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ABSTRACT 

STABILITY AND PREDICTIVE VALUE OF INTELLECTUAL FUNCTIONING IN 
NEUROFIBROMATOSIS TYPE 1 BEGINNING IN THE PRESCHOOL YEARS 

by 

Gregor Nathanael Schwarz 

The University of Wisconsin-Milwaukee, 2020 

Under the Supervision of Professor Bonita P. Klein-Tasman 

 

Neurofibromatosis type 1 (NF1) is a rare genetic disorder that affects multiple aspects of 

cognitive functioning, including intellectual functioning, attention, and executive functioning. 

The predictive value of intellectual functioning (IF) in the preschool years for IF in the school-

age and early adolescent years has not been examined in youth with NF1. In this study, the 

reliability and predictive value of preschool IF for school-age IF were examined using both 

bivariate correlation and more complex linear mixed models. The participants were 55 youth 

with NF1 from ages 3 to 13 years. Intellectual functioning was measured with the Differential 

Ability Scales 2nd edition (DAS-II), an individually administered comprehensive measure of IF. 

Results indicate that both general IF and verbal functioning can be reliably measured in the 

preschool years in NF1 and that they hold predictive value for school-age functioning in NF1. In 

the bivariate correlation models, general IF in the early preschool years appeared to be a 

particularly strong predictor of school-age IF. Linear mixed models appeared to enhance the 

prediction of verbal functioning, with models including socioeconomic status (SES) and 

attention-deficit/hyperactivity disorder (ADHD) symptoms as predictors of IF. Nonverbal IF was 

generally unreliable in the preschool years and had limited predictive value, particularly once 

confounding variables and extreme cases were removed in the linear mixed model analysis. In 
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addition, based on the linear models, youth appear to increase in general and verbal IF relative to 

their peers during the preschool years. However, this trend does not appear to continue in the 

school-age years, and General Conceptual Ability (GCA), Verbal and Nonverbal scores as a 

group decrease into the school-age years, likely associated with increased conceptual demands in 

this period of development. Nuanced understanding of the predictive value of IF in the preschool 

years in NF1 may be helpful in the assessment of early risk predictors and treatment planning.   
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Stability and Predictive Value of Intellectual Functioning in 

Neurofibromatosis Type 1 Beginning in the Preschool Years  

 

Neurofibromatosis type 1 (NF1) is a rare genetic disorder that affects a variety of aspects 

of cognition, including intellectual functioning (IF). Among individuals with NF1, there is robust 

evidence of a moderate reduction in general-level IF in comparison to same-aged peers, although 

IF is in the average range on a group level. In school-age children with NF1, cognitive 

difficulties are associated with academic difficulties. Evidence from a moderate number of cross-

sectional studies and a small number of longitudinal studies suggests that the level of IF 

difficulty experienced by youth with NF1 is independent of age and is similar in the preschool, 

school-age, and early adolescent years. The predictive value of IF in the preschool years has not 

been examined in relationship to later IF. A detailed understanding of the variability in the IF 

trajectories of children with NF1 and an examination of the predictive value of preschool IF for 

later cognitive difficulties is critical to developing a more nuanced understanding of the early 

indicators of later cognitive difficulties in individuals with NF1. This more nuanced 

understanding of the cognitive difficulties of youth with NF1 would potentially assist in both the 

assessment of early risk predictors for later IF difficulties and early intervention planning for 

youth with NF1. 

Stability of IF in the Preschool Age and Prediction of Later IF in Typical 

Development 

Early Preschool Intellectual Development as a Predictor of Later Preschool IF  

The measured IF of younger preschool-age children predicts IF in later preschool with 

moderate effectiveness. There is specific evidence that some stability exists in the development 
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of general intellectual, verbal, and nonverbal abilities between the ages of three and six years, as 

is indicated by moderate to large-sized cross-age correlations (.40s–.80s) of standard scores 

(Baker et al., 1958; Bayley, 1949; Hindley & Owen, 1978; Honzik et al., 1948; Scheider et al., 

1999; Schneider & Bullock, 2010; Wilson, 1974). These moderate-sized correlations suggest that 

the prior year’s IF accounts for 15–65% of the current year’s IF. There is some evidence that a 

higher initial IF negatively predicts an increase in IF (Hindley & Owen, 1978). However, the 

high mean IQ of the sample (in the 120s) may not accurately reflect the same relationship within 

the broader population (Hindley & Owen, 1978). To more confidently conclude that a higher 

initial IF relates to reduced slopes in developmental trajectories, this finding needs to be 

replicated in a sample that is more representative of the general population.  

Preschool Intellectual Development in Predicting IF in the School-age and Early Adolescent 

Years  

There is a large body of research indicating that both verbal and nonverbal intelligence in 

the preschool years are significant predictors of intelligence in the school-age and early 

adolescent years. Moderate correlations between the predicted and measured values of school-

age and early adolescent IF (.30–.50s) suggest that roughly 10–25% of variability in later 

intelligence can be accounted for by an individual’s intelligence level at age 3 (Bayley, 1949; 

Crockett et al., 1975; Gardner & Clark, 1992; Hindley & Owen, 1978; Sameroff et al., 1993; 

Schneider & Bullock, 2010). The similar effect size of prediction within the preschool years 

compared to prediction into adolescence is indicative of somewhat increased stability of IF in the 

pre-adolescent and adolescent years. The possible increased stability in IF during these years 

may be due to the increased effects of heritability with increasing age (Davis et al., 2009; Ferrari 

& Sternberg, 1998). In addition, McCall and Owen (1973) found that the two clusters whose IQ 
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performances decreased over the preschool period showed significantly lower IQs in late 

adolescence when compared to the two clusters whose IQ performances increased over the 

preschool period. As is common for studies of intellectual development, most samples have a 

mean in the high average to superior range, and therefore, results may not be representative of 

patterns in the general population. Overall, there is robust evidence that preschool intelligence 

levels predict intelligence levels in the school-age and adolescent years with generally moderate 

effectiveness and that developmental trajectories in preschool may be relevant to intellectual 

development in adolescence.  

Evidence of Stability and Variability in Intellectual Development in Preschool-Age Children 

In contrast to many long-held assumptions about the highly stable development of 

intelligence, and particularly those assumptions of the early 20th century (Baker et al., 1958; 

Bayley, 1949), multiple studies using clusters or cluster-like analyses have presented evidence of 

significant instability in the development of intelligence during a child’s preschool years 

(Hindley & Owen, 1978; McCall et al., 1973). According to both Hindley and Owen (1978) and 

McCall, Appelbaum, and Hogarty (1973), about half of typically developing children 

demonstrate stable development of IF throughout the preschool period, and about one quarter of 

the same population makes sizeable improvements (e.g., 13+ Standard Score points, SS). The 

final quarter of children show decrements in IF when compared with their peers (e.g. ~10 SS, 

Hindley & Owen, 1978; McCall et al., 1973). Using factor analysis, McCall et al. (1973) 

identified five clusters of cognitive development from toddlerhood to late adolescence. Of these 

five clusters, one cluster showed relatively stable scores throughout development, two clusters 

showed significant increases, and two clusters showed significant decreases over the preschool 

period. The evidence from both the proportional and cluster-based analyses suggests that both 
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significant stability and instability occur in the development of intelligence over the preschool 

period. 

NF1: General Description and Review of Cognitive Development in NF1  

Description of NF1 and General Cognitive Phenotype in NF1 

NF1 is a genetic disorder caused by the mutation of a single gene on chromosome 17 

(17q11.2). Occurring in about 1 in 3000 live births, NF1 manifests with physical features 

including café-au-lait spots, optic glioma, skin freckling, lich nodules, and cutaneous 

neurofibromas. Cognitive features include mildly lowered intellectual functioning, increased 

rates of attention-deficit/hyperactivity disorder (ADHD), executive function (EF) difficulties, 

and academic problems (Acosta et al., 2006; K. North et al., 1995). Neurofibromin, the product 

of the NF1 gene, is generally considered a tumor suppressor gene. The relations between 

abnormal neurofibromin and the non-tumor-related features of NF1 have yet to be clearly 

delineated (North, 2000). A model of cognitive deficits in NF1 by North (2000) proposes that the 

mutated NF1 gene produces abnormal neurofibromin, which causes aberrant cell growth and 

differentiation in the central nervous system, particularly during embryonic development. As a 

consequence, aberrant gliosis and myelination are hypothesized to manifest as T2 signal 

hyperintensities on magnetic resonance imaging (MRI) T2 weighed images. This abnormal 

myelination is assumed to disrupt higher cognitive processing in NF1. T2 hyperintensities are 

found in 30–70% of individuals with NF1 and are located in several areas, including the basal 

ganglia, the cerebellum, the brain stem, the thalamus, and the subcortical white matter (North, 

2000; Payne et al., 2014). The evidence regarding the relation between T2 hyperintensities 

(presence, number, location) and IF (as early as preschool age) is somewhat mixed (North, 

2000).  
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One of the most robust findings regarding IF in children with NF1 is that both older 

children (ages 8 and older) and preschoolers (ages 3–6) have lower levels of IF in comparison to 

same-aged peers (e.g., IQ ~90) at a group level of about 10 SS points below average (Coutinho et 

al., 2016; Cutting et al., 2002; Erdoğan-Bakar et al., 2009; Klein-Tasman et al., 2014; Lidzba et 

al., 2012; Lorenzo et al., 2013; Lorenzo et al., 2015; Nupan et al., 2017; Sangster et al., 2010). 

On a group level, youth with NF1 have similar variability in IF, which is indicated by similar 

standard deviations when compared to the general population (Cutting et al., 2002; Klein-

Tasman et al., 2014; Lorenzo et al., 2013; Lorenzo et al., 2015; Nupan et al., 2017). Another 

robust finding is that, within the different commonly measured domains of intelligence, there is 

an absence of any strong and consistent pattern of relative strengths and weaknesses in children 

with NF1 (Klein-Tasman et al., 2014; Nupan et al., 2017).  

Children with NF1 also show frequent attention problems. Around 40% of children with 

NF1 meet the diagnostic criteria for ADHD, and a large additional proportion of children 

experience attention symptoms below the diagnostic threshold for ADHD (Acosta et al., 2006). 

Youth with NF1 also show more EF difficulties than their typically developing peers (Nupan et 

al., 2017). Given the range of cognitive difficulties previously described, it is unsurprising that 

many children with NF1 struggle academically, frequently meeting the diagnostic criteria for 

specific learning disabilities (Hyman et al., 2006; North et al., 1995). Because NF1 is 

characterized by a mild global lowering of IF, elevated rates of ADHD, EF difficulties, and 

academic difficulties, it is important to consider what specific difficulties, including general 

intellectual phenotype and trajectories over time, may be used to effectively identify predictors 

for later IF difficulties. Consideration of the role of ADHD and EF difficulties in trajectories of 
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IF is an important topic that is beyond the scope of the current study, though it warrants further 

investigation.  

Development of IF in NF1 - Clues from Cross-sectional Designs 

Cross-sectional studies of preschoolers, school-age children, and adolescents with NF1 

suggest that youth with NF1 seem to neither fall further behind nor catch up to their typically 

developing peers. Current evidence based on cross-sectional data suggests that, for older children 

with NF1, the slope of overall intelligence development is similar to that of typically developing 

children. This assertion is supported by the lack of a statistically significant correlation between 

age and Wechsler Intelligence Scale for Children (WISC) Full Scale IQ (FSIQ) scores in what is, 

for the NF1 literature, a relatively large sample of about 100 children with NF1 (Hyman et al., 

2005). More detailed investigations of second- or third-order intellectual factors correlated with 

age have not been conducted.  

Similar to older children, the somewhat lower IF in preschoolers with NF1 appears to be 

independent of age, as is indicated by the lack of a statistically significant correlation between 

age and overall IQ score (Klein-Tasman et al., 2014). Additionally, no correlations between age, 

domain (i.e., verbal, spatial, nonverbal), or individual subtest standardized scores (including 

short-term memory) were found (Klein-Tasman et al., 2014). However, this study’s sample of 

preschoolers with NF1 was small (N=37) and did not have sufficient power to detect small- to 

moderate-effect sizes (r’s <.38; (Klein-Tasman et al., 2014).  

Slopes of IF Development in Older Children with NF1 - Findings from Longitudinal Designs 

There is very limited evidence from longitudinal studies that is consistent with the cross-

sectional findings that indicate that the slope of intellectual development in older children with 

NF1 may be similar to that of their typically developing peers in several domains of IF. To the 
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knowledge of this author, only two longitudinal studies of intellectual development utilize a 

sample of older children with NF1.  

Using growth curve modeling with a mixed effects model, Cutting et al. (2002) found 

that vocabulary, visual-spatial, and fluid reasoning in youth with NF1 developed with similar 

slopes to those of their unaffected siblings. This study, however, was significantly underpowered 

(overall N=19, N=12 for 2–5 time points), and p-values (.2–.3) suggest that group-level slopes 

may actually differ significantly between youth with NF1 and typically developing children. 

