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ABSTRACT 

BIENNIAL AND LOW-FREQUENCY COMPONENTS OF EL NIÑO/SOUTHERN 

OSCILLATION 

 

by 

 

James Ryan 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor Sergey Kravtsov 

 

 El Niño/Southern Oscillation (ENSO) is a coupled oscillation of sea surface temperatures 

(SSTs), winds, and air pressure in the eastern and central tropical Pacific, that repeats with quasi-

regularity, every 2–7 years. Although the ENSO’s spectral peak is found at a 4–7-yr period, 

composite El Niño events, taken as the 84 months before and after the peak of each El Niño, 

show that the length of each event, and often the following La Niña if there is one, usually falls 

within a quasi-biennial (QB) range of around 18–42 months. We argue that the biennial range of 

ENSO events stems from the classical delayed oscillator dynamics, while the lower-frequency 

range is from interaction with the extratropics; these interactions also lead to much of ENSO’s 

irregularity. 

 After applying an 18–42 month bandpass filter to historical monthly temperature record 

and comparing filtered temperature variance to that of the raw temperature anomalies, the 

tropical Pacific emerges as the major center of enhanced ratio of biennial-to-total variance. This 

suggests that ENSO might be primarily driven by processes in this frequency band, even if its 

spectral peak is at lower frequencies. Discriminating patterns that maximize the ratio of biennial-

to-total variance of surface temperatures also point to ENSO as the primary and only significant 

mode, both when projected onto monthly and bandpass-filtered surface temperature and SST 
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data. We also compare composites, power spectra, variance ratio maps and time series, and 

discriminating patterns from observations to some CMIP5 global climate models, many of which 

have ENSO be too regular, and/or attribute too much of ENSO’s variability to the QB timescale. 

Finally, to put these ideas in a dynamical perspective, we investigate a coupled model that 

includes biennial tropical dynamics augmented by extratropical feedbacks, which shows much 

more LF and decadal variability reminiscent of the observed ENSO behavior. 
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1. Introduction 

 El Niño-Southern Oscillation (ENSO) is the leading coupled mode of variability in the 

tropical Pacific ocean–atmosphere system, with anomalously warm events repeating every 2–7 

years (Capotondi et al., 2015). El Niño was named by South American fishermen who 

sometimes noticed abnormally warm water in the equatorial Pacific, often around Christmas, so 

they named it after Jesus. The cool phase was later named La Niña. While El Niño refers to 

ocean surface temperatures, the Southern Oscillation is an atmospheric phenomenon. Sir Gilbert 

Walker found a connection between air pressure measurements on the island of Tahiti in the 

central Pacific, and Darwin, Australia, at the western edge of the Pacific, in 1910. Over half a 

century later, Jacob Bjerknes found a connection between the oceanic El Niño and the 

atmospheric Southern Oscillation, finding it to be a coupled phenomenon. 

 When wind weakens near South America, wind stress on surface water decreases, so less 

water needs to be replaced by cooler water from below. With less upwelling, SSTs increase in 

the tropical Pacific. This is a commonly agreed connection between the atmosphere and ocean in 

ENSO. However, there are a few different conceptual mechanisms for how the thermocline – the 

boundary between the warm water near the ocean surface and the cold water and lower depths – 

influences ENSO and how the oceans feeds back on the atmosphere (Suarez and Schopf, 1988; 

Neelin 1991; Wyrtki 1975). Still, they all agree that ENSO is a coupled phenomenon, meaning 

that the ocean and atmosphere are both important, with a broad spectral peak, meaning that it is 

only quasi-regular, repeating in this case every 2–7 years. 

Suarez and Schopf (1988) suggested a (by now classical) delayed oscillator as a 

conceptual explanation for ENSO to naturally switch back and forth between its neutral, positive, 
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and negative phases. However, at least with their parameter settings, their model would only 

generate spectral peaks at the QB periods, and not the observed dominant peak at the 4–7-yr 

periods. Therefore, it can explain the biennial timescale, as while there is not a spectral peak in 

the QB range, the eight-month delay time is consistent with a QB extent of individual ENSO 

events.  Note that one may be tempted to try to link biennial variability in ENSO to the 

stratospheric Quasi-Biennial Oscillation (QBO) (see, for example, Xie (2014), who found that 

stratospheric arctic ozone anomalies can lead ENSO changes by around 20 months). However, 

the QBO is far too regular to explain ENSO variability, which is of a much more sporadic and 

broadband nature, and, hence, the delayed oscillator dynamics is a far more likely candidate to 

explain the QB component of ENSO variability. Jajcay et al. (2018) identified a singular role of 

biennial variability in the causality analysis of the observed ENSO variability and the lack of 

such causal link in state-of-the-art climate models, despite the absence of the QB peak in the 

observed ENSO spectra. 

 To explain the observed low-frequency 4–7-yr component of ENSO, some authors have 

invoked a recharge mechanism repeating in a lower frequency band, driven largely by coupled 

interactions of SSTs with wind stress and the thermocline, taking a longer time than the QB 

delay mechanism, which is primarily driven by the ocean only (Wang and Ren, 2020; Bejarano 

and Jin, 2008). The broadness of the 4–7-yr spectral peak reflects a substantial irregularity in the 

ENSO event occurrence (see, for example, Jin et al., 1994), which extends to longer time scales 

as well.  ENSO is affected by ocean currents and their associated heat transports to higher 

latitudes and vice versa, so various papers have searched for teleconnections to the midlatitudes 

and possibly polar regions to explain ENSO’s irregularity and low-frequency variability. Ding et 

al. (2015), Furtado et al. (2012), among others, have looked at connections between ENSO and 
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the Pacific Decadal Oscillation (PDO), which, as its name implies, varies on a decadal timescale. 

