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ABSTRACT 
 

MACROMOLECULAR  STRUCTURE  DETERMINATION  AT 
X-RAY  FREE  ELECTRON  LASERS  FROM  SINGLE-PARTICLE 
IMAGING  TO  TIME-RESOLVED  X-RAY  CRYSTALLOGRAPHY 

 
by 
 

Ishwor Poudyal 
 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Marius Schmidt 

 
 

X-ray free-electron lasers (XFELs) open the possibility of obtaining diffraction 

information from a single biological macromolecule. This is because XFELs can generate 

extremely intense X-ray pulses which are so short that diffraction data can be collected before the 

sample is destroyed.  By collecting a sufficient number of single-particle diffraction patterns from 

many tilts of a molecule relative to the X-ray beam, the three-dimensional electron density can be 

reconstructed ab-initio. The resolution and therefore the information content of the data will 

ultimately depend largely on the number of patterns collected at the experiment. We estimate the 

number of diffraction patterns required to reconstruct the electron density at a targeted spatial 

resolution. This estimate is verified by simulations for realistic X-ray fluences, repetition rates, 

and experimental conditions available at modern XFELs. Employing the bacterial phytochrome as 

a model system we demonstrate that sub-nanometer resolution is within reach. 
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Gold nanoparticles (AuNPs) and their conjugation to biological samples have numerous potential 

applications. Attaching biological molecules to highly scattering AuNPs may provide a powerful 

way to identify and resolve single molecules. Here, we have shown the weakly scattering part, the 

thiol coating can be resolved in the presence of a strong scatterer gold from a thiol-decorated gold 

nanoparticle using the single-particle imaging (SPI) method. One of the scientific cases for 

building XFELs is the structure determination of single macromolecules and macromolecular 

complexes at atomic resolution. We propose a promising route of obtaining a sub-nanometer 

resolution to visualize the atomic details of biological macromolecules using SPI with XFELs.  

 

Biological processes are highly dynamic.  Static structures may provide limited insight into protein 

function, but they offer no information on protein dynamics. For understanding how proteins 

function, one must investigate structural changes as they happen. The advent of the first XFELs 

has enabled time-resolved serial femtosecond crystallography (TR-SFX) experiments. The 

reaction is initiated by light excitation or by the rapid mixing of the microcrystals of functionally 

active biomolecules. The structural changes are probed after a certain time-delay by the fs X-ray 

pulses. The European XFEL (EuXFEL), with its unique pulse structure, opens a new era for TR-

SFX in the study of the dynamics of biological systems. At EuXFEL, X-rays arrive in pulse trains 

at 10 Hz. When the design specifications are reached, it can produce up to 2,700 pulses with up to 

4.5 MHz pulse repetition in a train.  At 4.5 MHz, each pulse train is 600 µs long with nearly 99.4 

ms gaps between the trains. The ultrashort pulse length of the EuXFEL gives the unique possibility 

to study the dynamics of very short-lived complexes and transient states of dynamic molecules.  
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We have conducted a first time-resolved experiment using PYP as a model system with a complex 

MHz X-ray pulse structure at the EuXFEL. This successful time-resolved experiment opens the 

door for future time-resolved experiments at the EuXFEL. With the knowledge and experience 

gained from TR-SFX experiments, the possibility of a similar experiment with time-resolved SPI 

in the future is also discussed. 

 

 

 

 

 

 

  



 v 

 

 

 

 

 

 

 
© Copyright by Ishwor Poudyal, 2020 

All Rights Reserved 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 vi 

TABLE  OF  CONTENTS 
 
 

ABSTRACT .................................................................................................................................. ii 

LIST  OF  FIGURES .................................................................................................................... ix 

LIST  OF  TABLES .................................................................................................................... xii 

ACKNOWLEDGEMENTS ...................................................................................................... xiii 

1. Introduction ....................................................................................................................... 1 

1.1 Structure Determination of Biomolecules ........................................................................... 1 

1.1.1 Historical Perspectives .................................................................................................... 1 

1.1.2 X-ray Crystallography ..................................................................................................... 3 

1.1.3 Coherent Lensless X-ray Imaging ................................................................................... 5 
 
1.2 From Single-particle Structure Determination to Time-resolved X-ray Crystallography ... 6 

1.3 Model Systems .................................................................................................................... 8 

1.3.1 Phytochrome .................................................................................................................... 8 

1.3.2 Thiol-decorated Gold Nanoparticles ............................................................................. 10 

1.3.3 Photoactive Yellow Protein (PYP) ................................................................................ 11 

2.  Materials and Methods ................................................................................................... 13 

2.1 Free-electron Laser (FEL) Radiation ................................................................................. 13 

2.2 Radiation Damage and Femtosecond X-ray Pulses ........................................................... 13 

2.3 Interaction of X-rays with Matter ...................................................................................... 14 

2.3.1 Scattering by Atoms ...................................................................................................... 15 

2.3.2  Diffraction from a Molecule .......................................................................................... 16 

2.3.3 Diffraction from a Crystal ............................................................................................. 17 

2.3.4 Laue and Bragg Diffraction Conditions ........................................................................ 19 

2.3.5 Reciprocal Lattice and Ewald Construction .................................................................. 20 

2.3.6 Debye-Waller Factor ..................................................................................................... 22 



 vii 

 
2.4 Diffraction Patterns ........................................................................................................... 24 

2.4.1 Mapping the Detector onto the Ewald Sphere ............................................................... 25 

2.4.2 Difference Between Single-Particle and Crystal Diffraction Patterns .......................... 26 

2.4.3 Simulation of Diffraction Patterns ................................................................................. 27 

2.4.4 Random Orientations Using Quaternions ...................................................................... 29 
 
2.5 Number of Snapshots ........................................................................................................ 31 

2.5.1 Background .................................................................................................................... 31 

2.5.2  Mathematical Formulation ............................................................................................ 32 

2.5.3 Estimating the Average Number of Photons ................................................................. 36 
 
2.6 Single-particle Reconstruction .......................................................................................... 38 

2.6.1 Orientation Determination ............................................................................................. 39 

2.6.2 3D Merging ................................................................................................................... 40 

2.6.3 Phase Retrieval .............................................................................................................. 41 
 
2.7 Serial Femtosecond Crystallography ................................................................................. 51 

2.7.2 X-ray Detectors ............................................................................................................. 53 

2.7.3 Processing of XFEL Data .............................................................................................. 54 

2.7.4  Experiments at XFELs .................................................................................................. 61 

3. Results ............................................................................................................................... 67 

3.1  Simulation Results of a Phytochrome Molecule .............................................................. 67 

3.1.1 Simulation Strategy ....................................................................................................... 67 

3.1.2 Simulated Diffraction Patterns ...................................................................................... 68 

3.1.3 Merged 3D Diffraction Volume .................................................................................... 72 

3.1.4 Phasing and its Validation ............................................................................................. 73 

3.1.5 Low- and High-Resolution Approximation ................................................................... 76 

3.1.6 Effect of Background .................................................................................................... 77 

3.1.7 Modeled Pfr Structure ................................................................................................... 79 
 
3.2 Simulation Results of a Thiol Decorated Gold Nanoparticles. ......................................... 81 



 viii 

3.2.1  Simulation Strategy ....................................................................................................... 81 

3.2.2  Orientation Determination and Iterative Phasing .......................................................... 81 

3.2.3  Difference Fourier Technique ....................................................................................... 85 
 
3.3 Experimental Results ......................................................................................................... 87 

3.3.1 Time-Resolved experiment at EuXFEL ........................................................................ 87 

4. Discussions ........................................................................................................................ 93 

4.1 Future of SPI ...................................................................................................................... 93 

4.2 Reference-enhanced SPI .................................................................................................... 94 

4.3 Mapping Conformational Spectrum .................................................................................. 95 

4.4 An Outlook on SFX ........................................................................................................... 97 

4.5 Photoactive Proteins: cis-trans Isomerizations ................................................................. 99 

4.6 Optimum Power for Pump-Probe TR-SFX ..................................................................... 101 

4.7 SPI and Crystallographic Data Analysis: A Comparison ................................................ 102 

4.8 Future of Time-Resolved Experiments ........................................................................... 106 

5. References ...................................................................................................................... 109 

6. Appendices ..................................................................................................................... 121 

Appendix A:  Justification for Calculating Joint Probability ................................................. 121 

Appendix B:   Python Code to Estimate the Exact Number of Snapshots ............................. 121 

Appendix C:  Random Phasor Approximation ...................................................................... 122 

Curriculum Vitae ....................................................................................................................... 125 

 
 
 
 
 
 
 
 
 
 
 



 ix 

 

LIST  OF  FIGURES 
 
 
Figure 1.1 Length scale of important biological objects…………………………………...  1 

Figure 1.2  Schematic for an optical microscope and X-ray imaging………………………  2 

Figure 1.3 Pr and Pfr structures of phytochromes………………………………………….  9 

Figure 1.4 Thiol monolayer protected Gold nanoparticles…………………………………  11 

Figure 1.5 PYP structure and its photocycle……………………………………………….  12 

 

Figure 2.1 Graphical representation of a scattering vector……………………………….... 16 

Figure 2.2 Scattering factors for selected atoms…………………………………………… 17 

Figure 2.3 Representation of a unit cell and two-dimensional crystal lattices……………... 19 

Figure 2.4 The Ewald construction………………………………………………………… 22 

Figure 2.5 The atomic form factor of a Carbon atom multiplied by a Debye-Waller factor. 23 

Figure 2.6 Mapping of pixels in an area detector to points in reciprocal space……………. 24 

Figure 2.7 Elastic scattering in forward geometry…………………………………………. 28 

Figure 2.8 Distribution of a uniformly rotation on the unit 2-sphere………………………. 31 

Figure 2.9 Probability P and correction factor Cf…………………………………………... 35 

Figure 2.10 Plot of nS as a function of resolution…………………………………………….38 

Figure 2.11 Illustration of the importance of phase in far-field diffraction…………………. 44 

Figure 2.12 Block diagram of the error-reduction method…………………………………...47 

Figure 2.13 Reconstruction of Einstein image from Fourier moduli data……………………49 

Figure 2.14 Schematic representation of an SFX setup………………………………………52 



 x 

Figure 2.15 Theoretical estimate of the hit rate using Poisson statistics……………………. 56 

Figure 2.16 Representative of a peak-finding and indexing results from PYP crystals…….  58 

Figure 2.17 Plot of 2D central section of the reciprocal lattice, before and after solving the 

indexing ambiguity……………………………………………………………    61 

Figure 2.18 Setup of an MHz TR-SFX experiment at EuXFEL…………………………….  63 

Figure 2.19 PYP microcrystals…………………………………………………………….     64 

Figure 2.20 X-ray pulse train structure and laser excitation………………………………….66 

 

Figure 3.1 Simulated diffraction patterns of a phytochrome molecule…………………….  69 

Figure 3.2 Noise-free diffraction patterns from multiple particles………………………… 70 

Figure 3.3 Noise-free diffraction patterns of a single-molecule and a crystal……………    71 

Figure 3.4 Merged 3D diffraction volume of a phytochrome molecule…………………… 72 

Figure 3.5 Electron density obtained by iterative phasing and its validation by FSC………75 

Figure 3.6 Average number of photons per pixel as a function of resolution……………….77 

Figure 3.7 Effect of different types of backgrounds on the resolution……………………    78 

Figure 3.8 Density difference of the full-length Pr and proposed full-length Pfr state…….. 80 

Figure 3.9 Simulated pattern from a thiol-decorated gold nanoparticle……………………. 83 

Figure 3.10 Merged 3D diffraction volume of thiol-decorated gold nanoparticle…………    84 

Figure 3.11 Electron density and validation of resolution using FSC……………………… . 84 

Figure 3.12 Reconstructed electron density of a thiol decorated gold nanoparticle using the 

phases of the gold cluster only…………………………………………………...86 

Figure 3.13 TR-SFX experiment conducted at the EuXFEL…………………………………90 

Figure 3.14  Hit and indexing rates……………………………………………………………91 



 xi 

Figure 3.15 DED in the chromophore pocket of PYP at different points…………………     92 

 

Figure 4.1 Manifold obtained by embedding 45,000 simulated diffraction patterns………  97 

Figure 4.2 Statistics on the deposited structures on PDB solved using XFELs to date……. 99 

Figure 4.3 Indexing rate as a function of the number of Bragg peaks……………………. 105 

 

 

 

 

 

 

 

 

 

 

 

 



 xii 

LIST  OF  TABLES 
 

Table 2.1 Participated experiments at the worldwide XFELs……………………………...62  

 

Table 3.1 Estimated number of snapshots to reach SNR=1.0………………………………71 

Table 3.2 Statistics of the control data collected with 1.13 MHz X-ray pulses…………….88  

Table 3.3 Statistics of the data collected with 564 kHz X-ray pulses………………………89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 xiii 

ACKNOWLEDGEMENTS 

 
I want to express my deepest gratitude to my advisor, Professor Marius Schmidt, for his 

guidance and support throughout my PhD research. He has shown me the value of clear 

communication and trained me to ask big questions throughout my time in the lab. I am deeply 

thankful to him for providing me the opportunity to participate in multiple exciting projects. His 

optimism and trust encouraged me to explore my interests. Without his persistent help, this 

dissertation would not have been possible. I am also glad he made sure that I graduated in time.  

Also, I am very grateful and indebted to Professor Peter Schwander for his feedback and support 

on the single-particle project. His guidance, support, and motivation enabled me to complete that 

project. His expertise with X-ray diffraction physics and insights into a wide range of topics have 

benefitted me greatly. I am grateful that Marius and Peter were always patient and encouraging, 

helping me to work through the difficult times. The time-resolved experiments at XFELs were 

made possible with the help of collaborators from BioXFEL; I am indebted to them. 

 

I am grateful to my doctoral committee members, Professor Peter Schwander, Distinguished 

Professor Abbas Ourmazd, Professor Valerica Raicu, and Professor Ionel Popa for taking the time 

to serve on my committee and providing invaluable comments on my dissertation.  

 

Early on in my graduate studies here at UWM, I received excellent mentorship and guidance from 

Dr. Jason Tenboer and Dr. Christopher Kupitz, who helped me extensively in the Schmidt lab and 

making sure I was familiar with the lab techniques, in a short time. I thank my “lab mates,” Suraj 

Pandey, Tek Narsingh Malla, and Tyler Norwood for their help, support, and encouragement. Suraj 



 xiv 

and I worked together on different projects from pump-probe to mix-and-inject time-resolved 

serial crystallography experiments. Thank you, Suraj, for your hard work and fearlessness. Also, 

many thanks to my colleagues Netra, Dhruba, Narayan, Manish, and Dammar. You were always 

available if I needed advice, both work and non-work related, coffee, and lunch break discussion. 

I also thank my fellow graduate students for their company and cheerfulness I needed at crucial 

moments in my graduate career.  

 

My gratitude extends to the staff in the UWM Physics department, whose support has been 

invaluable. I take this opportunity to thank my professors from my high school, BSc, and MSc 

degrees who helped me shape the way I think and how I see science.  I am thankful to my friends 

from my BSc, and MSc program, many of whom share this journey of grad school in a faraway 

land, for the long-distance mutual backing and encouragement during the new experience abroad. 

 

I am forever indebted to my parents, brothers, sisters, uncle, and aunt for their unwavering love 

and encouragement. I dedicate this degree to my family for their unwavering love and faith in my 

ability to realize this goal.  

 

Last but not the least, I am grateful to my loving wife, Sabita, without her inspiration and 

enthusiasm none of this could have happened. Her contribution to this work cannot be overstated. 

Being with you is the most beautiful adventure. 

 
 

 



 1 

1. Introduction 
 

1.1 Structure Determination of Biomolecules  
 

1.1.1 Historical Perspectives 
 

The goal of structural biology is to obtain three-dimensional models of a biological 

molecule and be able to understand its function. The biological function involves changes in 

structure; thus, a single static structure is not enough. Optical microscopy is the most widely used 

technique for structure determination in physical, material, and biological sciences. The invention 

of the light microscope in the late 16th century made it possible to examine parts of the cell invisible 

to the naked eye. Studying living organisms under the optical microscope opened a new world of 

microbiology. For a long time, optical microscopy was the only technique to study small biological 

objects and understand their functions.  

 

 

 

Figure 1.1: Length scale of important biological objects. Figure modified from [1]. 

ant   hair mammalian cell bacterium      mitochindrion           virus          protein              small molecule

 1mm               100 ȝm           10 ȝm                    1 ȝm    100 nm                 10 nm            1 nm  

Abbe’s Diffraction Limit
       (0.2 ȝm)Optical Microscpe

X-ray Diffraction
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In 1873, the microscopist Ernst Abbe came up with an equation related to the microscope’s 

resolution and the wavelength of the light, commonly known as the “diffraction limit” for optical 

microscopy [2]. This limit states that it is impossible to resolve elements of a structure that are 

closer to each other than half the wavelength (𝜆) in the lateral (x, y) plane, independent of the optics 

being used. Fig. 1.1 shows the length scale of important biological objects with the Abbe 

diffraction limit at 200 nm which displays the maximum resolution achievable using optical 

microscopy (Fig. 1.2). The utility of light microscopy is governed by the use of visible light, which 

limits the resolution by its wavelength. The shorter the wavelength of the radiation, the better is 

the resolution. It is necessary to use the light of wavelength smaller than the size of a feature we 

want to see in an image. 

 

When the structure of a biomolecule is determined, the x,y,z coordinates of all atoms in the 

molecule are known. The typical distance between centers of two bonded atoms in a molecule is 

of the order of 1.5Å. The wavelength of X-rays is short enough to resolve individual atoms of a 

molecule. X-ray diffraction is used for the past 70 years to determine protein structures and those 

of other biologically important macromolecules.  

 

 

Figure 1.2: Schematic for an optical microscope (a) and X-ray Imaging (b). 
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1.1.2 X-ray Crystallography 
 

The discovery of X-ray radiation by Wilhelm Röntgen in 1895 opened the door for many 

important applications in medicinal and scientific research. For this discovery, Rontgen was 

awarded the Nobel prize in Physics in 1901, the first year this prize was awarded.  In 1912, the 

German physicist Max von Laue and his colleagues showed that a crystal, which consists of 

periodic arrangements of molecules, functions as a three-dimensional diffraction grating for X-ray 

radiation. They obtained the first X-ray photograph of a diffraction pattern from a zinc-blende 

(ZnS) crystal [3]. The next important development was to exploit the information from X-ray 

photographs to determine the atomic structures of crystalline matter.  Sir William Lawrence Bragg, 

collaborating with his father, Sir William Henry Bragg pioneered this work and determined the 

atomic structures of crystalline sodium chloride and diamond in 1913. For this work, they were 

awarded the Nobel prize in Physics in 1915. In 1934, J. Desmond Bernal and Dorothy Crowfoot, 

for the first time, observed X-ray diffraction from hydrated pepsin protein crystals [4]. They kept 

the crystals hydrated in a capillary tube sealed at both ends during the X-ray diffraction experiment. 

After this,  crystal structures of important biochemical substances like cholesterol, penicillin, 

vitamin B12, and insulin were obtained [5]. The discovery of the twisted-ladder structure of DNA, 

the famous double helix, by Watson and Crick in 1953 marked the milestone in the history of 

science. The first macromolecular crystal structures, hemoglobin [6] and myoglobin [7], were 

solved with great effort later in the 1950s and 1960s. These pioneering studies marked what has 

been called the “big-bang” of structural biology [8]. After these breakthroughs, several other 

milestones were reached which have jointly shaped the field of X-ray crystallography of biological 

macromolecules [9].  
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The impact of X-ray crystallography on the biological sciences has been immense. After more than 

a century of progression, X-ray crystallography has become a routine method. Out of 160,000 

protein structures deposited in the Protein Data Bank (PDB) [10], over 140,000 structures of these 

are determined by X-ray crystallography, making it the most widely used technique. Another 

technique like cryo-electron microscopy (Cryo-EM) is also on a rapid move. The number of cryo-

EM images uploaded to the Electron Microscopy Data Bank has increased from just 8 in 2002 to 

more than 9,000 this year. With better electron detectors and image processing techniques along 

with improvement in the lenses, it makes possible to achieve atomic resolution using cryo-EM [11, 

12]. 

 

 X-ray diffraction is based on the scattering of X-ray photons by atoms. When illuminated with a 

sufficiently coherent X-ray beam, waves scattered from individual atoms in the molecule will 

interfere with each other, producing a diffraction pattern on an X-ray sensitive detector placed far 

away. Many diffraction patterns in different orientations are needed to obtain a structure. 

