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ABSTRACT 

GRAPHICAL CONVOLUTION NETWORK BASED SEMI-SUPERVISED METHODS FOR 
DETECTING PMU DATA MANIPULATION ATTACKS  

 

by 

Wenyu Wang 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Lingfeng Wang 

With the integration of information and communications technologies (ICTs) into the 

power grid, electricity infrastructures are gradually transformed towards smart grid and 

power systems become more open to and accessible from outside networks. With 

ubiquitous sensors, computers and communication networks, modern power systems have 

become complicated cyber-physical systems. The cyber security issues and the impact of 

potential attacks on the smart grid have become an important issue. Among these attacks, 

false data injection attack (FDIA) becomes a growing concern because of its varied types 

and impacts. Several detection algorithms have been developed in the last few years, 

which were model-based, trajectory prediction-based or learning-based methods. 

Phasor measurement units (PMUs) and supervisory control and data acquisition 

(SCADA) system work together to monitor the power system operation. The unsecured 
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devices could offer opportunities to adversaries to compromise the system. In the literature 

review part of this thesis, the main methods are compared considering computing 

accuracy and complexity. Most work about PMUs ignored the reality that the number of 

PMUs installed in a power system is limited to realize observability because of high 

installing cost. Therefore, based on observable truth of PMU and the topology structure of 

power system, the graph convolution network (GCN) is proposed in this thesis. The main 

idea is using selected features to define violated PMU, and GCN is used to classify 

susceptible violated nodes and normal nodes. The basic detection method is introduced at 

first. And then the calculation process of neural network and Fourier transform are 

described with more details about graph convolution network. Later, the proposed 

detection mechanism and algorithm are introduced. Finally, the simulation results are 

given and analyzed.  
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Chapter 1  Introduction 

1.1. Background on Power System Security 

Power system plays an important role on daily life. Reliable electricity supply is supported 

by basic cyber physical systems. Modern power system encompassed a large-scale use of 

Cyber-Physical Systems (CPS) known as Cyber-Physical Production Systems (CPPS) [1]. 

Cyber physical systems (CPSs) are an integration of sub-systems with multi layers and 

physical domains interconnected through communication networks. The integration of the 

information and communication technologies (ICT) into the power grid which could be 

regarded as CPS realizes efficient and reliable bidirectional power flow [2]. However, the 

involvement of varied technologies, the interconnection between each layers and algorithms 

implemented in the power grid result in the vulnerability of the system. For example, a 

distributed system relies on the data collected from different entities. In such system, the 

security of shared data plays an important role on effective decision making and control. 

Therefore, more attention should be paid to protect the security of the transmitted data in 

these networks [3]. 
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Figure 1 Vulnerabilities of Power System Towards False Data Injection Attacks 

Power system security contains two aspects: physical security and cyber security. 

Physical security is about the ability of a power system to work well with the existence of 

severe disturbances. Cyber security illustrates the security of the communication networks 

and computer systems which support the power system operation [4]. The vulnerabilities of 

power system towards false data injection attacks is shown in Figure 1 [41]. The whole power 

system is divided into five parts including generation, transmission, distribution, consumers 

and control center. Each part installs remote terminal units (RTU) to send and receive 

information from each other. Cyber-attacks could be involved into any connections. Cyber-

attacks have the capability of undermining or totally disrupting the control systems in the 
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power system. Cyber-attacks have resulted in my security problems in recent years. For 

example, in 2003, the well-known Slammer worm penetrated the control system of the David-

Besse nuclear plant in Ohio, USA [5]. A wide breakout took place in Kiev, Ukraine for several 

hours affecting three major distribution companies and more than 225,000 customers in 

2015[6].  

1.2. False Data Injection Attacks in Power System 

A major part of cyber security and the cross-domain vulnerabilities of power system is 

false data injection [7]. FDIA could be used in different systems and layers in the smart grid 

as shown in Figure 2. The way the FDIA could be used in any processor-based devices is 

presented in [8]. R. Macwan and C. Drew illustrated how a FDIA works on the IEC61850 

standard Ethernet-based communication protocol [9]. G. Liang and J. Zhao demonstrates 

several possible cyber-based FDIA and the associated impacts in the power grid [10]. A 

successful FDIA cause the state estimator to generate erroneous values which may lead the 

system operators make wrong decisions, the system response unpredictably and unstably, 

and then make either economic impacts or stability impacts to the power system. 

PMU data manipulation attack is another type of FDIA aiming at wide area measurement 

system (WAMS), which attempts to blind the control centers in accurate awareness of real-
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time operating conditions of power systems [12]. The Phasor measurement units (PMUs) 

are measurement devices equipped with the global positioning system (GPS) technology 

for precise timing. By synchronizing to GPS time, PMUs have the ability to provide accurate 

synchronous phasor measurements for geographically dispersed nodes in power grids [11]. 

PMU measurements are important because control centers may directly use the data or 

results given by PMUs to make a decision. In most situation, the compromised data could be 

detected by state estimators of bad data detection model, however, adversaries still could 

manipulate the data by maliciously injecting a set of measurements. It may lead the control 

center to make improper actions and cause unwanted consequences of the power system. 

Worse further, some automatic processes, such as automatic generation control, automatic 

voltage regulation and transient stability assessment, heavily rely on correct measurements 

to work. Once these inputs are no longer accurate, the resulted erroneous control actions 

may threaten the stability of power system. Moreover, if dispatchers see on the screen, e.g., 

a “fault” is happening and isn’t automatically removed, they will probably think there is 

something wrong with the relay protection system and hence scramble to cut off the “fault” 

line manually, which can also cause severe consequences [12].  
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S. Pal, B. Sikdar and J. H. Chow [13] proposed a method to detecting FDIAs using 

transmission line parameters, i.e., the equivalent impedance of transmission lines. The 

detection is realized by continuously monitoring the equivalent impedances of transmission 

lines and classifying observed anomalies for detecting the presence and location of attacks. 

J. Wang, D. Shi, Y. Li, J. Chen, H. Ding and X. Duan[12] use machine learning tools which 

is called deep autoencoder to detect distributed PMU data manipulation attacks. However, 

both of the two methods ignored the reality that PMUs are not installed at all the buses of a 

system because of their high capital cost. It is important to find the best locations to place 

PMUs so that the number of PMUs can be minimized.  

In general, only limited PMUs are installed in the power system to realize the 

observability of the whole system. The magnitude and phase angle of buses which do not 

install PMUs are get by Kirchhoff's Current Law and Kirchhoff's Voltage Law. Therefore, a 

graph convolution network (GCN) based FDIA detection method is proposed in the thesis 

using specific feature selection given to PMUs to help verify stealthy attacks which evade 

bad data detector. At first, four features are selected to form the feature space including 

voltage magnitude and phase angle, active power and inactive power. After the feature space 

is verified, compromised PMUs are detected using GCN. GCN is trained by predefined data 
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sets with normal and abnormal information to learn the weights and bias. And test data sets 

are used to check the ability of the model. That's to say, GCN works as a semi-supervised 

deep learning method to detect false data attacks by learning weights and bias of power 

system topology. Besides, instead of sequential methods mentioned in forehand researches, 

GCN could learn the topology of power systems which means the spatial features of a system 

is used into FDIAs.  