Farneti (2014) built an idealized model to explain how tropical SST anomalies changed North 

Pacific temperature gradients and thus wind stress, which then acts to change horizontal 

movement and overturning of ocean water in the North Pacific. While Farneti et al. were 

primarily studying decadal and longer timescales, the model this team produced lead to similar 

results to ENSO, with quasi-regular peaks of quasi-biennial ENSO events every 4–5 years on 

average 

 In this study, we conjecture that ENSO’s QB range, with periods from 18 to 42 months, 

is due to tropical, delayed-oscillator dynamics, as previous studies have argued. However, we 

hypothesize, building on Farneti et al.’s (2014) work, that ENSO’s LF variability, in the range of 

about 4–7 years, or 42–84 months, is driven mainly by tropical-extratropical interactions. To 

investigate these hypotheses, we will look at composite time series of El Niño events (section 3) 

and maps of ENSO’s total and QB-filtered variance, as well as maps of these variance ratios 

(section 4). Additionally, we will check how ENSO’s variance and variance ratios have changes 

in the 18-42 and 42-84 month ranges over time, and investigate the dominant patterns which 

optimally highlight QB variability (section 5). To connect these results to ENSO dynamics,  we 

will look at Farneti’s idealized model to further investigate interactions between ENSO’s QB and 

LF modes (section 6). Finally, we will assess CMIP5 global climate models to see how they 

handle ENSO according to some of these analyses (section 7). We will summarize our results in 

section 8 and outline future research directions in section 9. 
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2. Data and Methods 

 Data. This study uses monthly surface air temperature (SAT) data from the 20th Century 

Reanalysis V2c, interpolated onto a 2.5x2.5-degree grid, for each month from January 1880 to 

December 2005. We also look at the same years and same data resolution (1512 months x 73 

latitudes x 144 longitudes) for 111 runs of 17 CMIP5 global climate models (GCMs) studied in 

Kravtsov and Callicutt (2017), Kravtsov (2017), Jajcay et al. (2018) and Kravtsov et al. (2018).  

 Before any analysis, the temperature at each grid point is linearly detrended and has its 

mean removed. Next, one can remove the seasonal cycle either by subtracting the mean 

temperature of each grid point at each month, or by a linear regression with the first 5 harmonics; 

both produce very similar results. A bandpass filter is used to isolate various bands of monthly 

data, most often 18-42 months, a quasibiennial (QB) range. An adaptive bandpass filter was 

investigated early in this study, but it was not all linear, which meant that filtering each grid 

point and then computing the Niño 3.4 index, or computing the Niño 3.4 index and then filtering 

it, yielded different results, which was problematic. A simple bandpass filter made of two low-

pass FFT filters works quite well – one to remove high frequencies, and one to remove low 

frequencies - more effectively and efficiently, and produces the same results regardless of order 

of operations. The Niño 3.4 index is then derived from the average temperature anomaly in a 

region of the central and eastern tropical Pacific, from 5°N to 5°S, 120°W to 170°W.  

 Compositing. Composite El Niño time series events are formed by finding peaks of at 

least 1 standard deviation and at least 6 months away from any already counted peak in the Niño 

3.4 index after removing its seasonal cycle, and the 84 months before and after the peak. These 

time series for a given ensemble member are averaged together, showing the composite El Niño 
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event for a given ensemble member. The composites from each ensemble member of a model or 

reanalysis are averaged together to show the mean composite. 

 Maps of variance and QB variance ratio. Temperature variance is mapped by 

removing the seasonal cycle from each grid point and calculating the variance in temperature 

anomalies at each point. QB temperature variance maps are from temperature variance after 

removing the seasonal cycle and filtering each grid point’s temperature time series through a QB 

bandpass filter. Quasibiennial variance (QBVAR) maps show the quotient of QB variance and 

(non-seasonal) variance at each grid point. 

 Evolution of ENSO variance. Niño3.4 variance is also shown in time. QB Niño 3.4 and 

LF Niño 3.4 are calculated for each month as the Niño 3.4 index after going through a bandpass 

filter for 18-42 months (QB) or 42-84 months (low frequency/LF). A running window of 10, 15, 

or 20 years for these time series show how variance, QB variance, and LF variance change over 

time, calculated as the variance of a section of the time series of Niño 3.4, QB Niño 3.4, or LF 

Niño 3.4 in the 10, 15, or 20 years centered on that month. QB and LF variance ratios are also 

computed for each window, as the quotient of QB or LF variance over regular variance. 

Discriminant Analysis (DA). Schneider and Held (2001) used a technique called 

discriminant analysis to optimally distinguish between the surface temperature’s spatial patterns 

associated with fast and slow processes. Here we want to apply this technique to determine what 

spatial patterns will maximize our biennial variance ratios at any given section of the world.  

To do so we first remove the mean and seasonal cycle from the data set, in this case, four 

different regions, 30N-30S, 60N-60S, and 30N-30S oceans only, and 60N-60S oceans only, with 

monthly ensemble mean 20CR data. Then, one finds the principal components and runs each 

component through the earlier mentioned 18-42 month bandpass filter. 



6 

 

From there, one can select a certain number, which we call Kstar, of PCs and filtered 

PCs, and make covariance matrices from each of them. A new matrix called M is the cross 

product of the inverse of the unfiltered covariance matrix, and the filtered covariance matrix. 

Once M is computed, one can find the Kstar largest eigenvectors of M in descending order of 

magnitude, and call this V.  

The time series of our largest discriminating pattern is found my cross multiplying the PC 

matrix with the first column of the eigenvector matrix, and one can do this with either the 

unfiltered or filtered data. Finally, the first discriminating pattern is from the cross product of the 

inverse of our temperature data, with the mean and seasonal cycle removed, and weighed by 

latitude, and the quotient of the first time series divided by its standard deviation. This gives us a 

pattern that we can map, essentially showing us what regions will maximize the QB variance 

ratio for a given area. 

