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ABSTRACT 

 

DEEP LEARNING-BASED RECONSTRUCTION OF VOLUMETRIC 

CT IMAGES OF VERTEBRAE FROM A SINGLE VIEW X-RAY IMAGE 

 by 

Mingren Xiang 

The University of Wisconsin-Milwaukee, 2020 
Under the Supervision of Professor Zeyun Yu 

 
 

Computed tomography is often used in medical fields today because it creates 

more detailed information for doctors than regular X-ray images. However, one major 

side effect is that patients may be exposed to a large dose of radiation because it takes 

hundreds of X-ray images to compute a CT scan. Another shortcoming is that patients 

are required to lay down on the CT machine for the scan, which is usually not the ideal 

position when diagnosing spine related issues such as cervical spondylosis and lumbar 

disc herniation. The prime motivation for this study is to reconstruct CT images using 

only one or a few X-ray images by using deep learning models trained to map projection 

radiographs to the corresponding 3D anatomy. My work demonstrates the feasibility of 

the approach with 20 Dicom sets of human vertebrae. The training set of the deep 

learning model consists of pairs of information, where each pair is made up of a 3D 

volume and a manually generated radiograph. The deep learning model for this study is 

CNN (Convolutional Neural Network) based encoder-decoder framework. The encoder 

converts high-dimensional data into embedded feature maps whereas the decoder 
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reconstructs high-dimensional 3D output we desire. After training, the network can take 

in single or multiple 2D x-ray images and output an array of intensity values that 

represent a 3D CT image. MATLAB 3D viewer is used to visualize the result. We 

performed 50 experiments, averaging 3 model training for each experiment. The results 

generated by the model have an acceptable accuracy but there is a lot of room for 

improvement. The best PSNR (Peak Signal-to-Noise Ratio) value we obtain is 17.34 

dB. While a state-of-the-art 3D reconstruction usually has a PSNR value above 30 dB. 

In addition, this paper summarizes the challenges and limitations that my teammates 

and I faced. I will also introduce methods that the team used to overcome these 

barriers. Since this is still an ongoing research project, the team will continue the work 

on improving the result. The end goal is to apply this study on real medical cases. 
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1 Introduction 

1.1 CT Reconstruction from X-rays 

CT scans can provide accurate three-dimensional information on the size and position 

of the target volume, and the position of any critical organs or structures of interest. As 

the name implied, computed tomography is an imaging modality that reconstructs a 3D 

volume from a set of X-rays, ranging from hundreds to thousands of 2D images 

captured in a full rotation of the X-ray apparatus around the body, This approach 

effectively transfer information from a 2D plane to a 3D view. This gives computed 

tomography some key advantage over regular X-rays. Because X-rays project every 

piece of information on a 2D plate. While bones are visible, soft tissues are often difficult 

to find. While in a CT 3D view. Everything from the bone to tissues is visible because 

there is no information overlap between them. That is why often computed tomography 

is used in medical fields today to accurately diagnosing diseases such as cancer 

because CT provides more detailed information and creates better views for doctors 

than regular X-ray images.  

While CT technology remains to be one of the groundbreaking diagnosis tools in 

medical fields. Inevitably there are a couple of shortcomings. One major side effect is 

that patients may be exposed to a large dose of radiation because it takes hundreds of 

X-ray images to compute a CT scan. Another shortcoming is that patients are required 

to lay down on the CT machine for the scan, which is usually not the ideal position when 

diagnosing spine-related issues such as cervical spondylosis and lumbar disc 

herniation. Also, CT is expensive, for both the patient and the hospital. According to a 

survey conducted by The Fiscal Times, the starting price for a CT scanner begins from 
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$65,000 for a refurbished one that will only give you small images quickly. A larger and 

brand-new CT scanner can go as high as $2.5 million [1]. Thus, hospitals and medicals 

centers in the undeveloped area like African countries might not afford a CT machine. 

One solution to overcome these disadvantages of CT scan is to digitally reconstruct a 

3D volume out of one or a few X-ray images, as taking X-ray images is much cheaper 

and requires less exposure to the radiation. The X-ray machine can also take pictures of 

the patient in any angels. If the reconstruction is successful, we can provide the doctors 

CT with 3D volumes without taking an actual CT scan. This is the prime motivation for 

this study 

The goal is to reconstruct CT images using only one or a few X-ray images. 3D 

reconstruction using sparse 2D data is always been a challenging task because when 

you project information from 3D to 2D. Information will inevitably be lost in the process. 