Intensities are quantitatively extracted from a diffraction pattern. Since the interaction of X-rays 

with matter is weak, crystals are used to amplify the intensities in specific directions. Structure 

factor amplitudes can be directly determined from intensities. However, the phase of the structure 

factor is not experimentally accessible and needs to be retrieved from additional methods [13]. 

Once amplitudes and phases are known, electron density maps are calculated and interpreted by a 

structural model. 

 

The resolution of a crystal structure is largely determined by how well the molecules are ordered 

in a crystal. The main obstacle to routine high-resolution structure determination in crystallography 
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has been the “crystallization bottleneck,” the task of producing well-diffracting crystals. Crystals 

are very often difficult to grow, in particular, if the molecules are large and flexible and admit 

different conformations. An effective way is to determine the structure of a biomolecule without 

the need for crystallization. Cryo-EM has been the most widely used technique for the analysis of 

single particles. To determine the structure, one needs to freeze the samples at cryogenic 

temperatures. But biological functions are dynamic and are not compatible with cryogenic 

conditions. Modern X-ray sources with their unparalleled intensity make it possible to image single 

molecules at an ambient temperature. Single-particle X-ray imaging has emerged as an alternative 

approach for 3D reconstructions of non-crystalline objects. 

 

1.1.3 Coherent Lensless X-ray Imaging 
 

The difficulty in designing good quality lenses for X-ray has led to the development of 

lens-less imaging, known as Coherent Diffractive Imaging (CDI). This method enables the 

structure determination of noncrystalline specimens and nanocrystals.  

 

In 1952, David Sayre [14] applied  Shannon’s sampling theory [15] to crystal diffraction. He 

pointed out that if scattering could be detected between Bragg reflections, there is adequate 

information to solve the phase problem of diffraction. This became the basis for an alternative 

method for structure determination called coherent lens-less single-particle imaging (SPI) inspired 

by X-ray crystallography. In this technique, diffraction patterns from thousands of copies of the 

molecule are recorded and computationally assembled in three dimensions before phasing to 

reconstruct the electron density. It is also sometimes described as “crystallography without 

crystals” or “optical microscopy without lenses.”  
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1.2 From Single-particle Structure Determination to Time-resolved X-ray 
Crystallography 

 

Understanding protein function requires both the knowledge of the three-dimensional static 

structure and the conformational changes that take place when the molecule reacts. During a 

reaction, the atomic coordinates of a molecule are changing. Even in their resting state, at thermal 

equilibrium, structures fluctuate between numerous conformational sub-states [16–18]. The 

structural variability is difficult to extract from crystallographic data. Crystallography is an 

ensemble method as it averages over a large number of molecules in different conformations. 

There is the danger that the average structure hides the important functional and allosteric 

molecular mechanisms [19, 20]. The ability to observe one molecule at a time could provide a 

solution to this. Modern pulsed X-ray sources generate intense X-rays with very short pulses which 

make it possible to image single biomolecules. Time-resolved SPI could compensate for the 

information loss. However, SPI experiments have so far only achieved resolutions in the regime 

of a few tens of nanometers [21, 22], a far cry from the near-atomic resolution required.  

 

This dissertation is partly aimed at changing this view. For this, single-particle reconstruction from 

smaller biological molecules needs to be tied to time-resolved investigations. For this, lessons from 

time-resolved crystallography to capture short-lived intermediate states in a biological reaction can 

be used. This dissertation includes: 

 

1. A mathematical formulation is developed to determine the number of diffraction patterns 

required to reconstruct a reliable electron-density of targeted resolution at the desired 

signal-to-noise ratio (SNR) value. The mathematical formulation is tested using simulated 
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single-particle snapshots of an intact phytochrome molecule in its dark-adapted red-light 

absorbing (Pr) state. 

 

2. A time-resolved single-particle experiment is simulated using the phytochrome Pr state and 

the far-red light-absorbing Pfr state (see section 1.3.1 for details of phytochrome structure). 

The Pfr state of any intact (full length) phytochrome is not known yet. But the crystal 

structure of a smaller sized phytochrome construct consisting only of PAS, GAF, and PHY 

domains (see below for a description) is known in the Pfr state that can be used to guess 

the corresponding full-length phytochrome Pfr structure.   

 
 

3. So far SPI techniques at X-ray Free-Electron Lasers (XFELs) were applied to large 

biological assemblies, primarily viruses [21–23]. Whether the application of SPI to smaller 

particles is possible, is not known. One of the focus of this dissertation is to estimate by 

simulation how the SPI approach could be applied to smaller biological molecules and 

eventually reach a near-atomic resolution. For this, thiol-decorated gold nanoparticles are 

chosen as a model system. 

 

4. A pioneering time-resolved serial crystallography experiment at the European XFEL 

(EuXFEL) with photoactive yellow protein as a model system was conducted. We hope 

that ultimately a similar experiment can be conducted with time-resolved SPI in the future. 

Similarities and differences will be discussed. 
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1.3 Model Systems 
 

1.3.1 Phytochrome 
 

Phytochromes are red-light photoreceptors characterized in plants, fungi, and bacteria [24, 

25] and undergo large structural changes after red light absorption. The full-length, functional 

bacterial phytochromes (BphPs) consist of multiple domains. The PAS (Period ARNT Sim), GAF 

(cGMP phosphodiesterase/adenylyl cyclase/FhIA), and PHY (phytochrome-specific) domains 

form the photosensory core module (PCM) [26–30]. An effector domain has enzymatic activity 

which is covalently linked to the PHY domain. The PHY domain has a tongue-like extension which 

contacts the GAF domain to seal the biliverdin (BV) chromophore pocket [27, 31] as shown in 

Fig. 1.3. Upon photoexcitation, phytochromes interconvert between a dark-adapted red-light 

absorbing state, Pr, and a photoactivated far red-light absorbing state, Pfr. The sensory tongue 

probes the configuration of the BV chromophore and transmits the signal to the PHY domain. The 

structure of the tongue undergoes substantial changes between the Pr and Pfr states [32, 33]. In Pr 

state, the tongue assumes a loop to 𝛽-strand conformation, whereas, in the Pfr state, it assumes a 

loop to 𝛼-helix conformation. Accordingly, large-scale conformational changes with amino acid 

displacements across several tens of Å between the Pr and Pfr states are required [33–35]. 

However, the molecular details of the structural changes during the Pr to Pfr transition and their 

long-range effects on the effector domains are not well understood. Such changes may not be 

accommodated by the crystal lattice. In contrast, with SPI these structural transitions may be 

observed, which provides the major motivation to perform the simulations reported further down.  
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Figure 1.3: Pr and Pfr structures of Idiomarina spec. and D. radiodurans phytochromes, 

respectively. (a) Full-length dark-adapted red-light absorbing Pr state [34] (PDB code 5llw) of 

Idiomarina spec. phytochrome. Individual domains are colored in yellow, green, magenta, 

brown, and grey for PAS, GAF, PHY, coiled-coil, and di-guanylyl cyclase (DGC) effector 

domains respectively. (b) The photosensory core module (PCM)  from the D. radiodurans 

phytochrome in the photoactivated far red-light absorbing Pfr state [33] (PDB code 5c5k). The 

PAS, GAF, and PHY domains constitute the PCM and are represented with the same color as in 

(a). The PHY domains are displaced substantially in the Pfr structure (blue curved arrow (b)). 

The sensory tongue is marked in both structures and the biliverdin (BV) chromophores (orange) 

are shown as ball-and-stick models. 

Sensory tongue Sensory tongue

(a)                                                         (b)

PAS

GAF

PHY

DGC

Coiled-coil linker

PAS

GAF

PHY
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1.3.2 Thiol-decorated Gold Nanoparticles 
 

  Thiol-decorated gold nanoparticles (TDGN) consist of 102 gold atoms surrounded by 44 

p-MBAs (p-mercaptobenzoic acid) Au102(p-MBA)44 as shown in Fig. 1.4. The high-resolution 

structure of thiol-gold has been obtained by X-ray crystallography [36]. Our goal is to resolve a 

weakly scattering part, the thiol coating, in the presence of a strong scatterer (gold) using the SPI 

method. The structure of Au102(p-MBA)44 is formed by a central symmetric Au79 gold core with a 

protective gold-thiolate layer of composition Au23(p-MBA)44 [36]. The gold-sulfur bonds are very 

stable which enable the binding of the biomolecules on the surface of gold clusters. The 

interactions between p-MBA molecules also stabilize the thiol monolayer. The thiol alone consists 

of 44 p-MBAs and scatters only a few photons. This makes it difficult to retrieve a three-

dimensional electron density at low-resolution. Strongly scattering gold nanoparticles could be 

helpful to identify and orient single-particle snapshots. Attaching a weakly scattering organic 

molecule to a strongly scattering nanoparticle offers a previously unexplored route of imaging 

biomolecular systems by the SPI technique. 
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1.3.3 Photoactive Yellow Protein (PYP) 
 

PYP was first discovered in Halorhodospira halophila [37], a purple sulfur bacterium. It 

absorbs blue-light and undergoes photocycle consisting of several short-lived intermediates, 

namely IT, pR1, pR2, pB1, and pB2 as shown in Fig. 1.5 (a) [38–41]. The time-constants for the 

photoconversion from one intermediate to another range from femtoseconds to seconds. The 

photocycle of PYP has been extensively investigated on all time scales [42–44].  The chromophore 

in PYP is para-coumaric acid (pCA) [45], covalently bonded to a Cys69 residue. The pCA head 

forms two short hydrogen bonds with Glu46 and Tyr42 as shown in Fig. 1.5 (a). 

 

 

Figure 1.4: Thiol 

monolayer protected Gold 

nanoparticle Au102(p-

MBA)44 [36]. The gold 

atoms are depicted as 

yellow spheres. The thiol 

monolayer (p-MBA) 

consists of sulfur, carbon, 

and oxygen atoms 

represented in cyan, gray, 

and red respectively. 
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PYP is a small water-soluble protein with only 125 residues and has a molecular weight of 14 kDa.  

It has been a suitable model system used for the development of numerous data collection 

techniques. Time-resolved serial femtosecond crystallographic (TR-SFX) experiments (detail 

about this method is discussed in section 2.6) using PYP as a model system were conducted at the 

Linac Coherent Light Source (LCLS) facility with ultrafast time resolution [41, 44]. This 

demonstrates that TR-SFX is able to quantify structural changes between various reaction 

intermediates.  In this dissertation, we investigate the picosecond time range in the photocycle of 

PYP to pioneer TR-SFX at the EuXFEL. 

 

Figure 1.5: PYP structure and its photocycle. (a) Structure of PYP (PDB code 4llw9 [41]). The 

chromophore pCA is labeled along with other important residues Cys69, Glu46, and Tyr42. 

Hydrogen bonds are indicated with dashed black lines. (b) Photocycle of PYP showing 

numerous intermediates with various time-constants for photoconversion (Figure adapted from 

[46]). 

Glu46

pCA

Tyr42
2.54 Å2.59 Å

Cys69

(a) (b) 



 13 

2.  Materials and Methods 
 

2.1 Free-electron Laser (FEL) Radiation 
 

The FEL concept was introduced by John Madey, in 1971 [47]. The idea of extending 

radiation from an FEL to shorter wavelengths, in the X-ray regime, were explored [48]. FELs 

produced X-ray wavelengths, typically ranging from 0.01 to 10 nm [48, 49].  XFELs produce 

spatially and temporally highly coherent X-ray pulses with a duration of tens of femtoseconds and 

1012-1013 hard X-ray photons per pulse. XFELs produce beams that are more than 10 orders of 

magnitude brighter than the most powerful synchrotron sources [50]. The intense pulses produced 

from the XFELs are explained by the principle of self-amplified spontaneous emission (SASE) 

[47]. SASE emission originates from spontaneous undulator radiation and is a stochastic process. 

SASE FEL radiation is characterized by shot-to-shot fluctuations in the wavelength spectrum and 

the FEL pulse energy. The randomness, in the SASE process, becomes imprinted on the X-ray 

pulses, such that each one of them has a slightly different intensity and different average photon 

energy. The first hard XFEL, the Linac Coherent Light Source (LCLS) at Stanford Linear 

Accelerator Center (SLAC), California was commissioned in 2009. Thereafter, five XFELs have 

come into operation (as of the year 2020) and two more are still under construction. 

 

2.2 Radiation Damage and Femtosecond X-ray Pulses 
 

The inelastic cross-section of a molecule for X-rays is very large compared to that of the 

elastic scattering cross-section [52]. Consequently, a significant amount of energy is deposited in 

the sample which causes damage, but this process is not instantaneous. Since radiation damage 
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accumulates more slowly at low temperature, crystals are conventionally held at cryogenic 

temperature during data collection using synchrotrons [53]. Cryo-cooling diminishes secondary 

damage induced by reactions of free radicals generated by energetic electrons. However, the 

primary radiation damage can only be mitigated by a reduction of exposure time or by the 

attenuation of X-ray beam intensity which ultimately limits the resolution of the collected data.  

 

The idea of flash imaging to overcome the degradation of X-ray images of living cells was first 

suggested by Solem et al. [54]. A detailed molecular dynamics analysis [55] gave the first insight 

that atomic resolution of a single biological molecule could be possible using femtosecond pulses 

from an XFEL source. The simulation shows that the radiation damage could be ignored for short 

pulse duration (such as < 30 fs).  Since diffraction is instantaneous and damage requires some time 

to evolve, femtosecond X-ray pulses from an XFEL produce essentially damage-free diffraction 

patterns. This is commonly known as the “diffraction-before-destruction” principle [55, 56]. This 

principle was first experimentally demonstrated using soft X-rays with a pulse duration of 25 fs 

containing 1012 photons  [57].  As a result of the high number of photons in the pulse, photoelectric 

absorption deposits sufficient energy in the sample (a microstructure milled through a silicon 

nitride membrane) to bring it up to a temperature of 60,000 K and destroy it completely. However, 

the extremely short pulse duration allows the collection of the data before the sample is blown 

apart. 

 

2.3 Interaction of X-rays with Matter 
 

X-rays interaction with matter is based on the first-order Born approximation, also known 

as “kinematic” or “single-scattering” approximation [58]. Within the first-order Born 
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approximation, the diffracted wave for an object illuminated by a plane wave in the far-field is the 

Fourier transform of the object. This approximation is of fundamental importance to reconstruct 

the electron-density from intensities extracted from diffraction patterns. 

 

2.3.1 Scattering by Atoms 
 

The atomic scattering factor can be written as 

𝑓(𝒒) = )𝜌(𝒓) exp(2𝜋𝑖𝒒 ⋅ 𝒓) 𝑑𝒓.	 (2.1) 

 The scattering amplitude f is given by the Fourier transform of the electron density 𝜌. The 

integration is over the entire space r and q represents the scattering vector as shown in Fig. 2.1. 

The atomic scattering factor describes the scattering efficiency of a given atom in a given 

direction. For any atom scattering in the forward direction, f is normalized to the total number of 

electrons in an atom. With the increase of the scattering angle, the waves scattered by individual 

electrons become more and more out of phase which decreases f.  For crystallographic software 

packages, the atomic scattering factors are calculated from empirical approximations based on 

Hartree-Fock wave functions. For each atom, the atomic form factor is represented by a sum of 

Gaussians as [13] 

𝑓(𝑞) =8𝑎! ⋅ exp :−
𝑏!|𝒒|"

4 ? + 𝑐																					
#

!$%

 

=	8𝑎! ⋅ exp :−𝑏! B
𝑠𝑖𝑛𝜃
𝜆 F

"

?
#

!$%

+ 𝑐	.																																											(2.2) 

The parameters, ai, bi, and c are called the Cromer-Mann coefficients. They are listed in the 

International Tables for Crystallography [59]. A plot of atomic form factors as a function of 
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𝑆𝑖𝑛𝜃/𝜆	is shown in Fig. 2.2. 𝜃 represents half of the scattering angle i.e. half of the angle between 

the incident and the scattered wave vector as shown in Fig. 2.1. 𝜆 represents the wavelength of the 

incoming X-ray radiation. 

 

2.3.2  Diffraction from a Molecule 
 

Molecules consist of a number of atoms that are bound. Diffraction of X-rays by a molecule 

is given by the structure factor and calculated as 

𝐹&(𝒒) =8𝑓'(𝒒) expJ2𝜋𝑖	𝒒 ⋅ 𝒓𝒋K
)

'$%

	 . (2.3) 

The sum is taken over all atoms N at positions 𝒓𝒋 scattering with their atomic form factor 𝒇𝒋.  

 

 

θ θ

θ

θ

kin

-kin

kout

q = kout- kin

Figure 2.1: Graphical representation of a 

scattering vector q with incident wave 

vector kin and scattered wave vector kout.  
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2.3.3 Diffraction from a Crystal 
 

A crystal consists of a three-dimensional translationally periodic arrangement of atoms 

each of which diffract with their atomic form factor. The structure factor of the crystal is the 

addition of diffraction from all atoms in the crystal with the correct phases given by 

𝐹*(𝒒) = 	 8 𝑓+(𝒒) exp(2𝜋𝑖𝒒 ⋅ 𝒓𝒎)
&

+$%

. (2.4) 

The sum is over all atoms M at positions rm in the crystal. An ideal crystal is a periodic repetition 

of a unit cell containing one or more molecules. The unit cell is defined by three vectors a, b, c 

which has lengths a,b,c, and angles between the axes 𝛼, 𝛽, 𝛾 as shown in Fig. 2.3 (a). These vectors 

are called the crystallographic axes of the unit cell. The lengths and angles are known as the lattice 

 

Figure 2.2: 

Scattering factors for 

selected atoms 

calculated using 

Cromer-Mann 

coefficients (Eq. 

(2.2)). For scattering 

angle (2𝜃) = 0, the 

scattering factor is 

equal to the number 

of electrons Z. The horizontal dashed lines represent 10Å and 3Å resolutions. 
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constants or lattice parameters. The position vector rm in Eq. (2.4) is given by the sum of a lattice 

vector rgn and a position vector in the unit cell rj as shown in Fig. 2.3 (b). The structure factor of 

the crystal with 	𝑛 = 1…𝑁		unit cells and 𝑗 = 1… 𝐽 atoms in the unit cell can be written as 

														𝐹-(𝑞) = 88𝑓' exp T2𝜋𝑖𝒒 ⋅ J𝒓./ + 𝒓'KU
0

'$%

)

/$%

 

																																															= 8expJ2𝜋𝑖𝒒 ⋅ 𝒓./K ⋅8𝑓' expJ2𝜋𝑖𝒒 ⋅ 𝒓'K
0

'$%

.
)

/$%

	 (2.5)										 

The first term in Eq. (2.5) is the lattice factor, G, and the second term is the structure factor of the 

molecule as given in Eq. (2.3). rgn is a vector to the origin of each unit cell. It is an integer linear 

combination of the unit cell vectors written as 

𝒓./ = 𝑢𝒂 + 𝑣𝒃 + 𝑤𝒄					 

The lattice factor G can be written as a triple sum of u, v, and w. For U unit cells in 𝒂 direction, V 

unit cells in 𝒃 direction, W unit cells in 𝒄 direction such that U.V.W = N, G can be written as 

																																					𝐺 = 	8expJ2𝜋𝑖𝒒 ⋅ 𝒓./K	
)

/$%

 

																																	= 8 exp(2𝜋𝑖𝑢𝒒 ⋅ 𝒂)8exp(2𝜋𝑖𝑣𝒒 ⋅ 𝒃)
12%

3$4

52%

6$4

8 exp(2𝜋𝑖𝑣𝒒 ⋅ 𝒄)
72%

8$4

. (2.6) 
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2.3.4 Laue and Bragg Diffraction Conditions 
 

For large values of U, V, and W, the sum in Eq. (2.6) is zero for non-integer values of 𝒒 ⋅

𝒂, 𝒒 ⋅ 𝒃, and	𝒒 ⋅ 𝒄. But with integer values, the sum is not zero. These are the important conditions 

in crystallography known as Laue-conditions which can be written as 

𝒒. 𝒂 = ℎ 

𝒒. 𝒃 = 𝑘	 (2.7) 

𝒒. 𝒄 = 𝑙 

 

 

 

Figure 2.3: (a) Representation of a unit cell. (b)  Two-dimensional crystal lattices. Each unit cell 

contains one molecule with two atoms. The position vector rm is separated into a lattice vector rgn 

and the position vector in the unit cell rj.  
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where h, k, l are integer numbers. The periodicity of the crystal ensures that sets of parallel planes 

can be drawn passing through the atom centers at regular intervals. These sets of planes are denoted 

by Miller indices hkl.  If one plane is drawn through the unit cell origin, the intercepts of the next  

plane of the set on the axes are a/h, b/k, c/l.  Suppose d be the distance from the origin of the 

reciprocal lattice to the hkl reciprocal lattice points. Then from Laue-conditions, we can write 

|𝒒| = 1/𝑑. The geometrical interpretation is shown in Fig. 2.2. It follows that kin and kout make 

the same angle 𝜃 with the plane perpendicular to q.  

