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ABSTRACT
ASYMPTOTIC EXPANSION OF THE L2-NORMS OF THE SOLUTIONS TO THE
HEAT AND DISSIPATIVE WAVE EQUATIONS ON THE HEISENBERG GROUP

by

Preston Walker

The University of Wisconsin-Milwaukee, 2020
Under the Supervision of Professor Lijing Sun and Professor Hans Volkmer

Motivated by the recent work on asymptotic expansions of heat and dissipative wave

equations on the Euclidean space, and the resurgent interests in Heisenberg groups, this

dissertation is devoted to the asymptotic expansions of heat and dissipative wave equations

on Heisenberg groups. The Heisenberg group, Hn, is the R2n+1 manifold endowed with the

law

(x, y, s) · (x′, y′, s′) = (x+ x′, y + y′, s+ s′ +
1

2
(xy′ − x′y)),

where x, y ∈ Rn and t ∈ R. Let v(t, z) and u(t, z) be solutions of the heat equation,

vt − Lv = 0, and dissipative wave equation, utt + ut − Lu = 0, over the Heisenberg group

respectively, where L is the sub-Laplacian. To overcome the Heisenberg group setting, we

first establish the Group Fourier transform for an integrable function on the space. The

Fourier transform together with the Plancherel formula, help us to obtain the following

expansions for ‖u(t, z)‖L2(H) and ‖v(t, z)‖L2(H) as t→∞,

‖u(t, ·)‖L2(H) ∼
N−1∑
n=0

bnt
−n−2 +O(t−N−2), ‖v(t, ·)‖L2(H) ∼

N−1∑
n=0

cnt
−n−2 +O(t−N−1),

where bn and cn only depend on the initial conditions.
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1 Introduction

The heat equation describes the evolution in time of the density of a quantity such as

heat. This equation is fundamental to the field of partial differential equations and has

applications in many fields of mathematics including spectral geometry, differential geometry,

and even probability theory. Understanding the heat equation on different spaces, such as

the Heisenberg group, could prove to be useful in other fields of mathematics or applications.

First, let’s recall the heat equation on the Euclidean space. Let u(t, x) be the weak solution

of the heat equation

ut −∆u = 0, t ≥ 0, x ∈ RN,

with initial condition

u(0, ·) = u0 ∈ L2(RN).

Dr. Volkmer has a paper[4] that finds the asymptotic expansion of the squared L2-norm,

‖u(t, ·)‖2L2(RN ) =
∫
RN

|u(t, x)|2dx, as t→∞ in the Euclidean case. Similarly, he also finds an

asymptotic expansion of ‖v(t, ·)‖2L2(RN ), where v(t, x) is the solution to the dissipative wave

equation

vtt + vt −∆v = 0, t ≥ 0, x ∈ RN ,

with initial conditions

vt(0, ·) = v0 ∈ L2(RN), v(0, ·) = v1 ∈ L2(RN).

The main techniques used in Volkmer’s paper involve the Fourier transform’s relation

with differentiation and Taylor series expansions. He goes further to find the asymptotic

expansion of the difference of these solutions. Given suitable conditions on the inital values,

this result leads to the cancellation of the leading terms in the expansion. This explains the

diffusion phenomenon for linear hyperbolic waves.
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The Heisenberg group has an important role in quantam mechanics. The representation

of the Heisenberg group acting on L2(RN), known as the Schrödinger representation, is the

action of the exponentiated position and momentum operators. One of the main results

arriving from this is the Stone-Von Nuemann Theorem. This states that the Schrödinger

representation is the unique (up to unitary equivalence) strongly continuous unitary repre-

sentation of the Heisenberg group with non-trivial center.

In this thesis, we will be focusing on how the Heisenberg group acts on the space of square

integrable functions, in particular the solutions to the heat and dissipative wave equations.

We ask if we can find asymptotic expansions of these equations on the Heisenberg group

with the sub-Laplacian, which we will define later. We are interested in if the behavior of

these equations are consistent with the Euclidean case. In particular, will they still have

the same power in their leading terms? If so, would we still have cancelation of the leading

terms when considering the difference?

The main obstacles to overcome in this setting while considering these questions is its

adaption of the Fourier transform and Plancherel formula. The Fourier transform in the

Euclidean case converts differentiation in the space variable to scalar multiplication. This

property can convert partial differential equations into ordinary differential equations that

are much simpler to solve. While the adaption of the Fourier transform on the Heisenberg

group doesn’t convert differentiation to something as nice as scalar multiplication, it does

convert the sub-Laplacian in our equations into the Harmonic oscillator. This operator has

a useful eigenfunction system. In the Euclidean case, the Plancherel formula shows that the

L2-norm of a function is equal to the L2-norm of its Fourier transform. While the Plancherel

formula on the Heisenberg group doesn’t give equality, it does give a relationship with the

Hilbert-Schmidt norm of the Fourier transform operator. This allows us to take advantage

of the eigenfunction system of the Harmonic oscillator. While we don’t get to consider the

cancelation of the leading terms in this thesis, we do confirm that the leading terms have

the same power and is consistent with the results in the Euclidean case.
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In what follows, we will state the organization of this thesis and summarize the main

results. In Chapter 2 we introduce the Heisenberg group denoted by Hn. That is the R2n+1

manifold endowed with the law

(x, y, s)(̇x′, y′, s′) = (x+ x′, y + y′, s+ s′ +
1

2
(xy′ − x′y)).

While we explore properties of the Heisenberg group in 2n + 1 dimensions in the first

section, we restrict ourselves to 3 dimensions for the rest of the thesis for simplicity. While

the details still need to be shown, a similar proof will work for higher dimensions. In this

thesis we mention the definition of the group Fourier transform on the Heisenberg group that

appears in most texts using the Schrödinger representation. However, it is more beneficial

for us to use a slightly different definition using a kernel mentioned later in the thesis. It

can be shown with some clever substitutions that these definitions are equivalent[1]. With

some restrictions on f ∈ L2(H), we can determine the expansion of ‖T ∗λhk‖2 as λ → 0,

where {Tλ}λ∈N\{0} is the group Fourier transform defined by f and hk is the kth hermitian

polynomial. This becomes essential to our work later when we use the Plancherel formula.

In Chapter 3 we let u(t, z) be the solution to the heat equation on the Heisenberg group;

namely, u satisfies

∂tu(t, z)− Lu(t, z) = 0

for all t > 0, z ∈ H, L is the sub-Laplacian, and with the initial condition

u(0, z) = u0(z).

The group Fourier transform converts the differentiation given in the original equation

using properties analogous to the Euclidean case discussed in Chapter 2. This yields an

ordinary differential equation that we are able to solve. Afterwards, we use the modified

Plancherel formula to evaluate the norm.

3



The first section of that chapter is used to determine the asymptotic equivalence of the

solution. We take advantage of our definition of the group Fourier transform involving the

kernel and use an approximate identity to deduce a necessary convergence. By the virtue of

Watson’s lemma, this leads to the asymptotic equivalence

lim
t→∞
‖u(t, ·)‖2L2(H) ∼

|Q|
8t

as t→∞,

where Q =
∫
H
u0(x, y, s)dxdyds. The second section is used to determine the asymptotic

expansion of the solution,

‖u(t, ·)‖2L2(H) =
N−1∑
n=0

bnt
−n−2 +O(t−N−2) as t→∞,

where bn is dependent only on the initial condition for all nonegative integers n satisfying

n ≤ N − 1. This proof mainly consists of summing the expansions found in the first section

over all the hermitian polynomials, which give an important orthogonal basis of L2(R), to

determine the entire expansion.

In Chapter 4 we let u(t, z) be the solution to the dissipative wave equation,

∂2t u(t, z) + ∂tu(t, z) = Lu(t, z)

with initial conditions

u(0, x, y, s) = u0(x, y, s), ∂tu(0, x, y, s) = u1(x, y, s),

where u0, u1 ∈ L1(H)∩L2(H). Again, we solve by first using the group Fourier transform to

convert the equation to an ordinary differential equation.

