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ABSTRACT

ESTIMATING DISTORTION RISK MEASURES UNDER TRUNCATED AND
CENSORED DATA SCENARIOS

by

Sahadeb Upretee

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Vytaras Brazauskas

In insurance data analytics and actuarial practice, a broad class of risk measures –

distortion risk measures – are used to capture the riskiness of the distribution tail. Point

and interval estimates of the risk measures are then employed to price extreme events, to

develop reserves, to design risk transfer strategies, and to allocate capital. When solving

such problems, the main statistical challenge is to choose an appropriate estimate of a

risk measure and to assess its variability. In this context, the empirical nonparametric

approach is the simplest one to use, but it lacks efficiency due to the scarcity of data

in the tails. On the other hand, parametric estimators, although prone to model mis-

specification, can improve estimators’ efficiency significantly. Moreover, they can easily

accommodate data truncation and censoring that are common features of insurance loss

data.

The first objective of this dissertation is to derive the asymptotic distributions of

empirical and parametric estimators of distortion risk measures under the truncated and

censored data scenarios. For parametric estimation, we use maximum likelihood (ML)

and percentile matching (PM) procedures. The risk measures we consider include: value-

at-risk (VaR), conditional tail expectation (cte), proportional hazards transform (pht),

Wang transform (wt), and Gini shortfall (gs). Conditions under which these measures

are finite are studied rigorously. The ML and PM estimators of the risk measures are

derived for three severity models (with identical support): shifted exponential, Pareto

I, and shifted lognormal. Their asymptotic properties are established and compared

with those of the empirical estimators. Then, the second objective of the dissertation
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is to cross-validate and augment the theoretical results using simulations. Finally, the

third objective is to provide a few numerical examples involving applications of the new

estimators to actual reinsurance data.
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Chapter 1

Introduction

1.1 Motivation

Insurance is a data-rich business that is built on identifying, measuring, and providing

protection against extreme or unexpected outcomes. Assessment of the riskiness of the

probability distribution tail is an essential task in insurance data analytics, which is

accomplished via risk measures. The outcomes of such exercise are then employed in

various areas of actuarial practice: asset management, financial valuation and reporting,

planning and analysis, product development, designing risk transfer strategies, pricing

and reserve calculation, and risk management.

A great number of risk measures belong to the class of distortion risk measures ,

which are defined as integrals of the transformed (or “distorted”) survival function of

the underlying risk or loss variable. Examples of most common distortion risk measures

include: value-at-risk (VaR), conditional tail expectation (cte), proportional hazards

transform (pht), Wang transform (wt), and Gini shortfall (gs). In this dissertation,

these five risk measures will be studied extensively.

Point and interval estimation of and hypothesis testing based on risk measures are

very important practical problems used by insurance companies for making business

decisions. They also play a significant role within the regulatory frameworks of the

financial sector (e.g., Solvency II – the European Union insurance regulation; ORSA
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– the U.S. insurance solvency framework; Basel III – regulation for the inernational

banking sector). The main statistical challenge in solving various business problems is

to choose an appropriate estimate of a risk measure and to assess its variability. The

empirical nonparametric approach is used often because it is simple to implement and

easy to understand. This approach, however, lacks efficiency due to the scarcity of data

in the tails. On the other hand, parametric estimators, although prone to model mis-

specification, can improve estimators’ efficiency significantly. Moreover, they can easily

accommodate data truncation and censoring that are common features of insurance loss

data. In this dissertation, we will focus on estimation of distortion risk measures under

truncated and censored data scenarios.

1.2 Literature Review

There is a large literature on risk measures and their application to contract pricing,

capital allocation, and risk management. For a quick introduction into these topics,

the reader may be referred to Albrecht (2004), Tapiero (2004), and Young (2004). The

development of practice-inspired risk measures was substantially advanced by a series

of ground-breaking contributions made by Wang (1995, 1998a,b, 2000, 2002). However,

statistical inference problems did not receive much attention or rigorous treatment until

the appearance of the paper on empirical estimation of risk measures by Jones and Zitikis

(2003). This paper gave momentum to the literature on risk measure estimation and

testing when the underlying risk is continuous and data are fully observed (see Brazauskas

and Kaiser, 2004; Jones and Zitikis, 2005, 2007; Jones et al ., 2006; Kaiser and Brazauskas,

2006; Brazauskas et al ., 2007, 2008; Necir et al ., 2007, 2010; Necir and Meraghni, 2009;

Samanthi et al ., 2017).

The primary goal of this dissertation is to develop statistical inferential tools for dis-

tortion risk measures when the loss variable is continuous but data are only partially

observed. In particular, we deal with typical insurance data scenarios when loss variable

is affected by left truncation (due to deductibles) or right censoring (due to policy limits).
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While several authors have investigated such data modifications for the ratemaking and

portfolio risk retention problems (see Frees, 2017; Lee, 2017), extensions of these tech-

niques to the class of distortion risk measures has not been considered in the actuarial

literature.

1.3 Plan of the Thesis

Focusing on distortion risk measures in general and VaR, cte, pht, wt, and gs in

particular, we present risk measure formulas when the loss variable follows shifted expo-

nential , Pareto I , and shifted lognormal distributions. In some of these cases, the risk

measures do not have closed form expressions, thus we specify conditions (i.e., restric-

tions on model parameters) under which the risk measure is finite. Further, empirical

and parametric (based on maximum likelihood and percentile matching) estimation of

the risk measures is treated and asymptotically normal distributions of the estimators are

established. Finally, theoretical results are cross-validated by performing a small-scale

simulation study and then complemented with real data illustrations.

The rest of the dissertation is organized as follows. In Chapter 2, we introduce a

left-truncated and right-censored loss variable and define its probability density func-

tion, cumulative distribution function, and quantile function. Then, specific expressions

of these functions are derived when the (ground up) loss variable follows the shifted

exponential, Pareto I, and shifted lognormal distribution.

In Chapter 3, the class of distortion risk measures is introduced, the five specific risk

measures (VaR, cte, pht, wt, and gs) are defined and dicussed from the perspective of

risk measure coherence. Then, their formulas are derived for shifted exponential, Pareto

I, and shifted lognormal distributions. Moreover, when the risk measure has no closed

form expression (which happens in several cases), a class of lower and upper bounds

is established by first proving a few probability inequalities involving the tails of the

standard normal distribution. The rationale for having such bounds is to eventually

construct risk measure approximations that could further be used in simulations.
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In Chapter 4, we first present empirical and parametric estimators for distortion risk

measures (the general case) and then specify asymptotically normal distributions of those

estimators. Having the general results ready, we work out a series of analytic examples

for the chosen risk measures and loss severity distributions.

Chapter 5 is devoted to numerical illustrations. First, we perform a small-scale simu-

lation study to cross-validate the asymptotic results of Chapter 4. Second, we fit Pareto

I and lognormal distributions to the well-known Norwegian fire claims data and evaluate

the quality of model fits via quantile-quantile plots. Then, the fitted models and selected

risk measures are used to estimate the upper-tail riskiness of these claims.

Finally, in Chapter 6, the main results of the dissertation are summarized and future

research directions are discussed.

A note on notation: throughout the dissertation we will use ‘log’ to denote the natural

logarithm.
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Chapter 2

Loss Data and Models

In this chapter, we first introduce notation of probability density function (pdf), cumu-

lative distribution function (cdf), and quantile function (qf) for continuous non-negative

random variable X. Then, to account for typical transformations of insurance loss data,

we modify the pdf, cdf, and qf of X when this variable is left-truncated and right-censored.

The chapter ends with presentation of the pdf, cdf, and qf of shifted exponential , Pareto

I , and shifted lognormal models under left truncation and right censoring of data. Note

that these are typical and mathematically tractable loss severity distributions, plus they

are designed to have identical supports.

2.1 Truncated and Censored Data

Suppose random variables

X1, X2, . . . , XN (2.1)

are independent and identically distributed (i.i.d.) and have the pdf f(x), cdf F (x), and

qf F−1(s). Since random variables corresponding to insurance loss are non-negative, the

support of f(x) is the set {x : x ≥ 0}. Note that X1, . . . , XN represent so-called “ground

up” losses. They are of great interest in product design (e.g., for specifying insurance

contract parameters, or for choosing loss retention levels in reinsurance) as well as for

other business decisions.
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In insurance practice, however, the underlying loss variable gets transformed due to

coverage modifications such as deductibles and upper policy limits. Specifically, if the

insurance contract has ordinary deductible d and policy limit u (u > d), then we actually

observe a random sample of mixed discrete-continuous variables, X∗1 , . . . , X
∗
n, that satisfy

the following conditional event relationship:

X∗i
d
=
{

min
(
Xi, u

) ∣∣Xi > d
}
, i = 1, . . . , n, (2.2)

where
d
= denotes “equal in distribution.” Also, the mixed pdf/pmf f∗, cdf F∗, qf F−1

∗ of

X∗ are related to f , F , F−1 and given by:

f∗(x) =



f(x)
1−F (d)

, d < x < u,

1−F (u)
1−F (d)

, x = u,

0, otherwise,

(2.3)

F∗(x) =


0, x ≤ d,

F (x)−F (d)
1−F (d)

, d < x < u,

1, x ≥ u,

(2.4)

F−1
∗ (p) =


F−1

(
p+

(
1− p

)
F (d)

)
, 0 ≤ p < F (u)−F (d)

1−F (d)
,

u, F (u)−F (d)
1−F (d)

≤ p ≤ 1.

(2.5)

Three special cases follow from equations (2.3)–(2.5), which we list in the following notes.

Note 2.1. [ Left-Truncated Variable ]

If u → ∞, then X∗ in (2.2) becomes a left-truncated variable at d, with cdf F∗, mixed

6



pdf/pmf f∗, and qf F−1
∗ given by

F∗(x) =
F (x)− F (d)

1− F (d)
1
{
x > d

}
, f∗(x) =

f(x)

1− F (d)
1
{
x > d

}
,

F−1
∗ (p) = F−1

(
p+

(
1− p

)
F (d)

)
, 0 ≤ p ≤ 1,

where the indicator function 1
{
x > d

}
= 1 if x > d, and = 0, otherwise. �

Note 2.2. [ Right-Censored Variable ]

If d = 0, then X∗ in (2.2) becomes a right-censored variable at u, with cdf F∗, mixed

pdf/pmf f∗, and qf F−1
∗ given by

F∗(x) = F (x) 1
{

0 < x < u
}

+1
{
x ≥ u

}
, f∗(x) = f(x) 1

{
0 < x < u

}
+
[
1−F (u)

]
1
{
x = u

}
,

F−1
∗ (p) = F−1(p) 1

{
0 ≤ p < F (u)

}
+ u1

{
F (u) ≤ p ≤ 1

}
,

where 1
{}

is the indicator function. �

Note 2.3. [ Ground-Up Loss ]

When d = 0 and u→∞, then X∗ in (2.2) becomes a ground-up loss variable X (which

is non-negative). In such a case, its respective cdf, mixed pdf/pmf, and qf are given by

F∗(x) = F (x), f∗(x) = f(x), F−1
∗ (p) = F−1(p),

where 0 ≤ p ≤ 1, and F (x) > 0 and f(x) > 0 when x > 0. �

2.2 Severity Distributions

There are many probability distributions used to model claim severity, and new ones being

actively developed. The proposed models have varying number of parameters (and thus

varying levels of flexibility) and different degrees of tail heaviness. In this dissertation,

we choose to illustrate the risk measuring concepts and theoretical results with three

7



standard and mathematically tractable distributions that share the same support: shifted

exponential, Pareto I, and shifted lognormal.

2.2.1 Shifted Exponential Distribution

Suppose random variable X is distributed according to a shifted exponential distribution

with a location (shift) parameter x0 > 0 and scale parameter θ > 0. We will denote this

fact as X ∼ Exp (x0, θ). As is well known (see Jonhson et al ., 1994, Chapter 19), the

pdf, cdf, and qf of X are:

pdf: f(x) = θ−1e−(x−x0)/θ, x ≥ x0,

cdf: F (x) = 1− e−(x−x0)/θ, x ≥ x0,

qf: F−1(p) = x0 − θ log(1− p), 0 ≤ p ≤ 1.

We assume x0 is a known parameter representing the smallest possible loss (e.g., one

dollar).

For X ∼ Exp (x0, θ), we have [F (x)− F (d)]/[1− F (d)] = 1− e−(x−d)/θ for d < x < u

(note that d > x0). Substitution of this expression in (2.4) yields the cdf of the left-

truncated and right-censored variable X∗ (defined by (2.2)):

F∗(x) =


0, x ≤ d,

1− e−(x−d)/θ, d < x < u,

1, x ≥ u.

(2.6)

Further, f(x)/[1 − F (d)] = θ−1e−(x−d)/θ for d < x < u and [1 − F (u)]/[1 − F (d)] =

e−(u−d)/θ for x = u; substitution of these expressions in (2.3) yields the mixed pdf/pmf

of X∗:

f∗(x) =


θ−1e−(x−d)/θ, d < x < u,

e−(u−d)/θ, x = u,

0, otherwise.

(2.7)

8



Finally, F−1
(
p+

(
1− p

)
F (d)

)
= −θ log(1− p) + d for 0 < p < 1− e−(u−d)/θ; substi-

tution of this expression in (2.5) yields the qf of X∗:

F−1
∗ (p) =

 −θ log(1− p) + d, 0 ≤ p < 1− e−(u−d)/θ,

u, 1− e−(u−d)/θ ≤ p ≤ 1.
(2.8)

2.2.2 Pareto I Distribution

Let random variable X be distributed according to a Pareto I distribution with a scale pa-

rameter x0 > 0 and shape parameter α > 0. We will denote this fact as X ∼ Pa I (x0, α).

As is well known (see Jonhson et al ., 1994, Chapter 20), the pdf, cdf, and qf of X are:

pdf: f(x) = (α/x0) (x0/x)α+1 , x ≥ x0,

cdf: F (x) = 1− (x0/x)α , x ≥ x0,

qf: F−1(p) = x0(1− p)−1/α, 0 ≤ p ≤ 1.

As in Section 2.2.1, x0 is assumed to be a known parameter representing the smallest

possible loss.

For X ∼ Pa I (x0, α), we have [F (x) − F (d)]/[1 − F (d)] = 1 − (d/x)α for d < x < u

(note that d > x0). Substitution of this expression in (2.4) yields the cdf of the left-

truncated and right-censored variable X∗ (defined by (2.2)):

F∗(x) =


0, x ≤ d,

1− (d/x)α , d < x < u,

1, x ≥ u.

(2.9)

Further, f(x)/[1−F (d)] = (α/d) (d/x)α+1 for d < x < u and [1−F (u)]/[1−F (d)] =

(d/u)α for x = u; substitution of these expressions in (2.3) yields the mixed pdf/pmf of

9



X∗:

f∗(x) =


(α/d) (d/x)α+1 , d < x < u,

(d/u)α, x = u,

0, otherwise.

(2.10)

Finally, F−1
(
p+

(
1− p

)
F (d)

)
= d(1− p)−1/α for 0 ≤ p < 1− (d/u)α; substitution of

this expression in (2.5) yields the qf of X∗:

F−1
∗ (p) =

 d(1− p)−1/α, 0 ≤ p < 1− (d/u)α ,

u, 1− (d/u)α ≤ p ≤ 1.
(2.11)

2.2.3 Shifted Lognormal Distribution

Suppose random variable X is distributed according to a shifted lognormal distribution

with a location (shift) parameter x0 > 0, log-location −∞ < µ < ∞, and log-scale

parameter σ > 0. We will denote this fact as X ∼ LN (x0, µ, σ). As is well known (see

Jonhson et al ., 1994, Chapter 14), X is related to a normal random variable, and its pdf,

cdf, and qf are:

pdf: f(x) = (σ(x− x0))−1 ϕ

(
log(x− x0)− µ

σ

)
, x ≥ x0,

cdf: F (x) = Φ

(
log(x− x0)− µ

σ

)
, x ≥ x0,

qf: F−1(p) = x0 + exp{µ+ σΦ−1(p)}, 0 ≤ p ≤ 1.

Here Φ, ϕ, Φ−1 denote the cdf, pdf, qf of the standard normal distribution, respectively.

Also, similar to Sections 2.2.1-2.2.2, x0 is a known parameter representing the smallest

possible loss.

Next, let us first introduce the following abbreviations:

cd :=
log(d− x0)− µ

σ
, cx :=

log(x− x0)− µ
σ

, cu :=
log(u− x0)− µ

σ
.

10



Now, for X ∼ LN (x0, µ, σ), we have [F (x)−F (d)]/[1−F (d)] = [Φ(cx)−Φ(cd)]/[1−Φ(cd)]

for d < x < u (note that d > x0), where cx and cd are defined above. Substitution of

these expressions in (2.4) yields the cdf of X∗ (defined by (2.2)):

F∗(x) =



0, x ≤ d,

Φ (cx)− Φ (cd)

1− Φ (cd)
, d < x < u,

1, x ≥ u.

(2.12)

Further, f(x)/[1 − F (d)] = (σ(x − x0))−1 ϕ(cx)/[1 − Φ(cd)] for d < x < u and [1 −

F (u)]/[1−F (d)] = [1−Φ(cu)]/[1−Φ(cd)] for x = u. Substitution of these expressions in

(2.3) yields the mixed pdf/pmf of X∗:

f∗(x) =



(σ(x− x0))−1 ϕ (cx)

1− Φ (cd)
, d < x < u,

1− Φ (cu)

1− Φ (cd)
, x = u,

0, otherwise.