So usually it takes a large set of projections from different angles to reconstruct a CT 

volume to make up for the loss. The variety of angles of the projection is the key to the 

accuracy of the reconstruction as one 2D projection from a certain angle can only 

capture the limited amount of information of the original 3D volume. For opaque 

surfaces, 3D reconstruction with ultra-sparse 2D projection is nearly impossible since 

the information outside the projection angle will be completely lost and unknown to us. 

X-ray images, however, are different than opaque surfaces since the projection is 

transparent. As figure 1 shown below 
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Figure 1: X-ray imaging principle and Results [2] 

 If we take an X-ray image from an arbitrary angle. The images we get are transparent 

so information outside the projection angles is also present in this projection. Unlike an 

opaque surface, transparent projections map every information of the original 3D to a 

2D plane. The key is to find out the relationship of the mapping so we can reconstruct 

the 3D volume using just one projection. This is a very suitable task for a deep learning 

network, which is why we choose to rely on deep learning models to help us learn the 

mapping relationship, 

1.2 Deep learning  

With the exploration of data volume and faster computing power, deep learning has 

been widely used to replace the knowledge-based application with pre-defined logic. 

With a dataset that has a large enough volume, deep learning has shown state-of-the-

art results after sufficient training and tuning. The key objective for a deep learning 

model is to find the minimum value of the loss function, defined by us according to the 

end goal of the project. Usually, the loss function measures how far away from the 

model’s prediction to the true answer, called ground truth or targets. The method is 

called deep learning as the model consists of a deep neural network with millions of 
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variables on it. The term “learning” means we are constantly tuning these variables on 

the neural network to get closer to the ideal result. We use training datasets to drive 

these tuning processes of the variables on the network. This process is known as 

“learning ”  Training datasets usually consist of pairs of information. The input and the 

ground truth. By providing a large amount of training data, the model will learn the 

relationship between your input and ground truth. At first, the model will give random 

results but as the training goes on. The accuracy of the model will be higher. The 

common metrics to measure the training performance is training loss and training 

accuracy. Once training is done, we move on to the testing phase.  in the testing phase. 

We provide testing inputs that the model never encounters before. When we got an 

output from the model using the testing input. We then evaluate the performance of the 

model.  

As we know, finding the relationship of mapping between 3D volume and 2D projection 

could be a very challenging job. In recent years, more and more research group have 

turned their focus on training deep learning models to do 3D reconstruction. Many 

groups achieve results with very high accuracy. The next section will introduce previous 

work that inspires this thesis. We will briefly discuss the method they use and the results 

they obtain. Then the reaming chapter will give details information on the approach we 

take and discuss the results we got. This thesis will demonstrate that training deep 

learning models to reconstruct a 3D volume with ultra-sparse 2D projection is a feasible 

attempt given a deep neural network that has a large number of filters and a very large 

dataset to train on. In general, deep learning can help us solves two types of problem. 

Classification and regression. Classification is to classify a given input into two or 
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multiple predefined categories. While in the regression problems, there are no 

predefined categories. Regression gives you an output based on your input. There are 

relationships that you can map between input and output. Such as linear regression. 

The relationship could be mapped by a linear equation. So, our problem falls into the 

fields of regression. Because The key is to our problem is for the deep learning model to 

learn the mapping between 2D X-ray to its 3D voxel value and position. Unlike simple 

regression problems, the mapping is much more complex and cannot be represented by 

a set of functions. The following section would introduce and analyze the relationship 

between our input and the prediction.   
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2 Previous Work 

In this section, we will introduce previous work done by other researchers in the past 

who inspire our research on the topic of 3D CT reconstruction. Section 2.1 will list some 

of the traditional methods and section 2.2 focus on reconstruction done by training 

various deep learning models with different datasets.  

2.1 Traditional Method on CT reconstruction 

As discussed in the introduction section, 3D reconstruction from ultra-sparse 2D images 

is near impossible. It was not until recent years when researchers start to have some 

ground-breaking results in this field. One of the earliest works on CT reconstruction on 

single 2D projections uses statistical shaped analysis [3]. Novosad et al [4] and. 