The first section covers the asymptotic equivalence. We use a similar strategy as the

solution to the heat equation. Utilizing the convergency shown in Chapter 3 and Watson’s
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lemma, we are able to show the asymptotic equivalence,

lim
t→∞
‖u(t, ·)‖2L2(H) ∼

|Q|
8t

as t→∞,

where Q =
∫
H

(u0(x, y, s) + u1(x, y, s))dxdyds. The second section of this chapter is used to

determine the asymptotic expansion,

‖u(t, ·)‖2L2(H) =
N−1∑
n=0

cnt
−n−2 +O(t−N−2) as t→∞,

where cn is only dependent on the initial conditions for all non negative integers n such

that n ≤ N − 1.

2 The Heisenberg Group

The Heisenberg group, Hn, is the R2n+1 manifold endowed with the law:

(x, y, s)(̇x′, y′, s′) = (x+ x′, y + y′, s+ s′ +
1

2
(xy′ − x′y))

where x, y, x′, y′ ∈ Rn and s, s′ ∈ R. Given two elements, x, y ∈ Rn, xy refers to the standard

scalar product defined:

xy =
n∑
i=1

xiyi where x = (x1, x2, ..., xn), y = (y1, y2, ..., yn).

Dilation in this group is defined by

λ(x, y, s) = (λx, λy, λ2s), λ ∈ R.

We define dilation this way because we want it to be a homomorphism. If we dilate x

and y linearly, then we have to dilate s quadratically. This is because we have a product in
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the definition of the operation.

Although we will not use it in this thesis, this group is commonly considered the matrix

group with 1’s along the diagonal. The x vector in the first row and the y vector in the last

column. The s variable is the entry in the first row, last column. All other entries are 0.

2.1 Heisenberg Lie Algebra

The canonical basis of the Lie Algebra on Hn is given by the left-invariant vector fields:

Xj = ∂xj −
yj
2
∂t, Yj = ∂yj +

xj
2
∂t, S = ∂s,

where the canonical commutation relations are:

[Xj, Yj] = S, j = 0, 1, 2, ..., n,

[Xi, Yj] = [Xi, S] = [Yi, S] = 0, i, j ∈ Z, i 6= j.

Because of nice properties of the Lie algebra’s structure, we can define integration over

Hn in the natural way[1]:

∫
Hn

...dxdyds =

∫
R2n+1

...dxdyds =

∫
R

∫
Rn

∫
Rn

...dxdyds.

The sub-Laplacian on the Heisenberg group Hn, L, is given by

L =
n∑
j=1

(X2
j + Y 2

j ) =
n∑
j=1

(
(∂xj −

yj
2
∂s)

2 + (∂yj +
xj
2
∂s)

2
)
.
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2.2 Group Fourier Transform

In this section we will define the Group Fourier transform in a way that is most commonly

seen. We will introduce another definition in the other sections. The definitions are equiva-

lent as proved by Ruzhansky (2016).

We define the Schödinger representations, πλ, as the representation of the group Hn

acting on L2(Rn) as

πλ(x, y, s)h(w) := eiλ(s+
1
2
xy)ei

√
λyuh(w +

√
|λ|x),

where (x, y, s) ∈ Hn, h ∈ L2(Rn), and
√
λ = sgn(λ)

√
|λ|. The representation of πλ acts on

the canonical basis in the following way

πλ(Xj) =
√
|λ|∂wj

, πλ(Yj) = i
√
λwj, and πλ(S) = iλI.

We also note that

π∗λ(x, y, s)h(w) = πλ(−x,−y,−s)h(w) = eiλ(−s+
1
2
xy)e−i

√
λywh(w −

√
|λ|x).

We define the group Fourier transform of f ∈ L1(Hn) at πλ as

Tλh(u) = FHn(f)(πλ)h(w) =
1

(2π)n

∫
R2n+1

f(x, y, s)π∗λ(x, y, s)h(w − x)dxdyds.

Tλ is a Hilbert-Schmidt operator, that is, a bounded operator with finite Hilbert-Schmidt

norm. That means given an orthonormal basis, {ei}i∈I for L2(Rn) with some indexing set I,

we have

‖Tλ‖2HS[L2(Hn)] =
∑
i∈I

‖Tλei‖2L2(Rn).
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This gives us the Plancherel formula on the Heisenberg group as

‖f‖2L2(Hn) =

∫
λ∈R∗

|λ|‖Tλ‖2HS[L2(Hn)]dλ.

We have the following properties with the Lie algebra and group Fourier transform

Tλ(Xj) =
√
|λ|∂wj

Tλ, Tλ(Yj) = i
√
λwjTλ, Tλ(S) = iλTλ.

So, the group Fourier transform of the sub-Laplacian is

Tλ(L) = |λ|
n∑
j=1

(∂2wj
− w2

j ) = −|λ|Hu,

where Hw :=
n∑
j=1

(∂2wj
− w2

j ) is the harmonic oscillator acting on L2(Rn). It is important

to note this because the harmonic oscillator is self-adjoint in L2(Rn) and has a convenient

system of eigenfunctions that we will take advantage of.

The eigenfunctions of Hu, {hk}∞k=1 form an orthonormal basis of L2(Rn). The eigenfunc-

tions are defined as [1]

hk(w) :=
n∏
j=1

Pkje
− |w|

2

2 ,

where Pm(·) is the m-th order Hermite polynomial defined as

Pm(t) = cme
|t|2
2 (t− d

dt
)me−

|t|2
2 , t > 0, cm = 2−

m
2 (m!)−

1
2π−

1
4 .

The corresponding eigenvalues for each hk are of the form

n∑
j=1

(2kj + 1), k = (k1, k2, ...) ∈ Nn.

8



2.3 Norm of the Fourier Transform Operator

For the rest of this thesis, we will be working on H1 for simplicity. Let f ∈ L2(H), and

let hk for k ∈ N be defined as in the previous section but for one dimension. Our goal in

this section is to find the asymptotic expansion of ‖T ∗λhk‖2 as λ → 0. Let N be a fixed

nonnegative integer and k ∈ N \ {0}. We will define Tλ slightly differently in this section,

but it can be shown that the definitions are equivalent[1]. Let p, q, and r be nonnegative

integers satisfying max(p, q) + 2r ≤ 2N and assume that

∫
H

|x|p|y|q|s|r|f(x, y, s)|dxdyds <∞.

Then we can introduce the following moments

Mp,q,r =
1

2π

∫
H

xpyqsrf(x, y, s)dxdyds if max(p, q) + 2r ≤ 2N. (2.1)

Define

F (x, η, σ) :=
1

2π

∫
R

∫
R

f(x, y, s)e−i(yη+sσ)dyds,

and

(Tλh)(u) :=

∫
R

Kλ(u, v)h(v)dv

with the Hilbert-Schmidt kernel

Kλ(u, v) := ε−1F (ε−1(u− v), sgn(λ)
ε

2
(u+ v), λ), ε :=

√
|λ|.

Note that the family of operators {Tλ} is the group Fourier transform of f [1]. Let

f̃(x, y, s) := f(x,−y,−s),

9



and let T̃λ be the operators associated with f̃ . Then

T−λ = T̃λ.

This shows that the case where λ < 0 can be reduced to λ > 0. Therefore, until Theorem

2.5, we will assume that λ > 0. Then

T ∗λhk(v) =
1

ε

∫
F (
u− v
ε

,
ε

2
(u+ v), ε2)hk(u)du (2.2)

=

∫
F (x, ε(v +

1

2
εx), ε2)hk(v + εx)dx. (2.3)

Lemma 2.1. For every x, η, σ ∈ R, we have the Taylor expansion

F (x, η, σ) =
∑

q+2r<2N

∂qη∂
r
σF (x, 0, 0)

ηq

q!

σr

r!
+

∑
q+2r=2N

Qq,r(x, η, σ), (2.4)

where

|Qq,r(x, η, σ)| ≤ 1

2π

∫ ∫
|y|q|s|r|f(x, y, s)|dyds |η|

q

q!

|σ|r

r!
.

Proof. By assumption (2.1), the partial derivatives ∂qη∂
r
σF exist for q + 2r ≤ 2N , and

|∂qσ∂rσF (x, η, σ)| ≤ 1

2π

∫ ∫
|y|q|s|r|f(x, y, s)|dyds.

In particular,

|∂qη∂rσF (x, η, σ)| ≤ 1

2π

∫ ∫
|y|q|s|r|f(x, y, s)|dyds.