 

2.3.5 Reciprocal Lattice and Ewald Construction 
 

For any crystal lattice, a reciprocal lattice exists such that the Laue conditions are 

automatically fulfilled. It is called the reciprocal lattice because many of its properties are 

reciprocal to those of the real space crystal lattice. For a real space lattice with a unit cell (basis) 

vectors 𝒂, 𝒃	&	𝒄, the corresponding reciprocal lattice unit cell (basis) vectors 𝒂∗, 𝒃∗, 𝒄∗ are given 

as 

𝒂∗ =
1
𝑉
(𝒃	 × 	𝒄), 

𝒃∗ =
1
𝑉
(𝒄	 × 	𝒂), (2.8) 

𝒄∗ =
1
𝑉
(𝒂	 × 	𝒃). 

Here, V is the volume of the unit cell of the crystal given as 𝑉 = 𝒂 ⋅ (𝒃	 × 	𝒄). The vectors 

𝒂∗, 𝒃∗	&	𝒄∗  satisfy the following relationships 

𝒂 ⋅ 𝒂∗ = 1; 			𝒂 ⋅ 𝒃∗ = 0; 		𝒂 ⋅ 𝒄∗ = 0, 

𝒃 ⋅ 𝒂∗ = 0; 			𝒃 ⋅ 𝒃∗ = 1; 		𝒃 ⋅ 𝒄∗ = 0, 
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𝒄 ⋅ 𝒂∗ = 0; 				𝒄 ⋅ 𝒃∗ 	= 0; 		𝒄 ⋅ 𝒄∗ 	= 1. 

The reciprocal lattice is now built up by repeated translations of the reciprocal space basis vectors. 

A vector 𝒒:;< drawn from the origin of the reciprocal lattice to any point having coordinates hkl is 

perpendicular to the set of planes in the real space crystal lattice with Miller indices hkl. This vector 

can be expressed in terms of reciprocal basis vectors as 

𝒒:;< = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗. 

These are also the solutions of the Laue-equations as given in Eq. (2.7). The length of this vector 

is equal to the reciprocal of the spacing d of the planes with Miller index hkl 

𝑞:;< =
1
𝑑:;<

. 

Each lattice point is related to a set of planes in the crystal and represents the orientation and 

spacing of the corresponding set of planes. The usefulness of the reciprocal lattice lies in its 

connection to the observed diffraction. The diffraction maxima occur only when the Laue 

equations and elastic scattering conditions are satisfied. The conditions for elastic diffraction can 

be represented graphically by the Ewald construction shown in Fig. 2.4.  For elastic diffraction, 

the vectors 𝒌m!//𝜆	 and 𝒌m=6>/𝜆 in the incident and scattered directions have equal magnitudes 1/𝜆. 

𝒌m!/	and	𝒌m=6> represent the unit vectors along 𝒌!/ and 𝒌=6> direction respectively. Since the 

incident and scattered wave vectors are of fixed length, the scattering vector will cover a sphere in 

reciprocal space. The sphere will intersect the origin at forward scattering direction. This sphere is 

called the Ewald sphere.  

 

 The condition for diffraction from the (hkl) planes is that the point P(h,k,l) in the reciprocal lattice 

touches the surface of the sphere. The direction of the diffracted wave vector kout is found by 

joining C to P (Fig. 2.4). When the elastic scattering condition is fulfilled, the vector OP is the  
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scattering vector q. The magnitude of q can be written as 𝑞 = (2𝑆𝑖𝑛𝜃)	/	𝜆. Combining this with 

Laue-condition (Eq. 2.7) we can write  

2𝑑𝑆𝑖𝑛𝜃 = 𝜆. (2.9) 

Equation (2.9) is a well-known equation in crystallography called Bragg’s law. 

 

2.3.6 Debye-Waller Factor  
 

Atoms in a crystal are not located at fixed points in the lattice. These atoms undergo thermal 

vibration about their mean position. The amplitude of the vibration increases with an increase in 

temperature. The thermal agitation decreases the intensity of the diffracted beam. This effect can 

be addressed by introducing a temperature factor also called B-factor. The B-factor is given by 

𝐵 = 8𝜋" < 𝑥" > 

 

Figure 2.4:  The Ewald construction. The 

origin of the reciprocal lattice vectors O lies at 

the edge of the Ewald sphere. An incident wave 

vector kin makes an angle 2𝜃 with the scattered 

wave vector kout. 𝒒 = 𝒌!/ − 𝒌=6> is the 

scattering vector. Bragg’s law is fulfilled when 

a reciprocal lattice point lies on the surface of 

the Ewald sphere. 
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where < 𝑥" > is the mean square displacement of an atom. As the B-factor increases, the 

contribution of the atom to the scattering is decreased. To address this effect, the atomic scattering 

factor (Eq. 2.2) has to be multiplied by the Debye-Waller factor. In a simple case, for isotropic 

vibration, the Debye-Waller factor can be written as 

𝑇 = exp:−𝐵 B
𝑆𝑖𝑛𝜃
𝜆 F

"

? . (2.10) 

 

The atomic form factor for carbon is shown for increasing B-factors in Fig. 2.5. The temperature-

factor is strongly angular dependent. At high-resolution, for a high B-factor, the atomic form factor 

approaches zero.  Fig. 2.5 shows that atoms with lower B-factors diffract to higher resolutions.  

 

Figure 2.5: The atomic form factor of a Carbon atom multiplied by a Debye-Waller factor. 
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2.4 Diffraction Patterns 
 

Only scattering vectors ending on the Ewald sphere contribute to the diffraction pattern of 

a molecule in a particular orientation. This is true for Bragg reflections as well as for scattering 

contributions from single particles. The entire 3D diffraction volume has to be recorded to solve 

the structure in 3D. No matter whether diffraction from crystals or single particles is concerned, a 

single diffraction pattern records a thin ‘slice’ through the 3D reciprocal space map of the object 

as shown in Fig. 2.6. Diffraction patterns are the 2D projections of a 3D object. Full 3D 

information, therefore, requires many diffraction patterns, each from a different orientation. The 

geometric relation of a detector pixel to the diffraction space is shown in Fig. 2.6 (b). 

 

Figure 2.6: Mapping of pixels in an area detector to points in reciprocal space. Figure (a) 

represents the scattering geometry with ZD the detector distance from the point of interaction to 

kout
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2.4.1 Mapping the Detector onto the Ewald Sphere  
 

The pixels on the planar detector can be mapped onto the curved Ewald sphere (Fig. 2.6) 

as described in Eq. (2.11). Consider the incident X-ray beam of wavelength 𝜆 traveling along the 

𝒛u	(0,0, 𝑧) direction. Let a pixel is on the detector whose center is at (𝑥, 𝑦, 𝑧?) in the laboratory 

frame of reference. Under kinematic approximation, the scattering vector can be written as (see 

Fig. 2.2 & Fig. 2.6 (b)) 

𝒒 = 𝒌=6> − 𝒌!/ 

The pixel of the detector measures the diffraction intensities of the scatterer. The above equation 

can be written in the laboratory coordinate system as 

𝑞@	𝒙y + 𝑞A𝒚y + 𝑞B𝒛u = |𝒌=6>|
𝑥𝒙y 	+ 	𝑦𝒚y 	+ 𝑧?𝒛u	
{𝑥" + 𝑦" + 𝑧?"

− |𝒌!/|𝒛u. 

With this, any pixel (𝑥, 𝑦, 𝑧?) on a planar detector can be mapped onto an Ewald sphere (𝑞@ , 𝑞A , 𝑞B) 

as 

J𝑞@ , 𝑞A , 𝑞BK =
1
𝜆 |

(𝑥, 𝑦, 𝑧?)

{𝑥" + 𝑦" + 𝑧?"
− (0,0,1)}.		 (2.11) 

The mapping of the detector pixels onto the Ewald sphere is also shown in Fig. 2.7. From this 

geometry, the relationship between a pixel (x,y) on a two-dimensional detector and a scattering 

vector on the Ewald sphere can be written as 

𝑞 =
2
𝜆 	sin	(θ)																																																	

the center of the detector. (b) Mapping of detector pixels to the diffraction space. The direct 

beam position always coincides with the origin of the reciprocal space. Figure modified from 

[60]. 
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𝑞@ = 𝑞	 :1 −	
𝜆"𝑞"

4
?

%
"
	sin(arctan2(𝑥, 𝑦))	 (2.12)		

𝑞A = 𝑞	 :1 −	
𝜆"𝑞"

4 ?

%
"
	cos(arctan2(𝑥, 𝑦))			

𝑞B = −
𝜆
2𝑞

"	. 

 

2.4.2 Difference Between Single-Particle and Crystal Diffraction Patterns 
 

Without amplification by a periodic lattice, the diffracted intensity from a single molecule 

is much weaker than that from crystals. At XFELs, the enormous incident intensity compensates 

for the absence of amplification. Still, a large number of measurements are required for any high-

resolution information (discussed in detail in section 2.5).  The molecular transforms of single 

molecules are continuous. With this, diffraction patterns can be sampled finely enough that the 

unrecorded phase information can be retrieved solely from the set of the measured structure factor 

amplitudes (discussed in section 2.6). With crystals, strong and discrete diffraction maxima occur 

only at Bragg angles. The diffracted intensity is sampled in discrete angular intervals only at the 

reciprocal lattice points. This is sometimes referred to as “Bragg sampling.” Although this 

facilitates the recording of the crystal’s diffraction pattern, it complicates the process of the 

reconstruction of the original molecular structure from its diffraction patterns. As intensities are 

extracted, structure factor amplitudes can only be determined from which electron density cannot 

be calculated. Additional experiments are necessary to retrieve the phase so that structure factors 

can be obtained [61]. The advantage is that Bragg peaks can be easily distinguished from slowly 

varying background in a diffraction pattern. Accurate structure factor amplitudes can be 
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determined this way. In contrast, if diffraction is continuously varying, the background cannot be 

readily separated, and a large number of measurements are required to determine accurate 

amplitudes suitable for solving the structure.  

 

2.4.3 Simulation of Diffraction Patterns 
 

For the simulation of single-particle diffraction patterns (Fig. 2.7), we construct a regular 

two-dimensional Cartesian grid that represents detector pixel positions. The pixel coordinates (x,y) 

on the detector are mapped onto the Ewald sphere using Eqs. (2.12). The scattered intensity 

collected on a detector pixel of solid angle 𝑑Ω at a scattering vector q is given by 

𝐼(𝒒) = 𝜙𝑟C"|𝑭(𝒒)|"𝑑Ω	 (2.13) 

where 𝜙 is the incident flux (‘photons/area’), and ′𝑟C′ being the classical electron radius.  𝑭(𝒒) is 

the structure factor of the molecule given in Eq. (2.3), and d𝛺 the solid angle subtended by the 

area of the Shannon pixel, 

𝑑𝛺 = 	B
𝜆
𝑜𝐷
F
"

cosD(2𝜃),	 (2.14) 

‘o’ being the oversampling ratio,	𝑜 ≥ 2 (for details of oversampling see section 2.5.4.3). 

With this, the intensity can be written as  

𝐼(𝒒) = 	Φ𝑟C"	|𝑭(𝒒)|" B
𝜆
𝑜𝐷F

"

cosD(2𝜃). 
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For small scattering angles (2𝜃), the formula can be approximated by 

𝐼(𝒒) = 	Φ𝑟C"	|𝑭(𝒒)|" B
𝜆
𝑜𝐷F

"

. 

 

Figure 2.7: Elastic scattering in forward geometry. 2𝜃 denotes the angle between the incident 

kin and scattered kout wave vector. The scattered vector kout ends on the Ewald sphere due to 

energy conservation (|kout|=|kin|). The scattering vector q=kout-kin denotes the resulting 

momentum transfer. 

kin

dΩ

2θ kin

kout

1/λ

q

(x,y,0)
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The simulated pattern is obtained by calculating intensity values (Eq. (2.13)) at each pixel of the 

detector. Randomly oriented diffraction patterns were generated using uniform random rotation 

quaternions (section 2.4.3).  

 

During an experiment, in addition to single-particle scattering, there will also be scattering from 

multiple particles. The multiple particles in the beam can be simulated by the coherent or 

incoherent sum of the scattered waves of each of the particles. For instance, consider two 

molecules, where one molecule is separated by a distance S from the other. Let, 𝑭𝟏(𝒒)	and	𝑭𝟐(𝒒) 

be the structure factors corresponding to two molecules. For incoherent addition, the intensity of 

the resultant image is given as 

𝐼 ∝ |𝑭(𝒒)|" = |𝑭𝟏(𝒒)|𝟐 + |𝑭𝟐(𝒒)|𝟐. 

Similarly, for coherent addition, the intensity of the resultant image can be written as 

𝐼 ∝ |𝑭(𝒒)|𝟐 = |𝑭𝟏(𝒒) +	𝑭𝟐(𝒒)|𝟐. 

After calculating the structure factor of the first molecule	𝑭𝟏(𝒒), the structure factor of the second 

molecule 𝑭𝟐(𝒒) can be calculated using translation property of the Fourier transform as 

𝑭𝟐(𝒒) = 𝑒𝑥𝑝(2𝜋𝑖𝑺 ⋅ 𝒒)𝑭𝟏(𝒒). 

Here, the second molecule is at a distance S from the first one. The simulated noise-free single and 

multiple particles diffraction patterns are shown in Fig. 3.3. 

 

2.4.4 Random Orientations Using Quaternions 
 

A quaternion is a 4-tuple written as 𝑞4 + 𝑞%𝑖 + 𝑞"𝑗 + 𝑞D𝑘, where qi’s are real numbers and 

i,j,k  are three imaginary numbers satisfying the following identities: 

𝑖" = 𝑗" = 𝑘" =	−1,	
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𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘,	

𝑗𝑘 = 𝑖, 𝑘𝑗 = −𝑖,	

𝑘𝑖 = 𝑗, 𝑖𝑘 = 	−𝑗.									 

A vector in three-dimensional space can be expressed as a pure quaternion, a quaternion with no 

real part 𝑄 = 0 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘. A rotation is expressed by a unit quaternion 𝑄G i.e. its  norm |𝑄G| 

is equal to 1. For the unit rotation axis �𝑢@ , 𝑢A , 𝑢B� and angle 𝜃 the corresponding quaternion is 

written as 𝑄 = 𝐶𝑜𝑠 TH
"
U + 𝑆𝑖𝑛 TH

"
U 𝑢@𝑖	 + 𝑆𝑖𝑛 T

H
"
U𝑢A𝑗 + 𝑆𝑖𝑛 T

	H
"
U 𝑢B𝑘. Each unit quaternion can be 

represented as a point in the unit 3-sphere as shown in Fig. 2.8. To generate uniform random 

oriented diffraction patterns, we use unit quaternion 𝑸 = (𝑎 + 𝑏𝒊 + 𝑐𝒋 + 𝑑𝒌	) as follows [62]: 

𝑸 = T{1 − 𝑢%	sin(2𝜋𝑢"), {1 − 𝑢%	cos(2𝜋𝑢"), {𝑢%sin(2𝜋𝑢D), {𝑢%	cos(2𝜋𝑢D)U	 . (2.15) 

The three numbers 𝑢%, 𝑢", 𝑢D are chosen at random, uniformly distributed in the interval [0,1]. 

The quaternions can be expressed as a rotation matrix [63]: 

 𝑹 = �
𝑎" + 𝑏" − 𝑐" − 𝑑" 2𝑏𝑐 − 2𝑎𝑑 2𝑏𝑑 + 2𝑎𝑐

2𝑏𝑐 + 2𝑎𝑑 𝑎" − 𝑏" + 𝑐" − 𝑑" 2𝑐𝑑 − 2𝑎𝑏	
2𝑏𝑑 − 2𝑎𝑐	 2𝑐𝑑 + 2𝑎𝑏	 𝑎" − 𝑏" − 𝑐" + 𝑑"

�	 . (2.16)  
 

 

The rotation matrix is an orthogonal matrix (𝑅𝑅J = 𝑅J𝑅 = 𝐼; 	det(𝑅) = 1). It rotates the 

molecule, represented by the three-dimensional atomic coordinates (𝑥' , 𝑦' , 𝑧') to a new position 

with coordinates J𝑥′' , 𝑦′' , 𝑧′'K, written in matrix form 𝑿′𝒋 = 𝑹𝑿𝒋. These coordinates are then used 

to calculate the structure factor of the molecule according to Eq. (2.3).  
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2.5 Number of Snapshots 
 
 
2.5.1 Background 
 

Electron density reconstructions from experimental SPI datasets collected at XFELs have 

achieved resolutions on the order of 5 to 10 nanometers at best [21, 22]. Diffraction up to a  

resolution of 5.9Å was already observed [64] but a reconstruction of a 3D diffraction volume was 

not attempted due to the small number of diffraction patterns collected. This immediately raises 

the central question of how many diffraction patterns must be collected for a 3D reconstruction of 

the electron density at a given resolution. In other words, how many diffraction patterns are 

required to obtain a diffraction volume at a signal-to-noise ratio (SNR) enough to reach the desired 

resolution by iterative phasing? Clearly, this depends on the molecule under investigation and 

Figure 2.8: Distribution of a uniformly random rotation on the unit 2-sphere. A sampling of (a) 

500 and (b) 1000 rotations of a unit vector using random quaternion method as given in Eq. 

(2.15).  Orientations are sampled uniformly. 

(a) (b)
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experimental conditions such as wavelength, beam size, and incident X-ray fluence. We formulate 

a mathematical model to estimate the required number of snapshots. 

 

2.5.2  Mathematical Formulation 
 

Let D be the particle diameter and d be the aimed resolution. We define a dimensionless 

quantity R = ‘Number of Resolution Elements’ as 

𝑅 =
𝐷
𝑑
	. (2.17) 

The number of Shannon voxels in the outermost shell covered by a single diffraction pattern for 

oversampling by a factor of two is  

𝑛𝑉K/LMK:=> =
2𝜋(1/𝑑)
1/2𝐷

=
4𝜋𝐷
𝑑

= 4𝜋𝑅. (2.18) 

Accordingly, the number of Shannon voxels in the resolution shell is 

𝑛𝑉K:C<< =
4𝜋(1 𝑑⁄ )"

(1 2𝐷⁄ )" =
16𝜋𝐷"

𝑑" = 16𝜋𝑅"	. (2.19) 

The probability of an outermost shell voxel hit by a randomly oriented diffraction pattern is 

therefore 

𝑝 =
𝑛𝑉K/LMK:=>
𝑛𝑉K:C<<

=
1
4𝑅 .

(2.20) 

Let 〈𝑛〉 denote the mean number of expected photons per Shannon pixel of a diffraction pattern at 

the resolution shell. As single photons are counted by the detector, the signal follows Poisson 

statistics, var(𝑛") = 〈𝑛〉. Accordingly, the SNR is 

 SNR = 	
〈𝑛〉

{var(𝑛")
=

〈𝑛〉

{〈𝑛〉
= {〈𝑛〉	. (2.21) 
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Due to the weak scattering of X-rays from a single molecule, the SNR of a single diffraction 

snapshot is way too low for any high-resolution information. It is therefore necessary to obtain 

information from many snapshots by averaging. The number of times M a voxel must be hit by a 

diffraction pattern in order to reach the desired SNR is 

𝑀 × 〈𝑛〉 = 𝑆𝑁𝑅". (2.22) 

As an example, for 〈𝑛〉 = 0.002	 (phytochrome at 10Å resolution, Fig. 3.1 (a) each voxel must be 

visited at least 500 times to achieve a SNR of 1.  The probability P for a single voxel be visited at 

least M times by an ensemble of nS snapshots is estimated by the following sum of Binomial 

distributions 

 𝑃(𝑝,𝑀, 𝑛𝑆) = 1 −	 8 T𝑛𝑆𝑘	 U	𝑝
;(1 − 𝑝)/N2;

&2%	

;$4	

	. (2.23) 

Under the assumption that individual Shannon voxels are visited independently (justification is 

given in Appendix 5.1), the joint probability	𝑃«  to observe all voxels at least M times is  

																																																				𝑃¬(𝑝,𝑀, 𝑛𝑆, 𝑛𝑉K:C<< 	) = 𝑃(𝑝,𝑀, 𝑛𝑆)
!"#$%&&

' 		.	    (2.24) 

The factor %
"
 in front of 𝑛𝑉K:C<< in the equation is due to Friedel’s symmetry.  Using these relations, 

we can estimate the total number of diffraction patterns needed to cover the entire diffraction 

volume at any desired probability 𝑃! . For the special case when M = 1, i.e. at very high signal 

levels, an estimation of the number of snapshots was proposed previously [22] and is in agreement 

with our formulation. 