Another caveat is that the study involves the use of three different IQ test versions (i.e., WISC-R, 

WISC-III, and WAIS-R). The authors attempted to correct for this statistically; however, when 

considering the high probability of age-to-test correlation, especially between the youth and adult 

versions, the interpretation of these results becomes more challenging.  

In an 18 year follow-up study, a sample of 8- to 16-year-old children with NF1 (N 

NF1=18, control=5) demonstrated an apparently significantly improved FSIQ at a non-specific 

point in early adulthood which fell between the study’s 8 year follow-up at Time point 2 (T2) 

and Time point 3 (T3)’s 18 year follow-up (Payne et al., 2014). While the authors reported no 

additional statistically significant differences at T2 between individuals with NF1 and control 

participants, this analysis did not have sufficient power to detect moderate or even large effect 

sizes. Therefore, although the longitudinal evidence is largely consistent with the cross-sectional 

evidence that indicates that older children with NF1 may show similar slopes of intellectual 

development to those of their typically developing peers, sample sizes in this study were too 

small to detect small to moderate effects and to allow for more confident conclusions. 
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Development of IF in Preschoolers with NF1 – Findings from Longitudinal Designs 

Longitudinal study of intelligence development in preschoolers with NF1 is extremely 

limited and primarily indicates an urgent need to investigate this topic further. Wessel et al. 

(2012) conducted the only study that investigated cognitive development in NF1 across the 

preschool years. This longitudinal study of 43 infants, preschoolers, and school-age children with 

NF1 (all under 9 years of age) used the developmental screener The Parents’ Evaluation of 

Developmental Status (Brothers et al., 2008), which very briefly screens for expressive and 

receptive language as well as gross motor, math, self-help, fine motor, and social-emotional 

skills based either on a single prompt to the child or parental report, using a single question to the 

parent; questions are tailored to the child’s chronological age. Participants were categorized as 

“delayed” if they fell below the 17th percentile on an overall index score of development based 

on this brief screener. At follow-ups of unspecified distances, participants exhibited a general 

trend towards an increasing number of delayed areas with increases in age (from 0 to 8 years). 

The large age range in early childhood and the varying follow-up intervals make these results 

difficult to interpret. Furthermore, the measure used relies on a single item per domain and does 

not have the strong psychometric properties characteristic of standardized measures of 

intellectual functioning.  

Limitations of Prior Research and Extensions of Prior Research 

As of 2020, the stability and predictive value of preschool IF in relation to later IF in the  

school-age and early adolescent years has not been investigated in youth with NF1. In cross-

sectional samples, the existing literature on IF in NF1 has focused on group-level average 

comparisons with typically developing children. The small number of longitudinal studies of IF 

in NF1 have not investigated the stability and predictive value of preschool IF in relationship to 
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later IF in children, and there is only one longitudinal study of IF in NF1 that included 

longitudinal data on preschoolers. However, the study included children from infancy into the 

early school years without specification of the follow-up interval, without specific examination 

of preschool IF, and using only a developmental screener to measure IF. Therefore, it remains 

unclear how stable and predictive preschool IF is for later IF in late preschool, the school-age 

years, and early adolescence in NF1-affected youth.  

Conclusion and Rationale for the Current Study 

In summary, although there is relatively consistent evidence for the general scope and 

degree of IF difficulties in NF1, research into the stability and predictive value of preschool IF in 

NF1 is generally lacking. Evidence from typical intellectual development suggests variability in 

the stability of intelligence during the preschool years and in trajectories of development from 

the preschool years into both the school-age and early adolescent years. However, sample and 

measurement characteristics of the available studies on typical intellectual development limit the 

generalizability of these findings in reference to the overall population such that findings from 

most existing studies may not accurately reflect the stability and variability of the IF trajectories 

of the general population. More specifically, many investigations included samples consisting 

primarily of children with above-average to superior intellectual abilities and from families with 

a relatively high socioeconomic status (SES). Additionally, longitudinal studies that included 

assessments over multiple years frequently used either revisions of a single IQ test or tests from 

different developers (Bayley, 1949; Hindley & Owen, 1978; McCall et al., 1973), which, in the 

absence of infrequently used structural equation modeling, creates barriers to precise 

interpretation of study results. Furthermore, very few longitudinal studies of typical intellectual 

development have investigated predictors and outcomes of the trajectories of intellectual 
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development. These limitations in prior research of typical intellectual development increase the 

difficulty of forming precise hypotheses regarding the development of IF in NF1.  

This study is the first longitudinally designed study with children with NF1 that tracks 

intellectual development from preschool into adolescence. Furthermore, this is the first study 

with children with NF1 to test the ways in which preschool IF is predictive of later IF in late 

preschool, the school-age years, and early adolescence. This study is also the first to examine 

NF1 IF longitudinally using the same examiner-administered IQ test over the entire study period 

from preschool to adolescence, rather than utilizing parental reports of cognitive functioning as 

was done in earlier studies. 

Brief Study Description 

This study will describe the reliability and predictive value of IF in the preschool years 

(overall IQ, verbal IQ, and nonverbal IQ) in relation to IF in the school-age and adolescent years 

in NF1-affected youth. The study will examine year-to-year reliability as well as the reliability of 

IF when comparing the IF of early and late preschool-age participants to their IF at between 9 

and 13 years of age. The predictive value of early preschool IF will be examined by determining 

whether IF at one or more time points in the early preschool-age group predicts IF in the late 

preschool-age (e.g., 6 years). The predictive value of preschool IF in reference to IF in the 9- to 

13-year-old age range will also be evaluated using predictions based on either a single time point 

or trajectories. The study will use both traditional correlational models and multiple regression 

models to predict IF. In addition, more complex statistical models, including linear mixed model 

growth curve models (LMMGCs), will be used to predict later IF.  
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Methods 

Participants 

As illustrated in Table 1, 69 children with NF1 participated in 1 or more visits, and 55 

children with NF1 participated in 2 or more visits. Of the group that participated in 2 or more 

visits, 47 children attended 2 visits by age 8. Of all study participants, 27 children have follow-

up data in school-age or adolescence (9–13 years). Table 2 describes the age of each participant 

at each visit.   

Recruitment  

Children with NF1 were primarily recruited from the Neurofibromatosis Clinic at the 

Children’s Hospital of Wisconsin (CHW) Genetics Center and the Neurofibromatosis Program at 

the University of Chicago Medical Center (U of C). Additionally, other children with NF1 from 

the Chicago and Milwaukee areas that were not followed by the CHW or U of C were included; 

these individuals generally heard about the study through NF Midwest, which is one of the 

organizations that provided research funding. When families visited the CHW and U of C clinics, 

they were offered general information about the study through a study representative. 

Screening and Diagnosis  

Participants with brain tumors and seizures were excluded from the study. Diagnosis was 

made by the above-mentioned collaborating clinics and also by review of case records. 

Materials 

The measures selected are appropriate for preschoolers, school-age children, and 

adolescents and were selected to provide information about participants’ cognitive and 

psychosocial functioning. 
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Differential Ability Scales, 2nd Edition  

The Differential Ability Scales, 2nd edition (DAS-II) is a comprehensive, individually 

administered measure of cognitive abilities (Elliott, 2007). It has an excellent floor and is 

designed to examine cognitive abilities in a wide range of child populations, including children 

with intellectual disabilities and learning disabilities and problems. The DAS-II is normed for 

children between the ages of 2.5 and 17 years. The test has excellent internal consistency, strong 

test-retest reliability, and high correlation to other measures of cognitive abilities. A large, 

nationally representative sample was used to provide adequate age norms. The DAS-II was 

chosen for this study because it has excellent psychometric properties and appears sensitive in its 

ability to detect individual patterns of strengths and weaknesses. Administration time varies with 

age and ability and lasts an average of about one hour. 

The DAS-II factor structure and its underlying tasks vary somewhat by age. The test uses 

three different age ranges to measure general cognitive abilities. The “lower level” includes ages 

2.5–3.4 years, the “upper level” includes ages 3.5–6.9 years, and the “school-age level” includes 

ages 7–17.9 years. The General Cognitive Ability (GCA) composite is intended to reflect general 

cognitive functioning and includes verbal and nonverbal reasoning factors for the lower level  

participants (2.5–3.4 years) and verbal, nonverbal, and spatial reasoning factors for all other 

children (ages 3.5+). Most tasks for the second-order factors change, particularly from the upper-

level to the school-age level, with the notable exceptions of the nonverbal Matrices task and the 

nonverbal/later spatial reasoning Pattern Construction Task. Beginning at age five years and 

continuing through the school-age assessments, there are additional tasks that load onto working 

memory and processing speed composites. Of note is the fact that, unlike the Wechsler tests 
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(WISC, WIPPSI), the “overall” IQ for the DAS-II never includes working memory and 

processing speed. 

Conners Parent Rating Scales-Revised Short Form  

The Conners Parent Rating Scales-Revised Short Form (Conners, Conners, 1997) is a 

commonly used measure of ADHD symptoms in children ages 13–17. The Conners norm-

referenced t-scores used in the current study include the Cognitive Problems/Inattention Index 

and Hyperactivity Index. The Conners was included as a dimensional measure of attention and 

hyperactivity/impulsivity problems that may relate to IF performance in youth with NF1.  

Hollingshead Index 

The Hollingshead Index is a measure used to estimate socioeconomic status 

(Hollingshead, 1975). It includes the education and occupation(s) of the head(s) of the 

household, as well as their employment status. Of note, occupation has a somewhat higher 

weight than education (5x vs. 3x). The index has adequate internal consistency and strong cross-

sectional convergent validity based on 1970 census data and is widely used in psychosocial 

research. For the purposes of this study, partners living in the same household without being 

married were treated equally to married partners in the calculation of the index.  

Procedure 

Session Procedure and Assessment Instruments 

This study uses data collected from a larger longitudinal study that included an extensive 

battery of neuropsychological tests for the children with NF1, parent interviews, and 

questionnaires for both parents and teachers. The children’s direct assessments usually lasted 

three hours. The Differential Abilities Scale II (DAS-II), whose scores were used for this 
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investigation, was always administered first to maximize the chances that scores reflected the 

best abilities of the child. 

Statistical analysis, testing for normality, and assessment of outliers were conducted with 

R version 3.6.1 and R version 4.0.2. Potential univariate outliers for independent t-tests were 

identified as values with extreme z-scores (+-3.29) as recommended by Tabachnick and Fidell 

(2013b). Potential bivariate outliers for bivariate correlations were identified as having 

studentized residuals higher than +-2. 

Study Aims, Hypotheses, and Analytic Strategy 

Unless otherwise noted, all analyses were conducted with norm-referenced scores. When 

possible, R2 values were reported as the effect size with 95% confidence intervals. Potential 

study drop-out effects were examined by conducting t-tests comparing children with a single 

visit to children with two, three, or four visits on general IF (DAS-II GCA Score), Conners 

Inattentive and Hyperactive symptom scores, and Hollingshead SES index scores. LMMGCs 

have been successfully fitted on smaller or similar sized longitudinal samples (Cutting et al., 

2002; Lorenzo et al., 2015; Sansavini et al., 2014).   

Aim 1: Describe the Reliability of General IF, Verbal IF, and Nonverbal IF and Evaluate the 

Degree of Change in IF Over the Preschool Period and Into Pre-adolescence and Adolescence 

in NF1.  

To describe general reliability, year-to-year Pearson correlations were conducted for 

general IF, verbal IF, and nonverbal IF for participants between three and eight years of age 

(Table 4). It was expected that almost all year-to-year correlations would be statistically 

significantly positive correlations since there is a large range of correlations (.40–.80) reported in 

existing literature discussing typically developing children. Since the data from a more 
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representative, typically developing sample suggests lower cross-age correlations, most 

correlations were expected to fall in the .40–.60 range. R2 values were also reported. Power (see 

Table 2) is estimated to be adequate primarily for effect sizes in the large range (r’s .49–.75) but 

low for medium effect sizes.  

A reliable change proportion table was prepared to describe shifts of performance in the 

sample. Reliable Change Index (RCI) scores are a measure of the statistical stability of the scores 

of an individual on the same measure on repeated occasions (Jacobson & Truax, 1991). First, an 

RCI was computed for both preschool-age children and older children based on DAS-II 

Standardization sample test-retest reliability data (based on a 1–9 week test-retest interval) using 

means, standard deviations, and test-retest correlations for general IF, verbal IF, and nonverbal 

IF, based on the approach by Jacobson and Truax (1991). The test-retest correlations from the 

DAS-II were used to create RCI scores. These scores captured instability expected in the general 

population over brief test-retest intervals, reflecting primarily fluctuations in state and not 

necessarily long-term performance shifts (data for longer term stability are not available). The 

standard deviations of the relevant scores in the study’s sample were used to capture the score 

variability in the youth with NF1. Hence, RCI scores beyond the cut-off of 1.96 indicated that 

changes on an individual level occurred were unlikely to be due to chance and reflected a change 

beyond the day-to-day variation in performance expected in the general population and 

considering the variability in IF in NF1. The proportions of the sample whose performance shifts 

were greater than the RCI cut-off value were reported using several time points across the 

preschool age and an additional time point in the school-age and early adolescent age categories, 

which were collapsed due to the presence of a single data collection point within the age range. 
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Comparisons were conducted between the 3- to 4-year and 6-year scores, the 3- to 4-year and 9- 

to 13-year scores, and the 6- and 9- to 13-year scores.  