(2.13)

Finally, F−1
(
p+

(
1− p

)
F (d)

)
= x0 +exp

{
µ+ σΦ−1

(
p+ (1− p)Φ(cd)

)}
for 0 ≤ p <

pu, where pu = [Φ(cu) − Φ(cd)]/[1 − Φ(cd)]. Substitution of these expressions in (2.5)

yields the qf of X∗:

F−1
∗ (p) =


x0 + exp

{
µ+ σΦ−1

(
p+ (1− p)Φ (cd)

)}
, 0 ≤ p < pu,

u, pu ≤ p ≤ 1.

(2.14)
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Chapter 3

Distortion Risk Measures

In this chapter, we present a broad class of risk measures – distortion risk measures – and

briefly discuss the concept of risk measure coherence. Then, we define several popular

distortion measures: value-at-risk (VaR), conditional tail expectation (cte), proportional

hazards transform (pht), Wang transform (wt), and Gini shortfall (gs). Finally, specific

formulas of these measures are derived when claim severities follow shifted exponential,

Pareto I, and shifted lognormal distributions. In several instances the risk measure for-

mulas involve integrals that are analitically intractable. In those cases, we prove that the

integrals are bounded and then evaluate them numerically.

A distortion risk measure is defined as the expectation of loss with respect to distorted

probabilities. In particular, for a continuous random variable X ≥ 0 with cdf F , a risk

measure R is defined as

R[F ] =

∫ ∞
0

g(1− F (x)) dx, (3.1)

where the distortion function g : [0, 1] → [0, 1] is an increasing function with g(0) = 0

and g(1) = 1. Moreover, if g is differentiable, then integration by parts in (3.1) leads to

R[F ] =

∫ 1

0

F−1(u)ψ(u) du, (3.2)

where ψ(u) = g′(1− u) and F−1 is the quantile function of variable X.

A number of authors studied the question of what a “good” risk measure is and what
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properties it should satisfy (see, for example, discussion by Albrecht, 2004). Among

multiple axiomatic systems the one proposed by Artzner et al . (1999) has become quite

influential. It advocates the use of coherent measures which are defined as follows. For

loss variables X1 and X2, a mapping of random variables to real numbers, %[·], is called

a coherent risk measure if it satisfies the following four axioms:

1. Translation invariance: %[X1 + a] = %[X1] + a, where a is a real-valued constant.

2. Scale invariance: %[bX1] = b%[X1], where b is a positive constant.

3. Subadditivity : %[X1 +X2] ≤ %[X1] + %[X2].

4. Monotonicity : If P {X1 ≤ X2} = 1, then %[X1] ≤ %[X2].

These properties have intuitively appealing interpretations. The first one says that

if a risk-free amount of capital (e.g., cash) is added to or subtracted from a portfolio of

risks, then the overall riskiness of the portfolio should be shifted by that amount. The

second property applies to rescaling of risk (e.g., assets affected by inflation or currency

exchange) and states that the risk measure should be affected by the same scale factor

as the risk itself. Subadditivity is also known as the portfolio diversification property: if

two portfolios are combined into one, their overall riskiness should not exceed the total

riskiness of individual portfolios. The fourth property means that stochastically larger

risk (or portfolio) should be riskier than stochastically smaller one.

3.1 Value-at-Risk

The VaR measure on a portfolio of risks (i.e., potential losses) is the maximum loss

one might expect over a given period of time, at a given level of confidence (say, β). In

mathematical terms, this measure is defined as the (1−β)-level quantile of the distribution

function F :

VaR[F, β] = F−1(1− β). (3.3)
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Note that VaR can be expressed as distortion risk measure, defined by (3.1), by choosing

g(u) = 0 for 0 ≤ u < β, and = 1 for β ≤ u ≤ 1. These choices correspond to g(1−F (x)) =

0 for 0 ≤ 1− F (x) < β, and = 1 for β ≤ 1− F (x) ≤ 1, or equivalently g(1− F (x)) = 0

for F−1(1− β) < x <∞, and = 1 for 0 ≤ x ≤ F−1(1− β). Now expression (3.3) follows

easily from (3.1):

VaR[F, β] =

∫ F−1(1−β)

0

1 dx +

∫ ∞
F−1(1−β)

0 dx = F−1(1− β).

This risk measure, however, is not coherent as it does not satisfy the subadditivity

property (it does satisfy the other three properties though). To see that, let us consider

the standard uniform random variable U ∼ Uniform (0, 1) and define two loss variables:

X1 = 100 · 1
{
U ≤ 0.09

}
and X2 = 100 · 1

{
U > 0.91

}
, where 1

{}
denotes the in-

dicator function. Let us also denote cdf’s of X1 and X2 as FX1 and FX2 , respectively,

and the cdf of their sum as FX1+X2 . Clearly, the chance of zero loss is 91% for both

variables; thus VaR[FX1 , 0.10] = VaR[FX2 , 0.10] = 0. On the other hand, the chance

of zero loss for their sum is 82%. Thus, VaR[FX1+X2 , 0.10] = 100, which implies that

VaR[FX1+X2 , 0.10] 
 VaR[FX1 , 0.10] + VaR[FX2 , 0.10].

Despite this axiomatic drawback the VaR measure remains popular among practi-

tioners (especially in the banking industry), which is mainly due to its computational

simplicity and straightforward interpretation. The following examples present VaR for

the severity distributions of Section 2.2.

Example 3.1. [ VaR of Shifted Exponential ]

If X ∼ Exp (x0, θ), then the VaR measure of X is its qf (defined in Section 2.2.1):

VaR[F, β] = F−1(1− β) = x0 − θ log(β),

where β (0 < β < 1) represents the confidence level; also known as the “risk appetite”.

�
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Example 3.2. [ VaR of Pareto I ]

If X ∼ Pa I (x0, α), then the VaR measure of X is its qf (defined in Section 2.2.2):

VaR[F, β] = F−1(1− β) = x0β
−1/α,

where β (0 < β < 1) represents the confidence level or risk appetite. �

Example 3.3. [ VaR of Shifted Lognormal ]

If X ∼ LN (x0, µ, σ), then the VaR measure of X is its qf (defined in Section 2.2.3):

VaR[F, β] = F−1(1− β) = x0 + exp{µ+ σΦ−1(1− β)},

where β (0 < β < 1) represents the risk appetite. �

3.2 Conditional Tail Expectation

The cte measure (also known as Tail-VaR, Tail Conditional Expectation or Expected

Shortfall) is the conditional expectation of a loss variable given that it exceeds a specified

quantile, VaR[F, β]. It measures the expected maximum loss in the 100β% worst cases,

over a given period of time:

cte[F, β] = F−1(1− β) +
1

β

∫ ∞
F−1(1−β)

[
1− F (x)

]
dx (3.4)

=
1

β

∫ 1

1−β
F−1(u) du. (3.5)

It is clear from (3.4) that this measure can be expressed as (3.1) by choosing g(t) = t/β

for 0 ≤ t < β, and = 1 for β ≤ t ≤ 1. Alternatively, expression (3.5) follows from (3.2)

with ψ(u) = 0 for 0 ≤ u ≤ 1−β, and = 1/β for 1−β < u ≤ 1. Further, cte is a coherent

risk measure and it answers the often asked “what-if” question. Indeed, comparing (3.4)

with (3.3) we see that there is a direct relationship between VaR and cte. That is, in

case an extreme (low probability, high impact) event happens, VaR tells us only the lower
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bound of possible losses; cte, on the other hand, provides an estimate of expected loss

if the extreme event occurs. Thus, cte is more informative.

The following examples present cte for the severity distributions of Section 2.2.

Example 3.4. [ cte of Shifted Exponential ]

If X ∼ Exp (x0, θ), then its cte measure is found by integrating the qf of X (defined in

Section 2.2.1) over the interval [1− β; 1] and then dividing it by β:

cte[F, β] =
1

β

∫ 1

1−β
F−1(u) du =

1

β

∫ 1

1−β

[
x0 − θ log(1− u)

]
du

= x0 − θ(log(β)− 1),

where β (0 < β < 1) is the risk appetite. (For more integration details, see Appendix

A.) �

Example 3.5. [ cte of Pareto I ]

If X ∼ Pa I (x0, α), then its cte measure is found by integrating the qf of X (defined in

Section 2.2.2) over the interval [1− β; 1] and then dividing it by β:

cte[F, β] =
1

β

∫ 1

1−β
F−1(u) du =

1

β

∫ 1

1−β

[
x0(1− u)−1/α

]
du

= x0β
−1/αα(α− 1)−1, α > 1,

where β (0 < β < 1) is the risk appetite. (For more integration details, see Appendix A.)

Note that cte is infinite when Pareto distribution has very heavy upper tail (i.e., when

α ≤ 1). �

Example 3.6. [ cte of Shifted Lognormal ]

If X ∼ LN (x0, µ, σ), then its cte measure is found by integrating the qf of X (defined

in Section 2.2.3) over the interval [1− β; 1] and then dividing it by β:

cte[F, β] =
1

β

∫ 1

1−β
F−1(u) du =

1

β

∫ 1

1−β

[
x0 + eµ+σΦ−1(u)

]
du

= x0 +
1

β
eµ+σ2/2 Φ

(
σ − Φ−1(1− β)

)
,
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where β (0 < β < 1) is the risk appetite. (For more integration details, see Appendix

A.) �

3.3 Proportional Hazards Transform

The pht measure was introduced by Wang (1995) as a new insurance premium principle,

where additional risk loadings are proportional to the hazard rates (hence the name of

the measure). This premium principle is scale invariant, additive for layers, and enjoys

some optimality properties in reinsurance sharing arrangements. The pht measure is

defined by the distortion function g(s) = sr or, equivalently, by the weight function

ψ(s) = r(1− s)r−1:

pht[F, r] =

∫ ∞
0

[
1− F (x)

]r
dx = r

∫ 1

0

F−1(u)(1− u)r−1 du, (3.6)

where constant r (0 < r ≤ 1) represents the degree of distortion and F−1 is the qf of

X. Note that pht[F, 1] is the expected value of X, and pht[F, 1/2] − pht[F, 1] is the

right-tail deviation of X. Small r corresponds to high distortion, but in most practical

situations r varies between 1/2 and 1. Moreover, pht is a coherent risk measure and is

justified by utility theory (see Wang, 1998a,b).

The following examples present pht for the severity distributions of Section 2.2.

Example 3.7. [ pht of Shifted Exponential ]

If X ∼ Exp (x0, θ), then its pht measure is found by integrating (3.6) as follows:

pht[F, r] = r

∫ 1

0

F−1(u)(1− u)r−1 du = r

∫ 1

0

[
x0 − θ log(1− u)

]
(1− u)r−1 du

= x0 + θ/r,

where 0 < r ≤ 1 is the degree of distortion. (For more integration details, see Appendix

A.) �
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Example 3.8. [ pht of Pareto I ]

If X ∼ Pa I (x0, α), then its pht measure is found by integrating (3.6) as follows:

pht[F, r] = r

∫ 1

0

F−1(u)(1− u)r−1 du = r

∫ 1

0

[
x0(1− u)−1/α

]
(1− u)r−1 du

= x0 +
x0

rα− 1
, α > 1/r,

where 0 < r ≤ 1 is the degree of distortion. (For more integration details, see Appendix

A.) Note that pht is infinite when α ≤ 1/r. �

Example 3.9. [ pht of Shifted Lognormal ]

If X ∼ LN (x0, µ, σ), then its pht measure is found by integrating (3.6) as follows:

pht[F, r] = r

∫ 1

0

F−1(u)(1− u)r−1 du = r

∫ 1

0

[
x0 + eµ+σΦ−1(u)

]
(1− u)r−1 du

= x0 + eµσ

∫ ∞
−∞

(1− Φ(z))reσz dz =: x0 + eµCPHT(r, σ),

where 0 < r ≤ 1 is the degree of distortion. (For more integration details, see Appendix

A.) Note that for fixed r and σ, the integral CPHT(r, σ) = σ
∫∞
−∞(1−Φ(z))r eσz dz is finite

and can be evaluated numerically. Theorem 3.1 establishes a class of lower and upper

bounds for CPHT(r, σ). �

Theorem 3.1. For 0 < r ≤ 1 and σ > 0, define CPHT(r, σ) = σ
∫∞
−∞(1 − Φ(z))r eσz dz,

where Φ is the cdf of the standard normal distribution. Then the double inequality

eσx
[(

1− Φ(x)
)r − (1− Φ(x)

)]
+ eσ

2/2 Φ(σ − x) ≤ CPHT(r, σ) < eσx + Kx(r, σ),

where Kx(r, σ) = σx−rr−1/2 (2π)(1−r)/2 eσ
2/(2r)Φ

(
(σ − rx)/

√
r
)
, holds for every x > 0.

Proof: Fix x > 0 and split the range of integration into (−∞;x) and (x;∞):

CPHT(r, σ) = σ

∫ x

−∞
(1− Φ(z))r eσz dz + σ

∫ ∞
x

(1− Φ(z))r eσz dz

=: I1,x(r, σ) + I2,x(r, σ).
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The lower and upper bounds for I1,x(r, σ) follow by noticing that
(
1 − Φ(x)

)r ≤ (1 −
Φ(z)

)r ≤ 1 for z ≤ x. That is,

I1,x(r, σ) ≥ σ
(
1− Φ(x)

)r ∫ x

−∞
eσz dz = eσx

(
1− Φ(x)

)r
and

I1,x(r, σ) ≤ σ

∫ x

−∞
eσz dz = eσx.

Therefore,

eσx
(
1− Φ(x)

)r ≤ I1,x(r, σ) ≤ eσx. (3.7)

To establish the lower bound for the term I2,x(r, σ), note that (1−Φ(z))r is decreasing

in r and thus (1− Φ(z))r ≥ 1− Φ(z) for 0 < r ≤ 1. Now, first use integration by parts,

then the fact that lim
z→∞

(1− Φ(z)) eσz = 0, and finish with straighforward integration:

I2,x(r, σ) ≥ σ

∫ ∞
x

(1− Φ(z)) eσz dz = − eσx(1− Φ(x)) +

∫ ∞
x

eσzϕ(z) dz

= −eσx(1− Φ(x)) + eσ
2/2

∫ ∞
x

ϕ(z − σ) dz

= −eσx(1− Φ(x)) + eσ
2/2Φ(σ − x).

For the upper bound of I2,x(r, σ), we first apply Lemma B.5(a) and then z−r ≤ x−r

for z ≥ x:

I2,x(r, σ) < σ

∫ ∞
x

(
1

z
ϕ(z)

)r
eσz dz ≤ σx−r

∫ ∞
x

(ϕ(z))r eσz dz.

And the remaining steps are straightforward (but lengthy) integration:

σx−r
∫ ∞
x

(ϕ(z))r eσz dz = σx−rr−1/2(2π)(1−r)/2eσ
2/(2r)

∫ ∞
x

ϕ

(
z − σr−1

√
r−1

)
dz

= σx−rr−1/2(2π)(1−r)/2eσ
2/(2r)Φ

(
(σ − rx)/

√
r
)

= Kx(r, σ).
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Therefore,

−eσx(1− Φ(x)) + eσ
2/2 Φ(σ − x) ≤ I2,x(r, σ) < Kx(r, σ). (3.8)

Now, adding (3.7) and (3.8) yields the statement of the theorem. �

In Table 3.1, we provide numerical evaluations of CPHT(r, σ) for typical ranges of r

and σ. Note that the lower and upper bounds established in Theorem 3.1 work well,

although more work is needed in identifying optimal value of x. A few illustrations for

x = (1/2)×(σ/r): for r = 0.55 and σ = 1, we have CPHT(r, σ) ≈ 3.896 and 1.40 < 3.896 <

6.48; for r = 0.75 and σ = 2, we have CPHT(r, σ) ≈ 20.386 and 6.60 < 20.386 < 43.91; for

r = 0.95 and σ = 4, we have CPHT(r, σ) ≈ 5.0× 103 and 2.9× 103 < 5.0× 103 < 1.4× 104.

Table 3.1: Numerical evaluations of CPHT(r, σ) for selected r and σ.

σ

r 1/10 1/5 1/4 1/2 1 2 4 5

0.55 1.069 1.161 1.216 1.625 3.896 77.453 5.7× 106 2.3× 1010

0.65 1.050 1.116 1.157 1.455 2.979 36.422 4.7× 105 5.2× 108

0.75 1.034 1.082 1.111 1.332 2.412 20.386 7.1× 104 3.1× 107

0.85 1.021 1.054 1.075 1.239 2.030 12.813 1.6× 104 3.4× 106

0.95 1.010 1.030 1.045 1.165 1.758 8.739 5.0× 103 5.8× 105

1 1.005 1.020 1.032 1.133 1.649 7.389 3.0× 103 2.7× 105

3.4 Wang Transform

The wt measure was introduced by Wang (2000, 2002) as a tool for pricing both liabilities

(insurance losses) and asset returns (gains). It is a very effective measure for finance

models driven by normal or lognormal random variables. For example, for normally

distributed asset returns, the wt measure recovers two well-known results: the Capital

Asset Pricing Model and the Black-Scholes formula. Here our focus will be on insurance
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losses. In this context, the wt measure is defined by the distortion function g(t) =

Φ (Φ−1(t) + λ) or, equivalently, by the weight function ψ(u) = eλΦ−1(u)−λ2/2:

wt[F, λ] =

∫ ∞
0

Φ
(
Φ−1(1− F (x)) + λ

)
dx =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du, (3.9)

where Φ and Φ−1 denote the cdf and qf of the standard normal random variable, respec-

tively. Parameter λ (−∞ < λ < ∞) reflects the level of systematic risk and is called

the market price of risk or risk aversion index . Although in theory λ can be any real

number, in applications its typical range is from −1 to 1. Also, wt is a coherent risk

measure.

