale (Broccoli and Manabe, 1997 and references therein; Partridge, 1997; 

Ruddiman et al., 1997; Ruddiman and Prell, 2007). As the different paleotopographic highs in 

the western margin region of Argentine Gondwana changed in importance and elevation, the 

various atmospheric patterns would have been disrupted, which would have caused shifts in the 

regional climate regime (Ruddiman and Prell, 1997; Ruddiman et al., 1997; Newell et al., 1999; 

Broccoli and Manabe, 1997; Partridge, 1997; Tabor and Poulsen, 2008; Isbell et al., 2012; 

Godard et al., 2014; Limarino et al., 2014).  

The Protoprecordillera was an ancient mountain belt that separated the western arc-

related basins of Argentina (i.e. Calingasta-Uspallata and Río Blanco basins) from the interior 

foreland basin (i.e. Paganzo Basin; Ramos et al., 1984, 1986; Limarino et al., 2006; Henry et al., 

2008; Isbell et al., 2012; Fig. 1). During the late Devonian to early Carboniferous 

(Mississippian), the Protoprecordillera is thought to have had significant topographic relief as the 

Chilenia terrane accreted to the Panthalassan margin of Gondwana (Ramos et al., 1984, 1986; 

Limarino et al., 2006; Isbell et al., 2012; Limarino et al., 2014). Incised paleovalleys, of up to 

2,500 meters or more in relief, located along the Protoprecordillera contain records of glaciation 

at the base of each succession, which are then replaced by transgressive packages that are 

interpreted to represent a transition to post-glacial conditions (cf. López Gamundí, et al., 1994; 
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López Gamundí, 1997; Dykstra et al., 2006, 2007; Limarino and Spalletti, 2006; Limarino et al., 

2006; Henry et al., 2010; Aquino et al., 2014; Limarino et al., 2014). The disappearance of these 

glacial packages occurs during the Early Pennsylvanian, and could possibly correspond to the 

collapse of the Protoprecordilleran mountain range, which is thought to have occurred during the 

Pennsylvanian to the Permian (Ramos, 1988; López-Gamundí et al., 1994; Limarino et al., 2002, 

2006, 2014; Isbell et al., 2012; Fig. 4). Evidence for this collapse includes the disappearance of 

glacial deposits in the arc-related basins (i.e. Calingasta-Uspallata and Rio Blanco Basins) and in 

the western margin of the Paganzo Basin (Net and Limarino, 2006; Limarino et al., 2006). 

Volcanism occurred at the end of the Pennsylvanian and into the Permian, likely due to the 

accretion of a volcanic arc outboard of the western margin (cf. Limarino and Spalletti, 2006; 

Limarino et al., 2006; Spalletti et al., 2012; Limarino et al., 2014; Einhorn et al., 2015; Fig. 4). 

However, more evidence is needed to determine the timing and scale of the Protoprecordilleran 

collapse and the presence of the volcanic arc and unravel the influence of these topographic 

highs on regional climate and sedimentation processes. 

Objectives 

To compare the paleoclimate trends and depositional environments of the South 

American basins, this project had the following objectives: 

1. Conduct a detailed sedimentologic and stratigraphic analysis of the deposits within the 

eastern Paganzo Basin to refine our understanding of the extent and timing of glaciation 

during the Carboniferous.  

2. Compare and contrast the glacial to post-glacial paleoclimate trends across the Paganzo 

Basin in southwestern Gondwana during the LPIA.  
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3. Assess the role of tectonics as a driver for climate shifts recorded in the western basins of 

Argentina during the late Paleozoic.  

Significance of Research 

 The work presented in this dissertation is valuable to a wide array of deep-time 

audiences. This project provides high-resolution data sets on the glacial to post-glacial transition 

across South American Gondwana, but specifically for the western margin and interior basins of 

Argentina. Prior to this work, knowledge of these basins was limited to reviews on the facies 

changes in select locations, limited petrologic studies (e.g. Net et al., 2002), and one climatic 

reconstruction from the Río Blanco Basin which has been evoked to represent the whole region 

(cf. Gulbranson et al., 2010, 2015). Furthermore, a single study (i.e. Gulbranson et al., 2010) is 

used widely in the literature as a comparison to contemporaneous basins that formed far from the 

Gondwanan margin such as the Paraná Basin in Brazil (cf. Césari et al., 2011; Enkelmann et al., 

2014; Limarino et al., 2014; Enkelmann and Garver, 2015). Therefore, this research provides 

valuable information to scientists studying late Paleozoic geology in western Argentina and 

Brazil. Moreover, this project caters to a wide audience because it examines deep-time climate 

change and its relation to both local and global drivers during the early onset of the main phase 

of the LPIA, according to the current literature. Investigations such as this one will provide 

explanations on how various driving mechanisms and feedback systems affect regional climate, 

and how those compare on a continental scale. 

 This project also uses a tool not previously applied in this region of Gondwana: a major 

elemental geochemical analysis by x-ray fluorescence (XRF). Furthermore, this dissertation 

reconstructs paleoclimate using the Chemical Index of Alteration (CIA) of the LPIA strata in 
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Argentina, similar to previous studies for the Paraná Basin in Brazil (cf. Goldberg, 2001; 

Goldberg and Humayun, 2010; Fedorchuk et al., 2019). Similarly, there have been recent detrital 

zircon geochronology data for late Paleozoic strata in Brazil and other places in Gondwana, but 

relatively few in the Paganzo Basin (e.g. Craddock et al., 2019; Valdez Buso et al., 2020), and 

these have focused solely on the glacial deposits of the region. No study has been conducted on 

all late Paleozoic strata of the Paganzo Basin, let alone using provenance to test if tectonics was 

responsible for the climate shift during the Pennsylvanian and Permian. Therefore, the use of 

these methods provides new information and new perspectives on LPIA research in Argentina, as 

well as for other regions of South American Gondwana. 

Dissertation Structure 

 This dissertation consists of four manuscripts written for publication in scientific 

journals, followed by a final concluding chapter that outlines the important findings of this 

dissertation. The formatting style of the Journal of South American Earth Sciences has been 

adopted for this dissertation, because the manuscripts of Chapter 2 (Constraining late Paleozoic 

ice extent in the Paganzo Basin of western Argentina using U-Pb detrital zircon geochronology 

for the lower Paganzo Group strata) and Chapter 3 (A paleoclimatic reconstruction of the 

Carboniferous-Permian paleovalley fill in the Eastern Paganzo Basin: Insights into glacial extent 

and deglaciation of southwestern Gondwana) have been published in and submitted to, 

respectively, this journal. 

Chapter 2 of this study evaluates the current understanding of the ice extent within the Paganzo 

Basin. This chapter focuses on and presents evidence that glaciation was restricted to the western 

portion of the basin, along the active tectonic margin, rather than across the basin. This was done 
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using detrital zircon analyses to constrain drainage patterns and depositional centers for the 

Guandacol and Malanzán formations, which make up the basal formations of the Paganzo 

Group. Both stratigraphic units were deposited during cold climate conditions, but there is no 

indication for one centralized glacial center, as the detrital zircon populations indicate different 

provenance signatures. The detrital zircon populations also allude to disconnected depositional 

centers during the Visean-Bashkirian glaciation episode of the Paganzo Basin. This chapter was 

submitted to a special issue of the Journal of South American Earth Sciences in May 2020; it is 

currently under review. 

Chapter 3 of this study investigates the applicability of the the Chemical Index of Alteration 

(CIA) as a paleoclimate proxy on the strata of late Paleozoic age in the Paganzo Basin. To do 

this, one section within the eastern portion of the Paganzo Basin in western Argentina were 

sampled for geochemical analyses. The Olta-Malanzán paleovalley system (OMPV) has been 

previously interpreted to have contained glacial deposits. Recent studies have shown that the 

paleovalley was not glaciated but owes its origin to extension and excavation by fluvial 

processes. The use of this paleoclimate proxy allowed for a quantitative paleoclimate analysis of 

a periglacial environment, which is then compared with time-equivalent glacial strata elsewhere 

in the basin in Chapter 4 of this dissertation. The results from the paleovalley samples show that 

this area was intermittently humid and arid through time, but with an overall arid profile. 

However, it seems that the climate during the deposition of the late Pennsylvanian and Permian 

La Colina Formation was more humid than previously thought. This chapter has been published 

in the South American Journal of Earth Sciences in June of 2019. 

Chapter 4 of this study is a regional paleoclimate reconstruction through two additional sections 

of Paganzo Group strata in the Paganzo Basin, and one locality in the Calingasta-Uspallata Basin 
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during the Carboniferous and early Permian. This study also compares paleoclimate of the 

western margin basins against samples from the southeastern Paraná Basin. These sections are 

used in conjunction with the section analyzed in Pauls et al. (2019), which is presented in the 

previous chapter (Chapter 3) of this dissertation. The aim of this paper is to quantify and better 

constrain the timing of the climate transition recorded in South American basins at the height of 

the LPIA. This chapter also explores the hypothesis that the collapse of the Protoprecordillera in 

the late-Mississippian and development of a volcanic arc in the late Carboniferous-early Permian 

was the main driver for the dramatic climate shift seen in the western basins (i.e. Paganzo, 

Calingasta-Uspallata, and Río Blanco basins) of Argentine Gondwana. For this purpose, the 

paleoenvironmental and paleoclimatic information presented in this chapter is discussed and 

used to build an updated conceptual model of the paleoclimatic evolution and provide a 

quantitative perspective of the middle Carboniferous to Permian transition in the Paganzo Basin.  

Chapter 5 of this study analyzes shifts in provenance of six units of the Paganzo Group strata in 

two locations (i.e. Huaco and Olta-Malanzán) within the Paganzo Basin. To do this, three 

samples from the Tupe, Patquía and La Colina formations were analyzed using U-Pb detrital 

zircon geochronology methods in conjunction with samples published in the literature. Samples 

from the Tupe and Patquía and Loma Larga and La Colina formations were compared to the 

samples from the Guandacol and Malanzán formations analyzed in Chapter 2 of this dissertation. 

This paper also explores the timing of uplift and collapse of the Protoprecordillera belt and how 

this affects the development of the foreland basin region, and its ties to the climatic shift 

discussed in all chapters of this dissertation. The new detrital zircon age distributions show a 

strong source region shift towards the east for both sections in the basin. This points to 

subsidence in the west and a broadening of the depositional system for the foreland basin region. 
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Furthermore, both the samples for the Tupe and Patquía formations contained younger than 

expected detrital zircons, which can be linked to volcanism associated with the volcanic arc, 

which lies to the west of the region during this time. This new information may point to younger 

depositional ages for both units than were previously known, as well as indicate potential 

atmospheric circulation patterns. 
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Figure 1. A. Map of sedimentary basins of Gondwana during the Bashkirian stage. RBB – Río Blanco Basin, CUB – 

Calingasta-Uspallata Basin,CPB – Chaco-Paraná Basin, SGB – Sauce Grande Basin, TGB – Tepuel Genoa Basin. 

Modified from Isbell et al. (2012) and Montañez and Poulsen (2013). B. Map of the Paganzo and Calingasta-

Uspallata basins where the localities of interest are located. CG – Cerro Guandacol, AH – Agua Hedionda 

Anticline, near the town of Huaco, OMPV – Olta-Malanzán Paleovalley system, and AJ – Agua de Jagüel. Modified 

from López Gamundí et al. (1994), Henry et al. (2008), Limarino et al. (2014). 
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Figure 2. Figure 2. Chronostratigraphic columns showing the units in the selected basins for this study. 

The grey triangles highlighted in blue represent the interpreted glacial diamictites for each locality. CG – 

Cerro Guandacol, AH – Agua Hedionda Anticline, near the town of Huaco, OMPV – Olta-Malanzán 

Paleovalley system, and AJ – Agua de Jagüel. Modified from Henry et al. (2008). 
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Figure 3. Map of the Paraná Basin and inset of the area in Rio Grande do Sul State where the samples were 

collected for this project. Modified from Fedorchuk et al. (2018). 
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Figure 4. The evolutive model of the Paganzo Basin development from the middle Carboniferous to the Permian. 

Modified from Moxness et al. (2018) 
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Abstract 

The western margin of Gondwana records evidence of mid-Carboniferous glaciation (Visean- 

Bashkirian) in the strata of the Paganzo Basin and adjacent areas. Previous studies focused on 

constraining the orientations of ice flow and generalizing the extent and occurrence of glacial ice 

in the basin. However, there is uncertainty occurs concerning the location and extent of 

glaciation and the locations of glacial centers during deposition of the Guandacol Formation 
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located in the western portion and the time correlative Malanzán Formation in the and eastern 

parts of the basin respectively. Understanding these strata and the conditions that led to the 

deposition of these strata has important implications for understanding paleoclimatic conditions 

along the western margin of Gondwana during the late Paleozoic Ice age. To refine the glaciation 

history, we present new paleocurrent, facies, and a comparative analysis of previously published 

and one new detrital zircon geochronology data set. Together, these data provide new insight into 

sediment dispersal patterns and glacial centers within the basin. Our data indicate that both units 

were deposited under cold climatic conditions that occurred across the entire basin, but that 

glaciers were restricted to the western portion of the basin. The facies analysis for both 

formations indicates very different depositional environments for the two units: glacial and 

glaciomarine environments in the west and non-glacial alluvial, alluvial fan and lacustrine and/or 

marine environments in the east. Detrital zircon geochronology indicates separate localized 

provenance signatures for the two formations. Furthermore, the detrital zircon populations allude 

to disconnected depositional centers. At Huaco, glacial flow in the Guandacol is oriented toward 

the northwest (i.e. 313°) and appears to be draining from an uplift that contains similar zircon 

age populations as the Sierra de Valle Fértil and Sierra de Pie de Palo ranges. In the Olta-

Malanzán paleovalley system, drainage was off valley walls and down the valley axis (i.e. south 

and southwest) within the Sierras de Chepes region with limited sediment sourced from the east 

just beyond the paleovalley system. Paleoflow measurements reported from other known glacial 

localities along the western portion of the basin reflect a radial flow pattern within and away 

from deeply incised valleys that clearly point to upland glacial centers within the Cuyania and 

Precordilleran terranes. 
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1. Introduction 

Over the past several decades, research on the late Paleozoic ice age (LPIA; 372-259 

million years ago) has led to a better understanding of the development and termination of 

glaciation(s) across Gondwana. The LPIA is the only example of when a vegetated and 

biologically complex Earth shifted from an icehouse to a greenhouse state (Gastaldo et al., 1996; 

Montañez et al., 2007, 2016; Fielding et al., 2008a; Isbell et al., 2012; Montañez and Poulsen, 

2013). Therefore, further research on the LPIA will help in understanding drivers that influence 

changing climatic regimes.  

In the Paganzo Basin, located along the Panthallassan margin of western Argentina, 

glaciers developed during the Middle Mississippian (Visean) and disappeared in the early 

Pennsylvanian (Bashkirian; López-Gamundí et al., 1994; López-Gamundí, 1997; Holz et al., 

2008; Caputo et al., 2008; Henry et al., 2008, 2010; Isbell et al., 2012; Limarino et al., 2014). 

However, other places in Gondwana at similar paleo-latitudes (e.g. southern Paraná Basin in 

Brazil) persisted until the end of the Carboniferous (Caputo and Crowell, 1985; Rocha Campos 

et al., 2008; Isbell et al., 2012; Griffis et al., 2018), or perhaps until the Early Permian (early 

Cisuralian, eastern Paraná Basin; Mottin et al., 2018). For these purposes, we used 

paleoenvironmental, paleocurrent, and geochronological information to address the timing and 

location of glaciation in the Paganzo Basin. We 1) examined published and new evidence for 

glaciers using paleoflow and facies analyses; 2) compared published and newly obtained detrital 

zircon age populations for samples from different locations within the Paganzo Basin to assess 

provenance; 3) used this data to test various hypotheses regarding the extent and location of ice 

centers within the basin; and 4) evaluated and discussed the current understanding of the location 
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and extent of the uplands within and surrounding the basin during the early-middle 

Carboniferous. 

2. Background 

Western Argentina contains evidence of glaciation during the LPIA (Visean to early 

Bashkirian), concentrated within several basins along the Panthalassan margin. Following 

Limarino et al. (2002b) and Marenssi et al. (2005), these basins can be broken into 

paleogeographic domains of open marine, transitional and continental dominated basin settings. 

The Paganzo Basin incorporates two of these settings: transitional and continental-dominated. 

This basin, which spans an area of approximately 144,000 km2 at its largest extent, is bounded 

today by the Sierras Pampeanas to the east, north and south, and the Precordilleran range in the 

west. The development and structure of the Paganzo Basin is still under debate. Various studies 

identified it as a retroarc foreland basin (Ramos et al., 1988), a rift basin (Astini et al., 1995, 

2009; Astini, 2010), or as a pull-apart basin due to strike-slip activity along the Panthalassan 

margin of Gondwana (Limarino et al., 2002a, 2014; Milana and Di Pasquo, 2019). Regardless of 

the exact type of basin, it was a major catchment for late Paleozoic sediments, and records early 

evidence of glaciation during the peak Mid-Carboniferous phase of the LPIA.  

This evidence is recorded at the base of the late Paleozoic strata of the Paganzo Basin, 

which contains both ice-proximal and subglacial deposits (López-Gamundí, 1987; Limarino and 

Gutiérrez, 1990; Net, 1999; López-Gamundí and Martinez, 2000; Limarino et al., 2002b; Henry, 

2007; Henry et al., 2008, 2010; Césari et al., 2011; Limarino et al., 2014; Alonso-Muruaga et al., 

2018; Valdez Buso et al., 2017, 2020). The Paganzo Group strata cover the entire basin and are 

broken up into regional formations (Fig. 5). The basal part of the Paganzo Group is the subject of 
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this paper. In the west, the glacigenic units are known as the Jejenes and the Guandacol 

formations, in the central portion of the basin, this unit is referred to as the Lagares Formation, 

and in the east the Malanzán Formation is the time-equivalent unit (Limarino et al., 2002a, 

2006). The various formations are correlated using palynological and fossil plant remains, as 

well as some radiometric ages determined from strata in the western Paganzo and Río Blanco 

basins (cf. Gulbranson et al., 2010, 2015; Césari et al., 2011, 2019; Valdez Buso et al., 2020). 

The correlations between these units, and previous interpretations of these deposits as glacial in 

origin, has provided grounds for a few hypotheses concerning the extent of glaciation during the 

Visean and Bashkirian stages in the Paganzo Basin. One of the goals of this study is to test 

hypotheses on the extent of glaciation in the basin. 

One such hypothesis maintains that there were several potentially separate glacial centers 

in the basin. In the western domain, there was a glaciated upland in the Precordilleran region of 

the western Sierras Pampeanas, known as the Protoprecordillera (cf. proto-Precordillera of Amos 

and Rolleri, 1965; González, 1975; Fig. 6). This region is a small terrane that was uplifted as a 

fold-and-thrust belt during the Chañic orogeny (middle Devonian to earliest Mississippian), 

which occurred due to the accretion of the Chilenia terrane to Gondwana (Ramos et al., 1984, 

1986; López-Gamundí et al., 1994; Limarino et al., 2006, 2014; Henry et al., 2008; Isbell et al., 

2012; Moxness et al., 2018). The Protoprecordilleran range is considered by certain studies to be 

an ancient mountain belt and significant paleotopographic high that developed from the fold-and-

thrust belt, and today underlies the present Precordilleran range of the Andes Mountains 

(González Bonorino, 1975; Ramos, 1988; López-Gamundí et al., 1994; Limarino et al., 2002, 

2006; Isbell et al., 2012). Glaciomarine deposition occurred during the Visean-early Bashkirian 

in deeply-incised paleovalleys that emanated from the Protoprecordilleran region (Fig. 6B) and 
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into the surrounding Paganzo, Calingasta-Uspallata and Rio Blanco basins (cf. López-Gamundí 

et al., 1997; Limarino et al., 2002a, 2002b, 2006; Kneller et al., 2004; Dykstra et al., 2006, 2007; 

Limarino and Spalletti; Henry, 2007; Henry et al., 2008, 2010; Astini, 2010; Gulbranson et al., 

2010; Césari et al., 2011; Isbell et al., 2012; Aquino et al., 2014; Alonso-Muruaga et al., 2018). 

The diamictites at the base of the Lagares Formation in the central Paganzo Basin at least 

indicate a potential for glacial influence along the proto-Famatina arch (Fig. 6B; Limarino et al., 

2002a, 2006; Limarino and Spalletti; Astini, 2010; Tedesco et al., 2010; Limarino et al., 2014). 

There are also reported diamictites in the eastern domain, at the base of the Malanzán Formation, 

which contain outsized clasts and sparse debris flows, but these diamictites lack the traditional 

characteristics of true subglacial and proglacial deposits, such as faceted and striated clasts and 

the occurrence of sheared horizons (Andreis et al., 1986; Sterren and Martínez, 1996; Socha et 

al., 2014; Limarino et al., 2014; Moxness et al., 2018). Nevertheless, the presence of diamictites 

has led to the interpretation of glaciation throughout the Paganzo Basin, but in the form of alpine 

glaciation centered on the various ancient highlands (Fig. 6). 

A second hypothesis contends that there was extensive regional uplift for this region 

during the Devonian and earliest Carboniferous (340-325 Ma; Astini, 2009; Astini et al., 2010), 

followed by an extensive peneplain (Jordan et al., 1989). In this scenario, the Protoprecordillera 

was not a significant uplift, and therefore did not host glacial ice centers. The peneplain surface 

in the Paganzo Basin region was instead thought to have been formed by a large ice sheet that 

was centered in the eastern Sierras Pampeanas, or on the Pampean arch (Milana and Berscowski, 

1987, 1990, 1993; Milana, 1988; Milana et al., 1987; Astini, 2010; Aquino et al., 2014; Valdez 

Buso et al., 2017, 2020; Milana and Di Pasquo, 2019). This ice sheet would have advanced 

across the uplands, and as the ice sheet collapsed, it carved through a chain of uplands that was 
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known as the Zonda and Tontal arches in the west, as well as the Sierras de Chepes region in the 

east (Fig. 6C). These uplands were dissected by glacial valleys that drained the ice sheet and 

deposited the glacigenic strata of the Paganzo Group (i.e. the Guandacol, Lagares and Malanzán 

formations). 

This paper will test these hypotheses to better determine the mid-Carboniferous glacial 

history of the western margin of Gondwana. We will use paleoflow measurements and detrital 

zircon geochronology to refine the current understanding of depositional environments and 

provenance of the lower Paganzo Group and time-equivalent strata. 

3. Regional Geologic Setting 

The western margin of Argentine Gondwana is an assemblage of terranes (the Pampia, 

Precordillera and Chilenia terranes), igneous intrusions, and subsequent metamorphosed units 

(Ramos, 1988; Pankhurst et al., 1998; Ramos et al., 1998, 2010, 2015; Rapela et al., 1998; 

Ramos, 1999, 2008; Rapalini, 2005; Dahlquist et al., 2010; Einhorn et al., 2015). The resulting 

paleotopographic highs created terrane accretion have been implicated in the climate and 

depositional histories of the subsequent basins (cf. Limarino et al., 2002a, 2002b, 2006).  

The Sierras Pampeanas today make up most of the highlands between the Precordillera 

terrane and the Rio de la Plata craton and are divided into magmatic belts that correspond to 

different accretionary events of western Argentina (Fig. 12). The easternmost Sierras Pampeanas 

were formed during the Cambrian as the Pampia terrane docked to the Rio de La Plata craton, 

and therefore contain zircon ages between 500 and 600 Ma (Rapela et al., 1998, 2007; Ramos et 

al., 2015). The ranges include the Sierra de Córdoba, Sierra del norte de Córdoba, Sierra 
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Ambato, Sierra Ancasti and others (Rapela et al., 1998; Leal et al., 2003; Llambías et al 2003; 

Toselli et al., 2003) 

The Sierras Pampeanas also include the Ordovician Famatina magmatic belt (490-450 

Ma, with the main magmatism occurring between 490-470 Ma) and the eastern portion of the 

Cuyania Terrane (Pankhurst et al., 1998, 2000; Ramos et al., 1998; Keller, 1999; Ramos, 1999). 

The Famatina orogenic belt runs north-south between the Pampean orogenic belt and the 

Cuyania composite terrane, and encompasses Sierra de Valle Fértil, Sierras Famatina, Sierra de 

San Luis, and the Sierras de Chepes, Los Llanos, and Malanzán (Pankhurst et al., 1998, 2000; 

Toselli et al., 2003; Vujovich and Ostera 2003; Dahlquist et al., 2010; Einhorn et al., 2015). The 

Sierras de Chepes region contains crystallization ages from 477-497 Ma (Pankhurst et al., 1998; 

Stuart-Smith et al., 1999; Enkelmann et al., 2014). The western Famatina belt was also subject to 

metamorphism around 469 Ma, and contains some younger ages north of the Sierra de Valle 

Fértil region (Pankhurst et al., 1998, 2000; Ramos et al., 1998, 2010, 2015; Rapela et al., 1998, 

2001; Rapalini, 2005; Dahlquist et al., 2010; Einhorn et al., 2015). Additionally, these 

Ordovician granites were intruded by post-orogenic granitic bodies during the Devonian-early 

Carboniferous (365-345 Ma; Dahlquist et al., 2010; Martina et al., 2018). 

The Cuyania terrane is a microplate that either rifted from another region of Gondwana or 

rifted from Laurentia during the Cambrian or earliest Ordovician (Kay et al., 1996; Keller et al., 

1998; Keller, 1999; Ramos, 2000; Casquet et al., 2001; Willner et al., 2008). The Cuyania 

terrane accreted to the western margin of Gondwana around  460-435 Ma, and contains 

sedimentary packages of “Grenville-age” (1165-980 Ma) and occur in the western Sierras 

Pampeanas ranges of the Sierra de Pie de Palo and the Sierras de Umango, Maz and Espinol 

(Huff et al., 1998; Ottone et al., 2001; Dahlquist et al., 2010; Sial et al., 2013; Verdecchia et al., 
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2014, 2018). Superimposed upon Cuyania is a fold-and-thrust belt that is known as the 

Precordillera terrane, which contains Cambrian-Ordovician sedimentary units (i.e. the San Juan 

Limestone and Los Azules Formation) that represent carbonate and siliciclastic platform 

depositional environments (Kay et al., 1996; Huff et al., 1998; Keller et al., 1998; Keller, 1999; 

Ottone et al., 2001; Willner et al., 2008). The Precordillera terrane is interpreted to be part of a 

tectonic belt that made up either the proto-Precordilleran range or the Tontal Arch during the 

early Carboniferous (cf. Amos and Rolleri, 1965; Limarino et al., 2006; Aquino et al., 2014; 

Valdez Buso et al., 2017, 2020). The Cambrian and Ordovician deposits of the Precordillera and 

Cuyania terranes are overlain conformably or unconformably by sedimentary packages that 

range in age from Silurian to Triassic (cf. Keller et al., 1998; Keller, 1999; Willner et al., 2008). 

3.1 Geology of the Lower Paganzo Group strata 

Purported glacial deposits of the Paganzo Group strata are reported all throughout the 

Paganzo Basin and are interpreted to be mostly fjord-like or glacial valley environments 

(Marenssi et al., 2005; Limarino et al., 2002a, 2002b, 2014; Aquino et al., 2014; Valdez Buso et 

al., 2017; Alonso-Muruaga et al., 2018; Fallgatter et al., 2019; Milana and di Pasquo, 2019). In 

this study, we measured detailed stratigraphic sections at two localities on the western (Huaco 

locality) and eastern (i.e. the Olta-Malanzán paleovalley) margins of the Paganzo Basin for an 

evaluation of the extent of glacial deposits within the basin. While much is known about the 

glacial deposits of the Paganzo Group strata, new understandings of the climate and depositional 

environments across the basin have come to light (cf. Valdez Buso et al., 2017, 2020; Alonso-

Muruaga et al., 2018; Moxness et al., 2018; Pauls et al., 2019; Fallgatter et al., 2019; Milana and 

di Pasquo, 2019). Recent studies suggest that glacial strata may not be present throughout the 
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basin (cf. Moxness et al., 2018; Pauls et al., 2019). To evaluate the interconnection between the 

eastern and western margins of the basin and to refine the extent of glaciation, we present 

lithofacies analyses and detrital zircon geochronology results from the Malanzán Formation of 

the Olta-Malanzán region in the eastern Paganzo Basin and from the Guandacol Formation at 

Huaco on the western margin (Fig. 7). 

3.2. Olta-Malanzán paleovalley 

The Olta-Malanzán paleovalley (OMPV) occurs in an isolated uplift of the Famatina 

orogenic belt of the Sierras Pampeanas (Fig. 7A). The paleovalley developed in an alpine or 

mountain valley setting, either carved by glacial ice (cf. Sterren and Martinez, 1996; Enkelmann 

et al., 2014; Rabassa et al., 2014; Socha et al., 2014) or formed as the result of a fault-bounded 

basin (Bracaccini, 1948; Andreis et al., 1986; Buatois and Mangano, 1995; Net and Limarino, 

1999; Moxness et al. 2018). The Paleozoic valley fill overlies various granitic-granodioritic and 

metamorphic complexes (the Chepes granodiorite, Tuaní and Asperezas granite suites, and the 

Olta schist and phyllite). The paleovalley is ~40 km long and trends northeast-southwest between 

the towns of Olta (northeastern end) and Malanzán (southwestern end). The paleovalley ranges 

from 500-5500 m in width and widens to the southwest. The Río Olta drains this paleovalley to 

the east, but paleocurrent data from the Paganzo Group strata indicate a westerly drainage during 

the late Paleozoic. The paleovalley is exposed in a syncline, with the oldest (i.e. Serpukhovian-

Bashkirian) material at the easternmost and westernmost ends, and the youngest (i.e. Permian) 

strata exposed toward the center (Fig. 7A). Therefore, the paleovalley is often divided into two 

segments, the Olta paleovalley (OPV) to the northeast and the Malanzán paleovalley (MPV) to 

the southwest. The Malanzán Formation is the basal unit of the Paganzo Group in the paleovalley 
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system and is the strata of interest for this study (Bracaccini, 1948; Azcuy, 1975; Andreis et al., 

1986; Azcuy et al., 1987; Buatois and Mángano, 1995; Sterren and Martinez, 1996; Net and 

Limarino, 1999; Gutiérrez and Limarino, 2001; Net et al., 2002). 

3.3. Huaco locality 

Strata of the Guandacol Formation are exposed on either flank of the Agua Hedionda 

anticline (cf. Bossi and Andreis, 1985; López-Gamundí et al., 1994; Martínez, 1993; López-

Gamundí and Martínez, 2000; Pazos, 2000, 2002a, 2002b; Marenssi et al., 2002; Limarino et al., 

2002a; Marenssi et al., 2005). Sections were measured at Cuesta de Huaco, along the eastern 

flank of the anticline, north and south of the Huaco River and Route 40 (Fig. 7B). Strata were 

measured here as this section represents one of the most complete records of late Paleozoic strata 

in northwestern Argentina. The Guandacol Formation overlies the Ordovician San Juan 

Formation, which serves as the basement for the area. Multiple studies at the Cuesta de Huaco 

and Los Pozuelos Creek localities have interpreted this area as a fjord setting containing advance 

and retreat cycles, that is succeeded by a final glacial withdrawal, and a transition to deltaic 

settings (López-Gamundí and Martínez, 2000; Pazos, 2000, 2002a, 2002b; Marenssi et al., 2002; 

Limarino et al., 2002). 

4. Methods 

4.1. Lithofacies and Paleocurrent Analyses methods 

Field work was conducted in March 2015, August 2016 and August 2017 and used 

standard stratigraphic and sedimentological techniques to examine and measure 24 sections of 

the Malanzán Formation and seven sections of the Guandacol Formation. Poorly sorted clastic 
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material was identified using the classification scheme developed by Hambrey and Glasser 

(2012). Careful attention was paid to the presence and absence of striated pavements and striated 

clasts, and the characteristics of diamictites and conglomerates. Facies distribution was 

accomplished by extensive mapping at both localities. To track changes in sediment dispersal 

and transport direction through time, paleoflow and paleocurrent measurements were taken at 

multiple levels within the Malanzán and Gundacol formations. Paleoflow and paleoslope 

measurements were taken as flow directions from striated pavements, flutes, grooves, tool marks, 

and fold noses, and paleocurrent measurements were taken as dip and dip direction on cross-

laminations, cross-beds, and macroform foresets. A total of 57 measurements (12 in the 

Guandacol Formation at Huaco and 45 in the Malanzán Formation at OMPV) were taken (Fig. 

8). At OMPV, sections were measured in both segments of the paleovalley system to obtain a 

full understanding of upstream and downstream (proximal and distal) depositional environments. 

4.2. Detrital zircon U-Pb geochronology analyses methods 

This study makes use of previously published detrital zircon data for the strata in 

question, with one additional sample from the upper Guandacol Formation to allow for a full 

comparison of provenance through time during the glacial-to-post-glacial transition (Fig. 7, 8). 