Aim 2: Identify Patterns in Early Preschool IF as Predictors for Late Preschool IF Difficulties 

in NF1 

Aim 2a: Identify Whether Early Preschool-age IF at a Single Time Point is 

Predictive of IF at the End of the Preschool Period. It was expected that general IF at ages 

three to four years would predict general IF at age six years, and similarly that verbal and 

nonverbal IF at ages three to four years would predict verbal and nonverbal IF at age six years. 

Bivariate Pearson correlations were conducted to determine whether IF (general, verbal, and 

nonverbal) from ages 3.0 years to 4.9 years significantly predicted IF at age 6 years. R2 values 

were reported as an effect size of the predictor. Power (see Table 2) was estimated to be adequate 

primarily for effect sizes in the large effect size range but low for medium effect sizes. 

Aim 2b: Examine Whether Trajectories of Change in Early Preschool (Before Age 

6) Predict IF in Late Preschool (at Age 6). The intention was to use LMMGCs (Fitzmaurice et 

al., 2011) to test how predictive individual linear growth curves, as well as an overall average 

growth curve, are in predicting intellectual functioning late in preschool (at age 6). In the interest 

of parsimonious modeling and because of the number of observations per child, models using the 

entire 3–13 age range were estimated, and the plan was to set the intercept at age 6. The 

correlation between the random intercept and the random slope (age) effect represents the degree 

to which the individual growth trajectories predict late preschool IF. If a linear slope over the 3–

13 age range represents the data adequately (as evidenced by linear Lowess curves), then the age 

3–13 linear slopes could be used to predict IF at age 6. If the slope is not linear and preschool 

and school-age IF appear to have different slopes (as evidenced by non-linear Lowess curves 
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indicating two different slopes), growth slopes can be separated into two separate splines (e.g., 

3–6 years, 6–13 years). It was expected that the individual growth trajectories (individual slopes) 

of the preschool years would significantly predict IF in late preschool (general IF, verbal IF, 

nonverbal IF).  

Specification of Linear Mixed Model Growth Curves (LMMGC). To begin, Lowes 

smoothing curves were fitted on general IF, verbal IF, and nonverbal IF data to confirm that 

group-level trajectories were linear and if that was not the case, an adjusted model that more 

adequately represented the group-level growth curve was attempted. Individual participants’ age 

at testing was used to anchor observations in order to account for the age of participants at the 

time of their entry into the study (Tabachnick & Fidell, 2013a). The LMMGC only uses 

available information to build the growth curve estimates for each individual case and can 

flexibly account for missing data, as linear slopes are estimated individually and anchored at the 

time of testing (West et al., 2014a). A “bottom up” strategy to model building was used starting 

with the simplest “unconditional means” model and progressively adding complexity to the 

model, including age effects and covariates (see Table 6). A bottom up strategy was employed to 

systematically build the linear mixed model and if modeling challenges arose, to identify the 

source of the model specification problem. For a brief introduction to linear mixed models, see 

Curran, Obeidat and Losardo’s (2010) excellent primer. For a more detailed introduction to 

multi-level based growth modeling please refer to West, Welch and Galecki (2014a) and Singer 

and Willet (2003).   

Covariate Selection and Specification in the LMMGCs. Several covariates were 

included because they are theoretically linked to the performance of intellectual functioning and 

were also linked in the attrition analyses to data not missing at random. First, sex was included as 
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a time-invariant fixed effect because there was a tendency for boys to return for additional visits. 

SES is widely known to be related to IF and verbal functioning and vocabulary in particular, and 

SES was included as a time-varying covariate (values can change at each visit) and was 

measured with the Hollingshead Index. Parent-reported ADHD symptoms were measured as 

time-varying covariate by Conners Parent Rating Scales-Revised Short Form Cognitive 

Problems/Inattention Index Scores and Hyperactivity Index Scores (T-scores). Medication status 

was entered as a time-varying variable. Medication status was assessed at each visit and, for the 

purposes of this study, “ADHD medication status” was defined as a participant who was at the 

time of the appointment prescribed and taking a medication that likely affected ADHD 

symptoms (typically stimulants, occasionally SSRIs, and once Risperdal, an atypical 

antipsychotic medication). To center variables (in order to create meaningful intercept and avoid 

modeling problems), an adjusted “grand mean centered” approach was used wherein all 

continuous covariates (i.e., Conners Cognitive Problems/Inattention, Conners Hyperactivity, 

SES) were centered by using the general population mean for norm-referenced scores (Conners) 

and sample mean for non-norm referenced scores (Hollingshead SES), meaning that the 

intercept, as well as the fixed effects' beta values, reflected initial status and change in status 

based on population average ADHD symptoms and sample average SES.  

Specification of DAS-II Related Covariates in LMMGCs. The composition of tasks 

mapping onto the “Nonverbal” DAS-II index changes at age 3 years and 6 months (Copying 

becomes a spatial task, Matrices become a new/nonverbal task). Because Age was centered at 

age 11 (in the middle of the follow up age range of 9–13 years), “2 GCA Indices” was coded as 

1=GCA with 2 indices and 0=GCA with 3 indices so that at the intercept (age 11), the average 

child was assumed to have a nonverbal index in the context of GCA based on 3 factors. This 
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covariate was only included in Nonverbal models, as Verbal models were not affected by this 

shift in tasks between the “lower level” to “upper level” DAS-II Early Years form battery. 

Therefore, any group-level shifts in performance that occurred on the Nonverbal Index scores 

from an early 3-year-old visit (<3-years, 6 months) to a later visit that appear to be related to 

change in the tasks included in the index were accounted for with this time-varying covariate. 

Similarly, many tasks in the Verbal, Nonverbal, and Spatial Indices on the DAS-II between the 

DAS-II Early Years and DAS-II School Years forms change; only “Pattern Construction” and 

“Matrices” stay as tasks across the preschool and school-age batteries, otherwise new tasks with 

qualitative differences are included (e.g., Naming in Early Years battery vs. Word Definitions in 

School-Age form) that reflect the qualitative shifts in cognition expected across IF development 

from the preschool period into the school-age period, reflecting an increase in more conceptual 

and abstract thinking. The variable “DAS Early Form” was coded as “0” for any child age 9 or 

older that completed the school-age form so that the intercept of the models reflects an 11-year-

old participant with performance on the school-age form. This “DAS Early Form” variable was 

included in models with GCA, Verbal, and Nonverbal scores as a time-varying covariate. The 

“DAS Early Form” variable was included in the “final” (M4a) models with the goal of optimal 

representation of the shape of the growth curve if there is a non-continuous (step-like) shift in 

scores associated with the change to the school-age battery.  

Estimators and Final Sample Selection for LMMGCs. For estimation, maximum 

likelihood (ML) estimation was generally used (as long as assumptions are met, see section on 

assessment of assumptions below) because it provides efficient model estimates and allows for 

model comparison of nested models with varying numbers of fixed effects, and restricted 

maximum likelihood (REML) estimation  was also used to improve the robustness of fixed effect 
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estimates (Singer & Willet, 2003; West et al., 2014a). REML fixed effect estimates were 

generally extremely similar to ML fixed effect estimates. To be concise, only ML estimates were 

reported, as they were used to compare nested models (e.g., models of same dependent variable 

where the more complex model can be created by the addition of parameters/covariates without 

omission of other variables/parameters). All analyses for linear mixed models were computed 

using the lme4 package for R with the lmer function. ML estimation involves an iterative process 

to estimate parameters with the smallest degree of residual variance; for explanation of how ML 

and REML estimation works, see West  (2014a). To compare nested models with log-likelihood 

tests, each compared model needs to contain the exact same set of observations, and the 

estimators used (ML) require that, for any observation, all variables included in the model are 

complete. Therefore, for the growth models, only participants with complete data (i.e., DAS-II 

GCA/Verbal/Nonverbal scores, age, sex, Conners Cognitive Problems/Inattention Index, 

Conner’s Hyperactivity Index and SES) for each observation (visit) were included. In a few 

cases, updated SES information was missing and was input based on the SES information from 

prior visits. Due to the limited number of observations per participant (2–3 on average), leaving 

participants with only one visit in the sample created modeling problems with random effects, as 

random effects (of random intercept and slopes) were also created for participants with only one 

visit. Therefore, to limit the number of different samples used and compared, the sample used for 

the LMMGC models included only participants with two or more visits (one visit in the 

preschool years and a second visit either in preschool or the follow-up school-age period). This 

resulted in a sample of 50 participants with complete data for at least two visits.  

Assumptions Testing of LMMGCs Using ML and REML Estimators. Assumptions 

were made about the true individual change trajectories; however, only observed sample 
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properties can be tested and evaluated with regard to the assumptions. The following strategies 

of assumptions testing were adapted from both guidelines by Singer and Willet (2003) and West 

et. al. (2014b). First, the functional form of the individual growth curves (at “Level 1”) was 

assumed to be linear. Lowess curves were plotted for GCA, Verbal, and Nonverbal standard 

scores to test whether the form of the growth curve was linear at a group aggregate. Next, 

Ordinary Least Squares (OLS) fitted growth trajectories and data points of dependent variables, 

as well as empirical growth plots (scatter plots of data points), were plotted for each participant 

and examined for linearity. Of note, Singer and Willet (p128, 2003) note that, for three waves of 

data, it is difficult to “declare” any “curvilinear” functional form of the growth curves and that 

generally four or more observations per participant/case is required for curvilinear growth 

shapes. Next, linearity at the “Level 2” equations (the group-level covariates) was assumed. For 

dichotomous covariates, a linear model is de-facto acceptable (p126, Singer & Willet, 2003) and 

scatter plots with continuous covariates should reflect linear relationships. All continuous 

variables were time-varying covariates were already included in the Level 1 equations and 

therefore did not need to be tested for linear Level 2 relationships with the criterion variables.  

Linearity assumptions were tested before the linear mixed model was run. Normality and 

homoscedasticity related assumptions were tested after the model was estimated. Residuals were 

assumed to be normally distributed at both Level 1 and Level 2 of the linear mixed model. Q-Q 

plots of raw residuals (Level 1 and Level 2) involved plotting residual values against their 

normal probability scores and any significant departure from the line suggested departure from 

normality. Next, extreme values and normality were examined by plotting standardized residuals 

by participant ID (for models without covariates) and through bivariate plots between 

standardized residuals and each predictor variable (for models with covariates). Singer and 
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Willet (2003) suggested that, as rule of thumb, if standardized residuals are normally distributed, 

approximately 95% of residuals will fall within +-2SD of the center (e.g., only 5% greater than 

2). Linear mixed models estimated with ML and REML also assume homoscedasticity for Level 

1 and Level 2 residuals. Level 1 residuals were plotted against fitted values, and residual 

variability was assumed to be approximately equal at every level of the fitted value. Singer and 

Willett (2003) noted that, in small samples (e.g., in their example N=82), it is difficult to make 

definitive conclusions about homoscedasticity. Similarly, for models with covariates, Level 2 

residuals (the random effects) are plotted against fitted values in “fitted vs residual” plots. As 

recommended (Singer & Willet, 2003; West et al., 2014b), only the “final” models (Table 6)  

were selected for assumptions testing as assumptions testing in linear mixed models is extensive.  

Model Comparison and Effect Sizes of Linear Mixed Models. All nested models were 

compared with log-likelihood tests as well as with -2 log likelihood (deviance) values, AIC and 

BIC values. AIC values reflect the -2 log likelihood deviance and additionally account for model 

complexity (number of parameters estimated in the model). BIC values additionally reflect a 

penalty for small sample size. A “marginal” R2 was also computed to allow for comparison 

between models during the model building process as well as between models with different 

dependent variables. Of note, see Lorah (2018) for a discussion of effect size measures for 

multilevel models, including controversies about computing R2 or variance explained estimates, 

as variance can be explained at multiple levels in multi-level models and there is some concern 

as to whether variability of random effects truly reflects variability accounted for/predicted. 