The following examples present wt for the severity distributions of Section 2.2.

Example 3.10. [ wt of Shifted Exponential ]

If X ∼ Exp (x0, θ), then its wt measure is found by integrating (3.9) as follows:

wt[F, λ] =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du =

∫ 1

0

[
x0 − θ log(1− u)

]
eλΦ−1(u)−λ2/2 du

= x0 + θ

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

Φ(z)
dz =: x0 + θ CWT(λ),

where ϕ is the pdf of the standard normal random variable and −∞ < λ <∞ is the risk

aversion index. (For more integration details, see Appendix A.) Note that for fixed λ,

the integral CWT(λ) =

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

Φ(z)
dz is finite and can be evaluated numerically.

Theorem 3.2 establishes a class of lower and upper bounds for CWT(λ). �

Theorem 3.2. For any real constant λ, define CWT(λ) =

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

Φ(z)
dz, where

Φ and ϕ are the cdf and pdf of the standard normal distribution, respectively. Then:

(a) For λ ≤ 0, the double inequality

−Φ(x+ λ) log [Φ(x)] ≤ CWT(λ) ≤ Φ(x+ λ)− log [Φ(x)]

holds for every x < 0.
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(b) For λ > 0, the double inequality

−Φ(x+ λ) log [Φ(x)] ≤ CWT(λ) <
x

x+ λ
Φ(x+ λ)− log [Φ(x)]

holds for every x < −λ.

Proof: Fix x < 0 and split the range of integration into (−∞;x) and (x;∞):

CWT(λ) =

∫ x

−∞
Φ(z + λ)

ϕ(z)

Φ(z)
dz +

∫ ∞
x

Φ(z + λ)
ϕ(z)

Φ(z)
dz =: I1,x(λ) + I2,x(λ).

Start with the term I2,x(λ) which after integration by parts becomes

I2,x(λ) = − Φ(x+ λ) log [Φ(x)]−
∫ ∞
x

log [Φ(z)] ϕ(z + λ) dz.

Notice that for z ≥ x, we have log [Φ(x)] ≤ log [Φ(z)] ≤ 0 and therefore

−Φ(x+ λ) log [Φ(x)] ≤ I2,x(λ) ≤ − log [Φ(x)] . (3.10)

Next, it is clear from its definition that I1,x(λ) ≥ 0, but to find an upper bound for it

the sign of λ has to be taken into consideration. Thus, for λ ≤ 0, Lemma B.6(a) leads to

0 ≤ I1,x(λ) ≤
∫ x

−∞

[
e−λz−λ

2/2 Φ(z)
] ϕ(z)

Φ(z)
dz =

∫ x

−∞
ϕ(z+λ) dz = Φ(x+λ). (3.11)

Adding (3.10) and (3.11) proves the double inequality in (a).

For λ > 0, we apply Lemma B.6(b) (note that the upper bound is valid for x < −λ)

and then z/(z + λ) ≤ x/(x+ λ) for z ≤ x < −λ:

0 ≤ I1,x(λ) <

∫ x

−∞

[
z

z + λ
e−λz−λ

2/2 Φ(z)

]
ϕ(z)

Φ(z)
dz

≤ x

x+ λ

∫ x

−∞
ϕ(z + λ) dz =

x

x+ λ
Φ(x+ λ). (3.12)

Adding (3.10) and (3.12) proves the double inequality in (b). �
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Example 3.11. [ wt of Pareto I ]

If X ∼ Pa I (x0, α), then its wt measure is found by integrating (3.9) as follows:

wt[F, λ] =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du =

∫ 1

0

x0(1− u)−1/α eλΦ−1(u)−λ2/2 du

= x0 +
x0

α

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

[Φ(z)]1/α+1
dz =: x0 +

x0

α
CWT(λ, α),

where −∞ < λ < ∞ is the risk aversion index. (For more integration details, see

Appendix A.) Note that for fixed λ and α > 1, the integral CWT(λ, α) =

∫ ∞
−∞

Φ(z +

λ)
ϕ(z)

[Φ(z)]1/α+1
dz is finite and can be evaluated numerically. Theorem 3.3 establishes a

class of lower and upper bounds for CWT(λ, α). �

Theorem 3.3. For any real constant λ and α > 1, define CWT(λ, α) =

∫ ∞
−∞

Φ(z +

λ)
ϕ(z)

[Φ(z)]1/α+1
dz, where Φ and ϕ are the cdf and pdf of the standard normal distribution,

respectively. Then:

(a) For λ ≤ 0, the double inequality

Φ(x+ λ) cx(α) ≤ CWT(λ, α) ≤ cx(α) +
α

α− 1
e−λx−λ

2/2
[
Φ(x)

]1−1/α
,

where cx(α) = α
([

Φ(x)
]−1/α − 1

)
, holds for every x < 0.

(b) For λ > 0, the double inequality

Φ(x+λ) cx(α) ≤ CWT(λ, α) < cx(α)+
α

α− 1

x

x+ λ

[
e−λx−λ

2/2
[
Φ(x)

]1−1/α
+ Cx(α, λ)

]
,

where Cx(α, λ) = λ
√
α(2π)1/α/(α− 1) (−x)1/α−1 e−(λ2/2)/(α−1) Φ

(
x+ λα/(α− 1)√

α/(α− 1)

)
,

holds for every x < −λ.

Proof: Fix x < 0 and split the range of integration into (−∞;x) and (x;∞):

CWT(λ, α) =

∫ x

−∞
Φ(z + λ)

ϕ(z)

[Φ(z)]1/α+1
dz +

∫ ∞
x

Φ(z + λ)
ϕ(z)

[Φ(z)]1/α+1
dz

=: I1,x(λ, α) + I2,x(λ, α).

23



Start with the term I2,x(λ, α) which after integration by parts becomes

I2,x(λ, α) = α

[
Φ(x+ λ) [Φ(x)]−1/α − 1 +

∫ ∞
x

[Φ(z)]−1/α ϕ(z + λ) dz

]
.

Note that for z ≥ x, we have 1 ≤ [Φ(z)]−1/α ≤ [Φ(x)]−1/α and, after straighforward

simplifications,

Φ(x+ λ) cx(α) ≤ I2,x(λ, α) ≤ cx(α). (3.13)

Next, it is clear from its definition that I1,x(λ, α) ≥ 0, but to find an upper bound for

it the sign of λ has to be taken into account. Thus, for λ ≤ 0, first Lemma B.6(a) and

then integration by parts (with the condition α > 1) lead to

0 ≤ I1,x(λ, α) ≤
∫ x

−∞

[
e−λz−λ

2/2 Φ(z)
] ϕ(z)[

Φ(z)
]1/α+1

dz

=
α e−λ

2/2

α− 1

[
e−λx

[
Φ(x)

]1−1/α
+ λ

∫ x

−∞

[
Φ(z)

]1−1/α
e−λz dz

]
.

For z ≤ x, we have 0 ≤
[
Φ(z)

]1−1/α ≤
[
Φ(x)

]1−1/α
, and since λ ≤ 0,

0 ≤ I1,x(λ, α) ≤ α

α− 1
e−λx−λ

2/2
[
Φ(x)

]1−1/α
. (3.14)

Adding (3.13) and (3.14) proves the double inequality in (a).

For λ > 0, we apply Lemma B.6(b) (note that the upper bound is valid for x < −λ),

z/(z + λ) ≤ x/(x+ λ) for z ≤ x < −λ, and then integration by parts:

0 ≤ I1,x(λ, α) <

∫ x

−∞

[
z

z + λ
e−λz−λ

2/2 Φ(z)

]
ϕ(z)[

Φ(z)
]1/α+1

dz

≤ x e−λ
2/2

x+ λ

∫ x

−∞
e−λz

ϕ(z)[
Φ(z)

]1/α dz
=

α

α− 1

x e−λ
2/2

x+ λ

[
e−λx

[
Φ(x)

]1−1/α
+ λ

∫ x

−∞

[
Φ(z)

]1−1/α
e−λz dz

]
,

(3.15)
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where the last step involves the following computation (assuming α > 1):

lim
z→−∞

[
Φ(z)

]1−1/α

eλz
=

(
lim

z→−∞

Φ(z)

eλz(α/(α−1))

)1−1/α

=

(
lim

z→−∞

ϕ(z)

(λα/(α− 1))eλz(α/(α−1))

)1−1/α

= constant×
(

lim
z→−∞

ϕ(z + λα/(α− 1))

)1−1/α

= 0.

Further, we continue (3.15) by first applying Lemma B.5(b), then −z−1 ≤ −x−1 for

z ≤ x < −λ, and finishing with straightforward (but messy) integration:

0 ≤ I1,x(λ, α) <
α

α− 1

x e−λ
2/2

x+ λ

[
e−λx

[
Φ(x)

]1−1/α
+ λ

∫ x

−∞

[
ϕ(z)

−z

]1−1/α

e−λz dz

]

≤ α

α− 1

x e−λ
2/2

x+ λ

[
e−λx

[
Φ(x)

]1−1/α
+ λ(−x)1−1/α

∫ x

−∞
[ϕ(z)]1−1/α e−λz dz

]
=

α

α− 1

x

x+ λ

[
e−λx−λ

2/2
[
Φ(x)

]1−1/α
+ Cx(α, λ)

]
, (3.16)

where Cx(α, λ) = λ
√
α(2π)1/α/(α− 1) (−x)1/α−1 e−(λ2/2)/(α−1) Φ

(
x+ λα/(α− 1)√

α/(α− 1)

)
.

Adding (3.13) and (3.16) proves the double inequality in (b). �

In Table 3.2, we provide numerical approximations of CWT(λ) and CWT(λ, α) for typical

ranges of λ and α. Note that the lower and upper bounds established in Theorems

3.2 and 3.3 are reasonably tight, although more work is needed on identifying optimal

value of x. A few illustrations for CWT(λ): for λ = −0.5, we have CWT(λ) ≈ 0.619

and 0.21 < 0.619 < 1.14 (when x = λ/2); for λ = 0.25, we have CWT(λ) ≈ 1.245

and 0.47 < 1.245 < 1.58 (when x = −2λ); for λ = 1, we have CWT(λ) ≈ 2.232 and

0.60 < 2.232 < 3.94 (when x = −2λ). Likewise, for CWT(λ, α): for λ = −0.5 and α = 2.5,

we have CWT(λ, α) ≈ 0.886 and 0.25 < 0.886 < 1.85 (when x = λ/2); for λ = −1 and

α = 4, we have CWT(λ, α) ≈ 0.416 and 0.09 < 0.416 < 1.57 (when x = λ/2); for λ = 0.5

and α = 1.25, we have CWT(λ, α) ≈ 20.965 and 1.30 < 20.965 < 24.86 (when x = −2λ).
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Table 3.2: Numerical evaluations of CWT(λ) and CWT(λ, α) for selected λ and α.

CWT(λ, α) for α

λ CWT(λ) 1.1 1.25 1.5 1.75 2 2.5 3 4 5

-1 0.359 0.806 0.681 0.582 0.531 0.499 0.461 0.440 0.416 0.403

-0.5 0.619 2.389 1.692 1.281 1.101 0.999 0.886 0.825 0.760 0.727

-0.25 0.792 4.719 2.820 1.938 1.595 1.412 1.217 1.116 1.011 0.958

0 1.000 11.000 5.000 3.000 2.333 2.000 1.667 1.500 1.333 1.250

0.25 1.245 33.003 9.663 4.799 3.468 2.857 2.283 2.009 1.745 1.616

0.5 1.530 141.659 20.965 8.020 5.272 4.132 3.135 2.686 2.270 2.074

1 2.232 11090.602 158.182 26.874 13.403 9.143 6.035 4.824 3.803 3.355

Example 3.12. [ wt of Shifted Lognormal ]

If X ∼ LN (x0, µ, σ), then its wt measure is found by integrating (3.9) as follows:

wt[F, λ] =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du =

∫ 1

0

[
x0 + eµ+σΦ−1(u)

]
eλΦ−1(u)−λ2/2 du

= x0 + exp
{
µ+ λσ + σ2/2

}
,

where −∞ < λ < ∞ is the risk aversion index. (For more integration details, see

Appendix A.) �
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3.5 Gini Shortfall

The gs measure was introduced by Furman et al . (2017) with the motivation to capture

both the expectation and variability of X beyond an extreme quantile (i.e., beyond the

VaR). Antecedents of this idea were studied by Furman and Landsman (2006) who pro-

posed to supplement cte with the tail standard deviation of X. The main shortcoming

of such risk measures is that they require finite second moments of the underlying loss

variables. The gs measure, on the other hand, replaces tail standard deviation with the

tail Gini index, which captures tail variability of the loss variable X and requires only

the first moment to be finite. Formally, the gs measure is defined as

gs[F, β, δ] = F−1(1− β) +
1

β

∫ ∞
F−1(1−β)

[
1− F (x)

]
dx

+
2δ

β2

∫ ∞
F−1(1−β)

[
1− F (x)

][
β − 1 + F (x)

]
dx (3.17)

=
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du, (3.18)

where 0 < β < 1 is the risk appetite (actually, Furman et al ., 2017, instead of parameter

β used 1 − β and called it the prudence level) and δ ≥ 0 is the loading parameter . As

is evident from (3.17), the distortion function for gs is g(t) = t/β + 2δ(t/β)(1 − t/β)

for 0 ≤ t < β, and = 1 for β ≤ t ≤ 1. Alternatively, (3.18) follows from (3.2) with

ψ(u) = β−2
(
β + 4δ(u − 1 + β/2)

)
1
{

1 − β ≤ u ≤ 1
}

, where 1
{}

denotes the indicator

function. Comparing (3.17) with (3.4) we see that gs is essentially cte with an extra

term for tail variability. Finally, as it was proven in Theorem 4.1 of Furman et al . (2017),

gs is a coherent risk measure if and only if 0 ≤ δ ≤ 1/2.

The following examples present gs for the severity distributions of Section 2.2.
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Example 3.13. [ gs of Shifted Exponential ]

If X ∼ Exp (x0, θ), then its gs measure is found by integrating (3.18) as follows:

gs[F, β, δ] =
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du

=
1

β2

∫ 1

1−β

[
x0 − θ log(1− u)

] (
β(1 + 2δ)− 4δ(1− u)

)
du

= x0 − θ
[

log(β)− 1− δ
]
,

where 0 < β < 1 is the risk appetite and 0 ≤ δ ≤ 1/2 is the loading parameter (restricted

to the interval [0; 1/2] to make gs coherent). For more integration details, see Appendix

A. �

Example 3.14. [ gs of Pareto I ]

If X ∼ Pa I (x0, α), then its wt measure is found by integrating (3.18) as follows:

gs[F, β, δ] =
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du

=
1

β2

∫ 1

1−β

[
x0(1− u)−1/α

] (
β(1 + 2δ)− 4δ(1− u)

)
du

= αx0β
−1/α(2δ/(2α− 1) + 1)(α− 1)−1, α > 1,

where 0 < β < 1 is the risk appetite and 0 ≤ δ ≤ 1/2 is the loading parameter (restricted

to the interval [0; 1/2] to make gs coherent). For more integration details, see Appendix

A. �
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Example 3.15. [ gs of Shifted Lognormal ]

If X ∼ LN (x0, µ, σ), then its gs measure is found by integrating (3.18) as follows:

gs[F, β, δ] =
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du

=
1

β2

∫ 1

1−β

[
x0 + eµ+σΦ−1(u)

] (
β(1 + 2δ)− 4δ(1− u)

)
du

= x0 + β−2eµ+σ2/2
(
β(1 + 2δ)− 4δ

)
Φ(σ − Φ−1(1− β))

+ 4δβ−2eµ+σ2/2

∫ ∞
Φ−1(1−β)

Φ(z)ϕ(z − σ) dz

=: x0 + β−2eµ+σ2/2
(

[β(1 + 2δ)− 4δ] Φ
(
σ − Φ−1(1− β)

)
+ 4δ CGS(β, σ)

)
,

where 0 < β < 1 is the risk appetite and 0 ≤ δ ≤ 1/2 is the loading parameter (restricted

to the interval [0; 1/2] to make gs coherent). For more integration details, see Appendix

A. Note that for fixed β and σ, the integral CGS(β, σ) =
∫∞

Φ−1(1−β)
Φ(z)ϕ(z−σ) dz is finite

and can be evaluated numerically. Theorem 3.4 establishes a lower and upper bound for

CGS(β, σ). �

Theorem 3.4. For 0 < β < 1 and σ > 0, define CGS(β, σ) =
∫∞

Φ−1(1−β)
Φ(z)ϕ(z−σ) dz,

where Φ, ϕ, and Φ−1 denote the cdf, pdf, and qf of the standard normal distribution,

respectively. Then the following two-sided inequality holds:

(1− β) Φ
(
σ − Φ−1(1− β)

)
≤ CGS(β, σ) ≤ Φ

(
σ − Φ−1(1− β)

)
.