 

Figure 2 False Data Injection Attacks in Smart Grid 

1.3. Thesis Structure 

The rest of the thesis is structed as follows. Section II is related to literature review, 

existing methods of detecting FDIAs are reviewed. Section III gives basic theoretical 
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backgrounds on state estimation and FDIA; Section IV introduces knowledge about Fourier 

Transform and GCN to support the detection method proposed in the thesis. Besides, the 

feature selection procedure and mythology are also described in section V. In Section VI, the 

performance of the proposed method is evaluated, with potential improvements given as 

future works. Section VII makes a conclusion of the thesis. 
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Chapter 2  Literature Review 

The detection methods could be mainly categorized into three types: the first one is state 

estimation-based methods, the second one is trajectory prediction-based methods and 

machine learning based methods. 

2.1. State Estimation-Based Methods 

In recent years, a number of false data detection (FDD) methods based on state 

estimation which are designed to alleviate FDIAs in smart grid CPS have been proposed. 

The research given by Liu [14] is one of the first to look at the vulnerability of state estimation 

to cyber-attacks, where the attacker is assumed to have knowledge about measurement 

configuration to create undetectable attacks. Merrill and Schweppe presented a bad data 

suppression estimator based on a non-quadratic cost function to improve the performance 

of static SE [24]. Cutsem et al. proposed an identification method attempting to mitigate some 

existing difficulties, such as multiple and interacting bad data [25]. Two security indexes to 

quantify the threat of FDIA on power grid are proposed in [15]. Multiple least trimmed squares 

state estimations method is proposed in [22]. The most common method is weighted least 

squares (WLS). A recursive WLS method was proposed in [35] to improve the convergence 

speed. The author of [52] also used WLS to detect FDIA in voltage controller and 
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transmission system. [36] used median filtering by combing the direct measurements and 

calculated ones. Kriging Estimator (KE) used estimated states predicted by measurements 

from adjacent nodes [37]. And the author of [38] used maximum likelihood (ML) estimator to 

detect FDIA. Gabriela Hug [16] extended the work to AC model. The authors in [23] propose 

an adaptive sliding mode observer with online parameter estimation to detect and respond 

to attacks on agents’ states and sensor systems.  

2.2. Trajectory Prediction-Based Methods 

A review of definitions and proposed methods for dynamic state estimation with PMUs 

is available in [20]. The improvements of dynamic state estimation in monitoring the power 

grid are also discussed in the research [21] develops a risk mitigation approach for dynamic 

state estimation related to the cyber-attack impacts. Both extended Kalman Filter (EKF) [17] 

and unscented Kalman Filter (UKF) [18],[19] were proposed to track and forecast the power 

states because the equations in the AC model about state estimations are nonlinear. Authors 

of [22],[23] and [24] use a robust generalized maximum-likelihood-estimator on the 

successive batch-mode regression representations of the classical Kalman filter, extended 

Kalman filter and unscented Kalman filter.  

2.3. Machine Learning-Based Methods 
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Traditional statistical approaches have been proposed to detect FDIAs on the state 

estimation in power system as mentioned before. Attempts to explore machine learning 

techniques has been blossoming. Esmalifalak et al. [26] proposed two machine learning 

based models for FDI attack detection in smart grid systems. Both models utilize principle 

component analysis to reduce the dimensionality of complex simulations. Authors in [27] use 

density ration estimation (DRE) to detect FDIAs. He et al. [28] proposed a state vector 

estimation (SVE) and a deep learning-based identification (DLBI) algorithm to prevent 

electricity theft. Wei and Mendis [29] use Conditional Deep Belief Network (CDBN) [32] to 

identify alteration in data that may affect the wide area monitoring systems (WAMS) in the 

power grid. Recurrent neural network (RNN) is used in [35] to detect FDIA. The dynamic or 

real-time states of a power system could be considered by the backward loop in the RNN 

layers. Convolution neural network (CNN) [39] performs well in extracting different features 

of samples. Support vector machine bases on linear non-probabilistic binary strategy which 

relies on two parallel hyperplanes boundaries [40]. Autoencoder (AE) is a deep neural 

network that provides a nonlinear compression (encoding) and expansion (decoding) of the 

measurement samples. The detection scheme in this algorithm is based on the error 

between the decoded sample and the input to the network where an alarm is flagged when 
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the error exceeds a certain level [54]. Hidden Markov Model (HMM) and Generative 

Adversarial Network is used in [56] and [59].  

Table 1 Summary of False Data Injection Attacks Algorithm [13] 

Category Algorithm 

Computation Complexity Detection 

Rate Estimation Detection 

St
at

e 
Es

tim
at

io
n-

Ba
se

d 

M
et

ho
ds

 

Weighted Least Squares 𝒪(𝑛!𝑡) 𝒪(𝑛") 0.90-0.95 

Median Filter 𝒪(𝑛) 𝒪(𝑛") 0.99 

Kriging Estimator 𝒪(𝑛!) 𝒪(𝑛") 0.96 

Maximum Likelihood 𝒪(𝑛!𝑙𝑔𝑛) 𝒪(𝑛") 0.997 

Tr
aj

ec
to

ry
 

Pr
ed

ic
tio

n-
Ba

se
d 

M
et

ho
ds

 

 

Kalman Filter 𝒪(𝑛!) 𝒪(𝑛") Detected 

Unscented Kalman Filter 𝒪(𝑛") 𝒪(𝑛") Detected 

Extended Kalman Filter 𝒪(𝑛!) 𝒪(𝑛") Detected 

M
ac

hi
ne

-L
ea

rn
in

g 
Ba

se
d 

M
et

ho
ds

 

Support Vector Machine 𝒪(𝑠"𝑛 + 𝑠!) 𝒪(𝑛𝑛#$) 0.58-0.99 

Convolution Neural Network 𝒪(𝑠𝑛𝑛%"𝑡) 𝒪(𝑛𝑛%") 0.93 

Recursive Neural Network 𝒪(𝑠𝑛𝑛%"𝑡) 𝒪(𝑛𝑛%") 0.75-0.99 

Deep Belief Network 𝒪(𝑠𝑛𝑛%"𝑡) 𝒪(𝑛𝑛%") 0.93-0.98 

Principal Component Analysis 𝒪(𝑠𝑛"𝑡) 𝒪(𝑛) 0.95-0.99 
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Compared to machine learning methods, deep learning could have better 

comprehension of high-level features hidden in a set of data such as convolution neural 

network (CNN). However, CNN only works well for Euclidean structure because CNN used 

a specific convolution kernel to abstract features of an image. For non-Euclidean structure 

such as topology, the number of adjacency nodes around a node is different. Therefore, 

graph convolution network (GCN) is proposed. The thesis uses the method classify normal 

and abnormal data to help state estimator detect false data injection attacks. 