One sandstone sample (CDH0923-3S) for detrital zircon analysis was collected from the AH 

locality. The sample was prepared according to methods laid out by Gehrels (2011) and U-Pb 

ages were determined for all zircons at the University of Arizona LaserChron laboratory (ALC). 

Zircons were extracted by traditional methods of crushing and grinding, and were separated 

using a Wilfley table, heavy liquids, and a Frantz magnetic separator to remove high-U zircons 

that could yield discordant results (Sircombe and Stern, 2002; McKay et al., 2018). The sample 
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analyzed at ALC contained 75 zircons, which were hand-picked and mounted from a sieved 63-

250 µm size-fraction. U-Pb geochronology of the zircons was conducted by laser ablation 

inductively coupled plasma mass spectrometry (LA-ICPMS). The sample was analyzed using a 

Thermo Element2 single-collector ICPMS. Data collected at the ALC were reduced using their 

Excel age calculation program (see Gehrels et al., 2008; Gehrels and Pecha, 2014; ALC website: 

https://sites.google.com/a/laserchron.org/laserchron/). To eliminate results of analyses with 

common-Pb contamination or Pb loss, criteria for rejection included the following:  

1. High errors (>10% uncertainty) of 206Pb/207Pb and 206Pb/238U isotope ratios 

2. High 204Pb values 

3. Low 206Pb/204Pb ratios 

4. High discordance (>20%) or reverse discordance (>5%) 

The analyses that presented these criteria were removed from interpretations and are listed 

with the full list of analyses in Appendix A.  

Once the data were obtained, all accepted analyses were used to create Concordia 

diagrams using Isoplot 4.15, a Microsoft Excel add-in from Ludwig (2012). The data here are 

discussed in the context of previously published ages from other strata of the Paganzo Group (cf. 

Enkelmann et al., 2014; Craddock et al., 2019). The data are also compared to published ages of 

igneous and metamorphic basement lithologies to determine provenance through time in the 

Paganzo Basin (e.g. Huff et al., 1998; Pankhurst et al., 1998; Rapela et al., 1998; Ottone et al., 

2001; Dahlquist et al., 2010; Drobe et al., 2011; Verdecchia et al., 2011, 2014, 2018; Sial et al., 

2013; Einhorn et al., 2015; Rapela et al., 2018).  

Three out of the four samples used here are previously published data. For the Guandacol 

Formation, the oldest-strata (i.e. lowermost) sample was previously reported in Craddock et al. 
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(2019; ARG318) from a glacigenic diamictite above the contact with the San Juan Limestone 

(Figs. 7, 8). The second post-glacial Guandacol sample is newly presented here (CDH0923-3S) 

and is from a wavy-bedded sandstone in the uppermost Guandacol Formation. The two 

Malanzán Formation samples (i.e. lowermost and middle) used for reference in this contribution 

are previously reported (Fig. 7). The first Malanzán Formation sample is from a study conducted 

by Enkelmann et al. (2014; 29TR4) and comes from a sandstone at the base of the formation near 

section OV1 (Figure 9A) described in Moxness et al. (2018). The second Malanzán Formation 

sample is from a compilation published by Craddock et al. (2019) and is sampled from the 

middle part of the formation, in a thick succession of interbedded mudrock and sandstone beds. 

The samples from Craddock et al. (2019; ARG318 and ARG203) were also analyzed at ALC 

using the same criteria and methods. The sandstone sample used for reference for the lowermost 

Malanzán Formation comes from Enkelmann et al. (2014; 29TR4), and was analyzed using LA-

ICP-MS (at the Museum für Mineralogie und Geologie in Germany) according to the methods 

described in Enkelmann et al. (2014), and the raw data can be found in the Data Repository file 

(GSA Data Repository Item 2014126, www.geosociety.org/pubs/ft2014.htm). 

5. Lithofacies analysis 

Outcrops of the Paganzo Group strata are exposed at the surface along both the western 

and eastern margins of the Paganzo Basin. At Olta-Malanzán, the base of the Malanzán 

Formation overlies basement, but is only exposed at the surface in the easternmost (i.e. towards 

Olta; OPV) portion of the paleovalley system (Fig. 7). The Malanzán Formation was measured at 

several locations throughout both the eastern and western (i.e. towards Malanzán; MPV) ends to 

get a full picture of the changes in depositional environments. At the base, the Malanzán 
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Formation is dominated by sandstones and conglomerates (depending on location in the 

paleovalley) that directly overlie basement material without any grooves or striations to indicate 

glacial activity. The middle units of the formation at both ends of the paleovalley system record 

either an abrupt or an overall fining upward trend, indicating a local flooding event (Fig. 8). The 

upper members of the Malanzán Formation record a coarsening-upward and a progradational 

setting as indicated by a transition from interbedded mudstone and sandstones to sandy 

clinoforms and conglomerates or conglomeratic sandstones (Figs. 8, 9). 

At Huaco, the base of the Guandacol Formation is exposed along the core of the anticline 

and is accessible in several locations south of Route 49 (formerly Route 40; Fig. 7). The 

Guandacol Formation was measured at several locations along the eastern and western limbs of 

the anticline (Fig. 7). The base of the formation overlies the San Juan Formation, which is an 

Ordovician limestone unit that comprises the core of the anticline. There are a few exposed 

striated pavements directly underlying the basal beds of the Guandacol Formation along this 

eastern limb and that were used to determine paleoflow direction (Figs. 7, 10A). The base of the 

Guandacol Formation is dominated by thick- and thin-bedded and massive diamictites that tend 

to interfinger with each other indicating changes in proximal and more distal depositional 

settings. The diamictites transition into sandstones and mudstones that comprise a fining upward 

trend which culminates in a black shale. Above the black shale, interbedded sandstone and 

mudstones dominate the formation and contain evidence of soft sediment deformation and 

grooves. The top of the Guandacol Formation contains a coarsening-upward succession with the 

introduction of sandstones near the boundary with the overlying Tupe Formation. 
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5.1. Facies 1 – Diamictite Facies 

5.1.1. Description 

The diamictite facies is found at each of the sections and can be divided into two 

distinguishing groups: thick-bedded diamictites and thin-bedded diamictites. The clast-rich thick-

bedded diamictite subfacies at OMPV overlies the sandstone facies near the contact with 

basement material (OV1 of Moxness et al., 2018; Fig. 9A). This diamictite is primarily a sandy 

diamictite, and it is massive with little to no internal structures, but in some areas inverse grading 

is noted and contains boulders that protrude into the overlying facies. Additionally, some wedge-

shaped bodies are present, but are otherwise tabular in shape; this subfacies contains beds up to 1 

meter thick. The grains and clasts are angular to subrounded clast shapes, and range in size from 

coarse sand, and granules to cobbles, as well as boulders. All grains and clasts are granitic or 

granodiorite and metamorphic (schist or phyllite) in lithology. No striated clasts were observed. 

The contacts are sharp with boulders and cobbles protruding into overlying sandstone, while 

lateral boundaries either wedge out or end in an overhanging boulder nose with graded, granule 

to coarse-grained sandstone beds onlapping onto the nose. 

At Huaco, the clast-rich to clast-poor, matrix-supported thin-bedded diamictite overlies 

the basement rock, the San Juan Limestone. This subfacies consists of coarse-grained clast sizes 

(granules to cobbles with rare boulders) within a silt-sand matrix (Fig. 10B, C). The clasts are 

primarily limestone with rare granitic and metamorphic lithologies, and most displayed either 

facets or striations and are on occasion bullet-shaped. Sub-decimeter scale marl beds are 

infrequently interbedded within the stratified diamictite units. The thin-bedded units are 

approximately one meter thick and are cut into by a sandstone facies that vertically fines into 
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interbedded mudstones and sandstones. Above this is a transition into 2-3 meters of thick-bedded 

and more massive diamictite units that become more clast-supported than matrix-supported 

upward (Fig. 10D). The clast lithologies do alternate in dominance between the two subfacies 

(i.e. carbonate rocks dominate the diamictite facies, and granitic and metamorphic lithologies in 

other facies), but clast size on average seems to increase with smaller boulder and cobbles 

becoming more frequent upward in the section.  

5.1.2. Interpretation 

Diamictites are generated by numerous processes and do not always indicate the presence 

of glaciers (Lawson, 1979; Visser 1983; Ashley et al., 1985; Powell and Domack, 2002; Eyles 

and Eyles, 2010; Vesely et al., 2018; Dietrich et al., 2019). In this study we present two 

diamictite facies that are genetically different. To determine the exact depositional processes, and 

therefore the depositional environment, a list of criteria was noted for each of the two localities: 

diamictite characteristics (thickness, class size trends, support mechanisms, presence/absence of 

internal shear planes, deformational structures etc.), the shape of outsized clasts, the presence or 

absence of striations on clasts, the presence of grooves and striae (i.e. iceberg keel marks or 

striated/grooved pavements) on underlying facies or basement material, and clast lithology. 

Using these features as a guide, a glacial/nonglacial environment can be inferred.  

At OMPV, the thick-bedded sandy diamictite is interpreted as a mass transport deposit, 

specifically as subaqueous debris flows (Potsma et al., 1988; Mulder and Alexander, 2001; Sohn, 

2000; Talling et al., 2012; Moxness et al., 2018; Fig. 9A). The clasts within this subfacies are 

often subrounded to angular and are poorly sorted, and in some instances are inversely graded 

within the diamictite bodies, but none were striated. Furthermore, the wedge-shaped bodies have 
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preserved flow noses as well as boulders protruding from the tops of the deposits, indicating they 

are debris flows. The lack of any striated, bulleted or faceted clasts, the overwhelming 

dominance of local clast lithologies, as well as the complete lack of any striated pavements 

indicates that the debris flows are not resedimented glacial diamictites. Instead, the Olta-

Malanzán paleovalley is housed within narrow, steep valley walls, which presents the ideal 

conditions for debris flows off the valley walls and into standing bodies of water within the 

central axis of the paleovalley (Van Steijn, 1996; Godt and Coe, 2007). 

At Huaco, the thin-bedded diamictites are also interpreted as mass transport deposits, but 

in this case, these debris flows are resedimented deposits in distal glaciomarine depositional 

settings (Fig. 10B, C). There are numerous lines of evidence to support this interpretation. The 

outsized clasts in this subfacies are striated, and some are bullet-shaped and faceted. The clast 

lithologies were predominantly local (i.e. carbonate), and to a lesser degree granitic and 

metamorphic, which are considered to be exotic as these lithologies do not occur within this area 

of the Precordilleran terrane (Keller, 1999; Marenssi et al., 2005). Furthermore, directly 

underlying this subfacies are numerous striated and grooved pavements on the San Juan 

Limestone, which serves as the basement for this locality.   

5.2. Facies 2 – Conglomerate Facies 

5.2.1. Description 

The conglomerate facies is found only at OMPV and comprises a large portion of the 

lower member of the Malanzán Formation in areas where tributary paleovalleys join the main 

paleovalley (Fig. 9B). The base of this facies is erosional and overlies various other facies. This 

facies often cuts into finer-grained facies and laterally interfingers with finer-grained facies 
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towards and down the axis of the paleovalley. The sandy matrix in the lower part of this facies 

gives way to thick bedded, cobble and boulder-supported conglomerates in the upper portion. 

The beds themselves are on average internally massive, but some beds display normal grading 

while others display inverse grading (Fig. 9B). Downlapping onto other facies is abundant, and 

undeformed beds display inclinations, or depositional dips (Fig. 9B). Some of the packages 

within this facies are wedge shaped, and decrease in thickness (i.e. pinch out) towards the 

paleovalley axis going from several meters to 1 meter or less in thickness over a distance of tens 

to a hundred meters along exposures. All clast and boulder lithologies are dominated by granitic 

or granodiorite (i.e. Chepes granodiorite, Tuaní granite) and schist and phyllite cobbles (i.e. Olta 

metamorphic complex). Laterally and vertically, these conglomerates interstratify with sandstone 

facies and laminated mudstone facies. Internally these conglomerates cut down into underlying 

sediment packages, especially where they meet the valley walls. Towards the central axis of the 

paleovalley system, these conglomerates normally grade into finer-grained facies (i.e. sandstone 

facies and interbedded mudstone and sandstone facies). 

5.2.2. Interpretation 

The conglomerate facies in the Olta paleovalley is thoroughly described and discussed in 

Moxness et al. (2018). Since this facies downlaps, interfingers with, and grades laterally into 

finer-grained facies, and also contains boulder conglomerate clinoforms, the overall facies is 

interpreted as fan deltas, or where they may be subaerially exposed, alluvial fans. As such, these 

conglomerate bodies are the result of deposition in a high-energy environment subjected to 

numerous sediment gravity flows and rock falls from valley walls and tributary paleovalleys. 

These deposits then transition to sheet floods, non-cohesive and cohesive sediment gravity flows 
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(i.e. coarse-grained debris flows) that are associated with high discharge events in a multi-

channel fan delta system. The conglomerate facies is also found in the Malanzán paleovalley, but 

to a lesser degree.  

5.3. Facies 3 – Laminated Mudstone Facies 

5.3.1. Description 

The base of this facies at both localities is gradational with underlying interbedded 

mudstone and sandstone facies. At the OMPV, this facies consists of silt and clay-sized particles 

and is punctuated occasionally by fine to very-fine grained sandstone beds that pinch out 

laterally into the mudstone. At Huaco, this facies is silt and clay at the base and fines into a black 

shale at the top. Throughout the OMPV system, the mudstone facies contains frequent 

impressions of plant fossils (i.e. cordaites sp.), and in some sections contains hummocky cross-

laminated, very fine-grained sandstones. At Huaco, the base of this facies drapes over the ripples 

that occur where this facies overlies the interbedded mudstone and sandstone facies, but is 

otherwise dominated by centimeter-scale laminations throughout without any other discernable 

internal structures. In the OPV, the mudstones are continuous, several meters thick, and rarely 

interrupted by granule to boulder outsized clasts of granodiorite and schist lithologies in areas 

proximal to the valley walls. In the MPV, this facies occurs in meter to sub-meter scale packages 

that are punctuated by units 3-10 cm thick of massive sandstone bodies. The upper boundary of 

this facies at both localities interfingers with the sandstone facies as well as the interbedded 

mudstone and sandstone facies above. Towards the upper part of the section measured in the 

MPV, this facies is also associated with centimeter-decimeter scale marl beds. 
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5.3.2. Interpretation 

The mudstone facies at both localities represents a transition to a lower energy 

environment and deposition in an overall deeper water setting, below normal wave base. Both 

sections record flooding events. At Huaco, this has been interpreted to be a marine transgression 

(i.e. a late Mississippian-Early Pennsylvanian transgressive episode of Limarino et al., 2002a, 

2006), and the mudstone facies at OMPV may be correlated to a regional rise in base level due to 

a potential marine transgression across the basin. It may also be due to the damming of the 

paleovalley by rock falls or by progradation of an alluvial fan across the valley. A marine 

interpretation of these deposits at OMPV has been supported by the presence of acritarchs within 

the middle member of the Malanzán Formation, and an interpretation of brackish marine 

conditions (Gutiérrez and Limarino, 2001). The mudstone facies at OMPV contains some 

outsized clasts, which are interpreted here as either a product of falling detritus from the 

paleovalley walls, or rafting from surface ice formation (cf. Andreis and Bossi, 1981; Powell, 

1984; Thomas and Connell, 1985; Gilbert, 1990; Bennet et al., 1994; Kempema et al., 2001; 

Powell and Domack, 2002). Several processes can transport clasts in inundated narrow valleys 

such as rock fall, the seasonal formation of lake or sea ice with an accumulation of clasts from 

mass-wasting and other alluvial processes, or by clasts trapped in root systems of floating plants. 

Some sections containing these outsized clasts were located near valley walls, and were 

composed of local, exposed bedrock, so we interpret the transport mechanism to be either surface 

ice formation, or rock falls. The loss of outsized clasts through the vertical succession is 

interpreted here as a cessation in either/or tectonic activity, or a change in climatic conditions 

that did not allow for the formation of surface ice. The mudstone facies associated with the 

sandstone stringers are most likely the result of distal hyperpycnal flows from periodic fluvial 
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discharge events or from underflows potentially corresponding to storm activity where rare 

hummocky cross-stratification is noted within cm-scale sandstone horizons (cf. Lambert and 

Giovanoli, 1988; Martinsen, 1990; Bhattacharya, 2006; Crookshanks and Gilbert, 2008). 

5.4. Facies 4 – Interbedded Mudstone and Sandstone 

5.4.1. Description 

This facies is found at both localities, with some notable differences. Additionally, the 

interbedded mudstone and sandstone facies most often display sheet geometries, and less often as 

discontinuous bodies that had erosional to sharp bases at both localities. At OMPV, this facies is 

often comprised of 2-5 meter-thick exposures of fine or medium-grained sandstones that grade 

into mudstones (i.e. high percentages of silt and clay, and at times with a very small percentage 

of lower very-fine grained sand size fraction; Fig. 9D, E). The centimeter to decimeter-scale 

medium-grained sandstone bodies are mostly internally-massive, but often also display sole 

marks along base of these packages and cross-laminations along the upper boundaries. At Huaco, 

the massive sandstone beds range in thickness from 10 to 25 cm. At both localities, the beds 

often contain medium-grained sand. Both in the Malanzán and Guandacol formations, some beds 

contain groove and prod marks as well as other soft sediment deformation at their base but 

internally, the beds are massive. At Huaco, these beds tend to be stacked vertically within 1-

meter thick packages and may display faint laminations just above the flute and grooves at the 

base. However, in some cases within the Malanzán Formation, these beds can occur as isolated 

folded and deformed pods within a finer-grained (very fine-grained sandstone to mudstone) 

matrix and are associated laterally with deformed units. Additionally, the facies at Huaco 

displayed grain-size differences that were less pronounced, with fine sand layers interspersed 
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with silt-to very-fine sand interbeds. In the MPV, there are several levels of grooves, tool marks 

(i.e. prod marks), and flutes (Fig. 9D). Rare gutter casts were also noted. These disappear up-

section. One level of intense deformation within this facies was recorded. In areas proximal to 

the valley walls in the OPV, infrequent outsized clasts become rare and are finally lost altogether 

as the facies grades upward into the laminated mudstone facies at section OV14 in Moxness et 

al. (2018). At OMPV the dominant clast lithology was granitic/granodiorite within this facies, 

followed by schist and phyllite, all of which are local bedrock lithologies. In contrast, extremely 

rare to no outsized clasts were recorded within this facies at Huaco. At both localities, the facies 

grades normally into overlying facies or is cut into by overlying facies. 

5.4.2. Interpretation 

The presence of the thin planar and interbedded mudstone and sandstone facies 

association at both localities indicates a rapid and fluctuating change in environmental and 

depositional energy that is interpreted as gravity-driven deposits and rhythmites, more 

specifically turbidites (Talling et al., 2012; Talling, 2014). The appearance of horizontally 

laminated and massively-bedded sandstone bodies is consistent with the definition of the TD 

turbidite interval as described by Talling et al. (2012). The massive sandstone facies is found in 

both localities and records intervals of high-density flow deposition (Talling et al., 2012; Talling, 

2014). Horizontally laminated sandstones are also deposited by geostrophic currents that 

represent return flow of water along the sea bottom away from coastlines during storm surges. 

Such events result in deep water deposition from episodic underflow currents (Basilici et al., 

2012). The fine-grained horizontally laminated sandstone beds were most likely deposited by 

turbidity currents, hyperpycnal flows, or possibly underflows, and could have been triggered by 
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slope failure or storm activity (López Gamundí, 1997; Gani, 2004; Winsemann et al., 2007; 

Talling et al., 2012; Talling, 2014). The erosional lower contacts of the sandstones are likely due 

to scouring caused by turbulent currents (Powell and Cowan, 1986; Boulton, 1990; Powell and 

Domack, 2002). The flutes and grooves found at the base of this facies represent current scour 

and scour by tools carried at the base of the flow in a distal deltaic environment. The deformed 

level at MPV displayed fold noses and axes that imparted a down-valley transport direction is 

interpreted as a down-slope mass transport deposit, and as there was internal deformation, it is 

classified as a slump (Talling et al., 2012; Talling, 2014). The association of deformed 

sandstones and mudstones within this facies indicates mass movements and sediment-gravity 

deposits from downslope movement of material off the valley walls, introduction by hyperpycnal 

flow off of the Gilbert Deltas, or storm-generated bottom currents down the paleovalley axis. 

5.5. Facies 5 – Cross-bedded sandstone Facies 

5.5.1. Description 

The cross-bedded sandstone facies is found at both localities. The base of the cross-

bedded sandstone facies at several sections is erosional, and cuts into multiple underlying facies, 

such as the interbedded mudstone and sandstone facies and the rippled sandstone facies. At 

OMPV this facies is noted at both ends of the paleovalley system within the middle member and 

also comprises most of the uppermost member of the Malanzán Formation. In the middle 

member of the MPV, the facies occurs in small, 0.5-meter or less medium-grained sand size 

lenticular bodies within other facies, such as the interbedded mudstone and sandstone facies. In 

the uppermost member, the facies is found in gently to steeply-dipping clinoform bodies and 

foresets that fine and extend across outcrops as bottomset beds (Fig. 9C). Individual foresets can 
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be traced into the underlying bottomsets in a down-valley direction. The facies in the OMPV is 

found in the middle member of the Malanzán Formation, where tributary valleys enter into the 

main paleovalley, and in a narrow portion of the main valley axis just before the valley increases 

in width. The facies is also present in the upper member of the Malanzán Formation throughout 

the paleovalley. At both ends of the paleovalley, the clinoforms are coarse-grained, and can 

range in grain size from granular and pebbly to conglomeratic. At Huaco, the facies is 

represented by medium-to-coarse-grained sandstone crossbeds within 0.5-meter stacked bodies 

with erosional upper and lower boundaries. The sandstone facies cuts down into the 

symmetrically rippled sandstone facies (see section 5.6. below). 

5.5.2. Interpretation 

The cross-bedded sandstone facies represents periods of prograding or aggrading deltaic 

environments at both localities. In the lower and middle members of the Malanzán Formation 

(i.e. at both the Olta and Malanzán ends of the paleovalley), intervals of stacked cross-bedded 

sandstone bodies indicate deltaic systems building out into bodies of water most likely created by 

damming from the conglomeratic facies (cf. Moxness et al., 2018). They might also indicate 

progradation into a brackish marine embayment (cf. Gutierrez and Limarino, 2001; Buatois et 

al., 2010). Toward the top of the Guandacol Formation at Huaco, the cross-bedded facies 

overlies a symmetrically rippled sandstone, which indicates the progradation of deltaic systems 

into the area, and indicates a transition to more continental depositional processes, as this facies 

is erosionally overlain by fluvial sandstones of the Tupe Formation (Limarino et al., 2002b; 

Marenssi et al., 2005). The uppermost Malanzán Formation is preserved at both ends of the 

OMPV and contains this facies in 10+ meters-long sandy clinoforms that have both their topsets 
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and bottomsets preserved. These sandstones represent prograding Gilbert-type deltas of high-

gradient stream systems that are flowing into cold, dense waters of a proximal lacustrine or 

marine environment within the paleovalley system producing laterally extensive hyperpycnal 

(underflows) flows (cf. Stanley and Surdam, 1978; Colella et al., 1987; Nemec, 1990; 

Winsemann et al., 2007; Moxness et al., 2018). The preservation of extensive bottomset beds 

indicates that incoming waters continued away from the delta front as turbulent underflows. 

5.6. Facies 6 – Rippled Sandstone 

5.6.1. Description 

The rippled sandstone facies can be found at both localities and can be broken down into 

two subfacies groups. Here we present symmetrically rippled subfacies, and asymmetrically-

rippled sandstone facies. At Huaco, the two subfacies are found toward the upper portion of the 

formation. The base of the symmetrically rippled sandstone subfacies is erosional into the 

underlying asymmetrically rippled sandstone facies (Fig. 10E). On average, the ripples have a 

ripple index (RI) of 1 and are considered symmetrical, but in some cases are slightly 

asymmetrical. At OMPV, successions of symmetrically rippled sandstones are found to alternate 

with and gradationally overlie successions of asymmetrically-rippled sandstones. The 

asymmetrically rippled sandstone subfacies is present in both ends of the paleovalley and occurs 

in upper fine to medium-grained sand deposits. In some sections, this subfacies occurs 

gradationally above the massive sandstone facies, where in other locations it occurs gradationally 

above and below the symmetrically-rippled sandstone subfacies. In all sections, these ripples are 

often overlain by silt, or very-fine sand drapes. 
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5.6.2. Interpretation 

The rippled sandstone subfacies is present at both localities and represents modification 

of sands by both wave and current activity. At Huaco, the symmetrical wave ripples are part of a 

coarsening- and shallowing-upward succession near the top of the Guandacol formation, 

indicating a progradation of a deltaic environment (cf. Schatz et al., 2011). At OMPV, the 

symmetrically-rippled sandstones suggest the reworking of a unidirectional flow deposit, or a bi-

directional flow from wave activity (Baird, 1962; Reineck and Singh, 1980; Moxness et al., 

2018). As indicated by Moxness et al. (2018), numerous levels of wave-rippled sandstones are 

found throughout the Olta paleovalley. However, the Malanzán end of the paleovalley is instead 

dominated by asymmetrical ripples and are the result of unidirectional flow associated with 

turbidity or hyperpycnal currents. 

6. Paleoflow and depositional environments 

The base of the Guandacol Formation at all Huaco localities contains subglacial and ice-

proximal deposits and features (Marenssi et al., 2005; Limarino et al., 2014). There, the 

Guandacol Formation has been measured and described in multiple studies (cf. López-Gamundí 

and Martínez, 2000; Limarino et al., 2002, 2005; Pazos, 2002; Marenssi et al., 2005; Henry et al., 

2008). Our observations of this section do not dispute previous findings, and the measured 

sections contain ample evidence of glacial processes, from striated pavements along the 

Cambrian-Ordovician San Juan Limestone, to stratified diamictites with striated and faceted 

clasts at the base of the section (Fig. 8). The paleoflow measurements are from a glaciated and 

striated pavement that exists on the upper surface of the San Juan Limestone (Fig. 8). The 

striations allow for interpretation of true glacial flow as there were grooves with plucking around 
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siliceous nodules in the San Juan Limestone (Fig. 8). The paleoflow of the glacier at Huaco was 

to the NW (i.e. 310-320º, with a vector mean direction of 313º; Fig. 8). The glacial deposits of 

the lower Guandacol Formation here are overlain by thick successions of shales, interspersed 

with sandstones. The shales and sandstones are interpreted as a local post-glacial transgression 

(i.e. a change in relative sea-level; Powell and Cooper, 2002) by multiple studies (Limarino et 

al., 2002, 2005, 2014). The shales are overlain by increasingly thicker packages of wavy-bedded 

sandstones and by planar laminated sandstones (Fig. 8). The depositional environment 

interpretation for the upper Guandacol Formation at Huaco is a progradational succession from 

offshore, to offshore-transition and then tidewater and deltaic packages at the uppermost 

boundary with the overlying Tupe Formation. 

The Malanzán Formation is the time-equivalent unit in the easternmost part of the 

Paganzo Basin, which occurs in the Olta-Malanzán paleovalley (Bracaccini, 1948; Azcuy, 1975; 

Andreis et al., 1986; Acuy et al., 1987; Buatois and Mángano, 1995; Sterren and Martínez, 1996; 

Net and Limarino, 1999; Net et al., 2002; Moxness et al., 2018; Pauls et al., 2019). These 

deposits have been reinterpreted as conglomerates, diamictites, sandstones and shales related to 

alluvial, fluvial, and lacustrine processes (Moxness et al., 2018; Pauls et al., 2019). The base of 

the section overlies basement material, Olta phyllite and schist, in an erosive manner and onlaps 

the Chepes granodiorite in some exposed locations (Fig. 9A; Moxness et al., 2018; Pauls et al., 

2019). No striated pavement, nor striations of any kind were recorded in the paleovalley where 

the Malanzán Formation overlies bedrock. Unlike glacial valleys, the OMPV narrows near 

tributary paleovalleys from several km wide down to less than 200 m wide. These tributary 

paleovalleys have coarse fan faces emanating from them indicating that they are of fluvial origin 

(Moxness et al., 2018). Additionally, the clasts present in the diamictite and conglomerate facies 
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of the Malanzán Formation are not striated nor faceted, and paleocurrent measurements range 

from S-SW, parallel to the axis of the paleovalley throughout the Malanzán Formation (Fig. 7). 

While glacially-carved valleys are generally classified by their profile shape (i.e. U-shaped; 

MacGregor et al., 2000), the OMPV does not appear to display this geometry for the late 

Paleozoic sedimentary fill. The floor of the paleovalley narrows to less than 200 m across where 

paleotributary valleys appear to enter the main axis, which has not been recorded in glacial 

erosion models, nor in more recent glacially-excavated valleys (Montgomery, 2000; MacGregor 

et al., 2002; Anderson et al., 2006). Moxness et al. (2018) concluded that with the lack of glacial 

evidence and the geometry of the paleovalley at this location, the paleovalley could not have 

been carved by a glacier, or by glacial processes.  

7. Detrital Zircon Geochronology Results  

7.1. CDH0923-3S, Guandacol Formation, Huaco Locality  

One sandstone sample was collected from a wavy-bedded meter-thick sandstone package 

from within a shoreface succession in the uppermost Guandacol Formation (Figs.7, 8). This 

sample contained 75 concordant zircons ranging in age from 2616.4 ± 8.9 Ma to 381.4 ± 3.3 Ma 

(Fig. 11). One primary age peak ranges from 480-440 Ma (Ordovician), with a component from 

500-600 Ma (Cambrian-late Neoproterozoic), and a secondary peak at 1160-960 Ma (Fig. 11, 

12). In this sample, 1% of the zircons analyzed were Carboniferous, 5% were Devonian, 3% 

were Silurian, 20% were Ordovician, 10% were Cambrian, 27% were Neoproterozoic, and 28% 

were Mesoproterozoic. 



 

57 

 

7.2. Previously published geochronology samples  

 ARG318, Lowermost Guandacol Formation, Huaco Locality (Craddock et al., 2019) 

This sample was collected from a glacial diamictite at the base of the Guandacol 

Formation and is interpreted to be from a proglacial glaciomarine environment (Figs. 7, 8). This 

sample contained 36 concordant zircons that range in age from 2059 ± 7.5 to 385.2 ± 5.9 Ma. For 

this sample, 3% of the zircons were Devonian, 20% were Ordovician, 44% were Cambrian, 19% 

were Neoproterozoic, 8% were Mesoproterozoic, and 3% were Paleoproterozoic (Fig. 12). 

29TR4, Lowermost Malanzán Formation, Olta-Malanzán Paleovalley (Enkelmann et 

al., 2014) 

This sample was collected from a debris flow deposit at the base of the Malanzán 

Formation (Figs. 7, 8). The sample contained 93 concordant detrital zircons with ages ranging 

from 2203 ± 36 Ma to 333 ± 4.5. For this sample, 3% of the analyzed zircons were 

Carboniferous, 12% were Devonian, 3% were Silurian, 24% were Ordovician, 29% were 

Cambrian, 19% were Neoproterozoic, 3% were Mesoproterozoic, and 7% were Paleoproterozoic 

(Fig. 12).  

ARG203, Middle-Upper Malanzán Formation, Olta-Malanzán Paleovalley (Craddock 

et al., 2019) 

This sample was collected from a sandstone within a succession of interbedded 

mudstones and sandstones that are interpreted to be a prograding/fluctuating delta front system 

(Figs. 7, 8). The sample contained 50 zircons that range in age from 937.3 ± 26.1 Ma to 362.7 ± 

8.6 Ma. For this sample, 8% of the zircons were Devonian, 2% were Silurian, 54% were 

Ordovician, 20% were Cambrian, and 16% were Neoproterozoic (Fig. 12).  
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8. Discussion 

The wide variety of clast lithologies, such as carbonates, granites and metamorphic rocks, 

in both the glacial diamictites and post-glacial deposits of the Guandacol Formation at Huaco 

indicate a mixture of potential source areas (cf. Marenssi et al., 2005; this study). The detrital 

zircon age populations for the Guandacol Formation samples (ARG318, CDH0923-3S) indicate 

a relatively local provenance, with a primary age peak showing an Ordovician age source (470-

450 Ma), and a secondary peak with Mesoproterozoic ages (1200-900 Ma). Huaco is located 

within the Cuyania terrane, and just to the west of the westernmost Famatinian-aged granites in 

the Sierra de Valle Fértil, which contain crystallization ages within the range of the primary age 

peak for the detrital zircons of the Guandacol Formation (cf. Pankhurst et al., 2000; Dahlquist et 

al., 2010). However, the glacial diamictites could also contain reworked sediments from the 

Ordovician and Cambrian sedimentary deposits of the Precordillera and Cuyania terranes (Huff 

et al., 1998; Ottone et al., 2001; Vujovich et al., 2004; Naipauer et al., 2010a; Sial et al., 2013). 