Proof: Notice that Φ−1(1− β) ≤ z ≤ ∞ yields 1− β ≤ Φ(z) ≤ 1. This leads to

(1− β)

∫ ∞
Φ−1(1−β)

ϕ(z − σ) dz ≤ CGS(β, σ) ≤
∫ ∞

Φ−1(1−β)

ϕ(z − σ) dz.

Since
∫∞

Φ−1(1−β)
ϕ(z − σ) dz = Φ (σ − Φ−1(1− β)), the statement of the theorem follows.

�
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In Table 3.3, we provide numerical evaluations of CGS(β, σ) for typical ranges of β and σ.

Note that the lower and upper bounds established in Theorem 3.4 are reasonably tight.

For instance: for β = 0.20 and σ = 1/10, we have CGS(β, σ) ≈ 0.207 and 0.183 < 0.207 <

0.229; for β = 0.01 and σ = 1, we have CGS(β, σ) ≈ 0.092 and 0.091 < 0.092 ≤ 0.092; for

β = 0.10 and σ = 5, we have CGS(β, σ) ≈ 1.000 and 0.900 < 1.000 ≤ 1.000.

Table 3.3: Numerical evaluations of CGS(β, σ) for selected β and σ.

σ

β 1/10 1/5 1/4 1/2 1 2 4 5

0.01 0.013 0.017 0.019 0.034 0.092 0.371 0.952 0.996

0.05 0.060 0.073 0.080 0.123 0.255 0.631 0.989 0.999

0.10 0.113 0.133 0.144 0.208 0.375 0.747 0.995 1.000

0.15 0.162 0.187 0.201 0.277 0.459 0.807 0.997 1.000

0.20 0.207 0.236 0.251 0.335 0.523 0.844 0.997 1.000

0.25 0.248 0.280 0.297 0.385 0.573 0.868 0.997 1.000
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Chapter 4

Risk Measure Estimation

In this chapter, we tackle the problem of estimating the riskiness of the ground-up variable

X when only its left-truncated and right-censored version X∗ is observed. We start, in

Section 4.1, with the (simple but incorrect) empirical estimator of the distortion risk

measures; the objective is to show how biased this estimator can be and how it can

mislead a decision maker. Then, in Section 4.2, two parametric – maximum likelihood

(ML) and percentile matching (PM) – estimators are formulated and their asymptotic

distributions are established. A series of analytic examples are worked out in Section 4.3,

where the ML and PM estimators of VaR, cte, pht, wt, and gs are derived and their

asymptotically normal distributions are specified for shifted exponential, Pareto I, and

shifted lognormal severity distributions.

To put it in a few words, the problem we are interested in solving is to estimate R[F ]

based on the observed data X∗1 = x∗1, . . . , X
∗
n = x∗n which have common cdf F∗. Thus,

for estimation of model parameters and for empirical estimation of risk measures, the

asymptotic theorems of Appendix B have to be applied to functions F∗, f∗, F
−1
∗ , which

are defined by (2.3)–(2.5), not F , f , F−1. However, for estimation of risk measures, the

parameter estimators have to be applied to risk measures based on F , f , F−1, which were

specified in Examples 3.1–3.15.
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4.1 Empirical Approach

Let us start by noting that the empirical approach is restricted to the range of observed

data. Indeed, based on x∗1, . . . , x
∗
n, the empirical estimator F̂EMP(d) = n−1

∑n
i=1 1

{
x∗i ≤

d
}

= 0. Thus, it cannot take full advantage of formulas (2.3)–(2.5), and yields a biased

estimator of qf which in turn propagates the error through the integral that defines a

distortion risk measure. More specifically, R[F ] is estimated by replacing F with F̂EMP in

(3.2):

R̂[F ]
EMP

= R[F̂EMP] =

∫ 1

0

F̂−1
EMP(t)ψ(t) dt =

n∑
i=1

x∗(i)

[∫ i/n

(i−1)/n

ψ(t) dt

]

=
n∑
i=1

x∗(i)

[
g

(
1− i− 1

n

)
− g

(
1− i

n

)]
, (4.1)

where ψ(t) = g′(1 − t) and x∗(1) ≤ · · · ≤ x∗(n) denotes the ordered values of x∗1, . . . , x
∗
n.

Note that R[F̂EMP] as defined in equation (4.1) is an L-statistic; asymptotic theory for

such statistics is well known (see, e.g., Serfling, 1980, Chapter 7). Note also that F̂−1
EMP(t)

does not converge to F−1(t), which is our target quantity, rather it converges to F−1
∗ (t).

Thus, as follows from Theorem 3.2 of Jones and Zitikis (2003), with some modifications

due to data truncation and censoring,

R[F̂EMP] ∼ AN
(
R[F∗],

1

n
Q(ψ, ψ)

)
, (4.2)

where AN stands for ‘asymptotically normal’ and

Q(ψ, ψ) =

∫ ∞
−∞

∫ ∞
−∞

[
min{F∗(x), F∗(y)} − F∗(x)F∗(y)

]
ψ(F∗(x))ψ(F∗(y)) dx dy.

Further, to use this result in practice, one needs an estimator for Q(ψ, ψ). Jones and

Zitikis (2003) proposed the following strongly consistent estimator (modified for data
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truncation and censoring):

Q̂(ψ, ψ) =
n−1∑
i=1

n−1∑
j=1

cn(i, j)ψ(i/n)ψ(j/n)
[
x∗(i+1) − x∗(i)

][
x∗(j+1) − x∗(j)

]

with cn(i, j) = min{i/n, j/n} − (i/n)(j/n).

Finally, to see that R[F̂EMP] is biased, note that for the mean parameter in (4.2), we

have

R[F∗] =

∫ 1

0

F−1
∗ (t)ψ(t) dt =

∫ 1

0

F−1
(
t+(1−t)F (d)

)
ψ(t) dt ≥

∫ 1

0

F−1(t)ψ(t) dt = R[F ],

with the inequality being strict unless F (d) = 0. The inequality holds because F−1 is

strictly increasing (loss severities are non-negative absolutely continuous random vari-

ables) and (1− t)F (d) ≥ 0.

Below is a summary of specific formulas of R[F̂EMP] and simplified expressions of R[F∗]

and Q(ψ, ψ) for VaR, cte, gs, pht, and wt. These formulas will be used in simulations

of Chapter 5.

• Value-at-Risk

For 0 < 1− β < F (u)−F (d)
1−F (d)

≤ 1, the empirical estimator

VaR[F̂EMP, β] = x∗(dn(1−β)e)

satisfies

VaR[F̂EMP, β] ∼ AN
(

VaR[F∗, β],
1

n
QVAR

)
, (4.3)

where VaR[F∗, β] = F−1
(
(1 − β) + βF (d)

)
and QVAR = β(1−β) [1−F (d)]2

f2
(
F−1
(

(1−β)+βF (d)
)) .

Otherwise, that is for 0 ≤ F (u)−F (d)
1−F (d)

≤ 1 − β ≤ 1, parameters in (4.3) become

VaR[F∗, β] = u and QVAR = 0.
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• Conditional Tail Expectation

For 0 < 1− β < F (u)−F (d)
1−F (d)

≤ 1, the empirical estimator

cte[F̂EMP, β] =
1

dnβe

n∑
i=n−dnβe+1

x∗(i)

satisfies

cte[F̂EMP, β] ∼ AN
(
cte[F∗, β],

1

n
QCTE

)
, (4.4)

where

cte[F∗, β] =

∫ F (u)−F (d)
1−F (d)

1−β
F−1

(
t+ (1− t)F (d)

) 1

β
dt +

u

β

1− F (u)

1− F (d)

and

QCTE =

∫ u

F−1
(

(1−β)+βF (d)
) [Q(1)

CTE(y) +Q
(2)
CTE(y)

] 1

β
dy,

with

Q
(1)
CTE(y) =

(
1− F (y)− F (d)

1− F (d)

)∫ y

F−1
(

(1−β)+βF (d)
) F (x)− F (d)

1− F (d)

1

β
dx

and

Q
(2)
CTE(y) =

F (y)− F (d)

1− F (d)

∫ u

y

(
1− F (x)− F (d)

1− F (d)

)
1

β
dx.

Here functions Q
(1)
CTE(y), Q

(2)
CTE(y) and subsequently QCTE can be evaluated numeri-

cally. Also, for 0 ≤ F (u)−F (d)
1−F (d)

≤ 1−β ≤ 1, parameters in (4.4) become cte[F∗, β] = u

and QCTE = 0.

• Proportional Hazards Transform

The empirical estimator

pht[F̂EMP, r] =
n∑
i=1

[
(1− (i− 1)/n)r − (1− i/n)r

]
x∗(i)
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satisfies

pht[F̂EMP, r] ∼ AN
(
pht[F∗, r],

1

n
QPHT

)
, (4.5)

where

pht[F∗, r] =

∫ F (u)−F (d)
1−F (d)

0

F−1
(
t+ (1− t)F (d)

)
r(1− t)r−1 dt + u

(
1− F (u)

1− F (d)

)r

and

QPHT =

∫ u

d

[
Q

(1)
PHT(y) +Q

(2)
PHT(y)

]
r

(
1− F (y)− F (d)

1− F (d)

)r−1

dy,

with

Q
(1)
PHT(y) =

(
1− F (y)− F (d)

1− F (d)

)∫ y

d

F (x)− F (d)

1− F (d)
r

(
1− F (x)− F (d)

1− F (d)

)r−1

dx

and

Q
(2)
PHT(y) =

F (y)− F (d)

1− F (d)

∫ u

y

(
1− F (x)− F (d)

1− F (d)

)
r

(
1− F (x)− F (d)

1− F (d)

)r−1

dx.

Here functions Q
(1)
PHT(y), Q

(2)
PHT(y) and subsequently QPHT can be evaluated numeri-

cally.

• Wang Transform

The empirical estimator

wt[F̂EMP, λ] =
n∑
i=1

[
Φ
(
Φ−1(i/n)− λ

)
− Φ

(
Φ−1((i− 1)/n)− λ

) ]
x∗(i),

satisfies

wt[F̂EMP, λ] ∼ AN
(
wt[F∗, λ],

1

n
QWT

)
, (4.6)
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where

wt[F∗, λ] =

∫ F (u)−F (d)
1−F (d)

0

F−1
(
t+ (1− t)F (d)

)
eλΦ−1(t)−λ2/2 dt

+ u

[
1− Φ

(
Φ−1

(
F (u)− F (d)

1− F (d)

)
− λ
)]

and

QWT =

∫ u

d

[
Q

(1)
WT(y) +Q

(2)
WT(y)

]
eλΦ−1(F (y)−F (d)

1−F (d) )−λ2/2 dy,

with

Q
(1)
WT(y) =

(
1− F (y)− F (d)

1− F (d)

)∫ y

d

F (x)− F (d)

1− F (d)
eλΦ−1(F (x)−F (d)

1−F (d) )−λ2/2 dx

and

Q
(2)
WT(y) =

F (y)− F (d)

1− F (d)

∫ u

y

(
1− F (x)− F (d)

1− F (d)

)
eλΦ−1(F (x)−F (d)

1−F (d) )−λ2/2 dx.

Here functionsQ
(1)
WT(y), Q

(2)
WT(y) and subsequentlyQWT can be evaluated numerically.

• Gini Shortfall

For 0 < 1− β < F (u)−F (d)
1−F (d)

≤ 1, the empirical estimator

gs[F̂EMP, β, δ] =
1

dnβe2
n∑

i=n−dnβe+1

[
dnβe+ 2δ

(
dnβe − 2(n− i)− 1

)]
x∗(i),

satisfies

gs[F̂EMP, β, δ] ∼ AN
(
gs[F∗, β, δ],

1

n
QGS

)
, (4.7)

where

gs[F∗, β, δ] =

∫ F (u)−F (d)
1−F (d)

1−β
F−1

(
t+ (1− t)F (d)

)
β−2
(
β(1 + 2δ)− 4δ(1− t)

)
dt

+
u

β

1− F (u)

1− F (d)
+

2uδ

β

1− F (u)

1− F (d)

(
1− 1

β

1− F (u)

1− F (d)

)
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and

QGS =

∫ u

F−1
(

(1−β)+βF (d)
) [Q(1)

GS (y) +Q
(2)
GS (y)

]
ψ̃(y) dy

with

Q
(1)
GS (y) =

(
1− F (y)− F (d)

1− F (d)

)∫ y

F−1
(

(1−β)+βF (d)
) F (x)− F (d)

1− F (d)
ψ̃(x) dx

and

Q
(2)
GS (y) =

F (y)− F (d)

1− F (d)

∫ u

y

(
1− F (x)− F (d)

1− F (d)

)
ψ̃(x) dx.

Here ψ̃(·) = β−2
(
β(1 + 2δ)− 4δ

(
1− F (·)−F (d)

1−F (d)

))
. Also, functions Q

(1)
GS (y), Q

(2)
GS (y)

and subsequently QGS can be evaluated numerically. For 0 ≤ F (u)−F (d)
1−F (d)

≤ 1−β ≤ 1,

parameters in (4.7) become gs[F∗, β, δ] = u and QGS = 0.

4.2 Parametric Approaches

Parametric methods use the observed data x∗1, . . . , x
∗
n and fully recognize its distributional

properties.

4.2.1 ML Estimation

The ML approach takes into account (2.3)–(2.5) and finds parameter estimates by max-

imizing the following log-likelihood function:

logL
(
θ
∣∣x∗1, . . . , x∗n) = log

[
n∏
i=1

f∗(x
∗
i )

]
= log

[
n∏
i=1

[
f(x∗i )

1− F (d)

]1{d<x∗i<u} [1− F (u)

1− F (d)

]1{x∗i=u}
]

=
n∑
i=1

log
[
f(x∗i )

]
1{d < x∗i < u} − n log

[
1− F (d)

]
+ log

[
1− F (u)

] n∑
i=1

1{x∗i = u}.

(4.8)

Once parameter ML estimators, θ̂ =
(
θ̂1, . . . , θ̂k

)
, are available, the risk measure

estimate is found by plugging those ML values into the parametric expression of R[F ] =

h(θ1, . . . , θk). (Note that it is not R[F∗].) Let us denote this estimator as R[F̂ML] =
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h(θ̂1, . . . , θ̂k). Then, as follows from the ML’s asymptotic distribution and the delta

method (both theorems are provided in Appendix B),

R[F̂ML] ∼ AN
(
R[F ],

1

n
dθI

−1
θ d′θ

)
, (4.9)

where dθ =
(
∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣
(θ1,...,θk)

, and the entries of the Fisher information

matrix Iθ are given by (B.3) with g replaced by (2.3).

4.2.2 PM Estimation

A popular alternative to the ML approach for estimation of loss model parameters is per-

centile matching, abbreviated PM (see Klugman et al ., 2012, Section 13.1). To estimate

k unknown parameters with the PM method and using the ordered data x∗(1) ≤ · · · ≤ x∗(n),

one has to solve the following system of equations with respect to θ1, . . . , θk:

F−1
∗ (p1) = x∗(dnp1e), F

−1
∗ (p2) = x∗(dnp2e), . . . , F

−1
∗ (pk) = x∗(dnpke),

where p1 < · · · < pk <
F (u)−F (d)

1−F (d)
and x∗(dnpke) < u; here d·e denotes the “rounding up”

operation. Once parameter PMs, θ̃1, . . . , θ̃k, are available, the risk measure estimate is

found by plugging those PM values into R[F ] = h(θ1, . . . , θk). Let us denote this estimator

as R[F̂PM] = h(θ̃1, . . . , θ̃k). Then, as follows from Theorem B.4 and the delta method,

R[F̂PM] ∼ AN
(
R[F ],

1

n
dθD

∗
θΣθ(D

∗
θ)
′d′θ

)
, (4.10)

where dθ =
(
∂h/∂θ̃1, . . . , ∂h/∂θ̃k

) ∣∣∣
(θ1,...,θk)

and D∗θ is specified in Theorem B.4. The

entries of Σθ are given by (B.1) with g and G−1 replaced by expressions (2.3) and (2.5),

respectively.
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4.3 Analytic Examples

4.3.1 Shifted Exponential Distribution

If x∗1, . . . , x
∗
n is a realization of variables (2.2) with pdf (2.7) and cdf (2.6), then the

log-likelihood function (4.8) becomes

logL
(
θ
∣∣x∗1, . . . , x∗n) = − log θ

n∑
i=1

1{d < x∗i < u}

−1

θ

n∑
i=1

[
(x∗i − d)1{d < x∗i < u}+ (u− d)1{x∗i = u}

]
.

Straightforward maximization of logL yields an explicit formula of the ML estimator of

θ:

θ̂ML =

∑n
i=1

[
(x∗i − d)1{d < x∗i < u}+ (u− d)1{x∗i = u}

]
∑n

i=1 1{d < x∗i < u}
(4.11)

The asymptotic distribution of θ̂ML follows from Theorem B.2. In this case, the Fisher

information matrix has a single entry (more computational details are available in Ap-

pendix A):

I11 = −E
[
θ−21{d < X∗ < u} − 2θ−3

[
(X∗ − d)1{d < X∗ < u}+ (u− d)1{X∗ = u}

]]
= θ−2

[
1− e−(u−d)/θ

]
.