First, we use the Taylor expansion of σ → F (x, η, σ) at σ = 0 with x, η fixed:

F (x, η, σ) =
N−1∑
r=0

∂rσF (x, η, 0)
σr

r!
+Q0,N(x, η, σ)

10



with

|Q0,N(x, η, σ)| ≤ 1

2π

∫ ∫
|s|N |f(x, y, s)|dyds |σ|

N

N !
. (2.5)

Then we use the Taylor expansion of η → ∂rσF (x, η, 0) at η = 0.

Substituting (2.4) into (2.3) we obtain

T ∗λhk(v) = E(v, λ) +Rk1(v, λ), (2.6)

where

E(v, λ) =

∫ ∑
q+2r<2N

∂qη∂
r
λF (x, 0, 0)

εq(v + 1
2
εx)q

q!

ε2r

r!
hk(v + εx)dx,

Rk1(v, λ) =

∫ ∑
q+2r=2N

Qq,r(x, ε(v +
1

2
εx), ε2)hk(v + εx)dx.

Lemma 2.2. There is a constant Ck1 (independent of λ) such that

‖Rk1(·, λ)‖ ≤ Ck1λ
N for 0 < λ < 1.

Proof. Using (2.5) we have to show that the L2-norm of the function

v →
∫ ∫ ∫

|2v + εx|q|y|q|s|r|f(x, y, s)||hk(v + εx)|dxdyds

is bounded above as a function of λ ∈ (0, 1] where q + 2r = 2N . We write 2v + εx =

2(v + εx)− εx and use the binomial formula. Then we see that it is sufficient to bound the

11



L2-norm of the function

D(v, λ) =

∫ ∫ ∫
|x|q−i|y|q|s|r|f(x, y, s)||v + εx|i|hk(v + εx)|dxdyds

=

∫
g(x)|v + εx|i|hk(v + εx)|dx,

where

g(x) = |x|q−i
∫ ∫

|y|q|s|r|f(x, y, s)|dyds

and i = 0, 1, ..., q. By the Cauchy-Schwarz inequality,

∫
|D(v, λ)|2dv ≤

(∫
g(x)dx

)2 ∫
|v|2i|hk(v)|2dv.

Since g is integrable by (2.1) and v2ihk(v)2 is also integrable, this completes the proof.

In the formula for E we substitute

(v +
1

2
εx)q =

q∑
i=0

(
q

i

)
εixi2−ivq−i.

Then E becomes a finite triple sum with indicies i, q, and r. The terms where i+q+2r >

2N are small enough to be put in the remainder term which we will define below. In terms

with i+ q + 2r < 2N , we use the Taylor expansion

hk(v + εx) =
n−1∑
j=0

1

j!
h
(j)
k (v)εjxj + Lk,n(x, v, λ)

12



with the remainder term in integral form

Lk,n(x, v, λ) =
εnxn

(n− 1)!

1∫
0

h
(n)
k (v + tεx)(1− t)n−1dt, (2.7)

where n = 2N − i− q − 2r. In this way we obtain

E(v, λ) = E0(v, λ) +Rk2(v, λ) +Rk3(v, λ), (2.8)

where each term is defined in the following way where i runs from 0 to q.

E0(v, λ) =
∑

i+j+q+2r<2N

εi+j+q+2rMi+j,q,r(−i)q+r
2−i

q!r!j!

(
q

i

)
vq−ih

(j)
k (v),

Rk2(v, λ) =

∫ ∑
q+2r<2N≤i+q+2r

εi+q+2r∂qη∂
r
λF (x, 0, 0)

2−i

q!r!

(
q

i

)
hk(v + εx)dx,

Rk3(v, λ) =

∫ ∑
i+q+2r<2N

εi+q+2r∂qη∂
r
λF (x, 0, 0)

2−i

q!r!

(
q

i

)
Lk,n(x, v, λ)dx.

Lemma 2.3. There are constants Ck2, Ck3 (independent of λ) such that

‖Rkj(·, λ)‖ ≤ Ckjλ
N for 0 < λ ≤ 1, j = 2, 3.

Proof. The estimate for the L2-norm is shown using the same method as in Lemma 2.2, so

it is omitted. Using (2.7), we can write

Rk3(v, λ) =

1∫
0

S(v, λ, t)dt,

where S is defined the same as Rk3 except the integral in the definition of Lk,n is not

13



included. By the same method as in Lemma 2.2, we obtain

∫
|S(v, λ, t)|2dv ≤ C2λ2N

with C independent of t ∈ [0, 1] and λ ∈ (0, 1]. Then, by the Cauchy-Schwarz inequality,

∫
|Rk3(v, λ)|2dv ≤

1∫
0

∫
|S(v, λ, t)|2dvdt ≤ C2λ2N

which completes the proof.

Theorem 2.4. We have

T ∗λhk(v) =
2N−1∑
m=0

ak,m(v)εm +Rk4(v, λ), (2.9)

where

ak,m(v) =
∑

p+q+2r=m

(−i)q+r 1

r!
Mp,q,r(Hp,qhk)(v),

and Hp,q is the differential operator

(Hp,qh)(v) =

min(p,q)∑
i=0

1

2ii!

1

(p− i)!(q − i)!
vq−ih(p−i)(v).

We have

‖Rk4(·, λ)‖ ≤ Ck4λ
N for 0 < λ ≤ 1,

where Ck4 := Ck1 + Ck2 + Ck3.

Proof. This follows from (2.6), (2.8), lemma 2.2, and lemma 2.3.

Theorem 2.5. We have

‖T ∗λhk‖2 =
2N−1∑
n=0

Ak,nε
n +Rk5(λ) (2.10)
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where

Ak,n =
n∑

m=0

〈ak,m, ak,n−m〉,

and there is a constant Ck5 such that

|Rk5(λ)| ≤ Ck5λ
N for 0 < λ ≤ 1.

Proof. This follows immediately from Theorem 2.4.

Since ak,m(−v) = (−1)k+mak,m(v), we have Ak,n = 0 for odd n. By using (2.2) we have

that Theorem 2.5 is also true for negative λ when we set

Ak,n =
∑

(−isgn)λ)q1+r1−q2−r2
Mp1,q1,r1Mp2,q2,r2

r1!r2!
〈Hp1,q1hk, Hp2,q2hk〉, (2.11)

where the sum is taken over all p1, q1, r1, p2, q2, r2 ∈ N0 that satisfy

p1 + q1 + 2r1 + p2 + q2 + 2r2 = n.

Lemma 2.6. For every n = 0, 1, ..., 2N − 1, Ak,n = O(k
n
2 ) as k → ∞. Moreover, the

constants Ckj, j = 1, 2, 3, 4, 5 can be chosen such that Ckj = O(kN) as k →∞.

Proof. We apply the recursion formulas

h′k(v) =

√
k

2
hk−1(v)−

√
k + 1

2
hk+1(v),

vhk(v) =

√
k

2
hk−1(v) +

√
k + 1

2
hk+1(v).

It follows that ∫
|v|2i|h(j)k (v)|2dv = O(ki+j) as k →∞.

Since every Rkj is the product of ε to some power, constants, and the integral above

where i+ j ≤ N , then this implies the statement of the lemma.
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3 Heat Equation

Consider the heat equation

∂tu(t, z)− Lu(t, z) = 0.

for all t > 0 and z ∈ H and with the initial condition

u(0, z) = u0(z).

With the assumption that u0 ∈ L1(H) ∩ L2(H).

We will accomplish two goals in this chapter. We want to first find the behavior of the

function t→ ‖ut‖L2(H) as t→∞, where u is the solution of the heat equation. This also will

give us the leading coefficient of the asymptotic expansion. The next goal will be to find the

assymptotic expansion of the function. In order for us to accomplish that, however, we will

need to make additional assumptions on our initial condition.

3.1 Asymptotic equivalence

Let the family of operators {Tλ} be the group Fourier transform of u. First, we will find

the behavior of the function t → ‖u(t)‖L2(H) as t → ∞, where u is the solution of the heat

equation. We take the heat equation and apply the Fourier transform. This gives us


∂tû(t, λ) + σLû(t, λ) = 0,

û(0, λ) = û0(λ).