Marginal pseudo R values allowed for comparison between non-nested models (e.g., models 

with different dependent variables) (see Tables 7–9 for model fit and Table 11 for model 

comparison). The marginal R2 reflects the additional total variance explained by a multivariate 
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model compared to a simpler nested model. R2 was computed by R2= 1- ((Level 1 + Level 2 

variances of full model)/(Level 1 and Level 2 variances of empty model/simpler model)) as 

suggested by Lorah (2018). This R2 was labeled “Marginal R2” here because it is always in 

reference to another model. The intra-class correlation coefficient of the unconditional means 

models reflects an “Initial R2”, the amount of variability accounted for by the unconditional 

means model. This reflects the degree to which  parallel trajectories of the same slope without 

covariates and only varying in intercept account for variability in scores over time. At a technical 

level, the ICC reflects the proportion of variance accounted for by the Level 2 cluster 

membership (i.e., the participant). The Initial R2 of “empty” linear mixed models (with random 

intercept as the only parameter as in Model 1, “Initial R2”) is similar to the R2 of correlations of 

two time points; a bivariate correlation between T1 and T2 basically reflects to what degree the 

slope of the trajectories from T1 to T2 are the same. In contrast, the Initial R2 of linear mixed 

models refers to the variable number of data points per participant (2–6), and the bivariate 

correlation reflects the trajectories of only two time points. Of note, the Initial R2 does not 

account for variable time intervals between visits; however, the models with Age as a time-

varying covariate account for age at each visit and therefore account for varying time intervals 

between visits.  

Rights and Serba (2019) proposed a framework of defining R2 measures in multilevel 

models that provides both general total variance accounted for R2 as well as flexible partitioning 

of the variance into the various components of linear mixed models. Their R2 formulations were 

used to describe the total effect size of the final (M4a) models R2t(fvm) and the relative 

contributions of both the random intercept (flat trajectories) R2t(m) and fixed effects (age effect 

and other covariates) R2t(f) and the total variance accounted for by the final models. This allowed 
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also for the informal comparison between the final models of different dependent variables and 

comparison with effect size of bivariate correlations. This was conducted with caution as there 

are complex considerations related to comparing R2 of correlations and linear mixed effects 

models.  

Aim 3: Identify Patterns in Preschool IF that Serve as Predictors for IF Difficulties Between 

Ages 9 Years and 13 Years 

Aim 3a: Test the Hypothesis That Preschool IF at a Single Time Point Predicts IF 

Between Ages 9 Years and 13 Years. To test whether IF (general, verbal, and nonverbal) at 

ages 3.0–4.9 years, as well as at ages 5–6 years, significantly predicted IF at ages 9–13 years, 

bivariate correlations were conducted. R2 values were reported as the effect size of the predictor. 

Power (see Table 2) was estimated to be adequate primarily for effect sizes in the large range but 

low for medium effect sizes.  

Aim 3b: Test whether preschool IF trajectories predict IF between ages 9 years and 

13 years. It was expected that the individual growth trajectories (individual slopes) of preschool-

age children would significantly predict IF between ages 9 years and 13 years. LMMGCs were 

used to model individual linear growth curves as well as an overall (average) growth curve for 

the given model. Three separate models were computed for general IF, verbal IF, and nonverbal 

IF. Individual participants’ age at testing was used to anchor observations in order to account for 

the variable ages of participants at the time of their entry into the study. R2 values were reported. 

For some children, it was possible that a significant difference existed when comparing the slope 

of growth in preschool to the slope of growth from late preschool into ages 9–13 years. In an 

exploratory analysis, a splined slope LMMGC was used to estimate a model with two separate 

slopes, one from ages 3 to 6 years and one from ages 6 to 13 years. Fit of the prior models was 
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compared to this more complex splined slope model based on R2, AIC, and BIC values. See Aim 

2b notes on linear mixed model specification and model comparison as well as assumptions 

testing.  

Results 

R 3.6.1 and R 4.0.2 was used for the analyses. A p-level of .05 was considered 

statistically significant. Effect sizes for mean level differences (Cohen’s D) were interpreted as 

.3=small effect, .5=medium effect and .8=large effect; for correlations, .1=small effect, 

.3=medium effect, and .5=large effect; for R2, .01=small effect, .09=medium effect, and .25 large 

effect. Assumptions for normality were fulfilled for all correlational analyses. Outliers for 

bivariate correlations (identified as ones with extreme studentized residuals) were omitted from 

the calculation if omitting the extreme values led to a change in the significance level of the p-

value. The number of omitted participants is indicated in each given table.   

Sample Attrition  

Attrition was analyzed to test whether missing data (participants not returning or 

returning fewer times) was random (see Table 3). Participants who participated in one preschool 

visit (between ages 3 and 8) and returned for a school-age visit were compared with those who 

did not. The groups showed equivalent SES, level of parent reported attention problems and 

nonverbal functioning, and relatively equivalent GCA (4.3 SS difference, p=.180).  However, 

those who returned showed lower parent reported hyperactivity symptom levels and higher 

verbal functioning. Within the preschool visit years, participants who returned for more visits 

had higher SES and fewer hyperactivity symptoms and were somewhat more likely to be male 

(statistical trend). Therefore, all the above-mentioned variables were included as covariates in the 

linear mixed models.  
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Aim 1: Description of the Reliability of General IF, Verbal IF, and 

Nonverbal IF and Evaluation of the Degree of Change in IF Over the 

Preschool Period and Into Pre-adolescence and Adolescence in NF1  

Reliability  

To describe general reliability, year-to-year Pearson correlations were conducted for 

general IF, verbal IF, and nonverbal IF for participants between three and eight years of age (see 

Table 3a). As expected, year-to-year correlations fell primarily in the .40–.60 range. For the 

GCA and Verbal standard scores, all year-to-year correlations were statistically significant. In 

contrast, only the Age 5 to Age 6 correlation for nonverbal standard scores was statistically 

significant. For GCA scores, the prior year typically predicted about 40% of the variability in 

scores the next year with possible increases in accounted variance to around 70% between Age 7 

and Age 8 from the late preschool age (Age 5 to Age 6, see Table 4).  

Reliable Change 

To describe the frequency of reliable change, RCI scores were computed (see Methods 

section for computational details) for GCA SS, Verbal SS, and Nonverbal SS scores, and 

proportions of participants falling into reliably increased, reliably decreased or unchanged are 

reported in Figure 2. Of note, the cut-off values of a standard score difference considered to be 

reliable change varied significantly between different types of scores and was generally higher 

for Nonverbal scores than Verbal SS or GCA SS scores, reflecting the expected variability in 

these scores. The samples of the different time spans (ages 3–4 to 6, 6 to 9–13, 3–4 to 9–13) 

share some, but not all, participants. To maximize sample size, all participants in a given follow-

up time span were included. The pattern of stability and change is relatively similar for GCA SS 

and Verbal SS scores over the preschool period. With close to 40% of participants showing a 
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significant increase in scores over the preschool period. Some participants showed a significant 

decrease from age 6 into the school-age years for GCA (25%) and Nonverbal (20%) SS scores.   

Aim 2: Identify Patterns in Early Preschool IF as Predictors for Late 

Preschool IF Difficulties in NF1  

Aim 2a: Identify Whether Early Preschool-age IF at a Single Time Point is Predictive of IF at 

the End of the Preschool Period.  

As expected, GCA, Verbal and Nonverbal scores at ages 3–4 statistically significantly 

predicted scores at Age 6 with moderate to large effect (Table 5), with early preschool 

performance accounting for 18–32% of variance of Age 6 scores.  

Aim 2B and 3B: Are Slopes of IF in Early Preschool Age Predictive of IF at the End of the 

Preschool Period and Are Slopes of IF in Early Preschool Predictive of IF in the School-age 

Years?   

Lowess smoothed curves of all observations of all participants were examined for GCA 

SS, Verbal SS, and Nonverbal SS scores with a smoothing span of 1/3, 5 “robustifying” 

iterations, and delta=.01 * range of x using R (see Figures 3–5). The Lowess curves suggested an 

increase in scores of almost 8 points during the preschool age and a subsequent similarly sized 

reduction in scores, albeit with a more moderate slope. Individual trajectories based on 

observations of each participant were also examined separately and supported two splines (Ages 

3–6, 6–13), suggesting along with the Lowess curves that two splines may meet the linearity 

criterion at the Level 1 equations. In the step-up model selection process, initially an 

Unconditional Means (UM) model (M1) was estimated that includes no fixed effects and only 

one random effect (the intercept) (see Table 6 and Figure 1). The UM model reflects a model in 
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which each participant has a flat (slope=0) growth curve - essentially, the mean score across 

different observations for a given participant. The UM model can be used to calculate the 

intraclass coefficient (ICC), which is a measure of the degree of correlation of subsequent 

observations of the same participant on average for the sample; however, it does not account for 

varying time between intervals. The ICC also reflects the proportion of variance accounted for 

by the random effects in the model. Using the REML estimation method, the model failed to 

converge. The UM GCA model did converge, however, with the ML estimator (see Figure 1) 

with an ICC of .59, indicating that about 59% of the variance in participants’ scores is accounted 

for by a one flat trajectory (that varies only by level of intercept not by degree of slope).  

Next, an unconditional growth (UG) model (M2) was estimated utilizing a fixed effect of 

age (the group-level slope of an age effect) and two additional random effects: 1) an age random 

effect allowing for individual linear growth slopes (which can be different from 0) and 2) a 

covariance random effect that allows the age random effect (slope) and the random intercept 

(individual intercept) to be related, which allows for a trajectory to predict the intercept. Age was 

initially centered at Age 11 (median of Ages 9–13) to reflect growth slopes predicting the 

outcome of Age 11. The UG model using the ML estimator had the convergence problem of a 

singularity of the correlation between the random intercept and the random age effect was 1. Of 

note, while there was sufficient variability in the intercepts of growth curves (SD=14.66), the 

slopes (age random affect) only had a standard deviation of 0.76, indicating that slopes tended to 

vary by less than 1 SS point in GCA. Given the estimation problems with random slope effects 

with the unconditional growth model (M2), the age random effect was removed and M2a was 

estimated.  
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Next, M3a, a model with a growth spline (Ages 3–6, 6–13), was fit according to the 

Lowess curve, suggesting that a growth spline may provide a more optimal fit of the true growth 

curve. For M4a, covariates (as explained earlier in the model specification portion of the 

Methods section) were added to estimate growth while also controlling for likely factors 

influencing intellectual functioning performance, such as ADHD symptoms, ADHD medication 

status, SES, as well as factors that may influence IF performance, such as change of 

forms/battery of tests from the DAS-II “Early Years” Form to “School Age” Form and the DAS-

II factor structure shift from 2 to 3 factors with the addition of the Spatial factor for ages >3:5. 

For both M3a and M4a, models were also run with the age random effects, but, similarly to M2, 

ML and REML estimated models had convergence problems of “singularities” in both the 

correlation of random effects and the size of random effects. Given that participants primarily 

had three observations, and at times only two, the linear mixed model adjusts for a low number 

of observations per participant by estimating the individual growth curve as being relatively 

similar to the group/population growth curve, which reduces the size of the age random effects. 

Similar problems were observed when building the Verbal and Nonverbal models with regard to 

singularities for the models involving age random effects. 

Assumptions of the final model (M4a) were examined for each outcome variable (GCA, 

Verbal, Nonverbal) regarding homogeneity and normality of residuals and possible influential 

values.  Residuals for GCA and Verbal scores were generally homogenous and relatively 

normally distributed at both Level 1 and Level 2 of the respective final models. In contrast, Level 

1 residuals (Pearson standardized based on the standard deviation of the outcome variable) based 

on Levine’s test indicated significant heterogeneity (p=.043). A square root transformation of the 

criterion (Nonverbal SS) resulted in trend-level heterogeneity based on Levine’s test, and log 
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transformation resulted in homogenous Level 1 residuals for Nonverbal scores in the final (M4a) 

model. Given that the focus of this study related to the predictive value of the models, emphasis 

was placed on examining potential influential values relevant to the variance of the intercept and 

Level 1 residuals. For the GCA and Verbal scores, 4 participants for each were identified (out of 

50) with abnormal covariance ratios (based on the R HLMdiag function; for internal criteria, see 

Loy & Hofmann 2014) and removing these participants from the models tended to reduce the 

intra-class-correlation coefficients of the empty models and increase marginal R2 covariates (see 

Table 11). For the Nonverbal SS, the standardized residuals, Cook’s D values for Level 1 and 2, 

covtrace, and covariance ratios indicated a larger number of potentially influential values. 

Between 6 and 11 potentially influential values were identified. The M4a models with different 

numbers and groupings of influential values removed varied in accounting for 19–40% of total 

variance in scores. The final M4a model for the Nonverbal scores (see Table 12) reflects a 

compromise of removing six influential participants, which reflects the most conservative results 

while also removing relatively few influential participants. Of note, several of these participants 

reflect very large swings in SS scores (at times 30–50 SS points), which were verified by 

multiple graduate researchers and appear to reflect genuine severe fluctuations in performance 

from year to year or over longer time spans, rather than scoring errors. Table 12 illustrates the 

impact of removing varying amounts/types of influential values from the Nonverbal M4a models 

(spline with all covariates).  