This procedure finds the linear combinations of raw and bandpass filtered PCs that 

produce the time series with the highest ratio of biennial to total variance. This time series is 

called the canonical variate. The regression of the original spatially extended time series onto the 

CV is called the discriminating pattern (DP). 

The CVs and DPs can be found in the subspaces of EOF defined by the first Kstar modes. 

If Kstar is small, you are likely to miss the important part of the biennial variability. If Kstar is 

too large, you would end up with the patterns of very high BVRAT that contribute nothing to the 

temperature variance. Physically and practically meaningful patterns should be robust in a 

relatively wide range of Kstar. 

One can choose several values from Kstar, theoretically from 1 to as many principal 

components as one would have, in this case 1511, and these may give somewhat different results. 
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However, higher Kstar values would include incrementally more variance, but explain less of the 

variance ratio, and vice-versa. Since these are already sorted in descending order, we looked 

mostly at smaller Kstar values, but also a few higher ones, specifically: 5, 10, 15, 20, 25, 30, 50, 

and 100. Additionally, one can select several regions of the planet from which to from principal 

components. For this study, we chose to look at four different areas: 30N-30S ocean only, since 

ENSO is mostly associated with tropical oceans, 60N-60S ocean only, since ENSO has 

teleconnections with higher latitudes, and we want to see how it may be affected by them, and 

those same sets of latitudes but also including land, to see if land would play a major role and 

make sure we would not be missing something by excluding it from the analysis. 

We chose to examine the first three discriminating patterns (DPs) for each region and 

Kstar value, to see if most of the biennial variance ratio could be described mainly by one mode, 

or if a second and third mode were also consistent. By looking at a wide range of regions and 

Kstar values, we can see if there is consistency between them for a second or third mode that 

alters biennial variance ratios in ENSO.  

Finally, one can directly map how much each mode contributes to the QB variance ratio 

by mapping the squared ratio of the filtered pattern over the unfiltered pattern. For some 

locations, there is very little magnitude for a given DP, so taking a ratio with it in the 

denominator can lead to meaninglessly high QBVARs, falsely implying that this mode would 

lead to a QBVAR of far greater than 1. To prevent this, and only focus on where we have 

meaningful amounts of variability from which to calculate a variance ratio, we mask out the 

areas with DP magnitudes below .05. After this, any remaining points with DP variance ratios 

above 1 were set to 1, as they were right by the masked areas, so they were mathematical 
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artifacts that represented very little variability in reality. In areas that has strong DP values, the 

QBVAR attributed to it never exceeded 0.5, so we set the color bar maximum at that value. 

 

 

 

 

3. Composite El Niño Events 

 

FIGURE 1: The power spectrum for the Niño 3.4 index according to the 20th Century Reanalysis. Thin colorful 

lines show each ensemble member’s spectrum, while the average of these 56 realizations is shown in black. 
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While there is no prominent QB peak in the Niño 3.4 index’s power spectrum (Fig. 1), 

looking at composite El Niño events can help us see variability play out in this range. We do so 

by finding every isolated peak in the Niño 3.4 index exceeding one standard deviation, 6 months 

away from any other such peak and forming composite El Niño events (averaging the ENSO 

time series)  in the ±7-yr (84-mo) window centered on these peaks. The window half-size of 84 

months was chosen as the boundary since ENSO’s power drops off at lower frequencies than 

that. Also, to prevent a few particularly strong El Niño events from weighing more than the rest, 

we normalized each event by its maximum amplitude, leading to the maximum amplitude of 1 in 

the ENSO composites so obtained.  Figure 2 shows the composite El Niño event of the Niño 3.4 

index from 1880-2005 according to the 20th Century Reanalysis. 

 

FIGURE 2: Composite El Nino events from the 20th Century Reanalysis, for the average behavior of the 

Niño 3.4 index within 84 months of an El Niño peak. 
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This is done for each of 56 ensemble members in the reanalysis (thin colored curves), 

with the average composite event shown by a black heavy curve. While the latter curve shows 

the mean, the individual curves give an idea of uncertainty in the 20CR data set. For all 56 

ensemble members, the figure shows the typical time lag between main peaks (or troughs) of 

about 35–40 month, on the upper end of the QB range; this is how the composite of the damped 

biennial oscillator would look like (section 6). This figure therefore demonstrates significant QB 

variability for this ENSO index, and is one of our primary motivations for studying biennial 

variability, despite it not being the spectral peak for ENSO (see also Jajcay et al. 2018).  

Additionally, this shows that ENSO will tends to be negative (attain a La Niña phase) 

about 15–20 months before and after an El Niño peak, and while it may not necessarily be 

enough to be a La Niña event each time necessarily, a negative ENSO value in a year before an 

El Niño peak is still a very common occurrence among the ensemble. Most models qualitatively 

reproduce the composite ENSO event, as further discussed in section 7. 

ppendix shows composites for each run of 17 CMIP5 models, for 111 simulations in 

total. Since several of them do not have the best handle on biennial variability, or how they 

handle transitions to or from El Niño states in general, then improving our understanding of these 

timescales should help us not only in understanding ENSO better but also global climate 

variability in general. 

 

4. Quasi-biennial Variance Ratios 

Since we see hints of QB variability in these composite El Niño events, as shown by each 

ensemble member at around 36 months after a composite El Niño peak being higher than they 

were at 18 months after a peak, we expect that a map of variance in the data bandpass filtered 
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(BPF) in the biennial range should mainly highlight the eastern and central tropical Pacific, 

which is our main area of focus for ENSO, as well as some other areas with strong 

teleconnections to ENSO. The global BPF variance map (Fig. 3) highlights the tropical Pacific 

somewhat, but it also highlights high latitude land masses. This could make one suspect that they 

are strongly connected to ENSO, or at least some sort of biennial phenomenon; however, a map 

of variance in unfiltered temperature anomalies reveals that high latitude land simply has high 

variance in general, regardless of frequency (Figs. 3, 4).  