Together, these early Paleozoic sources of the Precordilleran and Cuyania terranes provide the 

appropriate age range for the majority of the detrital zircons found in the Guandacol Formation 

at Huaco. The clast compositions found in the basal Guandacol sediments are consistent with 

these interpretations. 

The older, less prominent peak of Mesoproterozoic ages can only be associated with 

basement material of that same age along the eastern margin of the Precordilleran and Cuyania 

terranes where there is known Mesoproterozoic basement, such as is found within the Sierra de 

Pie de Palo (Vujovich et al., 2004; Dahlquist et al., 2010; Naipauer et al., 2010a; Einhorn et al., 

2015). Therefore, the Guandacol Formation at Huaco is likely derived from basement material 

similar in age to material from the Cuyania terrane and the westernmost edge of the Famatina 
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magmatic belt (cf. Pankhurst et al., 2000; Vujovich et al., 2004; Dahlquist et al., 2010; Naipauer 

et al., 2010a; Einhorn et al., 2015), as these ranges contain material of both age sets. 

Furthermore, the NW paleoflow measurements from the striated and grooved surface cut on the 

San Juan Limestone discussed above also support this interpretation (cf. López-Gamundí and 

Martínez, 2000; Henry et al., 2008; this study; Figs. 7, 8).  

The upper Guandacol sample (CDH0923-3S) is from the uppermost part the formation, 

after the post-glacial marine transgressive shales (Figs. 7, 8). The sandstones here represent a 

wave-dominated deltaic environment, and there are no more striated clasts, nor outsized clasts 

recorded, and as such, any influence glacial ice had on the system is minimal to none. The 

detrital zircons, nonetheless, still indicate the same provenance signature, with a primary 

Ordovician peak and a secondary Mesoproterozoic peak (Fig 12). Thus, the depositional system 

is still localized and reworking from the same system that sourced the glacial units.  

 The Olta-Malanzán samples also represent deposition during both glacial/cold-climate 

and post-glacial phases in the western Paganzo Basin, but indirectly, as there is no evidence of 

glaciation occurring in this paleovalley (Moxness et al., 2018; Pauls et al., 2019). The basement 

material that underlies this paleovalley contains late Cambrian to Ordovician metamorphic and 

granitoid rocks (Pankhurst et al., 1998, 2000; Dahlquist et al., 2010). The lowermost sample is 

from the base of the Malanzán Formation, and based on its primary age peak, reflects the early 

Ordovician Sierra de Chepes basement material (477-497 Ma; Pankhurst et al., 1998; Enkelmann 

et al., 2014; Fig. 8). The local lithology of the clasts (i.e. granodiorite, granite, schist, and 

phyllite) within the conglomerate and diamictite facies further supports this interpretation. The 

second Malanzán Formation sample is from the middle part of the formation, in a thick 

succession of interbedded mudrock and sandstone beds, which is correlated with the post-glacial 
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transgression across the Paganzo Basin (Gutiérrez and Limarino, 2001). The detrital zircon age 

populations for both Malanzán samples are very similar and reflect ages found within the 

igneous and metamorphic provinces within the Sierra de Chepes and Los Llanos ranges (Figs. 

12, 13), and therefore represent a local provenance. The detrital zircon analyses have been 

interpreted by both Enkelmann et al. (2014) and Craddock et al. (2019) to represent local 

provenance, and the results from this study agree with their interpretations (Fig. 12). 

Furthermore, the samples are found along the main valley axis, with much of the depositional fill 

sourcing from the valley walls and tributary paleovalleys within the paleovalley system (Fig. 8; 

Moxness et al., 2018).  

Nevertheless, the fact that these two lower samples from the Guandacol and Malanzán 

formations have similar detrital zircon populations is not unexpected since most of the western 

margin of Argentine Gondwana is composed of metamorphic and igneous units of similar ages 

(Fig. 12, 13; Huff et al., 1998; Pankhurst et al., 1998, 2000; Ramos et al., 1998, 2010, 2015; 

Rapela et al., 1998; Ottone et al., 2001; Sato et al., 2001, 2006; Vujovich et al., 2004; Rapalini, 

2005; Dahlquist et al., 2010; Naipauer et al., 2010a,b; Sial et al., 2013; Verdecchia et al., 2011, 

2014; Einhorn et al., 2015). The main peaks for all four samples represent the sedimentary 

deposits following the Pampean orogeny (520-570 Ma; Pankhurst et al., 2000; Willner et al., 

2008), as well as the Famatinian magmatic belt (500-440 Ma; Pankhurst et al., 2000; Enklemann 

et al., 2014), and sediments derived from those igneous bodies. A similar study conducted by 

Einhorn et al. (2015) looked at Neoproterozoic through Permian sedimentary deposits to the 

north of the Paganzo Basin, in Argentina and Bolivia. Comparing the results from this study to 

those of Einhorn et al. (2015), it is clear that all of the strata along the Panthalassan margin of 

Gondwana during this timeframe contains very similar detrital zircon populations (Fig 13).  
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However, one stark difference between the two sample sets is the presence of early 

Carboniferous detrital zircons in the Malanzán Formation samples and the absence of these ages 

in the Guandacol Formation samples. This difference points to potentially separate depositional 

centers, as Devonian to Early Carboniferous intrusive post-orogenic granites are found 

throughout the central Famatina magmatic belt (cf. Dahlquist et al., 2010; Martina et al., 2018), 

which corresponds to the central portion of the Paganzo Basin. If there were an ice sheet that 

drained from the eastern Sierras Pampeanas, then detrital zircons of early Carboniferous ages 

would be expected at both localities. Detrital zircons of these ages are only present at OMPV and 

not at Huaco (Fig. 12), providing evidence that these two localities do not share a depositional 

connection. 

Another major difference between the two Paganzo Basin sample sets is the lack of 

prominent peaks of Mesoproterozoic detrital zircons for the Malanzán Formation, where in 

contrast to both of the Guandacol Formation samples which contain strong detrital zircon 

Mesoproterozoi peaks (Fig. 12). In the Cuyania and Precordilleran terranes, many studies have 

found Mesoproterozoic crust underlying the Sierra de Pie de Palo, Sierra de Umango and Sierra 

de Maz, and is therefore interpreted to be a remnant of the Brasiliano-Pan-African belt (Vujovich 

et al., 2004; Dahlquist et al., 2010; Thomas et al., 2015; Rapela et al., 2018), or a part of 

Laurentia (Fig. 12). We interpret these ranges to be the sources for the Mesoproterozoic zircon 

populations in the Guandacol Formation samples, but not the Malanzán Formation samples. 

Instead, the Mesoproterozoic zircons within the Malanzán Formation are most likely sourced and 

subsequently reworked from Mesoproterozoic-aged metamorphic rocks that have been mapped 

and identified to the east, south and north and of the Sierra de Chepes and Los Llanos ranges, in 

the Sierra de San Luis and Sierras de Córdoba (Sato et al., 2001, 2006; Drobe et al., 2009, 2011; 
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Rapela et al., 2018). Mesoproterozoic ages are also found in older metasedimentary units, such 

as the Puncoviscana Formation further to the north in northern Argentina and Bolivia (Rapela et 

al., 2018). The paleocurrent data indicate (i.e. SW; Fig. 8) that the Sierra de San Luis and the 

Puncoviscana Formation would likely not have been a source for the Carboniferous strata. That 

is not to say that there could not be recycling of these grains from the Neoproterozoic-Cambrian 

metamorphic units in the Sierras de Chepes and Los Llanos, as well as to the east in the Sierras 

de Córdoba, which certainly could have supplied the limited number of grains that were 

measured in the lowermost sample. 

9. Evidence for mid-Carboniferous ice extent in the Paganzo Basin 

The Guandacol Formation at Huaco presents several lines of evidence for glacial 

presence in the western margin of the Paganzo Basin. First is the presence of the striated 

pavement along the uppermost surface of the San Juan Limestone, which serves as the contact 

with basement in this location of the Guandacol Formation (Fig. 8). The directions of the striae 

from that study (i.e. 300º-120º; Marenssi et al., 2005) are in agreement with the NW-SE 

directions we recorded on the eastern limb (ranging from 310º-320º; Fig. 8), and also aligns with 

descriptions from López Gamundí and Martínez (2000). The inferred flow direction of glacial ice 

at the base of the Guandacol Formation was in a NW (mean vector of 313º; Fig. 8) direction 

based on the measurements taken from grooves around eroded nodules on the limestone surface 

(Fig. 10A). Additionally, directly above the striated contact with the San Juan Limestone, several 

meters of thin and thick-bedded diamictite were measured and these strata contained numerous 

striated and faceted clasts, some with characteristic bullet shapes. With the occurrence of each of 
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these lines of evidence, we can conclude that glacial ice was present in the vicinity of the Huaco 

locality during the Serpukhovian-Bashkirian glacial phase of the Paganzo Basin. 

In contrast to the ample lines of glacial evidence in the lower Guandacol units at Huaco, 

as well as other localities along the western margin of the Paganzo Basin (cf. Scalabrini Ortiz, 

1972; Andreis et al., 1975; López-Gamundí and Amos, 1985; Buatois and Mángano, 1994; 

López-Gamundí and Martínez, 2000; Kneller et al., 2004; Henry, 2007; Henry et al., 2008, 2010; 

Isbell et al., 2012; Aquino et al., 2014; Valdez-Buso et al., 2017, 2020; Limarino et al., 2014; 

Alonso-Muruaga et al., 2018), the Malanzán Formation does not display any evidence of 

glaciation within the basal and middle units (this study; Moxness et al., 2018; Pauls et al., 2019). 

There is a lack of any glacial evidence, such as faceted and/or striated clasts; there were no striae 

found on exposed basement lithologies, even where there was direct contact with the Malanzán 

Formation; and the diamictite morphology at the base of the Malanzán Formation is indicative of 

formation via debris flows in an alluvial fan and lacustrine environment rather than from 

morainal bank or pro-glacial depositional processes (cf. Andreis et al., 1986; Buatois and 

Mangano, 1995; Socha et al., 2014; Moxness et al., 2018). Paleocurrent measurements from the 

base of the Malanzán Formation indicate a more south-southwesterly direction (Fig. 8), which 

indicates flow within the confines of the paleovalley, and does not correspond to the paleoflow 

measurements in the western proto-Precordilleran domain of the Paganzo Basin. 

When comparing the clast lithologies for the two localities, the sections record very 

different clast lithologies. For example, at Huaco, the Guandacol Formation contains clasts 

comprised of carbonates, high-grade metamorphic rocks, and granites. As noted in our 

descriptions, and also supported by Marenssi et al. (2005), the diamictite facies are dominated by 

carbonate clast lithologies, while the interbedded sand and mudstone facies are dominated by the 
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high-grade metamorphic and granitic lithologies. The dominant lithology appears to correspond 

to changes in depositional settings, which is a reflection of the change in source materials and 

erosional patterns, and ultimately, provenance. In the literature, it is interpreted that the 

carbonate clasts of the glacial deposits represent local basement lithology within the 

Precordilleran terrane, such as the San Juan Limestone, and Los Azules and Talacasto formations 

(Huff et al., 1998; Ottone et al., 2001; Sial et al., 2013), while the other lithologies (i.e. the 

metamorphic and igneous clasts) in the ice-retreat facies are representative of more distal sources 

from the Sierras Pampeanas (cf. Marenssi et al., 2005). Once ice retreated from exposures of 

Cambrian-Ordovician limestones, there would no longer be a carbonate source. Icebergs, 

however, would transport clasts that the retreating glacier was eroding and transport them to the 

Agua Hedionda anticline area after calving and iceberg transit. The detrital zircon geochronology 

results of the lower Guandacol Formation samples (ARG318; Craddock et al., 2019) further 

support the interpretation that the glacial deposits are likely sourced from more local basement 

lithologies found within, and possibly just beyond, the Cuyania terrane (Fig. 12). Cambrian ages 

are the dominant ages (44%), followed by Ordovician and Neoproterozoic ages (20 and 19% 

respectively; Fig. 12). These ages also correspond to findings from a detrital zircon 

geochronology study presented by Valdez Buso et al. (2020), where samples of the Guandacol 

Formation at other localities have similar Mesoproterozoic age populations (Figs. 12, 13). We 

can therefore conclude that the sources for these grains are coming from local sources within the 

Cuyania and Precordilleran terrane regions, and not from further to the east in the Paganzo 

Basin, such as the eastern Sierras Pampeanas.  

On the other side of the basin, the Malanzán Formation records a similar trend of 

provenance based upon the clast lithologies. The clasts in the lower Malanzán Formation are 
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predominantly granodiorite with lesser amounts of schist and phyllite clasts. All three clast types 

can be traced to bedrock lithologies in the Sierras de Chepes (Pankhurst et al., 1998, 2000). The 

detrital zircon geochronology results further support this interpretation. The bedrock of this 

paleovalley system is Cambrian-Ordovician in age, and the age peaks from these samples are 

predominantly Cambrian and Ordovician (29% and 24% respectively in sample 29TR4; and 

20%, 54% respectively in sample ARG203), followed by Neoproterozoic ages (19% in sample 

29TR4, and 16% in sample ARG203). The Sierra de Chepes region is approximately 475-480 

Ma, and therefore can account for the dominant ages in the samples (Pankhurst et al., 2000). The 

Neoproterozoic ages most likely come from the Olta schist and phyllite that is found within the 

Sierras de Chepes range, and could also potentially be sourced from rocks that are mapped 

further to the east, such as those identified in the Sierras de Córdoba (Rapela et al., 1998; Leal et 

al., 2003; Llambías et al 2003; Toselli et al., 2003). A few more prominent age populations occur 

in the Malanzán Formation samples that are not as prevalent or even present in the Guandacol 

Formation samples, and correspond to Silurian, and Devonian to early Carboniferous ages (Fig 

8). These ages likely correspond to early-middle Paleozoic post-orogenic granites that exist 

within and along the Famatina belt, and into the eastern Sierras Pampeanas, interpreted to be the 

result of active transtensional or extensional tectonism throughout the area during the Devonian 

and early Carboniferous (Martina et al., 2018). 

While there was synchronous deposition along both margins of the Paganzo Basin, there 

does not appear to have been any drainage connectivity between the two depocenters during the 

time of glaciation. Based on an extensive compilation of paleoflow directions from multiple 

studies, there appears to be a separation or pattern of flow directions (cf. Scalabrini Ortiz, 1972; 

Andreis et al., 1975; López-Gamundí and Amos, 1985; Buatois and Mángano, 1994; López-
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Gamundí  et al., 1994; López-Gamundí and Martínez, 2000; Kneller et al., 2004; Henry et al., 

2008; Alonso-Muruaga et al., 2011; Aquino et al., 2014; Valdez-Buso et al., 2017, 2020; 

Limarino et al., 2014; Fallgatter et al., 2019; Milana and di Pasquo, 2019; Fig. 14). Along the 

western margin, the flow directions indicate a more radial pattern away from a central area, from 

which a series of uplifted blocks, or elevated nucleation points, can be inferred (Fig. 14). 

Additionally, several studies along the Precordilleran region describe paleovalleys with depths of 

1,000- 2,500 meters and filled with glacigenic and glacially influenced deposits up to 450 meters 

thick (cf. Dykstra et al., 2006, 2007; Henry et al., 2008, 2010; Aquino et al., 2014; Valdez Buso 

et al., 2017, 2020; Milana and di Pasquo, 2019). This body of evidence seems to support the 

hypothesis that there existed a mountain belt or upland along the western margin of the Paganzo 

Basin, at least during the Serpukhovian-Bashkirian glaciation phase during the LPIA in 

Argentine Gondwana. Paleovalleys that are over 2.5 km deep, along with the radial distribution 

of paleoflow, indicate substantial relief in the Precordilleran region during the mid-

Carboniferous. Such relief is characteristic is of a substantial upland rather than the occurrence 

of a gentle topographic arch.    

9.1. Post-glacial sedimentation 

Along the western margin of the basin, the basal diamictites of the Guandacol are 

replaced by shales interpreted as a flooding event, which corresponds to a post-glacial 

transgression that is recorded at several other localities across the Paganzo Basin (Limarino et 

al., 2002b; Marenssi et al., 2005; Net and Limarino, 2006; Limarino et al., 2014; Pauls et al., 

2019). The metamorphic and granitic clast lithologies from the post-glacial facies of the 

Guandacol Formation are interpreted to represent a more distal provenance (cf. Marenssi et al., 
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2005). Similar to our interpretation for the lower Guandacol Formation sample, we interpret 

these clasts as sourced from a location to the east of the Precordilleran Terrane, probably from 

the Sierra de Pie de Palo or Sierra Valle Fértil areas (cf. Pankhurst et al., 1998, 2000; Ramos et 

al., 1998, 2010, 2015; Rapela et al., 1998; Vujovich et al., 2004; Rapalini, 2005; Dahlquist et al., 

2010; Sial et al., 2013; Verdecchia et al., 2011, 2014; Einhorn et al., 2015). The age peaks from 

the detrital zircon geochronology results correspond to the Mesoproterozoic ages found within 

the Sierra de Pie de Palo complex, as well as the Sierra de Maz and Umango ranges 

(Mesoproterozoic age ranges: 1000-1200 Ma; Varela et al., 2003, 2005; Vujovich et al., 2004; 

Naipauer et al., 2010a, 2010b; Figs. 8, 9). The Ordovician ages correspond well with ages found 

in granites and gneisses from the Sierra de Valle Fértil (Cambrian-Ordovician age ranges: 500-

450 Ma; Pankhurst et al., 2000). The age population range of the upper Guandacol Formation 

sample (CDH0923-3S) indicates a drainage shift, or unroofing of basement material in an 

eastward direction, as proximal depositional environments prograde westward (Limarino et al., 

2002a, 2002b, 2006, 2014; Tedesco et al., 2010). 

There is no record of striated pavements nor striated or faceted clasts in the Olta-

Malanzán paleovalley, but that does not preclude a cold environment, with the occasional 

development of lake ice as there is evidence of potential ice-rafted debris. The lonestones could 

also have been from rock fall off of valley walls into the narrow paleovalley (cf. Moxness et al., 

2018), as physical weathering and rock fall is prevalent in cold climate environments. 

Paleocurrent measurements at the base of the Malanzán Formation point to flow through the 

narrow paleovalley in a south-southwest direction. The large conglomeratic deltas of the upper 

Malanzán Formation at the interpreted paleomouth near the town of Malanzán indicate that 

paleoflow is to the west, but these deltas are considered to be post-glacial deposits, and therefore 
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cannot be used to infer paleoflow from a glacier across the Paganzo Basin from east to west. 

Furthermore, the paleovalley narrows where tributary valleys connect with the main axis, and the 

paleoflow measurements follow the S-SW and lazy-S shape of the valley walls. This trend 

suggests internal and localized flow within a confined alpine valley setting rather than a 

paleofjord or glacially-carved valley system. While the detrital zircon sample sets contain similar 

age peaks, this is not wholly unexpected based on the similarities in age suites of the igneous and 

metamorphic basement complexes found throughout the Paganzo Basin region (Figs. 12, 13). 

The absence of early Carboniferous detrital zircons in the Guandacol Formation, and the 

presence of these ages within the Malanzán Formation, indicates that an ice center did not drain 

from the eastern Sierras Pampeanas and across the Paganzo Basin. The most important 

difference between the two formations, which provides clear evidence that these two localities do 

not share the same provenance, is the appearance of the Mesoproterozoic peaks in the Guandacol 

Formation samples, which point to a Cuyania terrane provenance. The evidence accumulated by 

the lithofacies and paleoflow analyses indicates that there were most likely separate depositional 

centers throughout the Paganzo Basin during the Visean and Serpukhovian-Bashkirian 

glaciations (Fig. 14). Further analyses are needed to further constrain glacial centers in the 

Protoprecordilleran and Sierra de Pie de Palo ranges, or if there were other glacial centers located 

in the Famatina arch system in the north-central region.  

10. Conclusions 

Detrital zircon populations and new paleoflow measurements demonstrate that there was 

more than one depositional center in the Paganzo Basin during the middle Carboniferous. There 

was one localized catchment for the Guandacol Formation at Huaco that drained westward off 
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the Sierra de Pie de Palo or Sierra Valle Fértil. The strata at Olta-Malanzán paleovalley are 

sourced from the Sierra de Chepes and Los Llanos ranges, with a minor component source 

region further to the east. The compiled paleoflow measurements provide clear evidence that 

there were discrete glaciated uplands centered on the Protoprecordilleran fold-and-thrust belt, 

while the eastern Sierras Pampeanas remained unglaciated. 
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Figure 5. Correlation chart for the late Paleozoic Paganzo Group strata for the sites in 

the Paganzo Basin, Argentina mentioned in the text. Ages and units are based on Limarino 

et al. (2002a, 2002b, 2006, 2014), Césari et al. (2011, 2019). 
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Figure 6. A. Map of the Paganzo Basin during the late Paleozoic with arrows indicating paleoflow 

measurements from numerous publications, modified from Henry et al. (2008). Paleoflow data are from the 

following list of papers: (1) Agua Hedionda, Huaco - Bossi and Andreis (1981), Marenssi et al. (2002, 2005), 

López Gamundí and Martínez (2000), this study (2) Olta-Malanzán Paleovalley - Andreis et al. (1986), this 

study (3) Los Pozuelos Creek - Marenssi et al. (2005) (4) Loma de Los Piojos - López Gamundí and Martínez 

(2000), Alonso-Muruaga et al. (2012) (5) Cerro Bola, Cerro Guandacol - Andreis et al. (1975), López 

Gamundí et al. (1994), Dykstra et al. (2011), Fallgatter et al. (2019; (6) López Gamundí and Amos (1985), 

López Gamundí et al. (1994) (7) Cortaderas - Scalabrini Ortiz (1972), López Gamundí et al. (1994), Henry et 

al. (2010) (8) Talacasto - Aquino et al. (2014) (9) Henry et al. (2008) (10) Dykstra et al. (2006, 2007) (11) 

Quebrada Grande - Kneller et al. (2004), Dykstra et al. (2006), Valdez Buso et al. (2017), Fallgatter et al. 

(2019) (12) Hoyada Verde, Leoncito, Majaditas - González (1981), López Gamundí (1984), López Gamundí et 

al. (1994), López Gamundí and Martínez (2000, 2003); this study (13) Agua de Jagüel and Tramajo Creek - 

López Gamundí (1984), López Gamundí et al. (1994), Henry et al. (2008, 2010); this study (14) El Ratón 

Formation - López Gamundí et al. (1994). B. A plan-view and a cross-sectional view of discrete alpine glacial 

centers found throughout the Paganzo Basin (cf. Limarino et al., 2002a, 2006, 2014; Henry et al., 2008; Isbell 

et al., 2012). C. Extensive glaciation from an ice sheet centered in the Eastern Sierras Pampeanas that 

covered, and then drained through the uplands across the Paganzo Basin (cf. Valdez Buso et al., 2017; Milana 

and Bercowski, 1987, 1990, 1993; Milana, 1988; Milana et al., 1987; Aquino et al., 2014). Modified after 

Henry et al. (2008) and Moxness et al. (2018).  
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Figure 7. Google Earth aerial image with the geologic units of the Paganzo Group mapped showing the 

locations of the paleoflow measurements (white ellipsoids) and detrital zircon samples (yellow ellipsoids). A. 

The Olta-Malanzán paleovalley system (OMPV) with the Malanzán, Loma Larga, Solca, and La Colina 

formations (Andreis et al., 1986; Limarino et al., 2014; Moxness et al., 2018; Pauls et al., 2019). Detrital 

zircon simple ARG203 is from Craddock et al. (2019), and sample 29TR4 is from Enkelmann et al. (2014). B. 

The Agua Hedionda anticline, near the town of Huaco with the Guandacol, Tupe and Patquía formations. 

Mapped units are from Marenssi et al., 2002. Detrital zircon sample ARG318 is from Craddock et al. (2019), 

and sample CDH0923-3S is from this study.   
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Figure 8. Simplified stratigraphic columns for the Guandacol and Malanzán formations. Detrital zircon sample 

within the sections indicated by stars. Paleoflow orientations collected from strata (at OMPV only) or striated 

pavements (at Huaco only) depicted using rose diagrams with number of measurements (n). The paleoflow locations 

reference those mapped in Figure 3. 
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Figure 9. Exposures of the Malanzán Formation at OMPV. A. Base of Malanzán Formation at OMPV locality. The 

diamictite facies (debris flow within the white dashed lines) overlying sandstone facies and basement (Olta phyllite 

and schist). Location of sample 29TR4 from Enkelmann et al. (2014). B. Conglomerate facies from a tributary 

paleovalley. Note dip of clinoforms to the right. C. Gilbert delta with a S-SW paleocurrent measurement from the 

upper Malanzán Formation, OPV. Note the occurrence of topset, foreset and bottomset beds. D. Tool marks from 

interbedded mudstone and sandstone facies in the MPV: MVM1 locality near the location of sample ARG203 from 

Craddock et al. (2019). E. Interbedded mudstone and sandstone facies in the MPV.  
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Figure 10. Exposures of the Guandacol Formation and its contact with the San Juan Limestone at 

Huaco. A. Glacial grooves around siliceous nodules in San Juan Limestone (AH). Arrow indicates 

ice flow direction. B. Thin-bedded diamictite facies 4 meters above the contact with the San Juan 

Limestone with a marl bed. C. Thin-bedded diamictite facies directly overlying San Juan Limestone. 

D. Thick-bedded diamictite facies. E. Wavy bedding within the uppermost Guandacol Formation, 

near the location of sample CDH0923-3S. 
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Figure 11. Concordia plot of all analyzed concordant zircon U-Pb measurements for 

detrital zircon sample CDH0923-3S from the Malanzán Formation, OMPV locality. 

See Figure 3B for exact location. 
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Figure 12. Mesoproterozoic-Carboniferous igneous and metamorphic provinces for the Paganzo Basin area 

(demarcated by the dotted line) and their available zircon geochronology (n=398). Map is modified from Dahlquist 

et al. (2010). The four samples considered in this study come from the two areas highlighted by the yellow boxes: 

AH, Lower Guandacol Fm. – ARG318 (Craddock et al., 2019), Upper Guandacol Fm. – CDH0923-3S; OMPV, 

Lower Malanzán Fm. – 29TR4 (Enkelmann et al., 2014), Upper Malanzán Fm. – ARG203 (Craddock et al., 2019). 

The cited literature for the igneous and metamorphic zircon compilation is as follows: (1) Sierra de Pie de Palo - 

Vujovich et al., 2004; Naipauer et al., 2010a (2) Sierra de Umango - Varela et al., 2003, 2005 (3) Sierra de Valle 

Fértil -  Pankhurst et al., 2000 (4) Sierra de Famatina - Pankhurst et al., 2000 (5) Sierra de Velasco - Toselli et al., 

2003; Pankhurst et al., 2000 (6) Sierras de Chepes, Los Llanos - Pankhurst et al., 2000 (7) Sierra de San Luis - 

Vujovich and Ostera, 2003; Drobe et al., 2009  (8) Sierra de Córdoba - Rapela et al., 1998, Pankhurst et al., 2000 

(9) Sierra Norte - Leal et al., 20003; Llambías et al., 2003. 
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Figure 13. Cumulative probability distribution for the four Paganzo Group samples and the basement units in the 

region. Lower Guandacol Fm. – ARG318 (Craddock et al., 2019), Upper Guandacol Fm. – CDH0923-3S, Lower 

Malanzán Fm. – 29TR4 (Enkelmann et al., 2014), Upper Malanzán Fm. – ARG203 (Craddock et al., 2019). The 

cited literature for the igneous and metamorphic zircon compilation is as follows: (1) Sierra de Pie de Palo - 

Vujovich et al., 2004; Naipauer et al., 2010a (2) Sierra de Umango - Varela et al., 2003, 2005 (3) Sierra de Valle 

Fértil -  Pankhurst et al., 2000 (4) Sierra de Famatina - Pankhurst et al., 2000 (5) Sierra de Velasco - Toselli et al., 

2003; Pankhurst et al., 2000 (6) Sierras de Chepes, Los Llanos - Pankhurst et al., 2000 (7) Sierra de San Luis - 

Vujovich and Ostera, 2003; Drobe et al., 2009  (8) Sierra de Córdoba - Rapela et al., 1998, Pankhurst et al., 2000 

(9) Sierra Norte - Leal et al., 20003; Llambías et al., 2003. 
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Figure 14. The revised depositional environment and glacial extent model for the mid-Carboniferous Paganzo 

Basin. A. Ice centers and glacial deposition restricted to the western Paganzo Basin and Calingasta-Uspallata and 

Río Blanco basins. Paleoflow directions are from the same dataset as in Figure 1. Basin reconstruction map 

modified from López Gamundí et al. (1994). Paleoflow directions modified from Henry et al. (2008) and Moxness et 

al., (2018). B. Cross-section of the western margin of Gondwana with ice centers highlighted. Tectonic cross-section 

modified from Henry et al. (2008) and Moxness et al., (2018). 
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Abstract 

During the mid-Carboniferous, ice centers located in present-day western Argentina disappeared 

until the late Cenozoic with glaciation of the Andes. The disappearance of mid-Carboniferous 

glaciers and the subsequent climate shift, recorded in the Paganzo Basin, has been attributed to 

global events and drivers, such as increased atmospheric CO2 concentrations and the shifting 

position of Gondwana across the South Pole. However, glaciers continued at the same 

paleolatitude in eastern South America and did not disappear from Gondwana until the Late 

Permian. This study investigates links to local drivers that acted in combination with other global 

drivers to explain the early deglaciation along the western margin of Gondwana. To do this, 

several outcrops within the eastern portion of the Paganzo Basin in western Argentina were 

sampled for the Chemical Index of Alteration (CIA) geochemical analyses. Here, we test the 

applicability of the CIA as a paleoclimate proxy on strata in the Olta-Malanzán paleovalley that 

historically was thought to have been glaciated. A recent study by the authors has shown that the 

paleovalley was not glaciated, but owes its origin to extension and excavation by fluvial 

processes. However, the late Paleozoic stratigraphy of this paleovalley system is similar to the 

rest of the Paganzo Basin. The results from the paleovalley samples show that this area was 

intermittently humid and arid through time, but with an overall arid profile. This signature is 

predominantly due to the nature of the paleovalley, which was subjected to rapid burial from 

frequent rock falls, progradation alluvial fans/fan deltas, and lacustrine sediment gravity flows 

(Malanzán Fm.), which prevented any significant chemical weathering. While the overall 

Pennsylvanian climatic signature appears to be relatively arid (Malanzán, Loma Larga, and Solca 

Fms.), it seems that the climate during the deposition of the late Pennsylvanian and Permian La 

Colina Formation was more humid than previously thought. 
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1. Introduction 

The climatic shift from icehouse to greenhouse of the late Paleozoic is of great interest to 

scientists due to its potential analogue to current global climate change (cf. Gastaldo et al., 

1996). The late Paleozoic ice age (LPIA) was the longest-lived ice age (approximately 360-255 

million years ago) of the Phanerozoic (cf. Gastaldo et al., 1996). The LPIA is the only example 

of when a vegetated and biologically complex Earth shifted from an icehouse to a greenhouse 

state (Gastaldo et al., 1996; Montañez et al., 2007; Fielding et al., 2008a; Isbell et al., 2012; 

Montañez and Poulsen, 2013; Limarino et al., 2014). Because of this, the LPIA will aid in 

developing an understanding of the drivers influencing changing climatic regimes, which in turn 

will provide insight on how such drivers affect modern climate change.  

One of the longstanding questions of the late Paleozoic centers around how different 

regions (i.e. low paleolatitude versus high paleolatitude) of Earth responded to a global shift in 

climate. Thus, regional studies at high chronostratigraphic resolution will add to our 

understanding of environmental responses to changing global climate. Much of the research 

concerning the LPIA focuses on determining the timing and extent of the glaciations in 

Gondwana. Traditional LPIA hypotheses and models centered around the idea that there was one 

large ice sheet that covered Gondwana, and that it persisted for the 100 Ma duration of the LPIA 

(i.e. from the late Devonian to the late Permian; Frakes, 1979; Veevers and Powell, 1987; Frakes 

and Francis, 1988; Frakes et al., 1992; Ziegler et al., 1997; Hyde et al., 1999; Scotese, 1997; 



 

98 

 

Blakey, 2008). As more studies were conducted over time, more and more regional evidence has 

shown that the LPIA glaciation was more dynamic and complex than previously understood 

(Crowell and Frakes, 1970; López-Gamundí, 1997; Visser, 1997; Isbell et al., 2003, 2008, 2012; 

Fielding et al., 2008a, 2008b; Heckel, 2008; Rygel et al., 2008; Gulbranson et al., 2010; 

Taboada, 2010; Montanez and Paulson, 2013; Griffis et al., 2018). The glacial intervals occurred 

on much smaller scales (i.e. approximately one to several million years in length) and in different 

regions across Gondwana, beginning in South America and northern Africa during the late 

Devonian (the Frasnian or Famennian), and then spreading across the rest of Gondwana during 

the Carboniferous and into the Permian (Caputo and Crowell, 1985; Veevers and Powell, 1987; 

Eyles et al., 1993;  López-Gamundí, 1997; Isbell et al., 2003, 2012; Caputo et al., 2008; Pérez 

Loinaze et al., 2010; Fielding et al. 2008c; Limarino et al., 2014; Frank et al., 2015; Metcalfe et 

al., 2015). Additionally, there have been studies highlighting potential driving mechanisms (i.e. 

the drift of Gondwana across the paleo South Pole, changes in the configurations of the 

continental plates, changes in atmospheric CO2, changes in insolation due to orbital parameters, 

and orogenic events) for these changing climatic conditions (c.f. Caputo and Crowell, 1985; 

Scotese and Barrett, 1990; Eyles et al., 1993; Heckel, 1994, 2008; Isbell et al., 2003, 2008; 2012; 

Royer et al., 2004; Montañez et al., 2007; Rygel et al., 2008; Horton and Poulsen, 2009; Tabor 

and Poulsen, 2008; Gulbranson et al., 2010; Montañez and Poulsen, 2013; Limarino et al., 2014). 