 

Eq. (2.24) cannot be analytically solved for nS. Instead one can calculate the right-hand side with 

increasing nS until the desired probability P is reached. An implementation of an efficient 

algorithm in Python is listed in Appendix 5.2. However, an analytical formula for the number of 
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snapshots can be obtained using the de Moivre-Laplace theorem which approximates the binomial 

distribution by a Gaussian: 

T𝑛𝑆𝑘	 U	𝑝
!(1 − 𝑝)"#$! ≃

1
{2𝜋𝑝(1 − 𝑝)𝑛𝑆

	𝑒$
(!$&	"#)'
)&(*$&)"# 

𝑃(𝑝,𝑀, 𝑛𝑆) = 1 −	 8 T𝑛𝑆𝑘	 U	𝑝
!(1 − 𝑝)"#$!

+$*	

!,-	

= 8 T𝑛𝑆𝑘	 U	𝑝
!(1 − 𝑝)"#$!

.	

!,+	

≃
1

{2𝜋𝑝(1 − 𝑝)𝑛𝑆
	) 𝑒$

(!$&	"#)'
)&(*$&)"#

.

+
𝑑𝑘 =

1
2 	erfc :

𝑀 − 𝑝	𝑛𝑆
{𝑝(1 − 𝑝)𝑛𝑆

?		.										(2.25) 

This approximation allows to write nS explicitly. 

𝑛𝑆(𝑝,𝑀, 𝑃) = ¯
{𝐸(𝑃)) + 4𝑝𝑀 − 𝐸(𝑃)

2𝑝 ±
)

	, 

where	𝐸(𝑃) = 	 erfc$*(2𝑃)	{𝑝(1 − 𝑝).			 

Since erfc(0) = 1, the probability P becomes 0.5 for 𝑛𝑆/ =	
+
&

.	We call nSc the characteristic 

number of snapshots, the number required for a single voxel being visited at least M times with 

probability 50%. Together with Eq. (2.20) and (2.22) this yields 

𝑛𝑆/ = 4𝑅𝑀 =
4𝑅	𝑆𝑁𝑅)

〈𝑛〉 .																																																											(2.26) 

To verify the approximation, the exact probability P was calculated according to Eq. (2.23) as a 

function of 𝑛𝑆/4𝑅𝑀	 for different values of M. The result is depicted in Fig. 2.9 (a). All curves 

admit a value of 𝑃 = 0.5 for 𝑛𝑆 4𝑅𝑀⁄ = 1, in close agreement with the approximation (3.9). The 

ratio of the exact number of snapshots 𝑛𝑆0, derived from Eq. (2.24) to the characteristic number 

of snapshots from Eq. (2.26)  is expressed as a correction factor Cf = 𝑛𝑆0/𝑛𝑆/. A plot of Cf as a 

function of the mean number of photons 〈𝑛〉 for a SNR value of 1.0 is shown in Fig. 2.9 (b). In this 

plot 𝑛𝑆0 approaches 𝑛𝑆/ as the number of photons is lowered. The exact number 𝑛𝑆0 can easily 



 35 

be estimated from the characteristic number 𝑛𝑆/ by multiplication with the proper correction factor 

taken from the graph, without the need to solve Eq. (2.24).   

 

 

 For all voxels being jointly visited at least M times, the number of snapshots will be larger of 

course. With a joint probability 𝑃¬ = 0.5	in Eq. (2.24) a single-voxel probability 𝑃 =

(1 2⁄ )) "1⁄ must be reached instead, a value much closer to one.  

 

 

Figure 2.9: Probability P and correction factor Cf . (a) Probability P of visiting a single voxel 

at least M times as a function of "#
34+

	 (R = 16). For the characteristic number of snapshots 𝑛𝑆/ =

4𝑅𝑀, all curves admit a probability P close to 0.5. (b) Log-log plot of the correction-factor	𝐶5 =

𝑛𝑆0/𝑛𝑆/ as a function of 〈𝑛〉 for different numbers of resolution elements R and SNR = 1.0. The 

horizontal dashed line corresponds to a value of 𝐶5 = 1.15. For 〈𝑛〉 < 10$6	the exact number of 

snapshots 	𝑛𝑆0 is within 15% of the characteristic number  𝑛𝑆/. 

(a)  (b)
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According to Eq. (2.26) the most important parameter for estimating the number of diffraction 

patterns is the mean number of expected photons per Shannon pixel 〈𝑛〉 at the desired resolution 

d. Different methods to calculate 〈𝑛〉 are explained in the next section.   

 

2.5.3 Estimating the Average Number of Photons  
 

The average number of photons 〈𝑛〉	in the outermost resolution shell can be calculated 

from the structure factor 𝑭(𝒒)	as described in Eq. (2.13). However, these calculations require an 

atomic model, which is usually not available. Fortunately, there are useful approximations which 

only require the molecular weight and the approximate size of the molecule. Representing all non-

hydrogen atoms by carbon atoms, the number of atoms 𝑁/ can be estimated from the molecular 

weight 𝑀𝑊, 

𝑁/ = 𝑀𝑊/12Da. 

At low-resolution one can approximate the molecule by a sphere with diameter D [65]. The squared 

structure factor of a sphere filled with 𝑁/ 	carbon atoms of atomic number 𝑍/ = 6 is 

|𝑭(𝒒)|𝟐 	= 𝑁/)𝑍8) T3
9:;(<=>)$<=>?@9(<=>)

(<=>)(
U
)
 . 

Accordingly, the average number of photons becomes 

〈𝑛〉 	= 𝜙𝑟0)𝑁/)𝑍8) T3
9:;(<=>)$<=>?@9(<=>)

(<=>)(
U
)
𝑑Ω . 

With the number of resolution elements 𝑅 = 𝐷/𝑑		and 𝑑 = 1/𝑞		this can also be written as 

〈𝑛〉 	= 𝜙𝑟0)𝑁/)𝑍8) :3
sin(𝜋𝑅) − 𝜋𝑅cos(𝜋𝑅)

(𝜋𝑅)6 ?
)

𝑑Ω.		 (2.27) 

Thus, for the low-resolution approximation, the geometric part of the structure factor depends only 

on the number of resolution elements. 
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For the high-resolution regime, a different approximation is quite useful. With 𝑁/ 	carbon atoms 

the squared structure factor is 

|𝑭(𝒒)|𝟐 = ·𝑓8(𝑞) ∑ exp(2𝜋𝑖	𝒒 ⋅ 𝑿𝒋)
B)
C,* ·

)
= |𝑓8(𝑞)|)·∑ exp(2𝜋𝑖	𝒒 ⋅ 𝑿𝒋)

B)
C,* ·

)
 , 

where 𝑓8(𝑞)	denotes the atomic form factor of carbon. Taking the average over a shell with radius 

q yields  

〈	|𝑭(𝒒)|𝟐〉 = |𝑓8(𝑞)|) 〈·∑ exp	(2𝜋𝑖	𝒒 ⋅ 𝑿𝒋)
B)
C,* ·

)
〉 . 

If the complex number exp(2𝜋𝑖	𝒒 ⋅ 𝑿𝒋) can be approximated by a random phasor (discussed in 

Appendix 5.3), the quantity 〈·∑ exp	(2𝜋𝑖	𝒒 ⋅ 𝑿𝒋)
B)
C,* ·

)
〉  becomes equal to 𝑁8 		[66], so that 

〈𝑛〉 = 	𝜙𝑟0)𝑁/|𝑓/(𝑞)|)𝑑Ω. (2.28) 

Eq. (2.28) assumes that the positions of atoms are completely uncorrelated which is approximately 

true at resolutions approaching the atomic scale. For the high-resolution approximation 〈𝑛〉	is 

directly proportional to 𝑁/ and |𝑓/(𝑞)|). 

 

Assuming a solid sphere and a particle made of carbon with a density of graphite, then 𝑁/ =

3
6
	𝜋 T>

)
U
6
𝜌,	with 𝜌 being the number density of atoms. As 𝑑Ω is proportional with 𝐷$) (Eq. (2.14)), 

〈𝑛〉 is linearly proportional to the size of the object. Applying the high-resolution approximation 

for the value of 〈𝑛〉, Fig. 2.10 shows a plot of the number of snapshots required at different X-ray 

energies. As 〈𝑛〉 ∝ 𝐷, from Eq. (2.26) we can say the number of snapshots is independent of the 

particle size (assuming the density is constant) for high-resolution approximation.  
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2.6 Single-particle Reconstruction 
 

XFELs produce large datasets of 2D diffraction patterns of biomolecules, containing up to 

millions of snapshots. These entire datasets not only contain diffraction patterns of single particles, 

but also snapshots of multiple particles, molecular aggregates, blank shots (no particle intercepted), 

Figure 2.10: Plot of the number of required snapshots nS (SNR=1.0) as a function of resolution 

for different incident X-ray energies. 〈𝑛〉	is estimated using the random phase approximation 

valid for the high-resolution regime (Eq. (2.28)) assuming 1.0 µm diameter top-hat beam, and 

1 mJ pulse energy. The number of carbon atoms NC is estimated based on a solid sphere and a 

particle made of carbon with a density of graphite. The dashed line represents the characteristic 

number of snapshots (Eq. (2.26)) and the solid line represents the exact number of snapshots 

(Eq. (2.24)). 
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buffer impurities, and contaminated materials as discussed in [67]. Single-particle diffraction 

patterns must be separated from those originating from multiple particle diffraction and other 

impurities. The X-ray pulses produced from XFELs destroy the sample, making it impossible to 

get more than one diffraction pattern per particle. Accordingly, every single molecule is injected 

into the X-ray interaction region in an unknown orientation. The orientation of each particle that 

contributes to a diffraction pattern must be recovered. Intensities must be extracted from the 

diffraction pattern and must be merged and converted to amplitudes. Finally, the phase is 

determined for each structure factor amplitude using iterative phasing from which ultimately 

electron density map is calculated.  

 

2.6.1 Orientation Determination 
 

The particles are injected in random orientations into the X-ray beam. The orientations of 

the molecules relative to each other have to be determined from the snapshots. Orientation 

recovery is one of the most crucial steps in single-particle structure determination. Multiple 

algorithmic methods of orientation recovery have been developed to assign orientations to single-

particle X-ray diffraction patterns [68–71].  For this dissertation, the Dragonfly package [72]  was 

used for orientation determination. Dragonfly uses the Expansion Maximization Compression 

(EMC) algorithm [70].  

 

2.6.1.1  Expansion Maximization and Compression (EMC) 
 

EMC uses a Bayesian approach for orientation determination. This is an iterative 

algorithm, and each iteration consists of three steps: Expansion (E), Maximization (M), and 
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Compression (C). Initially, it can be started with any prior knowledge about the particle or could 

be seeded from a guess model comprising a random set of numbers. In the first step (Expansion 

step) of each iteration, the current 3D volume is expanded into a set of diffraction patterns. The 

expansion is based on each potential measurement angle or orientations. The experimental 

(measured) patterns are compared separately to the expanded model calculated in the previous step 

for all possible orientations. The log-likelihood probability in each orientation is calculated. The 

patterns are assigned orientations based on where they fit best. This gives a new expanded 

maximum-likelihood model according to the log-likelihood probability (Maximization step). In the 

last step of the iteration, a new expanded model, using the newly assigned orientations, is 

compressed back into a 3D volume (Compression step).  After this, a new iteration is started until 

orientations converge. 

 

2.6.2 3D Merging 
 

The diffraction patterns are merged into a 3D volume after orientation determination. A 

so-called “Cone-Gridding” algorithm is used for this purpose. This algorithm has previously been 

used to analyze real SPI  data collected at an XFEL [73]. To estimate the intensity, I(q), at a point 

q, the algorithm identifies pixels in all the diffraction patterns that correspond to the scattering 

vector q. This happens only if the Ewald sphere associated with a diffraction pattern intersects q. 

Geometrically, the directions of the incident beam of diffraction patterns which contribute to a 

point q form a cone, hence the name “Cone-Gridding.” For a finite number of diffraction patterns, 

the Ewald spheres rarely pass through any of the grid points. This is addressed by relaxing the 

elastic scattering condition to allow an angular deviation up to a Shannon angle. The gridpoint q 

is projected onto the 2D diffraction pattern and the scattering amplitude is interpolated from the 
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neighboring grid points. At each grid point of the diffraction volume, the intensity is estimated by 

the weighted sum: 

𝐼J𝑞D,C,!K = 	8𝑤J𝑞D,C,!KF𝐼F T𝑃J𝑞D,C,!KU /8𝑤J𝑞D,C,!KG	
>

F,*

>

F,*

.	 

where D is the number of diffraction patterns contributing to the grid point (i,j,k), 𝑤J𝑞D,C,!KF 

represents the Gaussian weights and 𝐼F T𝑃J𝑞D,C,!KU denotes the interpolated intensity retrieved 

from diffraction pattern d by projecting the scattering vector into the diffraction plane. The 

Gaussian weights are determined by taking the deviation from the Ewald condition 

𝑤J𝑞D,C,!KF = exp |−
𝛥𝜃F		)

2𝜎) }. 

Here 𝜎 represents the Shannon angle and  Δ𝜃 is the deviation from the elastic scattering condition 

(how much distance from the surface of the Ewald sphere). For all the pixels with Δ𝜃F > 2𝜎 the 

weight is set equal to zero. 

 

2.6.3 Phase Retrieval  
 

 In SPI, the electron density distribution of a biomolecule is reconstructed from the merged 

3D diffraction volume via iterative phase retrieval methods. 

 

2.6.3.1  The Phase Problem 
 

The phases of the structure factor amplitudes must be known to reconstruct the electron 

density. The electromagnetic waves X-rays have oscillation periods on the order of 10$)-	to 10$*H 

seconds. X-ray detectors only sense the intensity in a pixel and cannot resolve the extremely rapid 
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oscillations. This leads to the phase problem in both SPI and crystallography. Phases are retrieved 

using iterative calculations with specific boundary conditions. The boundary conditions are based 

on the properties of the real and reciprocal spaces. Solutions to the phase problem are discussed in 

Section (2.5.4.4).  

 

2.6.3.2  Importance of Phases 
 

The importance of phases in reconstructing the correct image is illustrated in Fig 2.11. As 

phase information is unknown, one could try to reconstruct an image assuming that the phases 

have an arbitrary value, say 0o, using amplitudes (square root of the measured intensities) with 

inverse FT as 𝐹𝑇$*{√𝐼 exp(𝑖 ⋅ 0)}. This results in an uninterpretable image (see Fig. 2.11 (c)). On 

the other hand, if the phases were known and amplitudes unknown, the resulting image obtained 

with inverse FT as 𝐹𝑇$*{1. exp(𝑖 ⋅ 𝜙)}	 is quite similar to the original image (see Fig. 2.11 (d)). 

For reconstruction with the amplitude information of one image and the phase information of the 

other, the image corresponding to the phase data is prominent but somewhat degraded as in Fig. 

(2.11 (e) & 2.11 (f)). This suggests that the phases carry more structural information than the 

amplitudes. 

 

2.6.4.3 Oversampling 
 

   Since X-ray diffraction intensities of a single molecule are continuous (Fig. 3.3) iterative 

phasing becomes possible [74, 75]. The phase information of continuous diffraction patterns can 

be recovered by sampling the intensities at angular intervals at least with the ‘Shannon spacing’. 

For an object with diameter D, the Shannon sampling interval is given as Δ𝑞I = 1/(2𝐷). 
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Measuring intensities more finely than this do not increase the information content in the 

diffraction pattern. Sampling with the Shannon frequency is called (2-fold) oversampling. If the 

diffraction pattern is measured to a maximum resolution qmax= 1/d,  from range -qmax to +qmax, 

then there are 𝑁I =
)=*+,
J=#

= 3>
F

 Shannon intervals. 

 

Oversampling the diffraction pattern in reciprocal space has a corresponding relationship in real 

space. There are two regions in real space, one where the object is allowed to have density and 

another which is empty (see Fig. 2.13 (d)).  How large is the empty region relative to the region 

that contains density depends on the sampling frequency:  the higher the oversampling rate, the 

larger is the empty region.  
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 Figure 2.11: Illustration of the importance of phase in far-field diffraction. (a) and (b) are the images 

of Einstein and Newton respectively. (c) Reconstruction using Fourier amplitudes obtained from (a) 

and setting phase to a constant value, say zero. (d) Reconstruction using known phase information 

from Einstein (a) but unknown amplitude (setting the amplitude to a constant value of 1). For two 

images (a) and (b), their Fourier phases are now interchanged while keeping the amplitude: (e) Fourier 

synthesis using the amplitudes from Einstein (a) and phases from Newton (b). (f) Fourier synthesis 

using the amplitudes from Newton (b) and phases from Einstein (a). The images of Einstein and 

Newton are taken from the public domain and can be found through a web search. 

(a) (b) (c)

(d)  (e) (f) 
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2.6.4.4 Iterative Phasing Algorithms 
  

The phase retrieval algorithms iterate back and forth between real space and reciprocal space. 

Constraints in both real space and reciprocal space are applied. The constraint in the reciprocal 

space is given by the experimental data, the Fourier amplitudes. This constraint is referred to as 

the Fourier-space constraint (modulus constraint). The second constraint is given by the 

oversampling. The region of the real space that allows density is called the object’s support and 

the constraint imposed by it is called the real-space constraint (support constraint). The iterative 

algorithm begins with the application of random phases to the experimental amplitudes. The 

algorithm implements the following steps. 

1. Assign a random phase set as an initial guess to every voxel of the diffraction volume. 

2. Combine this random phase set with the measured Fourier magnitude and apply an inverse 

Fourier transform. 

3. Estimate support (i.e. a boundary slightly larger than envelope or the diameter of the 

molecule) based on the oversampling rate. Set all the voxels outside the support to zero. 

4. Apply Fourier transform (FT) to the updated volume. 

5. Replace the amplitudes of the resulting computed FT with the measured amplitudes (the 

magnitude of the amplitude is the Fourier-space constraint) but retain the phases. 

6. Repeat from step 2 until the computed phases converge and computed density becomes 

chemically meaningful. In this way, a solution is obtained. 

Depending on how the supports change in every iteration, there are several phasing algorithms. 
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2.6.4.5  The Error-Reduction and Hybrid Input-Output Methods 
 

The first iterative algorithm was pioneered by Gerchberg and Saxton [76] which was later 

improved by Fienup, and called error-reduction (ER) method [77]. This algorithm is shown 

graphically in Fig. 2.12. The ER algorithm starts with an outline of the space where the object is 

defined i.e. the support. It is assumed that the real space outside the support will be set to zero for 

all the iterative transformations. The prior knowledge of the support S is derived from the 

autocorrelation function (Patterson function) obtained by the inverse FT of the measured 

diffraction intensity [78]. The constraint for the ER algorithm has the form 

𝑔!K*	(𝑥, 𝑦) = À𝑔!
L (𝑥, 𝑦), 	 (𝑥, 𝑦) ∈ 𝑆

0, 	 (𝑥, 𝑦) ∉ 𝑆. 

The notations used in the above constraint are explained in Fig. 2.12. To overcome the stagnation 

problems encountered by the ER method [79], Fienup devised some modifications to the method 

and called it Hybrid Input-Output Method (HIO) [80]. This method employs a feedback parameter 

𝛽 to push the pixel values outside the support to zero without rigidly constraining them. The 

constraint for the HIO algorithm has the form 

𝑔!K*	(𝑥, 𝑦) = À
𝑔!L (𝑥, 𝑦), 	 (𝑥, 𝑦) ∈ 𝑆

𝑔!(𝑥, 𝑦) − 𝛽𝑔!L (𝑥, 𝑦), 	 (𝑥, 𝑦) ∉ 𝑆 .
(2.29) 

 For 𝛽=1, HIO and ER algorithm coincide. This algorithm is called a hybrid algorithm as a new 

iteration depends on the value of the previous iteration.   
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2.6.4.6  Different Phase Retrieval Algorithms 
 

Many phase retrieval algorithms proposed to date are based on the HIO algorithm [80]. A 

comprehensive list of most of the iterative algorithms and comparison were compiled by 

Marchesini [81]. The support constraints (the volume or size of the 3D support) in ER and HIO 

algorithms were held constant for the entire iterations in one run of the algorithm. The optimization 

of the support constraint based on the hit and trial method was very inefficient. In 2003, Marchesini 

et al. [82] developed a method to dynamically update the support during the iterations. This 

provided an efficient approach to optimize the support constraint. This algorithm is known as the 

shrink-wrap algorithm in which the initial support is gradually updated in regular steps. The 

original idea is to find a new support mask by convolving the reconstructed image (the absolute 

value of the reconstructed wavefield) with a Gaussian of a certain width 𝜎. The updated support is 

obtained by applying a threshold that can be chosen by the user.  The width 𝜎 can be reduced by a 

Figure 2.12: Block diagram of the error-reduction method. 
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certain value in every iteration. The threshold and the Gaussian width are factors that may be 

systematically varied during the reconstruction process. 