Nested models were compared with log-likelihood tests (see Table 11). Given that spline 

models fit significantly better than models with just a single slope, the final estimated models 

included a spline. The final models (M4a) for GCA, Verbal, and Nonverbal SS as criterion 

variables also included the covariates identified on a theoretical basis. The addition of the 



 

 
31 

covariates statistically significantly improved only the Verbal Linear Mixed Model but not the 

GCA and Nonverbal models. Figure 9 illustrates that the unconditional means model accounted 

for 59% of the variability in GCA SS, 66% of the variability in Verbal SS and only 18% of the 

variability in Nonverbal SS. The addition of the age spline, which allowed the general 

group/population slope during the Preschool years to be different from the slope during the 

School-age years, accounted for an additional 2–4% of variance of IF performance over time 

(see Table 11). Inclusion of the covariates accounted for an additional 5–10% of variance in the 

GCA and Nonverbal models and 16% of variance in the Verbal Model.  

In the final model (M4a), the random intercept (the flat and uniform trajectory portion of 

the model) accounted for 53-56% of the total variance in the GCA SS and Verbal SS models and 

only 11.9% of the total variance in the Nonverbal SS model (see Figure 8). All fixed effects 

combined (i.e., age and all other covariates) accounted for 7-10% of the total variance in GCA 

and Nonverbal SS models and 17% in Verbal SS models. Finally, Figure 9 illustrates amount of 

total variance accounted for by the entire model for the final linear mixed models (M4a) in the 

context of variability accounted for by bivariate correlations from Aim 2a and 3a. For both GCA 

and Nonverbal SS, effect sizes are relatively similar between bivariate correlations and linear 

mixed models, especially for the bivariate correlations between Ages 3–4 and Ages 9–13. For 

verbal scores, about 43-55% of additional total variability in scores over time can be accounted 

for by the linear mixed model that includes more than 2 time points for most participants and 

also includes covariates (sex, SES, inattention and hyperactivity symptoms, DAS-II form).  

Table 9 illustrates the shape of the population/group growth curves and the effects of 

various fixed effects. Of note, IF tended to increase (2.5–3.6 SS points per year for GCA and 

Verbal) during the preschool years and was relatively flat during the school-age years. In the 
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Verbal model, higher SES was associated with higher IF (and at trend level in the GCA model). 

The nonverbal M4a model with all participants indicated that youth with NF1 scored almost 9 

points higher in the Nonverbal model when taking ADHD medications (an effect that was 

statistically significant). However, this effect disappeared when 6 influential participants were 

removed (see Table 10); hence, for a few children who displayed a large shift in scores, 

medication was associated with their Nonverbal score shifts. Of note, only a few observations 

included children who took ADHD medications, and a larger sample, especially with older 

children, is needed to replicate an ADHD medication effect. Also, youth with NF1 scored, on 

average, 7 SS points lower on Verbal scores once they moved to the School Age Form at Age 9 

(p=0.051). Over time, parent-reported attention symptoms tended to be associated with lower IF 

for both GCA and Verbal scores, with trend level findings. The level of IF was not different by 

sex.  

Table 13 illustrates that scores decreased significantly for GCA, Verbal, and Nonverbal 

SS scores into the school-age years. M4a models indicated that scores tended to drop about 7 

Standard Score points for the Verbal model once youth completed the School-age battery, and 

there appeared to be a similar direction of effect, though not statistically significant, for the GCA 

and Nonverbal models. To test whether there is a general reduction in scores over time in the 

school-age years regardless of the shape (e.g., primarily one drop in scores associated with the 

more conceptual battery versus continuous decrease in scores), M5a models were computed. 

They indicated that GCA, Verbal, and Nonverbal SS scores all statistically significantly declined 

into the school-age years.  
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Aim 3: Identify Patterns in Preschool IF That Serve as Predictors for IF 

Difficulties Between Ages 9 Years and 13 Years.  

Aim 3a: Test the Hypothesis That Preschool IF at a Single Time Point Predicts IF Between 

Ages 9 Years and 13 Years (Without Any Covariates)  

GCA and Verbal SS early in the preschool period (ages 3–4.9 years) predicted school-age 

respective scores with medium to large effect and there was a trend for Nonverbal SS in early 

preschool period to predict school-age Nonverbal SS. Late preschool IF predicted school-age IF 

in GCA SS and Verbal SS but not in Nonverbal SS. Nonverbal SS at ages 5–6 accounted for 

only 7% variability in Nonverbal SS at ages 9–13.  

Discussion 

In the current study, the stability and predictive value of preschool intellectual 

functioning in NF1 for intellectual functioning in late preschool and into the school age years 

were examined. Results indicate that general IF and verbal functioning can be reliably measured 

in NF1 in the preschool years and that these measures hold some predictive value for IF in the 

school-age years. In contrast, particularly in the preschool years, measures of nonverbal 

functioning are not reliable in youth with NF1. Both bivariate correlational approaches and more 

complex linear mixed models were used. For Verbal scores, variability in scores was better 

accounted for in complex models than in simple (bivariate) models. For GCA scores, bivariate 

and linear mixed models both accounted similarly well for variability in scores. For Nonverbal 

scores, both simple models and the complex models specified in this study accounted relatively 

poorly for variability in scores over time from the preschool years into the school-age years in 

NF1.  A portion of youth with NF1 appear to increase general IF performance and verbal 

performance within the preschool years relative to their same-aged typically developing peers (as 
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measured by changes in standard scores), and there is evidence for a decrease in performance 

(relative to same-aged peers) into the school-age years based on the linear models. While there is 

variability in the level of functioning of youth with NF1, the trajectories of youth with NF1 

appear to be uniform in slope, with children of different abilities (though same level of 

covariates, e.g., same level of SES) following generally the same developmental trajectory.  

These findings are discussed in more detail below. 

Reliability  

Consistent with expectations, the prior year statistically significantly predicted the next 

year’s IF for both the general IF and verbal domains. However, nonverbal IF was unrelated from 

year to year throughout the preschool age, except for ages 5–6. A contrasting pattern in effect 

size was observed, with verbal reliability the highest early in preschool and early in the school-

age years. Given the lower test-retest reliability (1–9 weeks) of the nonverbal tasks on the DAS-

II in the standardization sample, it was expected that reliability would be lower on nonverbal 

tasks and that about 40% of variability may not be accounted for due to day-to-day fluctuations 

in nonverbal task performance. However, youth with NF1 showed additional score variability not 

accounted for by day-to-day fluctuations seen in the general population. A control group of 

typically developing participants (preferably matched for SES and mean IQ) with test-retest at 

one year intervals, as well as data on NF1 short test-rest reliability (1–9 weeks), could provide 

context to potential sources of unaccounted variability, allowing researchers to discern 

measurement unreliability from shifts in the underlying construct. Ultimately, structural equation 

modeling approaches to measurement would be optimal, though generally prohibitive in sample 

size requirements for samples in NF1, which tend to be less than 100 and frequently are less than 

50. Given that many youth with NF1 have significant attention difficulties, it makes sense that 
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nonverbal IF performance, which may be more vulnerable to difficulties in sustaining attention, 

is less consistent over time than verbal IF performance. When compared to the representative 

sample of Schneider et al. (1999) of typically developing children, the preschool participants 

with NF1 in this study demonstrated similar stability in the development of their general IF 

across preschool. The reliability of verbal performance in this study’s NF1 sample seems to be 

similar or higher than the Schneider et. al. (1999; 2010) sample .   

Stability - Reliable Change Over the Preschool and into the School-age Period in IF 

 Relative to their same-aged peers, a sizeable proportion of youth with NF1 make 

significant gains in verbal functioning and in overall intellectual functioning scores over the 

preschool period. In contrast, few children show statistically significant gains or losses in 

nonverbal functioning over the preschool years. Of note, the cut-off for a statistically significant 

gain or decrease in nonverbal performance for age 3 was 20 SS points, which is a rather large 

criterion; this emerges from the test-retest reliability of nonverbal scores on the DAS-II from the 

norming sample, together with the variability in Nonverbal SS seen in the current sample (which 

was larger than for Verbal or GCA SS in our sample). Shifts in nonverbal performance as large 

as 20 SS points can be expected in NF1 over the preschool or school-age periods, such that 

changes at the individual level are difficult to interpret.  

In the school-age years, Verbal scores for the vast majority of the sample stabilized; 

hence, the youth with NF1 did not shows significant changes in verbal functioning into the 

school-age years at an individual level. Few children made gains or losses in Nonverbal scores 

into the school-age years. On Nonverbal functioning and on the overall measure of intellectual 

functioning, the GCA, some youth with NF1 demonstrated decreases into the school-age period. 
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The similarity of patterns of gains and losses between GCA and Nonverbal scores may be driven 

by the fact that the GCA scores include nonverbal functioning task performance as a component.  

Patterns of IF Early in the Preschool Age That Predict Late Preschool or 

School-age Difficulties in NF1 

Early preschool IF predicted 18–34% of late IF, which is at the lower end of the effect 

size range of the prior literature (15-65%, Hindley & Owen, 1978; Schneider et al., 1999), 

though  similar to the results by Schneider’s nationally representative sample in Germany (13-

20%). Children with NF1 may show even greater score instability than typically developing 

children; this would be an important question for future research. The predictive value of IF for 

the school-age years was highly variable. Depending on the aspect of IF being measured (GCA, 

Verbal, Nonverbal) and age at the time of first measurement, between 7% and 56% of school-age 

performance was predicted by preschool IF performance. In the Schneider et. al. (1999), sample  

preschool IF predicted 10–20% of school-age IF, and older studies tended to indicate that 

preschool functioning did not account for more than about 25% of school-age functioning 

(Hindley & Owen, 1978; Honzik et al., 1948). Given that GCA at ages 3–4 accounted for an 

impressive 56% of variability in school-age general IF (a finding that needs to be replicated with 

a larger sample), general IF measured with GCA may be a particularly promising predictor of 

future IF in NF1, particularly if only one preschool measurement point is available.  

Linear mixed models were estimated in an attempt to assess the degree to which group 

level and individual growth trajectories of IF can predict school-age IF in NF1. Models that 

allowed for individual slopes to vary (random effects for age) showed convergence problems, 

apparently due to minimal variability of estimated individual growth curves, indicating that in 

the current sample, trajectories were estimated to be primarily unitary in NF1 across the 
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preschool and school-age years. Since individually varying slopes were not estimated in the final 

models, it was not possible to address whether there are differential trajectory patterns in early 

childhood that might predict school-age outcomes. However, the uniform trajectories predicted a 

sizeable amount of variability in school-age GCA and Verbal SS over time, though in the not 

Nonverbal SS. Spline and covariates generally accounted for little additional predictive value 

except for Verbal SS; for Verbal SS, inclusion of covariates substantially increased the amount 

of variance for which the growth trajectories accounted. In sum, although there may be some 

methodological issues obscuring variability in individual trajectories of IF in NF1 as measured 

by standard scores, the current data do seem to suggest that youth with NF1 tend to have 

relatively uniform trajectories relative to each other and may vary more in initial level of IF than 

in individual trajectory.  

To provide some context for the respective predictive value, some tentative comparison 

of the predictive value of the simple and complex models is warranted. When comparing the full 

linear mixed models to the bivariate correlations, both GCA and Nonverbal score prediction did 

not seem to meaningfully benefit from the more complex models. In contrast, in the Verbal final 

model, the linear mixed effects model accounted for a much larger proportion of the variability 

in scores over time, with an impressive 73% of variance accounted for as compared to 18–30% 

variability accounted for in bivariate correlations. Hence, particularly for verbal functioning, it 

may be helpful to have more than one time point to improve prediction accuracy of verbal 

functioning in the school-age years. As mentioned earlier, while general IF appears to be 

reasonably reliable and of good predictive value (bivariate and linear mixed models), it may not 

automatically be a preferred predictor of later IF, at least in the NF1 population, because it relies 

in part on highly unreliable Nonverbal scores and the predictive value of general IF may be 
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driven by the relatively reliable Verbal scores. More power (larger sample size) is needed to 

effectively compare the predictive values of different variables of IF (general intellectual vs. 

verbal functioning) as the precision of the parameter estimates (e.g., correlation coefficients) of 

the current study was insufficient to effectively test this.  

The existing literature on the development of IF in NF1 during the preschool years is 

extremely limited. Studies have primarily measured IF cross-sectionally (Klein-Tasman et al., 

2014; Lorenzo et al., 2013; Sangster et al., 2010). Findings indicate that mean scores fall around 

90 SS, with the cross-sectional variability of scores similar to that of typically developing 

children and differences between different domains yet not reliably identified (Klein-Tasman et 

al., 2014; Nupan et al., 2017; Sangster et al., 2010). Data regarding the reliability and predictive 

value of preschool IF in NF1 were sparse. In the only longitudinal study including preschoolers, 

which was based on a developmental screener with only a single question/task per 

developmental domain, there was no significant change in proportions of children with delayed 

or non-delayed classification for receptive and expressive language (Wessel et al., 2012) within 

ages 0–8-years. The current study used a well-validated, comprehensive, individually 

administered measure of IF instead of a developmental screener and found that a sizeable portion 

of the sample (~40%) made significant verbal gains over the preschool years. On a group level, 

general IF and verbal functioning increased over the preschool years and general IF, verbal, and 

nonverbal IF decreased into the school-age years. It is important to consider that the nature of the 

tasks on the DAS-II changes from the preschool period to the school-age period, consistent with 

the kind of skills expected with increasing development. More specifically, within the verbal 

domain, tasks moved from identification and naming of objects to more conceptual 

understanding of words, with similar increases in levels of abstraction and conceptual 
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relationships expected within the nonverbal domain. It may be that traditional interventions in 

the preschool age years are effective in helping preschoolers with NF1 catch up to some to their 

peers in the kinds of intellectual functioning-related tasks that are administered during those 

years, and that remediation of challenges with more conceptual understanding is more difficult in 

youth with NF1.     