The attack assumption made in this thesis is that attackers can intercept the 

measurement data packets, modify the contents, and then transmit them to the original 

destinations. Besides, the number of PMUs installed in a power system is limited. The 

assumptions are reasonable because PMU measurements are quite susceptible to 

manipulation in practice. On one hand, the IEEE C37.118 Standard lacks a predefined 

security mechanism [10]. On the other hand, manufacturers tend to use some simple but 

fragile algorithms to encrypt the data to ensure the timeliness because of the high sampling 

rates of PMUs [11]. And the cost of a PMU is extremely high. To control the cost of PMU 

installation, PMUs need to optimize allocation.  
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Chapter 3  Preliminary 

3.1.  Problem Formulation 

3.1.1. State Estimation Model 

Quasi-static model represents the scenario in which the system's operating points change 

in a smooth and slow nature with the assumption of instantaneous response of the controller 

in the system. This yields negligible to transient response. Under the assumption, the various 

systems in smart grids could be modeled using the general measurement model realized as 

[30]: 

𝒛 = 𝒉(𝒙) + 𝒆 (1) 

where the vector 𝑧 = (𝑧&, 𝑧", . . . . . , 𝑧')(  denotes the measurements data; 𝑥 =

(𝑥&, 𝑥", . . . . . , 𝑥')( denotes the system states; 𝑒 = (𝑒&, 𝑒", . . . . . , 𝑒')( denotes measurement 

noise, which is assumed to be Gaussian distributed with zero mean and a variance of 𝜎" ∈

𝑅%. ℎ(𝑥) denotes the functional dependency between measurements and state variables. 

The precise form of ℎ(𝑥) is determined by the grid structure and line parameters. 

Model (1) is commonly solved by the weight least squares (WLS) method. To find the 

estimated state variables 𝑥9, the following formula must be solved [31]: 
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min 𝐽(𝑥) = 	?𝑤)A𝑧) − ℎ)(𝑥9)C
"

%

)*&
																												= [𝒛 − 𝒉(𝒙E)](𝑾[𝒛 − 𝒉(𝒙E)] (2)

 

where 𝑤) = 𝜎)+" represents the weight for the measurement 𝑧), 𝑾 ∈ 𝑹𝒏×𝒏 is a diagonal 

matrix composed of the weights 𝑤), and 𝑛 is the total number of measurements. And the 

solution can be computed in closed form: 

𝑥9 = (𝐻(𝑊𝐻)+&𝐻(𝑊𝑧 (3) 

3.2. False Data Injection Attack  

The goal of adversaries is to inject a false data vector 𝒂 ∈ 𝑅% into the measurements 

without being detected by the operator. The resulting observation model is [32] 

𝒛N = 𝒉(𝒙) + 𝒂 + 𝒆 (4) 

The false data injection vector, 𝒂, is a nonzero vector, such that 𝒂𝒊 ≠ 𝟎, ∀𝒊 ∈ 𝓐, where 

𝓐 is the set of indices of the measurement variables that will be attacked. The secure 

variable satisfies the constraint 𝒂𝒊 = 𝟎, ∀𝒊 ∈ 𝓐U , where 𝓐U  is the set complement of 𝓐. [33] 

  [14].  

𝜌 = ‖𝒛N − 𝒉(𝒙E)‖"" (5) 



 15 

where 𝒙E ∈ 𝑹𝑫 is the value calculated by formula (3). If 𝜌 > 𝜏, where 𝜏 ∈ 𝑅 is an arbitrary 

threshold, which determines the tradeoff between the detection and the false alarm 

probabilities, then the network operator declares that the measurements are attacked [32]. 

3.3. Undetectable Attacks and Protection Model  

Potentially, FDI attacks can bypass these detection methods, resulting in erroneous 

estimation of system states and making the power system unstable. An attacker can inject 

an attack vector 𝑎⃗ with 𝑚 × 1 dimensions to the measured data as 𝑧0____⃗ = 𝑧 + 𝑎⃗, where 𝑧0____⃗  

denotes compromised measurements[34].𝑥0____⃗  and 𝑟0___⃗  is used to denote state vectors and 

residual vectors. 

𝑟0___⃗ = 𝑧0____⃗ − ℎ(𝑥0____⃗ )	

= 𝑧 + 𝑎⃗ − ℎ(𝑥 + 𝑐)	

= 𝑧 − ℎ(𝑥⃗) + A𝑎⃗ − ℎ(𝑐)C	

= 𝑟⃗ + A𝑎⃗ − ℎ(𝑐)C (6) 

where 𝑐 = [𝑐&___⃗ , 𝑐"___⃗ , 𝑐!___⃗ , . . . . , 𝑐%___⃗ ](  is a random non-zero sparse vector with 𝑛 × 1 

dimension. To circumvent BDD, the attack vector 𝑎⃗ can be constructed as 𝑎⃗ = ℎ(𝑥⃗ + 𝑐) −

ℎ(𝑥⃗) . Therefore, 𝑟0___⃗  is approximately equal to 𝑟 . If the attack vector 𝑎⃗  satisfies the 
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condition that the L2-norm of 𝑎⃗ − ℎ(𝑐) is approximately equal to zero. That's to say, the 

residual 𝜌 is unchanged. FDIA can bypass detection system. 

In fact, the construction of FDI attack only needs partial information of a grid to find the 

topology information of power system. According to equations (6), adversaries could exploit 

small measurement errors tolerated by state estimation algorithm and only need to 

manipulate minority of measured data, which could hide the detection of BDD.  
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Chapter 4  

Graph Convolution Neural Network 

4.1. Introduction of Neural Network 

The most common network topology is feedforward network which includes multiple 

layers with connections only between nodes in neighboring layers. A three-layer back 

propagation neural network including input layer, hidden layer and output layer [35]. There 

are not any connections between nodes which belong to the same layer. The input layer has 

m nodes that correspond to the m inputs of the network; The output layer consists of n nodes 

that correspond to the output of the related physical system. The number of nodes of hidden 

layers could be varied to fit the system target. Information is passed in one direction through 

the network. It begins from the input layer and ends at output layer after passing successive 

hidden layers [42]. The structure of neural net is given in Figure 3. 
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Figure 3 The Structure of Neural Network [14] 

The output function of the hidden layer node should be 

𝑏1 = 𝑓e?𝑊)1𝑎) − 𝑇1
2

g	(𝑟 = 1,… , 𝑢) (7) 

The output function of the output layer node should be 

𝑐2 = 𝑓e?𝑉12𝑏1 − 𝜃2
2

g	(𝑗 = 1,… , 𝑛) (8) 

where variable 𝑊)1 represents the weight between nodes of the input layer and hidden 

layers, and 𝑉12 represents the weight of nodes between hidden layers and the output layer. 

𝑇1 and 𝜃2 represents the bias of hidden layers' nodes and output layer's nodes separately. 

And 𝑓(. . . ) is an activation function. 