 

A few algorithms are based on slightly different ideas. For example, the charge flipping algorithm 

doesn’t use support but instead treats low-density regions in real space different from high-density 

regions [83]. The sign of the charge density below a threshold is flipped while above the threshold 

remains unchanged. This leads to an effective correction for large false-negative electron density. 

This algorithm seems to work for high-resolution data only. The robustness of these iterative 

algorithms can be improved by applying additional object-specific constraints. As electron 

densities are real and positive, commonly used constraints are the reality constraint and the 

positivity constraint. This can be enforced by simply setting an imaginary electron density 

component to zero after applying the real-space constraint and forcing the value inside the support 

to be positive or enforcing Friedel’s symmetry in reciprocal space. The reconstruction of a 2D 

image using iterative phasing algorithm is shown in Fig. 2.13. 
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Figure 2.13: Reconstruction of Einstein image from Fourier moduli (amplitudes) data. (a) The 

natural image of Einstein with 𝑁 × 𝑁 grid. (b)  The result of the iterative phasing algorithm 

using the Fourier amplitudes from (a). (c) Oversampled image of Einstein on a  2𝑁 × 2𝑁 grid. 

(d) The reconstructed image, using iterative phasing (HIO algorithm) after 500 iterations, from 

the Fourier magnitude of (c). The Einstein image in (d) is surrounded by the no-density region. 

(a) (b)

(c) (d) 

N

2N
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2.6.4.7 Missing data 
 

Most diffraction patterns from single-particle experiments are incomplete because of 

various experimental difficulties. Even in the best case, due to the presence of a beamstop to block 

the direct beam, there are some missing pixels in the center.  For a given structure, increasing the 

amount of missing data usually means that the number of iteration cycles needed for a solution 

also increases. All iterative algorithms handle the missing data in the same way. When applying 

reciprocal-space constraints, pixels with missing experimental amplitudes retain their recovered 

(calculated) amplitude, just like all pixels retain their phases. Thus, the missing amplitudes are 

recovered in the same way as the missing phases. 

 

So far, the focus was on the necessary details of the simulation of single-molecule diffraction 

patterns and the reconstruction of its electron density. Biological processes are highly dynamic. 

To understand proteins in action, a fourth dimension, time, must be added to the diffraction 

patterns. To date, there are significant experimental challenges [84, 85] to conduct a time-resolved 

SPI experiment. However, the determination of both structure and dynamics is possible using time-

resolved crystallography [86–88] . The changes in the atomic coordinates of the transient states 

can be recorded ‘in real-time’ [41, 89]. For this, proteins need to be functionally active in their 

crystalline state. The strategies to trap the transient states are referred as ‘kinetic crystallography’ 

[90]. The time-resolved X-ray crystallography is one of the several ‘kinetic crystallography’ 

techniques that trap the intermediates in a reaction. The next few sections will detail all the 

necessary formalisms required to understand the time-resolved pump-probe serial femtosecond 

crystallography experiments at modern XFELs. 
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2.7 Serial Femtosecond Crystallography 
 

  The incident X-ray intensity at XFELs is so large, that microcrystals can be probed. 

Furthermore, diffraction experiments are conducted at room temperatures that maintain the 

dynamics and function of the biomolecule. Each microcrystal exposed to an XFEL pulse is 

destroyed. Because of this, a dataset must be collected from thousands of randomly oriented 

crystals, each exposed only once. This data collection approach is termed serial femtosecond 

crystallography (SFX). The method is called ‘serial’ because the crystals are injected serially into 

the X-ray interaction region. This way each snapshot is from a fresh crystal. It is called 

‘femtosecond’ because the crystals interact with a single X-ray pulse that lasts only about 10-40 

femtoseconds. 

 

2.7.1 Sample Injection 

 

The typical SFX experiment is shown in Fig. 2.14. The crystals are suspended in their 

mother liquor or in a viscous carrier. They are introduced into the X-ray interaction region one-

by-one in a serial fashion in a jet. The sample must be delivered and replenished at faster rates than 

XFEL pulses to avoid the impact from the previous pulse. The delivery method should be 

compatible with the experimental environment like vacuum, helium, air. The crystals need to be 

treated delicately during the injection process to avoid mechanical and chemical stress. The quality 

of the recorded pattern depends on the background level. The background signal is mainly due to 

the diffraction signal from the mother liquor. Optimally, the size of the liquid jet should match the 

size of the crystals.  
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Several devices were developed for injecting microcrystals, such as the gas dynamic virtual nozzle 

(GDVN) [91], the liquid cubic phase (LCP) injector (high viscosity injectors) [92], and the mixing 

injector [93–95]. The commonly used injector system for the SFX experiment is the GDVN which 

produces a fast-flowing, stable 𝜇𝑚-sized liquid jet [41, 44, 46]. The major limitation of the GDVN 

is its relatively high sample consumption. The LCP injector consumes only a small amount of 

sample but produces a high scattering background. At the Spring-8 Angstrom Compact free 

electron LAser (SACLA) mineral oil-based grease matrices are used as a carrier of protein 

microcrystals for SFX experiments [96–98]. The sample delivery methods are evolving to 

minimize sample consumption, reduce the frequency of clogging or freezing, and minimize the 

background scattering signal.  

 

 

 

 

 

 

 

 

 

 

Figure 2.14:  Schematic representation of an SFX setup (modified from [46] ) at EuXFEL. The 

randomly oriented crystals (green) in their mother liquor are delivered into the focus X-ray beam by 

GDVN. The X-ray beam hits the crystals in the interaction region (denoted by a small dotted circle). 
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2.7.2 X-ray Detectors 
 

2D detectors or area detectors are the core of an X-ray diffraction experiment. An area 

detector contains a 2D array of X-ray sensitive elements (pixels). The larger the area of the 

detector, the greater the number of pixels on the detector, and the larger is the solid angle that can 

be covered at a particular sample-to-detector distance. 

 

2D detectors can be classified into two broad categories: photon-counting detectors and 

integrating detectors [99].  In a photon-counting detector, each absorbed X-ray photon is converted 

to an electronic pulse. The processing electronics can distinguish the signal generated by an X-ray 

photon from that produced by other photons. It can also discriminate against the electronic 

background. The photon-counting detectors cannot handle large instantaneous fluxes because the 

electronic pulses from each must be distinguishable which becomes impossible at high counting 

rates caused by high X-ray intensities. Instead, integrating detectors are used which integrate the 

total signal, including noise, during a user-selected, short period. These types of detectors are used 

at XFEL sources.  

 

XFELs demand that the detector readout frequency is compatible with the X-ray pulse frequency. 

Besides, their dynamic range must be sufficient, to detect single photons for example to support 

single-molecule imaging and intense Bragg spots for crystallographic experiments. The first 

detector developed for LCLS was a 2.3-megapixel Cornell-SLAC Pixel Array Detector (CSPAD) 

[100]. Every single pixel in CSPAD can be set to either a high or a low-gain mode. The CSPAD 

has a dynamic range of ~ 2700 photons at 8 keV in the low gain mode [100]. The newly developed 

Adaptive Gain Integrating Pixel Detector (AGIPD) for the EuXFEL automatically switches the 
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gain for each pixel, resulting in three distinct gain levels (high/medium/low) which depend on the 

incoming X-ray intensity. Single photons can be recorded in the high gain mode. The low gain 

provides a dynamic range of > 104 photons at 12 keV [101].  Detector pixels are arranged on tiles. 

Several tiles form quadrants. The quadrants are arranged so that the strong direct beam passes 

through the hole in the center. The unused beam, passing through the center hole, can be refocused 

downstream and used for another experiment [102] in parallel. 

 

2.7.3 Processing of XFEL Data 
 

During an SFX experiment, a single X-ray pulse produces a single diffraction pattern on 

the detector. Due to the quasi-monochromatic nature of the XFEL radiation, many partial reflection 

intensities are collected from only a small part of reciprocal space. To reconstruct the integrated 

intensities that cover the entire reciprocal space, tens of thousands of diffraction patterns must be 

collected and analyzed properly. Due to the nature of the sample delivery process, not every X-ray 

pulse hits a crystal, therefore, many blank images are produced. The data must be sorted and 

filtered so that only diffraction patterns which have a high likelihood of being usable for 

autoindexing and intensity integration are picked. 

 

2.7.3.1 Pre-processing 
 

Detector images contain either Bragg reflections (hits) or blanks without Bragg reflections. 

The first step of the analysis is to extract the hits. By detecting and counting Bragg peaks on the 

detector a hit can be distinguished from a blank. Cheetah, an open-source program, [103] is 

commonly used for preprocessing. Cheetah also performs background subtraction and detector 
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geometry corrections.  It also stores the images in a condensed form in the HDF5 (Hierarchical 

Data Format, version 5) file format.  

 

2.7.3.2 Hit rate 
 

Not every X-ray pulse diffracts from a microcrystal. In fact, over 99% of the microcrystals 

are never exposed. A microcrystal interacts with an X-ray pulse by chance. The hit rate is the ratio 

of diffraction patterns with hits to all diffraction patterns and is an important parameter for 

monitoring the success of an SFX experiment. The hit rate can be controlled by altering the 

concentration of the crystals (crystal density) or the thickness of the liquid jet (amongst others). A 

high microcrystal density will increase the likelihood of hits but also increases the chance of 

clogging the nozzle. Moreover, the probability to expose multiple crystals with the same X-ray 

pulse increases. The arrival of microcrystals in the X-ray interaction region is a stochastic event 

and determined by Poisson statistics [104]. The relationship between the hit rate and the crystal 

density is given by a Poisson distribution. The ideal hit rate in SFX is 63% [104]. The theoretical 

maximum for getting ‘single crystal hits’ (only one crystal hit by the X-ray pulse) is 37% as shown 

in Fig. 2.15. The remaining 26% of the hits are multiple hits. In most SFX experiments the actual 

hit rate is much lower on the order of 1% to 10% with liquid jets and up to 25% with LCP jets. 

The Poisson statistics for the hit rate is equally applicable for single particles used in an SPI 

experiment [105]. 



 56 

 

 

 

 

 

 

Figure 2.15: Theoretical estimate of the hit rate using Poisson statistics [104, 105].  The hit rate 

depends on the crystal density. With increasing crystal density more than one crystal is exposed 

by the same X-ray pulse. When the hit rate approaches 100%, multiple hits dominate the 

diffraction patterns. Diffraction patterns with multiple hits are difficult if not impossible to 

analyze because they contain diffraction from multiple, randomly oriented crystal lattices. 
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2.7.3.3 Indexing 
 

The “hits” as identified by Cheetah are now indexed and integrated by indexamajig, a 

program of the CrystFEL software suite  [106]. Indexing and integration in CrystFEL is performed 

by making use of external programs such as  MOSFLM [107] , DirAX [108], XDS [109], and 

XGANDALF [110]. Indexing of diffraction pattern means assigning Miller indices to the Bragg 

peaks. In addition, the indexing algorithm can determine the cell parameters ab initio for each 

diffraction pattern. Once the crystal orientation is found, it is used to predict the location of the 

Bragg spots on the image. An image is considered indexed if a minimum percentage of found 

peaks lay close to the predicted peaks. The peak-finding and the indexing results for a diffraction 

pattern of photoactive yellow protein (PYP) [46] are shown in Fig. 2.16. The success rate of the 

indexing process is measured by the ‘indexing rate ’which is the ratio of the indexed patterns to 

the total number of hits. This largely depends on the number of hits identified by the preprocessing 

software.  
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2.7.3.4 Merging of Intensities 
 

Each diffraction pattern from the SFX experiment is a thin slice through the reciprocal 

lattice and only contains partial reflections. The integrated intensity cannot be determined from a 

single snapshot. Only the merged data can be used for structure determination. The partial 

intensities are merged via Monte Carlo integration [111]. A sufficiently large number of random 

measurements around each Bragg spot will eventually provide a good estimate of the scattered 

intensity. Merging can be done using process_hkl in CrystFEL that takes the symmetry of the 

Figure 2.16 : Representative of a peak-finding and indexing results from  PYP crystals [46] recorded 

on the AGIPD detector. (a) A diffraction pattern of a PYP crystal. The small blue circles represent 

the peaks as identified by the cheetah software.  (b) The green circles represent the predicted 

reflections, as identified by the CrystFEL software [106], overlaid with the peaks identified in (a).  

(a) (b)
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crystal into account. The merged intensities can be visualized by plotting flat central sections 

through reciprocal space using render_hkl built into CrystFEL as shown in Fig. 2.17. The quality 

of the final reflections can be improved by simply scaling the intensities to account for variations 

in the pulse intensity and crystal size. The weaker intensities from smaller crystals and the stronger 

intensities from larger crystals are appropriately scaled to a common scale.  More sophisticated 

post-refinement methods, such as scaling, and the determination of the partiality of the observed 

Bragg peaks are also implemented in CrystFEL with program partialator.  

 

During merging, it is important that the indexing choices are compatible. For several indexing 

possibilities, the autoindexing programs only make a random choice. To address indexing 

ambiguity [112] in crystals ambigator module [113] in CrystFEL is used. For example, PYP 

crystallizes in hexagonal space group P63. It has a twofold degenerate indexing ambiguity because 

a* and b* have exactly the same length. An indexing ambiguity may also arise if a unit cell has a 

diagonal of similar lengths to one of the cell axes. The indexing ambiguity for PYP is (h k l) and 

(k h l). This means crystals with indexing ambiguity could produce two diffraction patterns with 

identical Bragg peak positions but with different intensities. By not resolving this ambiguity the 

final dataset will artificially be of higher symmetry as shown in Fig. 2.17. After solving the 

indexing ambiguity, scaling, and merging the partial intensities the program CCP4 [114] is used 

for refinement and reconstruction of the electron-densities. 
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2.7.3.5 Evaluating the Data Quality 
 

The quality of the data is measured by splitting the collected dataset in halves, merging 

each one separately, then comparing the two half-datasets using correlation coefficients and an R-

factor. The Rsplit is computed as follows: 

𝑅I&MDN =
1
√2

∑|𝐼0O0" −	𝐼PFF|
1
2∑(𝐼0O0" + 𝐼PFF)

. (2.32) 

Here Ieven represents the intensity of a reflection produced by merging even-numbered patterns, 

Iodd represents the intensity of the equivalent reflection from the odd-numbered patterns and the 

sum is over all reflection indices. The ratio is divided by √2 because the R-split overestimates the 

error relative to conventional R-factor computed from the full number of observations [56]. 

Another figure of merit is CC1/2, which is the Pearson correlation coefficient between the 

intensities in each half dataset. The CC* estimates the correlation coefficient between the final 

merged dataset and a hypothetical true dataset. CC* is derived from CC1/2  using the formula [115] 

𝐶𝐶∗ =	Å
2CC*

)
1 + 𝐶𝐶*

)

			 . (2.33) 
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2.7.4  Experiments at XFELs 
 

2.7.4.1  List of Experiments at XFELs 
 

I participated in a number of experiments at various XFELs. They are shown in table 1. 

 

 

 

Figure 2.17: Plot of 2D central section of the reciprocal lattice, before and after solving the indexing 

ambiguity colored according to intensities of reflection. The plot is obtained by merging femtosecond 

microcrystal data from over 47,000 microcrystal patterns of PYP [46], displayed on the linear color 

scale shown on the right. The inner and outer circles represent 5.0 Å and 2.0 Å resolution, 

respectively. Images (a) and (b) are the central sections through the reciprocal lattices before and 

after running ‘ambigator’ respectively. Corrected intensities are easily identified. 
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Table 2.1:  Experiments at the worldwide XFELs 

 

*DC – Data Collection, DA – Data Analysis, SP – Sample Preparation 

 

2.7.4.2 Time-Resolved SFX at EuXFEL 
 

In photoactive molecules, a reaction can be initiated by a brief laser flash, called a ‘pump’ 

pulse. After an adjustable time-delay (Δ𝑡), the crystals are illuminated by an X-ray pulse, called a 

‘probe’ pulse, which generates a diffraction pattern. This is called a ‘pump-probe’ experiment. 

PYP has been previously studied by TRX experiments at both synchrotrons and XFELs [41, 42, 

44, 116].  Here, PYP has been used to establish TR-SFX at the EuXFEL. For this TR-SFX 

experiment, PYP microcrystals need to be grown, and a suitable laser setup is necessary. The laser 

Experiment 
Station 

Date Principal Investigator Description Role* 

LCLS Dec, 2015 Prof. Dr. Marius 
Schmidt 

Structure-Based 
Enzymology at the LCLS. 

DC, DA 

LCLS January, 2016 Prof. Dr. Sebastian 
Westenhoff 

Phytochrome study by 
picosecond time-resolved 
SFX. 

DC, DA 

LCLS September,2016 Prof. Dr. Marius 
Schmidt 

Structure-Based 
Enzymology at LCLS. 

DC, DA 

LCLS November,2017 Prof. Dr. Marius 
Schmidt 

Z/E Isomerization in 
Bacteriophytochromes. 

DC, DA 

EuXFEL March, 2019 Prof. Dr. Marius 
Schmidt 

Time-Resolved Serial 
Crystallography with MHZ 
Data Collection Rates. 

DC, DA, SP 

SACLA  June, 2019 Prof. Dr. Marius 
Schmidt 

Time-Resolved 
Macromolecular Structure 
Determination of 
Phytochromes. 

DC, DA 

EuXFEL March, 2020 Prof. Dr. Marius 
Schmidt 

Time-Resolved 
Enzymology to Capture a 
Full Catalytic Series. 

DA, SP 
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setup must be synchronized with the X-ray pulses. The experimental design using the MHz pulse 

structure of the EuXFEL is shown in Fig. 2.18. 

 

2.7.4.3 Sample Preparation  
 

  PYP was overexpressed and purified as reported [41].  PYP microcrystals were grown with 

Na-malonate (pH 7.0) as a precipitant. PYP solution was concentrated to 100 mg/mL and 4.0 M 

Na-malonate pH 7.0 was added once to a final concentration of 3.3 M. To obtain microcrystals, 

the mixture was vigorously stirred for 8 hours and matured overnight. With this method crystals 

with sizes between 5 and 10 𝜇𝑚 in diameter were obtained. The resulting microcrystals slurry 

were centrifuged at 8,000 g for 10 min. After centrifugation, two distinct layers formed a dense 

cloudy yellow bottom layer and a clear top layer. The top layer was removed, and the remaining 

Figure 2.18: Setup of an MHz TR-SFX experiment at EuXFEL (Figure adapted from [46]). 
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mixture was mixed with 2.8 M Na-malonate, pH 7. This was done to avoid further growth of the 

crystal. The crystals before centrifugation are shown in Fig. 2.19.  Crystals were then filtered 

subsequently through 20 𝜇𝑚 and 10 𝜇𝑚 stainless steel filters. The crystals are then injected into 

the serial crystallographic instrument using GDVN to collect the diffraction patterns. 

 

 

 

 

Figure 2.19: PYP 

microcrystals. Crystalline 

suspension in Neubauer 

counting chamber. 

 

2.7.4.4 Instrumentation  

A TR-SFX experiment was conducted on PYP at the newly operational, high repetition 

rate XFEL, the EuXFEL over 5 twelve-hour shifts. The EuXFEL uses superconducting technology 

to generate unprecedentedly high X-ray pulse rates. X-ray pulses arrive in pulse-trains that contain 

up to 2700 pulses (final design specification). Pulses within the train repeat with a rate of up to 4.5 

MHz. There are 10 trains per second. Each pulse train is 600 𝜇𝑠 long with 99.4 ms gaps between 

the trains. In the first SFX experiment at EuXFEL with the MHz rate, there were only 15 pulses 

per train, yet datasets were successfully collected on several proteins [117]. The number of 

5 !"
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available pulses increased steadily. 178 pulses/train were available for the PYP TR-SFX 

experiment. 

 

The experiment aimed to cover the previously unexplored picosecond time range of the photocycle 

(Fig. 1.5 (b)) and establish TR-SFX at MHz repetition rates XFEL. The experiment was carried 

out at 9.3 keV X-ray energy in a pump-probe manner. The X-ray pulse energy corresponds to 700 

µJ. The KB-mirror system focuses the X-ray beam to a 2-3 µm focal spot as shown in Fig. 2.18. 