Hence, the estimator θ̂ML, defined by (4.11), has the following asymptotic distribution:

θ̂ML ∼ AN
(
θ,
θ2

n

1

1− e−(u−d)/θ

)
. (4.12)

Next, since for the exponential distribution there is only one unknown parameter θ,

its PM estimator is derived by solving a single equation, F−1
∗ (p1) = x∗(dnp1e). Note that

p1 has to be chosen from the range 0 < p1 < 1− e−(u−d)/θ (equivalently, x∗(dnp1e) < u). In
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this case, the resulting estimator is also explicit and given by

θ̂PM =
d− x∗(dnp1e)
log(1− p1)

. (4.13)

The asymptotic distribution of θ̂PM follows from Theorem B.4, where

D∗θΣθ(D
∗
θ)
′ =

−1

log(1− p1)
· p1(1− p1)

θ−2(1− p1)2
· −1

log(1− p1)
= θ2 p1

(1− p1) log2(1− p1)
.

Hence, the estimator θ̂PM, defined by (4.13), has the following asymptotic distribution:

θ̂PM ∼ AN
(
θ,
θ2

n

p1

(1− p1) log2(1− p1)

)
. (4.14)

In Examples 4.1–4.5, we use (4.11), (4.13), and (4.1) to estimate VaR, cte, pht, wt,

and gs. Asymptotic distributions of these estimators, (4.9) and (4.10), follow by applying

the delta method to (4.12) and (4.14). For the empirical estimator (4.1) the asymptotic

normality is specified by (4.2).

Example 4.1. [ Value-at-Risk ]

Parametric and empirical estimators of VaR and their asymptotic distributions for the

shifted exponential model were derived by Brazauskas and Upretee (2019, Section 3.1).

Here, using the notation of this dissertation, we present those results. As derived in

Example 3.1, the target parameter is VaR[F, β] = x0 − θ log(β). Then, its ML and PM

estimators are

VaR[F̂ML, β] = x0 − θ̂ML log(β) and VaR[F̂PM, β] = x0 − θ̂PM log(β).

Therefore, the asymptotic distributions (4.9) and (4.10) become

VaR[F̂ML, β] ∼ AN
(
x0 − θ log(β),

θ2

n

log2(β)

1− e−(u−d)/θ

)
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and

VaR[F̂PM, β] ∼ AN
(
x0 − θ log(β),

θ2

n

p1 log2(β)

(1− p1) log2(1− p1)

)
,

where 0 < β < 1 and 0 < p1 < 1− e−(u−d)/θ. �

Example 4.2. [ Conditional Tail Expectation ]

More detailed derivations of parametric and empirical estimators of cte and their asymp-

totic distributions for the shifted exponential model are provided in Appendix A. Here

we present a quick overview of those results. As derived in Example 3.4, the target

parameter is cte[F, β] = x0 − θ(log(β)− 1). Then, its ML and PM estimators are

cte[F̂ML, β] = x0 − θ̂ML(log(β)− 1) and cte[F̂PM, β] = x0 − θ̂PM(log(β)− 1).

Therefore, the asymptotic distributions (4.9) and (4.10) become

cte[F̂ML, β] ∼ AN
(
x0 − θ(log(β)− 1),

θ2

n

(log(β)− 1)2

1− e−(u−d)/θ

)

and

cte[F̂PM, β] ∼ AN
(
x0 − θ(log(β)− 1),

θ2

n

p1(log(β)− 1)2

(1− p1) log2(1− p1)

)
,

where 0 < β < 1 and 0 < p1 < 1− e−(u−d)/θ. �

Example 4.3. [ Proportional Hazards Transform ]

More detailed derivations of parametric and empirical estimators of pht and their asymp-

totic distributions for the shifted exponential model are provided in Appendix A. Here

we present a quick overview of those results. As derived in Example 3.7, the target

parameter is pht[F, r] = x0 + θ/r. Then, its ML and PM estimators are

pht[F̂ML, r] = x0 + θ̂ML/r and pht[F̂PM, r] = x0 + θ̂PM/r.

Therefore, the asymptotic distributions (4.9) and (4.10) become

pht[F̂ML, r] ∼ AN
(
x0 +

θ

r
,
θ2

n

r−2

1− e−(u−d)/θ

)
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and

pht[F̂PM, r] ∼ AN
(
x0 +

θ

r
,
θ2

n

r−2p1

(1− p1) log2(1− p1)

)
,

where 0 < r ≤ 1 and 0 < p1 < 1− e−(u−d)/θ. �

Example 4.4. [ Wang Transform ]

More detailed derivations of parametric and empirical estimators of wt and their asymp-

totic distributions for the shifted exponential model are provided in Appendix A. Here

we present a quick overview of those results. As derived in Example 3.10, the target

parameter is wt[F, λ] = x0 + θ CWT(λ). Then, its ML and PM estimators are

wt[F̂ML, λ] = x0 + θ̂MLCWT(λ) and wt[F̂PM, λ] = x0 + θ̂PMCWT(λ).

Therefore, the asymptotic distributions (4.9) and (4.10) become

wt[F̂ML, λ] ∼ AN
(
x0 + θCWT(λ),

θ2

n

C2
WT(λ)

1− e−(u−d)/θ

)

and

wt[F̂PM, λ] ∼ AN
(
x0 + θCWT(λ),

θ2

n

p1C
2
WT(λ)

(1− p1) log2(1− p1)

)
,

where −∞ < λ <∞, CWT(λ) =

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

Φ(z)
dz, and 0 < p1 < 1− e−(u−d)/θ. �

Example 4.5. [ Gini Shortfall ]

More detailed derivations of parametric and empirical estimators of gs and their asymp-

totic distributions for the shifted exponential model are provided in Appendix A. Here

we present a quick overview of those results. As derived in Example 3.13, the target

parameter is gs[F, β, δ] = x0 − θ
[

log(β)− 1− δ
]
. Then, its ML and PM estimators are

gs[F̂ML, β, δ] = x0− θ̂ML

[
log(β)− 1− δ

]
and gs[F̂PM, β, δ] = x0− θ̂PM

[
log(β)− 1− δ

]
.
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Therefore, the asymptotic distributions (4.9) and (4.10) become

gs[F̂ML, β, δ] ∼ AN
(
x0 − θ(log(β)− 1− δ), θ

2

n

(log(β)− 1− δ)2

1− e−(u−d)/θ

)

and

gs[F̂PM, β, δ] ∼ AN
(
x0 − θ(log(β)− 1− δ), θ

2

n

p1(log(β)− 1− δ)2

(1− p1) log2(1− p1)

)
,

where 0 < β < 1, 0 ≤ δ ≤ 1/2, and 0 < p1 < 1− e−(u−d)/θ. �

4.3.2 Pareto I Distribution

If x∗1, . . . , x
∗
n is a realization of variables (2.2) with pdf (2.10) and cdf (2.9), then the

log-likelihood function (4.8) becomes

logL
(
α
∣∣x∗1, . . . , x∗n) =

n∑
i=1

[
log (α/x0)− (α + 1) log (x∗i /x0)

]
1
{
d < x∗i < u

}
− αn log (x0/d) + α log (x0/u)

n∑
i=1

1
{
x∗i = u

}
.

Straightforward maximization of logL yields an explicit formula of the ML estimator of

α:

α̂ML =

∑n
i=1 1

{
d < x∗i < u

}∑n
i=1 log (x∗i /d) 1

{
d < x∗i < u

}
+ log (u/d)

∑n
i=1 1

{
x∗i = u

} (4.15)

The asymptotic distribution of α̂ML follows from Theorem B.2. In this case, the Fisher

information matrix has a single entry (more computational details are available in Ap-

pendix A):

I11 = −E
[
−α−21

{
d < X∗ < u

}]
= α−2 [1− (d/u)α] .

Hence, the estimator α̂ML, defined by (4.15), has the following asymptotic distribution:

α̂ML ∼ AN
(
α,

α2

n

1

1− (d/u)α

)
. (4.16)
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Next, since for the Pareto I distribution there is only one unknown parameter α, its

PM estimator is derived by solving a single equation, F−1
∗ (p1) = x∗(dnp1e). Note that p1

has to be chosen from the range 0 < p1 < 1− (d/u)α (equivalently, x∗(dnp1e) < u). In this

case, the resulting estimator is also explicit and given by

α̂PM =
log(1− p1)

log
(
d/x∗(dnp1e)

) . (4.17)

The asymptotic distribution of α̂PM follows from Theorem B.4, where

D∗αΣα(D∗α)′ =
α2(1− p1)1/α

d log(1− p1)
· d2p1

α2(1− p1)1+2/α
·α

2(1− p1)1/α

d log(1− p1)
= α2 p1

(1− p1) log2(1− p1)
.

Hence, the estimator α̂PM, defined by (4.17), has the following asymptotic distribution:

α̂PM ∼ AN
(
α,

α2

n

p1

(1− p1) log2(1− p1)

)
. (4.18)

In Examples 4.6–4.10, we use (4.15), (4.17), and (4.1) to estimate VaR, cte, pht,

wt, and gs. Asymptotic distributions of these estimators, (4.9) and (4.10), follow by

applying the delta method to (4.16) and (4.18). For the empirical estimator (4.1) the

asymptotic normality is specified by (4.2).

Example 4.6. [ Value-at-Risk ]

Parametric and empirical estimators of VaR and their asymptotic distributions for the

Pareto I model were derived by Brazauskas and Upretee (2019, Section 3.2). Here, using

the notation of this dissertation, we present those results. As derived in Example 3.2,

the target parameter is VaR[F, β] = x0β
−1/α. Then, its ML and PM estimators are

VaR[F̂ML, β] = x0β
−1/α̂ML and VaR[F̂PM, β] = x0β

−1/α̂PM .

Therefore, the asymptotic distributions (4.9) and (4.10) become

VaR[F̂ML, β] ∼ AN
(

VaR[F, β],
α−2

n

log2(β) VaR2[F, β]

1− (d/u)α

)
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and

VaR[F̂PM, β] ∼ AN
(

VaR[F, β],
α−2

n

p1 log2(β) VaR2[F, β]

(1− p1) log2(1− p1)

)
,

where VaR[F, β] = x0β
−1/α, 0 < β < 1, and 0 < p1 < 1− (d/u)α. �

Example 4.7. [ Conditional Tail Expectation ]

More detailed derivations of parametric and empirical estimators of cte and their asymp-

totic distributions for the Pareto I model are provided in Appendix A. Here we present

a quick overview of those results. As derived in Example 3.5, the target parameter is

cte[F, β] = x0β
−1/αα(α−1)−1, which is finite for α > 1. Then, its ML and PM estimators

are

cte[F̂ML, β] = x0β
−1/α̂MLα̂ML(α̂ML−1)−1 and cte[F̂PM, β] = x0β

−1/α̂PMα̂PM(α̂PM−1)−1.

Therefore, the asymptotic distributions (4.9) and (4.10) become

cte[F̂ML, β] ∼ AN
(
cte[F, β],

α−2

n

D2
CTE(β, α)cte2[F, β]

1− (d/u)α

)

and

cte[F̂PM, β] ∼ AN
(
cte[F, β],

α−2

n

p1D
2
CTE(β, α)cte2[F, β]

(1− p1) log2(1− p1)

)
,

where 0 < β < 1 and 0 < p1 < 1− (d/u)α. Note that cte[F, β] = x0β
−1/αα(α− 1)−1 and

DCTE(β, α) = log(β)− α(α− 1)−1 are finite for α > 1. �

Example 4.8. [ Proportional Hazards Transform ]

More detailed derivations of parametric and empirical estimators of pht and their asymp-

totic distributions for the Pareto I model are provided in Appendix A. Here we present

a quick overview of those results. As derived in Example 3.8, the target parameter is

pht[F, r] = x0+x0/(rα−1), which is finite for α > 1/r. Then, its ML and PM estimators

are

pht[F̂ML, r] = x0 +
x0

rα̂ML − 1
and pht[F̂PM, r] = x0 +

x0

rα̂PM − 1
.
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Therefore, the asymptotic distributions (4.9) and (4.10) become

pht[F̂ML, r] ∼ AN
(
pht[F, r],

1

n

(rα− 1)−2pht2[F, r]

1− (d/u)α

)

and

pht[F̂PM, r] ∼ AN
(
pht[F, r],

1

n

p1(rα− 1)−2pht2[F, r]

(1− p1) log2(1− p1)

)
,

where 0 < r ≤ 1 and 0 < p1 < 1 − (d/u)α. Note that pht[F, r] = x0 + x0/(rα − 1) is

finite for α > 1/r. �

Example 4.9. [ Wang Transform ]

More detailed derivations of parametric and empirical estimators of wt and their asymp-

totic distributions for the Pareto I model are provided in Appendix A. Here we present

a quick overview of those results. As derived in Example 3.11, the target parameter is

wt[F, λ] = x0 + x0
α
CWT(λ, α), where CWT(λ, α) =

∫∞
−∞Φ(z + λ) ϕ(z)

[Φ(z)]1/α+1 dz is finite for

α > 1. Then, its ML and PM estimators are

wt[F̂ML, λ] = x0 +
x0

α̂ML

CWT(λ, α̂ML) and wt[F̂PM, λ] = x0 +
x0

α̂PM

CWT(λ, α̂PM).

Therefore, the asymptotic distributions (4.9) and (4.10) become

wt[F̂ML, λ] ∼ AN
(
wt[F, λ],

α−2

n

x2
0D

2
WT(λ, α)

1− (d/u)α

)

and

wt[F̂PM, λ] ∼ AN
(
wt[F, λ],

α−2

n

p1 x
2
0D

2
WT(λ, α)

(1− p1) log2(1− p1)

)
,

where −∞ < λ < ∞ and 0 < p1 < 1 − (d/u)α. Note that wt[F, λ] = x0 + x0
α
CWT(λ, α)

and DWT(λ, α) = −CWT(λ, α) + α−1
∫∞
−∞Φ(z + λ) ϕ(z)

[Φ(z)]1/α+1 log [Φ(z)] dz are finite for

α > 1. �

Example 4.10. [ Gini Shortfall ]

More detailed derivations of parametric and empirical estimators of pht and their asymp-

totic distributions for the Pareto I model are provided in Appendix A. Here we present
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a quick overview of those results. As derived in Example 3.14, the target parameter is

gs[F, β, δ] = x0β
−1/αα(α− 1)−1

(
1 + 2δ(2α− 1)−1

)
,

which is finite for α > 1. Then, its ML and PM estimators are

gs[F̂ML, β, δ] = x0β
−1/α̂MLα̂ML(α̂ML − 1)−1

(
1 + 2δ(2α̂ML − 1)−1

)
and

gs[F̂PM, β, δ] = x0β
−1/α̂PMα̂PM(α̂PM − 1)−1

(
1 + 2δ(2α̂PM − 1)−1

)
.

Therefore, the asymptotic distributions (4.9) and (4.10) become

gs[F̂ML, β, δ] ∼ AN
(
gs[F, β, δ],

α−2

n

D2
GS(β, δ, α)gs2[F, β, δ]

1− (d/u)α

)

and

gs[F̂PM, β, δ] ∼ AN
(
gs[F, β, δ],

α−2

n

p1D
2
GS(β, δ, α)gs2[F, β, δ]

(1− p1) log2(1− p1)

)
where 0 < β < 1, 0 ≤ δ ≤ 1/2, and 0 < p1 < 1 − (d/u)α. Note that gs[F, β, δ] =

x0β
−1/αα(α−1)−1 (1 + 2δ(2α− 1)−1) and DGS(β, δ, α) = log(β)−α(α−1)−1−4α2δ(2α−

1)−1(2δ + 2α− 1)−1 are both finite for α > 1. �

4.3.3 Shifted Lognormal Distribution

The shifted lognormal distribution plays a major role in modeling claim severity data,

but it has two unknown parameters, which makes methodological derivations considerably

more complicated. Thus, in this section we will develop risk measure estimators using

only the ML approach, leaving PM estimation for future investigations.

Let us start by recalling the abbreviations introduced in Section 2.2.3:

cd :=
log(d− x0)− µ

σ
, cx∗i :=

log(x∗i − x0)− µ
σ

, cu :=
log(u− x0)− µ

σ
.
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Using this notation, if x∗1, . . . , x
∗
n is a realization of variables (2.2) with pdf (2.13) and cdf

(2.12), then the log-likelihood function (4.8) becomes

logL
(
(µ, σ)

∣∣x∗1, . . . , x∗n) =
n∑
i=1

[
− log(σ)− log(x∗i − x0) + log(ϕ(cx∗i ))

]
1
{
d < x∗i < u

}
− n log [1− Φ(cd)] + log [1− Φ(cu)]

n∑
i=1

1
{
x∗i = u

}
.