4.2. Preliminaries of Graphs Convolution 
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4.2.1. Preliminaries of Graph 

Graph theory is the theory of studying graph structure data. A graph is a mathematical 

model that describes the relationships of a physical model and has three essential elements: 

nodes, edges and the weight of edges. An undirected graph is represented by 𝐺 = (𝑉, E,W), 

where 𝑉 is a finite set of vertices with 𝑉 = {𝑣&, 𝑣", 𝑣!, . . . 𝑣%} and 𝐸 is the edge set with 𝐸 =

{𝑒&, 𝑒", 𝑒!, . . . 𝑒%}, and W is a weighted adjacency matrix with 𝑊 = {𝑤&, 𝑤", 𝑤!, . . . 𝑤%}. The 

vertices of the graph can be any actual or abstract buses, while the edges describe the 

relationship between two vertices.  

Suppose {(𝑥))})*&%  represents the vertices. Let 𝑀 denotes a set of vertices with the 

same class and 𝑁 denotes vertices of different classes, i.e. 

𝑀 = xA𝑥) , 𝑥2Cy𝑥) 	𝑎𝑛𝑑	𝑥2 	ℎ𝑎𝑣𝑒	𝑡ℎ𝑒	𝑠𝑎𝑚𝑒	𝑙𝑎𝑏𝑒𝑙𝑠{, (9) 

𝑁 = xA𝑥) , 𝑥2Cy𝑥) 	𝑎𝑛𝑑	𝑥2 	ℎ𝑎𝑣𝑒	𝑡ℎ𝑒	𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡	𝑙𝑎𝑏𝑒𝑙𝑠{ (10) 

Based on this, there are two kinds of weighted adjacency matrices, one is zero-one 

weighting method: The distance between the nodes that are not connected is zero and the 

distance between the connected nodes is one. The other one is called Gaussian weighting 

method. That's to say, if the node 𝑥) and 𝑥2 are connected, the distance is a specific value, 

otherwise, the distance is zero. Both of the two methods could be represented as below [43]: 
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𝑊1)2 = �
1					𝑖𝑓A𝑥) , 𝑥2C ∈ 𝑀
0					𝑖𝑓A𝑥) , 𝑥2C ∈ 𝑁

(11) 

𝑊2)2 = �𝑒𝑥𝑝�−
[𝑑𝑖𝑠𝑡(𝑖, 𝑗)]"

2𝜃" � 				𝑖𝑓	𝑑𝑖𝑠𝑡(𝑖, 𝑗) ∈ 𝑀

0																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12) 

where 𝑑𝑖𝑠𝑡(𝑖, 𝑗) is the distance between two nodes. 

An essential operator in graph signal processing (GSP) is the non-normalized graph 

Laplacian. The graph Laplacian [44] is defined as 𝐿:= 𝑫 − 𝑨 , 𝐴 = [𝑎)2] ∈ ℝ3×3  is the 

adjacency matrix. 𝐷 = 𝑑𝑖𝑎𝑔(𝑑&, 𝑑", . . . , 𝑑3) is the degree matrix of 𝐴 where 𝑑) = ∑ 𝑎)22  is 

the degree of node 𝑖. The normalized graph Laplacian is defined as 𝐿�:= 𝐼3 − 𝐷
!"
# 𝐴𝐷+

"
#, 

where 𝐼3 is the identity matrix. Due to the non-normalized and normalized graph Laplacians 

being the positive semi-definite matrices, it has a complete set of orthonormal eigenvectors 

{(𝑢))})*4%+& and non-negative eigenvalues{(𝜆))})*4%+&[6]. 

Then the eigen-decomposition of 𝑳� = 𝑼𝝀𝑼𝑻 could be got through the eigenvectors 𝑢) 

and eigenvalues 𝜆) , where 𝑼 = [𝒖𝟏, 𝒖𝟐, 𝒖𝟑, . . . 𝒖𝒏] are the graph Fourier bases and 𝝀 =

[𝝀𝟏, 𝝀𝟐, 𝝀𝟑, . . . 𝝀𝒏] are the graph frequencies. 

4.2.2. Preliminaries to Convolutions on Graphs 

The goal of GCN is to learn a function of signals/features on a graph 𝐺 = (𝑉, E) which 

takes as input: 
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l A feature description 𝑥) for every node 𝑖 summarized in a 𝑁 × 𝐷 feature matrix 

𝑋 (𝑁: number of nodes, 𝐷: number of input features) 

l A representative description of the graph structure in matrix form, typically in the 

form of an adjacency matrix 𝐴 (or some other format) and produces a node-level 

output 𝑍 (an 𝑁 × 𝐹 feature matrix, where 𝐹 is the number of output features per 

node). Graph-level outputs can be modeled by introducing some form of pooling 

operation. 

Every neural network layer can be written as a non-linear function 

𝐻(:;&) = 𝑓A𝐻(:), 𝐴C (13) 

where 𝐻(4) = 𝑋  and 𝐻(=) = 𝑍  (or 𝑧  for graph-level outputs), 𝐿  is the number of 

layers. The specific models then differ only in how 𝑓(∙, ∙) is chosen and parameterized. 

4.3. Graph Convolution Network 

4.3.1. Structure of Graph Convolution Network 

A multi-layer Graph Convolutional Network (GCN) is considered with the following layer-

wise propagation rule: 

𝐻(:;&) = 𝜎 �𝐷�+
&
"𝐴�𝐷�+

&
"𝐻(:)𝑊(:)� (14) 
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with 𝐴� = 𝐴 + 𝐼3 is the adjacency matrix of the undirected graph G with added self-

connections. 𝐼3  is the identity matrix, 𝐷�)) = ∑ 𝐴�)22  and 𝑊(:) is a layer-specific trainable 

weight matrix. 𝜎(∙) denotes an activation function, such as the 𝑅𝑒𝐿𝑈(∙) = 𝑚𝑎𝑥(0,∙). 𝐻(:) ∈

ℝ3×>  is the matrix of activations in the 𝑙?@  layer; 𝐻(4) = 𝑋 . The whole process of the 

propagation rule is shown below. The rule can be motivated through the first-order 

approximation of those localized spectral filters on graphs. The structure of a graph 

convolution network is shown in Figure 4.  

 
Figure 4 The Structure of a Graph Convolution Network 

4.3.2. Vertex Domain Approach 

The vertex domain approach does not use the Fourier transform but it uses the 

definition of graph convolution as defined in graph signal processing (GSP). A graph shift is 

an operation that replaces a graph signal at a graph vertex by a linear weighted combination 
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of the values of the graph signal at the neighboring vertices: 𝑥 = 𝐴𝑥  where 𝐴  is the 

adjacency matrix. The graph shift A extends the time shift in traditional signal processing to 

graph-structured data. A graph filter G is shift-invariant, i.e., the filter and shift commute: 

𝐴(𝐺𝑥) = 𝐺(𝐴𝑥) only when G is a polynomial in the adjacency matrix A. Thus, the formulation 

could be defined as [43] 

𝐺 =?𝛼A𝐴A
B

A*4

(15) 

where 𝛼A are the coefficients of the polynomial. Graph convolution is the matrix vector 

multiplication 𝑦 = 𝐺𝑥. 