The reaction was initiated using laser pulses of 240 fs at a wavelength of 420 nm with a flux density 

of 1.6 mJ/mm2 in a 42 µm (full-width half-maximum, FWHM) focal spot. A GDVN was used to 

flow the sample to the X-ray interaction region as shown in Fig. 2.18. Two types of X-ray and 

laser pulse sequences were used for the control experiment and for the data collection. For the 

control experiment, an X-ray repetition rate of 1.13 MHz and optical laser pulses rate of 375 kHz 

repetition was used. This resulted in a scheme with the pump-probe sequence and 2 interleaved X-

ray pulses in the dark without laser excitation (Light-dark-dark scheme). This was repeated as 

depicted in Fig. 2.20. The two interleaved X-ray pulses correspond to time delays of 1.78 µs and 

2.67 µs respectively. This sequence was used to determine when and whether the laser-excited jet 

volume had passed the X-ray interaction region. For the ps data collection, repetition rates of X-

ray pulses and the optical laser pulses were reduced to 564 kHz and 141 kHz respectively. The 

laser excitation occurs before every fourth X-ray pulse, as shown in Fig. 2.20. Diffraction patterns 

were collected using an AGIPD [101] of 1 megapixel located 117.7-118.6 mm downstream of the 

sample interaction region as shown in Fig. 2.18. The AGIPD’s readout rate matches the X-ray 

pulse rate in the trains. AGIPD reads 352 frames per train or 3520 frames per second [101]. The 

data were pre-processed using Cheetah [103] and indexed using CrystFEL [106] as explained in 
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section 2.6.3. The dark and light data files were sorted using the cell ID information stored in the 

CrystFEL output file (stream file) as shown in Fig 2.26. These files then can be used by CCP4 

programs to generate difference electron density maps. 

 

Figure 2.20: X-ray pulse train structure and laser excitation (Figure adapted from [46]). (a) X-

ray pulse trains (black vertical lines) at 1.13 MHz repetition rate and laser pulses (blue vertical 

lines). (b) A control experiment with X-ray pulses of frequency 1.13 MHz and laser pulses with 

frequency 376 kHz. (c) The data collection at 564 kHz X-ray frequency and laser frequency of 

141 kHz. This laser frequency provides enough time for the laser-excited volume (red) to move 

out of the X-ray interaction region. 
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3. Results 
 

3.1  Simulation Results of a Phytochrome Molecule 
 
 
3.1.1 Simulation Strategy 
 

The simulations were done for the full-length Idiomarina sp. phytochrome molecule (Fig. 

1.3 (a)) whose structure was recently determined [34]. This structure has an approximate diameter 

D of 164 Å and consists of about 11,000 atoms. Diffraction patterns were simulated according to 

the formalism described in section 2.4.2 and implemented in Python.  

 

The phytochrome molecule was illuminated by a simulated X-ray free-electron laser with a 

wavelength of 5.0 Å corresponding to a photon energy of 2.48 keV. The resolution at the edge of 

the detector was 10 Å. The phases needed to recover the electron density can be retrieved by 

sampling the continuous diffraction pattern at sufficiently small intervals in reciprocal space. To 

retain the phase information, these intervals must be smaller than 1/(2D) [14, 118], i.e. 

oversampled at least twice with respect to the molecular diameter (detail is explained in section 

2.5.4.3). This determines the size of the Shannon pixels in the diffraction pattern. For 

phytochrome, 73 × 73 detector pixels are required to reach a resolution of 10 Å. The simulated 

signal for each detector pixel was converted to the expected number of photons for an incident X-

ray fluence of 10)- photons/cm2 achievable at an XFEL.  For an X-ray focal spot of 1𝜇𝑚, this 

corresponds to a pulse energy of 320𝜇𝐽. The measured photon counts follow Poisson statistics 

[66]. Accordingly, diffraction patterns were simulated by adding Poisson noise (‘shot noise’) to 

the calculated diffraction signal. To evaluate whether the near-atomic resolution could be 



 68 

realistically reached by modern X-ray sources, the simulation was also done for the target 

resolution of 3 Å. For this, higher photon energy of 8.27 keV is used instead, which corresponds 

to a wavelength of 1.5 Å. For a focal spot of 1	𝜇𝑚, there are only 20 photons per pattern so a 

smaller X-ray focal spot with 0.1	𝜇𝑚 diameter is chosen which yields a photon fluence of 

1 × 10))	photons/cm). Randomly oriented diffraction patterns were generated using uniform 

random rotation quaternions as described in section (2.4.3). The required number of diffraction 

snapshots, using our formalism (Eq. (3.8)), at different experimental conditions to reach a target 

resolution for a SNR 1.0 is tabulated in Table 3.1. 

 

3.1.2 Simulated Diffraction Patterns 
 

Simulated single-molecule diffraction patterns of full-length phytochrome are shown in 

Fig. 3.1. As discussed in section 2.7.3.2 there is also a probability for multiparticle exposures. A 

noise-free multiple particles diffraction snapshot is shown in Fig. 3.2.  

 

As it is interesting to see the difference to a diffraction pattern from a small crystal, a simulated 

crystal diffraction pattern is shown in Fig. (3.3). For small crystal, the intensity can be calculated 

as the product of the lattice factor for a limited number of unit cells, and the squared structure 

factors of the unit cell as outlined in references [106, 111].  

𝐼(𝒒) = 	Φ𝑟0)
Sin)(𝜋𝑁R𝒒 ⋅ 𝒂	)
𝑆𝑖𝑛)(𝜋𝒒 ⋅ 𝒂)

Sin)(𝜋𝑁S𝒒 ⋅ 𝒃	)
𝑆𝑖𝑛)(𝜋𝒒 ⋅ 𝒃)

Sin)(𝜋𝑁/𝒒 ⋅ 𝒄	)
𝑆𝑖𝑛)(𝜋𝒒 ⋅ 𝒄)

|𝑭(𝒒)|)dΩ. (3.1) 
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Figure 3.1: Simulated diffraction patterns of a phytochrome molecule. Noise-free diffraction 

pattern with a resolution of 10 Å (a) and 3 Å (c) at the edge. Diffraction pattern with ‘shot-noise’ 

for a photon fluence of 1020 photons/cm2 (b) and a photon fluence of 1022 photons/cm2 (d). The 

color code corresponds to the number of photons per pixel. A total of ~200 photons/pattern (Fig. 

b) and ~2000 photons/pattern (Fig. d) are scattered per phytochrome molecule at a targeted 

resolution of 10 Å and 3 Å respectively. 

(a) (b)

(c) (d) 
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The crystal is modeled as a parallelepiped with a 𝑁R , 𝑁S	and	𝑁/ number of unit cells along the a, 

b, and c directions respectively. The maximum intensity scales with the square of the number of 

periods 𝑁R)𝑁S)𝑁/) in the three directions a, b and c. Intrinsic crystal disorder was modeled by a 

Debye-Waller (Eq. (2.10)).  

  

 

Figure 3.2: Noise-free 

simulated diffraction patterns. 

Images (a) and (b) represent 

noise-free diffraction patterns 

calculated for two different 

orientations of the full-length 

bacterial phytochrome 

molecule at 10 Å resolution. 

Images (c) and (d) are 

diffraction patterns from 

multiple particles (two 

molecules): the center of a 

molecule placed at 50Å apart from the center molecule.  Images (c) & (d) are obtained by 

incoherent and coherent addition of structure factors of (a) & (b) respectively. Interference fringes 

are clearly visible in the coherent addition. 

(a) (b)

(c) (d)
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Table 3.1: Estimated number of snapshots required to reach SNR = 1 at different resolutions for 

the full-length phytochrome molecule at various experimental conditions. 

 

Figure 3.3: Noise-free diffraction patterns of a single-molecule (a) and a crystal (b) at 3 Å 

resolution). The intensity is continuously distributed on the single-molecule diffraction pattern 

whereas it is concentrated in Bragg peaks for a crystal. The pulse fluence was chosen to be 1012 

photons focused to a 1𝜇𝑚 spot, with a photon of wavelength 2.5 Å. For a simulation of the crystal 

diffraction pattern, the number of unit cells along a, b, and c directions is 50. Every atom was 

assigned the same B-factor of 40 Å2. The simulated patterns are shown on a  simulated pnCCD 

detector [119].   

 
Resolutio
n 

Soft X-rays 
Energy = 2.48 keV; 𝜆	= 5 Å 
Beam size = 1.0𝜇𝑚 × 
1.0𝜇𝑚 
Fluence =	10)-ph/cm2 

Hard X-rays 
Energy = 8.0 keV; 𝜆 = 1.5 
Å 
Beam size = 0.1𝜇𝑚 × 
0.1𝜇𝑚 
Fluence = 	10))ph/cm2 

Hard X-rays (Larger 
Beam) 
Energy = 6.0 keV; 𝜆	= 
2.07 Å 
Beam size = 0.5𝜇𝑚 × 
0.5𝜇𝑚 
Fluence = 4.0	 × 10)- 
ph/cm2 

(a) (b)
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〈𝑛〉 is the mean number of photons per Shannon pixel at the desired resolution d. 

*Not accessible due to wavelength or unpractically high scattering angle. 

 

3.1.3 Merged 3D Diffraction Volume 
 

 

 

〈𝑛〉 # Snapshots 〈𝑛〉 # Snapshots  〈𝑛〉 # 
Snapshots 

30 Å 1.8×10-2 1,774 1.0 ×10-1 488 8.4×10-3 3,394 
25 Å 6.7 ×10-2 5000 4.8 ×10-2 1,007 3.8×10-3 8,302 
10 Å 2.0×10-3 38,244 2.6 ×10-2 4,323 2.2×10-3 35,063 
5 Å * * 6.6 ×10-3 26,978 5.0×10-4 284,978 
3 Å * * 4.3 ×10-3 66,075 3.5×10-4 672,010 

 

 

 

 

 

 

 

 

 

Figure 3.4: Merged 3D diffraction volume of a phytochrome molecule. (a) Rendering of the 

entire 3D diffraction volume assembled from 38,000 diffraction patterns (see Table 3.1). (b) 

Central section of the diffraction volume normal to the [001] axis. 

(a) (b)
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The ensemble of all simulated snapshots is merged into a diffraction volume using the 

‘cone-gridding’ algorithm (section 2.6.3). The 3D diffraction volume of the molecule was obtained 

by orienting the noisy diffraction patterns relative to each other. The merged 3D volume is shown 

in Fig. 3.4. In the simulation, the central three voxels of the diffraction volume were set to zero, 

which considers the experimentally inaccessible central area of the detectors used at the XFELs.  

 

3.1.4 Phasing and its Validation 
 

             The electron density from the diffraction volume was recovered using a combination of 

the hybrid-input-output HIO [80] and the shrink-wrap algorithm [82] as explained in section 

2.6.4.4. The HIO algorithm was applied for the first fifty iterations with the feedback parameter 

𝛽 = 0.9.  After this, the shrink-wrap algorithm was used with an adaptive support constraint 

determined anew for each iteration cycle. For the shrink-wrap process, the electron density was 

convoluted with a Gaussian of width 𝜎. The initial width 𝜎 was set to 6 voxels and reduced by 5% 

after each iteration until a minimum of 1 voxel was reached. Voxels that contain electron densities 

larger than 14% of the maximum were assigned to the new support constraint. This algorithm 

converged after a few hundred iterations. The reconstructed electron density is shown in Fig.  3.5.  

 

The resolution and reproducibility of the reconstructed electron density were accessed using the 

Fourier Shell Correlation (FSC). For this, the diffraction patterns are split randomly into two 

disjoint sets ‘1’ and ‘2’ which were processed independently, resulting in two electron densities 

maps. The FSC is calculated from the Fourier transform of the two maps by 

𝐹𝑆𝐶(𝒒) = 	
∑ 𝐹*(𝒒) ⋅ 𝐹)∗(𝒒)=

{∑ |𝐹*(𝒒)|)= 		{∑ |𝐹)(𝒒)|)	=
, (3.13) 
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where 𝐹*(𝒒)	 and 𝐹)(𝒒)	are the Fourier transforms of maps ‘1’ and ‘2’, respectively, q is the 

magnitude of the scattering vector and * denotes the complex conjugate. The FSC measures the 

degree of correlation between the two reconstructions as a function of scattering angle (spatial 

frequency in Fourier space). The FSC curve starts with a value of 1, indicating excellent agreement 

at low spatial frequencies and drops gradually to small values indicating poor agreement as shown 

in Fig. 3.5. The resolution limit is defined by the value where the FSC drops below a certain 

threshold. Conventional thresholds used by the cryo-EM community are 0.143 and 0.5 [120, 121]. 

These thresholds are represented by horizontal dashed lines in Fig. 3.5. The FSC drops below 0.5 

at around 10 Å (Fig. 3.5 (b), blue line). This demonstrates that the number of diffraction patterns 

estimated by Eq. (2.24), with 𝑃¬ = 0.5 and SNR = 1, is sufficient to reach the targeted resolution.  

 

To test whether a smaller number of snapshots could be sufficient to obtain the electron density at 

the same resolution, the reconstruction workflow is repeated with half the number of patterns 

(19,000), which corresponds to a SNR of 0.67. The FSC (Fig. 3.5b, red line) reveals that instead 

of 10 Å only about 20 Å is reached in this case. Similarly, the reconstructed electron density from 

66,000 patterns at 3 Å is shown in Fig 3.5c. Details of the structure can be identified from the inset 

of Fig 3.5c. With half the number of patterns (33,000 resulting again in a SNR = 0.65 in the highest 

resolution shell), the resolution reached is only about 8 Å (Fig. 3.5d, red line).  
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Figure 3.5: Electron density obtained by iterative phasing and resolution validation by FSC. (a) 

Reconstructed electron density from 38,000 noisy diffraction patterns of the full-length 

phytochrome targeted at 10 Å resolution displayed at the 3𝜎 contour level with the atomic model 

superimposed using Chimera [122]. (b) FSC from (a) for all diffraction patterns (blue) and half 

the number of patterns (red). (c) Reconstructed electron density using 66,000 noisy diffraction 

patterns targeted at 3Å resolution and beam parameters different from (a), as explained in the text. 

(a)  (b)

(c) (d)
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(d) FSC from (c) for all diffraction patterns (blue) and half the number of patterns (red). The 

horizontal dashed lines show the established threshold for FSC (0.143 and 0.5). The vertical 

dashed line corresponds to the target resolution. 

 

3.1.5 Low- and High-Resolution Approximation 
 

            To verify these results, for the low-resolution the spherical approximation is used (Eq. 

(2.27)) and for high-resolution random phase approximation is used (Eq. (2.28)). The comparison 

of the value of  〈𝑛〉 based on approximation and the quantity obtained from the simulation is shown 

in Fig. 3.6. For this, all non-hydrogen atoms in the phytochrome molecule are represented by 

Carbon atoms. The number of carbon atoms Nc is estimated from the molecular weight MW as 

𝑁/ = 𝑀𝑊/12	𝐷𝑎. 

As shown in Fig. 3.6., the low-resolution approximation is reasonable up to a resolution of ~20 Å, 

whereas the high-resolution approximation is in excellent agreement for sub-nanometer resolution 

and below. 
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3.1.6 Effect of Background 
 

The background essentially can be classified as an instrument background (including the 

detector noise), scattering background from the carrier gas (usually Helium gas) and the scattering 

Figure 3.6: Average number of photons per pixel as a function of resolution. Estimation for the 

full-length phytochrome using the atomic model and experimental parameters from Table 3.1 

‘Hard X-rays’ (black). Approximation assuming a spherical molecule filled with carbon atoms 

(red) and an approximation based on random phases (magenta). The average number of photons 

in the low-resolution limit could be approximated by the envelope of the oscillation in the 

diffraction pattern from the hard sphere (dashed blue line). 
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from a hydration layer. The first type (instrument noise) is usually small and may be ignored. The 

second and third types typically give a relevant q-dependent signal.   

 

 

 

Figure 3.7: Effect of different types of backgrounds on the resolution. Red line: FSC for a 

uniform background with the same magnitude as the phytochrome signal at 10 Å, blue line: a 

uniform background three times the magnitude. Magenta line: The FSC of a q-dependent 

background representing helium gas with a magnitude equal to the signal at 10 Å. Black line: 

The FSC without a background is included for comparison. 
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A uniform background is considered with the same and three times the magnitude as the 

phytochrome signal at 10Å, respectively. Additionally, a q-dependent background of helium gas 

is assumed, using the atomic scattering factor of He. The magnitude of the helium background is 

set equal to the signal of the phytochrome at 10 Å. The diffraction patterns, including the 

background, are converted to photon counts by the addition of Poisson noise as described above. 

The merging and reconstruction processes are repeated to obtain 3D electron density maps. The 

FSC with a background is shown in Fig. (3.7) and compared to the FSC without any background. 

Addition of a uniform background (magenta line) has a small effect, and the target resolution of 

10 Å can still be reached with 38,000 diffraction patterns. For a background three times the 

molecular signal, however, the resolution is reduced to 12 Å (blue line). This shows a background 

that is comparable to the molecular signal can be tolerated as it does not result in substantially 

more diffraction patterns to reach the target resolution. 

 

3.1.7 Modeled Pfr Structure 
 

As the full-length Pfr structure of phytochrome is unknown, a crude structure is assumed. 

The structure of the photosensory core module (PAS-GAF-PHY) of D. radiodurans in the Pfr form 

(PDB 5c5k [33]) is used as a template. The enzymatic domain of the Idiomarina spec. 

phytochrome (PDB 5llw) is attached to the PHY domain in D. radiodurans. The model is shown 

in Fig. 3.8(a). Noisy diffraction patterns of the proposed Pfr structure were simulated with 

parameters as explained in section 3.1.1 at a target resolution of 10 Å. Procedures as detailed in 

sections 3.1.3 and 3.1.4 are used to reconstruct an electron-density shown in Fig 3.8 (a). The 

electron density of the modeled Pfr state (Fig. 3.8 (a)) is compared to the electron density of the 

Pr state (Fig. 3.5 (a)). The difference between electron densities is calculated and displayed in Fig. 
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3.8 (b). This shows that the large conformational changes between the Pr and Pfr states in this 

enzyme could be examined by using the SPI method. 

Figure 3.8: (a) Reconstructed electron density from 38,000 noisy diffraction patterns of the 

proposed full-length Pfr state constructed using PDB 5c5k [33]. The atomic model is displayed 

together with its electron density. (b) Density difference of the full-length Pr (D1) and proposed 

full-length Pfr state (D2). The green color represents D1-2 and the red color represents D2-1. 

(a)                                                 (b)
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3.2 Simulation Results of a Thiol Decorated Gold Nanoparticles. 
 

3.2.1  Simulation Strategy 
 

The diffraction patterns of thiol monolayer protected gold nanoparticle (Fig 1.4) were 

simulated for a photon energy of 7 keV corresponding to wavelength 1.8 Å with a pulse energy of 

2 mJ at the sample and a top-hat beam profile of 200 nm diameter. The simulated diffraction pattern 

is shown in Fig. 3.9. The resolution at the edge of the detector is 2.0 Å. A total of ~1100 

photons/pattern are scattered per gold-thiol molecule out of which ~50 photons are contributed 

from thiol atoms only. According to our formalism, we need 19,000 snapshots to achieve a target 

resolution of 2.0 Å at SNR of 1.0. Accordingly, we simulated 19,000 diffraction patterns. The 

randomly oriented diffraction patterns were generated using uniform random rotation quaternions 

as described in section (2.4.3). 

 

3.2.2  Orientation Determination and Iterative Phasing 
 

The orientation determination of the diffraction snapshots was performed using Dragonfly 

software [72] as discussed in section 2.6.2. Data was provided to Dragonfly in photon counts. The 

photon counts were first converted to the sparse .emc format using the script h5toemc.py available 

in the Dragonfly software. Orientation determination was performed starting with quaternion 

sampling (num_div) of 9 and was increased in steps up to a value of 11. The number of rotations 

is given by 10 × (5 × 𝑛𝑢𝑚_𝑑𝑖𝑣6 + 𝑛𝑢𝑚_	𝑑𝑖𝑣) [70].  Initially the number of rotations was 36,540 

and was later increased to 66,660. 160 iterations of the EMC algorithm were performed starting 

from a random (uniform) model. The oriented diffraction patterns were then subsequently merged 
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into a 3D diffraction volume as shown in Fig. 3.10. The 3D diffraction volume was phased to 

generate the real space electron density (Fig. 3.11 (a)) using a combination of HIO and shrink-

wrap algorithm. The datasets were split into two halves and independently reconstructed to 

calculate the ‘gold-standard’ FSC as shown in Fig 3.11 (b). The targeted resolution (vertical dashed 

line) is within the thresholds used by the cryo-EM community. This demonstrates that the number 

of diffraction patterns estimated by Eq. (2.24), with 𝑃¬ = 0.5 and SNR = 1, is sufficient to reach 

the targeted resolution. 