Where σL(λ) is the symbol of −L. This takes the form

σL(λ) = |λ|Hw = |λ|(−∂2w + w2)

16



Where Hw = (−∂2w + u2) is the harmonic oscillator acting on L2(R). Since the harmonic

oscillator is self-adjoint in L2(R) and its system of eigenfunctions, {hk}∞k=1 is a basis in L2(R),

we have an ordered set of positive numbers {µk}∞k=1 such that

Hwhk(w) = µkhk(w).

The eigenfunctions are the Hermitian functions [3]

hk(w) := (2kk!
√
π)−

1
2Hk(w)e−

w2

2 ,

where Hk is the kth Hermite polynomial defined as

Hk(w) := (−1)new
2 dn

dxn
e−w

2

.

The corresponding eigenvalues, µk = 2k + 1. For (k, l) ∈ N× N, denote

ûk,l(t, λ) = 〈û(t, λ)hl, hk〉L2(R) = 〈Tλhl, hk〉L2(R),

where Tλ is the group Fourier transform defined by the solution to the heat equation. Using

this system of eigenvalues and eigenfunctions, this reduces our equation to


∂tûk,l(t, λ) + |λ|µkûk,l(t, λ) = 0,

ûk,l(0, λ) = û0,k,l(λ).

Fixing λ ∈ R∗ and (k, l) ∈ N × N, we now solve the first order ordinary differential

equation. This gives us the solution

ûk,l(t, λ) = û0(λ)k,le
−(2k+1)|λ|t.
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Before we state and prove our main theorem, we need two lemmas.

Lemma 3.1. Let g ∈ L1(R) with
∫
g(x)dx = 1. For ε > 0 define the convolution operator

(Sεh)(y) :=

∫
gε(x)h(y − x)dx, gε(x) :=

1

ε
g(
x

ε
).

Then Sε : L2(R) → L2(R) is a bounded linear operator with operator norm at most

M :=
∫
|g(x)|dx, and Sε → I strongly as ε→ 0.

Proof. To prove the bound on the operator norm, we define K : R2 → R as

K(x, y) := gε(y − x).

Now we use the Schur test with

C1 := esssupx∈R

∫
|K(x, y)|dy = M <∞

C2 := esssupy∈R

∫
|K(x, y)|dx = M <∞

Therefore, the integral operator T defined by

(Th)(y) =

∫
K(x, y)h(x)dx

is a bounded linear operator T : L2(R) → L2(R), and its operator norm satisfies

‖T‖ ≤ (C1C2)
1
2 = M .
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Now we have

(Th)(y) =

∫
K(x, y)h(x)dx

=

∫
gε(y − x)h(x)dx

=

∫
gε(x)h(y − x)dx

= (Sεh)(y).

Therefore, Sε : L2(R)→ L2(R) is a bounded linear operator with operator norm at most

M :=
∫
|g(x)|dx.

Now we need to prove the convergence. Note

(Sεh)(y)− h(y) =

∫
gε(x)(h(y − x)− h(y))dx.

This implies

‖Sεh− h‖2L2(R) ≤M

∫ ∫
|gε(x)||h(y − x)− h(y)|2dxdy

= M

∫
|g(w)|

(∫
|h(y − εw)− h(y)|2dy

)
dw.

We know that
∫
|h(y− εw)− h(y)|2dy → 0 as ε→ 0. By Lebesgue’s Dominated Conver-

gence theorem, ‖Sεh− h‖L2(R) → 0 as ε→ 0.

Lemma 3.2. Let Tλ : L2(R) → L2(R) be an element of the group Fourier transform of an
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arbirtrary f ∈ L1(H) ∩ L2(H). Let the constants Q and M be defined by

Q :=

∫
H

f(x, y, s)dxdyds

M :=
1

2π

∫
H

|f(x, y, s)|dxdyds.

Then the operator norm of Tλ is at most M , Tλ → Q
2π
I strongly, and T ∗λ →

Q
2π
I strongly

as λ→ 0.

Proof. Define F and Kλ in the same way as the in the definition of the group Fourier

transform of f . Then note that

∫
|Kλ(u, v)|dv ≤M,

∫
|Kλ(u, v)|du ≤M.

By the Schur test, the operator norm Tλ is at most M . If we change f(x, y, s) to

f(−x,−y,−s), then we change Tλ to T ∗λ . Therefore, we only need to show that Tλ → Q
2π
I

strongly as λ → 0. Since f is arbitrary, for simplicity we assume Q = 2π. For λ ∈ R∗ we

define the operator Sλ : L2(R)→ L2(R) as in lemma 3.1 by

(Sλh)(y) :=

∫
gε(x)h(y − x)dx, g(x) := F (x, 0, 0), ε :=

√
|λ|.

By lemma 3.1, Sλ → I strongly as λ→ 0. Now we will show that Tλ − Sλ → 0 strongly

as λ→ 0. Let h ∈ L2(R). Recall that Tλ is the integral operator with kernel

Kλ(u, v) :=
1

ε
F (

1

ε
(u− v), sgn(λ)

ε

2
(u+ v), λ)

while Sλ is the integral operator with kernel

Lλ(u, v) =
1

ε
F (
u− v
ε

, 0, 0).
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Therefore,

‖(Tλ − Sλ)h‖2L2(R) ≤ 2M

∫ ∫
|Kλ(u, v)− Lλ(u, v)|du|h(v)|2dv.

Since we have

|F (x, η, λ)| ≤ 1

2π

∫
|f(x, y, s)|dyds

and that (η, λ) 7→ F (z, η, λ) is continuous, by Lebesgue’s dominated convergence theorem,

∫
|Kλ(u, v)− Lλ(u, v)|du→ 0

as ε→ 0. Using another application of Lebesgue’s dominated convergence, we have

2M

∫ ∫
|Kλ(u, v)− Lλ(u, v)|du|h(v)|2dv → 0

as ε→ 0.

Theorem 3.3. We have

‖u(t)‖L2(H) ∼
|Q|
8t

as t→∞,

where

Q :=

∫
H

u0(x, y, s)dxdyds.
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Proof. Using the Plancherel formula on the Heisenberg group, we have

‖u(t)‖2L2(H) =

∫
|λ|

∞∑
k,l=0

|ûk,l(t, λ)|2dλ

=

∫
|λ|

∞∑
k,l=0

|ûk,l(λ)|2e−2(2k+1)|λ|tdλ

=

∫
|λ|

∞∑
k=0

‖T ∗λhk‖2L2(R)e
−2(2k+1)|λ|tdλ.

Interchange the sum and integral and we have

‖u(t)‖2L2(H) =
∞∑
k=0

∫
|λ|‖T ∗λhk‖2L2(R)e

−2(2k+1)|λ|tdλ.

By Lemma 3.2

‖T ∗λhk‖L2(R) →
|Q|
2π

as λ→ 0

for every k ∈ N. Also note that we have the bound

‖T ∗λhk‖ ≤M for λ ∈ R∗, k ∈ N,

where

M :=
1

2π

∫
H

|u0(x, y, s)|dxdyds.

By Watson’s Lemma we have the following for every k ∈ N

∫
|λ|‖T ∗λhk‖2L2(R)e

−2(2k+1)|λ|tdλ ∼ 2|Q|2

16π2(2k + 1)2t2
as t→∞.
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Now we consider

lim
t→∞

t2‖u(t)‖2L2(H) = lim
t→∞

t2
∞∑
k=0

∫
|λ|‖T ∗λhk‖2L2(R)e

−2(2k+1)|λ|tdλ.

Since we have the bound

∫
|λ|‖T ∗λhk‖2L2(R)e

−2(2k+1)|λ|tdλ ≤ M2

2(2k + 1)2t2
,

we can interchange the limit and the summation to have

lim
t→∞

t2‖u(t)‖2L2(H) =
∞∑
k=0

lim
t→∞

t2
∫
|λ|‖T ∗λhk‖2L2(R)e

−2(2k+1)|λ|tdλ.

=
∞∑
k=0

2|Q|2

16π2(2k + 1)2
.

Since
∞∑
k=0

1

(2k + 1)2
=
π2

8
,

We have

lim
t→∞

t2‖u(t)‖2L2(H) =
|Q|2

64
.