4.3.3. Spectral Convolution 

The classical Fourier transform 

𝐹(𝜔) = ℱ[𝑓(𝑡)] = ¡𝑓(𝑡)𝑒+)C? 𝑑𝑡 (16) 

is the expansion of a function 𝑓 in terms of the complex exponentials, which are the 

eigenfunctions of the one-dimensional Laplace operator 

∆𝑒+)C? =
𝜕"

𝜕𝑡"
𝑒+)C? = −𝜔"𝑒+)C? (17) 
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 The convolution theorem states that [46] under suitable conditions, the Fourier 

transform of a convolution of two signals is the pointwise product of their Fourier transforms, 

which can be written as 

𝒇 ∗9 𝒈 = 𝒇�⨀𝒈E (18) 

where 𝒇 ∈ 𝑅3 and 𝒈 ∈ 𝑅3 denotes two signals, the operator * and ⨀ represent the 

convolution operator and elementwise Hadamard product, respectively, and the operator ∙ ̂

denotes the Fourier transform. 

With the convolution theorem, we could realize graph convolution by achieving the 

Fourier transform and inverse Fourier transform on graph. As mentioned before, Laplacian 

𝑳  is a real symmetric matrix, it could ne decomposed and its eigenvectors 𝑼 =

{𝒖𝟏, 𝒖𝟐, . . . , 𝒖𝒏} are orthogonal. Besides, all these eigenvectors have corresponding real and 

non-negative eigenvalues 𝚲 = 𝑑𝑖𝑎𝑔{𝝀𝟏, 𝝀𝟐, . . . , 𝝀𝒏}. Similar to the ordinary Fourier transform, 

the graph Fourier transform of a signal 𝒇𝜖𝑅3 on the graph is defined as 

𝒇�(𝑙) = ?𝒖𝒍(𝑛) ∙ 𝒇(𝑛)
3

%*&

(19) 

The inverse graph Fourier transform on the graph is 

𝒇(𝑛) =?𝑓«(𝑙) ∙ 𝒖𝒍(𝑛)
3

:*&

(20) 
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Using the matrix form 𝒇� = 𝑼𝑻 ∙ 𝒇  and 𝒇 = 𝑼 ∙ 𝒇� , respectively. Therefore, the 

convolution operation could be further defined as follows, 

𝒇 ∗ 𝒈 = 𝑼 ∙ ¬(𝑼𝑻 ∙ 𝒈)⨀(𝑼𝑻 ∙ 𝒇)­ (21) 

by using the convolution theorem and the graph Fourier transform, where 𝒇 ∈ 𝑅3 

denotes a signal, 𝒈 ∈ 𝑅3  denotes the filter, and operator ⨀  denotes the Hadamard 

product. In particular, a diagonal filter 𝒈𝜽 = 𝑑𝑖𝑎𝑔{𝜃&, 𝜃", . . . , 𝜃3} ∈ 𝑅3×3  in the spectral 

domain is defined directly so that the element-wise product can be transformed into a 

common matrix multiplication. As a result, the spectral convolution can be written as 

𝒇 ∗ 𝒈 = 𝑼 ∙ ¬𝒈𝜽 ∙ (𝑼𝑻 ∙ 𝒇)­ (22) 

4.3.4. Spectral Graph Convolutions 

According to David and Sunil[47], spectral convolutions on graphs are defined as the 

multiplication of a signal 𝑥 ∈ ℝ3  (a scalar of every node) with a filter 𝑔F = 	𝑑𝑖𝑎𝑔(𝜃) 

parameterized by 𝜃 ∈ ℝ3 in the Fourier domain based on the aforementioned contents, i.e.: 

𝑔F ∗ 𝑥 = 𝑈𝑔F𝑈(𝑥 (23) 

where 𝑈 is the matrix of eigenvectors of the normalized graph Laplacian 𝐿 = 𝐼3 −

𝐷+
"
#𝐴𝐷+

"
# = 𝑈Λ𝑈(, with a diagonal matrix of its eigenvalues Λ and 𝑈(𝑥 being the graph 

Fourier transform of 𝑥. 𝑔F could be considered as a function of the eigenvalues of 𝐿, i.e. 
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𝑔F(Λ). Evaluating Equation (23) is computationally expensive, as multiplication with the 

eigenvector matrix 𝑈 is Ο(𝑁"). Furthermore, computing the eigen decomposition of 𝐿 in 

the first place might be prohibitively expensive for large graphs which means more storage 

space is needed to store the result of eigenvalues and eigenvectors. To circumvent this 

problem, Hammond et al. [48] suggested that 𝑔F(Λ)  can be well-approximated by a 

truncated expansion in terms of Chebyshev polynomials 𝑇A(𝑥) up to 𝐾?@ order: 

𝑔FG (Λ) ≈ ?𝜃AG𝑇AAΛ�C
B

A*4

(24) 

with a rescaled Λ� = "
H$%&

Λ − 𝐼3. 𝜆'0I denoted the largest eigenvalue of 𝐿. 𝜃G ∈ ℝB is 

now a vector of Chebyshev coefficients. The Chebyshev polynomials are recursively defined 

as 𝑇A(𝑥) = 2𝑥𝑇A+&(𝑥) − 𝑇A+"(𝑥), with 𝑇4(𝑥) = 1 and 𝑇&(𝑥) = 𝑥.  

The optimized spectral filter uses the form of K-order polynomial to express the 

neighbor information that K steps away from a sample. Going back to the definition of a 

convolution of a signal 𝑥 with a filter 𝑔FG , and a new definition of spectral convolution could 

get: 

𝑔FG ∗ 𝑥 ≈ 𝑈?𝜃AG𝑇AA𝛬�C𝑈(𝑥
B

A*4

=?𝜃AG𝑈𝑇AA𝛬�C𝑈(𝑥
B

A*4

(25) 

with Ĺ = "
H$%&

L − 𝐼3. as can easily be verified by noticing that (𝑈Λ𝑈()A = 𝑈ΛA𝑈(. Note 

that this expression is now K-localized since it is a 𝐾?@-order polynomial in the Laplacian, 
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i.e. it depends only on nodes that are at maximum 𝐾 steps away from the central node 

(𝐾?@-order neighborhood). The complexity of evaluating Equation (25) is Ο(|ℇ|), i.e. linear 

in the number of edges. With formulation (25), it could be seen that the graph convolution 

relies on the buses of K neighboring instead of the whole graph.   

4.4. Layer-Wise Linear Model 

A neural network model based on graph convolutions can therefore be built by 

architecting multiple convolutional layers in the form of Equation (25), however, each layer 

is non-linear and pointwise. To realize the layer-wise convolution operation, the value of K 

is limited to 1, i.e. a function that is linear with respect to L and therefore a linear function 

on the graph Laplacian spectrum. 

In this linear formulation of a GCN, another parameter is further limited to 𝜆'0I ≈ 2, 

neural network parameters will adapt to this change in scale during training. Under these 

approximations Equation (25) simplifies to: 

𝑔FG ∗ 𝑥 ≈ 𝜃4G𝑥 + 𝜃&G(𝐿 − 𝐿3)𝑥 = 𝜃4G𝑥 − 𝜃&G𝐷
+&"𝐴𝐷+

&
"𝑥 (26) 

with two free parameters 𝜃4G  and 𝜃&G . The filter parameters can be shared over the 

whole graph. Successive application of filters of this form then effectively convolve the 𝑘?@-



 28 

order neighborhood of a node, where 𝑘 is the number of successive filtering operations or 

convolutional layers in the neural network model. 