An emerging perspective of the LPIA is forming from these studies, providing new insight into 

the glaciation-climate relationship and the forcing and feedback mechanisms that drive such 

global change. However, there is still much to be gained by understanding the climate-drivers on 

a regional scale. This paper aims to develop a high-resolution record of paleoclimate using the 

Chemical Index of Alteration (CIA) in a complex basin of southwestern Gondwana. The 
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Paganzo Basin presents a unique problem in that glacial ice develops at the onset of the Visean 

stage and then disappears in the Early Pennsylvanian while other parts of Gondwana at similar 

paleo-latitudes, such as the southern Paraná Basin in Brazil, persisted (López-Gamundí et al., 

1994; López-Gamundí, 1997; Holz et al., 2008; Caputo et al., 2008; Henry et al., 2008; Rocha-

Campos et al., 2008; Limarino et al., 2014; Griffis et al., 2018;  Fig. 15).  

2. Paganzo Basin 

It is generally accepted that the Paganzo Basin of western Argentina developed as a 

broken foreland basin as the tectonic activity along the western (i.e. Panthalassan) margin of 

Gondwana evolved due to flatbed (progressively shallowing) subduction (Limarino et al., 2002, 

2014; Ramos and Folguera, 2009; Astini, 2010; Fig. 15). Transpressional mechanisms for basin 

subsidence have also been proposed (Ramos and Folguera, 2009; Martina et al., 2018). From the 

Cambrian through the early Carboniferous, there were various terranes that accreted to western 

Gondwana (Pankhurst et al., 1998; Ramos et al., 1998; Ramos, 1999; Ramos et al., 2015). The 

ancestral Sierras Pampeanas belt that bounds the Paganzo Basin to east was formed during the 

Cambrian, as the Pampia terrane docked to the Rio de La Plata craton (Rapela et al., 1998; 

Ramos et al., 2015). The Famatina system developed in the Ordovician, created by the thrusting 

and uplift associated with the accretion of the Cuyania arc terrane (Pankhurst et al., 2000; 

Ramos, 1999). The uplift of the Protoprecordillera range is associated with the western margin 

shifting westward as the Chilenia terrane docked (Ramos et al., 1998; Ramos, 1999).  

Although much is known about the timing of the orogenic events, there are still differing 

interpretations of the development and nature of glaciation within the Paganzo Basin. According 

to Astini et al. (2009), the paleotopography of the interior of the basin is thought to have been 
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peneplained due to an overriding ice sheet that existed around 320 Ma. As the uplift of the 

Protoprecordillera mountain belt occurred due to the accretion of Chilenia to South America, this 

ice sheet is thought to have diminished in size, leaving behind alpine glaciers carving out U-

shaped valleys in both the eastern and western margins of the basin (Sterren and Martínez, 1996; 

Carignano et al., 1999; Astini et al., 2009; Astini, 2010). These pleneplained surfaces, though, 

have been shown to have been created later, and are much younger features than the late 

Paleozoic, more likely to be Jurassic to Cenozoic in age (Carignano et al., 1999; Rabassa, 2014; 

Rabassa et al., 2014). Additionally, while there is abundant evidence for fjord-like and U-shaped 

valleys on the western margin of the Paganzo Basin (cf. Dykstra et al., 2006; Henry et al., 2008; 

Isbell et al., 2012; Aquino et al., 2014; Limarino et al., 2014), there is limited evidence for the 

same on the eastern margin of the basin (Sterren and Martínez, 1996; Net and Limarino, 1999; 

Net et al., 2002; Net and Limarino, 2006; Socha, 2007; Socha et al., 2014). Instead, much of this 

evidence comes from an isolated paleovalley that runs through the Sierra de Chepes and Sierra 

de Los Llanos (Fig. 15). 

The Paganzo Basin contains the strata of the Paganzo Group, which has been subdivided 

into numerous formations of time-equivalent strata over time (Fig. 16). The correlations of these 

different units are usually made by using lithological similarities, palynological and fossil plant 

records from the various sections, and radiometric ages obtained from the western units (cf. 

Gulbranson et al., 2010, 2015; Césari et al., 2011). In recent literature, most of what is written 

about the Paganzo Basin comes from the western units of the Paganzo Group, the Guandacol, the 

Tupe, and the Patquía Formations, and these depositional processes and environments are often 

then extrapolated basin-wide. It has been suggested that as early as the Kasimovian the Paganzo 

Basin experienced widespread and pervasive aridity, where in some portions erg-like dune fields 
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developed (Limarino et al., 1984; Morelli et al., 1984; Guena et al., 2010; Gulbranson et al., 

2010; Krapovickas et al., 2010; Césari et al., 2011). No study has been conducted on the deposits 

across the basin to establish a high-resolution record of the paleoclimate as the glacial centers 

retracted and ultimately disappeared through the Carboniferous-Permian boundary. 

Here we focus on a paleovalley and uplift in the eastern portion of the Paganzo Basin, 

first to test a paleoclimate reconstruction method, and second to determine whether the 

generalization of the paleoclimate interpretations made from the western margin localities are 

similar or different from those of the eastern sections. For the eastern margin, it is currently 

understood (e.g. Moxness et al., 2018) that the paleovalley was not carved by glaciers, and is 

therefore not considered a sub-or pro-glacial environment. For the purpose of this study, we 

instead propose to use the term “periglacial,” as it relates to environments that are under the 

influence or within the realm of recurrent freeze-thaw cycles (Slaymaker and Kelly, 2007). 

Paleotopographic highs along the western basin margin (i.e. the Precordillera region and 

a developing arc farther west; Ramos et al., 1988; Mpodozis and Ramos, 1989) likely played a 

role in the changing climatic conditions within the basin, based on evidence from 

sedimentological and stratigraphy studies conducted in the Paganzo Basin (Limarino et al., 2014; 

Moxness et al., 2018). This study aims to assess whether the various ancestral mountain belts 

(i.e. the Sierras de Cordoba and Sierra de San Luis of the Pampean orogeny in the east, the 

Famatina magamatic arc system in the central portion, and the Protoprecordilleran range in the 

west; Fig. 15) indeed played a role in this unique transition from glacial to post-glacial to arid 

conditions along the western margin, and from periglacial to intensely arid conditions in the 

eastern ranges during the end of the Carboniferous. 
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2.1. Eastern Paganzo Basin: Olta-Malanzán Paleovalley (OMPV) 

  The Olta-Malanzán paleovalley presents an idealized location to test the applicability of 

a high-resolution paleoclimate reconstruction using geochemistry analyses such as the CIA 

because it represents a continuous depositional and localized succession. The paleovalley is cut 

through a series of uplifted blocks that are known by different names: Sierra de Chepes, Sierra de 

los Llanos, Sierra de Malanzán, and the Sierra de los Luján (Fig. 17). The valley cuts through 

Ordovician (470-450 Ma) I-type and S-type granitoid bodies (i.e. Chepes Granodiorite and The 

Olta-Malanzán paleovalley presents an idealized location to test the applicability of a high-

resolution paleoclimate reconstruction using geochemistry analyses such as the CIA because it 

represents a continuous depositional and localized succession. The paleovalley is cut through a 

series of uplifted blocks that are known by different names: Sierra de Chepes, Sierra de los 

Llanos, Sierra de Malanzán, and the Sierra de los Luján (Fig. 17). The valley cuts through 

Ordovician (470-450 Ma) I-type and S-type granitoid bodies (i.e. Chepes Granodiorite and 

Porphyritic Granodiorite, Tuani Granite, Asperezas Granite), Tama Gabbro, as well as a few 

metasedimentary units (Olta Phyllite and Schist), and some units of gneiss and migmatite 

(Pankhurst et al., 1998, 2000). The granitoid batholith of these sierras was emplaced at about the 

same time, approximately middle-late Ordovician, as part of the continental Famatinian 

magmatic arc that developed prior to the docking of the allochthonous Protoprecordillera terrane 

(Astini et al., 1995; Astini, 1998; Pankhurst et al., 1998). The S-type granites (e.g. Tuaní and 

Asperezas Granites) and metamorphic complexes (e.g. phyllite, schist, gneiss and migmatite) are 

considered to represent the remnants of the country rock into which the I-type granitoids were 

emplaced (Pankhurst et al., 1998, 2000), but on the whole, these basement complexes do not 

contribute heavily to the geochemistry of the paleovalley system strata due to the limited areal 
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extent (Net and Limarino, 1999; Net and Limarino, 2006; Fig. 17). The late Paleozoic sediments 

are derived from the surrounding granitoid batholith units and fill the valley until it was 

overtopped sometime during the early Permian (Andreis et al., 1986, 1998). The paleovalley was 

re-exhumed due to flat-slab subduction of the Cenozoic Andean orogeny events (Jordan et al., 

1989; López-Gamundí et al., 1994; Dávila et al., 2007; Enkelmann et al., 2014; Enkelmann and 

Garver, 2015). The late Paleozoic paleovalley system is currently exposed as the present day 

Olta and Malanzán valleys and tributary systems exhume it (Fig. 18).  

The main trunk of the paleovalley system runs from east to west, starting near the town of 

Olta, to the town of Malanzán in the west (Fig. 18). There are other smaller tributary valleys that 

fed into the main valley, and vary in size and importance in terms of sedimentary contribution, 

with the largest being the Anzulón paleovalley (Fig. 18), which is interpreted to have developed 

sometime during the Permian, after sediment overtopped the valley walls (cf. Andreis et al., 

1984; Cuneo and Archangelsky, 1996). The exhumed valley is approximately 40 km long along 

its axis, and varies greatly in its width, from less than 200 m in the east to more than 5000 m in 

the west. 

The paleovalley itself was initially interpreted as having been developed along a graben 

due to extensive tectonic activity during the Carboniferous (Andreis et al., 1986). Later studies 

implied a glacier-proximal origin (Sterren and Martínez, 1996; Net, 1999; Net and Limarino, 

1999; Net et al., 2002), and a more recent study by Socha et al. (2014) has interpreted the 

paleovalley as having been carved by a glacier, citing evidence of the presence of a U-shaped 

valley and subglacial deposits throughout the Malanzán Formation. The present U-shape of the 

valley is cut on top of the Paleozoic fill and is therefore not representative of the original shape 

and formation of the valley (Moxness et al., 2018). The Olta-Malanzán succession consists of the 
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Malanzán, Loma Larga, Solca, and La Colina Formations (Fig. 16, 18), and was redefined in the 

literature as more recent studies on the LPIA have been conducted in the Paganzo Basin, as 

summarized below. The base of the Malanzán Formation in particular has long been interpreted 

as a glacial diamictite (Sterren and Martínez, 1996; Limarino et al., 2014; Socha et al., 2014), or 

as conglomeratic units of alluvial fan deposits (Andreis et al., 1986; Net and Limarino, 1999; Net 

et al., 2002; Net and Limarino, 2006). Other studies also include evidence of marine depositional 

environments within the Malanzán Formation, leading to the interpretation that the paleovalley 

was a paleofjord (Buatois and Mángano, 1995; Net et al., 2002). However, recent work by 

Moxness et al. (2018) has questioned this assertion by concluding that an initial lacustrine setting 

was truncated by prograding alluvial fans and fluvial systems, which ultimately filled and 

overtopped the valley walls, based on the sedimentological features and facies analysis (Fig. 19). 

These interpreted depositional processes do not indicate that there were glaciers nearby during 

the time of deposition.  

3. Chemical Index of Alteration as a Paleoclimatic Indicator 

The Chemical Index of Alteration (CIA) has been used in many studies to ascertain the 

humidity of an environment in the ancient rock record (cf. Nesbitt and Young, 1982; Maynard, 

1992; Fedo et al., 1995; Bauluz et al., 2000; Price and Vebel, 2003; Sheldon, 2006; Soreghan and 

Soreghan, 2007; Sheldon and Tabor, 2009; Goldberg and Humayun, 2010). The CIA was 

originally created to determine the amount of chemical weathering that takes place during the 

deposition of clastic sediments in varying depositional environments (Nesbitt and Young, 1982). 

Nesbitt and Young developed the equation 

                             CIA = (Al2O3/ Al2O3 + CaO* + Na2O + K2O) x 100 
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where CaO* represents the calcium content within silicate minerals. They operated under the 

assumption that the degradation of feldspars into clay minerals constitutes the main process 

during chemical weathering. This process is enhanced under humid climatic conditions, which 

leads to higher CIA values in muds deposited in these environments. Conversely, in arid 

environments, this degradation process would presumably be negligible, and therefore, these 

sediments would result in lower CIA values. Nesbitt and Young (1982) geochemically analyzed 

a variety of typical clastic sedimentary rock types and calculated average CIA values. For 

average shale and mudrock, the CIA values range from 70 to 75 and correspond to the high 

content of illite and chlorite that are contained in those types of rocks. On the other hand, muds 

that develop in tropical environments result in values from 80 to 100, and generally contain high 

percentages of kaolinite. Those deposits from glacial and arid environments have values ranging 

from 50 to 70, which correspond to the presence of unweathered K-feldspar and plagioclase 

mineral clasts (Nesbitt and Young, 1982).  

Knowing the mineralogical composition of the source rock and calculating its CIA value 

is of utmost importance, because different minerals produce varying CIA values (Price and 

Vebel, 2003; Garzanti and Resentini, 2016). Nesbitt and Young. (1996) determined that 

comparing the mineralogy of bedrock, soils and sediments must be completed to understand 

weathering effects. For example, in the case of a granite, the CIA value would depend entirely on 

the geochemistry and mineral composition of the granite itself (Nesbitt and Young, 1989). Each 

mineral in a granite has its own CIA value, i.e. feldspars and biotite are 50, muscovite and illite 

are 75, and kaolinite is 100 (Nesbitt and Young, 1989). As illite is a common alteration product 

of K-feldspar, and illites generally form as granite weathers, this could potentially skew the 

subsequent material weathered into having a higher CIA value (Weaver, 1967; Weaver and 
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Pollard, 1973; Brock, 1943; Wahlstrom, 1948; Sand and Bates, 1953; Grant, 1963; Nesbitt et al., 

1980; Nesbitt and Young, 1989). 

Chemical weathering of bedrock materials is the reaction of inorganic and organic acids 

of water, groundwater or even perhaps precipitation, with the minerals contained in the rock 

(Nesbitt et al., 1997). For igneous rocks, each mineral will weather at a different rate, and will 

weather to different clay minerals, and because each igneous rock contains a different percentage 

of each mineral, the chemical index value can vary from rock type to rock type (Figure 4). Illite, 

for example, is a common alteration product of K-feldspar, and illites will generally form as 

granitic rocks weather, where as gabbros and tonalites contain more plagioclase, and will 

weather to smectite clays (Brock, 1943; Wahlstrom, 1948; Sand and Bates, 1953; Grant, 1963; 

Weaver, 1967; Weaver and Pollard, 1973; Nesbitt et al., 1980; Nesbitt and Young, 1989). 

Furthermore, Nesbitt and Young (1989) and Nesbitt and Markovics (1997) show that 

mature weathering profiles, while complex mineralogically, follow similar trends regardless of 

the climatic conditions of the environment, as a certain mineral will weather in more or less a 

linear progression through time. Therefore, igneous rocks of like mineral composition (i.e. 

granites and granodiorites vs. tonalites and gabbros) tend to display similar weathering trends, 

but they will plot in different locations on A-CN-K plots (Nesbitt and Young, 1989). Average 

fresh granites and granodiorites will plot, using an A-CN-K diagram, between 45 and 55 (Nesbitt 

and Young, 1989; Fedo et al., 1995; Nesbitt and Markovics, 1997; Bahlburg and Dobrzinski, 

2011). Because granites and granodiorites tend to contain higher percentages of plagioclase and 

K-feldspars, these rocks will weather to illite and kaolinite, which could result in higher CIA 

values for the resulting material developed from the breakdown of the parent material. Tonalites 
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and gabbros contain more CaO and very little K2O, and therefore will weather to smectites and 

kaolinite (Nesbitt and Young, 1989).  

There are, however, a few processes that could complicate this simple weathering 

progression, such as winnowing or infiltration of fines and diagenetic reactions associated with 

the introduction and interaction with groundwater. Regardless, it may prove to be difficult to 

constrain climate from a CIA value alone without knowledge of the mineral constituents of the 

parent material first. Taking into consideration other factors and processes that could lead to 

skewed results (i.e. metasomatism and illitization leading to increased K+ concentrations, 

hydraulic sorting and inclusion of a wide variety of grain sizes analyzed, as well as including 

CaO contents of carbonates), using the CIA proves to be a powerful paleoclimate proxy 

(Maynard, 1992; Fedo et al., 1995; Bauluz et al., 2000; Price and Vebel, 2003; Sheldon, 2006; 

Soreghan and Soreghan, 2001; Retallack, 2009; Sheldon and Tabor, 2009; Goldberg and 

Humayun, 2010). 

4. Methods 

Field work was conducted in March of 2015 and August of 2016. Standard stratigraphic 

measurements and methods to examine the strata, such as section measurements, identification of 

sedimentary structures, contacts, and stratigraphic surfaces, as well as lithological and facies 

analyses were used. These measurements were taken in order to determine depositional 

environment evolution through time and to compare the CIA results with the environments as 

determined from physical sedimentology. Careful attention was paid to the presence or absence 

of the following features: striated pavements, striated clasts, sheared diamictites versus clast-

supported conglomerates, inverse versus normal grading within foresets, fine-grained large-scale 
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cross-bedded sandstone (i.e. eolian dunes), paleosol development. The occurrence of these 

features are indicated in Table 1. In order to establish the occurrence of glaciers in the eastern 

Paganzo Basin, a facies and environmental analysis of the Malanzán Formation in the Olta valley 

was conducted concurrently to this study (Moxness et al., 2018) and is used to complement the 

facies analysis of the upper section (Loma Larga through La Colina Formations) that is presented 

here. No glacial signatures were found in the Malanzán Formation. A total of 45 sections were 

measured along the roads that follow along the main axis of the paleovalley. To reduce a 

weathering bias during sample collection, which could potentially skew the dataset towards low 

or high CIA values, only clay to silt-sized samples (i.e. < 0.004 – 0.0062 mm) were collected 

from trenches dug >10 cm into the outcrops, thus providing fresh, unweathered material. Rock 

units that contained outsized clasts were also avoided, so as not to create a “fresh-material” bias 

in the results. As such, an equal distribution of samples throughout the measured sections could 

not be achieved, especially within coarse-clastic horizons. Samples were instead collected from 

every unit that had the desired grain size (i.e. mudrocks). Because of this, some parts of the 

measured sections contain a higher sample abundance, and therefore provide a higher-resolution 

record of the CIA values.  

The CIA analysis was conducted using the calculations found in Nesbitt and Young 

(1982) and the geochemical preparations and x-ray fluorescence (XRF) and diffraction (XRD) 

methodologies found in McHenry (2009) and McHenry et al. (2017). Samples of mudrock and 

shales were ground and crushed using a tungsten-carbide shatterbox, left to dry overnight in a 

drying oven, and then heated to 1050° C to determine loss on ignition. XRD results (Bruker D8 

Focus diffractometer) were used to determine the mineralogy of the samples, which indicated if a 

sample was viable for further study (i.e. contains less than 20% calcite as per Goldberg and 
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Humayun [2010]). XRF analyses using a Bruker S4 Pioneer were then conducted on the 

appropriate samples, after which the data was used in order to determine the CIA values. 

5. Stratigraphy of the OMPV 

At the base of the stratigraphic section there have been several facies of the Malanzán 

Formation described in detail in Moxness et al. (2018; Fig. 20A). The Malanzán Formation 

outcrops in both portions of the paleovalley (Fig. 18). In the western Malanzán portion, the 

middle and upper members of the Malanzán Formation appear. In the eastern Olta paleovalley, 

the whole succession is present, and samples were primarily collected from this portion used for 

this study (Fig. 19). There is no continuous outcrop from one end of the paleovalley to the other, 

so the exact position of the middle members is based on the stratigraphic correlation of 

Bracaccini (1948), Azcuy (1975), and Andreis et al. (1986).  

The lowermost Malanzán Formation contains thick clast-supported conglomerates, thick 

medium-coarse-grained rippled and graded sandstones suggesting deposition within a standing 

body of water that has been interpreted as lacustrine in origin (Andreis et al., 1986; Buatois and 

Mángano, 1994; Moxness et al., 2018). The middle member of the Malanzán Formation contains 

thicker packages of interbedded mudstones and sandstone, contains evidence of marine life with 

the appearance of acritarchs, and is interpreted as a regional or local rise in relative sea level (Net 

and Limarino, 1999; Gutiérrez and Limarino, 2001; Fig. 20B). Both ends of the paleovalley 

contain the upper member, which consists of large cross-bedded conglomeratic facies. These 

have been identified and interpreted as gilbert deltas, are thought to have formed due to cold 

conditions, and have been interpreted in the literature to correspond to a post-glacial 
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transgression across the basin (Sterren and Martínez, 1996; Net and Limarino, 1999; Net, 2002; 

Gutiérrez and Limarino, 2001; Limarino et al., 2014; Moxness et al., 2018). 

The overlying Loma Larga Formation consists of stacked cross-bedded sandstone units 

and finer-grained, silty sandstones (Fig. 19). The cross-bedded sandstone facies contains coarse-

medium grained beds with sharp erosional boundaries. The grains themselves are predominantly 

quartz, plagioclase and altered K-feldspar with some beds containing muscovite mica, and are 

considerably whiter in appearance than the sandstones of the Malanzán Formation. The siltier 

facies often contain horizontal beds with no structures preserved. This facies also contained 

layers of fossilized plant remains, and are identified as Cordaitales, calamites, lycopods, and 

pteridosperms (Césari et al., 2011). The Loma Larga Formation crops out in both portions of the 

paleovalley, but the units that are located in the Malanzán valley are at a steep subvertical 

structural dip toward the east. For the purposes of this paper, the samples were all taken from the 

Olta valley (Andreis et al., 1986). These units are all interpreted as stacked fluvial systems 

flowing through the paleovalley with occasional fluvial flooding that led to thin splay deposits 

along vegetated banks (Fig. 20C-D; Andreis, 1998). 

In the overlying Solca Formation, the most dominant facies is boulder conglomerate (Fig. 

21A). The conglomerates are often clast-supported and contain sand as the matrix. The clasts 

range widely, from gravel-sized to cobbles to boulders that are meters in diameter. However, 

though reported as Malanzán glacial deposits in Socha et al. (2014), these conglomerates are 

interpreted here, and in other works (e.g. Andreis et al., 1986; Limarino et al., 2014), as alluvial 

fan deposits. Some of these fans are preserved as amalgamated lens complexes, and one complex 

appears to have convex geometries stacked on top of one another, and is interpreted here as an 

alluvial fan entering into the main axis of the valley from a tributary (Fig. 21A). There are few 
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places where a coarse-grained sandstone facies occurs within the Solca Formation, which is 

immediately overlain by a fine-grained siltstone facies that contains abundant horizons of fossil 

plant material. The fossils in the siltstone facies were recorded as pteridosperm, conifer needles, 

and lycopods. This section also contains poorly developed ripples and is interpreted here as 

fluvial to lacustrine depositional environments, respectively, with associated vegetated flood 

plain environments (Andreis et al., 1986; Cúneo, 1987; Cúneo, 1990; Limarino et al., 1996). 

There was one paleosol recorded in the measured section of the Solca Formation, and it accounts 

for the finest-grained facies within the stratigraphic column in this portion of the paleovalley 

(Fig. 21B). According to the criteria established in Mack et al. (1993), the paleosol here is 

considered to be an argillosol, with some horizon development and clay content accumulated. 

Overlying the paleosol is another series of stacked conglomeratic units, and as the formation 

nears its upper boundary with the La Colina Formation, the boulders increase in size. The dip of 

the formation also decreases from 8° at its base to nearly horizontal at its upper boundary. 

The neighboring Permian Anzulón paleovalley has outcrops of the lower Permian Arroyo 

Totoral Formation. Andreis et al. (1984) described two sections measured from near the 

boundary of the two units. The first section contained two facies: a fine-grained mudstone facies 

and a coarse-grained sandstone facies with outsized clasts (Fig. 21C). The boundary between the 

two facies is sharp and erosional. The finer-grained mudstone facies records/displays a color 

change from white-gray at the base to red at the top, and contains very fine sand lenses (Fig. 

21C). The sandstone facies contains weak cross-bedding. The second Arroyo Totoral Formation 

section records a very similar coarsening-upward trend. The base of the section is also a 

mudstone facies, but is characterized by silt interbeds and organic-rich layers containing 

abundant plant remains. The plant remains are similar to those recorded near the middle of the 
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Solca Formation: Calamites, cordaitaleans and conifer needles (Cúneo, 1984; Cúneo and 

Archangelsky, 1996). The cross-bedded sandstone facies has an erosive contact into the 

underlying mudstone facies. Overall, both sections display coarsening-upward patterns 

suggesting a fluvial progradation into a floodplain or lacustrine system, or a return to a braided 

fluvial system (Andreis et al., 1984; Cuneo and Archangelsky, 1996; Andreis, 1998). 

The La Colina Formation is a classical red bed succession composed of interbedded 

mudstone and sandstone facies, coarse-grained sandstones, and fine-grained cross-bedded 

sandstone facies (Fig. 21D). The base of the formation contains intercalated sand and mud beds 

with cross-bedded medium sandstones. The alternating sand and mudstone units contain very 

fine-grained sand beds with silt and clay-sized particles contained in the alternating mudstone 

beds (Figs. 21D, E). These units contain ripples, rill marks, and adhesion warts, indicating 

subaerial exposure. The alternating layers are interpreted here as splay deposits or as floodplain 

deposits, where water has spilled over and out of the channels and results in thin, fine-grained 

units. Higher in the succession, the mudcracks, rill marks, and adhesion structures (i.e. adhesion 

ripples and adhesion warts) recorded in this facies become scarce, which is here taken to indicate 

alternating dry and wet periods (Kocurek and Fielder, 1982; Mountney, 2006).  

The coarser-grained trough-cross-bedded sandstone facies are found in the middle of the 

paleovalley, are in stacked and amalgamated geometries, and often display some scouring into 

the units below. These units are on average a few meters thick, and also contain some outsized 

clasts of granitoid and basalt composition. These are interpreted as braided fluvial units, and a 

return to higher energy within the paleovalley system. Fine-grained sandstone cross-bedded 

tabular bodies that have knife-sharp upper and lower boundaries overlie the coarse-grained cross-

bedded facies (Fig. 21F). These are the uppermost units of the La Colina Formation, and are 
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quite extensive throughout the middle of the paleovalley system. The centimeter-scale foresets of 

the sandstones display inverse-grading and range between 5 and 10 meters in length. The units 

themselves are at least three meters thick. Because of the geometry, grain size and boundary 

type, this sandstone facies is interpreted as eolian dunes (Fryeberger, 1993; Mountney, 2006). 

6. CIA Values for OMPV 

The raw data were compiled and then sorted based on the formation and sampling 

location, see Table 2. These results were then compared to the geochemical data of the fresh 

igneous components published in the studies of the Famatina and Pampeanas ranges by 

Pankhurst et al. (1998, 2000) using an A-CN-K plot to demonstrate the weathering trend of the 

resulting sediments (Fig. 22). The dominant igneous rock types in the Olta-Malanzán paleovalley 

area are primarily granodiorite (Chepes Complex), followed by a metasedimentary suite (phyllite 

and schist), and granite (Tuaní Granite) (Pankhurst et al., 1998). 

Overall, the lower strata of the paleovalley have relatively low CIA values (Fig. 23). In a 

few instances the values increase including within the uppermost Malanzán Formation through 

the lowermost Loma Larga Formation. In general, the CIA values for the Malanzán Formation 

range from 58 to 78, with an average CIA value of 67. The samples in the upper units of the 

Loma Larga Formation have similar CIA values to average shale and range from 55 to 71 with 

an average of 65. The Solca and La Colina Formations samples have CIA values that range from 

58 to 91, with an average of 70. The paleosol of the Solca Formation has a wide range in CIA 

values, but overall its average CIA value is 66. The two La Colina Formation samples were 

collected from the middle strata of the unit and are thus higher than all of the older formations 

for the Olta-Malanzán paleovalley system. In addition to the main valley samples, a few samples 
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from the Arroyo Totoral Formation in the Permian tributary Anzulón paleovalley also resulted in 

relatively higher CIA values of 70 and 78. 

7. Paleoclimate implications for the Eastern Paganzo Basin 

The strata of the Olta-Malanzán paleovalley system were chosen to test the applicability 

of CIA as a high-resolution proxy for paleoclimate because of the renewed interest in the timing 

and extent of the glacial centers of Gondwana. While past researchers (e.g. Socha et al., 2014) 

interpreted it to have been carved by glaciers, recent evidence (e.g. Moxness et al., 2018) shows 

that the valley only contains fluvial, alluvial, deltaic, lacustrine, and shallow marine deposits 

(Andreis et al., 1986; Gutiérrez and Limarino, 2001). Although the base of the succession (i.e. 

Malanzán Formation) differs from those of the western Paganzo Basin units, the rest of the 

succession (Loma Larga through La Colina formations) still records the same shift in climate: 

post-glacial to increasing aridity. The Olta-Malanzán paleovalley system provides ideal 

conditions in which to conduct this type of study because the strata are all locally-derived. Any 

chemical weathering that occurred in this paleovalley affected the Famatinian granitoids through 

which the valley is cut. It is thus possible to ascertain any diagenetic effects on the sedimentary 

units through time by comparing the samples to an average weathering trend for the 

corresponding granite type. As can be seen in the A-CN-K plot (Nesbitt and Young, 1984; 

Nesbitt and Markovics, 1997) in Figure 22, the samples follow a chemical weathering trend of 

increased weathering intensities over time, as predicted. The fresh basement samples plot 

between the average granite and granodiorite and the samples from the sedimentary rocks follow 

a linear trend of progressive weathering (Nesbitt and Young, 1984; Pankhurst et al., 1998). 

Therefore, these units can provide a reliable paleoclimate reconstruction for this system, and 
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perhaps for the eastern margin of the Paganzo Basin, and at the very least be used to compare to 

paleoclimate reconstructions for the middle and western units of the Paganzo Group (i.e. 

Gulbranson et al., 2010; Limarino et al., 2014; Gulbranson et al., 2015). 

The sedimentology of the Malanzán Formation indicates that the paleovalley was 

dominated by non-glacial debris-flows and rock falls, which led to the occasional damming of 

the central valley axis and the formation of lakes (Andreis et al., 1986; Andreis, 1998; Moxness 

et al., 2018). As displayed in Figure 23, the base of the Malanzán Formation has CIA values in 

the middle-to-upper 60s. This increase appears to coincide with a transgression during the 

Serpukhovian that has been interpreted to have crossed the Paganzo Basin and would have raised 

local base level (Net et al., 2002; Limarino et al., 2002, 2006, 2014). Coupled with a shifting 

climate, from a cold periglacial environment to more temperate climatic conditions, a rise in 

local base level could have increased chemical weathering processes due to the introduction of a 

more humid environment as there is evidence of organic-rich beds. However, the values are still 

relatively low and do not represent any significant chemical weathering of the plagioclase to 

clays, such as illite, smectite and kaolinite, which have CIA values ranging from 75- 80 (Nesbitt 

and Young, 1982, 1984; Nesbitt and Markovics, 1997). From these low values, it can be asserted 

that there was initial weathering of the feldspars from the granodiorite, which consistently plot at 

49 and 50, but the overall climate was dry, rather than humid, and represents a cold arid 

environment at the termination of the glacial episode in the western Paganzo Basin. This is 

consistent with the facies that have been described both here and in Moxness et al. (2018).  