Therefore,

‖u(t)‖L2(H) ∼
|Q|
8t

as t→∞.

23



3.2 Asymptotic expansion

Theorem 3.4. Let u(t, z) be the solution to the Heat equation on the Heisenberg group. Let

u0 have the same assumptions as f in section 2.3. Let N ∈ N. Then, as t→∞,

‖ut,·‖2L2(H) =
N−1∑
n=0

bnt
−n−2 +O(t−N−2),

where

bn =
(n+ 1)!

2n+1

∞∑
k=0

Bk,2n

(2k + 1)n+2
,

and Bk,2n is defined as Ak,n in (2.11) but with terms corresponding to odd q1 +r1−q2−r2

omitted and sgnλ = 1.

Proof. Consider

φk(t) :=

∞∫
−∞

|λ|‖T ∗λhk‖2e−2(2k+1)|λ|tdλ, (3.1)

If we substitute (2.10) in (3.1) we see that the terms with odd q1 + r1 − q2 − r2 cancel.

Therefore, we have

φk(t) = 2

∞∫
0

λ
N−1∑
n=0

Bk,2nλ
ne−2(2k+1)λtdλ+

∞∫
−∞

|λ|Rk5(λ)e−2(2k+1)|λ|tdλ,

where Rk5 is defined as in Theorem 2.5. The operator norms T ∗λ are bounded by a

constant M . Then we obtain

φk(t) = 2
N−1∑
n=0

Bk,2n
(n+ 1)!

(2(2k + 1)t)n+2
+Rk6(t), (3.2)

where

|Rk6(t)| ≤ 2Ck5
(N + 1)!

(2(2k + 1)t)N+2
+M21 + 2(2k + 1)t

2(2k + 1)2t2
e−2(2k+1)t.
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Now consider

φ(t) :=
∞∑
k=0

φk(t)

which is the quantity we are interested in. By Lemma 2.6, adding the equations (2.13)

from k = 0 to infinity, we obtain the expansion

φ(t) =
N−1∑
n=0

bnt
−n−2 +O(t−N−2) as t→∞,

where

bn =
(n+ 1)!

2n+1

∞∑
k=0

Bk,2n

(2k + 1)n+2
.

4 Dissipative Wave Equation

Now we consider the Dissipative wave equation.

∂2t u(t, z) + ∂tu(t, z) = Lu(t, z)

with initial conditions

u(0, x, y, s) = u0(x, y, s), ∂tu(0, x, y, s) = u1(x, y, s).

We assume that

u0, u1 ∈ L1(H) ∩ L2(H).

Similarly to the previous sections, we define

Fj(x, η, λ) :=
1

2π

∫ ∫
uj(x, y, s)e

−i(yη+sλ)dyds for j = 0, 1.
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For λ ∈ R \ {0} we define the integral operators Tj,λ : L2(R)→ L2(R) by

(Tj,λh)(u) :=

∫
Kj,λ(u, v)h(v)dv.

Where Kj,λ is the kernel

Kj,λ(u, v) :=
1√
|λ|
Fj(

u− v√
|λ|

, sgn(λ)

√
|λ|(u+ v)

2
, λ).

The family of operators {Tj,λ} is the group Fourier transform of uj for j = 1, 2.

4.1 Asymptotic equivalence

First, we will find the behavior of the function t → ‖u(t)‖L2(H) as t → ∞, where u is the

solution of the dissipative wave equation. This also will give us the leading coefficient of

the asymptotic expansion. We take the dissipative wave equation and apply the Fourier

transform. This gives us


∂2t û(t, λ) + ∂tû(t, λ) + σLu(t, λ) = 0,

û(0, λ) = û0(λ),

∂tû(0, λ) = û1(λ),

Where σL(λ) is the symbol of −L. This takes the form

σL(λ) = |λ|Hw = |λ|(−∂2w + w2).

Where Hw = (−∂2w + w2) is the harmonic oscillator acting on L2(R). Let {Sλ(t)}λ∈R\{0}
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be the group Fourier transform of (x, y, s) 7→ u(t, x, y, s). Set

ûk,l(t, λ) := 〈Sλ(t)hl, hk〉,

ûj,k,l(λ) := 〈Tj,λhl, hk〉,

Where, {hk}∞k=0 is the same orthonormal basis of Hermite functions as the heat equation

in L2(R) with eigenvalues, µk = 2k + 1 [3]. Appying this to our equation, we have


∂2t ûk,l(t, λ) + ∂tûk,l(t, λ) + σLûk,l(t, λ) = 0,

ûk,l(0, λ) = û0k,l(λ),

∂tûk,l(0, λ) = û1k,l(λ),

for every k, l ∈ N and every λ ∈ R \ {0}. The solution to this equation is

ûk,l(t, λ) = (û0k,l(λ) + û1k,l(λ))ω(t, |λ|(2k + 1)) + û0k,l(λ)∂tω(t, |λ|(2k + 1)),

where

ω(t, w) := e
−t
2

sinh( t
2

√
1− 4w)

1
2

√
1− 4w

= e
−t
2

sin( t
2

√
4w − 1)

1
2

√
4w − 1

.

We can also write ω in the form

ω(t, w) = g1(t, w)− g2(t, w),

where

g1(t, w) :=
1√

1− 4w
e−

t
2
(1−
√
1−4w), g2(t, w) :=

1√
1− 4w

e−
t
2
(1−
√
1−4w).
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Therefore, we have

S∗λ(t)hk = ω(t, |λ|(2k + 1))ak(λ) + ∂tω(t, |λ|(2k + 1))bk(λ),

where

ak(λ) := (T ∗0,λ + T ∗1,λ)hk, bk(λ) := T ∗0,λhk.

Before we go any further, we will need the following Lemma.

Lemma 4.1. This is a slight variation of [[4], Lemma 3.1]. Let n ∈ N and t > 0. Then

|∂nt ω(t, ξ)| ≤


2|ξ|n−1

2 e−
t
2 if |ξ| ≥ 34

100

10
3

(4
5
)ne−

t
5 if 4

25
≤ |ξ| ≤ 34

100

Moreover, for |ξ| ≤ 4
25

,

|∂nt g1(t, ξ)| ≤
5

3
5−n, |∂nt g2(t, ξ)| ≤

5

3
e−

4
5
t

where ω, g1, and g2 are defined as above.

Proof. This proof is found in Volkmer (2019).

Since ak(λ), bk(λ) ∈ L2(R) for all k, then S∗λ(t)hk ∈ L2(R) for all t > 0. The Hilber-

Schmidt norm ‖Sλ(t)‖HS[L2(R)] = ‖S∗λ(t)‖HS[L2(R)] satisfies

‖Sλ(t)‖2HS[L2(R)] =
∞∑
k=0

‖S∗λ(t)hk‖2.

We use the Plancherel formula for the group Fourier transform and we have

‖u(t, ·)‖2L2(H) = I1(t) + I2(t) + I3(t),
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where

I1(t) :=
∞∑
k=0

∫
|λ|ω(t, |λ|(2k + 1))2‖ak(λ)‖2dλ,

I2(t) :=
∞∑
k=0

∫
|λ|∂t((ω(t, |λ|(2k + 1))2)Re〈ak(λ), bk(λ)〉L2(R)dλ,

I3(t) :=
∞∑
k=0

∫
|λ|(∂tω(t, |λ|(2k + 1)))2‖bk(λ)‖2dλ,

Now we will state and prove the following lemmas that help evaluate each term. Then

we will state and prove our main theorem.

Lemma 4.2. We have

lim
t→∞

t2I1(t) =
|Q|2

64

where

Q :=

∫
R3

(u0(x, y, s) + u1(x, y, s))dxdyds.

Proof. We will first focus on the positive part of the integral. We will determine the behavior

of

Jk(t) :=

∞∫
0

λω(t, λ(2k + 1))2‖ak(λ)‖2dλ

as t → ∞ for fixed k ∈ N. We use the same method as the proof of [ [4] Theorem 3.2].

Using lemma 4.1, we have the following

Jk(t) =

4
25(2k+1)∫
0

λ
e−t(1−

√
1−4λ(2k+1))

1− 4λ(2k + 1)
‖ak(λ)‖2dλ+O(e−

2t
5 ).
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For now we will just focus on the integral. Substitute w = λ(2k + 1) and we have

1

(2k + 1)2

4
25∫
0

w
1

1− 4w
e−t(1−

√
1−4w)‖ak(

w

2k + 1
)‖2dw.