Preschool IF in the nonverbal domain was generally not reliable, and early preschool 

nonverbal functioning did not predict late preschool nonverbal functioning. It is possible that 

high rates of attention problems in NF1 may contribute to this lack of reliability and predictive 

value of early preschool nonverbal functioning.  Measurement issues related to the changing 

factor structure of domain scores on the DAS-II may also be a contributing factor. Of note, about 

15 (ages 3.0–3.5) of the 150 total included observations included Nonverbal scores that were also 

partially based on performance of the Pattern Construction task, which relies on visuo-spatial 

performance, one of the hallmarks of the cognitive phenotype of NF1 (North, 2000; Nupan et al., 

2017). However, the residuals in the Nonverbal linear mixed model were similarly variable for 

those observations as compared to the older children, indicating that performance on the Pattern 

Construction task under the Nonverbal domain was unlikely to be the primary cause of unreliable 

Nonverbal scores.  Youth with NF1 have demonstrated difficulties with simple and complex 

motor tasks (Nupan et al., 2017), difficulties with processing of visuo-spatial stimuli (some of 

which based on EEG evidence may be related to ineffective attentional allocation, Ribeiro et al., 

2014), and very prevalent general attentional difficulties. General attention difficulties, fine-

motor difficulties, and difficulties processing visual stimuli may interact in youth with NF1, 

resulting in unstable nonverbal task performance in NF1.    
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 Similarly, there is very little literature on the development of IF in NF1 in the school-age 

years and no published literature about the predictive value of preschool functioning for school-

age IF. Cross-sectional studies involving samples that span both preschool age and school-age 

children and lack of significant correlations  of IF  with age suggested a flat growth trajectory for 

children with NF1, including not falling further behind their peers nor gaining ground in their IF 

(Hyman et al., 2005; Klein-Tasman et al., 2014) and a longitudinal study with a small sample 

(N=12, Cutting et al., 2002) seemed to confirm the hypothesis that the slope of IF in NF1 is 

similar to that of typically developing children. Although Cutting et al. (2002) collected some 

longitudinal data on the IF of 5–20-year-olds with NF1, they reported no information regarding 

the predictive value of late preschool IF and reliability of school-age IF in NF1. The current 

study provides data that general IF in the preschool age - at a single point and regardless of when 

measured - is a robust predictor of general IF in the school-age years in NF1. Furthermore, 

particularly for the prediction of verbal functioning, inclusion of other potential predictors (e.g., 

SES, ADHD symptomatology, type of verbal task/level of abstraction) may be helpful in youth 

with NF1. In contrast, Nonverbal scores, particularly late in the preschool years, seem to be 

minimally relevant to nonverbal functioning in the school-age years based on the current 

findings. Of note, the current study was able to demonstrate that there is an increase in IF relative 

to peers during the preschool age years, yet youth with NF1 appear to plateau or perhaps even 

fall somewhat behind over time into the school-age years. One hypothesis based on the current 

findings is that, as conceptual demands increase, youth with NF1 appear to be unable to keep 

pace with their typically developing peers. Overall, this study provides the first evidence, with a 

moderately-sized sample, about the reliability and predictive value of IF in NF1 and the shape of 

the overall growth trajectory of IF in NF1 across early and middle childhood.  
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Clinical Implications 

The findings of the current study provide important information for the clinician trying to 

capture IF for a child with NF1 and determine a prognosis. Children with NF1 tend to increase 

their IF scores on average by about 2–3 Standard Score points over the preschool years (~6–9 SS 

over the preschool period). Hence, preschoolers appear to be able to make some moderate gains 

on verbal and nonverbal tasks that require minimal deeper conceptual understanding. Once in the 

school-age years, youth with NF1 struggle with more abstract understandings of concepts (e.g., 

being able to articulate the core features of a word, understanding/articulating understanding of 

abstract terms) somewhat more than would be expected based on their prior verbal functioning. 

Scores in early preschool age may actually be a better indicator of anticipated level of difficulty 

in the school-age years than scores in the late preschool age, particularly for Verbal scores. The 

verbal domain may likely be a relatively effective predictor of subsequent verbal functioning 

and, given the generally unreliable nonverbal functioning for preschoolers with NF1, nonverbal 

functioning appears to be limited in relevance to current functioning. Given that the complex 

model involving multiple measurement points was more useful in accounting for variability in 

verbal functioning, it may be important for children with NF1 to be assessed multiple times over 

the preschool period (particularly for Verbal scores). Tracking of IF over time allows for the 

identification of trajectories that reflect stable, improving, or decreasing IF standard scores. 

However, repeated testing may also produce practice effects that may mask a child with NF1’s 

increased challenges keeping up with peers in the preschool age or may overestimate gains.  

Limitations and Future Directions 

In the current study, a number of methodological and statistical factors made it difficult 

to effectively detect variability in individual growth trajectories and the extent to which such 
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trajectories would predict school-age IF. In the linear mixed models, the correlation between the 

intercept (“outcome” at Age 11) and the individual participant’s growth trajectory tended to be 

close to 1 or considered 1, indicating that generally the slope was “too perfect” of a predictor for 

the outcome at Age 11. This finding has several causes, some of which have to do with variables 

related to data collection and data analysis; others may have to do with the nature of the 

development of IF in NF1. Linear mixed growth curve models tend to be conservative when it 

comes to the estimation of individual growth curves. Individual slopes for individual growth 

curves are estimated not only by a participant’s observations, but also by the average slope of the 

group. Further, many participants only had two observations, and few had three or four 

observations. The linear growth models are also conservative and, when few observations are 

available for a participant, the model assumes that the growth curve is relatively similar to the 

mean growth curve (Singer & Willet, 2003). In addition, only cases with three or more 

observations contribute to the variance estimation (e.g., estimation of age random effect) and a 

sizable portion of the sample only had two visits, such that the sample contributing to the 

variance estimation is small. Most participants had only one visit in the school age years, such 

that longitudinal research within the school age years is still needed. Additionally, participants 

with more observations tended to have fewer ADHD symptoms, which therefore may have 

decreased variability in the longitudinal sample by including fewer individuals with greater 

ADHD symptoms. Random effects can be more difficult to estimate effectively in smaller 

samples. Finally, standard scores are designed to be more stable and reduce some of the 

variability of performance measured by raw scores.  

Even the individually estimated lines of best fit (based on ordinary least squared 

estimation of simple linear regression, not linear mixed models) indicate fairly similar 
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trajectories are present across participants. Of note, Figure 6 displays GCA grouped (by 

participant) Spaghetti plots and Figure 7 displays lines of best fit for individual participants 

(individually fitted linear models) without adjustment to a mean trajectory (as in linear mixed 

models where the individual trajectory can be estimated as a combination of mean trajectory of 

the group and individual trajectory based individual data points). Hence, while the relatively low 

number of observations per case may have somewhat obscured the detection of differences in 

individual growth trajectories of IF in NF1, overall growth trajectories may be similar across 

youth with NF1 (holding covariates constant). An important focus of future research in IF 

development in NF1 should be accounting for more of the still relatively high variability of 

performance of each child with NF1 around the relatively uniform (group) growth trajectory.  

Given that nonverbal functioning was not reliably measured, future research needs to 

identify effective predictors of fluctuations in IF performance in NF1, especially for nonverbal 

performance. Nonverbal scores showed an especially low intra-class correlation in the linear 

mixed model compared to the GCA and Verbal scores. This was graphically apparent with a lot 

of individual data point variability around the linear trend of best fit of the individual growth 

curves. Of note, a key will be that these predictors are time-varying covariates that are measured 

at every time point. Our parent-reported attention and hyperactive symptom reports were not 

each uniquely helpful in contributing to the growth curve models. The current study is a first 

attempt at modeling IF development in NF1 from the preschool into the school-age years with 

emphasis on the predictive value of preschool IF for school-age IF in NF1, and a detailed 

analysis of effective covariates is beyond the aims of this study. There are multiple ways of 

measuring ADHD symptoms and including them in linear mixed models (e.g., different 

dependent measures from questionnaires, performance-based measures), which may more 
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effectively capture both day-to-day fluctuations in performance and long-term fluctuations in 

performance.  

The current study did not include assessment of effort, task persistence or frustration 

during the assessment process. Measurement of effort has been acknowledged as important for 

neuropsychological assessment in children (DeRight 2014; Carone, 2015). Children with ADHD 

in particular struggle with task persistence (Foley et al., 2008; Scime & Norvilitis, 2006). In 

children with ADHD, level of incentive has improved task persistence (Dovis et al., 2012). 

Anecdotally, during the assessments of the current study, some children exhibited variable effort 

and limited task persistence and given the high prevalence of ADHD in NF1, assessment of 

effort, task persistence and frustration may be important covariates to assess intellectual 

functioning with optimal validity and account for fluctuation in intellectual functioning 

performance.  

Substantial attrition and a small sample size were significant limitations of the current 

study. Addressing these limitations will be critical to increasing the sensitivity of detecting true 

IF variability in NF1. More observations per participant are key (e.g., mostly 3, preferably 4+) so 

that the linear mixed model can be more sensitive to the true variability in slopes that exists 

between youth with NF1. A moderately sized initial sample combined with large overall attrition 

(~50%) resulted in few cases with  four or more observations. Future research in NF1 needs to 

assess and proactively problem solve barriers that cause high levels of attrition in longitudinal 

samples with NF1 (e.g., financial incentive size, length of battery, contact information likely 

consistent over time). Furthermore, non-random missing data and drop out resulted in a “higher 

functioning” longitudinal sample (e.g., higher IF, fewer ADHD symptoms) from more privileged 
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SES backgrounds, which may have also reduced variability in trajectories due to a more 

homogenous sample than the general NF1 population.  

Finally, randomized clinical trials (RCT’s) for medications aimed at treating NF1 

cognitive symptoms or potentially normalizing NF1 brain development will require reliable 

measures of IF. The current study suggests that general IF and verbal IF may be moderately 

reliable measures and may be acceptable to be included in an RCT as independent measures but 

that nonverbal IF (at least as measured by DAS-II) may not be sensitive enough to detect 

changes/differences between groups and that it will be important to improve concurrent and 

future prediction of nonverbal performance in youth with NF1. Raw or other absolute 

performance scores (e.g., ability scores on the DAS-II), which may be more sensitive to change, 

have yet to be tested regarding their reliability properties in NF1. Further, the reliability of 

subtest-level performance of IF tasks needs to be examined to elucidate whether subtest level 

performance has sufficient sensitivity and specificity to be included in randomized clinical trials 

as an outcome measure. The current study also did not account for possible practice effects, a 

concern that Chelune et al. (1993) raised regarding repeatedly assessing neuropsychological 

functioning; the effect of repeated testing warrants further investigation, but can also be 

addressed by including a control group.  

In sum, challenges for future research are to a) increase the number of observations for 

the average participant (preferably 4+ observations for improved individual slope variability 

detection and so individual non-linear trends can be detected); b) increase sample size (to allow 

for more complex non-linear modeling); c) include covariates that may explain variability in 

scores, especially nonverbal scores (e.g., attentional state on day of assessment, etc.); d) include 

a typically developing comparison group (siblings or non-siblings) with multiple benefits, 
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including increased sample size for increased power, some improvement in random effect 

estimation, and more precise parameter estimates and increased power for comparison of effect 

sizes; e) use scores that increase variability (e.g., raw scores, DAS Ability scores), which may 

improve the likelihood of more sensitive detection of variation in individual growth trajectories 

across individuals. f) delve deeper into the IF development period between ages 5–7 in NF1, as 

there appears to be a shift in patterns of reliability and potentially increased inter-individual 

variability in slopes; h) test hypotheses about what underlies the increase in IF in preschool and 

change in slope in the school-age years (e.g., increased treatment of ADHD symptoms, change in 

level of conceptual demands); i) investigate why some participants increase and others stay 

stable over the preschool period (e.g., by using classifications from the RCI).  

Now that some of the predictive value of preschool IF for school-age IF in NF1 is 

demonstrated, it is critical to investigate whether preschool IF predicts later difficulties in 

academic functioning (e.g., learning disabilities or subthreshold LD learning problems) and 

adaptive functioning. Many youth with NF1 experience academic problems, and IF difficulties 

can be a risk factor for academic problems (North, 2000; Nupan et al., 2017). The prevalence of 

substantial ADHD symptoms in youth with NF1 (Acosta et al., 2006) may make IF assessment 

less reliable in NF1 and reduce the predictive value of preschool IF for later academic problems. 