The CIA values show an increasing trend within the upper Malanzán Formation and 

lower Loma Larga Formation boundary. Here we see the values increase from upper 60s and 

lower 70s to upper 70s. This is interpreted here as a transition to a humid climate during the 
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formation of the carbon-rich layers, and coincides chronostratigraphically with the other coal 

deposits (e.g., in the Tupe and Lagares formations) across the Paganzo Basin (López-Gamundí, 

1997; Net et al., 2002; Limarino et al., 2002, 2006, 2014). The carbon-rich beds here are 

relatively thin, on the orders of centimeter-thick beds, and are found just below the gilbert delta 

packages and again between the stacked fluvial systems of the lowermost Loma Larga Formation 

(Figure 20). The higher CIA values combined with the formation of coal and organic-rich 

terrestrial deposits affirms that the basin was firmly in a post-glacial humid climate during the 

latest Bashkirian. 

The sandstone packages of the Loma Larga Formation are relatively coarse-grained and 

tend to consist of mostly quartz and plagioclase grains. The finer-grained packages between the 

fluvial sandstones of the Loma Larga Formation display similar values to those in the lower 

Malanzán Formation. This trend could be representative of either more arid conditions, or a 

return to rapid-burial style deposition in a seasonal climate regime as the paleovalley continues 

to fill. Rapid burial would prevent further alteration of the feldspars within the near-surface 

environments (Nesbitt and Markovics, 1997; Andreis, 1998; Net et al., 2002; Bahlburg and 

Dobrzinski, 2011).  

Although the Solca Formation is dominated by conglomerates and sandstones, a paleosol 

level is exposed close to the Solca and La Colina Formations boundary, and appears to have 

developed alongside, or on top of the valley wall. Along with the nearly horizontal dip of the 

strata, the development of this paleosol directly on top of the basement, or paleovalley wall, 

indicates non-deposition during a time when the paleovalley was being overtopped (Sheldon and 

Tabor, 2009). The average CIA value, though, for the whole paleosol is only 66, which does not 
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indicate a very humid environment, but does provide evidence of clay development (Nesbitt and 

Young, 1982; Goldberg and Humayun, 2010; Bahlburg and Dobrzinski, 2011).  

The climate at the Carboniferous-Permian boundary in the eastern Paganzo Basin was 

probably a fluctuating seasonal or temperate one. The Arroyo Totoral Formation outcrop 

samples have higher CIA values (70 and 78), and along with the facies and paleoflora 

assemblage, indicate a humid lacustrine setting (Andreis et al., 1986; Cuneo and Archangelsky, 

1996; Andreis, 1998). The paleoclimate record from strata of the La Colina Formation presents 

an interesting deviation from the expected trend of the succession. Where we expect an increase 

in aridity according to the model developed by Gulbranson et al. (2010), CIA values of 91 and 

78 indicate a brief period where the paleoclimate was warm-humid. The mineralogy of the 

interbedded sand and mudstone facies consists of primarily kaolinite and hematite. The facies 

together with the mineralogy and therefore resulting CIA values, though, indicate that there may 

have been a much higher precipitation rate than first implied by the sedimentary structures, and 

therefore increased chemical weathering (Nesbitt and Young, 1982, 1984; Nesbitt and 

Markovics, 1997). As there does not appear to be an abundance of organic material, which could 

contribute to the chemical alteration of the feldspathic minerals in the system, we conclude that 

the climate during the earliest Permian, in the eastern portion of the Paganzo Basin, was briefly 

extremely humid. The top of this interbedded facies shows a coarsening upward signature and 

marked increase in subaerial structures (i.e. rill marks, adhesion structures, mud cracks). The 

overlying facies of the La Colina Formation contain very small amounts of fine-grained deposits, 

and the depositional style returns to a more braided fluvial environment, which could indicate a 

more seasonal climate. 
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At the very top of the succession in the paleovalley system, the climate finally gives way 

to an extremely arid environment (Andreis, 1998; Limarino et al., 2014). This is evidenced by 

the large dunes developing over the braided fluvial systems, and even cross-cutting one another.  

There were no fine-grained beds to sample, so it is assumed that minimal chemical alteration 

occurred due to little to no precipitation, and that any fines that did develop were subsequently 

winnowed away (Nesbitt and Young, 1984; Goldberg and Humayun, 2010).  

As the western margin of Gondwana developed, the active tectonic margin continued to 

shift westward through the Paleozoic (Ramos, 1988; Pankhurst et al., 1998; Ramos et al., 1998; 

Limarino et al., 2002, 2006; Astini et al., 2009; Astini, 2010). While the exact significance of the 

Protoprecordillera as a topographic high is disputed (c.f. Limarino et al., 2002, 2006; Astini et 

al., 2009; Astini, 2010; Valdez Buso et al., 2017), it played a role in the nucleation and 

persistence of glaciers along the western margin of the Paganzo Basin during the middle 

Carboniferous (López-Gamundí et al., 1994; Limarino et al., 2014; Net and Limarino, 2006; 

Kneller et al., 2004; Dykstra et al., 2006; Henry et al., 2008; Aquino et al., 2014). The 

disappearance of the glacial centers and the transgression deposits across the basin signal the 

collapse of the Protoprecordilleran range as the active tectonic margin shifted westward. The rain 

shadow effect of the Protoprecordilleran range on the eastern Paganzo Basin in the 

Carboniferous would have been intensified as the Panthalassan Ocean margin moved further 

westward (cf. Ramos, 1988; Pankhurst et al., 1998; Ramos et al., 1998; Ramos, 1999; Limarino 

et al., 2002, 2006; Astini et al., 2009; Astini, 2010), and could account for the arid conditions 

that prevailed into the Permian. The record of increasing aridity at the end of the Carboniferous 

and into the early Permian established in the CIA record of the Olta-Malanzán paleovalley in this 

study clearly demonstrates this trend.  
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8. Conclusion 

The stratigraphic section in the Olta-Malanzán paleovalley system provides an excellent 

opportunity for a high-resolution test of the CIA as a paleoclimate proxy due to well-documented 

changing post-glacial conditions within the Paganzo Basin. The CIA is a powerful geochemical 

proxy, especially when considered in conjunction with sedimentological and stratigraphic 

measurements and interpretations, and is used here to quantitatively assess paleoclimate changes 

in the late Paleozoic succession of the eastern Paganzo Basin. The strata in the paleovalley 

record a transition from periglacial conditions to increasingly arid conditions in the eastern 

portion of the Paganzo Basin. The results from this study demonstrate that the paleoclimate in 

the intermontane paleovalley fluctuated between humid and arid over time. This shows that the 

climate transition of the Paganzo Basin was more dynamic than previously thought. 

The base of the succession has low CIA values due to the nature of the depositional 

environments within paleovalley, which was subject to rapid burial from frequent rock falls, 

prograding alluvial fans/fan deltas, and lacustrine sediment gravity flows (Malanzán Formation), 

which seem to have prevented significant chemical weathering. While the overall Pennsylvanian 

climatic signature appears to be relatively arid (Malanzán, Loma Larga, and Solca Formations), 

the results indicate that the climate during the deposition of the late Pennsylvanian and Permian 

La Colina Formation was more humid than previously inferred from the facies. 

This shift in climate does not align with global drivers at the Carboniferous-Permian 

boundary, and is likely more tied to regional tectonic drivers, such as the ongoing subduction and 

accretion of terranes onto the Panthalassan margin of Argentine Gondwana.  
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Figure 15. A. Plate reconstruction showing the location of the continents centered around the South Pole during the 

late Paleozoic. The Paganzo Basin, the area for this study, is highlighted by the arrow. RBB: Río Blanco Basin; 

CPB: Chaco-Paraná Basin; SGB: Sauce Grande Basin. TGB: Tepuel-Genoa Basin. (Modified from Moxness et al., 

2018) B. Plan-view map showing the interpreted outline of the Paganzo Basin. The Olta-Malanzán paleovalley 

within the eastern portion of the basin is highlighted in the red box. (Modified from Limarino et al., 2006). 
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Figure 16. Simple stratigraphic column showing the Paganzo Group strata and correlations across the Paganzo 

Basin (modified after Henry et al. 2008; Taboada, 1985; Archangelsky and Lech, 1985; Archangelsky and 

Archangelsky, 1987; Fernandez-Seveso and Tankard, 1995; Azcuy et al., 1999; López Gamundí and Martínez, 

2000; Gulbranson et al., 2010; Tedesco et al., 2010; Césari et al., 2011). 
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Figure 17. Map of the igneous and metamorphic basement units into which the late Paleozoic paleovalley is cut. 

(Modified from Pankhurst et al., 1998). 
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Figure 18. Simplified geologic map highlighting the late Paleozoic sedimentary fill of the two main paleovalley 

systems in the Sierra de Chepes and Sierra de los Llanos region (Modified after Net and Limarino, 1999; Moxness 

et al., 2018). 
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Figure 19. Generalized and simplified stratigraphic column for the strata in the paleovalley system. 
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Figure 20. Photos showing examples of the varying facies through the Malanzán and Loma Larga Formations. A. 

Conglomeratic and interbedded sand and mudstone facies at the base of the Malanzán Fm. Debris flow overlying 

the basement, followed by lake sediments. B. Stacked cross-bedded sandstone facies with overlying organic-rich 

mudstones. Fluvial dominant environment transitioning into a lacustrine setting. C. Stacked cross-bedded coarse 

sandstone facies with interbedded organic-rich mudstones of the Loma Larga Formation interpreted as fluvial and 

vegetated lacustrine environments. D. Stacked cross-bedded coarse sandstone facies at the boundary between the 

Loma Larga and Solca Formations. 
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Figure 21. Photos showing the facies characteristics of the upper units of the paleovalley system: Solca Formation, 

Arroyo Totoral Formation, and La Colina Formation. A. Conglomerate facies interpreted as an alluvial fan 

amalgamation. B. Conglomerate facies cutting into a paleosol in the Solca Formation. This is interpreted to be a 

depositional hiatus followed by renewed deposition in the paleovalley. C. Weakly cross-bedded sandstone facies 

overlying the interbedded mudstone facies interpreted as lacustrine and fluvial settings in the Arroyo Totoral 

Formation. D. Interbedded sandstone and mudstone facies near the base of the La Colina Formation, overlying 

conglomeratic facies interpreted as alluvial fans transitioning into an ephemeral fluvial environment. E. Example of 

rill marks in the interbedded sandstone and mudstone facies of the La Colina Formation. F. Large cross-bedded 

sandstone facies at the top of the La Colina section interpreted as eolian dunes indicating desert-like conditions. 
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Figure 22. Ternary A-CN-K plot displaying the fresh Chepes Complex granodiorite and the late Paleozoic 

sedimentary fill samples based on their bulk geochemistry. Also plotted is the average granite and granodiorite 

compositions and the average granodiorite weathering trend line based on data from Nesbitt and Young (1989). 
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Figure 23. Generalized stratigraphic section from the Olta-Malanzán Paleovalley with the CIA values for each 

sample and a smoothed 3-point running average line (black) have been plotted next to their approximate location 

within the succession. Samples have been color-coded based on stratigraphic formation: green – Malanzán 

Formation, blue – Loma Larga Formation, red – Solca and La Colina formations, orange – Arroyo Totoral 

Formation. For the CIA scale, left to right indicates increased chemical weathering and an inferred humid 

paleoclimate (i.e. blue is more arid and orange is more humid). 
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Table 1.. Record of sedimentary features described in the measured section through the Olta-Malanzán paleovalley. 

Here, “x” indicates feature was present, and “-” indicates that the feature was not present.
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Table 2. Elemental abundances, loss-on-ignition (LOI), total analyzed abundances, CIA values for samples from the 

Olta-Malanzán paleovalley sedimentary fill. 
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Chapter 4. Late Paleozoic paleoclimate reconstruction of the Paganzo Basin of western 

Argentina: Controls on early Pennsylvanian deglaciation in western South American 

Gondwana 

Abstract 

While the late Paleozoic ice age was the result of a combination of both global and regional 

drivers, the subsequent glaciation and deglaciation were asynchronous across Gondwana, 

specifically along the southwest margin. Testing in the mid-paleolatitude basins of South 

American Gondwana (i.e. Paganzo, Calingasta-Uspallata and Río Blanco basins of Argentina 

and the Paraná Basin in Brazil) provided an opportunity to show the effects of the local climate 

drivers in that region. A complete paleoclimate reconstruction using the Chemical Index of 

Alteration (CIA) as a proxy displays a dynamic climate transition for this region. The strata of 

the western active margin basins (i.e. Paganzo, Calingasta-Uspallata and Río Blanco basins) 

record a drastic shift in climate conditions from glacial to extreme desert conditions by the early 

Permian. Glaciation in these basins occurs solely along the Protoprecordilleran range, which was 

a significant uplift that separated the western interior retroarc-foreland basin (i.e. Paganzo Basin) 

from the western arc-related basins (i.e. Calingasta-Uspallata and Río Blanco basins). This uplift 

caused a rain shadow that prevented glaciation from occurring along the eastern margin of the 

Paganzo Basin. Later in the Pennsylvanian and Permian, the transition to an extremely arid 

environment can be linked to the shift in active tectonism and the development of a volcanic arc 

outboard of the western margin of Gondwana. Based on these findings, the main climate forcing 

mechanism in the western active margin basins was tectonism, which differs from the climate 

transition of the southeastern Paraná Basin in Brazil, which is along a similar paleolatitude. The 
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Paraná Basin experiences a shift from glacial climate to temperate climate almost 20 Ma later 

than the western margin basins. 

1. Introduction 

Global climate change is the result of interactions between the atmosphere, geosphere 

and hydrosphere. In climate change studies, as well as those of ancient climate systems, driving 

and feedback mechanisms are quite complex. Regions of Earth respond differently based on the 

interplay between global-scale and local-to-regional-scale drivers. Thus, regional-scale studies of 

deep time environmental transitions at high chronostratigraphic resolution add to our 

understanding of environmental responses to changing global climate. The climatic shift at the 

end of the Paleozoic is of significant interest because it is an analogue for current global change 

(cf. Gastaldo et al., 1996). The late Paleozoic ice age (LPIA) was the longest-lived ice age 

(approximately 360-255 million years ago) of the Phanerozoic (cf. Gastaldo et al., 1996; 

Montañez and Poulsen, 2013). Furthermore, the LPIA is the only example of when a vegetated 

and biologically complex Earth shifted from an icehouse to a greenhouse state (Gastaldo et al., 

1996; Montañez et al., 2007; Fielding et al., 2008a; Isbell et al., 2012; Montañez and Poulsen, 

2013; Limarino et al., 2014). Because of this, the LPIA has the potential to test driving 

mechanisms that influence changing climatic regimes, which in turn provide insight into how 

such drivers affect modern climate change, thus enabling the scientific community to understand 

natural versus anthropomorphic climate change. 

Glaciation during the LPIA occurred episodically over intervals of one to several million 

years duration at different times across Gondwana. (Figs. 24, 25). The first LPIA glacial events 

occurred in northern South America and northern Africa during the late Devonian (the Frasnian 
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or Famennian; Caputo and Crowell, 1985; Isaacson et al., 2008). Glaciation then expanded 

across the western and southern basins of South America (e.g., Bolivia, western Argentina, 

Patagonia (cf. Caputo and Crowell, 1985; Isbell et al., 2003, 2012; Kołtonik et al., 2019; Rosa et 

al., 2019; Ezpeleta et al., 2020). In the western Argentine basins, the final glacial event ended 

during the early Bashkirian (Isbell et al., 2012; Limarino et al., 2014). While glaciation 

continued in eastern South America (i.e. Paraná, Sauce Grande and Chaco-Paraná basins) and 

Africa during the rest of the Carboniferous and into the Permian (Caputo and Crowell, 1985; 

Veevers and Powell, 1987; Eyles et al., 1993;  López-Gamundí, 1997; Isbell et al., 2003, 2012; 

Caputo et al., 2008; Pérez Loinaze et al., 2010; Fielding et al. 2008a; Limarino et al., 2014; 

Mottin et al., 2018; Griffis et al., 2019), which suggest a diachronous development of glacial 

centers during the LPIA, followed by a stepped deglaciation across South America, and possibly 

the whole of Gondwana. 

Studies have highlighted potential driving mechanisms for these changing climatic 

conditions, such as the drift of Gondwana across the paleo South Pole, changes in the 

configurations of the continental plates, changes in atmospheric CO2, changes in insolation due 

to orbital parameters, and orogenic events (cf. Caputo and Crowell, 1985; Scotese and Barrett, 

1990; Eyles et al., 1993; Heckel, 1994, 2008; Isbell et al., 2003, 2008; 2012; Royer et al., 2004; 

Montañez et al., 2007; Rygel et al., 2008; Horton and Poulsen, 2009; Tabor and Poulsen, 2008; 

Gulbranson et al., 2010; Montañez and Poulsen, 2013; Limarino et al., 2014). While global 

drivers account for some trends in the occurrence and disappearance of glacial centers across 

Gondwana, they cannot completely account for the glacial-interglacial periods within specific 

regions (i.e. South American glacial intervals vs. African intervals vs. Antarctic and Australian 

intervals) and they do not account for the disappearance of glacial centers in the western basins 
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of Argentina while glaciation at the same paleolatitude farther east continued. Instead, climatic 

changes during the Pennsylvanian in western Argentina are more likely the result of local, or 

regional, drivers (cf. Isbell et al., 2012; Montañez and Poulsen, 2013; Spalletti et al., 2012; 

Limarino et al., 2014). Therefore, studies of this region provide new insights into LPIA 

glaciations on a regional scale and the forcing and feedback mechanisms that caused them. 

This paper presents a quantitative high-resolution record of paleoclimate during the 

Carboniferous-Permian transition of the sedimentary basins of southwestern Gondwana, focusing 

on the Paganzo and Calingasta-Uspallata basins of Argentina (Fig. 24). The western margin and 

retroarc basins of Argentina present a unique problem in that glacial ice developed during the 

Tournasian (Early Mississippian) and then disappeared in the Bashkirian (Early Pennsylvanian) 

while glaciation in other parts of Gondwana at similar paleo-latitudes, such as the southern 

Paraná Basin in Brazil, persisted to the end of the Carboniferous and possibly into the Earliest 

Permian (López-Gamundí et al., 1994; López-Gamundí, 1997; Holz et al., 2008; Caputo et al., 

2008; Henry et al., 2008; Rocha-Campos et al., 2008; Limarino et al., 2014; Mottin et al., 2018; 

Griffis et al., 2019; Ezpeleta et al., 2020; Fig. 25). To demonstrate and evaluate this climate shift 

on a regional scale we: 1) create a high-resolution paleoclimate reconstruction for the late 

Paleozoic strata of the Paganzo and Calingasta-Uspallata basins using the Chemical Index of 

Alteration (CIA); 2) use thes new data to test climate forcing and driving mechanisms regarding 

the drastic shift from a humid to arid environment; and 3) evaluate the current understanding of 

deglaciation across west central Gondwana, from the basins of western Argentina to the Paraná 

Basin of Brazil. 
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2. Regional Geologic Setting 

2.1 Late Paleozoic basins of South America 

Southern South America contains numerous late Paleozoic basins filled with sedimentary 

and volcanic rocks. Following the categorization of Limarino and Spalletti (2006), these basins 

are of two categories: intraplate basins (e.g. Chaco-Paraná and Paraná basins) and western active 

margin basins (e.g. Paganzo, Calingasta-Uspallata and Río Blanco basins). These eastern 

intraplate basins were separated from the western active margin basins by the Pampean Arch, 

and the western active margin basins were separated by a series of uplands that make up the 

current Sierras Pampeanas and the Precordilleran ranges (Limarino and Spalletti, 2006; Limarino 

et al., 2014; Fig. 24). 

The Paganzo Basin spans an area of approximately 144,000 km2 at its largest extent and 

is bounded today by the eastern Sierras Pampeanas to the east, north and south, and the 

Precordilleran range in the west (Fig. 24). The development and structure of the Paganzo Basin 

is still under debate. Some studies have identified it as a retroarc foreland basin (Ramos, 1988; 

Limarino and Spalletti, 2006; Limarino et al., 2014), a rift basin (Astini et al., 1995, 2009; Astini, 

2010), or as a strike-slip pull-apart basin along the Panthalassan margin of Gondwana (Limarino 

et al., 2002a; Milana and Di Pasquo, 2019). Regardless of the exact type of basin, it was a 

significant catchment for late Paleozoic sediments, and records evidence of the glacial to post-

glacial climate transition in the Carboniferous followed by extreme aridification in the early 

Permian (Limarino et al., 2014). Evidence from the middle Carboniferous sediments indicates 

that there were multiple separate depositional centers (cf. López-Gamundí et al., 1994; Pauls et 
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al., in review), that were in part separated by the various paleotopographic highs throughout the 

region (i.e. Pie de Palo Arch, Famatina Arch, and Sierras de Chepes, Los Llanos region; Fig. 24). 

The Calingasta-Uspallata Basin is an arc-related basin formed in a tectonically and 

magmatically active region of the western Gondwana margin (Fig. 24). It is bounded to the east 

by the Protoprecordillera and to the west by a volcanic arc, which was located in present-day 

Chile (Azcuy, 1999). Subsidence occurred in the basin from the Early Carboniferous until the 

early Permian ending during the San Rafael orogeny, which caused local metamorphism, 

deformation, and extensive magmatism (Lopéz-Gamundí et al., 1994; Azcuy et al., 1999; 

Limarino et al., 2014). The basin fill is predominantly marine and contains a near complete 

succession of the glacial to post-glacial transition (Limarino et al., 2014). 

The Paraná Basin stretches from present-day south-central Brazil southward into 

Paraguay, Uruguay, and Argentina, and during the late Paleozoic was adjacent to and extended 

into western Namibia, Africa (Eyles et al., 1993; França, 1994; Milani et al., 1994; Rocha-

Campos et al., 2008). For this study, only the southern portion of the Paraná Basin (i.e. the area 

of Rio Grande do Sul State; Fig. 24) will be considered. This region over time experienced a 

wide variety of environments, ranging from glacial, to post glacial, to a perhumid environment 

with transgressions and regressions within an intracratonic sea.  

2.2. Rise and fall of the Protoprecordillera 

Evidence for middle Carboniferous glaciation in the western margin basins comes from 

an inferred paleotopographic high located in the Precordillera region of Argentina. This upland, 

known as the Protoprecordillera (cf. proto-Precordillera of Amos and Rolleri, 1965; González 

Bonorino, 1975; Fig. 24) or the Tontal Arch (cf. Milana and Berscowski, 1987, 1990, 1993; 
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Milana, 1988; Milana et al., 1987; Astini, 2010; Aquino et al., 2014; Valdez-Buso et al., 2017, 

2020; Milana and di Pasquo, 2019) defined the western margin of the Paganzo Basin in what is 

now the Precordilleran region of the western Sierras Pampeanas and separated this basin from 

the Calingasta-Uspallata and Río Blanco basins on the west (López-Gamundí et al., 1994, 1997; 

Limarino et al., 2002a, 2002b, 2006; Kneller et al., 2004; Dykstra et al., 2006; Henry, 2007; 

Henry et al., 2008, 2010; Astini, 2010; Gulbranson et al., 2010; Césari et al., 2011; Isbell et al., 

2012; Aquino et al., 2014; Alonso-Muruaga et al., 2018). This highland formed during the 

Chañic Orogeny (middle Devonian to earliest Mississippian; Fig. 26) due to the accretion of the 

Chilenia Terrane (Fig. 27). As a result, the obduction of the accretionary prism formed an 

uplifted fold and thrust belt, referred to here as the Protoprecordillera (González Bonorino, 1975; 

Ramos et al., 1984, 1986, 1998; Ramos, 1988; López-Gamundí et al., 1994; Limarino et al., 

2002, 2006, 2014; Henry et al., 2008; Isbell et al., 2012; Moxness et al., 2018; Pauls et al., 2019; 

Fig. 27). It is interpreted that by the Visean at the latest, it was a significant and discontinuous 

mountain belt along the western margin of Argentine Gondwana (López-Gamundí et al., 1994; 

Limarino et al., 2002a, 2006, 2014; Henry et al., 2008; Isbell et al., 2012; Moxness et al., 2018; 

Pauls et al., 2019). This interpretation is based on evidence that incised paleovalleys, with up to 

2,500 meters or more in relief, radiate from a high in the Precordilleran region of Argentina (cf. 

López-Gamundí et al., 1997; Limarino et al., 2002a, 2002b, 2006; Kneller et al., 2004; Dykstra 

et al., 2006; Henry, 2007; Henry et al., 2008, 2010; Astini, 2010; Gulbranson et al., 2010; Césari 

et al., 2011; Isbell et al., 2012; Aquino et al., 2014; Alonso-Muruaga et al., 2018; Pauls et al., in 

review). These paleovalleys contain glacial deposits at the base of each section that are at least of 

Visean-Serpukhovian age and indicate that this mountain belt was above the equilibrium-line 

altitude for its paleolatitude of approximately 50-60° (cf. Isbell et al., 2012). 
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Continued subduction along the western margin into the Pennsylvanian is recorded as 

volcanic rocks and ash layers that range in age from 320-280 Ma (Willner et al., 2005, 2008; Fig. 

26) and is tied to an outboard volcanic arc. As the active subduction moved further westward 

during the Pennsylvanian, studies interpret the collapse of the Protoprecordilleran range as the 

barrier between the Panthalassan margin and the continental interior was breached (Ramos, 

1988; López-Gamundí et al., 1994; Limarino et al., 2002a, 2006, 2014; Isbell et al., 2012; 

Spalletti et al., 2012). Evidence for the collapse and breaching of the mountain belt includes:  

1. The stratigraphy of the region records the disappearance of glacial 

deposits and transition to transgressive packages in the arc-related basins (i.e. 

Calingasta-Uspallata and Río Blanco Basins) and in the western margin of the 

Paganzo Basin (Net and Limarino, 2006; Limarino et al., 2006). This facies trend is 

seen at all localities across the Paganzo Basin, with the development of coal 

deposits, and mudstones enriched in kaolinite (Limarino et al., 2014). The collapse 

of the Protoprecordillera would have removed the topographic barrier between the 

interior basins and the Panthalassan Ocean and created access to a significant 

moisture source from the continental margin to the interior. This is indicated by the 

increase in base level (i.e. local transgressive packages and coal measures; Limarino 

et al., 2014 and references therein). 

2. There are marine faunas recorded at several localities of the 

Protoprecordillera (cf. López-Gamundí et al., 1994; Taboada, 1997; Henry et al., 

2008; Milana and di Pasquo, 2019 and references therein). The presence of marine 

faunas within the Pennsylvanian units of the more central localities of the 
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Protoprecordilleran uplift can only be explained by a collapse in relief of the 

Protoprecordillera, which would have allowed for the flooding of these paleovalleys. 

3. The incised paleovalleys along the Protoprecordillera, such as the one at 

Agua de Jagüel, contains approximately 2,500 m of late Paleozoic sedimentary 

successions (cf. Henry et al., 2008; this study) and are ultimately filled by the 

Bashkirian. Furthermore, near the top of Sequence 1 (glacial and glacially influenced 

sequence) in Henry et al. (2008), shallow water (i.e. hummocky cross-beds, 

sandstones) facies indicate that the paleovalley was at sea-level by the latest 

Mississippian. Upward in the Agua de Jagüel Formation, the strata of Sequence 2 

and 3 progressively onlaps and overtops the valley walls. Sequence 3 is composed 

almost exclusively of prograding shallow marine parasequences. The occurrence of 

shallow marine deposits deep in the paleovalley in Sequence 1 and at the top of the 

paleovalley fill in Sequence 3 is only possible if subsidence was occurring due to the 

collapse of the mountain belt. 

4. Sierras Pampeanas basement detrital material reached as far as the Andean 

Cordilleran region (cf. Spalletti et al., 2012). The presence of Sierras Pampeanas 

lithologies (i.e. Famatinian granites and gabbros) west of the Precordilleran range 

suggests that the mountain belt was breached during the late Mississippian-early 

Pennsylvanian. 

3. Geology of late Paleozoic South American basins 

The western margin basins of Gondwana are well-studied, with a focus on the units of the 

Paganzo, Calingasta-Uspallata and Río Blanco basins, as well as the associated depositional 
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processes and environments that extended across the region (i.e. Pazos, 2002; Gulbranson et al., 

2010, 2015; Enkelmann et al., 2014). Here we provide a quantitative look at the Carboniferous-

Permian climate transition by examining locations throughout the western basins on both sides of 

the Protoprecordilleran Range and comparing these locations through time to the climate 

recorded in the southeastern Paraná Basin in Brazil. 

3.1. Strata of the western active margin basins 

Strata of the western margin basins overlie the numerous terranes and accretionary prisms 

that make up the western margin of South America. In the eastern Paganzo Basin, 

Carboniferous-Permian strata overlie Pampean orogenic granitoids and Neoproterozoic-early 

Cambrian continental margin sedimentary deposits (Pankhurst et al., 2000). In the central portion 

of the Paganzo Basin, LPIA-related strata overlie Famatinian-aged granitic intrusions and 

metasedimentary units (Pankhurst et al., 1998, 2000; Net and Limarino, 2006). Along the 

Cuyania and Precordillera terranes, the basement rock is Mesoproterozoic in age along the 

eastern margin, and primarily Cambrian-Devonian continental margin and platform sedimentary 

rocks along the central and western portions (Keller, 1999; Willner et al., 2008; Thomas et al., 

2015; Fig. 27). To the west of the Precordillera (i.e. Calingasta-Uspallata and Río Blanco basins, 

Andean Cordillera), time-equivalent strata overlie Ordovician and Devonian-aged sedimentary 

and metasedimentary packages (Willner et al., 2008; Spalletti et al., 2012; Limarino et al., 2014; 

Fig. 27). 

The Paganzo Basin contains numerous stratigraphic units, most of which belong to the 

Paganzo Group (Fig. 25), but all are regarded as time-equivalent strata across the basin. The 

strata of the Calingasta-Uspallata and Río Blanco basins are known by different names 
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regionally (Fig. 25), but also contain a similar transition of depositional environments as the 

units in the Paganzo Basin (López-Gamundí et al., 1997; Henry et al., 2008, 2010; Isbell et al., 

2012; Limarino et al., 2014). The various units are correlated using radiometric ages determined 

for units containing tuff and ash layers, as well as palynological and fossil plant records from the 

various sections and the facies associated with each succession (cf. Gulbranson et al., 2010, 

2015; Césari et al., 2011).  

Glaciomarine and glaciolacustrine deposition occurred during the Serpukhovian to early 

Bashkirian in deeply-incised paleovalleys that emanated from the Protoprecordilleran region into 

the surrounding Paganzo, Calingasta-Uspallata and Río Blanco basins (López-Gamundí et al., 

1997; Limarino et al., 2002a, 2002b, 2006; Kneller et al., 2004; Dykstra et al., 2006; Henry, 

2007; Henry et al., 2008, 2010; Astini, 2010; Gulbranson et al., 2010, 2015; Césari et al., 2011; 

Isbell et al., 2012; Aquino et al., 2014; Alonso-Muruaga et al., 2018). The glacial deposits are 

recorded in the basal units of the basins: the Guandacol, Jejenes, La Laja and Lagares formations 

in the western Paganzo Basin, and the lowermost Agua de Jagüel (i.e. Sequence 1 of Henry et al. 

[2008]) and Hoyada Verde formations in the Calingasta-Uspallata Basin (López-Gamundí et al., 

1997; Limarino et al., 2002a, 2002b, 2006, 2014; Kneller et al., 2004; Dykstra et al., 2006; 

Henry et al., 2008, 2010; Astini, 2010; Gulbranson et al., 2010; Césari et al., 2011; Isbell et al., 

2012; Aquino et al., 2014; Alonso-Muruaga et al., 2018). These Protoprecordilleran valleys 

contain glacial diamictites formed through subglacial, proglacial, glaciomarine, and distal 

processes (cf. López-Gamundí et al., 1997; Limarino et al., 2002a, 2002b, 2006; Kneller et al., 

2004; Dykstra et al., 2006; Henry et al., 2008, 2010; Astini, 2010; Isbell et al., 2012; Aquino et 

al., 2014; Alonso-Muruaga et al., 2018).  
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However, the time-equivalent unit, the Malanzán Formation, in the eastern Paganzo 

Basin does not record evidence of glaciation (Moxness et al., 2018; Pauls et al., 2019, in review; 

Fig. 25). The Sierra de Chepes and Los Llanos regions were elevated enough that they could 

have been glaciated (cf. Enklemann et al., 2014; Moxness et al., 2018), and the paleoclimate was 

cold enough to have supported such a scenario. However, the depositional environment here was 

an alpine or intermontane valley filled with conglomerates formed through rock-falls, alluvial, 

and fluvial processes (cf. Moxness et al., 2018).  