Let w = z(1− z) where 0 ≤ z ≤ 1
5
. Substitute and note the following

1−
√

1− 4w = 1−
√

1− 4(z(1− z))

= 1−
√

4z2 − 4z + 1

= 1−
√

(1− 2z)2

= 2z.

Therefore, after substitution we have

1

(2k + 1)2

1
5∫

0

z
(1− z)

(1− 2z)
e−2tz‖ak(

z(1− z)

2k + 1
)‖2dz.

We need the last substitution j = 2z and we have

1

4(2k + 1)2

2
5∫

0

j
1− j

2

(1− j)
e−tj‖ak(

j(1− j
2
)

2(2k + 1)
)‖2dj.

By Lemma 3.2 ‖ak(λ)‖ converges to |Q|
2π

as λ → 0. By Watson’s lemma, we have the

asymptotic equivalence

2
5∫

0

j
1− j

2

(1− j)
e−tj‖ak(

j(1− j
2
)

2(2k + 1)
)‖2dj. ∼

∞∑
0

gn(0)Γ(n+ 2)

n!tn+2
,

where g(j) =
1− j

2

(1−j)‖ak(
j(1− j

2
)

2(2k+1)
)‖2
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It follows that

lim
t→∞

t2Jk(t) =
|Q|2

16π2(2k + 1)2
.

Treating the integral
0∫
−∞

similarly, we have

lim
t→∞

t2
∫
|λ|ω(t, λ(2k + 1))2‖ak(λ)‖2dλ =

|Q|2

8π2(2k + 1)2
.

Given that
∞∑
k=0

1

(2k + 1)2
=
π2

8
,

this provides us with

lim
t→∞

t2I1(t) =
|Q|2

64
,

given that we can justify the interchange of the limit and the sum. Note that

|ω(t, w)| ≤ 2e−tw for t > 0, 0 < w ≤ 4

25
,

and

‖ak(λ)‖ ≤M :=
1

2π

∫
R3

(|u0(x, y, s) + u1(x, y, s)|)dxdyds.

Since we are taking a limit as t→∞, we will assume t > 1 and have the following.

4
25(2k+1)∫
0

λω(t, λ(2k + 1))2‖ak(λ)‖2dλ ≤ 4M2

4
25(2k+1)∫
0

λe−2λ(2k+1)tdλ

≤ 4M2

∞∫
0

λe−2λ(2k+1)tdλ

=
M2

(2k + 1)2t2
.
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For k ∈ N, we define

Ak :=

∞∫
0

|λ|‖ak(λ)‖2dλ.

Then
∞∑
k=0

Ak <∞.

∞∫
4

25(2k+1)

λω(t, λ(2k + 1))2‖ak(λ)‖2dλ ≤
∞∫
4

25(2k+1)

λ16e−
2t
5 ‖ak(λ)‖2dλ

≤ 16Ake
− 2t

5

≤ 64Ak
1

t2
.

Therefore,

t2
∞∫
0

λω(t, λ(2k + 1))2‖ak(λ)‖2dλ ≤ M2

(2k + 1)2
+ 64Ak.

Arguing similarly for λ < 0 we find

t2
∞∫

−∞

λω(t, λ(2k + 1))2‖ak(λ)‖2dλ ≤ 2M2

(2k + 1)2
+ 128Ak.

The right hand side is independent of t and

∞∑
k=0

( 2M2

(2k + 1)2
+ 128Ak

)
<∞.

Therefore by Tannery’s theorem, the estimate justifies the interchange of the sum and

limit. This proves the lemma.

Lemma 4.3. We have

lim
t→∞

t2I2(t) = 0.
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Proof. Similar to Lemma 4.2, we will determine the behavior of

Lk(t) :=

∞∫
0

λ∂t(ω(t, λ(2k + 1))2)Re〈ak(λ), bk(λ)〉dλ.

Again by Lemma 3.1, we have

Lk(t) =

4
25(2k+1)∫
0

λ∂t(g1(t, λ(2k + 1))2)Re〈ak(λ), bk(λ)〉dλ.

By Cauchy-Schwartz and lemma 2.2, for all λ ∈ [0, 4
25

] there existsM such that Re〈ak(λ), bk(λ)〉 ≤

‖ak(λ)‖‖bk(λ)‖ ≤M . Therefore,

Lk(t) ≤M

4
25(2k+1)∫
0

λ∂t(g1(t, λ(2k + 1))2)dλ.

Now substituting ρ = λ(2k + 1) we have

Lk(t) ≤
M

(2k + 1)2

4
25∫
0

ρ∂t(g1(t, ρ)2)dρ

=
M

(2k + 1)2

4
25∫
0

ρ
1−
√

1− 4ρ

1− 4ρ
e−t(1−

√
1−4ρ)dρ

Similarly to Lemma 4.2, we let ρ = z(1− z) where 0 ≤ z ≤ 1
5
. Therefore, we have

=
M

(2k + 1)2

1
5∫

0

z(1− z)(1− 2z)
2z

(1− 2z)2
e−2ztdz

=
M

(2k + 1)2

1
5∫

0

z2
2(1− z)

(1− 2z)
e−2ztdz
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Now substitute j = 2z and we have

=
M

4(2k + 1)2

1
10∫
0

j2
(1− j

2
)

(1− j)
e−jzdj

By Watson’s lemma we have the following asymptotic equivalence

1
10∫
0

j2
(1− j

2
)

(1− j)
e−jzdj ∼

∞∑
0

gn(0)Γ(n+ 3)

n!tn+3
,

where g(j) =
1− j

2

1−j . It follows that lim
t→∞

t2Lk(t) = 0. Treating the integral
0∫
−∞

similarly, we

have

lim
t→∞

t2
∫
λ∂t(ω(t, λ(2k + 1))2)Re〈ak(λ), bk(λ)〉dλ = 0.

Given that we can justify the interchange of the limit and the sum, this provides us with

limt→∞ t
2I2(t) = 0 since

∞∑
k=0

1
(2k+1)2

= π2

8
. We can justify the interchanging using the exact

same technique as in lemma 4.2, so we will omit it.

Lemma 4.4. We have

lim
t→∞

t2I3(t) = 0.

Proof. The proof is similar to the proof of Lemma 4.3. But, we will write the details since

we will refer to this proof when we find the expansion. We will determine the behavior of

Hk(t) :=

∞∫
0

λ(∂tw(t, λ(2k + 1))2‖bk(λ)‖2dλ
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as t→∞ for fixed k ∈ N. Using lemma 4.1, we have the following

Hk(t) =

4
25(2k+1)∫
0

λ(∂tg1(t, λ(2k + 1)))2‖bk(λ)‖2dλ

=

4
25(2k+1)∫
0

λ
(−1 +

√
1− 4λ(2k + 1)

2
√

1− 4λ(2k + 1)
e−

t
2
(1−
√

1−4λ(2k+1))
)2
‖bk(λ)‖2dλ.

Doing similar substitutions as in the previous sections, we have

1

2(2k + 1)2

2
5∫

0

j3
(1− j

2
)

1− j
e−jt‖bk(

j(1− j
2
)

2(2k + 1)
)‖2dz.

By Watson’s lemma, we have the following asymptotic equivalence

2
5∫

0

j2
(1− j

2
)

1− j
e−jt‖bk(

j(1− j
2
)

2(2k + 1)
)‖2dz ∼

∞∑
0

gn(0)Γ(n+ 3)

n!tn+4
,

where g(j) =
1− j

2

1−j ‖bk(
j(1− j

2
)

2(2k+1)
)‖2. It follows that lim

t→∞
t2Hk(t) = 0. Treating the integral

0∫
−∞

similarly, we have

lim
t→∞

t2
∫
λ(∂tw(t, λ(2k + 1))2‖bk(λ)‖2dλ = 0.

Given that we can justify the interchange of the limit and the sum, this provides us with

lim
t→∞

t2I3(t) = 0 since
∞∑
k=0

1
(2k+1)2

= π2

8
. We can justify the interchanging using the exact same

technique as in lemma 4.2, we will omit it.