Differentiation of logL with respect to µ and σ, along with some straightforward

simplifications, yields the following system of equations:



n∑
i=1

cx∗i1
{
d < x∗i < u

}
− nϕ(cd)

1− Φ(cd)
+

ϕ(cu)

1− Φ(cu)

n∑
i=1

1
{
x∗i = u

}
= 0

n∑
i=1

(
c2
x∗i
− 1
)
1
{
d < x∗i < u

}
− nϕ(cd) cd

1− Φ(cd)
+

ϕ(cu) cu
1− Φ(cu)

n∑
i=1

1
{
x∗i = u

}
= 0

(4.19)

The system of equations (4.19) has to be solved numerically. Assuming solution exists, it

will be denoted (µ̂ML, σ̂ML); its asymptotic distribution is given by Theorem B.2. In this

case, the Fisher information matrix has the following entries (more details are provided

in Appendix A):

I11 = −E

[
∂2 log f∗(X

∗)

∂µ2

]
= σ−2

[
Φ(cu)− Φ(cd)

1− Φ(cd)
+

[1− Φ(cd)]ϕ(cd)cd − ϕ2(cd)

[1− Φ(cd)]2
− [1− Φ(cu)]ϕ(cu)cu − ϕ2(cu)

[1− Φ(cu)][1− Φ(cd)]

]
I12 = I21 = − E

[
∂2 log f∗(X

∗)

∂µ ∂σ

]

= σ−2

[
[1− Φ(cd)]ϕ(cd)(c

2
d + 1)− ϕ2(cd)cd

[1− Φ(cd)]2
− [1− Φ(cu)]ϕ(cu)(c

2
u + 1)− ϕ2(cu)cu

[1− Φ(cd)][1− Φ(cu)]

]

I22 = −E

[
∂2 log f∗(X

∗)

∂σ2

]

= σ−2

[
2 [Φ(cu)− Φ(cd)]

1− Φ(cd)
+

[1− Φ(cd)]ϕ(cd)cd(c
2
d + 1)− ϕ2(cd)c

2
d

[1− Φ(cd)]2

− [1− Φ(cu)]ϕ(cu)cu(c
2
u + 1)− ϕ2(cu)c

2
u

[1− Φ(cd)][1− Φ(cu)]

]
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Hence, the estimator (µ̂ML, σ̂ML), found by solving (4.19), has the following asymptotic

distribution:

(µ̂ML, σ̂ML) ∼ AN

(µ, σ),
1

n

 σ∗11 σ∗12

σ∗21 σ∗22


 , (4.20)

where σ∗11 = I22 (I11I22 − I2
12)
−1

, σ∗12 = σ∗21 = −I12 (I11I22 − I2
12)
−1

, σ∗22 = I11 (I11I22 − I2
12)
−1

,

with the terms Iij, i, j = 1, 2, specified above.

ML estimators of VaR, cte, pht, wt, and gs are computed by plugging in (µ̂ML, σ̂ML),

found by solving (4.19), into the parametric expression of R[F ]. Asymptotic distributions

of such estimators are derived by applying the delta method to (4.20):

R[F̂ML] ∼ AN

R[F ],
1

n
(d1, d2)

 σ∗11 σ∗12

σ∗21 σ∗22

(d1, d2)′

 , (4.21)

where the partial derivatives of the risk measure R[F ] with respect to µ and σ, denoted

d1 = ∂R[F ]/∂µ and d2 = ∂R[F ]/∂σ, have the following expressions:

• VaR[F, β] = x0 + exp{µ+ σΦ−1(1− β)}:

d1 =
∂ VaR[F, β]

∂µ
= VaR[F, β]− x0,

d2 =
∂ VaR[F, β]

∂σ
=

(
VaR[F, β]− x0

)
Φ−1(1− β).

• cte[F, β] = x0 + β−1 exp{µ+ σ2/2}Φ (σ − Φ−1(1− β)):

d1 =
∂ cte[F, β]

∂µ
= cte[F, β]− x0,

d2 =
∂ cte[F, β]

∂σ
= σ

(
cte[F, β]− x0

)
+ eµDCTE(β, σ),

where DCTE(β, σ) = β−1eσ
2/2 ϕ (σ − Φ−1(1− β)).
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• pht[F, r] = x0 + eµCPHT(r, σ) = x0 + eµ σ
∫∞
−∞

[
1− Φ(z)

]r
eσz dz:

d1 =
∂ pht[F, r]

∂µ
= pht[F, β]− x0,

d2 =
∂ pht[F, r]

∂σ
= σ−1

(
pht[F, r]− x0

)
+ eµDPHT(r, σ),

where DPHT(r, σ) = σ
∫∞
−∞

[
1− Φ(z)

]r
z eσz dz can be evaluated numerically.

• wt[F, λ] = x0 + exp {µ+ λσ + σ2/2}:

d1 =
∂wt[F, λ]

∂µ
= wt[F, λ]− x0,

d2 =
∂wt[F, λ]

∂σ
= (λ+ σ)

(
wt[F, λ]− x0

)
.

• gs[F, β, δ] = x0 + β−2eµ+σ2/2
(

[β(1 + 2δ)− 4δ] Φ (σ − Φ−1(1− β)) + 4δ CGS(β, σ)
)

,

where CGS(β, σ) =
∫∞

Φ−1(1−β)
Φ(z)ϕ(z − σ) dz:

d1 =
∂ gs[F, β, δ]

∂µ
= gs[F, β, δ]− x0,

d2 =
∂ gs[F, β, δ]

∂σ
= σ

(
gs[F, β, δ]− x0

)
+ eµ

(
(1− 2δ)DGS(β, σ) + δ

√
4/π D∗GS(β, σ)

)
,

where DGS(β, σ) = DCTE(β, σ) and D∗GS(β, σ) = β−2eσ
2/4 Φ

(
σ/2−Φ−1(1−β)√

1/2

)
.
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Chapter 5

Numerical Illustrations

In this chapter, we supplement theoretical studies on distortion risk measure estimation

with numerical illustrations. In Section 5.1, a simulation study is performed for selected

risk measures and severity distributions, with the primary objective to cross-validate

the asymptotic distributions of Section 4.3. In Section 5.2, we fit Pareto I and lognormal

distributions to the well-known Norwegian fire claims data, evaluate the fits, and estimate

the upper-tail riskiness of these claims for the year 1986.

5.1 Simulated Data

A Monte Carlo simulation study was conducted to verify and augment the asymptotic

properties derived in Section 4.2. The study was performed for the following choices of

simulation parameters:

• Severity distributions :

FE = Exp (x0 = 103, θ = 103); FP = Pa I (x0 = 103, α = 2.0).

• Risk measures and their values (measured in 1000’s):

VaR[FE, β = 0.10] = 3.30; VaR[FP , β = 0.10] = 3.16.

cte[FE, β = 0.10] = 4.30; cte[FP , β = 0.10] = 6.32.

gs[FE, β = 0.10, δ = 0.25] = 4.55; gs[FP , β = 0.10, δ = 0.25] = 7.38.
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pht[FE, r = 0.75] = 2.33; pht[FP , r = 0.75] = 3.00.

wt[FE, λ = 0.50] = 2.53; wt[FP , λ = 0.50] = 3.07.

• Risk measure estimators : EMP; ML; PM (with p1 = 0.80).

• Truncation and censoring thresholds :

d = 4 ·103 (corresponds to the 95.0% data truncation under Exp (x0 = 103, θ = 103)

and 93.8% under Pa I (x0 = 103, α = 2.0));

u = 14 · 103 (corresponds to the 0.0045% data censoring under Exp (d = 4 · 103, θ =

103) and 8.2% under Pa I (d = 4 · 103, α = 2.0)).

• Sample size: n = 50, 100, 500.

From a specified left-truncated and right-censored severity distribution, we generate

100,000 samples of a specified length n. For each sample, we estimate the risk measures

VaR, cte, pht, wt, and gs according to their formulas derived in Examples 3.1–3.15.

Then, based on those 100,000 risk measure estimates, we compute their mean and stan-

dard deviation. Simulation findings are summarized in Table 5.1, where the columns

n → ∞ correspond to the asymptotic mean and standard deviation of the estimator,

which were derived in Chapter 4 and are included here as reference point.

Several conclusions emerge from the table. First, all finite sample estimates converge

to the theoretical large-sample counterparts and thus validate the asymptotic distribu-

tions derived in Section 4.3. Second, empirical estimators are overestimating their targets,

which was shown theoretically and is now checked via simulations. Third, the known or-

dering among some risk measures has also been confirmed. For example, for a fixed loss

model and risk appetite parameter, the VaR measure is less than cte which in turn is

less than gs. Finally, the study parameters were chosen so that both loss models have

the same mean (it is 2000), but Pareto I model has heavier right tail and thus its risk

measure estimates are larger than those of the shifted exponential distribution (except

for VaR).
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Table 5.1: Means and standard deviations of ML, PM, and EMP estimators of various
risk measures for FE = Exp (x0 = 103, θ = 103) and FP = Pa I (x0 = 103, α = 2.0)
distributions.

Risk Method of Mean Std. Deviation
(
×n1/2

)
Measure Estimation n = 50 n = 100 n = 500 n→∞ n = 50 n = 100 n = 500 n→∞
VaR[FE] ML 3.31 3.30 3.30 3.30 2.32 2.30 2.31 2.30

PM 3.25 3.27 3.30 3.30 2.78 2.80 2.87 2.86

EMP 6.22 6.25 6.29 6.30 2.89 2.92 2.98 3.00

cte[FE] ML 4.31 4.30 4.30 4.30 3.33 3.30 3.31 3.30

PM 4.23 4.26 4.29 4.30 3.98 4.02 4.12 4.10

EMP 7.22 7.26 7.30 7.25 4.29 4.32 4.32 4.35

gs[FE] ML 4.56 4.55 4.55 4.55 3.59 3.55 3.56 3.55

PM 4.47 4.50 4.54 4.55 4.29 4.32 4.43 4.41

EMP 7.42 7.48 7.54 7.47 4.79 4.89 4.93 4.97

pht[FE] ML 2.34 2.33 2.33 2.33 1.35 1.33 1.34 1.33

PM 2.30 2.31 2.33 2.33 1.61 1.62 1.66 1.66

EMP 5.30 5.31 5.33 5.30 1.35 1.36 1.38 1.39

wt[FE] ML 2.53 2.53 2.53 2.53 1.54 1.53 1.53 1.53

PM 2.50 2.51 2.53 2.53 1.85 1.86 1.91 1.90

EMP 5.50 5.51 5.53 5.50 1.58 1.58 1.60 1.60

VaR[FP ] ML 3.22 3.19 3.17 3.16 4.09 3.96 3.85 3.80

PM 3.13 3.14 3.16 3.16 4.55 4.56 4.55 4.52

EMP 11.86 12.22 12.59 12.65 12.33 13.83 17.52 18.97

cte[FP ] ML 6.84 6.56 6.38 6.32 18.90 16.18 14.65 14.20

PM 6.56 6.42 6.36 6.32 20.91 18.92 17.32 16.91

EMP 13.46 13.63 13.82 13.87 5.37 4.82 3.98 3.80

gs[FP ] ML 8.08 7.70 7.45 7.38 24.78 20.83 18.65 18.03

PM 7.74 7.53 7.43 7.38 27.41 24.41 22.07 21.47

EMP 13.60 13.75 13.89 13.93 4.38 3.60 2.56 2.26

pht[FP ] ML 3.87 3.18 3.03 3.00 206.26 9.20 6.67 6.26

PM 3.73 3.20 3.03 3.00 111.34 31.60 7.93 7.46

EMP 7.69 7.71 7.72 7.72 3.31 3.34 3.34 3.32

wt[FP ] ML 3.28 3.17 3.09 3.07 7.44 6.52 5.71 5.50

PM 3.16 3.12 3.08 3.07 7.88 7.70 6.76 6.54

EMP 8.31 8.34 8.36 8.35 3.85 3.89 3.89 3.87

Note: The entries for n <∞ are based on 100,000 simulated samples. All entries are measured in 1000’s.
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5.2 Norwegian Fire Claims

In this section, we fit left-truncated Pareto I and lognormal distributions to the well-

studied Norwegian fire claims data (see Nadarajah and Bakar, 2015; Brazauskas and

Kleefeld, 2016), which are available at the following website:

http://lstat.kuleuven.be/Wiley (in Chapter 1, file norwegianfire.txt).

The data represent the total damage done by fires in Norway for the years 1972 through

1992; only damages in excess of a reinsurance priority of 500,000 Norwegian krones (nok)

are available. We will analyze the data set for the year 1986, which, as shown in Section

5.1 of Brazauskas and Kleefeld (2016), exhibited unusual sensitivity to the choice of the

underlying loss model when used in VaR-measure calculations. The data set has n = 647

claims, with the three largest observations being 87, 98, and 188 (measured in millions

of nok). A summary of these data is provided in Table 5.2.

Table 5.2: Summary of Norwegian Fire Claims data for the year 1986.

Severity (millions nok) [0.5; 1.0) [1.0; 2.0) [2.0; 5.0) [5.0; 10.0) [10.0; 20.0) [20.0; ∞)

Relative Frequency 0.507 0.312 0.119 0.032 0.017 0.012

Since no information is given below 500,000 and there is no policy limit, the random

variable that generated data (using our notation, X∗ defined by (2.2)) is left-truncated

at d = 500, 000 but not censored, i.e., u = ∞. Moreover, as is evident from Table 5.2,

the data are right-skewed and heavy-tailed suggesting that Pareto I or lognormal might

be appropriate models in this case.

In Figure 5.1, we present plots of the fitted-versus-observed quantiles for the Pareto

I and lognormal models (both fitted using the ML approach; see equations (4.15) and

(4.19)). In order to avoid visual distortions due to large spacings between the most

extreme observations, both axes are measured on the logarithmic scale. That is, the

points plotted in those graphs are the following pairs:

(
log
(
F̂−1

[
ui + F̂ (d)(1− ui)

])
, log

(
x∗(i)
))
, i = 1, . . . , n,
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where F̂ (d) is the estimated parametric cdf evaluated at d = 500, 000, F̂−1 is the estimated

parametric qf, x∗(1) < · · · < x∗(n) denote the ordered claim severities, ui = (i − 0.5)/n is

the quantile level, and n = 647 is the sample size.
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Figure 5.1: Quantile-quantile plots for Norwegian Fire Claims data based on LN (x0 =
105, µ̂ML = 9.7524, σ̂ML = 2.2174) and Pa I (x0 = 105, α̂ML = 1.1270) models. Data and
both models are left-truncated at d = 500, 000.

Clearly, Pareto-estimated quantiles fall almost perfectly on the 45◦ line against the

empirical quantiles. On the other hand, lognormal QQ-plot does not look as good, but

note that there is only 8 observations clearly above the 45◦ line, which corresponds

to about 1.2% of data (8 out of 647 observations). Of course, from a risk measuring

perspective these 8 points are the worst because they correspond to the largest losses.

Also, having top observations above the 45◦ line indicates that the lognormal model

underestimates the right tail of the data.

In Table 5.3, we report point estimates and 90% confidence intervals of selected risk

measures for Norwegian Fire Claims data. The risk measure estimates are computed

using the fitted

Pa I (x0 = 105, α̂ML = 1.1270) and LN (x0 = 105, µ̂ML = 9.7524, σ̂ML = 2.2174)

distributions. The corresponding confidence intervals are constructed using the asymp-

totic distributions of Examples 4.6-4.10 and equation (4.21).
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Table 5.3: Point and interval estimates of selected risk measures for Norwegian Fire
Claims data, based on Pa I (x0 = 105, α̂ = 1.1270) and LN (x0 = 105, µ̂ = 9.7524, σ̂ =
2.2174) models.

Risk Measure LN distribution Pa I distribution

R[F ] R[F̂ ] 90% CI R[F̂ ] 90% CI

(millions nok) (millions nok) (millions nok) (millions nok)

VaR[F, β = 0.10] 0.395 [−0.139; 0.929] 0.771 [0.670; 0.873]

cte[F, β = 0.10] 1.759 [−0.070; 3.587] 6.846 [2.455; 11.237]

gs[F, β = 0.10, δ = 0.25] 2.276 [0.015; 4.536] 9.576 [3.117; 16.034]

pht[F, r = 0.95] 0.332 [0.066; 0.598] 1.515 [0.128; 2.903]

wt[F, λ = 0.25] 0.450 [0.052; 0.848] 2.149 [0.329; 3.970]

As was expected from Figure 5.1, the risk measure estimates based on the lognormal

model are substantially below the corresponding estimates based on the Pareto model.

Except for VaR, the lognormal confidence intervals are much shorter than those of Pareto,

but the lower bound of its VaR and cte intervals is negative and thus not informative.

On the other hand, Pareto based intervals make sense but they are quite wide. This is

surprising given that they are constructed using 647 observations.
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Chapter 6

Concluding Remarks

6.1 Summary

In this dissertation, estimation of distortion risk measures under truncated and censored

data scenarios has been studied for shifted exponential, Pareto I, and shifted lognormal

loss variables. We considered five commonly used risk measures: value-at-risk (VaR),

conditional tail expectation (cte), proportional hazards transform (pht), Wang trans-

form (wt), and Gini shortfall (gs). We have constructed empirical (EMP), maximum

likelihood (ML) and percentile matching (PM) type estimators for these risk measures

and investigated their properties theoretically as well as via simulations. The estimators

have also been applied to risk measurement exercises involving actual reinsurance data.

As the first contribution of the dissertation, we have derived several inequalities that

established lower and upper bounds for analytically intractable integrals that appear in

the formulas of pht (for shifted lognormal loss), wt (for shifted exponential and Pareto

I losses), and gs (for shifted lognormal loss) risk measures. Then the integrals were

evaluated numerically.