Glacial deposits disappear across the western margin localities, and are overlain by thick 

successions of post-glacial shales that represent a local transgressive event that is recorded in all 

sections (Limarino and Spalletti, 2006; Net and Limarino, 2006; Henry et al., 2008; Césari et al., 

2011; Isbell et al., 2012; Limarino et al., 2014). A thick succession of mudrock in the Malanzán 

Formation is also recorded at the Olta-Malanzán locality (Moxness et al., 2018; Pauls et al., 

2019). The tops of most of these units are conglomerates associated with the development of 

large gilbert-type deltas (cf. Moxness et al., 2018 and references therein). 

The middle units of the Paganzo Group (i.e. Tupe, upper Lagares, and Loma Larga 

formations; Figs. 25) are comprised of fluvial deposits that succeeds the lowermost units 

(Andreis et al., 1986; Limarino et al., 2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et 

al., 2014). Additionally, coal deposits exist in various levels within the middle units (Limarino et 

al., 2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et al., 2014). 

The latest Pennsylvanian-Permian units of the Paganzo Basin (i.e. Patquía, La Colina, De 

La Cuesta formations) represent processes associated with eolian, ephemeral riverine and playa 

depositional environments (Limarino et al., 2006; Guena et al., 2010; Césari et al., 2011; 

Limarino et al., 2014). Additionally, the red beds and large-scale (up to 10+ m thick) cross 
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bedded sandstone of the La Colina and Patquía Formations indicate the development of erg fields 

at a time when glacial deposits occurred in the Paraná Basin. In the Calingasta-Uspallata Basin, 

the uppermost Agua de Jagüel Formation (sequence 3 of Henry et al. [2008]) records multiple 

parasequence packages of shallow marine deposits, while the Tres Saltos Formation at Hoyada 

Verde records a similar transition to fluvial and shallow marine strata. 

3.2. Paraná Basin strata 

The late Paleozoic sedimentary deposits overlie various Neoarchean-Cambrian 

metasedimentary, and Devonian sedimentary rocks (Tedesco et al., 2019). In the Paraná Basin, 

the Itararé Group is composed of intercalations of shale, diamictite and sandstone of the Lagoa 

Azul, Campo Mourão, and Taciba/Rio do Sul formations (Fig. 25; Rocha-Campos et al., 2008). 

Each formation represents a megacycle of sandstones that are overlain by shales and diamictites 

(França and Potter, 1988; Rocha-Campos et al., 2008; Vesely et al., 2015). In the eastern Paraná 

Basin, the Itararé Group records a longer glaciation history than is preserved in the southern 

Paraná Basin localities (Mottin et al., 2018; Griffis et al., 2019; Rosa et al., 2019). A recent study 

by Rosa et al. (2019) indicate that glacial deposition of the Itararé Group started in the Visean, 

and Griffis et al. (2017) provide ages that indicate glacial activity in the southern part of the 

basin ended in the latest Pennsylvanian. Overlying the uppermost Itararé Group strata (i.e. the 

Taciba Formation) is the Rio Bonito Formation, which consists of fluvial sandstones, estuarine 

sandstones and shales, and thicker coal packages. It is interpreted to represent the post-glacial 

succession and a shift to a more humid environment. The Palermo Formation interfingers with 

the Rio Bonito Formation in certain locations of the Paraná Basin, and contains deeper-water and 
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offshore marine deposits that are interpreted as an overall transgressive package. These units are 

Early Permian. 

4. Bulk-rock major element geochemistry analyses 

The paleoclimate of western Argentina has been long inferred from facies changes in the 

Paganzo Group strata, as well as strata in the Río Blanco and Calingasta-Uspallata basins. For 

this study, paleoclimate reconstructions of the Paganzo, Calingasta-Uspallata and southeastern 

Paraná basins were accomplished by using the CIA as a climate proxy, as it has been used in 

many studies to ascertain the humidity of an environment (cf. Nesbitt and Young, 1982; 

Maynard, 1992; Fedo et al., 1995; Bauluz et al., 2000; Price and Vebel, 2003; Sheldon, 2006; 

Soreghan and Soreghan, 2007; Retallack, 2009; Sheldon and Tabor, 2009; Goldberg and 

Humayun, 2010; Passchier and Erukanure, 2010; Passchier et al., 2013). The CIA was originally 

created in to determine the amount of chemical weathering that takes place during the deposition 

of clastic sediments in varying depositional environments (Nesbitt and Young, 1982). Nesbitt 

and Young (1982) developed the equation 

                             CIA = (Al2O3/ Al2O3 + CaO* + Na2O + K2O) x 100 

where CaO* represents the calcium content within silicate minerals. They operated under the 

assumption that the degradation of feldspars into clay minerals constitutes the main process 

during chemical weathering.  This process is enhanced under humid climatic conditions, which 

leads to higher CIA values in muds deposited in these environments. Conversely, in arid 

environments, this degradation process would presumably be negligible, and therefore, these 

sediments would result in lower CIA values. Nesbitt and Young (1982) geochemically analyzed 

a variety of typical clastic sedimentary rock types and calculated average CIA values. For 
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average shale and mudstone, the values ranged from 70 to 75, while muds developed in tropical 

environments resulted in values from 80 to 100, and those deposits from glacial and arid 

environments had values ranging from 50 to 70 (Nesbitt and Young, 1982). 

5. Geochemistry methods 

A previous study conducted by Pauls et al. (2019) on one locality in the eastern Paganzo 

Basin at the Olta-Malanzán paleovalley system (OMPV) tested the applicability of using a 

paleoclimate proxy in this region. To broaden this analysis for a more regional comparison, the 

other units of the Paganzo Group strata were measured and sampled at three additional localities 

on either side of the Protoprecordilleran range: Cerro Guandacol (CG) in the north Paganzo 

Basin, the Agua Hedionda anticline (AH) section near the town of Huaco to the east of the 

Precordillera in the central Paganzo Basin, and the Agua de Jagüel (AJ) section along the 

southern section of the Protoprecordillera in the Calingasta-Uspallata Basin (Fig. 24). In addition 

to the samples collected from the western margin basins in Argentina, samples were also 

collected from the Itararé Group and Rio Bonito Formation in Rio Grande do Sul state of Brazil 

(Fig. 24). Field work was conducted in August of 2016 and 2017 and used standard stratigraphic 

and sedimentological techniques to examine four composite sections of late Paleozoic strata in 

La Rioja, San Juan and Mendoza Provinces of Argentina, and five sections in Brazil. To capture 

the full climate transition in the western margin basins, samples were collected from each 

locality in units that contained the mid-Carboniferous glacial facies and continued through the 

Carboniferous-Permian boundary (Table 3). Additional samples were taken at select locations 

from time-equivalent units (i.e. the Itararé Group, Rio Bonito and Palermo formations) in the 

southeastern portion of the Paraná Basin for comparison.  
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To reduce a weathering bias during sample collection, which could potentially skew the 

dataset towards low or high CIA values, only clay to silt-sized samples (i.e. < 0.004 – 0.0062 

mm) were collected from trenches dug >10 cm into the outcrops, thus providing fresh, 

unweathered material. To reduce the effects created by hydraulic sorting, samples were collected 

from every unit that had the desired grain size (i.e. mudrocks) and rock units that contained 

outsized clasts were also avoided, so as not to create a “fresh-material” bias in the results 

(Sheldon and Tabor, 2009; Goldberg and Humayun, 2010). Sampling thus did not achieve an 

equal distribution of samples throughout the measured sections, especially within coarse-clastic 

horizons. Additionally, to ascertain that there was no metasomatism and illitization leading to 

increased K+ concentrations (cf. Fedo et al., 1995), the samples were plotted on A-CN-K ternary 

diagrams to show deviations from average weathering trends of basement materials (Nesbitt and 

Young, 1982, 1989; Passchier et al., 2013; Fig. 28). 

The samples used for the CIA analysis were initially ground in a tungsten-carbide 

shatterbox for 30-45 seconds, and then were hand-ground in an agate mortar & pestle to achieve 

a uniform grain size. After grinding, all samples were placed overnight in a drying oven set to 

105ºC. A loss on ignition (LOI) analysis was performed to determine mass of the volatile 

components that would be lost during the fusion process, comparing the mass of a sample before 

and after ignition for 15 minutes in a 1050°C muffle furnace. Samples with a high LOI 

percentage (i.e. greater than 10%) were noted for later mass adjustment during the fusion 

process. All samples were then prepared for fusion according to the methods laid out in 

McHenry (2009), Byers et al. (2016) and McHenry et al. (2017). 

Fused beads of each sample were prepared using the protocol described in McHenry 

(2009) in which 1.000 g of soil was added to 1 g of oxidizer (ammonium nitrate) and 10.000 g of 



 

158 

 

Claisse (Quebec, Canada) 50:50 lithium metaborate: lithium tetraborate flux containing 0.5% 

LiBr as a nonwetting agent. The material was fused in a Claisse M4 programmable fusion 

instrument. If a sample had a high LOI percentage, then 1.100 g of sample was used with 11.000 

g of Claisse (Quebec, Canada) 50:50 lithium metaborate: lithium tetraborate flux. Fused beads 

were measured by a Bruker AXS, Inc. Pioneer S4 WD-XRF instrument using a custom 

measurement and calibration procedure based on eleven USGS sedimentary and igneous 

geological reference materials made in the same manner as samples prepared for this study, as 

described by McHenry (2009) and updated in Byers et al. (2016). The USGS geological 

reference materials used in this calibration routine are AGV-1, BCR-2, BHVO-2, BIR-1, DNC-1, 

DTS-2b, G-2, GSP-2, RGM-1, SGR-1 and STM-1. 

6. CIA Analysis  

The sampled section at Cerro Guandacol begins in the strata of the Tupe Formation 

(Table 3). In general, the CIA values in the Cerro Guandacol section range from 49 to 83, with 

an average of 65. The Tupe Formation at the base consists of interbedded mudstone and 

sandstones that increasingly coarsen upward, indicating the progradation of fluvial environments 

into the post-glacial marine environment of the upper Guandacol Formation. The values at the 

base of the Tupe are low (i.e. 49) but increase to 83 near the coal deposits. The CIA values 

decrease again to 65, as the section coarsens upward. The CIA increases again to 82 at the top of 

the Tupe Formation. As the Tupe Formation transitions into the Patquía Formation, the values 

decrease to 57, and then remain in the middle 60s for most of the Patquía Formation. At the very 

top of the section, the CIA values decrease once again to the 50s. Overall, the section resulted in 

CIA values that indicate minimal weathering. 
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The sampled section at Huaco starts in the glacial diamictites near the base of the 

Guandacol Formation and continues all the way through the uppermost Patquía Formation (Table 

3; Fig. 29). The CIA values range from 55 to 88 (both values are in the Tupe Formation), and the 

section has an average value of 72. In the glacial diamictites of the Guandacol Formation, the 

values are 60s and lower 70s, and the values increase through the upper Guandacol Formation.  

Near the Guandacol-Tupe formations boundary, the CIA spikes to 80 before falling to 64 in the 

lowermost Tupe Formation. These interbedded mudstone and sandstone deposits represent 

transgressive-regressive deposits as fluvial facies prograde into the marine environment of the 

Guandacol Formation. Then, the rest of the Tupe Formation samples fluctuate between 85-60 

and are highest (i.e. in the low 80s) near the coal deposits. As the section nears the Tupe-Patquía 

formations boundary, the values start to decrease from the 70s and 80s to the low value of 55. 

The values of the Patquía Formation range from 60 to 80, with an average of 71. These deposits 

represent fluvial, ephemeral fluvial and playa environments. 

The strata at Agua de Jagüel were measured through all three sequences identified by 

Henry et al. (2008). The lower sequence (sequence 1) records glaciomarine facies throughout the 

lower third of the formation. The facies throughout the lower section includes glacial diamictites 

and marine shales with dropstones, and the CIA values range from 58-73. The middle and upper 

sequences (sequences 2 and 3) record fluvial shallow marine deposits and have CIA values that 

range from 66-78. 

In the Paraná Basin, samples were collected in the upper Itararé Group strata (Taciba/Rio 

do Sul Formation) and lowermost Rio Bonito Formation. The Itararé Group strata incorporated 

glacial diamictites, rhythmites, mudstones and shales. The basal diamictite had a CIA value of 

61, while the rhythmite and mudstone deposits were 69. The two upper Itararé Group samples 
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were 78 and 97, respectively. The Rio Bonito Formation contained paleosol and splay deposits 

and resulted in a CIA value of 98. 

7. Paleoclimate of Southern South American Basins 

The CIA trends for the western margin basins reflect an overall shift from glacial (arid) to 

post-glacial (temperate – humid) conditions to increasingly arid across the region, but each 

locality displays variations in this trend (Fig. 29). This climate transition is recorded ~20 Ma 

earlier in the western margin basins compared to the southeastern Paraná Basin strata.  

7.1. Western Margin Basins 

The mid-Carboniferous and Permian strata and facies of the western basins of Argentina 

have been traditionally used to determine changes in local tectonics and how they relate to the 

local climate transition because these rocks record a drastic shift from glacial conditions (i.e. 

glacially-related diamictites) to temperate and humid post-glacial conditions (i.e. coal deposits) 

to extreme aridity (i.e. eolian deposits) by the early Permian, documented in both facies as well 

as flora and pollen records (Gulbranson et al., 2010, 2015; Césari et al., 2011; Limarino et al., 

2014). 

While studies indicate that there was more restricted or localized deposition occurring in 

the retroarc or foreland Paganzo Basin (cf. Pauls et al., in review) during the latest Serpukhovian, 

the CIA values are relatively low across all localities (52-80), but not as low as is expected for 

glacial deposits (Nesbitt & Young, 1982; Bahlburg & Dobrzinski, 2011). Where there is 

evidence of glaciation (i.e. the presence of glacially striated pavements, clasts, and glacigenic 

diamictites in the Guandacol and Agua de Jagüel formations), the values (i.e. in the low 50s) are 
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on average lower than the lowermost Malanzán formation values (in the 60s) presented by Pauls 

et al. (2019). The CIA analysis indicates that the paleoclimate was dominated by cold and mostly 

dry conditions across the Paganzo Basin (cf. Nesbitt & Young, 1982; Bahlburg & Dobrzinski, 

2011), but the higher values (i.e. 66-73) from the lower Agua de Jagüel Formation indicates 

more chemical weathering likely due to higher humidity along the Panthalassan margin. This is 

further supported by the glaciomarine nature of deposition of the Agua de Jagüel Formation 

during this time (López-Gamundí et al., 1994; López-Gamundí, 1997; Henry et al., 2008; Isbell 

et al., 2012; Limarino et al., 2014).  

While all localities have relatively low CIA values during this timeframe, it is important 

to note that the Agua de Jagüel Formation records higher values than those values recorded at 

Cerro Guandacol, Agua Hedionda, and at Olta-Malanzán (cf. Pauls et al., 2019; Fig. 29). 

Additionally, a study conducted by Spalletti et al. (2012) presents geochemistry data for the 

Cerro Agua Negra Formation and is used here as another reference for climate on the western 

side of the Protoprecordillera. The Cerro Agua Negra Formation is recorded in the present 

Andean Cordillera region and would have been deposited further to the west than the Calingasta-

Uspallata and Río Blanco basin localities (Spalletti et al., 2012; Limarino et al., 2014; Fig. 25). 

The mudstones of the middle Cerro Agua Negra Formation also display higher CIA values (in 

the 70s) than the interior Paganzo Basin strata, supporting the interpretation of weathering 

conditions associated with a higher humidity climate (Fig. 29). 

Following the disappearance of the glacial deposits in the western Paganzo Basin 

localities and the Calingasta-Uspallata Basin, the strata records a local rise in base level. These 

local transgressive facies are interpreted as terminal glacial to post-glacial deposits (cf. Limarino 

et al., 2014; Pauls et al., 2019, in review). The CIA values increase at Huaco and OMPV, which 
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indicates an increase in humidity and therefore chemical weathering. The lag in timing between 

Huaco and OMPV may have more to do with a lack of precise correlation between the units than 

an actual time lag. This increase in humidity may have been simultaneous, but until better 

correlation between/among the Paganzo Group occurs, it is impossible to say with certainty. This 

increase in humidity is also recorded in the Agua de Jagüel Formation, which indicates that this 

transition to a humid terminal and post-glacial environment was a regional phenomenon. 

Decreases in CIA values across the Paganzo Basin are recorded at all three localities 

(CG, AH, OMPV; Fig. 29) that corresponds to the transition from marine transgressive packages 

to more deltaic and fluvial deposits of both the Tupe and Loma Larga formations on either side 

of the basin (Limarino et al. 2002b, 2006; Tedesco et al., 2010; Pauls et al., 2019). During the 

Mid-Bashkirian, an increase in CIA values is recorded at all three localities, which corresponds 

to the development of coal deposits across the basin (Limarino et al., 2002b, 2006, 2014; Net et 

al., 2002; Tedesco et al., 2010; Pauls et al., 2019). An increase in CIA and the development of 

coal across each of the Paganzo Basin localities indicate a humid environment and the 

development of long-lasting bodies of water and/or wetlands across the region.  

Additionally, the Agua de Jagüel section also reflects this same trend (Fig. 29), and 

therefore this transition to a warmer, humid climate is interpreted as a regional trend. This is also 

approximately the time frame during which the Protoprecordillera is interpreted to have been 

collapsing (cf. Limarino et al., 2014). If the mountain belt had collapsed by this time, then there 

would have been less of an orographic effect on the interior Paganzo Basin. Furthermore, 

evidence of breaching of the range (i.e. transgressive packages and coal measures at multiple 

locations) in the Paganzo Basin indicates a connection with the Panthalassan Ocean. This would 

have been a source of moisture to the interior of the Paganzo Basin that was not present during 
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the glacial stage (Visean-Bashkirian), and accounts for the higher humidity climate conditions 

reflected by the CIA values. 

At the beginning of the middle Moscovian, CIA values decrease across the entire region 

(Fig. 29). From the middle to late Moscovian through the Kasimovian, the climate appears to 

stabilize with small fluctuations/vacillations indicating an overall temperate climate. This 

supports the interpretation that this time is marked by an increase in seasonality as some studies 

have suggested (cf. Limarino et al., 2014; Gulbranson et al., 2010, 2015). This trend occurs at 

Cerro Guandacol, Huaco and Olta-Malanzán (cf. Pauls et al., 2019; Fig. 29), but the values at 

Huaco are higher than the values recorded at Cerro Guandacol. 

It is not until the latest Pennsylvanian that the climate trends across the entire region 

seem to differentiate or diverge. First, at Cerro Guandacol, the CIA values display a narrow 

range of values throughout both the Kasimovian and Gzhelian, which suggests that the climate 

does not vary much during this interval. However, the values suggest a decrease in weathering 

earlier than what is observed at the other studied sites, which is here interpreted as a relatively 

early increase in aridity. The lack of samples in the middle Patquía Formation is due to the 

absence of strata with the appropriate grain size for analysis (i.e. silt fraction or finer; Fig. 29). 

The dominance of eolian sand here indicates either minimal chemical weathering, or perhaps the 

fine-grained material at this location was transported out of the area during deposition. Overall, 

the lower CIA values indicate a drier climate at Cerro Guandacol, which varies slightly from that 

of the other Paganzo Basin localities, especially to that of Huaco as both of these localities are 

situated along the boundary between the Paganzo and the Calingasta-Uspallata and Río Blanco 

basins. Although these two localities share a similar paleogeographic location, it appears that 

their climate histories do not correlate directly. This could potentially be due to a more local 
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climate phenomenon, as Cerro Guandacol is located in a separate part of the discontinuous 

Protoprecordillera from Huaco (Amos and Rolleri, 1965; Gonzalez Bonorino, 1975; López-

Gamundí et al., 1994; Limarino and Spalletti, 2006; Limarino et al., 2014; Pauls et al., in 

review). It is interesting to note that this climate transition at Cerro Guandacol is similar to 

findings of Gulbranson et al. (2010; 2015) in the nearby Río del Peñon locality of the Río Blanco 

Basin, where clay analyses indicate an increase in aridity starting as early as the Moscovian.  

Second, at Huaco, while the climate was more humid in the Kasimovian, the CIA values 

in the early Gzhelian rapidly decrease, which indicates a rapid decrease in chemical weathering 

over a short period of time. This is interpreted here as an increase in overall climate aridity. This 

Gzhelian increase in aridity is not recorded at the Agua de Jagüel and Olta-Malanzán localities 

(Fig. 29). In contrast, the strata at Agua de Jagüel as well as the strata of the La Colina and 

Arroyo Totoral formations at Olta-Malanzán record an increase in humidity during the latest 

Carboniferous (cf. Pauls et al., 2019). Since the upper Agua de Jagüel Formation represents 

stacked prograding parasequence sets of shallow marine deposits, we attribute the higher 

humidity here to the proximity to the continental margin and marine conditions. On the other 

side of the Paganzo Basin, the higher humidity recorded during the latest Pennsylvanian at Olta-

Malanzán (cf. Pauls et al., 2019) is not wholly unexpected, as the paleoclimate model proposed 

by Limarino et al. (2014) indicated that the eastern Sierras Pampeanas (i.e. the Sierras de Chepes 

and Los Llanos region) existed in a wet belt during this time. This is supported by evidence from 

the facies and paleoflora recorded in these strata. The strata here transition to coarse-grained 

sandstones in the middle La Colina Formation, and are finally overlain by eolian cross-beds (cf. 

Pauls et al., 2019). The lack of mudstones precluded further CIA analyses upward, but the 

presence of the eolian facies at the top of the section indicates a similar increase in aridity as is 
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recorded in the western localities, but probably at a later time. Further age constraint of the strata 

is needed to refine chronostratigraphic correlations of the Paganzo Group strata. 

7.2. Paraná Basin 

In contrast to the shift to a temperate-humid climate in the western margin basins of 

South American, the Southern Paraná Basin was still cold and dry during the late Pennsylvanian. 

It was also still experiencing glaciation (cf. França and Potter, 1988; França, 1994; Souza and 

Marques-Toigo, 2005; Guerra-Sommer et al., 2008; Vesely and Assine, 2006; Rocha Campos et 

al., 2008; Isbell et al., 2012; Griffis et al., 2019; Fedorchuk et al., 2019). Samples from a glacial 

diamictite of the upper Itararé Group (Taciba/Rio do Sul Formation) from southeastern Brazil 

resulted in a CIA value of 61, and reflect cold conditions with minimal chemical weathering, and 

is within the expected range for glacial deposits (50-70; Nesbitt and Young, 1982). Samples from 

rhythmites and mudstones above the glacial deposits of the upper Taciba Formation (upper 

Itararé Group) record CIA values of 69, which indicates some chemical weathering, but it is still 

within the glacial deposit range for CIA values (Nesbitt and Young, 1982). 

Near the boundary with the Rio Bonito Formation, the uppermost Itararé Group strata 

records higher CIA values than the underlying strata. CIA values for the upper Taciba Formation 

(Itararé Group) increase to 78 and 97 at the boundary with the overlying Rio Bonito Formation. 

This shows that by the end of the Pennsylvanian, the southeastern part of the Paraná Basin was 

experiencing a more humid, post-glacial climate. The Rio Bonito sample from directly above the 

contact with the Taciba Formation also resulted in a high CIA value of 98, which indicates the 

continuation of extreme weathering as the result of a humid environment. This trend towards a 
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post-glacial humid environment occurs in the southern Paraná Basin almost 20 Ma later than in 

the western margin basins of Argentina. 

8. Deglaciation of South American Gondwana during the LPIA 

The late Paleozoic ice age has its beginnings in Brazil, Bolivia and Peru in South 

America, as well as basins in Africa, which experienced glaciation during the latest Devonian 

(late Famennian; cf. Caputo and Crowell, 1985; Díaz-Martínez, 1999; Isaacson et al., 1999; 

Díaz-Martínez et al., 2001; Veevers, 2004; Isaacson et al., 2008). Another brief episode of 

glaciation occurred in the late Tournaisian in basins of Brazil, Bolivia and Argentina (Caputo et 

al., 2008). These centers then diminished during the earliest Carboniferous (Caputo and Crowell, 

1985; López-Gamundí, 1997; Díaz-Martínez, 1999; Isaacson et al., 1999, 2008; Díaz-Martínez et 

al., 2001; Isbell et al., 2003; Caputo et al., 2008). 

During the middle Mississippian glaciation, local centers of ice resumed, as supported by 

evidence recorded in the basins of western Argentina (i.e. Río Blanco, Calingasta-Uspallata, and 

western Paganzo basins; López-Gamundí et al., 1994; López-Gamundí, 1997; Caputo et al., 

2008; Isbell et al., 2003). It is important to note that although there are glacial deposits in the 

western Paganzo Basin, this glaciation only occurs along the Protoprecordilleran belt, and 

perhaps on other topographic highs just to the east (i.e. in the Sierra de Famatina region), but it 

does not appear any further east (Moxness et al., 2018; Pauls et al., 2019, in review). The Sierras 

de Chepes and Los Llanos region remained ice free during this time and record cold climate 

conditions (i.e. dropstones related to lake ice; Moxness et al. 2018), but do not present evidence 

that the location ever experienced long-lasting ice cover conditions. 
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Glaciation is also thought to have occurred, as larger ice sheets, in the Paraná Basin 

starting in the Visean or Tournaisian at the earliest (Rosa et al., 2019; Fig. 30). Evidence for 

glaciation appears earlier in the eastern Paraná Basin Itararé Group strata than in the southern 

portion of the Paraná Basin (Mottin et al., 2018; Griffis et al., 2019; Rosa et al., 2019). With 

evidence of glacial activity across South America, this renewed development of glaciers is 

interpreted to be the onset of widespread glaciation across Gondwana (Caputo et al., 2008; 

Pérez-Loinaze et al., 2010; Limarino et al., 2014). 

Nevertheless, as glaciation was continuing in Brazil, the ice centers in western Argentina 

began to diminish during the Serpukhovian, with the last glacial deposits recorded in the early 

Bashkirian in the Calingasta-Uspallata, Río Blanco and Paganzo basins (Limarino et al., 2014 

and references therein). These last deposits are correlated across the western basins and are 

interpreted to have occurred concurrently in the region (cf. Gulbranson et al., 2010; Césari et al., 

2011). Glaciation appears to have ended prior to 320 Ma (cf. Gulbranson et al., 2010; Césari et 

al., 2011; Valdez Buso et al., 2017, 2020) at most localities across the region. These ages are 

recorded in tuffites within the post-glacial transgressive packages at each location, indicating that 

volcanism had begun, coinciding with renewed subduction to the west (Willner et al., 2005, 

2008). By this time in the Bashkirian, the Protoprecordilleran range would have been fully 

collapsed, and no longer served as a paleotopographic high. This also correlates well with the 

transition to a temperate and humid climate regime in the western margin basins during the 

Bashkirian and Moscovian (Fig. 30). 

In the case of the Paraná Basin, most recent data show that the glaciation in the southern 

portion of the Paraná Basin lasted until the latest Carboniferous. (Griffis et al., 2017, 2019). 

Additionally, palynology reported by Mottin et al. (2018) suggests that glaciation may have 
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continued in the east central portion of the Paraná Basin until the Early Permian. The end of the 

Pennsylvanian in the Paraná Basin is marked by warmer and more humid conditions during 

deposition of coal in the Rio Bonito Formation (Goldberg and Humayun, 2010; Tesdesco et al., 

2019; this study) than was recorded during the much-earlier Bashkirian transition to post-glacial 

conditions in the western margin basins (Pauls et al., 2019; this study). 

Potential drivers for the end of glaciation in the basins of Argentina have been 

hypothesized and attributed to the drift of Gondwana across the South Pole, fluctuating CO2 

levels, or even tectonic and orogenic events (Powell and Li, 1994; Isbell et al., 2003, 2012; 

Royer et al., 2004; Montañez et al., 2007; Rygel et al., 2008; Horton and Poulsen, 2009; Tabor 

and Poulsen, 2008; Gulbranson et al., 2010; Montañez and Poulsen, 2013; Limarino et al., 2014). 

Studies have indicated that atmospheric CO2 concentrations were steadily decreasing during the 

latter part of the Carboniferous (Royer, 2006; Montañez et al., 2007; Montañez and Poulsen, 

2013; Fig. 31). If these models are true, then it would be reasonable to assume that atmospheric 

conditions would be cooling, and potentially favorable for long-lasting ice accumulation. In the 

western basins of Argentina, this is not found to be the case, as evidence of glacial activity 

disappears in the Bashkirian (earliest Pennsylvanian; López-Gamundí et al., 1994; López-

Gamundí, 1997; Henry et al., 2008; Isbell et al., 2012; Limarino et al., 2014; Pauls et al., in 

review). Instead, other drivers must be considered for the phenomenon. 

9. Tectonism as a control on climate change in southwestern Gondwana 

Numerous studies have implicated the importance of topographic barriers on the 

transportation of moisture and atmospheric patterns across continental regions (Broccoli and 

Manabe, 1997; Ruddiman and Prell, 2007; Ruddiman et al., 1997; Newell et al., 1999; Tabor and 
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Poulsen, 2008; Godard et al., 2014; Isbell et al., 2012; Limarino et al., 2014). Mountain chains 

can affect a region’s climate by disrupting the atmospheric circulation and in turn cause an 

orographic effect, with wet climate belts on the windward side and dry climate belts on the 

leeward side (Broccoli and Manabe, 1997; Partridge, 1997; Ruddiman and Prell, 1997; 

Ruddiman et al., 1997; Newell et al., 1999; Tabor and Poulsen, 2008; Isbell et al., 2012; Godard 

et al., 2014; Limarino et al., 2014). The Protoprecordillera and Famatina and Pie de Palo arches 

separated the interior Paganzo Basin from the Panthalassan margin, which would have prevented 

the transportation of moisture from the west to east (Fig. 31). Even though the Sierra de Chepes, 

Los Llanos regions were high enough that they could have been glaciated (cf. Enklemann et al., 

2014; Moxness et al., 2018), and the paleoclimate was cold enough to have supported such a 

scenario, no evidence of glaciation exists in the Olta-Malanzán paleovalley. Instead, the 

depositional environment here represents a cold-climate alpine valley that may have experienced 

the occasional cover of surface ice (lake ice), but not glacial activity (cf. Moxness et al., 2018). 

The Protoprecordilleran valleys, on the other hand, contain numerous lines of evidence of glacial 

activity (cf. López-Gamundí et al., 1997; Limarino et al., 2002a, 2002b, 2006; Kneller et al., 

2004; Dykstra et al., 2006; Henry et al., 2008, 2010; Astini, 2010; Isbell et al., 2012; Aquino et 

al., 2014; Alonso-Muruaga et al., 2018; Pauls et al., in review). This evidence of established 

glaciation, along with the higher values (i.e. 66-73) from the lower Agua de Jagüel Formation in 

the Calingasta-Uspallata Basin (i.e. western side of the Protoprecordillera) than its counterparts 

on the eastern and interior Paganzo Basin (i.e. in the 50s) supports the hypothesis that the 

Protoprecordillera was a significant topographic barrier that disrupted atmospheric circulation 

patterns in the region during the Serpukhovian glaciation. We assert here that the lack of glacial 

ice in the eastern region of the Paganzo Basin is most likely due to a rain shadow effect that the 
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Protoprecordilleran range, along with the Famatina and Pie de Palo arches had on the interior 

localities, much like the affect that the Andean cordillera has on the Famatina Range (Sierra de 

Famatina) today. At 20,000 ft, the Famatina Range should be glaciated like the nearby Andean 

cordillera, but it is not due to the rain shadow cast by the Andean orographic effect. However, it 

should be noted that it was glaciated in the Pleistocene. 

The coincidence of the climate amelioration in the early Bashkirian with the loss of 

glacial indicators, and the appearance of local flooding packages can be directly tied to the 

complete collapse of the Protoprecordillera by this time. If the Protoprecordillera diminished in 

elevation, it could have dipped below the ELA (cf. Isbell et al., 2012) and therefore would not 

have been able to maintain glacial ice cover. This loss in elevation is recorded as an increase in 

subsidence all along the western margin localities, with flooding of the paleovalleys and the 

transition to thick transgressive packages (Limarino et al., 2014 and references therein). 

Furthermore, the appearance of ash layers and tuffites in these transgressive packages of the 

upper Guandacol, Jejenes formations indicates that not only was the Protoprecordillera 

collapsed, but the atmospheric circulation appears to have been restored, as these Carboniferous 

ages are related to volcanism occurring along the Chilean/western margin of Gondwana at this 

time (cf. Willner et al., 2008). Additionally, this change in topography as well as climate appears 

to have persisted until at least the middle-Moscovian to Gzhelian time, during which time 

volcanism increased along the margin (Willner et al., 2005, 2008).  

This increase in volcanism is also recorded in strata of the Río Blanco Basin at the end of 

the Pennsylvanian and into the Permian, and it has been correlated to the accretion of a volcanic 

arc outboard of the western margin (cf. Limarino and Spalletti, 2006; Limarino et al., 2006; 

Spalletti et al., 2012; Limarino et al., 2014; Einhorn et al., 2015). This new paleotopographic 
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barrier would have once more cut the interior Paganzo Basin off from moisture sources, perhaps 

taking effect earlier in the northern parts of the basin, such as Cerro Guandacol, and other 

localities in the Río Blanco Basin (cf. Gulbranson et al., 2010, 2015).  