Additionally, clinicians and parents need to know about risk factors in the preschool age that 

may be effective targets for early behavioral and medication-based intervention to mitigate the 

risk for later academic problems. Research addressing risk factors such as ADHD symptoms and 

phonological awareness, in addition to IF, could provide this critical early intervention relevant 

information.  
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Summary 

The current study investigated the stability and predictive value of intellectual 

functioning starting in the preschool years in NF1 into the school-age years. The results of the 

current study support the idea that general IF and verbal IF can be relatively reliably measured 

across the preschool period and that preschool general and verbal IF hold predictive value for 

school-age IF. In contrast, performance on nonverbal tasks was inconsistent across the preschool 

period in youth with NF1 and had very limited predictive value for school-age IF. Significant 

portions of the current sample made moderate gains during the preschool years, and performance 

dropped in the school-age years almost half of a standard deviation; increased conceptual 

demands arising in the elementary school years may present particular challenges for some youth 

with NF1. A large amount of variation of Verbal scores was accounted for by the general group 

trajectories and other covariates (i.e., SES, ADHD symptoms, sex, change in DAS form, ADHD 

medication status) indicating that for Verbal scores, the context of relevant covariates is 

important. While the relatively small number of observations per participant and attrition 

patterns may have resulted in underestimates of individual variability between individual growth 

trajectories, based on the data from the current study, growth trajectories of IF in youth with NF1 

are relatively uniform and variability occurred mainly around these general group trajectories.  In 

sum, general IF and verbal IF can be measured reliably in NF1 in the preschool years and, 

depending on timing and number of measurement points, general IF and verbal IF very early in 

the preschool years can be strong predictors of school-age IF. In contrast, nonverbal IF seems 

unreliable in NF1 and more efficient predictors/covariates need to be identified in order to make 

meaningful predictions of school-age nonverbal IF based on preschool IF. While it can be 

expected that children with NF1 will make gains in general and verbal IF over the preschool 



 

 
48 

years, those gains appear to be lost over the school-age years and IF measured late in preschool 

may somewhat overestimate IF in the later school-age years. General IF and verbal IF difficulties 

in preschool are a promising risk factor candidate for academic difficulties in the school-age 

years in NF1. Nuanced understanding of the predictive value of IF in the preschool years may be 

helpful in the assessment of early risk predictors and treatment planning. 

  



 

 
49 

Table 1.  

Summary of Participant Visits by Age  

 
Number of Participants at Visits by Age  N per Age Ranges 

Visit number 
3 4 5 6 7 8  3–6 years 3–8 

years 
9–13 years 
follow up 

Visit 1 21 13 7 6 5 3  47 55  

Visit 2  17 15 6 4 5  39 48 5 

Visit 3   11 10 4 2  21 27 7 

Visit 4    7 1 5  7 13 8 

Visit 5     2 1  0 3 7 

Visit 6          2 

Total # of 
visits by  
age/range 

21 30 33 29 16 16  113 145 27 
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Table 2 

Sample Size and Power Calculations for Correlational Models 

Aim 1a 
     

Aim 2a Aim 3a 

 
Cross-age correlations Cross-age-range correlations 

Correlation age 
pairs 3,4 4,5 5,6 6,7 7,8 3–4,6 3–4,9–13 5–6,9–13 

Observed n 17 23 22 9 11 18 17 24 

Power for r=.3 33% 41% 40% 20% 24% 34% 33% 42% 

Power for r= .5 68% 81% 79% 41% 50% 71% 68% 82% 

r for 80% power 0.56 0.49 0.51 0.75 0.69 0.55 0.57 0.49 
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Table 3 

Attrition - Mean Differences of Participants That Remained and Those That Dropped out at 9–13-year-old Follow-

up and Correlations with Number of Preschool Visits 

Variable With and without 9–13-year-old follow up Number of early years form visits 
 Mean 

Difference 
p Cohen’s d r p 

Female r=.03 .63 - -.17† .082 
SES 2.04 .489 0.187 .32* .016 
Inattention T -3.74 .257 -0.29 -.08b .520b 
Hyperactivity T -10.85 a ** .0001a 1.00 -.27b* .038b 
GCA SS 4.3 .180 0.33 -.04 .752 
Verbal SS 7.70* .023 0.58 .05 .730 
Nonverbal SS -1.32 c .651 c 0.11 .03 .87 

 

Note. T = T-score (M=50, SD=10), GCA SS = General Conceptual Composite Standard Score from DAS-II, Verbal SS = Verbal 

Cluster Standard Score from DAS-II, Nonverbal SS = Nonverbal Cluster Standard Score from DAS-II. Two-sided p-values with 

significance level indicated.  

a One participant removed with high Conners Hyperactivity scale T-scores and high residuals. 

b Conners Inattention Problems T-scores and Conners Hyperactivity T-scores were square root transformed for residuals to be 

normally distributed.  

c One participant removed with greater than 130 Nonverbal SS score and high residual 

NS p>.1, †.10<p<.05, *p<.05, ** p<.01, *** p <.001  
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Table 4 

 Year-to-Year Bivariate Correlations Ages 3–8 (Aim 1a)  

Domain Correlations (CI’s)  by Age Pairs  

 
3,4  

(N a=17) 
4,5  

(N a=23) 
5,6  

(N a=22) 
6,7  

(N a=9) 
7,8  

(N a=11) 

GCA SS 
.63**  

(.22–.85) 
.63***  

(.30–.82) 
.46* 

(.05–.74) 
.68† 

(-.04–.94) 
.84***  

(.49–.95) 

Verbal SS 
.82*** 

(.56–.93) 
.69*** b 
(.39–.86) 

.51*b 
(.09–.77) 

.67† 
(-.06–.93) 

.88*** 
(.60–.97)  

Nonverbal SS 
.14 

(-.36–.58) 
.21c 

(-.23–.58) 
.57** d 

(.17–.81) 
-.30 e 

(-.85–.58) 
.43 

(-.23–.82)  
 

 

Note. Pearson bivariate correlations, r values with 95% confidence intervals in parentheses and 2-sided p-values with significance 

level indicated, Two-sided 95% confidence intervals.   

a Number of complete paired observations, some correlation pairs had lower N’s if participants were removed due to being 

considered influential data point because of extreme studentized residuals (statistically significant Bonferroni corrected 

studentized residual) 

b One participant with Verbal SS <70 was removed from correlation due to extreme residual, with influential value Age 4–5 

r=.82***, Age 5–6 r=.70***  

c One participant with 50 SS increase was removed, with outlier, r=-.01, p=.95  

d Two participants with 40 SS shifts in scores showed extreme residuals and were removed from correlation, with influential 

values Age 5–6 r=.-0.04 ns  

e Two participants with extreme residuals were removed from correlation, with influential values Age 6–7 r=.02 ns 

NS p>.1, †.10<p<.05, *p<.05, ** p<.01, *** p <.001 
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Table 5  

Bivariate Correlations to Predict Late Preschool-Age and School-Age Intellectual Functioning (Aim 2a & 3a)  
 Bivariate correlations 

Parameter 
3–4.9 to 6 
(Nb=18) 

3–4.9 to 9–13 
(Nb=17) 

5–6.9 to 9–13 
(Nb=24) 

GCA 
.58*c  
(.14–.83) 

.75***e  
(.42–91) 

.61** e 
(.26–.82) 

Verbal 
.47†c 
(-.01–.78) 

.55* 
(.10–.82) 

.43* c 
(.02–.71) 

Nonverbal 
.42† 
(-.07–.75) 

.43†e 
(-.07–.76) 

.27f 
(-.16–.62) 

 
a Pearson bivariate correlations, r values with 95% confidence intervals in parentheses and 2-sided p-values with significance 

level indicated  

b Number of complete paired observations, some correlation pairs had lower N’s if participants were removed due to being 

considered influential data point because of extreme studentized residuals (statistically significant Bonferroni corrected 

studentized residual)  

c One participant with SS <60was removed from correlation due to extreme residual, with influential value for 3–4 to 6 GCA 

r=.76**, 3–4 to 6 Verbal r=.78***, 3–4 to 9–13 Verbal r=.56** 

d One participant with SS >120 was removed from correlation due to extreme residual, with influential value r=.57* 

e One participant with SS >140 was removed from correlation due to extreme residual, with influential value 3–4 to 9–13 GCA 

r=.67**, 3–4 to 9–13 Nonverbal r=.73**, 5–6 to 9–13 GCA r=.68*** 

f Two participants with SS >130 were removed from correlation due to extreme residual, with influential value r=.38† 

NS p>.1, †.10<p<.05, *p<.05, ** p<.01, *** p <.001 
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Table 6 

Model Specification of Linear Mixed Model Growth Curves of Compared Models 

 

Term 

Uncondit
ional 

means 
M1 

Unconditional 
growth 

M2 

Uncondition
al growth 
w/o age 
random 
effect 
M2a 

Unconditiona
l growth with 

spline w/o 
age random 

effects 
M3a 

Conditional 
growth 
model 

with spline 
w/o age 
random 
effects 
M4a 

Conditiona
l growth 
model 

with spline 
w/o age 
random 

effects and 
DAS Early 

Form 
M5a 

 Fixed effects  
 Intercept x x x x x x 
 Age_11 – centered  x     
 Age 3–6    x x x 
 Age 6+ (spline)    x x x 
 Gender (TIC)     x x 
 SES  (TVC)     x x 
 Conners 

Inattentive 
(TVC) 

    x x 

 Conners 
Hyperactive 
(TVC) 

    x x 

 ADHD med status 
(TVC) 

    x x 

 2 GCA indices 
(TVC)a – for 
NV models 

    x x 

 DAS Early Form     x  
 Random effects  

 Intercept x x x x x x 
 Age_c11   x     

 Covariance Parameters for D Matrix Child (i)  
 Variance of 

intercepts 
x x  x x x 

 Variance of age 
effects 

 x     

 Covariance of 
intercepts, age 
effects 

 x     

 Dependent 
variable 

GCA, Verbal, Nonverbal SS 

 Covariance 
Parameters for 
R Matrix: 
Time level: 
Residual 
variance 

x x x x x x 
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Table 7  

Model Fit and Standard Deviation of Random Intercept and Level 1 Residuals for GCA Models Without Age 

Random Effect 

Fit Indices 

Unconditional 
means model  

(M1) 

Unconditional growth 
w/o age random 

effect (M2a) 

Unconditional 
growth spline w/o 
age random effects 

(M3a) 

Conditional 
growth spline 

w/o age random 
effects  
(M4a) 

.-2  log likelihood 
(deviance) 1035.2 1034.9 1023.0 1015.9 

AIC 1041.2 1042.9 1033.0 1037.9 
BIC 1050.0 1054.7 1047.8 1070.4 
Residuals     
Random Intercept SD  
(Level 2) 8.512 8.522 8.569 7.860 
Residual SD  
(Level 1) 7.106 7.095 6.691 6.667 

 

Note. Akaike Information Criterion  (AIC) adjusts for model complexity. Bayesian Information Criterion (BIC) adjusts for model 

complexity and sample size relative to model complexity. Nonverbal SS was log transformed because Level 1 residuals were 

initially not homogeneous, reflects removal of 6 participants due to influential values (extreme Relative Covariance, Covtrace, 

Cook’s D values), with influential values, ADHD med status p=.04 (+8.67SS). N=4 participants were removed for Verbal SS, 

with all participants: Conners Inattentive NS. N=4 participants were removed from GCA SS model, with all participants: SES 

NS, Conners Inattentive NS. 
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Table 8 

Model Fit and Standard Deviation of Random Intercept and Level 1 Residuals for Verbal Models Without Age 

Random Effects 

Fit Indices 

Unconditional 
means model 

(M1) 

Unconditional growth 
w/o age random 

effect (M2a) 

Unconditional growth 
spline w/o age random 

effects  
(M3a) 

Conditional 
growth spline 

w/o age random 
effects  
(M4a) 

.-2  log likelihood 
(deviance) 1062.1 1061.9 1044.6 1030.0 

AIC 1068.1 1069.9 1054.6 1052.0 
BIC 1077.0 1081.8 1069.4 1084.6 
Residuals     
Random Intercept SD  
(Level 2) 10.294 10.267 10.520 9.341 
Residual SD  
(Level 1) 7.302 7.303 6.654 6.491 

 

Note. Akaike Information Criterion adjusts for model complexity (AIC). Bayesian Information Criterion (AIC) adjusts for model 

complexity and sample size relative to model complexity (AIC). Nonverbal SS was log transformed because Level 1 residuals 

were initially not homogeneous, reflects removal of 6 participants due to influential values (extreme Relative Covariance, 

Covtrace, Cook’s D values), with influential values, ADHD med status p=.04 (+8.67SS). N=4 participants were removed for 