Actually, the number of parameters could be further constrained to deal with overfitting 

and to minimize the number of operations (such as matrix multiplications) per layer. This 

leaves us with the following expression: 

𝑔F ∗ 𝑥 ≈ 𝜃 �𝐼3 + 𝐷
+&"𝐴𝐷+

&
"� 𝑥 (27) 

with a single parameter 𝜃 = 𝜃4G = −𝜃&G . Note that 𝐼3 + 𝐷+
"
#𝐴𝐷+

"
# now has eigenvalues 

in the range of [0,2]. The problem is that it will cause instabilities and exploding/vanishing 

gradients when used in a deep neural network model if the process is repeated too many 

times. The renormalization trick is introduced to mitigate the problem: 𝐼3 + 𝐷+
"
#𝐴𝐷+

"
# →

𝐷�+
"
#𝐴�𝐷�+

"
#, with 𝐴� = 𝐴 + 𝐼3 and 𝐷�)) = ∑ 𝐴�)22 . 

And then the definition to a signal 𝑋 ∈ ℝ3×J  with 𝐶  input channels (i.e. a 𝐶 -

dimensional feature vector for every node) and 𝐹  filters or feature maps could be 

generalized as follows: 

𝑍 = 𝐷�+
&
"𝐴�𝐷�+

&
"ΧΘ (28) 
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where Θ ∈ ℝJ×K is now a matrix of filter parameters and Z ∈ ℝ3×K is the convolved 

signal matrix. This filtering operation has complexity Ο(|ℇ|𝐹𝐶), as 𝐴�𝑋 can be implemented 

as a product of a sparse matrix with a dense matrix. 

4.5. Semi-Supervised Node Classification 

A flexible model 𝑓(𝑋, 𝐴) for efficient information propagation on graphs have been 

introduced. To solve the problem of semi-supervised node classification, some assumptions 

typically made in graph-based semi-supervised learning by conditioning the model 𝑓(𝑋, 𝐴) 

both on the data 𝑋 and on the adjacency matrix 𝐴 of the underlying graph structure could 

be solved. The multi-layer GCN for semi-supervised learning is schematically depicted in 

Figure 4. 

In this thesis, a two-layer GCN for semi-supervised node classification on a graph with 

a symmetric adjacency matrix A (binary or weighted) is considered. The forward model is 

shown as follows: 

𝑍 = 𝑓(𝑋, 𝐴) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥A𝐴«	𝑅𝑒𝐿𝑈A𝐴«𝑋𝑊(4)C𝑊(&)C (29) 

where 𝐴« = 𝐷�+
"
#𝐴�𝐷�+

"
# could be get in a pre-processing step. 

Figure 4 shows a basic structure and hidden layers of GCN. The whole graph of Figure 

4 is a schematic depiction of multi-layer Graph Convolution Network (GCN) for semi-
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supervised learning with 𝑁 input channels and 𝑋 feature maps in the output layer. The 

graph structure (edges shown as black lines) is shared over layers, labels are denoted by 

𝑥). The middle part of Figure 4 is a visualization of hidden layer activations of a two-layer 

GCN including the activation functions. With each different layer, the input data is trained 

and get the final output as normal or abnormal finally. 

Here, 𝑊(4) ∈ ℝJ×L  is an input-to-hidden weight matrix for a hidden layer with 𝐻 

feature maps. 𝑊(&) ∈ ℝL×K  is a hidden-to-output weight matrix. The softmax activation 

function, defined as 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)) =
&
𝒵
𝑒𝑥𝑝(𝑥)) with 𝒵 = ∑ 𝑒𝑥𝑝(𝑥))) 	is applied row-wise. For 

semi-supervised multi-class classification, the cross-entropy error over all labeled examples 

could be evaluated as follows: 

ℒ = −??𝑌:N𝑙𝑛𝑍:N

K

N*&:∈P'

(30) 

where 𝑦= is the set of node indices that have labels. The neural network weights 𝑊(4) 

and 𝑊(&) are trained using gradient descent.  

  



 31 

Chapter 5  

Architecture of the Detection Framework 

5.1. Feature Selection 

Detection performance usually depends on the appropriate selection of the basis of 

feature space. Feature space is a hyperspace which exists training data and testing samples. 

Higher dimensional feature space could offer more detailed information about one system. 

PMU, located at the substation of the power generation and transmission system, are 

capable of measuring the real-time status of the power system, the real-time amplitude and 

phase angle of voltage at the bus, of current on the transmission line, and of the power at 

each branch [50] at a relatively high sampling rate. These measurement data are then 

periodically transmitted to the PDCs, usually in 50 Hz, through the local area network (LAN). 

Then, the aggregated data at the phasor data concentrators (PDCs) are delivered to the CC 

via the wide area network (WAN) for further data analysis, such as state estimation, event 

diagnostics, and contingency analysis.  

In normal operation circumstances, the power grid works in a stable status. That's to 

say, all state variables vary in a mutual balanced manner based on Kirchhoff's law, demand-
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response constraints and so on. As a result, ang changes of a state on a bus or transmission 

line will lead to either normal demand variation or system faults. This will result in 

corresponding state changes of the same and/or other variables on interconnected buses 

or transmission lines [50].  

Consider a power system with 𝑛 + 1  buses. Assuming the resistance of the 

transmission line between bus 𝑖  and 𝑗  is small compared to its reactance, the active 

power-flow model from bus 𝑖 to bus 𝑗 can be expressed as 

𝑃)2 =
𝑉)𝑉2
𝑋)2

sinA𝜃) − 𝜃2C (31) 

where 𝑉) and 𝜃) denote the voltage magnitude and phase angle at bus 𝑖, respectively, 

and 𝑋)2 denotes the reactance between bus 𝑖 and 𝑗. With the active power 𝑃) which is 

injected into bus 𝑖, the conservation of energy for all buses should be 

𝑃) = ? 𝑃)2
2∈𝒜(

(32) 

where 𝒜) denotes the set of buses directly connected to bus 𝑖. 
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In DC power flow studies, the difference of phase angles 𝜃) − 𝜃2  is assumed to be 

small between any pair of buses, and the voltage magnitudes are close to unity. Therefore, 

the model for dc power flow is like: 

𝑃) ≈ ?
𝜃) − 𝜃2
𝑋)22∈𝒜(

(33) 

Based on formula (28), (29) and (30), the feature spaces for a dc power is chosen as 

voltage angles, active power and reactive power. 

5.2. Detection Mechanism 

The proposed method is used to help bad data detection module to find the stealthy 

data. The proposed detection mechanism is depicted in Figure 5. The mechanism considers 

the system states and measurements from consecutive discrete sampling time instances, 

i.e., the time instances when the conventional state estimation takes place. These sampling 

time instances may have an interval ∆  ranging from milliseconds (PMU-based 

measurement systems) to a few seconds (conventional supervisory control and data 

acquisition (SCADA) system). At an arbitrary sampling time instance 𝑡, the mechanism 

takes real-time measurements 𝒛? and the utility's knowledge of the power network ℎ(∙) as 

inputs and develop FDIA attack detection result as the output. The input data first go through 
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a state estimator, which estimates the current system state as 𝒙E?. The estimated state is 

then tested with the bad data detector to prune any measurements with bad data. In this 

step, bad data caused by sampling and communication errors can be effectively detected, 

since they generally do not satisfy the circuit laws, rendering high residual values [51]. 