In contrast to climate driving mechanisms for the western margin basins, active tectonism 

is not recorded in the Paraná Basin until much later in the Mesozoic (Milani and Ramos, 1998; 

Limarino and Spalletti, 2006; Rocha-Campos et al., 2008; Tedesco et al., 2019). Therefore, 

tectonism as a main driver for the climate transition from glacial to post-glacial conditions would 

not have affected climate conditions as it did in the western margin basins and cannot be 

considered as a mechanism for this region. Furthermore, the Paraná Basin was filled with an 

intracratonic seaway for most of the late Paleozoic (cf. Rocha-Campos et al., 2008), and 

therefore the highlands surrounding the basin would have had ample moisture for snow and ice 

to accumulate. Climate in the Paraná Basin was most likely influenced by global-scale drivers, 

such as the drift of Gondwana across the South Pole and a decrease in atmospheric CO2 

concentrations (Montañez et al., 2007), as well as local drivers like the seaway that allowed for a 

local moisture source.  

Despite the fact that the western basins of Argentina and the Paraná Basin were located at 

a similar paleo-latitude, global drivers likely had a minimal effect on the disappearance of glacial 

ice in western Argentina. Upon compiling the latest research over the past decade, a better 

understanding of the late Paleozoic ice age emerges. The deglaciation of southwestern 

Gondwana was not sudden, but occurred in a step-like fashion, starting in northern and western 

Argentina and Bolivia, and migrated eastward through time (Caputo et al., 2008; Isbell et al., 

2012). Based on the data gathered and presented here, it was likely that various climate drivers 

were at play and that regional drivers played the most significant role of when glaciation ended 
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within the regions of Gondwana that are located at similar paleolatitudes. For the climate 

transition recorded in the western margin basins, the most important driver appears to be related 

to the changes in the delivery of moisture to the region, which would have been controlled by 

tectonism along the western convergent margin of South America. A minor secondary influence 

was likely connected to the counterclockwise rotational drift of South American Gondwana north 

and westward away from the South Pole (cf. Powell and Li, 1994; Isbell et al., 2003, 2012; 

Lawver et al., 2008, 2011; Torsvik and Cocks, 2016). Together, the active tectonism in 

combination with the continental drift of Gondwana are responsible for the disappearance of 

glacial indicators in the western active margin basins. The same cannot be invoked for the 

eastern intraplate basins, which experienced a longer-lived glacial record than those along the 

western margin. 

10. Conclusions 

Bulk-rock major element geochemistry data provides the means to construct a 

paleoclimate model for the late Paleozoic basins of South American Gondwana. The western 

margin basins of Argentina (i.e. the Paganzo, Calingasta-Uspallata and Río Blanco basins) 

record a relatively early disappearance of glacial evidence when compared to the southern 

Paraná Basin, which is at a similar paleolatitude, but away from the active margin. 

• The overall paleoclimate reconstruction for the western margin basins indicate 

that this region transitioned from cold and arid to warm and temperate-humid and 

finally back to arid at the Permian. Despite that fact, there were noticeable 

differences in the timing among the localities. The climate reconstruction for the 
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Paraná Basin indicates that the glacial to post-glacial humid climate did not occur 

until almost ~20 Ma later than the western margin basins. 

• The basins on the western side of the Protoprecordillera range recorded higher 

overall CIA values throughout the late Serpukhovian-Bashkirian glacial phase 

than the Paganzo Basin localities, while still maintaining glacial activity. This 

gives clear evidence that the Protoprecordillera was a significant topographic 

barrier that caused an orographic effect on the easternmost Paganzo Basin 

(OMPV). 

• The early Pennsylvanian climate amelioration recorded in the western margin 

basins can be tied to the collapse of the Protoprecordilleran range. Both 

stratigraphic, paleontological, and now this paleoclimatic reconstruction coincide 

with a loss in elevation and an increase in subsidence along the western margin of 

Gondwana during this time. 

• Evidence for an increase in volcanism during the Pennsylvanian along the western 

active margin has been noted in the middle and upper units of the Paganzo Group 

and indicates a second orographic effect caused by the accretion of a volcanic arc. 

This resulted in the transition from a temperate-seasonal climate to an extremely 

arid one. 

• Tectonism is the main climate driver for the relatively early disappearance of 

glacial activity in the western margin basins, whereas global drivers such as the 

rotation of Gondwana across the South Pole and decreasing atmospheric CO2 

concentrations seem to have exerted more control on the end of glaciation in the 

southern Paraná Basin.  
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Figure 24 A. Map of plate reconstruction for the Bashkirian stage. RBB: Río Blanco Basin; CUB: Calingasta-

Uspallata Basin; CPB: Chaco-Paraná Basin; SGB: Sauce Grande Basin. TGB: Tepuel-Genoa Basin. 

Reconstruction modified from Moxness et al. (2018). B. Plan-view map showing the interpreted outline of the 

Paganzo Basin. The localities for this study are marked by black stars: AH – Agua Hedionda anticline near Huaco; 

CG – Cerro Guandacol; OMPV - Olta-Malanzán paleovalley; AJ – Agua de Jagüel. White star indicates Cerro 

Agua Negra Formation from Spalletti et al., (2012), data used in comparison to this study. Map modified from 

Limarino et al. (2006). C. Map of reconstruction of southeastern Paraná Basin with localities marked by black stars 

used in this study. 
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Figure 25. Generalized stratigraphic(white units) and basement rock (gray units) correlation chart for the western 

margin basins of Argentina and the Paraná Basin in Brazil. Modified from Limarino et al., 2014 with updated 

chronostratigraphic information for the Paraná Basin from Mottin et al. (2018) and Griffis et al. (2019).  
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Figure 26 Time distribution of the orogenic events that occurred along the western margin of Gondwana. Pampean 

and Famatinian orogenies resulted from the collision of the Cuyania Terrane. The Chañic orogeny resulted from the 

obduction of the Precordilleran terrane. The Carboniferous-Permian arc resulted from the collision of the Chilenia 

Terrane. Modified from Ramos, 1988, 1999. 
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Figure 27. Mesoproterozoic-Carboniferous igneous and metamorphic provinces for the Paganzo Basin area 

(demarcated by the black dashed line). Map is modified from Dahlquist et al. (2010). The cited literature for this 

compilation is as follows: (1) Vujovich et al., 2004; Naipauer et al., 2010a (2) Varela et al., 2003, 2005 (3) 

Pankhurst et al., 2000 (4) Pankhurst et al., 2000   (5) Toselli et al., 2003; Pankhurst et al., 2000 (6) Pankhurst et al., 

2000 (7) Vujovich and Ostera, 2003; Drobe et al., 2009 (8) Rapela et al., 1998, Pankhurst et al., 2000 (9) Leal et 

al., 20003; Llambías et al., 2003. 
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Table 3. Elemental abundances, loss-on-ignition (LOI), total analyzed abundances, and CIA values for samples 

from the sedimentary fill of the western margin basins and the southeastern Paraná Basin. 
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Table 3 continued. Elemental abundances, loss-on-ignition (LOI), total analyzed abundances, and CIA values for 

samples from the sedimentary fill of the western margin basins and the southeastern Paraná Basin. 
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Figure 28. Ternary plots of Al2O3 vs. CaO*+Na2O vs. K2O (A=CN-K) system (Nesbitt and Young, 1989). The 

distribution of data points at each locality is consistent with loss of alkalinity through chemical weathering. Cerro 

Agua Negra Formation data is from Spalletti et al. (2012), and comparison data for the Paraná Basin is from 

Tedesco et al. (2019). 
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Figure 29. Generalized stratigraphic sections from Agua de Jagüel (AJ), Cerro Guandacol, Huaco (AH) based on 

the chronostratigraphic correlations from Césari et al. (2011), compared to the Olta-Malanzán Paleovalley 

(OMPV) data from Pauls et al. (2019). The Chemical Index of Alteration (CIA) values for each section have been 

plotted next to their approximate location within the succession and can also be found in Table 3. Left to right on 

the individual columns indicates increased chemical weathering and an inferred humid paleoclimate (i.e. blue is 

more arid and orange is more humid). The solid black line is a three-point moving average to give a better visual of 

the paleoclimate trend through time. 
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Figure 30. Glacial and cold intervals for South American Gondwana from west to east. Modified from Isbell et al. 

(2012), and based on data from Limarino and Spalletti (2006), Henry et al. (2008, 2010), Rocha-Campos et al. 

(2008), Gulbranson et al. (2010), Isbell et al. (2012), Limarino et al. (2014), Moxness et al. (2018), Fedorchuk et al. 

(2019), and Griffis et al. (2019). 

  



 

183 

 

 

Figure 31. Cross-sectional view of the western margin of Gondwana and the proposed tectonism model during the 

middle Carboniferous to the Permian. 
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Chapter 5. Provenance and paleogeography of the Paganzo Basin: Detrital zircon 

geochronology of the upper Paganzo Group strata 

Abstract 

U-Pb detrital zircon analyses of the upper Paganzo Group strata indicate a broadening of the 

Paganzo Basin, and a shift in sediment source through the end of the Carboniferous from more 

local sources to more distal sources indicating expansion of regional drainage. Two localities on 

either side of the Paganzo Basin are compared to determine the drainage development of the 

Paganzo Basin at the Carboniferous-Permian boundary. At Agua Hedionda near Huaco, the 

Patquía Formation shows sources that are very similar to the nearby Sierra de Valle Fértil range 

of the Famatina magmatic belt. The Tupe and Patquía formations here contain late Carboniferous 

detrital zircons which are linked to late Carboniferous-Permian volcanism to the west of the 

Precordillera region. At Olta-Malanzán, the detrital zircons of the Loma Larga and La Colina 

formations display a very similar phenomenon as their counterpart units in the west. The age-

distributions from the Loma Larga to the La Colina indicate an eastern shift of the source region 

for the strata. The upper Paganzo Group strata facies records a drastic shift in climate conditions 

within the basin, from temperate and seasonal to extremely arid. The evidence from detrital 

zircon geochronology of selected Paganzo Group units (i.e. Malanzán, Loma Larga, La Colina 

formations along the eastern boundary and the Guandacol, Tupe and Patquía formations in the 

west) presented here may also have implications for the regional climate at the end of the 

Carboniferous. 
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1. Introduction 

Detrital zircon geochronology studies have become an increasingly popular tool to 

elucidate provenance of late Paleozoic strata and to refine the extent of the glacial centers of 

Gondwana. However, few studies have been employed to track provenance through time with 

regards to paleoslope and basin development. Understanding basin development in South 

American Gondwana proves useful when evaluating climate transitions, as these could be related 

more to regional climate drivers rather than global climate drivers. The Paganzo Basin in 

Argentina provides an excellent location to analyze basin evolution using detrital zircon 

geochronology due to changing tectonic conditions along the convergent margin of western 

South America during the Carboniferous and Permian (Fig. 32). 

Previous studies have conducted provenance analyses using petrology and major and 

minor elemental methods (cf. Net, 1999; Net et al., 2002; Net and Limarino, 2006; Spalletti et 

al., 2012), but none thus far have conducted a detrital zircon geochronology analysis of the 

Paganzo Group strata from the middle Carboniferous through the Permian strata (i.e. Tupe and 

Patquía formations and Loma Larga and La Colina formations; Fig. 33). These studies, too, have 

alluded to provenance shifts in the Paganzo Basin but are limited by the mineralogy of the strata, 

which can be problematic due to the widespread and similar igneous and metamorphic suites 

across the basin. Here, we present evidence that refines the understanding of potential source 

material for six units within the Paganzo Group.  

In this study, we present new U-Pb detrital zircon ages of sedimentary rocks from the 

upper Paganzo Group (late Carboniferous-Permian) strata recorded in the easternmost and 

western margins of the Paganzo Basin in western Argentina. The main objectives of the study are 
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1) to understand the evolution of provenance and sediment dispersal patterns through the 

Carboniferous and Permian and 2) to identify changes in paleotopography or shifts in possible 

sources or uplands as the Paganzo Basin developed through time. 

2. Regional Geologic Setting 

The western margin of Gondwana records a long accretionary and depositional history. 

Late Paleozoic sedimentary basins overlie a multitude of terranes (i.e. the Pampia, Precordillera, 

Cuyania and Chilenia terranes), and associated volcanic and sedimentary successions (Fig. 34). 

The Paganzo Basin overlies basement rocks ranging from the Sierras Pampeanas in the east to 

the Precordillera and Cuyania terranes in the west (Pankhurst et al., 1998; Ramos et al., 1998, 

2015; Rapela et al., 1998; Ramos, 1999, 2008, 2010; Rapalini, 2005; Dahlquist et al., 2010; 

Einhorn et al., 2015). Paleotopographic highs created by the accretion of the various terranes in 

this region have been implicated in the climate and depositional histories of the subsequent 

basins that developed in western Argentina (cf. Limarino et al., 2002, 2006).  

The Sierras Pampeanas today make up most of the highlands between the Precordillera 

terrane and Cuyania terrane and the Rio de la Plata craton, and are divided into magmatic or 

orogenic belts as they correspond to different accretionary events (Fig. 34). The easternmost 

Sierras Pampeanas were formed during the Cambrian, as the Pampia terrane docked against the 

Río de La Plata craton, and therefore contain igneous and metamorphic rocks with ages that 

range from 500 to 600 Ma (Rapela et al., 1998; Ramos et al., 2015). The upland ranges include 

the Sierra de Córdoba, Sierra del Norte de Córdoba, Sierra Ambato, Sierra Ancasti and others 

(Rapela et al., 1998; Leal et al., 2003; Llambías et al 2003; Toselli et al., 2003; Fig. 3). 
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The Sierras Pampeanas also contain Ordovician (490-450 Ma, with the main magmatism 

occurring between 490-470 Ma) granitic and metamorphic units associated with Famatina 

magmatism and the eastern portion of the Cuyania Terrane (Pankhurst et al., 1998, 2000; Keller, 

1999; Ramos, 1999; Fig. 34). The Famatina orogenic belt runs north-south between the Pampean 

orogenic belt and the Cuyania composite terrane. In the Paganzo Basin region, evidence of 

Famatina magmatism can be found in the Sierras de Chepes, Los Llanos, Malanzán and Ulapes, 

Sierra de San Luis, Sierra de Velasco, Sierra Famatina, and Sierra de Valle Fértil (Pankhurst et 

al., 1998, 2000; Toselli et al., 2003; Vujovich and Ostera 2003; Dahlquist et al., 2010; Einhorn et 

al., 2015; Fig. 3). These ranges were paleotopographic highs during the deposition of late 

Paleozoic sedimentary rocks (Andreis et al., 1986; Buatois and Mangano, 1995; Sterren and 

Martinez, 1996; Limarino and Spalletti, 2006; Spalletti et al., 2012; Enkelmann et al., 2015; 

Enklemann and Garver, 2015; Limarino et al., 2014; Pauls et al., in review).  

The Famatina igneous and metamorphic suites are primarily the result of Ordovician 

intrusions and the thrusting and folding as the result of the docking of the Precordilleran Terrane 

during the Oclóyic Orogeny (Cambrian-Ordovician; Ramos et al., 1998; Keller, 1999; Ramos, 

1999). In the eastern part of the Famatina belt is the Sierras de Chepes region, which contains 

crystallization ages from 477-497 Ma (Pankhurst et al., 1998; Stuart-Smith et al., 1999; 

Enkelmann et al., 2014). Additionally, these Ordovician granites were intruded by post-orogenic 

granitic bodies during the Devonian-early Carboniferous (365-345 Ma; Dahlquist et al., 2010; 

Martina et al., 2018). 

To the west of the Sierra de Valle Fértil is the Cuyania terrane, which contains 

metamorphic units of Mesoproterozoic age along its easternmost boundary exposed at the 

surface in the Sierras de Pie de Palo, Umango, Maz and Espinol (Huff et al., 1998; Ottone et al., 
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2001; Dahlquist et al., 2010; Sial et al., 2013; Verdecchia et al., 2014, 2018; Thomas et al., 2015; 

Fig. 3). Obducted onto the Cuyania terrane and the Chilenia terrane is the Precordilleran terrane, 

which occurred as the result of the Chañic orogeny (middle Devonian to earliest Mississippian) 

when Chilenia accreted to Gondwana’s western margin (Ramos et al., 1984, 1986, 1988). Along 

the Precordillera, sedimentary packages from the Cambrian through Ordovician contain 

numerous ashes that are related to the Famatina magmatic arc, with ages ranging from 473-464 

Ma (Huff et al., 1997, 1998; Astini, 1998; Ottone et al., 2001; Fanning et al., 2004; Astini et al., 

2007; Thompson et al., 2012; Thomas et al., 2015). The Precordillera terrane is hypothesized to 

be part of a tectonic belt that made up either the Protoprecordilleran range or in some studies the 

Tontal Arch during the early Carboniferous (cf. Amos and Rolleri, 1965; González Bonorino, 

1975; Limarino et al., 2006; Aquino et al., 2014; Valdez Buso et al., 2017, 2020; Milana and di 

Pasquo, 2019; Pauls et al., in review). This highland formed during the Chañic orogeny as a fold-

and-thrust belt as the accretionary prism was obducted (González Bonorino, 1975; Ramos et al., 

1984, 1986, 1988; López-Gamundí et al., 1994; Limarino et al., 2002, 2006, 2014; Henry et al., 

2008; Isbell et al., 2012). 

Subduction continued along the western margin of Gondwana during the Pennsylvanian 

and is recorded as volcanic rocks and ash layers that range in age from 320-280 Ma (cf. Willner 

et al., 2005, 2008). This active tectonism is tied to the development of an outboard volcanic arc. 

As the active subduction margin moved further westward during this time, studies have 

interpreted the collapse of the Protoprecordilleran range as the barrier between the Panthalassan 

margin and the continental interior (Ramos, 1988; López-Gamundí et al., 1994; Limarino et al., 

2002a, 2006, 2014; Isbell et al., 2012; Spalletti et al., 2012). Therefore, the interior foreland 
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region was breached for a time prior to the end of the Pennsylvanian (López-Gamundí et al., 

1994; Limarino et al., 2002a, 2006, 2014; Isbell et al., 2012; Spalletti et al., 2012). 

Late Paleozoic strata in the Paganzo Basin were thus derived from these uplands and 

terranes and were distributed differentially within the basin. It has been long implied that the 

tectonic activity of the region has played a large role in the early disappearance of glacial activity 

within the basin, as well as the increase in aridity recorded in the rocks of the Paganzo Group. A 

thorough analysis of the units throughout the basin provides insight into the timing of the 

tectonism, and changes in source regions through time. Additionally, it aids in the overall 

understanding of the paleogeography of the foreland region during the Carboniferous-Permian 

climatic transition. 

3. Late Paleozoic strata of the Paganzo Basin 

    The Paganzo Group strata make up the sedimentary fill of the Paganzo Basin, which is 

subdivided into formations of time-equivalent strata that are correlated using pollen, fossil plants, 

and radiometric ages from ash and tuff layers from various units (Gulbranson et al., 2010, 2015; 

Césari et al., 2011, 2019; Valdez Buso et al., 2020; Fig. 35). In the western portion of the 

Paganzo Basin, for example, the Paganzo Group is divided into the Guandacol (middle 

Serpukhovian-middle Baskirian), Tupe (middle Bashkirian-early Moscovian), and the Patquía 

(early Moscovian-early Permian) Formations (Limarino et al., 2006; Guena et al., 2010; Tedesco 

et al., 2010; Limarino et al., 2014). In the central Paganzo Basin, the Paganzo Group is divided 

into two formations: Lagares Formation (middle Serpukhovian-late Moscovian) and La Colina 

Formation (late Moscovian-Wuchiapingian) (Limarino et al., 2006; Guena et al., 2010; Tedesco 

et al., 2010; Limarino et al., 2014). In the eastern portion of the basin of the Sierras de Chepes 
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and Los Llanos region, the group is subdivided into the Malanzán Formation (middle 

Serpukhovian-middle Baskirian), Loma Larga Formation (middle Bashkirian-early Moscovian), 

Solca (middle Serpukhovian-late Moscovian), Arroyo Totoral (middle Serpukhovian- 

Wuchiapingian), and La Colina Formation (late Moscovian-Wuchiapingian; Crisafulli and 

Herbst, 2008; Césari et al., 2011; Limarino et al., 2014). 

In the western Paganzo Basin, the base of the Guandacol Formation contains ice-

proximal and subglacial deposits (Limarino et al., 2014; Fig. 35). Until a recent study by 

Moxness et al. (2018), it was thought that ice also existed along the eastern margin of the 

Paganzo Basin, as there were interpretations of glacial deposits at the base of the Malanzán 

Formation in the Sierra de Chepes region (Socha, 2006; Socha et al., 2014; Enkelmann et al., 

2015; Enkelmann and Garver, 2015). These deposits have been reinterpreted as conglomerates 

related to alluvial, fluvial, and lacustrine processes in a cold climate environment (Moxness et 

al., 2018; Pauls et al., 2019). Moxness et al. (2018) also provided evidence as to why the Olta-

Malanzán paleovalley was not carved by glacial activity. This valley appears to have been ice-

free during the Carboniferous and Permian. The early Pennsylvanian deposits represent the only 

evidence of glaciation within the western Paganzo Basin, and the middle to late Pennsylvanian is 

marked by progressively drier climates, while basins at similar paleolatitudes (i.e. the Chaco-

Paraná and Paraná Basins) continue to record glaciation until the Carboniferous-Permian 

boundary (Henry et al., 2008; Rocha-Campos et al., 2008; Holz, 2010; Cesari et al., 2011; 

Limarino et al., 2014). On top of these diamictites and conglomeratic units, there are thick 

successions of post-glacial shales that represent a transgressive event that is recorded in all 

sections across the Paganzo Basin (Limarino et al., 2006, 2014; Césari et al., 2011).  
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The middle units (i.e. Tupe, upper Lagares, and Loma Larga formations; Fig. 4) are 

interpreted to be comprised of fluvial deposits that succeed the lowermost units (Andreis et al., 

1986; Limarino et al., 2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et al., 2014). 

Additionally, there are coal deposits described from various levels within the middle units, which 

has led to the interpretation of a more humid-post-glacial climate basin-wide (Limarino et al., 

2006; Guena et al., 2010; Tedesco et al., 2010; Limarino et al., 2014).  

In the eastern Paganzo Basin, the Solca Formation, which overlies the Loma Larga 

Formation (Fig. 35), consists of mostly conglomeratic units. It appears most similar in coloration 

(e.g. white sandstones alternating with red mudstones) and appearance to the lowermost Patquía 

Formation in the western part of the basin. The uppermost units, Patquía and La Colina 

Formations, are found throughout the Paganzo Basin, and are interpreted to be indicative of 

eolian, ephemeral riverine and playa depositional environments (Limarino et al., 2006; Guena et 

al., 2010; Cesari et al., 2011; Limarino et al., 2014).  

In recent literature, most of what is written about the Paganzo Basin strata comes from 

the detailed studies of the western units of the Paganzo Group, (i.e. the Guandacol, Tupe, and 

Patquía Formations), and the associated depositional processes and environments are often then 

extrapolated basin-wide. This has led to confusion on the depositional environments across the 

basin (i.e. Pazos, 2002; Gulbranson et al., 2010, 2015; Enkelmann et al., 2014), but here we 

provide a quantitative look at the Carboniferous-Permian climate transition of the Paganzo Basin 

by examining locations on a whole-basin regional scale. 
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3.1. Agua Hedionda, Huaco locality 

The Paganzo Group strata at the Agua Hedionda anticline locality are some of the best 

studied in the basin (cf. Bossi and Abdreis, 1985; López-Gamundí et al., 1994; Martínez, 1993; 

López-Gamundí and Martínez, 2000; Pazos, 2000, 2002a, b; Marenssi et al., 2002; Limarino et 

al., 2002a; Marenssi et al., 2005). Strata from the late Paleozoic outcrops on either side of the 

anticline record a glacial to post-glacial climate transition. Sections were measured along the 

eastern flank of the anticline, north and south of the Huaco River and Route 40 (Fig. 36). Strata 

were measured here as this section represents one of the most complete records of late Paleozoic 

strata in northwestern Argentina. 

3.2. Olta-Malanzán paleovalley 

The Olta-Malanzán paleovalley system (OMPV) is located within an isolated uplift of the 

Famatina orogenic belt of the Sierras Pampeanas (Fig. 36). The paleovalley system is thought to 

have developed in an alpine or mountain valley setting, either carved by glacial ice (cf. Sterren 

and Martinez, 1996; Enkelmann et al., 2014; Rabassa et al., 2014; Socha et al., 2014) or 

tectonically formed as a fault-bounded basin (Bracaccini, 1948; Andreis et al., 1986; Buatois and 

Mangano, 1995; Net and Limarino, 1999; Moxness et al. 2018), cutting down into and depositing 

over various granitic-granodioritic and metamorphic complexes (i.e. Chepes granodiorite, Tuaní 

and Asperezas granite suites, and the Olta schist and phyllite). Most recent evidence provided by 

Moxness et al. (2018) has shown that the valley was not carved by glaciers but did experience 

cold conditions. The late Paleozoic Paganzo Group strata here are currently being exhumed by 

the modern Río Olta and other tributary streams, which flows to the east, but paleocurrent 

measurements and the stratal dip of the sedimentary deposits indicate that the flow of the valley 
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was to the west during Carboniferous and Permian deposition (Andreis et al., 1986; Sterren and 

Martínez, 1996). The uplift itself is flanked on either end by two towns, Olta to the east and 

Malanzán in the west. The paleovalley is exposed in a synclinal extent, with the oldest (i.e. 

Serpukhovian-Bashkirian) material at the easternmost and westernmost ends, and the youngest 

(i.e. Permian) strata exposed toward the center (Fig. 36). Therefore, the paleovalley is often 

divided into two segments, the Olta paleovalley (OPV) and the Malanzán paleovalley (MPV). 

4. Detrital zircon U-Pb geochronology analyses methods 

Sections were measured in both segments of the OMPV paleovalley system to obtain a 

full understanding of upstream and downstream (proximal and distal) depositional environments. 

Sections were measured along the eastern flank of the anticline, north and south of the Huaco 

River and Route 40 (Fig. 36). To maintain assurance that provenance was restricted to local 

sources, we also sampled for detrital zircon analyses to track long-term provenance changes 

(Gehrels, 2000; Fedo et al., 2003; Anderson, 2005; Gehrels et al., 2008; Gehrels, 2011; Gehrels 

et al., 2011; Gehrels and Pecha, 2014). The ages obtained from the sedimentary rocks can then 

be compared to known dates of bedrock in the region, or of more distal sources to determine 

provenance and maximum depositional age of the sediments. Samples collected for detrital 

zircon analyses were used to assess changes in sediment source and dispersal patterns along the 

Protoprecordillera and Sierras Pampeanas (i.e. for the different formations in the Paganzo 

Group). The changing tectonic conditions (i.e. uplift and collapse of uplands) based on dispersal 

patterns and changing source terrains can be related to known climatic change in the basin, thus 

allowing for a better understanding of how these tectonic signatures affect climate within the 

overall regional and/or global climatic patterns. 
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This study makes use of previously published detrital zircon data for the strata in 

question, but to make a full comparison of provenance through time during the glacial-to-post-

glacial transition, three additional sandstone samples were collected (CDH0923-5S, CDH0923-

35S, LC0806-1S; Fig. 36). The samples were prepared using the methods of Gehrels (2011) and 

U-Pb ages were determined for all zircons at the University of Arizona LaserChron laboratory 

(ALC). Zircons were extracted by traditional methods of crushing and grinding, and were 

separated using a Wilfley table, heavy liquids, and a Frantz magnetic separator to remove high-U 

zircons that could yield discordant results (Sircombe and Stern, 2002; McKay et al., 2018). The 

samples analyzed at ALC contained 72, 183, and 178 zircons respectively, which were hand-

picked and mounted from a sieved 63-250 µm size-fraction. U-Pb geochronology of the zircons 

was conducted by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS).  

The samples were analyzed using a Thermo Element2 single-collector ICPMS. Data collected at 

the ALC were reduced using their Excel age calculation program (see Gehrels et al., 2008; 

Gehrels and Pecha, 2014; ALC website: https://sites.google.com/a/laserchron.org/laserchron/). 

To eliminate results of analyses with common-Pb contamination or Pb loss, criteria for rejection 

included the following:  

1. High errors (>10% uncertainty) of 206Pb/207Pb and 206Pb/238U isotope ratios 

2. High 204Pb values 

3. Low 206Pb/204Pb ratios 

4. High discordance (>20%) or reverse discordance (>5%) 

The analyses that met these criteria were removed from interpretations, but are included in the 

full set of analyses in Appendix A. 

about:blank
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Once the data was obtained, all accepted analyses were used to create Concordia 

diagrams using Isoplot 4.15, a Microsoft Excel add-in from Ludwig (2012; Fig. 37). The data 

here are discussed in the context of previously published ages from other strata of the Paganzo 

Group (cf. Enkelmann et al., 2014; Craddock et al., 2019). The data are also compared to 

published ages of igneous and metamorphic basement lithologies from the literature to determine 

provenance through time in the Paganzo Basin (e.g. Huff et al., 1998; Pankhurst et al., 1998; 

Rapela et al., 1998; Ottone et al., 2001; Dahlquist et al., 2010; Drobe et al., 2011; Verdecchia et 

al., 2011, 2014, 2018; Sial et al., 2013; Einhorn et al., 2015; Rapela et al., 2018). 

5. Detrital Zircon Geochronology of the Paganzo Basin 

CDH0923-5S, Tupe Formation, Huaco Locality, this study  

One sandstone sample was collected from a trough-cross-bedded sandstone package from 

the lower Tupe Formation. The interpreted depositional environment for this sample is a fluvial 

system. 72 concordant detrital zircons were analyzed from this sample, ranging in age from 

3095.6 ± 12.9 Ma to 286.7 ± 6.9 Ma (Fig. 38). Ordovician-aged zircons dominated this sample, 

with a primary age peak from 480-440 Ma. A secondary peak age occurs during the 

Mesoproterozoic, from 1400-960 Ma. In this sample, 8% were Carboniferous, 6% Devonian, 1% 

Silurian, 22% Ordovician, 6% Cambrian, 13% Neoproterozoic, 39% Mesoproterozoic, and 4% 

Paleoproterozoic (Fig. 39). 

CDH0923-35S, Patquía Formation, Huaco Locality, this study 

One sandstone sample was collected from a sandstone bed in an interbedded mudstone 

and sandstone facies succession interpreted as fluvial. The sample contained 183 zircons that 

range in age from 2690.5 ± 17.8 Ma to 305 ± 5.8 Ma. The primary age-peak is Ordovician, with 
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a minor peak in the Mesoproterozoic (Fig. 38). For this sample, 2% of the zircons were 

Carboniferous, 4% Devonian, 3% Silurian, 41% Ordovician, 9% Cambrian, 15% 

Neoproterozoic, 19% Mesoproterozoic, 7% Paleoproterozoic, and 1% Archean (Fig. 39). 

LC0806, La Colina Formation, Olta-Malanzán Paleovalley Locality, this study  

One sandstone sample was collected from a cross-bedded sandstone package from the 

upper La Colina Formation, here interpreted as an eolian dune complex. The sample had 178 

analyzed zircons with an age range of 3325.5 ± 15.2 Ma to 361.5 ±7.3 Ma. The sample shows a 

dominant peak in the Neoproterozoic-Cambrian, and a secondary peak in the Mesoproterozoic 

(Fig. 38). In this sample, 3% of the zircons analyzed were Devonian, 4% Ordovician, 20% 

Cambrian, 43% Neoproterozoic, 21% Mesoproterozoic, 6% Paleoproterozoic, and 3% Archean 

(Fig. 39). 

6. Comparative detrital zircon sample 

ARG175, Loma Larga Formation, Olta-Malanzán Paleovalley, Craddock et al., 2019 

This sample was collected from a sandstone close to the town of Loma Larga, from a 

fluvial depositional environment (Fig. 36). The sample contained 44 concordant zircons, which 

range in age from 2133.8 ± 25.3 Ma to 412.4 ± 11.9 Ma (Fig. 38). In this sample, 2% of the 

zircons were Devonian in age, 4% Silurian, 32% Ordovician, 39% Cambrian, 16% 

Neoproterozoic, 5% Mesoproterozoic, and 2% Paleoproterozoic (Fig. 39). 