The iterative phase algorithm iterates back and forth between the real and Fourier space. The gold 

nanoparticles scatter much stronger than the thiol molecules. Because of this, ‘ringing’ or 

‘overshoot’ artifacts appear along the edges in real space.  To avoid these artifacts the transitions 

in Fourier space are made smooth using a low pass filter. Butter-worth filter [123] is applied to 

the merged 3D volume with a cut off at the targeted resolution. Butter-worth filter has the 

following profile  

𝐺(𝑞) =
1

1 + T 𝑞𝑞-
U
)! , (3.14) 

where k is a parameter that determines the order of the filter and q0 is the cut-off frequency. 
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Figure 3.9: Simulated diffraction pattern from a thiol-decorated gold nanoparticle. (a) Noise-

free diffraction pattern with a resolution of 2.0 Å at the edge of the detector. (b) Diffraction 

pattern with the addition of Poisson noise. (c) Noise-free pattern of molecules consisting of the 

thiol part only. (d) Diffraction pattern with the addition of Poisson noise. The intensity is 

converted into photon counts for an X-ray energy of 7.0 keV, a 0.2 µm diameter top-hat beam, 

and a 2 mJ pulse energy. The total number of photons in the pattern (b) is 1080 of which thiol 

contributes only 48 (d). 

(a) (b)

(c) (d)



 84 

 

 

Figure 3.10: 

Merged 3D 

diffraction volume 

of thiol-decorated 

gold nanoparticles. 

(a) Rendering of 

the entire 3D 

diffraction volume assembled from 19,000 diffraction patterns after determining the orientations 

using the EMC algorithm.  (b) A central section of the diffraction volume normal to the [100] 

axis. 
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3.2.3  Difference Fourier Technique 
 

When a partial model of the protein is initially known, it is often possible to determine the 

rest of the structure by using the difference Fourier technique [124]. For this technique to work, 

the partial model that explain the major part of the structure must produce good enough phases 

that, when combined with the measured amplitude, electron density of the minor part is obtained. 

The minor part of the structure consists of the thiol molecules which are rigidly attached on the 

surface of the gold cluster. Using this approach, a fewer number of diffraction patterns would be 

sufficient to reconstruct the electron density. Figure 3.12 shows the reconstructed electron density 

using the known phases from the gold cluster and the amplitudes of the entire thiol-gold molecule. 

The electron density that determines the position of the thiols can be easily identified (as marked 

with a red arrow in Fig 3.12). 

Figure 3.11: Electron density and validation of resolution using FSC. (a) Reconstructed electron 

density of thiol decorated gold nanoparticles obtained by iterative phasing. The atomic model 

is displayed together with its electron density. (b) FSC as a function of resolution. The horizontal 

dashed lines show the established threshold for FSC (0.143 and 0.5). The vertical dashed line 

corresponds to the target resolution of 2.0 Å. 
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Figure 3.12: Reconstructed electron density of a thiol decorated gold nanoparticle using the 

phases of the gold cluster only. The red arrow shows the position of a few well-resolved thiol 

molecules. 
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3.3 Experimental Results 
 
 
3.3.1 Time-Resolved experiment at EuXFEL 
 

A summary of the results from data reduction is given in Table 3.2. The results of the 

control experiment (X-ray repetition rate of 1.13 MHz and optical laser repetition rate of 375 kHz) 

are shown in Fig. 3.13.  With an optical laser spot size of 42 µm (FWHM) and the sample jet speed 

of 30 m/s, the excited volume of the sample crystals should leave the X-ray interaction region 

within 2 µs. The sample probed at 2.67 µs should be free of laser influence. But some 

contaminations were still observed (Fig. 3.13 (b) & (c)). This shows that the excited volume has 

not left the X-ray interaction region. In addition, the hit rate abruptly decreased from 2% at the 

first X-ray pulse in the train to 1% (see Fig. 3.14 (a)) in all subsequent pulses. This shows the jet 

velocities do not reliably replace the sample at the X-ray interaction point. These problems can be 

solved either by decreasing the laser spot size or by increasing the jet speed. However, these 

parameters were already at their maximum practical values. Because of this, the X-ray and optical 

laser repetition rates were reduced to 564 kHz and 141 kHz respectively and an extra X-ray pulse 

was added between each optical laser pulses. With these parameters, only the first of four pulses 

contribute to the ultrafast time delays. A time delay of 10 ps was set. Consequently, the second, 

third, and fourth pulses have time delays of 1.78 µs, 3.56 µs, and 5.33 µs respectively. The 

difference electron density (DED) maps calculated at 1.78 µs differs completely from the 10 ps 

DED map. A DED map at 5.33 µs is free from contamination (Fig. 3.13 (g)). This means at a 

shorter time after 3.56 µs the laser-excited jet volume left the X-ray interaction region. 

Additionally, the hit rate across the entire pulse train remains essentially constant about 2% (Fig. 

3.14 (b)). This shows at 564 kHz the sample is sufficiently refreshed before the next X-ray pulse 
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arrives. Finally, two more time points, 30 ps, and 80 ps were collected.  DED maps of the 

chromophore binding pocket for time delays 10 ps, 30 ps, and 80 ps are shown in Fig. 3.15. All 

time delays resulted in excellent DED maps that contain chemically meaningful positive and 

negative DED features (red and blue features in Fig. 3.15). From the side view of the pCA 

chromophore in Fig. 3.15 (d-f), we see the chromophore is in a twisted cis configuration 

throughout. These results cover the region previously unknown in the photocycle. This also 

demonstrates the way how the TR-SFX datasets can be collected at the EuXFEL.  

Table 3.2: Statistics of the control data collected with 1.13 MHz X-ray pulses. Parentheses: 

highest resolution shell (1.71-1.74) Å. The table adapted from [46]. 

 

 

Control experiments 
Repetition rates X-ray/laser 1.13 MHz/376 kHz 
Temperature 285 K 
                                                     Data collection 
Space group P63 (173) 
                                                     Cell dimensions 
    a, b, c (Å) 66.9, 66.9, 40.8 
𝛼, 𝛽, 𝛾(°)  90, 90, 120 
Resolution (Å) 1.71 (1.71 - 1.74) Å 

 
 0.89 µs 1.78 µs      2.67 µs pure dark 
Number of hits 13642 13734 14183 5725 
Hit/indexing rate [%] 1.1/60.0 1.1/60.0 1.2/60.0 0.6/85.7 
Reflections observed 992,449   1,010,839 973,205 662,072 
No of unique reflections 11502 11510 11497 11504 
Rsplit (%) 14.9 (76.8) 14.7 (76.8) 14.6 (70.6) 18.1 (111.1) 
CC1/2 (%) 97.9 (50.0) 98.0 (51.4) 97.9 (48.6) 96.1 (33.8) 
Completeness (%) 99.5 (98.7) 99.6 (98.7) 99.5 (98.4) 99.5 (100.0) 
Redundancy 86.3 (13.9) 87.8 (13.2) 84.6 (12.7) 57.6 (19.0) 
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Table 3.3: Statistics of the data collected with 564 kHz X-ray pulses. Parentheses: highest 

resolution shell (1.6-1.63) Å. Table adapted from [46]. 

 

Repetition rates 
X-ray/Laser 

564 kHz/141 kHz 

Resolution 1.6 (1.6 - 1.63) Å 

Temperature 285 K 

Space group P63 (173) 

Unit cell a = 66.9 Å b = 66.9 Å c = 40.8 Å α=90o β=90o γ=120o 

time delays 10 ps dark1 (1.78 µs) dark2 (3.56 µs) dark3 (5.33 µs) 

Hits 93130 91184 92365 88373 

Hit/indexing rate [%] 2.8/43.5 2.8/43.4 2.8/43.4 2.7/43.7 

reflections observed 4,016,763 3,929,272 4,017,291 3,883,477 

Unique reflections 14124 14142 14141 14157 

Redundancy 284.4 (8.5) 277.8 (7.2) 284.1 (8.2) 274.3 (8.3) 

Completeness (%) 99.3 (91.9) 99.4 (93.7) 99.4 (93.3) 99.5 (95.6) 

R-split (%) 6.9 (64.0) 7.0 (63.9) 7.0 (60.0) 7.3 (67.1) 

CC1/2 (%) 99.6 (60.3) 99.6 (60.0) 99.6 (58.4) 99.5 (58.4) 

time delays 30 ps dark1 (1.78 µs) dark2 (3.56 µs) dark3 (5.33 µs) 

Hits 81066 79580 80027 77608 

Hit/indexing rate [%] 1.8/50.7 1.8/50.8 1.8/50.9 1.8/51.5 

Reflections observed 3,948,268 3,892,799 3,921,154 3,853,579 

Unique reflections 13727 13722 13726 13725 

Redundancy 287.6 (17.9) 283.7 (17.2) 285.7 (17.7) 280.8 (18.2) 

Completeness (%) 98.1 (99.6) 98.1 (99.4) 98.1 (99.4) 98.1 (99.8) 

R-split 5.6 (40.2) 5.8 (43.5) 5.8 (38.8) 6.0 (40.9) 

CC1/2 99.6 (76.1) 99.6 (75.4) 99.6 (80.6) 99.5 (79.8) 

time delays 80 ps dark1 (1.78 µs) dark2 (3.56 µs) dark3 (5.33 µs) 

Hits 30860 29264 28332 28235 

Hit/indexing rate [%] 1.1/60.4 1.0/60.1 1.0/62.2 1.0/60.3 



 90 

Reflections observed 2,148,177 2,020,504 2,052,291 1,969,452 

Unique reflections 13711 13700 13705 13703 

*Redundancy 156.7 (15.1) 147.5 (14.1) 149.7 (15.1) 143.7 (14.7) 

Completeness (%) 98.0 (97.3) 97.9 (97.1) 98.0 (97.3) 97.9 (97.5) 

R-split 8.88 (49.9) 9.58 (49.8) 9.62 (49.5) 9.73 (50.3) 

CC1/2 99.1 (68.4) 98.9 (70.8) 98.9 (70.5) 98.8 (67.0) 
 

 

 

Figure 3.13. TR-SFX experiment conducted at the EuXFEL. The DED in the chromophore 

pocket of PYP is shown at various time delays after laser excitation and displayed at contour 

levels of +3σ/ -3σ. Important DED features are shown:β(positive) and α (negative). Panels (a-
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c): Results with 1.13 MHz X-ray repetition rate and 364 kHz optical pulse rate with a pump-

probe sequence and two intermittent X-ray pulses without laser activation in between. (a) Pump-

probe delay of 0.89 µs (b) 1.78 µs after the laser pulse (c) 2.67 µs after the laser pulse. Panels 

(d-g): Results with 564 kHz X-ray and 141 kHz optical laser pulse rates with a pump-probe 

sequence and three intermittent X-ray pulses without laser activation in between. (d) Time delay 

of 10 ps. (e) 1.78 µs after the laser pulse (f) 3.56 µs after the laser pulse (g) 5.33 µs after the 

laser pulse. The DED signal persists until 3.56 µs (β2, panel f) and completely vanishes at 5.33 

µs (panel g). Figure adapted from [46, 125].  

 

 

Figure 3.14: Hit and Indexing rates. Hit rates (black) and indexing rates (red) with (a) 1.13 

MHz and (b) 564 kHz X-ray repetition rate. Blue solid line represents the X-ray pulse energy 

on an arbitrary scale. 
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Figure 3.15: DED in the chromophore pocket of PYP at different time points collected at the 

EuXFEL. Blue shows positive DED and red shows negative DED contoured at +3σ	and -3σ 

respectively. Important residues near pCA chromophore are marked. Yellow structure: dark 

(reference) structure. Arrows depict structural displacements in a, d. Upper: front view, Lower: 

side view. Structures for various time delays are shown in different colors. Cyan (a), (d): time 

delay 10 ps. Sky blue (b), (e): time delay 30 ps. Blue (c), (f): time delay 80 ps. Figure adapted 

from [46]. 
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4. Discussions 
 
4.1 Future of SPI 
 

FELs capable of operating at the short wavelength and producing femtosecond ultrabright 

pulses open the possibilities for the determination of the structures of single biological 

macromolecules, subcellular organelles at high resolution. Thus far, the resolution obtained from 

3D reconstructions of experimental SPI datasets at XFELs [21, 22] has not substantially exceeded 

that from single-shot imaging [64]. This shows the need to obtain larger datasets to extend the 

resolution. We have established a sound mathematical formalism to determine the number of 

snapshots required to answer a specific biological question at any resolution. This formalism, in 

the future, could be accommodated for a close estimate of the number of patterns for a given 

resolution incorporating experimental conditions like sample heterogeneity, background, or other 

nuisances such as X-ray streaks and variations in the detector response [84, 85, 126].  Quantitative 

results for the number of snapshots are derived as a function of the desired resolution, the 

molecular size, the expected average number of photons per Shannon pixel, and the SNR in the 

resolution shell (Eq. 2.26).  

There have been significant challenges in collecting data of sufficient quality (low background 

and high signal) and quantity to enable orientation determination and merging into a 3D diffraction 

volume for reconstructing electron-density near-atomic resolution. Challenges include a weak 

signal from the sample compared to the instrumental background, contamination of the aerosolized 

molecules by nonvolatile contaminants in the solution, heterogeneity of the samples. These 

challenges result in the collection of a limited number of usable data frames. Other systematics 

like fluctuations of the beam position and intensity, scattering from the apertures, problems with 
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sample delivery hinder the collection of diffraction patterns with a reasonable SNR value. The 

intensity of the XFEL pulses could be increased to boost the SNR value which ultimately increases 

the resolution.  SNR value could also be improved by averaging from many diffraction patterns. 

To systematically tackle these limitations and push the methodology further an international 

scientific collaboration is built named the ‘SPI initiative’ [84].  The ‘SPI initiative’ has received 

several experimental beam times at LCLS. The collected data have been published [64, 127, 128]. 

These data sets were released to the CXIDB [129] and are available for use to assist in the 

development of analysis methods. SPI is facing experimental obstacles rather than theoretical 

boundaries to make the ‘resolution revolution’ possible. But with high repetition-rate, high fluence 

XFELs, specialized detectors, improvement in the sample delivery technology, and noise-robust 

data analysis algorithms, the challenges of the SPI technique may be overcome in the near future. 

It may become possible to collect millions of usable diffraction patterns during an experiment with 

a high repetition rate of EuXFEL. The experimental datasets of necessary quality and quantity to 

obtain sub-nanometer resolution (see Table 3.1 for our estimate) from a non-crystalline biological 

sample can be collected using modern sources. Given improvements in X-ray source and sample 

delivery, high-resolution structures of a biomolecule at ambient temperature using SPI is on the 

horizon.  

 

4.2 Reference-enhanced SPI 
 

SPI is one of the demanding methods for determining the structure of uncrystallized single 

biomolecule. However, most of the SPI experiments at XFELs [21, 22, 130] focused on the method 

development using larger particles. The feasibility of transitioning to smaller particles could be 

possible with a reference-enhanced diffractive imaging method. This may allow imaging of 
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weakly scattering objects at XFELs to high resolution [131, 132]. The general principle is to gain 

SNR value including scattering from a strongly scattering reference. Recently two methodologies, 

which are slightly modified than the conventional SPI, have been proposed for obtaining 

diffraction patterns with low background and high signal [133]. This is based on a holographic 

principle where the strongly scattering holographic references are used in close proximity to the 

sample of interest. The first proposed method is one where a strong reference scatterer like a gold 

nanoparticle is chemically attached to the target object. The second system uses a 2D crystal 

reference in a scanning fixed-target sample geometry. Gold nanoparticles conjugated to biological 

samples were also studied to improve resolution using cryo-electron microscopy [134–137]. This 

offers a powerful way to identify and precisely localize specific macromolecular components as 

gold nanoparticles provide strong contrast in noisy protein images. Here, we showed that it is 

possible to resolve weakly scattering thiol molecules from the strongly scattering gold-thiol system 

using conventional SPI technique. Adding highly scattering gold particles hide the signals 

measured from thiol molecules. However, it appears adding the reference signal is advantageous: 

when the signal from the object is weaker, or more generally when the signal is less than the 

threshold required for reliable orientation determination and phase retrieval. Also, the reference 

could make hit detection easier and improves the hit rate.  

 

4.3 Mapping Conformational Spectrum  
 

Despite the discovery of phytochromes in photosynthetic cyanobacteria in the 1990s [138–

140], only one crystal structure of a full-length, intact phytochrome (with diguanylyl cyclase as an 

enzymatic) is obtained for Pr state, till today. The intact structure with histidine-kinase enzymatic 

domain for any states is still unknown. The full-length structures of phytochrome, both in their Pr 
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and Pfr state, as well as the intermediate structures, are necessary for a better understanding of the 

signaling mechanisms of bacteriophytochromes. As discussed in previous chapters, 

crystallography provides structural snapshots that are frozen in space and time. Proteins are locked 

in one conformation due to crystal contacts, which restricts potential structural changes. Our 

calculations show the structure of an intact phytochrome molecule with SPI is within reach at 

modern XFELs. The advantage of SPI lies in separating conformational states and thus to image 

the entire ensemble of structures of a protein. The task of separating different states requires the 

examination of large datasets, sophisticated programs, and significant computing power. With an 

increase of computational resources, the algorithm based on diffusion map manifold embedding 

[141–143]  made it possible to study the conformational heterogeneity of the system [21].  Figure 

4.1 shows the diffusion map manifolds formed by 45,000 simulated diffraction snapshots of full-

length phytochrome molecule in three different conformations (Pr state, proposed Pfr state, and 

intermediate state obtained by morphing using chimera). In the future, a manifold based analysis 

could be used for experimental diffraction snapshots of phytochrome which might reveal the 

conformational landscape of the phytochrome molecule. This would provide insight into the long 

searched scientific question related to the mechanism of photoactivation. A single-particle 

approach combined with the ability to separate conformational states promises a very interesting 

future for structural biology.  
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Figure 4.1: Manifold obtained by embedding 45,000 simulated diffraction patterns with shot 

noise from three different conformations of phytochrome (Pr, Pfr, and intermediate state obtained 

by morphing with chimera). Diffraction patterns (15,000 snapshots in each conformation) are 

simulated with parameters as explained in section 3.1.1. ΨDL𝑠 represent the eigenfunctions from 

diffusion map [141, 144].  

 

4.4 An Outlook on SFX 
 

SFX field is still relatively young but already led to multiple breakthroughs in structural 

biology introducing the possibility of overcoming radiation damage and enabling high-resolution, 

room-temperature structure determination from microcrystals. After the first SFX experiment in 

2011 [56], over 300 protein structures have been deposited on PDB (Fig. 4.2 (a)). These also 

include targets potentially important for pharmacology, which used to be inaccessible for 

conventional analytical techniques. Most structures (around 80%) are solved at a resolution within 
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the (1.5-3.0) Å (Fig. 4.2(b)). The highest resolution structure is that of proteinase K [145] using 

13 keV photon energy at SACLA, solved to 1.20Å, pushing the atomic resolution limit [146]. One 

of the most successful applications of SFX has been the structural study of membrane proteins 

using LCP as the crystallization and the injector system which led to the structure determination 

of several GPCRs [147–150].   

The major application of XFELs in structural biology is to utilize the inherent temporal resolution 

capacity of XFELs to study reaction intermediates or other structural changes. The foundation of 

the SFX has also led to the development of a setup for pump-probe TR-SFX [41, 44, 46, 125]. The 

first successful TR-SFX experiment was conducted on PYP at LCLS [41]. The high-quality 

difference electron density maps of PYP at 1.6 Å were obtained for time points between 100 fs 

and 3 ps [41, 44]. This allows the visualization of cis/trans isomerization of a chromophore, one 

of the fastest reactions in biomolecules. The first TR-SFX experiment using MHz X-ray pulses at 

EuXFEL was also conducted on PYP  [46], discussed in this dissertation. The DED maps of 

excellent quality at 1.6 Å were obtained for picosecond time range. These results connect with the 

previous results from synchrotrons and XFELs [41, 44, 151]. This pioneering experiment opens 

the door to a wide range of time-resolved studies at the EuXFEL. Besides these fast light-triggered 

reactions, slower processes, such as substrate-triggered biological reactions were also studied by 

mix-and-inject serial crystallography [89, 152–154]. Binding of an antibiotic to 𝛽-lactamase from 

Mycobacterium tuberculosis was demonstrated using this approach. This enables the time-

resolved study of enzymatic and other ligand driven biological processes. 
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Figure 4.2: Statistics on the deposited structures on PDB solved using XFELs to date (July 

2020). (a) Growth in the cumulative number of structures deposited in the PDB using data 

obtained at LCLS (green bars), SACLA (red bars), EuXFEL (blue bars), and SwissFEL (cyan 

bars). (b) Histogram of the deposited structures as a function of the resolution range. 