After these conventional state estimation processes, the proposed GCN mechanism 

introduces a new detector to further analyze the estimate system states. The method uses 

spatial feature of power system like convolution neural network. The input of GCN is the 

nodes feature including voltage amplitude, load active power and reactive power. The 

feature is demonstrated by binary number '0' and '1'. '1' means the feature is manipulated 

and '0' means the feature is under normal situations. The output of the deep learning model 

is normal or abnormal which is converted into binary format by graph convolution network. 

Once a data is defined as alert, it will send back to the bad data detector and the control 

center to check whether the node is attacked. 

This information of measurements including power and voltage is stored in the history 

system state, the weights and bias are chosen randomly at first. And they are going to 

process offline training and adjusted these parameters repeatedly by graph convolution 

network using training samples. The structure of a power system is constructed by the graph 
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convolution network at first based on the connecting information of buses. Eighty percent of 

the data set is chosen as training set to train the weight and bias of the graph convolution 

network. Twenty percent of the data is chosen as testing set to check the accuracy of the 

deep leaning network.  

Based on features and connection information (adjacency matrix), the network could 

learn the relationship or preference of each node. Therefore, another feature of graph 

convolution network is classifying abnormal nodes like the classical Zachary's Karate Club 

network. That's to say, this deep learning network could recognize the type of nodes by 

learning features and connecting information. As we all know, the number of PMUs installed 

in a power system is limited. Using the proposed graph convolution network method could 

detect which nodes are suspicious once one bus is confirmed as abnormal.  
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Figure 5 The Flowchart of Detection Mechanism 

5.3. Algorithm 

The operation rule is shown in Algorithm 1. It could be defined as four important 

procedure: data-preprocessing, model construction, loss function definition and train/test 

module. Two files are given to the graph neural network for building one system structure. 

One includes the connect information of a transmission line's nodes, the other one includes 

features of a node. These features are summarized by the strategy mentioned in last section 

and the nodes are divided into two classes to verify whether the node is attacked. 

The main purpose of data pre-processing is to convert the original file into a readable 

python readable file, change the diagraph structure of power system into an undirected 
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graph and build a symmetric adjacency matrix. To reduce the computation complexity and 

eliminate the effect of singularity, both feature and adjacency matrix needs to be normalized. 

The GCN model includes two hidden layers. The layers used in the thesis is 3-128-128-2. 

The first layer is trained by function	𝑟𝑒𝑙𝑢() which is defined by 

𝑅𝑒𝐿𝑈(𝑥) = Ã𝑥					𝑖𝑓	𝑥 > 0
0					𝑖𝑓	𝑥 ≤ 0 (34) 

The second layer is trained by function 𝑙𝑜𝑔_𝑠𝑜𝑓𝑡𝑚𝑎𝑥() which is defined by 

log	 _𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥)) = 𝑙𝑜𝑔
exp(𝑥))
∑ expA𝑥2C2

 

The loss function of GCN include two parts: one is for classification loss; another one 

is about weight regularization. 	𝑤𝑒𝑖𝑔ℎ_𝑑𝑒𝑐𝑎𝑦  presents the regularization coefficient. The 

definition of regularization is given at the time of defining optimizer. A 𝑁𝐿𝐿𝑙𝑜𝑠𝑠() is defined 

synergy with the second activation function which is calculated by 

𝑙𝑜𝑠𝑠(𝒙𝒊, 𝒚𝒊) = (𝒙𝒊 − 𝒚𝒊)" (36) 

 The result got by 𝑁𝐿𝐿𝑙𝑜𝑠𝑠() goes backward to the first layer to update weights and 

bias given randomly.  

Table 2 Algorithm of Proposed Mechanism 

Algorithm 1: Graph convolution network algorithm 

Input: Graph 𝐺(𝑉, 𝐸)  including degree matrix 𝐷  and adjacency matrix 𝐴 ; input 

features {𝑿$ , ∀𝑣 ∈ 𝑉};  

Output: Classified nodes 

(35)	
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Initialize randomly chosen weight matrix 𝑊 and bias; Set initial training rate, the 

number of hidden units, dropout rate and regularization parameter 𝑤𝑒𝑖𝑔ℎ_𝑑𝑒𝑐𝑎𝑦. 

1  Build symmetric adjacency matrix and convert the diagraph to undirected graph via 

building symmetric 

2  Normalize feature matrix 𝑿$ and adjacency matrix	𝐴 

3  Define optimizer, the training dataset, evaluation dataset and test dataset 

4  Architect GCN model using 𝑟𝑒𝑙𝑢()  for the first layer and 𝑙𝑜𝑔_𝑠𝑜𝑓𝑡𝑚𝑎𝑥()  for the 

second layer: 

    𝑥 ← 𝑅𝑒𝑙𝑢(𝑿$ , 𝐴)  

    𝑥 ← 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑥)  

    𝑥 ← 𝑙𝑜𝑔_𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥, 𝐴)  

5  Calculate loss function 𝑁𝐿𝐿𝑙𝑜𝑠𝑠() 

   𝑙𝑜𝑠𝑠 ← 𝑁𝐿𝐿𝑙𝑜𝑠𝑠(𝑟𝑒𝑠𝑢𝑙𝑡) 

6  Optimize weights and bias and output the final result 

7  Train and test samples 

   for 𝑒𝑝𝑜𝑐ℎ in 𝑟𝑎𝑛𝑔𝑒𝑠 

       𝑯(:) ← 𝜎(𝐷�+
"
#𝐴�𝐷�+

"
#𝐻(:+&)𝑊) 

       Z← 𝐻(:) 

       𝑙𝑜𝑠𝑠 ← 𝑛𝑙𝑙_𝑙𝑜𝑠𝑠(𝑍, 𝐴) 

       Update parameter (W and bias) with losses 

   end 
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Chapter 6  

Experiment and Case Study 

The proposed method performance of each anomaly node is directly related to the 

overall performance of the proposed detection framework. In this chapter, the 14-bus test 

system and 300-bus teste system are implemented to evaluate the detection performance 

of the proposed detection mechanism. The detailed confusion matrix works as an indicator 

to test the result of the GCN-based detector.  

6.1. Evaluation Indicator 

Accuracy, precision, recall and F1-measure are chosen as the evaluation indicators in 

the thesis. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(37) 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(38) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(39) 

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙
𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
(40) 
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where 𝑇𝑃  (True Positive) presents true positive, which stands for the number of 

correctly detected abnormal samples in the testing dataset. The same as 𝑇𝑃, 𝑇𝑁 (True 

Negative) represents the number of correctly detected normal samples. 𝐹𝑃 (False Positive) 

is the number of normal samples misclassified as abnormal samples by the proposed 

method, and 𝐹𝑁  (False Negative) represents the number of misclassified abnormal 

samples. The definition of recall describes the sensitivity of the model to the positive case 

category. The F1 score calculates the harmonic mean of precision and recall.  