Theorem 4.5.

lim
t→∞
‖u(t, ·)‖L2(H) ∼

|Q|
8t

as t→∞
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Proof. The proof follows from Lemma’s 4.2, 4.3, and 4.4.

4.2 Asymptotic expansion

In order to find the Asymptotic expansion, it suffices to find the expansions of I1, I2, and I3

from the previous section. Let u(t, z) be the solution to the Dissipative wave equation on

the Heisenberg group. Let u0 and u1 have the same assumptions as f in section 2.3. Let

N ∈ N.

Lemma 4.6. We have the expansion for I1(t)

I1(t) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

Bk,2nGn,q(n+ q + 1)!

2n+1(2k + 1)n+2tn+q+2
+O(t−N).

where Bk,2n is defined as Ak,n in (2.11) with respect to (T ∗0,λ + T ∗1,λ) but with terms cor-

responding to odd q1 + r1 − q2 − r2 omitted and sgnλ = 1, Gn,q is the qth term in the Taylor

series expansion of Gn defined as

Gn(j) =
(1− j

2
)n+1

1− j
.

Proof Consider

φk(t) :=

∞∫
−∞

|λ|w(t, |λ|(2k + 1))2‖(T ∗0,λ + T ∗1,λ)hk‖2dλ. (4.1)

Similarly to Theorem 3.4, we substitute (2.10) in (4.1) and see that the terms with odd

q1 + r1 − q2 − r2 cancel. Therefore, we have the following.

φk(t) = 2

∞∫
0

λw(t, λ(2k + 1))2
N−1∑
n=0

Bk,2nλ
ndλ+

∞∫
−∞

|λ|w(t, |λ|(2k + 1))2Rk5(λ)dλ, (4.2)

36



where Rk5 is defined as in Theorem 2.5. First we will evaluate the term on the right.

∞∫
−∞

|λ|w(t, |λ|(2k + 1))2Rk5(λ)dλ ≤ 2Ck5

∞∫
0

λN+1w(t, λ(2k + 1))2dλ

By Lemma 4.1 and substituting ρ = λ(2k + 1) we have

2Ck5
(2k + 1)N+2

4
25∫
0

ρN+1w(t, ρ)2dρ ∼ 2Ck5
(2k + 1)N+2

4
25∫
0

ρN+1g1(t, ρ)2dρ

=
2Ck5

(2k + 1)N+2

4
25∫
0

ρN+1 1

1− 4ρ
e−t(1−

√
1−4ρ)dρ.

Similarly to Lemma 4.2, we let ρ = z(1− z) where 0 ≤ z ≤ 1
5
. Substitute and we have

2Ck5
(2k + 1)N+2

1
5∫

0

zN+1 (1− z)N+1

(1− 2z)
e−2ztdz.

Let 2z = j, substitute and we have

2Ck5
2N+2(2k + 1)N+2

2
5∫

0

jN+1 (1− j
2
)N+1

(1− j)
e−jtdj.

It follows from Watson’s lemma that

2Ck5
2N+2(2k + 1)N+2

2
5∫

0

jN+1 (1− j
2
)N+1

(1− j)
e−jtdj = O(t−N−2).
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Now we will evaluate the left term of (4.2).

2

∞∫
0

λw(t, |λ|(2k + 1))
N−1∑
n=0

Bk,2nλ
ndλ+O(t−N−2)

=2
N−1∑
n=0

Bk,2n

∞∫
0

λn+1w(t, λ(2k + 1))2dλ+O(t−N−2).

Using the same substitutions as before, we have

=
N−1∑
n=0

2Bk,2n

2n+2(2k + 1)n+2

2
5∫

0

jn+1 (1− j
2
)n+1

(1− j)
e−jtdj +O(t−N−2)

Define Gn for n ∈ N as

Gn(j) =
(1− j

2
)n+1

(1− j)
.

Note that Gn is C∞ near 0. So, we denote its Taylor expansion at j = 0 as

Gn(j) =
∞∑
q=0

Gn,qj
q +O(jN) as j → 0.

Therefore, we have

N−1∑
n=0

Bk,2n

2n+1(2k + 1)n+2

2
5∫

0

jn+1 (1− j
2
)n+1

(1− j)
e−jtdj +O(t−N−2)

=
N−1∑
n=0

Bk,2n

2n+1(2k + 1)n+2

2
5∫

0

jn+1Gn(j)e−jtdj +O(t−N−2)
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Substitute η = jt and we have

N−1∑
n=0

Bk,2n

2n+1(2k + 1)n+2tn+2

2t
5∫

0

ηn+1Gn(
η

t
)e−ηdη + +O(t−N−2)

=
N−1∑
n=0

Bk,2n

2n+1(2k + 1)n+2tn+2

∞∑
q=0

1

tq

2t
5∫

0

ηn+q+1Gn,qe
−ηdη +O(t−N)

=
N−1∑
n=0

Bk,2n

2n+1(2k + 1)n+2tn+2

∞∑
q=0

1

tq
Gn,q(n+ q + 1)! +O(t−N),

Therefore, we have

φk(t) =
N−1∑
n=0

∞∑
q=0

Bk,2nGn,q(n+ q + 1)!

2n+1(2k + 1)n+2tn+q+2
+O(t−N).

Sum over all k and we have our final result

I1(t) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

Bk,2nGn,q(n+ q + 1)!

2n+1(2k + 1)n+2tn+q+2
+O(t−N).

Lemma 4.7. We have the expansion for I2(t)

I2(t) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

−C̃k,2nGn,q(n+ q + 2)!

2n+1(2k + 1)n+2tn+q+3
+O(t−N).

where the constants C̃k,2n are defined in terms of the real part of the inner products using

lemma 2.4 and Gn,q is defined the same as in lemma 4.6.

Proof. Consider

φk(t) :=

∞∫
−∞

|λ|∂t(w(t, |λ(2k + 1))2)Re〈ak(λ), bk(λ)〉dλ.
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We have that

Re〈ak(λ), bk(λ)〉 = Re〈(T ∗0,λ + T ∗1,λ)hk, T
∗
0,λhk〉

= Re〈(T ∗0,λ + T ∗1,λ)hk, T
∗
0,λhk〉

Using Theorem 2.4 where M1,0
p,q,r denotes the moment with respect to the sum of the

initial conditions and M0 denotes the moment with respect to just the initial condition u0,

we have

Re〈(T ∗0,−λ + T ∗1,−λ)hk, T
∗
0,λhk〉 = Re〈

2N−1∑
m=0

ak,m
√
|λ|

m
,

2N−1∑
j=0

bk,j
√
|λ|

j
〉

=
2N−1∑
m=0

2N−1∑
j=0

|λ|
m+j
2 Re〈ak,m, bk,j〉

=
2N−1∑
m,j=0

|λ|
m+j
2 Ck,m,j,

where Ck,m,j = Re〈ak,m, bk,j〉. It is important to note that Ck,m,j does not depend on λ.

Note that if m + j is odd, then Ck,m,j = 0. Combining like terms and reindexing and we

have
2N−1∑
m,j=0

|λ|
m+j
2 Ck,m,j =

N−1∑
n=0

C̃k,2n|λ|n,

where C̃k,n =
∑
Ck,m,j summing over all m and j such that m+ j = n. Therefore,

φk(t) :=
N−1∑
n=0

C̃k,2n

∞∫
0

2λn+1∂t(w(t, λ(2k + 1))2)dλ.

Using Lemma 3.1 and substitutions similar to Lemma 4.3, we have

N−1∑
n=0

−C̃k,2n
2n+1(2k + 1)n+2

2
5∫

0

jn+2 (1− j
2
)n+1

(1− j)
e−jtdj.
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Therefore, we have

N−1∑
n=0

−C̃k,2n
2n+1(2k + 1)n+2

2
5∫

0

jn+2 (1− j
2
)

(1− j)
e−jtdj

=
N−1∑
n=0

−C̃k,2n
2n+1(2k + 1)n+2

∞∑
q=0

Gn,q
(n+ q + 2)!

tn+q+3
,

where Gn,q is defined the same as in Lemma 4.6. Therefore, we have

φk(t) =
N−1∑
n=0

∞∑
q=0

−C̃k,2nGn,q(n+ q + 2)!