 

FIGURE 3: Variance in monthly temperature anomalies after applying a biennial bandpass filter at each point on 

earth, according to the 20th Century Reanalysis, 1880-2005. 
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 FIGURE 4: Variance in monthly temperature anomalies after removing the seasonal cycle, according to the 20th 

Century Reanalysis, 1880-2005. 

  

Thus, we introduce a new metric, the biennial variance ratio (BVRAT). The BVRAT is 

simply the variance of the SST time series  in the 18-42 month range divided by the variance at 

all frequencies after subtracting out the seasonal cycle, at each grid point. While BPF variance 

maps only hint at the tropical Pacific being strong in this band, and overall variance being 

highest in high latitude land, the BVRAT map highlights the tropical Pacific as the most 

important area for biennial variability, suggesting that cycles between 18-42 months are 

responsible for around 30 percent of all variability in temperature anomalies in the tropical 

Pacific (Fig. 5). In fact, tropical oceans in general have a higher BVRAT, decreasing as one goes 

poleward or onto land. The midlatitude Pacific has more BVRAT than that of other oceans  -

consistent with ENSO teleconnections being at work there (Deser et al., 2017; Ding et al., 2015) 
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- though it is less than that of the tropics, indicating that more of the variability there is from 

either higher frequency weather noise and the polar jet, or also lower frequency processes like 

ocean dynamics, which we will discuss later. 

Like the biennial map, we have the most variance over high-latitude land, and not as 

much in tropical oceans. Therefore, to see if ENSO has much biennial variability, one could see 

what proportion of the total variance is caused by this 18–42 month range, and plot variance 

ratios. 

 

 

FIGURE 5: QB variance ratios for the 20th Century Reanalysis. These are calculated as the QB variance from 

Figure 3 divided by the total variance from Figure 4. 

  

Our variance ratio analysis highlights the ENSO region, namely the equatorial Pacific, 

especially the central and eastern parts, as exhibiting the highest QB variance ratio. Although the 
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strongest areas are in the tropical Pacific, we also see locally high amounts near Australia and 

Indonesia, for the west side of the Walker circulation associated with ENSO, and in the tropical 

Indian and Atlantic Oceans as well, though less strongly than in the Pacific. One can also notice 

somewhat higher QBVARs in the far north Pacific than far north Atlantic, though it is weak. 

Finally, we see higher QBVARs over the ocean than land, as the ocean takes much longer to heat 

or cool thanks to water’s high specific heat capacity and the ocean’s depth. 

 High quasi-biennial variance ratios are limited to the tropics according to these figures. 

However, this does not necessarily mean that other areas are not affected by this variability, nor 

that extratropical areas cannot affect the tropics on this timescale.  

This makes sense in light of earlier findings, as ENSO also has high spectral power in the 

4-7 year range, and perhaps some multidecadal variability, both likely linked to ocean currents 

and the PDO. Although multidecadal variability is not the focus of this paper, one can see 

different decades of ENSO be dominated by different frequency bands, perhaps indicating 

different processes being stronger in different decades (Fig. 6). This figure uses another way of 

visualizing our biennial variance ratios. In a running window of say 10 years, or any window you 

choose, we can find the variance ratio within that time period. We could also do this for other 

frequency bands if we want to see modes that vary in other times. Additionally, while there is 

some debate about ENSO shifting between different modes, finding a time series of BVRATs 

could help with this, as well as finding some ENSO events in times of low BVRATs to explain 

other causes for ENSO.  
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FIGURE 6: Time series of variability and variance ratios for the 18-42 month QB band, as well as the 42-84 month 

LF band, calculated from 10, 15, and 20 year running windows centered at each month of the Niño 3.4 index 
according to monthly data from the 20th Century Reanalysis after removing the seasonal cycle. 

 

By centering a 10-year window at each month in our time series, we can see not just 

ENSO variability, but also QB variability and even the QBVARs change with time. Of course, in 

decades with a lower variance ratio for a certain frequency band, this would suggest that any 

variability would need to come from some other frequency band. So, one could also view the 18-

42 month band vs the 42-84 month band, the lower-frequency side of the often written 2-7 year 

peak for ENSO. Figure 6 shows that in some decades, 18-42 month frequencies do more, while 

in others, 42-84 month cycles do more for ENSO. This also lines up fairly well with findings 

from Wang and Ren (2020) that ENSO is sometimes driven more by an approximately 3 year 

mode, and sometimes driven more by an approximately 5 year mode, which can lead not only to 

temporal but also spatial diversity in ENSO.  
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Wang and Ren cite Bejarano and Jin (2008), who found that the QB mode of ENSO is 

likely from from a reflective-advective oscillator; this lines up with Suarez and Schopf’s (1988) 

that QB behavior in ENSO is from a delayed oscillation of reflected equatorial waves with a 

period around 2-3 years. Bejarano and Jin (2008) also found that 4-7 year variability is connected 

to a decrease in equatorial wind and buildup of heat across the Pacific basin. These timescales 

are different because the 4-7 year mode depends on wind stress anomalies in the Pacific, while 

the QB mode is more ocean-driven (Wang and Ren, 2020). Wang and Ren (2020) and Bejarano 

and Jin (2008) both find that these QB and LF modes are influenced by multidecadal variability, 

and Figure 6 is in line with these findings. 

This analysis would suggest that multidecadal variability could influence the processes 

that cause these different mechanisms, and that better understanding of multidecadal processes 

could help models have more accurate QB and LF variability. In observations, QB and LF 

variance changes on different decades, suggesting decadal variability influences these two 

modes. 

 We will return to the theme of connecting QB and LF processes to decadal variability in 

section 6. First however, we want to confirm that QB variability, while having its highest 

variance ratio in the tropics, is indeed caused mainly by tropical processes. To do so, we next 

perform discriminant analysis of surface temperature records designed to highlight the spatially 

extended modes of quasi-biennial variability. 