 

4.5 Photoactive Proteins: cis-trans Isomerizations 
 

The ability to convert light into molecular action is vital to many forms of life. Photoactive 

proteins play a critical role in biological success, for example, the vision in animals, and phototaxis 

response observed in organisms. Generally, light activation often triggers the geometrical 

isomerization of a prosthetic chromophore group [151]. When the chromophore is free from host 

constraints, in the gas and solution phases, the isomerization pathway is thought to proceed via the 

one-bond-flip mechanism [155]. But when the chromophore is embedded in a cavity within a 

photoreceptor, the isomerization cannot occur through the standard one-bond-flip mechanism 

[155, 156]. Understanding the relationship of the chromophore with its local protein environment 

may provide the ability to inhibit or promote photoisomerization in the biological process. Many 

(a) (b)
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signaling proteins exhibit a cis-to-trans isomerization. PYP has been used as a model system for 

investigating structure-function relations in photoactive proteins. Its chromophore, pCA, can be 

photoexcited by absorbing a photon in the blue region of the spectrum. Upon photon absorption, 

PYP enters a photocycle involving numerous intermediates (Fig. 1.5 (b)). The hydrogen bond 

network of the pCA chromophore with Tyr42, Cys69, and Glu46 residues (Fig. 1.5 (a)) play an 

integral role in establishing the barriers of activation and influencing both the ground and excited-

state structures. The fastest time scale achievable at synchrotrons is ~100 ps, limited by the pulse 

width of X-rays. Synchrotron studies on PYP [42, 43] captured all reaction intermediates except 

for those of the trans-cis isomerization, which is the fastest bimolecular reactions and needs a 

shorter time-scale.  PYP has also been studied on the fs time scale with time-resolved spectroscopic 

techniques such as transient absorption spectroscopy [157], fluorescence spectroscopy [158], and 

Raman spectroscopy [159]. Although these methods reveal the limited structural information 

[160], they provide insights on protein dynamics that can guide and assist fs structural studies at 

XFELs.  The structural changes of the PYP during trans-cis isomerization were first visualized 

using XFEL source [44]. This is marked as one of the important time-resolved experiment at 

XFELs. Since then, there have been several studies on various proteins such as myoglobin [161], 

bacteriorhodopsin [162, 163], photosystem II [164–167], phytochrome [168], which show that it 

is possible to follow cyclic and non-cyclic reactions at the XFEL. The photocycle of PYP has been 

extensively investigated from femtoseconds to seconds. The time range between 1 ps -100 ps has 

not been investigated in detail so far with at least one more process observed by spectroscopy 

[159].  Our pioneering TR-SFX study at EuXFEL has revealed the structures at 10 ps, 30 ps, and 

80 ps after the laser excitation.   
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4.6 Optimum Power for Pump-Probe TR-SFX 
 

Successful pump-probe TR-SFX experiment requires photoactive microcrystals and a 

short-pulsed laser tuned to the most suitable wavelength which must be synchronized to the X-ray 

pulse to achieve various time delays. A reaction must be initiated rapidly, uniformly, and 

nondestructively in the crystal [87]. The large fraction of the molecules needs to be activated 

without damaging the crystal. The laser power at the sample position must be carefully assessed. 

Lower power laser pulse will prevent sufficient photo-initiation, whereas high power pulses 

deposit energy and may damage the crystal. Recently, a pump-power titration was performed with 

phytochrome crystals which shows that the higher laser fluences do not alter the result of the 

experiment and rather, positively contribute to stronger DED maps that can be interpreted easily 

[168]. The advantages of TR-SFX lie in the use of microcrystals. Microcrystals being smaller have 

lower optical density, which allows a more homogeneous excitation of molecules within 

microcrystals. Experimental data collected with a serial approach are less sensitive to the 

accumulated X-ray and pump laser-induced damaged. Laser pulse energy densities that have been 

used for ultrafast pump-probe experiments are on the order of 0.5-5 mJ/mm2 [41, 44, 161–163]. 

The first time-resolved experiment with PYP was initiated with ns laser pulses (450 nm, 0.8 

mJ/mm2) [41]. The extent of photoactivation is around 40%. With ns pulses, those molecules 

which initially and very rapidly revert to the dark state can be excited anew, multiple times, which 

boosts the apparent photoactivation yield. At synchrotrons, the typical reaction initiations are 10-

15% [160]. The larger levels of photoinitiation lead to stronger difference signals which ultimately 

produce more accurate structure determination. The second experiment with PYP at LCLS uses fs 

laser pulses (140 fs) [44]. With fs pulses, around 20% of the molecules populate the photocycle. 

This agrees with the values found spectroscopically [169, 170]. These experiments show that fs 
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laser excitation is feasible with microcrystals and open the door for fs time-resolved experiments. 

TR-SFX experiment at EuXFEL with PYP was initiated using laser pulses of 240 fs at a 

wavelength of 420 nm with a flux density of 1.6 mJ/mm2. Population transfer for each time point 

in this experiment is approximately 7%. This value is lower compared to similar excitation 

schemes at other XFELs. This is due to illuminating into the flanks of the absorption spectrum. 

The excitation was achieved at 420 nm rather than into the central absorption peak at 450 nm. Still, 

excellent data are collected because the laser penetration depth matches the micrometer crystal 

size [41], leading to the uniform sample excitation. The most appropriate optical conditions for a 

TR-SFX experiment is a trade-off between power density and peak power. The goal is to exploit 

the experimentally available time resolution and maximize the levels of detectable populations. 

 

4.7 SPI and Crystallographic Data Analysis: A Comparison 
 

Both SPI and crystallographic data analysis follow a similar broad pipeline. Initially, the 

hits (when X-ray interacts with the sample) are identified from the total collected frames during 

an experiment. Diffraction patterns are then preprocessed which includes correction of detector 

artifacts, estimate and subtract photon background, etc. The orientation of each diffraction pattern 

must be determined relative to the direction of the X-ray beam. For crystallographic data, the 

known orientation is then used for assigning Miller indices of each Bragg spot (partial).  Intensities 

from each diffraction pattern are scaled and merged. This produces a file that covers reflection 

intensities in 3D reciprocal space. Diffraction patterns of a single molecule with known 

orientations can directly be merged into a 3D diffraction volume. The structure factor amplitudes 

are generated from the intensities. Using appropriate phasing methods, the phases of the structure 

factor are retrieved. This results in the electron density map which shows the distribution of 
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electrons at each point which may then be interpreted to find coordinates for each atom in the 

molecule. The reconstructed electron densities are often judged by a single factor: resolution, the 

level of detail a map shows. Resolution is straightforward to ascertain in crystallography, but not 

in SPI. 

Crystallographic data can be preprocessed using one of the available programs specifically 

designed or adapted for SFX, such as Cheetah [103], CASS [171], psocake [172, 173]. Near real-

time feedback is critical for minimizing protein consumption and minimizing the number of time-

delays recorded in a time-series during a TR-SFX experiment. Experimental progress could be 

monitored online using OnDA [174] for serial crystallography and also to get real-time feedback. 

The autoindexing program like MOSFLM [107], DirAx [108], XDS [109], asdf  [113], and 

XGandalf [110] are used for determining the orientation and indexing the diffraction pattern. For 

SFX data these autoindexing programs are included in CrystFEL [106] which is also used for 

merging the intensities. After a complete intensity dataset is obtained, further calculations can be 

performed by using CCP4 programs [114]. Most structures obtained from XFEL to date have been 

solved using the molecular replacement (MR) method [175]. In MR, a structural model of a 

homologous protein is used to solve the phase problem and obtain the initial phase estimates. 

When the templates of sufficient quality for MR are not available de novo phasing is required 

[176–178].  

Crystallographic data-processing software are robust, and their development have reduced the 

required amount of data and improved data quality. However, sometimes the highly automated 

nature of the indexing is less successful than would be expected in a conventional situation where 

human intervention would be applied in difficult cases. The indexing rate is typically lower when 

the unit-cell parameters are very large. This gives the spots with very small separations on the 
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detector. Also, the indexing rate is lower when the detector distance is too short, resulting spots 

are confined to the middle of the detector instead of spreading over its entire surface. The best 

indexing rate is found for patterns containing a few tens of Bragg peaks (Fig. 4.3). The 

development of the auto-indexing algorithm for sparse patterns would greatly increase SFX data 

utilization. An algorithm like SPIND (sparse-pattern indexing) [179] has been tested for SFX data 

with very few Bragg reflections.  

Data from single-particle diffraction can be preprocessed using the Hummingbird [180], Cheetah 

[103], Psocake [172] software. The intensity information of each diffraction pattern is converted 

to the number of photon counts. The important step after this is the identification of single-particle 

snapshots. For this, there are no available robust programs until now. The development of robust 

algorithms for determining single hits is critical to the success of SPI. The commonly used method 

for identifying single particle hits includes principal component analysis with spectral clustering 

[181], and manifold based approach [21]. Manifold based machine learning algorithms have also 

been applied to reveal the concerted structural changes exercised by the molecule [21]. 

Preprocessed single-particle snapshots are then used for orientation determination. Determination 

of orientations for single-particle snapshots is a key challenge because the signal-to-noise ratio in 

each snapshot is poor. A recent study of SPI reported successful reconstruction of electron density 

from diffraction patterns at a signal level of fewer than 100 photons on the average pattern [182]. 

Multiple algorithmic methods of orientation recovery have been developed to assign orientations 

to single-particle X-ray diffraction patterns like the common-line method [68], Generative 

Topographic Mapping (GTM) [69], EMC [70], and correlation maximization [71]. The EMC 

algorithm has been implemented in Dragonfly software [72]. The source code for this software 

package can be downloaded online. As non-crystalline objects produce continuous diffraction 
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patterns, the phases can be directly recovered in an iterative process by sequentially enforcing 

constraints in reciprocal and real space as discussed in Chapter 3. Electron density maps can be 

validated using the Fourier Shell Correlation, a method widely used by the cryo-EM community 

[183], and phase retrieval transfer function [184]. But researchers are still calling for better 

methods for validating electron density [185]. 

 

Figure 4.3: Indexing rate as a function of the number of peaks per pattern obtained from 47,000 

microcrystal patterns of PYP. The plot shows the histogram of the indexed and not-indexed 

patterns as a function of Bragg peaks in the diffraction pattern. The indexing rate is the ratio of 

the indexed peaks to the sum of indexed and not-indexed peaks. 
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4.8 Future of Time-Resolved Experiments 
 

New XFELs with superconducting accelerators produce a faster pulse X-ray repetition rate, 

which significantly shortens the data collection time [46, 186]. This allows for multiple sets of 

data collection within a single beamtime shift. Time-resolved experimental datasets represent the 

mixture of different short-lived intermediates. With the help of methods like the SVD [160, 187–

189] the structures of intermediates can be determined from the time-dependent electron density 

maps. Reaction pathways and rate coefficients connecting the reaction intermediates can be 

determined. With the continuous development of sample delivery methods, an increase in beam 

intensity, instrumentation, and data processing over the past few years, in the future, remote and 

automated experiments will be of a common practice. 

 

The structural biology community has begun to adopt the serial crystallographic approach at 

synchrotron radiation (SR) facilities. The advancement in beamline optics, detectors, and high 

throughput sample delivery methods have made room-temperature serial crystallography possible 

also at SR sources. Over the last few years, several serial millisecond crystallography (SMX) 

experiments have been conducted [190–194] at synchrotron beamlines equipped with high-

viscosity (toothpaste) injectors [148]. More recently, a polychromatic (‘pink’) beam has also been 

successfully used with microcrystals [195, 196]. The abundance of synchrotron beamtime will 

facilitate time-resolved investigations on a large number of biological macromolecules in the near 

future [197, 198]. The time-resolved could be the mainstream structural technique for 

understanding biological functions [125]. 
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Time-resolved cryo-EM has also been used for imaging of short-lived states (10-1000 ms) of 

biological molecules, particularly using the mixing-spraying method [199, 200]. In this method, 

mixing and reacting are achieved in a monolithic silicon chip, a microfluidic device with two 

solution inlets, and one spray outlet.  For time-resolved cryo-EM studies, a biological molecule is 

stopped at multiple time points by fast-freezing or chemical fixation. The trapped biological 

complexes are then visualized by conventional transmission electron microscopy followed by 3D 

reconstructions. The time-resolved experiment without freezing or staining of biological 

molecules at ambient temperature is possible with the SPI method. With the continuous effort of 

the SPI initiative, the ‘holy grail’ of XFEL technology, the dream to solve atomic resolution 

structures without the need for crystals, will be achieved in the near future. The scientific 

community will then explore the possibilities with time-resolved SPI. This could help in 

understanding biological functions previously difficult with other techniques. For instance, the 

full-length bacterial phytochrome with histidine kinase could be mixed with ATP to study the 

structural dynamics of the histidine kinase autophosphorylation complex. Difference electron 

density maps between the Pr and Pfr states (Fig. 3.8 (b)) could help in understanding signaling 

mechanisms of the bacteriophytochromes.  The ultrashort pulse length of the EuXFEL gives the 

unique possibility to study the dynamics of a very short-lived complexes and transient states of 

dynamic molecules. The EuXFEL can probe dynamics many orders of magnitude faster than what 

is possible with cryo-EM, which is limited to ms timescale. With time-resolved SPI, different well-

populated reaction intermediates could be identified with the help of classification programs like 

manifold embedding. It can also show how the molecule population redistributes into different 

states as time progresses. It can be argued that SPI can capture functionally meaningful states as 
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the reconstructions obtained depict ensemble averages of free-standing molecules, unhindered by 

intermolecular contacts.  
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6. Appendices 
 

Appendix A:  Justification for Calculating Joint Probability 
 

For the calculation of the joint probability 𝑃¬ we regarded the statistics for each voxel to be 

independent of all other voxels, as it is the case for independent dice. However, as a diffraction 

pattern samples a set of voxels, entirely determined by the orientation of the molecule, the 

assumption of independence is not granted. To estimate the effect on our formalism, we calculated 

the joint probability 𝑃¬ by simulation as follows. We recorded the actual number of visits for each 

voxel by merging 4323 diffraction patterns of the phytochrome at 10Å (see Table 3.1), where the 

number of patterns was estimated by Eq. (2.23) and Eq. (2.24), based on independent voxels with 

M = 39. Out of a total of 27 trials, we found 15 instances with all voxels visited at least M times. 

This corresponds to a probability of 0.55. As the statistical error expected from the number of trials 

is about ±0.1, this estimation is within the value predicted by the assumption of independent 

voxels. We, therefore, conclude that our calculation of the joint probability, as given by Eq. (2.24), 

is sufficient for the purpose of the present work. 

 

Appendix B:   Python Code to Estimate the Exact Number of Snapshots 
  
import numpy as np 
 
def logFactorial(n): 
    if n < 20 : 
        value = np.log(np.math.factorial(n)) 
    else: 
        value = 0.5*np.log(2*np.pi*n) + n*np.log(n/np.e) 
    return value 
 
def pnm(p,N,M): 
    #this function gives the probability to observe a voxel at least M times  
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    #from an ensemble of N snapshots 
    # p = probability to hit a voxel for a single snapshot 
    # N = Number of Snapshots 
    # M = Redundancy 
    if N < M: 
        s = 1 
    else: 
        s = 0 
        lp = np.log(p) 
        lmp = np.log(1-p) 
        for k in np.arange(M): 
            s = s + np.exp(logFactorial(N) - logFactorial(N-k) - logFactorial(k) + k*lp + (N-k)*lmp) 
    return np.maximum(1-s,0) 
 
def numberOfSnapShots(d,D,nPhotons,SNR,P_tilde): 
    #nS number of Snapshots 
    #d is the Resolution 
    # D is the Diameter of a Molecule 
    #nPhotons is the Number of Photons  
    #P_tilde is the combined probability 
    #Number of Resolution elements 
    R = D/d 
    #number of voxels at Resolution Shell 
    nV_Shell = 16*np.pi*R**2 
     
    #probability per Shannon voxel 
    p = 1./(4*R) 
    M = np.ceil(SNR**2/nPhotons) 
     
    # P -> Probability to observe a voxel at least M times from an ensemble of nS snapshot 
    # obtained from given P_tilde 
    P  = np.exp(2*np.log(P_tilde)/nV_Shell) 
     
    nSmax = 1e12# 
    step = 2**10# 
     
    nS0 = M 
    while step > 1: 
        for nS in np.arange(nS0,nSmax,step): 
            if pnm(p,nS,M) > P: 
                break 
        nS0 = nS - step 
        step = step /2 
    return nS 
 

Appendix C:  Random Phasor Approximation 
 

The complex-valued random variables that arise as a sum of many small elementary 

complex-valued contributions can be approximated by a random phaser approximation [66]. 
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Consider a large number N of complex phasors, the kth phasor having random length ak, and 

random phase fk. The resultant phasor, with length a and phase f, is defined as 

	𝐀 = 𝛼𝑒DT =	8𝛼!𝑒DT- 	.
B

!,*

	 (5.1) 

For simplicity, consider the following assumptions about the statistical properties of the 

elementary phasors composing the sum.  

1. The 𝛼! and phase 𝜙! of the kth elementary phasor are statistically independent of each 

other and of the amplitudes and phases of all other elementary phasors. 

2. The random variables 𝛼! are identically distributed for all k. 

3. The phases  𝜙! are uniformly distributed on (-p, +p). 

The mean values of the real (r) and imaginary parts (i) are calculated as follows: 

�̅� = 	8𝛼!𝐶𝑜𝑠𝜙!ÑÑÑÑÑÑÑÑÑÑÑÑ
B

!,*

=	8𝛼!ÑÑÑ
B

!,*

	𝐶𝑜𝑠𝜙!ÑÑÑÑÑÑÑÑÑ = 𝑁	𝛼Ñ		𝐶𝑜𝑠𝜙ÑÑÑÑÑÑÑ	 (5.2) 

𝚤̅ = 	8𝛼!𝑆𝚤𝑛𝜙!ÑÑÑÑÑÑÑÑÑÑÑ
B

!,*

=	8𝛼!ÑÑÑ
B

!,*

	𝑆𝚤𝑛𝜙!ÑÑÑÑÑÑÑÑ = 𝑁	𝛼Ñ		𝑆𝚤𝑛𝜙ÑÑÑÑÑÑÑ. (5.3) 

Here we have used the facts that 𝛼! and 𝜙! are independent and identically distributed for all k. 

With the assumption that the phases  𝜙! are uniformly distributed on (-p, +p), then  𝑆𝚤𝑛𝜙ÑÑÑÑÑÑÑ =

	𝐶𝑜𝑠𝜙ÑÑÑÑÑÑÑ = 0	.	 With this  

�̅�				 = 	 𝚤̅ = 0	 (5.4) 

Similarly, the second moments  𝑟)ÑÑÑ and  𝚤)Ó  can be written as  

𝑟)ÑÑÑ 	= 	88𝛼UÓ
B

!,*
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Using, 

𝐶𝑜𝑠𝜙U𝐶𝑜𝑠𝜙!ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ		 = 		 𝑆𝚤𝑛𝜙U𝑆𝚤𝑛𝜙! 	ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ = 	 Ô
0		𝑘 ≠ 𝑗
1
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𝛼)

2

ÑÑÑÑ
. (5.7) 

Eq. (5.1) can be written as the sum of the real and the imaginary parts.  

𝑨 = 	𝛼𝑒DT	 = 𝑅𝑒(𝑨) + 𝐼𝑚(𝑨). 

With this 

×8𝛼!𝑒VT-
B

!,*

×

)ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ
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	 = 		 (𝑟) + 2𝑟𝚤 + 𝚤))ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ							 

		 = 		 𝑟)ÑÑÑ + 2	�̅�	𝚤̅ + 𝚤)Ó											 

															= 		 𝑟)ÑÑÑ	 +		 𝚤)Ó = 𝑁𝛼)ÑÑÑÑ	.																	 

Using this approximation, we can write 

Ù8expJ2𝜋𝚤	𝒒 ⋅ 𝑿WK
B)

U,*

Ù

)ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

= 𝑁/ . 

This assumes that the positions of atoms are completely uncorrelated, which is approximately true 

at resolutions approaching to atomic scale. 
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