The second contribution is development of the EMP, ML, and PM estimators of

the five risk measures. Asymptotically normal distributions of these estimators have

been derived, and their small-sample properties have been explored using Monte Carlo

simulations. The simulation study revealed convergence of sample estimates to the true
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quantities as the sample size increased.

Finally, the third contribution is numerical illustrations based on the well-studied

Norwegian Fire Claims data (for the year 1986). In particular, the newly developed tools

have been used to evaluate the upper-tail riskiness of these claims. We have computed

point estimates and constructed (asymptotic) 90% confidence intervals for VaR, cte,

pht, wt, and gs risk measures.

6.2 Future Work

The research presented in this dissertation invites follow-up studies in several directions.

First, within the classes of lower and upper bounds for the integrals of Chapter 3 (see

Theorems 3.1–3.4), one could identify the optimal split point of the integration range.

The smallest difference between the bounds could be used as an optimality criterion.

Alternatively, a search for tighter bounds based on different inequalities for the standard

normal distribution tails could be pursued. The ultimate goal of such improvements is

to accurately approximate those integrals so that their computation within large-scale

simulation studies becomes automatic.

Second, it is certainly of interest to expand the list of loss models to other popular

probability distributions such as gamma, Weibull, generalized Pareto (as well as other

types of Pareto), folded, and spliced models. In addition, to capture the riskiness of

aggregate losses, the risk measure formulas for normal distribution is also needed.

Third, the PM estimators have been introduced and developed as an alternative to

the ML estimators, with the expectation that they may simplify computations. And for

some distributions they are computationally simpler. Focusing on the implementation

of estimators, PM and other estimators could be pursued to estimate distortion risk

measures. It would be especially interesting to develop robust risk measuring procedures.
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Appendix A

Derivations

In this appendix, we provide detailed derivations of risk measure formulas of Chapter 3

and show specific steps in deriving asymptotic properties of the ML and PM estimators

of R[F ] (as presented in Chapter 4). The derivations involve either (sometimes tricky)

integration or differentiation.

A.1 Derivations of Chapter 3

Example 3.4. [ cte of Shifted Exponential ]

Since
∫ 1

1−β log(1− u) du = β(log(β)− 1), the following steps are easily verified:

cte[F, β] =
1

β

∫ 1

1−β
F−1(u) du =

1

β

∫ 1

1−β

[
x0 − θ log(1− u)

]
du

= x0 −
θ

β

∫ 1

1−β
log(1− u) du = x0 − θ(log(β)− 1).

Example 3.5. [ cte of Pareto I ]

For α > 1, we have
∫ 1

1−β(1− u)−1/α du = α(α− 1)−1β−1/α+1; therefore

cte[F, β] =
1

β

∫ 1

1−β
F−1(u) du =

1

β

∫ 1

1−β

[
x0(1− u)−1/α

]
du = x0β

−1/αα(α− 1)−1.
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Example 3.6. [ cte of Shifted Lognormal ]

Using substitution v = Φ−1(u), we have

∫ 1

1−β
eσΦ−1(u) du =

∫ ∞
Φ−1(1−β)

eσvϕ(v) dv = eσ
2/2

∫ ∞
Φ−1(1−β)

ϕ(v − σ) dv

= eσ
2/2
[
1− Φ

(
Φ−1(1− β)− σ

)]
= eσ

2/2 Φ
(
σ − Φ−1(1− β)

)
.

Now the following steps are easily verified:

cte[F, β] =
1

β

∫ 1

1−β
F−1(u) du =

1

β

∫ 1

1−β

[
x0 + eµ+σΦ−1(u)

]
du

= x0 +
eµ

β

∫ 1

1−β
eσΦ−1(u) du = x0 +

1

β
eµ+σ2/2 Φ

(
σ − Φ−1(1− β)

)
.

Example 3.7. [ pht of Shifted Exponential ]

Since
∫ 1

0
(1− u)r−1 du = 1/r and

∫ 1

0
(1− u)r−1 log(1− u) du = −1/r2, the following steps

are easily verified:

pht[F, r] = r

∫ 1

0

F−1(u)(1− u)r−1 du = r

∫ 1

0

[
x0 − θ log(1− u)

]
(1− u)r−1 du

= rx0

∫ 1

0

(1− u)r−1 du− rθ
∫ 1

0

(1− u)r−1 log(1− u) du = x0 + θ/r.

Example 3.8. [ pht of Pareto I ]

For α > 1/r, we have
∫ 1

0
(1− u)r−1−1/α du = α(rα− 1)−1; therefore

pht[F, r] = r

∫ 1

0

F−1(u)(1− u)r−1 du = r

∫ 1

0

[
x0(1− u)−1/α

]
(1− u)r−1 du

= rx0α(rα− 1)−1 = x0 +
x0

rα− 1
.
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Example 3.9. [ pht of Shifted Lognormal ]

Substitution z = Φ−1(u), integration by parts and limz→∞ e
σz(1 − Φ(z))r = 0 for r > 0,

lead to

r

∫ 1

0

(1− u)r−1eσΦ−1(u) du = r

∫ ∞
−∞

(1− Φ(z))r−1eσzϕ(z) dz

= −
[
eσz(1− Φ(z))r

∣∣∣∞
−∞
− σ

∫ ∞
−∞

(1− Φ(z))reσz dz

]

= σ

∫ ∞
−∞

(1− Φ(z))reσz dz.

Now using this result and
∫ 1

0
(1− u)r−1 du = 1/r (see Example 3.7), we have

pht[F, r] = r

∫ 1

0

F−1(u)(1− u)r−1 du = r

∫ 1

0

[
x0 + eµ+σΦ−1(u)

]
(1− u)r−1 du

= x0 + eµ σ

∫ ∞
−∞

(1− Φ(z))reσz dz = x0 + eµCPHT(r, σ).

Example 3.10. [ wt of Shifted Exponential ]

Using substitution v = Φ−1(u), we have

∫ 1

0

eλΦ−1(u)−λ2/2 du =

∫ ∞
−∞

eλv−λ
2/2 ϕ(v) dv =

∫ ∞
−∞

ϕ(v − λ) dv = 1.

Using substitution z = −Φ−1(u) and integration by parts, we have

∫ 1

0

log(1− u) eλΦ−1(u)−λ2/2 du =

∫ ∞
−∞

log(1− Φ(−z)) e−λz−λ
2/2 ϕ(−z) dz

=

∫ ∞
−∞

log(Φ(z))ϕ(z + λ) dz = −
∫ ∞
−∞

Φ(z + λ)
ϕ(z)

Φ(z)
dz.
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Now the following steps are easily verified:

wt[F, λ] =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du =

∫ 1

0

[
x0 − θ log(1− u)

]
eλΦ−1(u)−λ2/2 du

= x0 + θ

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

Φ(z)
dz = x0 + θ CWT(λ).

Example 3.11. [ wt of Pareto I ]

Using substitution z = −Φ−1(u) and integration by parts, we have

∫ 1

0

(1− u)−1/α eλΦ−1(u)−λ2/2 du =

∫ ∞
−∞

(1− Φ(−z))−1/α e−λz−λ
2/2 ϕ(−z) dz

=

∫ ∞
−∞

[
Φ(z)

]−1/α
ϕ(z + λ) dz

=
[
Φ(z)

]−1/α
Φ(z + λ)

∣∣∣∞
−∞

+
1

α

∫ ∞
−∞

Φ(z + λ)
ϕ(z)[

Φ(z)
]1/α+1

dz

= 1 +
1

α

∫ ∞
−∞

Φ(z + λ)
ϕ(z)[

Φ(z)
]1/α+1

dz,

where in the last step we assume that α > 1, which ensures that limz→−∞
[
Φ(z)

]−1/α
Φ(z+

λ) = 0. This limit can be found by first applying the inequalities of Lemma B.6.

• For λ ≤ 0 and z < 0, we have: 0 ≤
[
Φ(z)

]−1/α
Φ(z + λ) ≤ e−λz−λ

2/2
[
Φ(z)

]1−1/α
.

• For λ > 0 and z < −λ, we have 0 ≤
[
Φ(z)

]−1/α
Φ(z+λ) <

z

z + λ
e−λz−λ

2/2
[
Φ(z)

]1−1/α
.

Then taking the limit of these inequalities as z → −∞ yields the result.

Now the following steps are easily verified:

wt[F, λ] =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du =

∫ 1

0

x0(1− u)−1/α eλΦ−1(u)−λ2/2 du

= x0 +
x0

α

∫ ∞
−∞

Φ(z + λ)
ϕ(z)

[Φ(z)]1/α+1
dz = x0 +

x0

α
CWT(λ, α).
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Example 3.12. [ wt of Shifted Lognormal ]

As was shown in derivations of Example 3.10,
∫ 1

0
eλΦ−1(u)−λ2/2 du = 1. In addition, using

substitution z = Φ−1(u) and noticing that the resulting integral is the moment generating

function of the standard normal distribution (evaluated at σ + λ), we have

wt[F, λ] =

∫ 1

0

F−1(u) eλΦ−1(u)−λ2/2 du =

∫ 1

0

[
x0 + eµ+σΦ−1(u)

]
eλΦ−1(u)−λ2/2 du

= x0 + eµ−λ
2/2

∫ ∞
−∞

e(σ+λ)z ϕ(z) dz = x0 + eµ−λ
2/2 e(σ+λ)2/2

= x0 + exp
{
µ+ λσ + σ2/2

}
.

Example 3.13. [ gs of Shifted Exponential ]

Note that
∫ 1

1−β du = β,
∫ 1

1−β(1− u) du = β2/2,
∫ 1

1−β log(1− u) du = β(log(β)− 1), and

∫ 1

1−β
(1−u) log(1−u) du = −1

2

[
(1− u)2 log(1− u)

∣∣∣1
1−β

+

∫ 1

1−β
(1− u) du

]
=

β2

2
log(β)−β

2

4
.

Now using these integrals and some straightforward simplifications, we have

gs[F, β, δ] =
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du

=
1

β2

∫ 1

1−β

[
x0 − θ log(1− u)

] (
β(1 + 2δ)− 4δ(1− u)

)
du

= β−2

[
x0β(1 + 2δ)

∫ 1

1−β
du− 4x0δ

∫ 1

1−β
(1− u) du− β(1 + 2δ)θ

∫ 1

1−β
log(1− u) du

+ 4δθ

∫ 1

1−β
(1− u) log(1− u) du

]
= x0 − θ

[
log(β)− 1− δ

]
.

Example 3.14. [ gs of Pareto I ]

For α > 1, the following formulas hold:
∫ 1

1−β(1− u)−1/α du = αβ1−1/α(α− 1)−1 and
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∫ 1

1−β(1 − u)−1/α+1 du = αβ2−1/α(2α − 1)−1. These formulas, with some simplifications,

lead to

gs[F, β, δ] =
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du

=
1

β2

∫ 1

1−β

[
x0(1− u)−1/α

] (
β(1 + 2δ)− 4δ(1− u)

)
du

= x0β
−2

[
β(1 + 2δ)

∫ 1

1−β
(1− u)−1/α du− 4δ

∫ 1

1−β
(1− u)−1/α+1 du

]

= αx0β
−1/α(2δ/(2α− 1) + 1)(α− 1)−1.

Example 3.15. [ gs of Shifted Lognormal ]

Note that
∫ 1

1−β du = β,
∫ 1

1−β u du = β − β2/2, and, as was shown in Example 3.6,∫ 1

1−β e
σΦ−1(u) du = eσ

2/2 Φ(σ−Φ−1(1− β)). Also, using substitution z = Φ−1(u), we have

∫ 1

1−β
u eσΦ−1(u) du =

∫ ∞
Φ−1(1−β)

Φ(z) eσzϕ(z) dz = eσ
2/2

∫ ∞
Φ−1(1−β)

Φ(z)ϕ(z − σ) dz.

Now the following steps are justified:
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gs[F, β, δ] =
1

β2

∫ 1

1−β
F−1(u)

(
β + 4δ(u− 1 + β/2)

)
du

=
1

β2

∫ 1

1−β

[
x0 + eµ+σΦ−1(u)

] (
β(1 + 2δ)− 4δ + 4δu

)
du

= β−2

[
x0

[
β(1 + 2δ)− 4δ

] ∫ 1

1−β
du+ 4x0δ

∫ 1

1−β
u du

+
[
β(1 + 2δ)− 4δ

] ∫ 1

1−β
eµ+σΦ−1(u) du+ 4δ

∫ 1

1−β
u eµ+σΦ−1(u) du

]

= x0 + β−2eµ+σ2/2

([
β(1 + 2δ)− 4δ

]
Φ(σ − Φ−1(1− β))

+ 4δ

∫ ∞
Φ−1(1−β)

Φ(z)ϕ(z − σ) dz

)

= x0 + β−2eµ+σ2/2
(

[β(1 + 2δ)− 4δ] Φ
(
σ − Φ−1(1− β)

)
+ 4δ CGS(β, σ)

)
.
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A.2 Derivations of Chapter 4

A.2.1 Section 4.3.1

Fisher Information for Shifted Exponential

Recall the log-likelihood function of X∗
d
=
{
X
∣∣X > d

}
, where X ∼ Exp (x0, θ):

logL
(
θ
∣∣x∗1, . . . , x∗n) = − log θ

n∑
i=1

1{d < x∗i < u}

− 1

θ

n∑
i=1

[
(x∗i − d)1{d < x∗i < u}+ (u− d)1{x∗i = u}

]
.

For n = 1, its first and second derivatives with respect to θ are:

∂ logL
∂θ

=

(
−1

θ
+
x∗ − d
θ2

)
1{d < x∗ < u}+

u− d
θ2

1
{
x∗ = u

}
,

∂2 logL
∂θ2

=

(
1

θ2
− 2(x∗ − d)

θ3

)
1{d < x∗ < u} − 2(u− d)

θ3
1{x∗ = u}.

Note that

E
[
1{d < X∗ < u}

]
= P{d < X∗ < u} =

F (u)− F (d)

1− F (d)
, (A.1)

E
[
1{X∗ = u}

]
= P{X∗ = u} =

1− F (u)

1− F (d)
, (A.2)

E
[
(X∗ − d)1{d < X∗ < u}

]
=

∫ u

d

(y − d) dF∗(y) = −
∫ u

d

(y − d) d
[
1− F∗(y)

]
=

∫ u

d

[
1− F∗(y)

]
dy − (u− d)

[
1− F∗(u)

]
=

∫ u

d

1− F (y)

1− F (d)
dy − (u− d)

1− F (u)

1− F (d)
. (A.3)
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Application of (A.1)–(A.3) to X ∼ Exp (x0, θ), with F (y) = 1− e−(y−x0)/θ, yields

E
[
1{d < X∗ < u}

]
= 1− e−(u−d)/θ, E

[
1{X∗ = u}

]
= e−(u−d)/θ,

and

E
[
(X∗ − d)1{d < X∗ < u}

]
= θ

[
1− e−(u−d)/θ

]
− (u− d) e−(u−d)/θ.

Now I11 is found as follows:

I11 = −E

[
∂2 log f∗(X

∗)

∂θ2

]
= − θ−2 E

[
1{d < X∗ < u}

]
+ 2θ−3 E

[
(X∗ − d)1{d < X∗ < u}

]
+ 2(u− d)θ−3 E

[
1{X∗ = u}

]
= θ−2

[
1− e−(u−d)/θ

]
.

Asymptotic Distributions of ML and PM Estimators of θ

θ̂ML ∼ AN
(
θ,
θ2

n

1

1− e−(u−d)/θ

)
,

θ̂PM ∼ AN
(
θ,
θ2

n

p1

(1− p1) log2(1− p1)

)
.

Asymptotic Distributions of ML and PM Estimators of R[F ]

R[F̂ML] ∼ AN
(
R[F ],

θ2

n

1

1− e−(u−d)/θ
d2

1

)
,

R[F̂PM] ∼ AN
(
R[F ],

θ2

n

p1

(1− p1) log2(1− p1)
d2

1

)
,
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where the partial derivative with respect to θ, denoted d1 = ∂R[F ]/∂θ, has the following

expression:

• Example 4.1: For VaR[F, β] = x0 − θ log(β),

d1 =
∂VaR[F, β]

∂θ
= − log(β).

• Example 4.2: For cte[F, β] = x0 − θ(log(β)− 1),

d1 =
∂cte[F, β]

∂θ
= − (log(β)− 1).

• Example 4.3: For pht[F, r] = x0 + θ/r,

d1 =
∂pht[F, r]

∂θ
= r−1.

• Example 4.4: For wt[F, λ] = x0 + θ CWT(λ) = x0 + θ
∫∞
−∞Φ(z + λ) ϕ(z)

Φ(z)
dz,

d1 =
∂wt[F, λ]

∂θ
= CWT(λ).

• Example 4.5: For gs[F, β, δ] = x0 − θ(log(β)− 1− δ),

d1 =
∂gs[F, β, δ]

∂θ
= − (log(β)− 1− δ).
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A.2.2 Section 4.3.2

Fisher Information for Pareto I

Recall the log-likelihood function of X∗
d
=
{
X
∣∣X > d

}
, where X ∼ Pa I (x0, α):

logL
(
α
∣∣x∗1, . . . , x∗n) =

n∑
i=1

[
log (α/x0)− (α + 1) log (x∗i /x0)

]
1
{
d < x∗i < u

}
− αn log (x0/d) + α log (x0/u)

n∑
i=1

1
{
x∗i = u

}
.