 

5. Discriminating Patterns of QB Variance Ratios 

Figure 7 shows DPs and their QBVARs computed for surface temperatures over tropical 

oceans only. Regardless of Kstar, the first DP shows high magnitude in the central and especially 
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eastern tropical Pacific, strongly resembling a typical ENSO temperature anomaly. Additionally, 

each pattern looks similar in shape between the unfiltered and filtered patterns and is usually 

weaker in magnitude for the filtered data. 
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FIGURE 7: The first three discriminating patterns and associated QBVARs for SSTs from 30N to 30S. 
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At least in the maps computed from tropical waters only, we find only one consistently 

strong mode, as the second DP is far weaker than the first, and the third DP hardly as any spots 

in the Pacific with a significant variance ratio. The third mode seems to resemble the PNA, as its 

strongest spots are near the west coast of North American and the east coast of Asia, staying 

confined to the midlatitudes. A weak second mode appears somewhat consistently, though its 

spatial pattern changes somewhat from map to map depending on K*. This was also true with 

other Kstar values we checked. However, we should also look at other regions before ruling out 

the possibility of a strong second mode in the QB range.  

Figure 8 shows the DPs calculated from surface temperature over the oceans from 60N to 

60S, thus potentially including influence from higher latitudes. If a mode does not express 

strongly in the tropics, this would indicate that it primarily affects higher latitudes only.
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FIGURE 8: The first three discriminating patterns and associated QBVARs for SSTs from 60N to 60S. 

 

 In each of these, our leading pattern is still strongest in the central and eastern equatorial 

Pacific, with a high QBVAR across most of the Pacific. A second pattern appears to be strong in 

the North Pacific, showing opposite signs in the waters near Asia vs North America, though this 

fades at higher Kstar values, and does not have a strong QBVAR in most of the tropical Pacific, 

indicating that while it may be a strong mode for the midlatitudes, it does not have a strong effect 

on ENSO in QB frequencies. However, at higher Kstar, we do see a higher QBVAR from the 

second mode in the central tropical Pacific, perhaps indicating that while it is not very strong on 

this timescale, it does not rule out the possibility that it may be stronger on a different timescale, 

such as the LF scale of 4-7 years. 

 So far, these DPs indicate that most of ENSO’s variability on the QB timescale is from 

tropical mechanisms only, with much less influence from higher latitudes, though they cannot be 
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discounted entirely on this timescale. Still, one should check DPs that include land in the 

calculation as well, for a more thorough result. The next figures show DPs from the full surface 

between 30N-30S, and then between 60N-60S (Fig. 9). 
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FIGURE 9: The first three discriminating patterns and associated QBVARs for all available surface 

temperature data from 30N to 30S and 60N to 60S. 

 

 As Figure 5 showed earlier, land usually has a much lower QBVAR than ocean, largely 

due to land heating and cooling much more quickly. Due to this, the figures that include land are 

not especially different from their ocean-only counterparts. There is, once again, only one mode 

that consistently explains most of the tropical Pacific’s variability in the QB timescale. While the 
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second mode has only weak expression in the tropical Pacific depending on what region we 

choose and Kstar, it is usually stronger in the midlatitudes than the tropics, indicating that it may 

be weaker on this QB timescale than another, such as the LF timescale potentially, and 

associated more with higher latitudes. 

 Therefore, we can conclude that most of ENSO’s QB variability and variance ratio can be 

attributed mainly to tropical dynamics, and that other parts of the world have less influence on 

this timescale. We investigated biennial variability in the first place because of the typical length 

of El Niño/La Niña events being closer to this timescale than the LF one, as well as our 

composite El Niños. However, some decades have stronger variability than others, and stronger 

events than others, and more of ENSO’s variability is in the LF range than in the QB range, so 

finding a potential source for the LF and longer variability would be quite worthwhile. The 

inconsistent second mode that some of the DP figures alluded to on the QB timescale suggest a 

connection with higher latitudes influencing ENSO. In earlier figures (Fig. 6), we found that QB 

and LF frequencies influence ENSO more in different decades as well, so we should now discuss 

interannual and decadal ENSO variability. 

 

6. Interannual-to-Decadal Variability, and Tropical-Extratropical Connections 

 Farneti (2014) investigated decadal variability in the Pacific, specifically by looking at 

interactions between tropical SST anomalies, the subtropical ocean gyre, and the subtropical 

(oceanic) cell. The latter two terms refer to horizontal movement of water from ocean currents, 

and vertical overturning of water, in the North Pacific, between the tropics and midlatitudes.  

 While there is already a name for decadal oscillations in the Pacific, not just in the tropics 

but across the whole ocean basin, the Pacific Decadal Oscillation (PDO), ENSO is generally 
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thought to be related to this, and Farneti et al. specifically discussed ENSO. In their idealized 

model for temperatures, gyre strength, and cell strength, they found and discussed decadal and 

multidecadal variability that lined up with observations quite well. However, one result of his 

that he did not discuss much was that this model also produced strong 4-5 year variability, lining 

up quite well with ENSO, though also stronger QB variability than the data shows, due to being 

based on an oscillator with a QB period. Figure 10 shows the result of Farneti’s model, showing 

a maximum usually every 4-7 years for SSTs in the central tropical Pacific. 

 

FIGURE 10: SST, subtropical gyre intensity, and subtropical cell anomalies from Farneti’s model, analogous to 

Figure 14 in Farneti (2014). Years are counted from initialization, with 200 years shown (left), and 50 years shown 
for detail (right). 

 

 Farneti et al. (2014) investigated how tropical SST anomalies would affect subtropical 

wind stress, and in turn, alter ocean currents and heat transport in the Pacific, mainly the North 

Pacific. The team found a connection between tropical SST anomalies and wind stress in the 

North Pacific on decadal timescales.   