2n+1(2k + 1)n+2tn+q+3
+O(t−N).

Sum over all k and we have our final result

I2(t) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

−C̃k,2nGn,q(n+ q + 2)!

2n+1(2k + 1)n+2tn+q+3
+O(t−N).

Lemma 4.8. We have the expansion for I3(t)

I3(t) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

Dk,2nGn,q(n+ q + 3)!

2n+1(2k + 1)n+3tn+q+4
+O(t−N),

where Dk,2n is defined as Ak,n in (2.11) with respect to T ∗0,λ but with terms corresponding

to odd q1 + r1 − q2 − r2 omitted, sgnλ = 1, and Gn,q is defined the same as in Lemma 4.6.

Proof. Consider

φk(t) :=

∞∫
−∞

|λ|(∂tw(t, |λ|(2k + 1)))2‖T ∗0,λhk‖2dλ (4.3)

Similarly to Theorem 3.4, we substitute (2.10) in (4.5) and see that the terms with odd
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q1 + r1 − q2 − r2 cancel. Therefore, we have the following

φk(t) = 2

∞∫
0

λ(∂tw(t, λ(2k + 1)))2
N−1∑
n=0

Dk,2nλ
ndλ+

∞∫
−∞

|λ|(∂tw(t, |λ|(2k + 1)))2Rk5(λ)dλ,

(4.4)

where Rk5 is defined as in Theorem 2.5. First, we will evaluate the term on the right.

∞∫
−∞

|λ|(∂tw(t, |λ|(2k + 1)))2Rk5(λ)dλ ≤ 2Ck5

∞∫
0

λN+1(∂tw(t, λ(2k + 1)))2dλ

By Lemma 4.1 and substituting ρ = λ(2k + 1) we have

2Ck5
(2k + 1)N+2

4
25∫
0

ρN+1(∂tw(t, ρ))2dρ ∼ 2Ck5
(2k + 1)N+2

4
25∫
0

ρN+1(∂tg1(t, ρ))2dρ

=
2Ck5

(2k + 1)N+2

4
25∫
0

ρN+1
(−1 +

√
1− 4ρ

2
√

1− 4ρ

)2
e−t(1−

√
1−4ρ)dρ

Let ρ = z(1− z) where 0 ≤ z ≤ 1
5

and substitute

2Ck5
(2k + 1)N+2

1
5∫

0

zN+1(1− z)N+1 4z2

4(1− 2z)2
(1− 2z)e−2ztdz

=
2Ck5

(2k + 1)N+2

1
5∫

0

zN+3 (1− z)N+1

1− 2z
e−2ztdz

Using Watson’s lemma again, we have that the above is O(t−N−4). Now we will evaluate
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the left term of (4.6).

2

∞∫
0

λ(∂tw(t, λ(2k + 1)))2
N−1∑
n=0

Dk,2nλ
ndλ+O(t−N−4)

=2
N−1∑
n=0

Dk,2n

∫
0∞

λn+1(∂tw(t, λ(2k + 1)))2dλ+O(t−N−4).

Using the same substitutions as in lemma 4.6 we have

N−1∑
n=0

Dk,2n

2n+1(2k + 1)n+2

2
5∫

0

jn+3 (1− 1
2
j)n+1

1− j
e−jtdj +O(t−N−4),

where Gn,q is defined the same as in lemma 4.6. Therefore,

=
N−1∑
n=0

Dk,2n

2n+1(2k + 1)n+3tn+3

∞∑
q=0

1

tq+1
Gn,q(n+ q + 3)! +O(t−N).

Therefore, we have

φk(t) =
N−1∑
n=0

∞∑
q=0

Dk,2nGn,q(n+ q + 3)!

2n+1(2k + 1)n+3tn+q+4
+O(t−N)

Sum over all k and we have our result

I3(t) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

Dk,2nGn,q(n+ q + 3)!

2n+1(2k + 1)n+3tn+q+4
+O(t−N)

Theorem 4.9. Let u(t, z) be the solution to the Dissipative wave equation on the Heisenberg

group. Let u0 and u1 have the same assumptions as f in section 2.3. Let N ∈ N. Then, as

t→∞,
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‖ut,·‖2L2(H) =
∞∑
k=0

N−1∑
n=0

∞∑
q=0

Bk,2nGn,q(n+ q + 1)!

2n+1(2k + 1)n+2tn+q+2

+
∞∑
k=0

N−1∑
n=0

∞∑
q=0

−C̃k,2nGn,q(n+ q + 2)!

2n+1(2k + 1)n+2tn+q+3

+
∞∑
k=0

N−1∑
n=0

∞∑
q=0

Dk,2nGn,q(n+ q + 3)!

2n+1(2k + 1)n+3tn+q+4

+O(t−N−1)

Where everything is defined the same as in Lemmas 4.6, 4.7, and 4.8.

Proof. The proof is an immediate consequence of Lemmas 4.6, 4.7, and 4.8.

5 Conclusion and Future Work

Now that we have both expansions, it is important to note that the leading term in the

expansions have the same power. This shows that it is consistent with the Euclidean case,

which was to be expected. From here one could follow the same route as done in Volkmer’s

paper on the Euclidean case. That is finding an expansion of ‖u−v‖L2(H) as t→∞ where u

and v are the solutions to the heat and dissipative wave equations on the Heisenberg group

respectively.

What might be of more interest is extending this concept to other equations. In Ruzhan-

sky and Tokmagambetov’s paper [3], they find the solutions to the linear damped wave

equation, ∂2t u+ b∂tu−Lu+mu = 0, on the Heisenberg group in the same way we do. One

could find the asymptotic equivalence and expansion in a similar way done in this thesis.

Another problem that can be asked is finding expansions of these equations on different

Lie groups. The Lie groups would need to have similar properties as the Heisenberg. They

would need their own version of Lie algebra, group Fourier transform, and Plancherel formula.
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If those properties are similar enough, one would use very similar strategies as in this paper

to find the expansions.
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6 Appendix

Lemma 6.1 (Watson’s Lemma). Let 0 < a ≤ ∞ be fixed. assume φ(x) = xjg(x), where

g(x) ∈ C∞ on some neighborhood of x = 0, with g(0) 6= 0, j > −1. Suppose also that,

|φ(x)| < Kebx for all x > 0 where k, b are independent of x, or

a∫
0

|φ(x)|dx <∞.

Then, for all t > 0, ∣∣∣ a∫
0

e−txφ(x)dx
∣∣∣ <∞,

And that we have the asymptotic equivalence

a∫
0

e−txφ(x)dx ∼
∞∑
n=0

g(n)(0)Γ(j + n+ 1)

n!tj+n+1
, (t > 0, t→∞).

Proof. This proof is found in Miller (2006).

Lemma 6.2 (Schur Test). Let K be a measurable function on R2 that satisfies the mixed-

norm conditions

C1 := esssupx∈R

∫
|K(x, y)|dy <∞,

C2 := esssupx∈R

∫
|K(x, y)|dy <∞.

Then the integral operator T defined by

(Th)(x) =

∫
K(x, y)h(y)dy

is a bounded linear operator T : L2(R)→ L2(R), and its operator norm satisfies
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‖T‖ ≤ (C1C2)
1
2 .

Proof. This proof is found in Halmos (1978).

Theorem 6.3 (Fubini’s Theorem). Suppose X and Y are σ-finite measure spaces, and

suppose that X × Y is given the product measure. If

∫
X×Y

|f(x, y)|d(x, y) <∞

,

then

∫
X

(∫
Y

f(x, y)dy
)
dx =

∫
Y

(∫
X

f(x, y)dx
)
dy =

∫
X×Y

f(x, y)d(x, y).

Proof. This proof is found in Cohn (1980).

Theorem 6.4 (Tannery’s Theorem). Let Sn =
∞∑
k=0

ak(n) and suppose that lim
n→∞

ak(n) = bk.

If |ak(n)| ≤Mk and
∞∑
k=0

Mk <∞, then lim
n→∞

Sn =
∞∑
k=0

bk.

Proof. Tannery’s theorem is an immediate consequence of Lebesgue’s dominated convergence

theorem applied to the sequence space l1.
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