6.2. Experiment Analysis 

6.2.1. Data Sets 

The 118-bus test system which is shown in Figure 6 and 300-bus test system are used 

in MATLAB to simulate the power system and get enough data for training and testing the 

anomaly nodes. Attackers might modify the PMU measurements in different ways 

depending on their purpose. For example, if the attacker would like to imitate a short-circuit 

fault, the bias from normal values need to be large enough. Opposite to this, if the attackers 

want to theft power, the bias need to be moderate to evade the power system detection 

mechanism. During the process of simulation using MATLAB, the possibility of all PMU 
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measurements is same no matter they measure which part of a system, and both 

magnitudes and angles could be modified. The attack of magnitudes is realized by adding 

random number generated by Gaussian distribution function with variation equals to 0 to the 

original value. The attack of angles is realized by intercepting random degree between -90 

to 90. The threshold of PMU needs to be defined after simulation to detect which PMU is 

attacked by adversaries.  

 

Figure 6 IEEE-118 Test System [61] 

6.2.2. Parameter Settings 

Pytorch is implemented to create the GCN structure. The number of hidden units is a 

very important parameter of the GCN model because it will affect the prediction precision. 
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Finally, the hidden layers are chosen by experimenting with different units and select the 

optimal one. In the experiment, for the specific data, the number of hidden units is chosen 

as [16, 32, 64, 128, 168] and analyze the change of precision and accuracy. The result is 

shown in Figure 7 and Figure 8. The horizontal axis represents the number of hidden units 

and the vertical axis represents the change of different metrics (accuracy and precision). It 

can be seen that the precision and accuracy is best when hidden units are 128. 

 

Figure 7 Accuracy VS Hidden Units for Testing Samples 
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Figure 8 Accuracy VS Hidden Units for Train Samples 

The loss and accuracy figures of training set are shown in Figure 9 and 10. The line 

becomes stable at epoch 200. As a result, the epoch is chosen to 1000. 

 
Figure 9 Epoch versus Loss 
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Figure 10 Epoch versus Accuracy 

80% and 20% of samples are chose as training dataset and testing dataset respectively. 

The parameters of GCN are set as follows: 

Table 3 The Hyperparameters of Graph Convolution Network 

Hyperparameters Setting number 

Learning rate 0.01 

Training epoch 1000 

The number of hidden units 128 

Weight decay 5e-4 

6.3. Detection Performance 
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6.3.1. Case Study I 

The performance of the proposed method is studied at first with the pre-mentioned 

hyperparameters of GCN. The IEEE-118 bus and IEEE-300 bus test power system are 

assessed, and the simulation results are shown in Table 4. 

It can be observed that the proposed method can develop a satisfactory detection 

accuracy from the table. The detection accuracy is about 90%-95% for both testing cases 

and training cases of IEEE-118 bus and IEEE-300 bus, and the mechanism works slightly 

better on 118-bus system because of the less complex topology. The accuracy of 300 bus 

is higher compared with 118 bus because 300 bus has more detailed information compared 

with 118 bus. It could be seen that the precision of both test systems is around 80% or higher 

in the testing cases. The overfitting is under control with the regularization and loss function 

introduced into the algorithm based on the comparison of detection results of testing and 

training cases. The detection time and training time of both test systems are also 

summarized in the table. The detection time could represent the overhead introduced by the 

proposed detection method, and the training time describes the complexity of the adopted 

GCN. The detection time increased a lot accompanying with the growing scalability of power 
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systems, therefore, the process is typically conducted offline. The precision and recall 

increase as the complexity of power system boost which means the graph convolution 

network works better under a huge power system. 

Table 4 The Detection Performance of the Proposed Method 

Indicators 118 bus 300 bus 

Training 

cases 

Accuracy 0.9545 0.9577 

Precision 0.8636 0.9700 

Recall 0.9048 0.9826 

F1 0.8837 0.9762 

Testing 

cases 

Accuracy 0.9070 0.9250 

Precision 0.8182 0.9444 

Recall 0.8182 0.9714 

F1 0.8182 0.9577 

 Training Time 10.0694s 14.6751s 

Detection Time 0.0114s 0.0147s 

6.3.2. Case study II 

 
                 (a)                                      (b) 

Figure 11 IEEE-14 Test Power System and Topology by Python 
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The IEEE-14 bus test power system is shown in Figure 11 (a). The system is drawn to 

its topology format using Pytorch as shown in Figure11 (b). The counting method of Python 

is from 0 to the specific one. Therefore, number "0" is used to present bus 1. The nodes 

installed PMUs is bus 2, bus 9, bus 10 and bus 13 which could realize observability of the 

system . In this experiment, bus 2 and bus 13 is defined as abnormal nodes, and the other 

two buses are defined as normal states. The proposed method begins to classify nodes 

based on the power system structure and adjacency matrix constructed by graph 

convolution neural network. And the result is shown as Figure 12. Red circles represent 

susceptible buses including abnormal PMUs. This function is used to help redetect normal 

buses which evade the detection of bad data detection module.  
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Figure 12 The Test Result of IEEE-14 Buses Power System 
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Chapter 7  

Conclusion and Future Work 

In this thesis, a power system is considered as a topology network structure. The reality 

that locations installing PMU is limited because of the high cost. And graph convolution 

neural network could utilize the graph structure to extract features and classify node. Based 

on these, the thesis combines the bad data detection module with a semi-supervised graph 

deep learning method GCN. The basic theory of graph convolution neural network is 

introduced at first with symmetric normalized Laplacian. Features of a system node is 

defined based on the power flow formulation. And then a physical synergy with state 

estimator to detect false data injection is created. IEEE-118, IEEE-300 test system is 

implemented to verify the efficiency of the proposed method. In both test systems, the 

proposed method could realize excellent attack detection performance. IEEE-14 bus is also 

used to show the result of node classification. That's to say, once the node connected with 

PMU violates the rule specifications, the PMU will be defined as abnormal state. These 

neighbor nodes could be classified to abnormal states based on the graph convolution 

neural network theory. The method is used to help bad data detection module find 

undetected abnormal nodes and stealthy attacks. Each node changes their own states 
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affected by neighbor nodes or distant relatives to find the final balance. The closer nodes 

are, the more effect those adjacent nodes give to a specific node.   

Graph convolution neural network is a promising method with many aspects to improve. 

The whole topology structure of a system needs to be drawn in advance to realize the 

purpose of nodes classification. Therefore, future research of this thesis could be divided 

into two parts. The first one will focus on finding methods to detect false data injection in 

parts of a system. Graph attention network (GAT) gives another way to analysis the topology 

structure of power system. The advantage of GAT is that only partial structure is considered. 

Therefore, GAT might be implemented for future research. The second one is about to 

consider the impedance of transmission lines into the structure. Besides, graph convolution 

network utilizes spatial structure of power system. Sequential data could be introduced into 

the detection mechanism using recursive neural network or gated convolution network.  
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