Section 4 of Farneti et al. (2014) put forth an idealized model to discuss their proposed 

feedbacks between tropical Pacific SSTs associated with ENSO, the subtropical gyre, and the 

subtropical cell.  The model is based on the delayed oscillator by Suarez and Schopf (1988), 



29 

 

though it adds a term to the temperature equation: EG, where G is the strength of the idealized 

subtropical gyre, and E is an exchange coefficient. The model is a system of three ordinary 

differential equations, with values for constants derived from earlier parts of Farneti’s study. 

 Suarez and Schopf’s original 1988 delayed oscillator for ENSO is of the form: 

𝑑𝑇

𝑑𝑡
= 𝑇 − 𝛼𝑇(𝑡 − 𝛿) − 𝑇3       (1) 

 Farneti altered this SST equation to: 

𝑑𝑇

𝑑𝑡
= 𝑇 − 𝛼𝑇(𝑡 − 𝛿) − 𝑟1(𝑇 − 𝑇0)3 − 𝐸𝐺     (2) 

 In equation (2), T0 represents an equilibrium temperature proportional to the upwelling 

anomaly from the subtropical cell: 

𝑇0 = −𝛽𝐶        (3) 

 In (3), C is the term for the subtropical cell strength, while 𝛽 is set to 2 for equilibrium. 

 C, the idealized strength of vertical motion of water in the subtropical cell is given by: 

𝑑𝐶

𝑑𝑡
= −𝐾(𝐶 − 𝐺)    (4) 

 Equation (4) means that a spin up of the subtropical gyre will lead to an increase in the 

subtropical cell, and G is the term for the subtropical gyre, which is given by: 

𝑑𝐺

𝑑𝑡
= 𝐸𝑇 − 𝐾𝐺 + 𝛾𝑟2        (5) 

 In (5), like in (2), E is an exchange coefficient, keeping temperature and the gyre related. 

ET and EG in our systems of equations represent exchanges between SST anomalies and the 

strength of the gyre, and the equilibrium temperature for SSTs is affected by the subtropical cell, 

which is also impacted by the gyre, keeping all three related. This can allow for irregular 

behavior, much like one sees with ENSO, and give a plausible physical explanation connecting 
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all of these. For more details and explanations of values of the constants, refer to section 4 of  

Farneti (2014). 

When E is set to zero, leaving us with the classical delayed oscillator, we see very 

regular, QB behavior. When the exchange term is not zero however, allowing temperature to be 

affected by the subtropical gyre term, then we see more irregular behavior, with strong 4-7 year 

cycles, somewhat closer to what we see with ENSO, but still weaker than the biennial peak and 

the ~15 year peak. Even so, while the high amplitude in Farneti’s model is somewhat higher than 

normally seen for ENSO, it still shows strong 4-7 year variability, which lines up reasonably 

well with ENSO’s LF mode. Figure 10 also shows results for the strength of the subtropical gyre 

and cell, in the red and yellow lines, respectively. 

 

FIGURE 11: Composite El Niño events from Farneti’s (2014) full model (top), and with the exchange 

coefficient set to zero and logistic map set to a constant (bottom). 
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Although there is too much QB variability in Farneti’s full model thanks to its QB 

oscillator basis, the composite El Niño event based on this model’s simulation looks much more 

like that of our observations (Fig. 11). When E is set to 0, the case in Figure 12, the composite El 

Niño event is extremely regular, with an equally strong La Niña about 20 months after the peak, 

and another El Niño peak ~40 months after. The peak in the spectrum at 3-4 years is consistent 

with the period inferred from the composite of 3-4 years when E=0. In the case of the full model, 

a weak, broad bump at ~40 months out and another centered around 70 months out is consistent 

with the power spectrum with broad peaks near 3–4 years and 5–7 years. Anything past a 7-year 

period on the power spectrum would not appear in composites, as these only include ±7 years 

around any given El Niño peak, so these composites would not show multidecadal variability, 

but are useful for QB and 4–7 year variability. 

 

FIGURE 12: The same as Fig 10, but with E=0, and the logistic map r1 set to constant. This is analogous to Figure 
15 from Farneti (2014).  
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With the exchange coefficient turned on, while we still have some hints of QB variability 

as we see in the observations, it is more muted, thanks to exchange terms increasing ENSO’s 

irregularity and adding more periodicity at lower frequencies. The similarity of this model’s 

composite with respect to the observed composite ENSO events suggests that this combination 

of the tropical delayed oscillator and the tropical-extratropical teleconnections via wind stress 

and the subtropical gyre/cell do a good job in explaining the behavior of the tropical Pacific 

around ENSO events. 

 

FIGURE 13: Spectral power for both simulations, run 10,000 years for better resolution at low frequencies. The left 

figure shows the full model, with not just QB, but also LF and decadal variaibility, somewhat like what is observed 

with ENSO. The right shows the periodicity for the model with E=0 and r1 set to a constant, showing almost 

exclusively QB variaibility. 

  

This behavior of having more LF variability when the gyre exchange term is active and 

mainly having QB variability when the gyre exchange term is off is consistent with our 

hypothesis that QB variability is mainly from tropical processes, while the stronger LF 

variability is mainly from tropical-extratropical teleconnections.  
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7. Assessments of Global Climate Models 

 Finally, we wanted to see how well climate models deal with QB variability in ENSO in 

a few ways, so we performed the same analyses on CMIP5 data sets. In general, models made 

ENSO too regular, thus attributing too much variability to the QB frequencies. Figure 14 shows 

not only that the average model has too much variability, but also too much QB variability, 

causing some QBVARs to be almost double that of the OBS, and for the mean of the models, 

being a third too high.  

 

FIGURE 14: Variance, QB variance, and the variance ratios for the average model, with these measures computed 

from the first ensemble member of each of 17 CMIP5 models, and then those 17 maps are averaged together. The 

difference between the mean model and the observations are in the right column. 