For n = 1, its first and second derivatives with respect to α are:

∂ logL
∂α

= (1/α− log (x∗/x0)) 1{d < x∗ < u} − log (x0/d) + log (x0/u) 1
{
x∗ = u

}
,

∂2 logL
∂α2

=
(
−1/α2

)
1{d < x∗ < u}.

Application of (A.1) to X ∼ Pa I (x0, α), with F (y) = 1− (x0/y)α, yields

E
[
1{d < X∗ < u}

]
= 1− (d/u)α.

Now I11 is given by:

I11 = − E

[
∂2 log f∗(X

∗)

∂α2

]
= α−2 E

[
1{d < X∗ < u}

]
= α−2

[
1− (d/u)α

]
.

Asymptotic Distributions of ML and PM Estimators of α

α̂ML ∼ AN
(
α,

α2

n

1

1− (d/u)α

)
,

α̂PM ∼ AN
(
α,

α2

n

p1

(1− p1) log2(1− p1)

)
.
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Asymptotic Distributions of ML and PM Estimators of R[F ]

R[F̂ML] ∼ AN
(
R[F ],

α2

n

1

1− (d/u)α
d2

1

)
,

R[F̂PM] ∼ AN
(
R[F ],

α2

n

p1

(1− p1) log2(1− p1)
d2

1

)
,

where the partial derivative with respect to α, denoted d1 = ∂R[F ]/∂α, has the following

expression:

• Example 4.6: For VaR[F, β] = x0β
−1/α,

d1 =
∂VaR[F, β]

∂α
= α−2 VaR[F, β] log(β).

• Example 4.7: For cte[F, β] = x0β
−1/αα(α− 1)−1,

d1 =
∂cte[F, β]

∂α
= α−2 cte[F, β]DCTE(β, α),

where DCTE(β, α) = log(β)− α(α− 1)−1.

• Example 4.8: For pht[F, r] = x0 + x0/(rα− 1),

d1 =
∂pht[F, r]

∂α
= − pht[F, r]α−1 (rα− 1)−1.

• Example 4.9: For wt[F, λ] = x0+x0
α
CWT(λ, α) = x0+x0

α

∫∞
−∞Φ(z+λ) ϕ(z)

[Φ(z)]1/α+1 dz,

d1 =
∂wt[F, λ]

∂α
= x0 α

−2DWT(λ, α),

where DWT(λ, α) = −CWT(λ, α) + α−1
∫∞
−∞Φ(z + λ) ϕ(z)

[Φ(z)]1/α+1 log [Φ(z)] dz.
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• Example 4.10: For gs[F, β, δ] = x0β
−1/αα(α− 1)−1 (1 + 2δ(2α− 1)−1),

d1 =
∂gs[F, β, δ]

∂α
= α−2 gs[F, β, δ]DGS(β, δ, α),

where DGS(β, δ, α) = log(β)− α(α− 1)−1 − 4α2δ(2α− 1)−1(2δ + 2α− 1)−1.

A.2.3 Section 4.3.3

Fisher Information for Shifted Lognormal

Recall the notation

cd =
log(d− x0)− µ

σ
, cx∗i =

log(x∗i − x0)− µ
σ

, cu =
log(u− x0)− µ

σ
,

and the log-likelihood function of X∗
d
=
{
X
∣∣X > d

}
, where X ∼ LN (x0, µ, σ):

logL
(
(µ, σ)

∣∣x∗1, . . . , x∗n) =
n∑
i=1

[
− log(σ)− log(x∗i − x0) + log(ϕ(cx∗i ))

]
1
{
d < x∗i < u

}
− n log [1− Φ(cd)] + log [1− Φ(cu)]

n∑
i=1

1
{
x∗i = u

}
.

For n = 1, its first partial derivatives with respect to µ and σ are:

∂ logL
∂µ

= σ−1

{
cx∗1{d < x∗ < u} − ϕ(cd)

1− Φ(cd)
+

ϕ(cu)

1− Φ(cu)
1
{
x∗ = u

}}
,

∂ logL
∂σ

= σ−1

{
(c2
x∗ − 1)1{d < x∗ < u} − ϕ(cd)

1− Φ(cd)
+

ϕ(cu)

1− Φ(cu)
1
{
x∗ = u

}}
.
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And its second partial derivatives are:

∂2 logL
∂µ2

= σ−2

{
− 1{d < x∗ < u} − (1− Φ(cd))ϕ(cd)cd − ϕ2(cd)

(1− Φ(cd))2

+
(1− Φ(cu))ϕ(cu)cu − ϕ2(cu)

(1− Φ(cu))2
1
{
x∗ = u

}}
,

∂2 logL
∂µ∂σ

= σ−2

{
− 2cx∗1{d < x∗ < u} − (1− Φ(cd))ϕ(cd)(c

2
d − 1)− ϕ2(cd)cd

(1− Φ(cd))2

+
(1− Φ(cu))ϕ(cu)(c

2
u − 1)− ϕ2(cu)cu

(1− Φ(cu))2
1
{
x∗ = u

}}
,

∂2 logL
∂σ2

= σ−2

{
− ∂ logL

∂σ
− 2c2

x∗1{d < x∗ < u} − (1− Φ(cd))ϕ(cd)cd(c
2
d − 1)− ϕ2(cd)c

2
d

(1− Φ(cd))2

+
(1− Φ(cu))ϕ(cu)cu(c

2
u − 1)− ϕ2(cu)c

2
u

(1− Φ(cu))2
1
{
x∗ = u

}}
.

Application of (A.1)–(A.2) to X ∼ LN (x0, µ, σ), with F (y) = Φ(cy), yields

E
[
1{d < X∗ < u}

]
=

Φ(cu)− Φ(cd)

1− Φ(cd)
and E

[
1{X∗ = u}

]
=

1− Φ(cu)

1− Φ(cd)
.

Moreover, E
[
∂ logL
∂σ

]
= E

[
∂ log(f∗(X∗))

∂σ

]
= 0, and computations analogous to (A.3) yield

E
[
cX∗1{d < X∗ < u}

]
=

∫ u

d

cy f∗(y) dy =
1

1− Φ(cd)

∫ cu

cd

z ϕ(z) dz

=
ϕ(cd)− ϕ(cu)

1− Φ(cd)
,

E
[
c2
X∗1{d < X∗ < u}

]
=

∫ u

d

c2
y f∗(y) dy =

1

1− Φ(cd)

∫ cu

cd

z2 ϕ(z) dz

=
cdϕ(cd)− cuϕ(cu) + Φ(cu)− Φ(cd)

1− Φ(cd)
.
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Putting all this together, with some straighforward simplifications, we find that the Fisher

information matrix has the following entries:

I11 = −E

[
∂2 log f∗(X

∗)

∂µ2

]
= σ−2

[
Φ(cu)− Φ(cd)

1− Φ(cd)
+

[1− Φ(cd)]ϕ(cd)cd − ϕ2(cd)

[1− Φ(cd)]2
− [1− Φ(cu)]ϕ(cu)cu − ϕ2(cu)

[1− Φ(cu)][1− Φ(cd)]

]

I12 = I21 = − E

[
∂2 log f∗(X

∗)

∂µ ∂σ

]

= σ−2

[
[1− Φ(cd)]ϕ(cd)(c

2
d + 1)− ϕ2(cd)cd

[1− Φ(cd)]2
− [1− Φ(cu)]ϕ(cu)(c

2
u + 1)− ϕ2(cu)cu

[1− Φ(cd)][1− Φ(cu)]

]

I22 = −E

[
∂2 log f∗(X

∗)

∂σ2

]

= σ−2

[
2 [Φ(cu)− Φ(cd)]

1− Φ(cd)
+

[1− Φ(cd)]ϕ(cd)cd(c
2
d + 1)− ϕ2(cd)c

2
d

[1− Φ(cd)]2

− [1− Φ(cu)]ϕ(cu)cu(c
2
u + 1)− ϕ2(cu)c

2
u

[1− Φ(cd)][1− Φ(cu)]

]
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Appendix B

Asymptotic Theorems

Here we provide some theoretical results that are repeatedly used in Chapter 4. Specif-

ically, the asymptotic normality theorems for sample quantiles, the maximum likeli-

hood (ML) and percentile-matching (PM) estimators of model parameters are presented.

Transformations of asymptotically normal vectors are handled by using the delta method

which is also provided in this section. In addition, we extend the well-known inequality

for the normal distribution upper tail to the lower tail. We also prove two additional

inequalities for the standard normal distribution tails.

Suppose we have a sample of independent and identically distributed (i.i.d.) con-

tinuous random variables, X1, . . . , Xn, with the cumulative distribution function (cdf)

G, probability density function (pdf) g, and quantile function (qf) G−1. Let the cdf,

pdf, and qf be given in a parametric form, and suppose that they are indexed by a

k-dimensional parameter θ = (θ1, . . . , θk). We will assume that g satisfies all the regu-

larity conditions that usually accompany theorems such as the ones formulated in this

appendix. (For more details, see, e.g., Serfling, 1980, Sections 2.3.3 and 4.2.2.) Further,

X(1) ≤ · · · ≤ X(n) denotes the order statistics of X1, . . . , Xn. Also, throughout Appendix

B and the dissertation the abbreviation AN stands for “asymptotically normal.”
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The empirical estimator of a population quantile, say G−1(p), is the corresponding

sample quantile X(dnpe), where d·e denotes the “rounding up” operation. We start with

the asymptotic normality result for sample quantiles. Complete technical details are

available in Section 2.3.3 of Serfling (1980).

Theorem B.1 [ Asymptotic Normality of Sample Quantiles ]

Let 0 < p1 < · · · < pk < 1, with k > 1, and suppose that pdf g is continuous, as discussed

above. Then the k-variate vector of sample quantiles
(
X(dnp1e), . . . , X(dnpke)

)
is AN with

the mean vector
(
G−1(p1), . . . , G−1(pk)

)
and the covariance-variance matrix 1

n

[
σ2
ij

]k
i,j=1

with

σ2
ij =

pi(1− pj)
g(G−1(pi))g(G−1(pj))

. (B.1)

In the univariate case (k = 1), the sample quantile X(dnpe) satisfies:

X(dnpe) ∼ AN
(
G−1(p),

1

n

p(1− p)
g2(G−1(p))

)
. (B.2)

The following theorem summarizes asymptotic distribution of the ML estimators.

Description of the method, proofs and complete technical details are available in Section

4.2 of Serfling (1980).

Theorem B.2 [ Asymptotic Normality of MLs ]

Let θ̂ =
(
θ̂1, . . . , θ̂k

)
denote the ML of parameter θ = (θ1, . . . , θk). Then, under the

regularity conditions mentioned above,

(
θ̂1, . . . , θ̂k

)
∼ AN

((
θ1, . . . , θk

)
,

1

n
I−1θ

)
,
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where Iθ =
[
Iij
]k
i,j=1

is the Fisher information matrix, with the entries given by

Iij = E

[
∂ log g(X)

∂θi
· ∂ log g(X)

∂θj

]
. (B.3)

In the univariate case (k = 1),

θ̂ ∼ AN

θ, 1

n

1

E
[ (

∂ log g(X)
∂θ

)2 ]
 . (B.4)

The delta method is a technical tool for establishing asymptotic normality of smoothly

transformed asymptotically normal random vectors. Here we will present it as a direct

application to Theorem B.2. For the general theorem and complete technical details, see

Serfling (1980, Section 3.3).

Theorem B.3 [ The Delta Method ]

Suppose that θ̂ =
(
θ̂1, . . . , θ̂k

)
is AN with the parameters specified in Theorem B.2. Let

the real-valued functions h1(θ) = h1 (θ1, . . . , θk) , . . . , hm(θ) = hm (θ1, . . . , θk) represent m

different risk measures, tail probabilities or other transformations of model parameters.

Then, under some smoothness conditions on functions h1, . . . , hm, the vector of ML-based

estimators

(
h1

(
θ̂
)
, . . . , hm

(
θ̂
))
∼ AN

((
h1 (θ) , . . . , hm (θ)

)
,

1

n
DθI

−1
θ D′θ

)
, (B.5)

where Dθ = [dij]m×k is the Jacobian of the transformations h1, . . . , hm evaluated at

(θ1, . . . , θk), that is, dij = ∂hi/∂θ̂j

∣∣∣
(θ1,...,θk)

. In the univariate case (m = 1), the para-
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metric estimator

h
(
θ̂1, . . . , θ̂k

)
∼ AN

(
h (θ1, . . . , θk) ,

1

n
dθI

−1
θ d′θ

)
, (B.6)

where dθ =
(
∂h/∂θ̂1, . . . , ∂h/∂θ̂k

) ∣∣∣
(θ1,...,θk)

.

If the probability distribution has k unknown parameters, (θ1, . . . , θk), PM estimators

are found by matching G−1(pi) with X(dnpie), i = 1, . . . , k, and then solving the result-

ing system of equations with respect to θ1, . . . , θk. Assuming the system of equations

has a unique solution, it is clear that PM estimators of θ1, . . . , θk will be functions of

X(dnp1e), . . . , X(dnpke). Let us denote these estimators as θ̃i = h∗i
(
X(dnp1e), . . . , X(dnpke)

)
,

i = 1, . . . , k. Their joint asymptotic normality follows from Theorems B.1 and B.3 (with

obvious modifications to (B.5)).
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Theorem B.4 [ Asymptotic Normality of PMs ]

Let θ̃ =
(
θ̃1, . . . , θ̃k

)
denote the PM estimator of parameter θ = (θ1, . . . , θk). Then,

(
θ̃1, . . . , θ̃k

)
∼ AN

((
θ1, . . . , θk

)
,

1

n
D∗θΣθ(D

∗
θ)
′
)
, (B.7)

where the entries of Σθ are given by (B.1) and D∗θ = [d∗ij]k×k is the Jacobian of the

transformations h∗1, . . . , h
∗
k evaluated at (θ1, . . . , θk), that is, d∗ij = ∂h∗i /∂X(dnpje)

∣∣∣
(θ1,...,θk)

.

For establishing some of the inequalities of Chapter 3, it is convenient to have an

approximation of the normal distribution tails as x→ ±∞. The following lemma proves

simple relationships between cdf Φ and pdf ϕ in the upper and lower tails.

Lemma B.5. [ Normal Distribution Tails - I ]

(a) As x→∞,

1− Φ(x) ≈ x−1ϕ(x);

more precisely, the double inequality

(
x−1 − x−3

)
ϕ(x) < 1− Φ(x) < x−1ϕ(x)

holds for every x > 0.

(b) As x→ −∞,

Φ(x) ≈ − x−1ϕ(x);

more precisely, the double inequality

(
x−3 − x−1

)
ϕ(x) < Φ(x) < − x−1ϕ(x)

holds for every x < 0.
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Proof: Part (a) is stated and proved in Feller (1968, pp. 175 and 179).

For part (b), we start by noticing that 1− t−2 < 1 < 1 + 3t−4; equivalently,

(
1− t−2

)
ϕ(t) < ϕ(t) <

(
1 + 3t−4

)
ϕ(t), t < 0.

Integrating each term of the inequality from −∞ to x leads to

2Φ(x) + x−1ϕ(x) < Φ(x) < 2Φ(x) +
(
x−1 − x−3

)
ϕ(x).

Straightforward simplifications yield the stated inequality. �

Inequalities involving standard normal cdf at different points are used in Chapter 3

derivations.

Lemma B.6. [ Normal Distribution Tails - II ]

(a) For λ ≤ 0, the inequality

Φ(z + λ) ≤ e−λz−λ
2/2 Φ(z)

holds for every z < 0.

(b) For λ > 0, the inequality

Φ(z + λ) <
z

z + λ
e−λz−λ

2/2 Φ(z)

holds for every z < −λ.
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Proof: The standard normal cdf Φ(z + λ) can be rewritten as follows

Φ(z + λ) =

∫ z+λ

−∞
ϕ(t) dt =

∫ z

−∞
ϕ(v + λ) dv

= e−λ
2/2

∫ z

−∞
ϕ(v) e−λv dv. (B.8)

In part (a), λ ≤ 0 implies e−λv is a non-decreasing function. Thus, for v ≤ z, we have

e−λv ≤ e−λz. Combining this inequality with (B.8), we get

Φ(z + λ) ≤ e−λ
2/2e−λz

∫ z

−∞
ϕ(v) dv = e−λz−λ

2/2 Φ(z).

For part (b), first use integration by parts in (B.8), then apply the upper bound from

Lemma B.5(b), notice that −v−1 ≤ −z−1 when v ≤ z < 0, and complete the integration:

Φ(z + λ) = e−λ
2/2

[
Φ(z) e−λz + λ

∫ z

−∞
Φ(v) e−λv dv

]
< e−λ

2/2

[
Φ(z) e−λz + λ

∫ z

−∞
(−v−1)ϕ(v) e−λv dv

]
≤ e−λz−λ

2/2 Φ(z)− λ

z
e−λ

2/2

∫ z

−∞
ϕ(v) e−λv dv

= e−λz−λ
2/2 Φ(z)− λ

z

∫ z

−∞
ϕ(v + λ) dv

= e−λz−λ
2/2 Φ(z)− λ

z
Φ(z + λ).

Finally, we rearrange this inequality into

Φ(z + λ) <
z

z + λ
e−λz−λ

2/2 Φ(z)

and notice that the rearrangement is valid when z/(z + λ) > 0 or z < −λ < 0. �
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