CDH0923-3S, Guandacol Formation, Huaco Locality, Pauls et al. (in review) 

One sandstone sample was collected from a wavy-bedded meter-thick sandstone package 

from within a shoreface succession in the uppermost Guandacol Formation (Fig. 36). This 
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sample contained 75 concordant zircons ranging in age from 2616.4 ± 8.9 Ma to 308.6 ± 11.1 

Ma. A primary age peak ranges from 480-440 Ma (Ordovician), with a component from 500-600 

Ma (Cambrian-late Neoproterozoic), and a secondary peak occurs at 1160-960 Ma (Fig. 38). In 

this sample, 1% of the zircons analyzed were Carboniferous, 5% Devonian, 3% Silurian, 20% 

Ordovician, 10% Cambrian, 27% Neoproterozoic, and 28% Mesoproterozoic. 

ARG318, Lowermost Guandacol Formation, Huaco Locality (Craddock et al., 2019) 

This sample was collected from a glacial diamictite at the base of the Guandacol 

Formation and is interpreted to be from a proglacial glaciomarine environment (Fig. 36). This 

sample contained 36 concordant zircons from 2059 ± 7.5 to 385.2 ± 5.9 Ma. For this sample, 3% 

of the zircons were Devonian, 20% Ordovician, 44% Cambrian, 19% Neoproterozoic, 8% 

Mesoproterozoic, and 3% Paleoproterozoic (Fig. 39). 

29TR4, Lowermost Malanzán Formation, Olta-Malanzán Paleovalley (Enkelmann et 

al., 2014) 

This sample was collected from a debris flow deposit at the base of the Malanzán 

Formation (Fig. 36). The sample contained 93 concordant detrital zircons with ages ranging from 

2203 ± 36 Ma to 333 ± 4.5. For this sample, 3% of the analyzed zircons were Carboniferous, 

12% Devonian, 3% Silurian, 24% Ordovician, 29% Cambrian, 19% Neoproterozoic, 3% 

Mesoproterozoic, and 7% Paleoproterozoic (Fig. 39).  

ARG203, Middle-Upper Malanzán Formation, Olta-Malanzán Paleovalley (Craddock 

et al., 2019) 

This sample was collected from a sandstone within a succession of interbedded 

mudstones and sandstones interpreted to be a prograding/fluctuating delta front system (Fig. 36). 
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The sample contained 50 zircons that range in age from 937.3 ± 26.1 Ma to 362.7 ± 8.6 Ma. For 

this sample, 8% of the zircons were Devonian, 2% Silurian, 54% Ordovician, 20% Cambrian, 

and 16% Neoproterozoic (Fig. 39).  

7. Provenance of the upper Paganzo Group Strata  

Pauls et al. (in review) established that there were most likely separate depositional 

centers in the Paganzo Basin based on the detrital zircon analysis of the Guandacol and 

Malanzán formations, as the lowermost Guandacol Formation most likely represents a thorough 

mixing of the local western Precordillera basement materials (e.g., Los Azules Formation and the 

Mesoproterozoic basement of the Sierra de Pie de Palo complex; Huff et al., 1997, 1998; Ottone 

et al., 2001; Dahlquist et al., 2010; Sial et al., 2013; Verdecchia et al., 2014, 2018), while the 

Malanzán Formation detrital zircons are representative of the Sierra de Chepes granitoid 

complex (Pankhurst et al., 1998; Enkelmann et al., 2014). From the detrital zircon age population 

differences as well as paleoflow data presented in that study, it was concluded that there was 

most likely a paleotopographic barrier in the form of uplifted block(s) throughout the Paganzo 

Basin during the Visean-Bashkirian, most likely coinciding with the Famatina and Pie de Palo 

arches (i.e. Sierras Famatina and Sierra de Pie de Palo, respectively; Figs. 32, 39). 

7.1. Agua Hedionda, Huaco Provenance 

When compared to the Guandacol Formation sample of Pauls et al. (in review), the zircon 

grains from the Tupe and Patquía formations display some similarities in the age-distribution 

patterns, but a shift in the primary age peak requires separate provenance analysis. Based on the 

data provided in Pauls et al. (in review), the age-distribution patterns of the Guandacol compared 
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with the Tupe Formation data presented here are very similar, and therefore they are considered 

to have the same source (Fig. 39). The primary source was determined to be the nearby Sierra de 

Pie de Palo region, which contains the Mesoproterozoic-Ordovician ages (cf. Thomas et al., 2015 

and references therein) found within the Guandacol Formation samples (ARG318, CDH0923-3S; 

Craddock et al., 2019; Pauls et al., in review; Fig. 39). However, there is an increase in the 

Mesoproterozoic zircon grains in the Tupe Formation (from 28% in the Guandacol Formation to 

39% in the Tupe Formation; Fig. 39). This indicates either an unroofing of material in the area, 

or a shift in source region, that is pulling more from the eastern edge of the Cuyania terrane, such 

as the Mesoproterozoic aged rocks within Sierra de Pie de Palo region (Huff et al., 1997, 1998; 

Ottone et al., 2001; Dahlquist et al., 2010; Sial et al., 2013; Verdecchia et al., 2014, 2018; Rapela 

et al., 2018). We interpret this as a slight eastward shift in drainage for this location (Fig. 40). 

When comparing the Tupe and Patquía formations age-distribution patterns, there is a 

more significant difference (Fig. 39). The main age peak in the Patquía Formation is 

overwhelmingly Ordovician, from 23% in the Tupe Formation to 41% in the Patquía Formation. 

This increase in Ordovician-aged detrital zircons suggest a change in source regions during the 

middle to late Pennsylvanian (Fig. 40). Net et al. (2006) indicated paleoflow to the west for both 

the Tupe and Patquía formations at the Agua Hedionda (Huaco) locality. When considered with 

paleoflow data provided by Net et al. (2006), the increase in Ordovician-aged zircons likely 

represents additional sediment sources from further to the east. The rocks of the Sierra de Valle 

Fértil are within the Famatina belt and are primarily Ordovician in age (468-486 Ma; Pankhurst 

et al., 2000; Dahlquist et al., 2010; Rapela et al., 2018; Fig. 39). We take this to show that by the 

Permian, this area of the Paganzo Basin was part of a larger drainage that incorporated rocks 

from farther away but still within the western margin of the Protoprecordilleran terrane (Fig. 40). 
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For both the Tupe and Patquía formations, the youngest zircon grains are late 

Carboniferous, with the youngest age zircon grain of the Tupe at 307.7±12.8 Ma and the 

youngest-age zircon grain of the Patquía sample at 305.0±5.8 Ma. For both of these formations, 

these are the youngest reported ages at this location, and both of these ages are concordant (Fig. 

37). This new data provides better age constraint on the timing of deposition in the area. Both 

samples also contain zircon grains with an age of ~311 Ma, and the Tupe Formation also 

contains a few older Pennsylvanian aged-zircons with an average age of ~322 Ma (Appendix A). 

These zircon grains are interpreted here as volcanic ages that correspond to the latest 

Pennsylvanian-Permian arc that accreted to the western margin of Gondwana during this time 

(Casselli and Limarino, 2002; Limarino et al., 2006; Willner et al., 2008; Guena et al., 2010; 

Limarino et al., 2014). 

7.2. Olta-Malanzán Provenance 

Similarly to the transition from the Guandacol Formation to the Tupe Formation in the 

west, the primary age peak of the Loma Larga sample (ARG175; Craddock et al., 2019) is during 

the Cambrian and Ordovician, and does not differ greatly from the primary age peaks of the 

Malanzán Formation detrital zircon sample sets from previous studies (cf. Enkelmann et al., 

2014; Craddock et al., 2019). This follows Enkelmann et al. (2014) thermochronometry evidence 

that the Sierra de Chepes region (477-497 Ma) was rapidly exhuming shortly before the 

deposition of the Malanzán Formation, which indicates active uplift prior to the middle 

Carboniferous deposition of the Paganzo Group strata. The uplifted basement in this region 

would have provided ample material for the late Paleozoic deposits and explains the dominance 

of Famatinian crystallization ages within the Malanzán and Loma Larga formations (Fig. 40). 
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The transition from the Loma Larga Formation to the La Colina Formation also displays 

a similar pattern in age-distribution as the upper Paganzo Group strata at Huaco. Here, the zircon 

age distributions shift to a greater population of older ages, from a predominance of Cambrian 

and Ordovician ages (74% in the upper Malanzán Formation, 73% in the Loma Larga 

Formation) to a dominance of Neoproterozoic and Mesoproterozoic ages (44% versus 24% of 

both Cambrian-Ordovician ages; Fig. 39). This older age-distribution coincides with older zircon 

crystallization ages found to the east of the Sierra de Chepes region, in rocks found in the 

Pampean orogenic belt (cf. Pankhurst et al., 2000). Our findings here also echo the results 

presented by Enkelmann et al. (2014), which suggested that the primary source for the La Colina 

Formation was also to the east of the depositional environment. We interpret the source region 

for the La Colina sediments to include a larger area that incorporates the Sierra de Córdoba, 

which lie directly to the east of the Sierras de Chepes and Los Llanos region (Fig. 39).  

Unlike the Tupe and Patquía formations samples, the upper Paleozoic strata at Olta-

Malanzán do not contain any late Carboniferous zircon grains (Fig. 39). This may indicate that 

the volcanic source for these ages found along the western margin was too distal to be deposited 

in this easternmost location of the basin. 

8. Latest Pennsylvanian Paganzo Basin development 

The Paganzo Basin appears to broaden in terms of source regions through the 

Pennsylvanian. In both regions of the basin, there seems to be a shift in provenance to the east. 

The biggest difference in provenance occurs at the same time on both margins: during the 

deposition of the middle Pennsylvanian strata: from the Tupe Formation to the Patquía 

Formation at Huaco and from the Loma Larga Formation to the La Colina Formation at OMPV. 
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This change in age populations corresponds with the interpretation that the Protoprecordillera 

collapsed during the Pennsylvanian (Limarino and Spalletti, 2006; Limarino et al., 2014). The 

collapse of the fold-and-thrust belt is attributed to the shift in tectonism along the western margin 

of Gondwana, with the development of an outboard magmatic arc that produced ash during the 

late Pennsylvanian and continued into the early Permian (Limarino et al., 2006; Willner et al., 

2008; Tedesco et al., 2010; Einhorn et al., 2015; Sato et al., 2015). This shift in active tectonism 

certainly aligns with the change in detrital zircon provenance seen in the upper Paganzo Group 

strata. The barrier created by the Protoprecordillera would have been diminished, and flat-slab 

subduction would have caused extension of the foreland region westward. Exhumation rates 

slowed in the late Carboniferous, and with the extension of the foreland and collapse of the 

Protoprecordillera to the west, the source regions for the Paganzo Group strata migrated to the 

east. Detrital zircon populations in both the Patquía Formation (CDH0923-35S) and La Colina 

Formation (LC0806-1S) samples display primary peaks from basement material found east of 

each location (Fig. 39). 

Additionally, both the Tupe and Patquía formations samples contain detrital zircon age 

populations that are much younger (i.e. late Carboniferous) than the Loma Larga and La Colina 

formations samples. These much younger grains fall within the range of ages associated with late 

Carboniferous volcanism (320-296 Ma; Willner et al., 2008; Sato et al., 2015). The presence of 

young zircon ages in the western units indicates proximity to and an increase in late 

Pennsylvanian volcanism along the continental margin (Limarino et al., 2006; Willner et al., 

2008; Tedesco et al., 2010; Einhorn et al., 2015; Sato et al., 2015; Thomas et al., 2015). This 

evidence of volcanism suggests increased tectonism along the western margin of Gondwana and 
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may be tied to the collapse of the Protoprecordillera, but further data is needed to understand the 

timing of this collapse. 

9. Implications for western Gondwana late Paleozoic climate 

It is well documented that the Paganzo Group strata record a shift in climate during the 

late Paleozoic that differs from other basins in South American Gondwana (cf. Limarino et al., 

2014 and references therein). An increase in the atmospheric concentrations of CO2 during the 

early Permian may explain the warming trend in the rock record, as glaciers had receded out of 

the Parana Basin at that time. However, it does not necessarily explain the aridity trend recorded 

in western Argentina since at the same time the coal-bearing strata in the Rio Bonito Formation 

of the southern Paraná Basin suggest a humid climate ~2,000 km away in southern Brazil, which 

was located at the same paleolatitude. Instead, the active tectonics along the margin of 

Gondwana may be partially responsible. Previous studies have found that mountain belts play an 

extremely important role in the moisture flow patterns across the continents (Broccoli and 

Manabe, 1997; Ruddiman and Prell, 2007; Ruddiman et al., 1997; Newell et al., 1999; Tabor and 

Poulsen, 2008; Godard et al., 2014; Isbell et al., 2012; Limarino et al., 2014). Not only do the 

mountain belts affect regions via the orographic effect and contribute to rain shadow regions, but 

they also affect atmospheric circulation on a larger scale (Broccoli and Manabe, 1997 and 

references therein; Partridge, 1997; Ruddiman et al., 1997; Ruddiman and Prell, 2007). As the 

different paleotopographic highs, such as the Chilean volcanic arc, Protoprecordillera, and the 

Famatina and Pampeanas Systems (Fig. 9), change in importance and elevation, the various 

atmospheric patterns would have been disrupted and caused changes in regional climatic regimes 

(Ruddiman and Prell, 1997; Ruddiman et al., 1997; Newell et al., 1999; Broccoli and Manabe, 
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1997; Partridge, 1997; Tabor and Poulsen, 2008; Isbell et al., 2012; Godard et al., 2014; 

Limarino et al., 2014).  

While the Sierras de Chepes and Los Llanos were most likely elevated enough to support 

glaciation (cf. de los Hoyos et al., 2011; Enkelmann et al., 2014; Enkelmann and Garver, 2015), 

there is no evidence of an accumulation of glacial ice (Moxness et al., 2018; Pauls et al., in 

review). This lack of glaciation could be in part due to the presence of the Protoprecordilleran 

range that separated, to some degree, the eastern domain of the Paganzo Basin from the 

Panthalassan Ocean during the latest Mississippian and Earliest Pennsylvanian. This topographic 

barrier could have created a rain shadow effect over the eastern part of the basin during the 

Visean-Serpukhovian glaciation of the Protoprecordillean range (Moxness et al., 2018). In the 

Pennsylvanian, the climate has been reported to transition to a humid post-glacial environment 

(Limarino et al., 2014; Pauls et al., 2019, in prep.). While the detrital zircon populations do not 

show a significant change in age populations from the Guandacol and Malanzán to the Tupe and 

Loma Larga respectively, the strata of the Paganzo Group record a shift in climate, nonetheless. 

This shift has been attributed to the collapse of the Protoprecordillera as reported in numerous 

studies (Henry et al., 2008; Isbell et al., 2012; Spalletti et al., 2012; Limarino et al., 2014; 

Gulbranson et al., 2015; Moxness et al., 2018; Pauls et al., 2019). None of these studies, though, 

have been able to determine the exact timing or nature of the collapse. Further detrital zircon 

geochronology studies in basins along the western side of the Protoprecordillera (i.e. in the 

Calingasta-Uspallata and Río Blanco basins) are necessary to better refine our understanding of 

the timing of this event. 

While the inferred collapse of the Protoprecordillera could explain the disappearance of 

alpine glaciers in the western part of the Paganzo Basin/Protoprecordillera and the transition to a 
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more humid post-glacial climate, it does not necessarily explain the appearance and development 

of the red beds (i.e. Patquía and La Colina Formations) in the Paganzo Basin. Many studies have 

provided evidence of a magmatic arc that develops on the outboard of the Panthalassic margin 

during the late Carboniferous-early Permian, and the detrital zircon populations presented here 

also support this scenario (cf. Limarino et al., 2006; Willner et al., 2008; Tedesco et al., 2010; 

Einhorn et al., 2015; Sato et al., 2015). In the western domain of the basin (i.e. Huaco locality), 

the Tupe and Patquía Formation detrital zircon populations contain a higher population of 

Carboniferous-aged zircons (Fig. 37, 39) and signify the presence of a volcanic arc accreting to 

the Panthalassan margin. This belt has been interpreted by several studies to have contributed to 

the increase in aridity recorded in the upper Paganzo Group strata (cf. Limarino et al., 2014; 

Pauls et al., 2019, in prep.). The accreting arc farther to the west would have potentially shifted 

orographically-controlled climatic belts westward expanding the rain shadow across all of the 

basin during the latest Pennsylvanian and into the Permian, thereby cutting off the moisture 

source to the interior basins. This would have allowed for the development of the eolian deposits 

recorded in the upper Paleozoic strata across all of the Paganzo Basin (i.e. Patquía, La Colina, De 

La Cuesta formations; Guena et al., 2010; Krapovickas et al., 2010; Limarino et al., 2014; Césari 

et al., 2019; Pauls et al., 2019). 

10. Future considerations 

 While the data presented here points to a shift in tectonism during the middle 

Pennsylvanian, further data is needed to corroborate this evidence. Detrital zircon geochronology 

studies of all late Paleozoic strata should be expanded to other localities in the Paganzo Basin 

and surrounding regions to obtain a better understanding of source rocks for the different regions 
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of the basin. To better constrain/refine the timing of the collapse of the Protoprecordillera, which 

appears to have been an important control on local climate patterns, detrital zircon studies should 

be conducted on more localities along the eastern and western flanks of the fold-and-thrust belt: 

in the Paganzo and Calingasta-Uspallata basins. Furthermore, detrital zircon studies in the nearby 

Río Blanco Basin should also be considered to better refine the understanding of the affects the 

volcanic arc had on the northern region of the western margin basins. 

11. Conclusions 

Detrital zircon samples from the Huaco locality show a slight change in provenance 

through time, draining local basement materials during the early-middle Carboniferous, then 

shifting to a more Famatina-aged source, possibly the Sierra de Valle Fértil region. Additionally, 

late Carboniferous detrital zircons in the samples at Huaco indicate the presence of an outboard 

magmatic arc during the late Pennsylvanian-Permian. Detrital zircon samples from the eastern 

Sierras de Chepes and Los Llanos (OMPV), in contrast, show a shift in provenance from a 

source of local origin (i.e. Sierras de Chepes, Los Llanos, and Malanzán ranges) during the 

middle Carboniferous Malanzán and Loma Larga formations to an older-age-dominated zircon 

population in the La Colina Formation. The latest Pennsylvanian-Permian sediment source is 

likely coming from the eastern Sierras Pampeanas system, such as the Sierras de Córdoba.  
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Figure 32. Map of plate reconstruction for Bashkirian. RBB: Río Blanco Basin; CUB: Calingasta-Uspallata Basin; 

CPB: Chaco-Paraná Basin; SGB: Sauce Grande Basin. TGB: Tepuel-Genoa Basin. Reconstruction modified from 

Moxness et al. (2018). B. Plan-view map showing the interpreted outline of the Paganzo Basin. The localities for 

this study are marked by blue rectangles: AH – Agua Hedionda anticline near Huaco; OMPV - Olta-Malanzán 

paleovalley. Map modified from Limarino et al. (2006). 
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Figure 33. Correlation chart for the late Paleozoic Paganzo Group strata for the sites in the Paganzo Basin, 

Argentina mentioned in the text. Ages and units are based on Limarino et al. (2002a, 2002b, 2006, 2014), Césari et 

al. (2011, 2019). 
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Figure 34. Map of the igneous and metamorphic basement units that serve as potential source terranes for the 

detrital zircon populations of the late Paleozoic Paganzo Group strata, outlined in yellow boxes. 1 – Sierras de 

Chepes and Los Llanos, 2 – Sierra de Valle Fertil, 3 – Sierra de Pie de Palo, 4 – Sierras de Umango, Maz and 

Espinal, 5 – Sierras Famatina, 6 – Sierra de Velasco, 7- Sierras de Córdoba, 8 – Sierra de San Luis. (Modified from 

Dahlquist et al., 2010). The dotted line is the approximate outline of the Paganzo Basin. (Modified from Limarino et 

al., 2006) 
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Figure 35. Simple stratigraphic column showing the selected Paganzo Group strata at the chosen localities. 

(Modified from Césari et al., 2011; Pauls et al., 2019). 
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Figure 36. Google Earth aerial image with the geologic units of the Paganzo Group mapped showing the locations 

of the detrital zircon samples (yellow ellipsoids). A. The Agua Hedionda anticline, near the town of Huaco with the 

Guandacol, Tupe and Patquía formations. Detrital zircon sample ARG318 is from Craddock et al. (2019), and 

sample CDH0923-3S is from Pauls et al. (in review). B. The Olta-Malanzán paleovalley system (OMPV) with the 

Malanzán, Loma Larga, Solca, and La Colina formations. Detrital zircon samples ARG175 and ARG203 are from 

Craddock et al. (2019), and sample 29TR4 is from Enkelmann et al. (2014). 
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Figure 37. Concordia plot of all analyzed concordant zircon U-Pb measurements for detrital zircon sample 

CDH0923-5S from the Tupe Formation, CDH0923-35S from the Patquía Formation at the AH locality; and LC0806 

of the La Colina Formation, OMPV locality. See Figure 5 for exact locations of each sample. 
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Figure 38. Cumulative probability distribution for the four Paganzo Group samples and the basement units in the 

region. Lower Paganzo Group strata samples are from other sources: Lower Guandacol Fm. – ARG318 (Craddock 

et al., 2019), Upper Guandacol Fm. – CDH0923-3S (Pauls et al., in review), Lower Malanzán Fm. – 29TR4 

(Enkelmann et al., 2014), Upper Malanzán Fm. – ARG203 (Craddock et al., 2019). Upper Paganzo Group samples: 

Tupe Fm. – CDH0923-5S (this study), Patquía Fm. – CDH0923-35S (this study), Loma Larga Fm. – ARG175 

(Craddock et al., 2019), La Colina Fm. – LC0806 (this study). The data for the igneous and metamorphic zircon 

compilation comes from the following literature: (1) Sierra de Pie de Palo - Vujovich et al., 2004; Naipauer et al., 

2010a (2) Sierra de Umango - Varela et al., 2003, 2005 (3) Sierra de Valle Fértil -  Pankhurst et al., 2000 (4) 

Sierra de Famatina - Pankhurst et al., 2000 (5) Sierra de Velasco - Toselli et al., 2003; Pankhurst et al., 2000 (6) 

Sierras de Chepes, Los Llanos - Pankhurst et al., 2000 (7) Sierra de San Luis - Vujovich and Ostera, 2003; Drobe et 

al., 2009  (8) Sierra de Córdoba - Rapela et al., 1998, Pankhurst et al., 2000 (9) Sierra Norte - Leal et al., 20003; 

Llambías et al., 2003. 
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Figure 39. Mesoproterozoic-Carboniferous igneous and metamorphic provinces for the Paganzo Basin area 

(demarcated by the dotted line) and their available zircon geochronology (n=398). The studied sections are outlined 

by yellow boxes. Map is modified from Dahlquist et al. (2010). The cited literature for this compilation is as 

follows(1) Sierra de Pie de Palo - Vujovich et al., 2004; Naipauer et al., 2010a (2) Sierra de Umango - Varela et al., 

2003, 2005 (3) Sierra de Valle Fértil -  Pankhurst et al., 2000 (4) Sierra de Famatina - Pankhurst et al., 2000 (5) 

Sierra de Velasco - Toselli et al., 2003; Pankhurst et al., 2000 (6) Sierras de Chepes, Los Llanos - Pankhurst et al., 

2000 (7) Sierra de San Luis - Vujovich and Ostera, 2003; Drobe et al., 2009  (8) Sierra de Córdoba - Rapela et al., 

1998, Pankhurst et al., 2000 (9) Sierra Norte - Leal et al., 20003; Llambías et al., 2003. 
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Figure 40. The proposed evolutive model of the Paganzo Basin development from the middle Carboniferous to the 

Permian. 
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Chapter 6. Conclusions 

Outcomes of stated project objectives 

1. Conduct a detailed sedimentologic and stratigraphic analysis of the deposits within the 

eastern Paganzo Basin to refine our understanding of the extent and timing of glaciation 

during the Carboniferous.  

 

• Stratigraphic sections were measured at localities that contained glacial to post-glacial 

deposits, i.e., Agua de Jagüel (AJ) in the Calingasta-Uspallata Basin, Agua Hedionda 

(AH) anticline at Huaco in the west, and at the Olta-Malanzán paleovalley (OMPV) 

system in the Sierras de Chepes and Los Llanos of the eastern Paganzo Basin. 

• The depositional fill of the lower Paganzo Group strata indicated glacial deposits 

existed in the Huaco locality, but not in the Olta-Malanzán locality. 

• Ice most likely did not exist in the eastern Sierras Pampeanas, but did exist in the 

Protoprecordilleran and adjacent ranges of the middle-Carboniferous western 

Gondwana margin. 

• There were multiple depositional centers in the Paganzo Basin during the early-

middle Carboniferous, as evidenced by the distinct detrital zircon populations from 

the eastern domain (i.e. OMPV) and the western domain (AH). 

 

 



 

238 

 

2. Compare and contrast the glacial to post-glacial paleoclimate trends in southwestern 

Gondwana during the LPIA.  

 

• The CIA technique was successfully applied to the late Paleozoic sediments of the 

Paganzo Group strata, after testing at the Olta-Malanzán paleovalley system. The 

technique was then used for the remaining selected localities within the Paganzo 

Basin, and across the Protoprecordilleran region to the Calingasta-Uspallata Basin 

(i.e. at AJ). 

• The climate trends of the three chosen localities of the Paganzo Basin (i.e. Cerro 

Guandacol, Huaco and Olta-Malanzán) all portray a humid post-glacial climate 

followed by a decrease in CIA values, indicating a transition to an arid climate 

through the late Carboniferous and into the Permian. 

• The overall climate reconstructions indicate that the post-glacial transition of the 

early Pennsylvanian of the Paganzo Basin fluctuated. The cold conditions reflected in 

the values of the basal diamictites and conglomerates throughout the basin indicate 

that even as the glaciers were diminishing, cold conditions still persisted. Each of the 

sections in the basin contained other glacial diamictites (i.e. at Huaco and Cerro 

Guandacol), or non-glacial conglomerates and rare diamictites interstratified with 

shallow lacustrine deposits (i.e. at Olta-Malanzán). In all cases, the clasts in these 

basal deposits record little-to-no alteration of reworked or fresh basement or 

underlying materials. 

• The late Carboniferous was fairly humid, and most likely represented a temperate 

climate prior to the increased aridification of the early Permian. 
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3. Assess the role of tectonics as a driver for climate shifts recorded in the western basins of 

Argentina during the late Paleozoic.  

• Detrital zircon samples from the eastern domain of the Paganzo Basin (i.e. the Sierras de 

Chepes and Los Llanos [OMPV]), show a shift in provenance from a source in the very 

local Chepes Granodiorite (Ordovician in age) during the middle Carboniferous 

(Malanzán and Loma Larga formation samples), to an older-age dominated zircon 

population in the La Colina sample. The sediment source shifts eastward, and possibly 

sourced from the eastern Sierras Pampeanas system, such as the Sierras de Córdoba. 

• The provenance also changes through time in the western domain (i.e. at Huaco), and 

displays an eastward shift in drainage as well. Additionally, the Tupe and Patquía 

formations record the presence of late Carboniferous detrital zircons, which points to the 

existence of a magmatic arc outboard of the western margin of Gondwana during this 

time. Together, the results point to the extension of the basin westward, and the 

development of a magmatic arc through renewed subduction along the active tectonic 

margin. 

• Regional changes in paleotopography must have played some role in the drying out of the 

Paganzo Basin, as the paleoclimate reconstruction corresponds to the shifting provenance 

patterns in the late Carboniferous-early Permian. The development of a magmatic arc to 

the west of the basin and extension of the basin was likely in response to the convergence 

along the Panthalassan margin. Both of these factors could have created an extensive rain 

shadow that prevented moisture from reaching the interior of the Paganzo Basin. 
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 Implications of early deglaciation in western Gondwana 

Glaciation, or local centers of ice, are recorded in the basins of western Argentina (i.e. 

Rio Blanco, Calingasta-Uspallata, and western Paganzo Basins) during the Mississippian 

(Visean), which is interpreted as the onset of widespread glaciation across Gondwana, including 

glaciation occurring in the Paraná Basin in Brazil (López-Gamundí et al., 1994; López-Gamundí, 

1997; Caputo et al. 2008; Henry et al., 2008; Holz et al., 2008; Rocha Campos et al., 2008; 

Limarino et al., 2014; Rosa et al., 2019). While glaciation continued until the Carboniferous-

Permian boundary in the Paraná Basin in Brazil, the western margin basins of Argentina at 

similar paleolatitudes (Paganzo, Calingasta-Uspallata, and Río Blanco Basins) experience a 

climate shift from glacial to humid and ever-wet conditions by the Bashkirian, which transitioned 

to arid conditions during the late Pennsylvanian (Henry et al., 2008; Rocha-Campos et al., 2008; 

Holz, 2010; Césari et al., 2011; Limarino et al., 2014). The data resulting from this study provide 

important information related to regional differences in climate change. This study pulls together 

the current understanding of the western margin of Gondwana and examines several hypotheses 

concerning glacial extent, as well as reasons for deglaciation and intense aridification of the 

Paganzo Basin. Furthermore, the findings from this project are consistent with a large body of 

work indicating that there were separate depositional centers in the basin during the glacial phase 

(Visean-Bashkirian), and that discrete ice centers existed rather than a large ice sheet centered in 

the eastern Sierras Pampeanas.  

Paleoclimate in the western margin basins is driven primarily by active tectonism in the 

region that disrupted the atmospheric and moisture flow across the region. A secondary 

mechanism could be the rotational drift of Gondwana across the South Pole region, but further 

data is necessary to fully develop this idea. Evidence provided by this study shows that the early 
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Pennsylvanian climate amelioration in the western margin basins can be tied to the collapse of 

the Protoprecordillera range. The stratigraphic, paleontological and new paleoclimatic 

reconstructions coincide with the loss in elevation of the mountain belt during the latest 

Mississippian-early Pennsylvanian. This topographic change coincides with an increase in 

subsidence during this same time period. An increase in volcanism is also recorded in the 

western margin stratigraphic units and coincides with an increase in aridity throughout the 

region. The increase in volcanism is likely formed due to the development of the outboard 

volcanic arc, which may have caused an orographic effect during the late Pennsylvanian, 

therefore cutting the region off from a moisture source. Ergo, tectonism is the main climate 

driver for the relatively early disappearance of glacial activity in the western margin basins. 

However, global drivers such as the rotation of Gondwana across the South Pole and decreasing 

atmospheric CO2 concentrations have more control on the end of glaciation in the southern 

Paraná Basin. 

 Future Directions  

This project could be expanded in a few directions. The question remains as to whether or 

not the Protoprecordilleran was truly dissected, and if so, where, and how was it interconnected? 

Better correlations across the paleovalleys and palefjords exposed in this region would be needed 

to test this. Some correlations across the Protoprecordilleran range to the deposits of the 

Calingasta-Uspallata and Río Blanco basin outcrops have been proposed (cf. Henry et al., 2008; 

Gulbranson et al., 2010; Césari et al., 2011), but some of these use biostratigraphic correlations. 

A more thorough detrital zircon geochronological analysis is needed to better ascertain exact 

glacial extent and the nature of the fold-and-thrust belt. 
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Furthermore, the source regions in the Paganzo Basin are similar in age, with some 

distinct differences. These differences could be better constrained and separated using an 

unmixing model (Konstantinou et al., 2014; Sundell and Saylor, 2017). This requires the creation 

of a database, using both from literature sources and additional samples from across the Paganzo 

Basin, much like the study conducted by Einhorn et al. (2015). 

Lastly, the deglaciation and climate change dynamics of the Paganzo Basin are different 

than the Paraná Basin on the other side of the Pampean arch during the late Paleozoic. South 

American Gondwanan basins provide ideal locations for an in-depth study of the climate 

dynamics on a regional scale. This project only studied a small portion of the very large Paraná 

Basin. As both the Paganzo and Paraná basins contain glacial deposits and show variation in the 

duration and timing of these glacial episodes (cf. Crowell and Frakes, 1970; Visser, 1997; Isbell 

et al., 2003, 2012; Fielding et al., 2008a, 2008b; Rocha-Campos et al., 2008; Gonzalez and Diaz 

Saravia, 2010; Gulbranson et al., 2010; Limarino et al., 2014), more detailed analyses and 

comparisons in paleoclimate could help compare how the regions within each basin varied. 

Additional paleoclimate reconstructions for both the Calingasta-Uspallata and Río Blanco basins 

region could also be included for a more in-depth analysis of the timing of various climatic 

transitions during the Pennsylvanian. 

The late Paleozoic ice age continues to provide opportunities to study the effects of 

climate drivers on global and regional scales. Thus, regional paleoclimate studies at a high 

chronostratigraphic resolution, such as this one, add to our knowledge of environmental 

responses to shifting global climate, and can potentially assist in our endeavor to understand how 

different mechanisms drive global climate change. The results of this project only represent a 

small corner of this vast world. There are still many paleoenvironmental aspects of the LPIA and 
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the ensuing transition into greenhouse conditions that are unknown, and continued studies, 

especially on a regional scale, will add to our understanding of the timing and environmental 

responses to changing global climate. 
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