 

 The QB variance ratios are too high in most global climate models, and this is mainly 

from the models being too regular in the QB range, as they have too much QB variance 

compared to the observations. However, the variance ratio being too high in the QB range may 

also have to do with LF variance being too low, as we see in the power spectra of several 
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models’ realizations of the Niño 3.4 index (20th Centrury Reanalysis: Figure 15, models: Figures 

16, 17). Jajcay et al (2018) found vast differences in ENSO between observations and models by 

several measures, and this study also finds differences between observed and simulated ENSO 

with different metrics as well. Many models make ENSO too regular, which we show not only in 

Figure 15, but also in composite ENSO events and power spectra in the appendix, with 

highlights in Figures 16 and 17.    

 

 

FIGURE 15: Power spectrum (top left), normalized composite El Niño event (top right), 15 year variance windows 

(bottom left), and the seasonal cycle of the Niño 3.4 index from the 20th Century Reanalysis. 

 

Some models are far too consistent and regular in QB behavior. 20CR’s composite 

suggest that there is usually a negative ENSO value before and after an ENSO peak, though 

negative does not need to be strong enough to be a La Niña event. For global climate models to 
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handle ENSO correctly, they should have this pattern, However, some models have a far too 

regular pattern, with a definite La Niña event following or preceding the El Niño peak. Other 

models have the opposite extreme, where there seems to be no predictability past a few months. 

The models that handle this QB behavior are also the ones that handle other aspects of ENSO the 

best, suggesting the importance of QB variability in ENSO, such as seasonal cycles, which are in 

the appendix as they are not the focus of this study. 

 While the appendix shows the power spectrum, composite El Niño, variance windows, 

and seasonal cycles for the Niño 3.4 index for each of the 17 GCMs investigated here, Figure 15 

shows these from 20CR. Figures 16 and 17 show these for two climate models, and the results 

for the rest of the models generally look like one of these, and can be found in the appendix. 

 

FIGURE 16: The same analyses as in Figure 15, but for the GISS-E2-Rp2 global climate model.  
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The GISS-E2-Rp2 model handles several aspects of the Niño 3.4 index reasonably well, 

though still has issues (Fig. 16). Its power spectrum has somewhat higher power in the QB range 

than in the LF range, where there is a peak near 30-40 months, higher than a broad peak centered 

around 50 months, and we can see this heightened QB power in the composite El Niño. On 

average, this model expects a weak La Niña 1-2 years after an El Niño peak, falling to -0.5, 

instead of -0.3 in the reanalysis. Still, it exhibits similar behavior to the observed composite, 

moving back up to zero around 4 years before or after an event. An overestimate of QB 

variability holds this - and several models - back when we see the 15-year variance windows. In 

this model, the red lines, representing the variance from QB (18-42 month) bandpass-filtered 

data, are consistently above the blue lines, representing the LF (42-84 month) filtered data. In the 

observations, these switch back and forth over decades. 

 This variance window panel tells us two things. First, this model overestimates QB 

variability, making its ENSO somewhat too regular. Additionally, it underestimates decadal and 

multidecadal variability, which we can see in the power spectrum. 10 out of 17 models we 

investigated consistently had the 18-42 month variance be greater than 42-84 month variance for 

the whole model run. These were all 6 GISS models, CNRM-CM5, GFDL-CM3, HadCM3, and 

MIROC5. Of the remaining 7, all of them switched back and forth at least once, and although 10 

of 17 consistently had more QB than LF variability for the whole run, none ever consistently had 

more LF than QB variability. 
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FIGURE 17: The same as Figures 15 and 16, but for the HadGEM2-ES model. 

 

 The GISS models are examples of models that overestimated QB variability. However, 

other models, such as the HadGEM2-ES underestimated it and/or overestimated LF and decadal 

variability (Fig. 17). While in observations, there is a weak but noticeable fall to -0.3 or so 1-2 

years after an El Niño peak, the HadGEM2-ES does not exhibit much of this behavior at all, 

falling towards zero and staying around there more than one year away from a peak. While most 

models with too much QB variability had too deep a trough, this hardly has one at all, with only 

broad but shallow troughs on average, and this is not even consistent among ensemble members. 

Additionally, it also struggles with the seasonal cycle somewhat. In observations (Fig 15), the 

Niño 3.4 index peaks in April-June, with its lowest values in the fall, climbing through winter 

and spring. This model’s seasonal peak is in June, which is reasonable, but it has two troughs 
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curiously, in September, which is similar to when the observed seasonal cycle falls, but also in 

March, when observed ENSO is already rising sharply. However, it does have the correct 

amplitude for the seasonal cycle, with a maximum near 0.6, and a minimum near -0.4. 

 Other models, even ones that switch between LF and QB playing a larger role, with 

results shown in the appendix, struggle with amplitude. Of these remaining 7 with variance 

windows that switched back and forth, five of them struggled in some way with the seasonal 

cycle. MRI-CGCM3 struggled severely with timing of the seasonal cycle, so while it had a 

comparable amplitude to that of observations, its peak was incorrectly in December instead of 

May. The seasonal cycle from HadGEM2-ES has already been analyzed, leaving us with five 

models not discussed yet.  

 Of these five models, the CanESM2, CSIRO-360, and GFDL-CM2p1 all have too high 

amplitudes for the seasonal cycle, 1.5-2 times that of observations, though the timing is fine. 

This leaves us with the CCSM4 and IPSL-CM5A-LR models as the best with respect to variance 

windows and the seasonal cycle. CCSM4 usually has variance of 0.8 in each 15 year period, 

higher than the ~0.5 observed, though IPSL handles this accurately, leaving it as the best by 

these four metrics. Even so, this model has issues as well, as discussed in Jacjay et al. (2018). 