Verbal SS, with all participants: Conners Inattentive NS. N=4 participants were removed from GCA SS model, with all 

participants: SES NS, Conners Inattentive NS. 
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Table 9 

Model Fit and Standard Deviations of Random Intercept and Level 1 Residuals for Nonverbal Models Without Age 

Random Effects 

Fit Indices 

Uncondition
al means 

model (M1) 

Unconditional growth 
w/o age random effect 

(M2a) 

Unconditional growth 
spline w/o age random 

effects (M3a) 

Conditional growth 
spline w/o age 
random effects 

(M4a) 
.-2  log likelihood 

(deviance) -182.5 -183.1 -187.8 -191.9 
AIC a -175.5 -175.1 -177.8 -167.9 
BIC b -167.8 -163.5 -163.3 -133.2 
Residuals     
Random Intercept SD  
(Level 2) 0.053 0.052 0.051 0.043 
Residual SD  
(Level 1) 0.113 0.113 0.111 0.111 

 

Note. Akaike Information Criterion adjusts for model complexity (AIC). Bayesian Information Criterion (AIC) adjusts for model 

complexity and sample size relative to model complexity (AIC). Nonverbal SS was log transformed because Level 1 residuals 

were initially not homogeneous, reflects removal of 6 participants due to influential values (extreme Relative Covariance, 

Covtrace, Cook’s D values), with influential values, ADHD med status p=.04 (+8.67SS). N=4 participants were removed for 

Verbal SS, with all participants: Conners Inattentive NS. N=4 participants were removed from GCA SS model, with all 

participants: SES NS, Conners Inattentive NS. 
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Table 10 

Fixed Effects Estimates for Conditional Spline Growth Models (M4a) 

  Dependent Variable 

 
 GCA SS Verbal SS Nonverbal SS (log)a 

 Parameter 
Covariate 

type b p b p b p 
Intercept  104.82  119.19  4.54   
Age 3–6 spline TVC 2.48  0.002 3.61  <.001 0.01  .453 
Age 6 spline TVC -0.20 .807 .46  .568 -0.01  .292 
Gender TIC .40  .882 -2.02  .510 0.01  .769 
SES TVC 0.19  .072 .35 .003 <.001 .901 
Conners Inattentive  TVC -0.13  .095 -0.14 .074 <-0.01  .358 
Conners Hyperactive TVC 0.10  .277 .07 .467 <.01  .103 
ADHD med status TVC 2.05  .49 .99  .737 0.04  .456 
2 GCA Factors TVC 

 
 

 
 0.05  .912 

DAS Early Form TVC 4.27  .235 7.00  .051 0.05  .469 
Note. With p-values of Type II Wald Chi-Square Tests for fixed Effects,  TIC= Time Invariant Covariate, value is constant across 

time, TVC= Time Varying Covariate, value can change over time, measured at every visit, p-values in parentheses, 2 GCA 

Factors Variable coded as “1” if observation was during age 3.0–3.5 and DAS GCA had only verbal and nonverbal factors as 

compared to Age 3:6+ when DAS GCA includes verbal, nonverbal and spatial composites, DAS Early Form Variable coded “1” 

when DAS Early Form was used (ages 3–8) as compared to the DAS School Age form, Empty cells: for the Intercept p-values 

were not reported by lme4 function for fixed effect intercepts and “Covariate type” does not apply, “2 GCA Factors” variable 

was not included in GCA and Verbal models because for Verbal tasks there is no change at Age 3:6 and only one task changes 

for GCA at age 3:6; N=4 participants were removed for Verbal SS, with all participants: Conners Inattentive NS, N=4 

participants were removed from GCA SS model, with all participants: SES NS, Conners Inattentive NS, for Nonverbal model 

reflects removal of 6 participants due to influential values (extreme Relative Covariance, Covtrace, Cook’s D values), with 

influential values, ADHD med status p=.04 (+8.67SS). 

a Nonverbal SS was log transformed because Level 1 residuals were initially not homogeneous.  
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Table 11 

 Model Comparison of Final Linear Mixed Effect Models (Without Age Random Effects With ML e Estimation by 

Log-Likelihood Tests, M4a) 

Models Compared (Nested vs. Reference)  
chi square 
(marginal) p 

R2 
(marginal) 

R2 
(marginal, 

with 
outliers) 

 GCA  

UM vs UG w/o age random effects 0.240 0.624 .000 0.000 
UM vs UG spline w/o age random effects 12.162 0.002 .039 .014 
UM vs CG spline w/o age random effects 19.277 0.013 .136 .074 
UG Spline w/o age random effects vs CG 
spline w/o age random effects 7.115 0.310 .101 .060 

 Verbal  
   

UM vs UG w/o age random effects 0.170 .680 .003 .003 
UM vs UG spline w/o age random effects 17.553 0.0001 .027 .007 
UM vs CG spline w/o age random effects 32.069 <.0001 .188 .146 
UG Spline w/o age random effects vs CG 
spline w/o age random effects 14.516 0.024 .165 .139 

 Nonverbal 
   

UM vs UG w/o age random effects 0.541 0.462 .008 .003 
UM vs UG spline w/o age random effects 5.23 0.073 .040 .028 
UM vs CG spline w/o age random effects 9.401 0.401 .084 .098 
UG Spline w/o age random effects vs CG 
spline w/o age random effects 4.164 0.761 .046 .072 

 

Note. ML=Maximum Likelihood Estimation, UM = Unconditional Means Model (M1), UG = Unconditional Growth Model 

(M2a), UG Spline w/o age random effects = Unconditional Growth Model without age random effects (M3a), CG Spline w/o age 

random effects = Conditional Growth Model without age random effects (M4a), GCA: without influential values N=4 based on 

assumptions testing (including Cook’s D, Covtrace, RVC beyond threshold values with focus on random effects and residuals), 

Verbal SS: without influential values – N=4 based on assumptions testing (including Cook’s D, Covtrace, RVC beyond threshold 

values with focus on random effects and L1 residuals), Nonverbal SS: without influential values – N=6 based on assumptions 

testing (including Cook’s D, Covtrace, RVC beyond threshold values with focus on random effects and residuals) and log 

transformation of criterion variable NV_SS. 
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Table 12  

Model Comparison for Nonverbal Linear Mixed Effect Models (M4a) –With Varying Numbers of Participants 

Removed From Initial Sample of N=50 

N removed/Type of R2 
With all 
outliers 

Group 1 
removed a 

Group 2 
removed b 

Group 3 
removed c   

Number participants omitted 0 6 11 9 
Unconditional Means Model ICC 33.0% 18.3% 36.5% 28.4% 
Spline Additional R2 2.9% 3.8% 4.5% 3.8% 
Covariates Additional R2 6.7% 4.6% 9.8% 10.7% 
R2

t
(fvm)   35.0% 18.6% 40.0% 32.3% 

 

Note. ICC is the intra-class correlation coefficient and reflects the proportion of variance that the random intercept in the 

Unconditional Means Model accounts for;R2
t
(fvm)  reflects the proportion of total variance accounted for by the full M4a 

Nonverbal model.  

a Group 1: Influential RVC values  

b Group 2: Influential RVC values, also 1 extreme L2 Cook’s D value, 3 Level 1 residual extreme values  

c Group 3, Influential RVC values, most influential L1 and L2 Cook’s D values 
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Table 13 

Selected Fixed Effects Estimates for Conditional Spline Growth Models (M4a) and M5a models 

 Dependent Variable 
 Parameter GCA SS Verbal SS Nonverbal SS (log) f 
 M4a M5a M4a M5a M4a M5a 
Age 3–6 spline 2.48 (0.002) 2.53(.001) 3.61 (<.001) 3.71(<.001) 0.01 (.292) 0.01 (.441) 
Age 6 spline -0.20(.807) -1.05(.01) .46 (.568) -0.92(.020) -0.01 (.769) -0.01 

(.045) 
DAS Early 
Forme 

4.27 (.235)  7.00 (.051)  0.05 (.469)  

Note. P-values in parentheses, 2 GCA Factors Variable coded as “1” if observation was during age 3.0–3.5 and DAS GCA had 

only verbal and nonverbal factors as compared to Age 3:6+ when DAS GCA includes verbal, nonverbal and spatial composites, 

DAS Early Form Variable coded “1” when DAS Early Form was used (ages 3–8) as compared to the DAS School Age form; 

Verbal SS: 4 participants were removed for Verbal SS, with all participants: Conners Inattentive NS; GCA SS=4 participants 

were removed from GCA SS model, with all participants: SES NS, Conners Inattentive NS; Nonverbal SS: reflects removal of 6 

participants due to influential values (extreme Relative Covariance, Covtrace, Cook’s D values), with influential values, ADHD 

med status p=.04 (+8.67SS). 

f Nonverbal SS was log transformed because level1 residuals were initially not homogeneous,  
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Figure 1 

Linear Mixed Model Selection and Related Hypotheses 
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Legend: 
Solid arrow – reference model preferred 
Red outline = model w singularity 
Green outline = final model 

M4a Conditional Growth Spline w/o Age 
Random Effects 
+ Covariates (TIC & TIV’s)  
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Spline w/o Age Random Effect w/o 

DAS-Form 
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Figure 2  

Proportion of Participants with Increased, Decreased, or Stable for GCA SS, Verbal and Nonverbal SS Based on 

Reliable Change Index Scores 

       A: GCA SS    B: Verbal SS                C: Nonverbal SS 

 GCA SS Verbal SS Nonverbal SS 

Age 3 6 3 6 3 6 

r  .91 .91 .90 .87 .73 .77 

SD 11.21 12.63 11.91 16.60 14.11 12.79 

RCI cut off 9.33 10.50 10.44 16.58 20.32 17.01 

Note. A= GCA SS RCI classification graph, B= Verbal SS RCI classification graph, C=Nonverbal SS RCI 
classification graph. “r” is the DAS-II norming sample test-retest reliability, “SD” is the standard deviation of the 
current study sample at the given age, “RCI cut off” is the two-sided 95% cut off based on DAS-II norming sample 
test-retest r and the current study’s SD for the given variable and given age.  
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Figure 3  

Curve of Lowess Smoothed GCA SS Scores of Individual Observations 

Note. Data points are individual observations not grouped by participants. Lowess smoothing with smoother span = 

1/3, “robustifying” iterations = 5, delta = .01 * range of x.  
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Figure 4 

Curve of Lowess Smoothed Verbal SS Scores of Individual Observations 
 

 
 
 
Note. Data points are individual observations not grouped by participants. Lowess smoothing with smoother span = 

1/3, “robustifying” iterations = 5, delta = .01 * range of x.  
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Figure 5  

Curve of Lowess Smoothed Nonverbal SS Scores of Individual Observations 

 
Note. Data points are individual observations not grouped by participants. Lowess smoothing with smoother span = 

1/3, “robustifying” iterations = 5, delta = .01 * range of x.  
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Figure 6 

Grouped (by Participant) Spaghetti Plots of GCA SS, Verbal SS, Nonverbal SS Scores 
 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Blue line is Lowess smoothed mean curve. Panel A depicts GCA SS scores, Panel B depicts Verbal SS scores, 

and Panel C depicts Nonverbal SS scores.   
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Figure 7 

Individually Fitted Linear Models for GCA SS, Verbal SS and Nonverbal SS scores for Preschool and School-age 

Years Separately 

 

 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note. Panels on left show linear trends from Ages 3–6, panels on the right show linear trends Ages 6–13, Panels A and B show 

GCA SS linear trends, Panels C and D show Verbal SS linear trends and Panels E and F show Nonverbal SS linear trends.  
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Figure 8 

Linear Mixed Model Effect Sizes for Model Components by Criterion Variable 

  
Note. Results from models without influential values (3 outliers removed for GCA models, 4 outliers for Verbal models and 6 for 

Nonverbal models). Nonverbal scores were log-transformed because residuals were not homogenous. “R2 Random Intercept” 

reflects R2
t
(m) (the proportion of the total variance accounted for by random intercept) in the final M4a model. “R2 Covariates” 

reflects R2
t
(f) which is the proportion of total variance accounted for by fixed effects (age and all other covariates in M4a) in the 

M4a models.  
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Figure 9 

Comparison of Effect Sizes of Bivariate Correlations and Linear Mixed Models by Criterion Variable 

  
 
  
Note. Results from models without influential values for both M1 and M4 (3 outliers removed for GCA models, 4 outliers for 

Verbal models and 6 for Nonverbal models), Nonverbal scores were log-transformed because residuals were not homogenous., 

Model M1 is the unconditional means model with the only parameter as the random intercept, and Nonverbal models 

demonstrated many values (>10) that had influential values, and depending on how many influential values were removed, total 

R varied from 19-40% see Table 12. “Final M4a” is the R2
t
(fvm) of the final M4a linear mixed models which reflects the 

proportion of variance accounted for by the entire final Model, “Empty Model M1” is the intra-class correlation coefficient of M1 

and “Correlation 3–4 to 9–13” and “Correlation 5–6 to 9–13” reflect bivariate correlation coefficient based R2 values.  
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