Still, while the IPSL has slightly too strong troughs after an El Niño event, and slightly too much 

QB power in its power spectrum, it exhibits close composites to observations compared to most 

other models, suggesting that the correct balance and mechanisms behind QB variability and LF 

variability would vastly help in predicting and handling of ENSO events. Models with too much 

QB variability make ENSO too regular, but models with too much LF and decadal variability 

make it too irregular. While the IPSL handles ENSO reasonably well by these four metrics, it 

still could be improved; every model has some flaws with ENSO, most overestimate QB 
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variability, and some do not even have the right seasonal cycle, indicating serious underlying 

issues in how they handle processes governing tropical oceans and ENSO. 

 

8. Summary and Conclusion 

While more of ENSO’s periodicity is in the LF range than the QB range, defined in this 

study as approximately 18-42 months, the QB range still plays an important role. In composite El 

Niño events, QB variability is evident according to each ensemble member of the 20th Century 

Reanalysis. This supports investigations of QB variability, and this range is in line with the 

period from the classical delayed oscillator model by Suarez and Schopf (1988). QB variability 

can be mapped by putting observations through a simple bandpass filter after removing the 

seasonal cycle, and then taking the variance at each point. This can be compared to the full 

temperature anomaly map, again after removing the seasonal cycle, to show global maps of 

temperature variability, QB variability, and the QB variance ratio.  

The QB variance ratio is higher in the tropics than higher latitudes, and higher over 

oceans than land, while overall, QBVARs are highest in the tropical Pacific, again suggesting the 

QB variability plays a major role in ENSO. Discriminant analysis reveals that there is only one 

consistently strong mode that is confined within the tropics on the QB timescale, which tells us 

that QB variability can be explained mainly by tropical processes. A second pattern had some 

connection to the midlatitudes, but generally was quite weak in the tropics in the QB range, 

suggesting that any connection to the midlatitudes, were it important for ENSO, would be 

strongest in another frequency band. The delayed oscillator model would potentially work as this 

one tropical QB mode, being based on equatorial waves, and oscillating approximately every 
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three years. This alone would not explain ENSO’s irregularity, nor does it explain ENSO’s high 

spectral power in the LF range or beyond, so for those, other mechanisms must be investigated. 

Over time, the QB mode and the LF mode strengthen and weaken, both in their absolute 

variance, and in their variance ratios with respect to that of ENSO, with some decades having 

more of one than the other, suggesting decadal and multidecadal variability playing a role to 

modulate the strength of both of these modes. A system of three ordinary differential equations 

connects these themes together by connecting tropical SSTs and thus ENSO to the subtropical 

gyre and subtropical cell of the North Pacific, via wind stress. This system of equations by 

Farneti et al (2014) produces a power spectrum more like that of ENSO than the CMIP5 global 

climate models produce. It builds on the delayed oscillator and thus has almost exclusively QB 

variability when exchange terms are turned off, and has QB, LF, and decadal variability when 

exchanges between the tropics and subtropical circulations are included.  

CMIP5 models generally have too much variability in the tropical Pacific in the QB 

range, as well as too high a QBVAR in that region as well, going along with findings from Jajcay 

et al. (2018) that most models struggle with ENSO and make it too regular. Additionally, GCMs 

having too much QB variability specifically in the tropics suggests goes along with the 

hypothesis that QB ENSO variability is mainly tropical. 

The results of this study, along with previous work along the lines of Suarez and Schopf 

(1988) and Farneti et al. (2014)suggest that QB variations in ENSO are primarily from tropical 

mechanisms, likely the delayed oscillator, and that LF variations are from tropical-extratropical 

teleconnections, specifically via tropical SST anomalies leading to wind stress anomalies in the 

subtropical Pacific, thus affecting the subtropical gyre and subtropical cell, and in turn, SSTs. 
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9. Future Work 

 As much as climate models have improved in recent years, there is still work to be done 

in improving their handling of ENSO. As the variance errors in the arctic, there are still some 

issues to work out with ocean currents and extratropical teleconnections in general, and as 

Farneti’s findings suggest, these could lead to great improvements in Pacific temperature 

variability.  

 Applying variance ratios to other frequency bands and to different data sets either for 

ENSO or other parts of the ocean-atmosphere system may prove insightful for learning about 

processes in various timescales not focused on much yet. Of course, longer data sets would be 

better, especially for lower frequencies.  

Farneti’s model is likely a good basis, which in turn is based on the delayed oscillator by 

Suarez and Schopf (1988), seems to be a good basis for a more predictive ENSO model. Of 

course, the gyre and cell terms are idealized, so scaling these simple terms to real physical 

parameters for vast circulations could be challenging. Even so, including tropical-extratropical 

teleconnections and a seasonal forcing on top of the classical oscillator would likely be quite 

useful in simulating ENSO even more effectively. 

Finally, more observations would prove quite useful. This study only used surface 

temperature data, though much of ENSO’s variability involves hundreds of meters of depth into 

the ocean as the thermocline and currents change. Additionally, our observations even at the 

ocean surface are rather sparse. With more observations, we can achieve better understanding not 

just of ENSO, but of the whole world’s climate variability affected by it.  
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Appendix: ENSO Statistics from CMIP5 Models 

 The following figures show four panels of data for realizations of the Niño 3.4 index 

from each of 17 CMIP5 models, as well as the 20th Century Reanalysis. The top left panel shows 

the power spectrum. The top right panel shows the power spectrum, as in Figure 1; the top right 

shows composite El Niño time series events, as in Figure 2; the bottom left shows 15 year 

variance windows, with the same calculations and color scheme as in Figure 6; the bottom right 

shows the seasonal cycle of the index. In each panel that shows ensemble members, the average 

properties of each are shows in a bold, black line, while each ensemble member is measured with 

a thin colorful line. 

 

 



45 

 



46 

 



47 

 



48 

 



49 

 



50 

 



51 

 



52 

 



53 

 

  


	Biennial and Low-Frequency Components of El Niño/Southern Oscillation
	Recommended Citation

	tmp.1617736683.pdf.SceJr