Lamecker et al [5] both explored to use a statistical shaped model to reconstruct CT 

images using very few X-ray projections. The core logic of their works is an algorithm 

that tries to optimize a similarity measure/ This measure is meant to assess the 

difference between projections of the X-ray images and the shape of the 3D volume. As 

Novosad et al [4] described, they tried to measure the distance between the silhouettes 

of the object in the projections according to their observations from the experiments. In 

2014, Karade and Ravi [6] prosed a new algorithm to reconfigure a 3D template surface 

mesh model to match the bone shape in orthogonal radiographs. The algorithm is also 

based on a statistical shaped model. Karade and Ravi then introduce Laplacian surface 

deformation trying to enhance their 3D model template and obtain a better result. All of 

these previous works provide very accurate results. But one common limitation among 

this traditional method is that a deep and large amount of knowledge of the 3D shapes 

and silhouettes of the object is required. If the shapes and silhouettes are lost or 
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changed. Then the result will be skewed. So, this method might be ill-conditioned. 

Furthermore, the result is very sensitive to the quality of the input data. For example, the 

model can perform well with a normal piece of the femur but if the femur is fractured or 

deformed. Then the accuracy will drop dramatically that the results obtained will not be 

useful in real-life medical practices. Reconstruction using deep learning models can 

overcome this limitation if enough fractured or deformed examples are included in the 

training dataset with the normal bones. 

2.2 CT Reconstruction using Deep Learning 

Both Deep Learning [11] and CT reconstruction with ultra-sparse 2D X-ray are relatively 

new fields in the computer graphics community. Yet deep learning is taking over as the 

dominating method for research in the computer graphics community such as image 

classification, object detection, computer vision, and 3D reconstruction. As the deep 

learning community grows rapidly, there are new networks published by researchers 

every day such as U-Net [12] and ResNet [13]. These networks serve a different 

purpose but one common feature among all of them is that they are all CNN 

(Convolutional Neural Network) based network There are three key aspects of CNN, 

namely sparse interaction, parameter sharing, and equivalent representation [13]. 

Figure 2 shows an example of the CNN network. 
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Figure 2: CNN Architecture 

One of the key advantages of CNN compare to a fully connected network is that CNN 

can achieve a higher volume of parameters with less spatial and computational 

recourses, which is very important for the image-related task since constructing a deep 

learning network for such a task is usually computationally expensive.  

Previous work on 3D reconstruction with deep learning construct different models to fit 

their data. One common feature among all of the work published is that the deep 

learning network follows a based encoder-decoder framework, where the encoder 

converts high dimensional data into feature mappings where information is embedded in 

the projections. The decoder converts the feature maps back to 3D shape so the output 

of the network is the volume we desired   Wang et al [7] introduced a network to 

enhances the resolution of the 3D volume. The group constructed a hybrid framework 

that combines two CNN based network. The first one being 3D encoder-decoder 

Generative Adversarial Network (3D-ED-GAN). The second one is a Long-term 

Recurrent Convolutional Network (LRCN). The 3D-ED-GAN is used to construct the 
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overall 3D shape and the goal of LRCN is to construct and finalize the details. While the 

work is not reconstructing 2D from 3D. The work serves as a proof of concept that an 

encoder-decoder framework can work with a large volume of 3D data and generating a 

high-resolution result. Henzler et al [8] introduced another CNN-based encoder-decoder 

framework that uses skip connection [12] and residual learning [12]. The group used 

cranial 2D X-rays and 3D CT of various mammalian species as training data. Only one 

projection is needed for the network to construct a promising result. Xingde et al 

promised a solution to construct 3D volume from 2 X-ray of human Chest images. They 

named the network X2CT-GAN. The unique approach of X2CT-GAN is that for each 

input data, a separate encoder is used rather than stacking input together as one, which 

is the mainstream way of dealing with multiple inputs. The result presented is very 

accurate, but a separate encoder is needed for every input. The network ends up being 

huge and it requires large commuting resources for training.  

Among all previous work examined by us, Shen et al [2] at Stanford University have the 

best result, the PSNR (Peak Signal-to-Noise Ratio) [15] value is above 30 dB while only 

using a single projection as the input. Our project is largely based on the approach they 

were taking. We implement the network introduced in this paper and used our dataset. 

More details will be introduced in the proceeding sections 
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3 Data Preparation 

3.1 Raw Data 

Data preparation is the most important step in a deep learning project. As the quantity 

and quality of the dataset will dictate the performance of the model.  We started this 

project using two Oral CT set as a proof of concept. One for training and another one for 

testing We quickly realized that a much bigger dataset is needed to have more robust 

results. The raw data we eventually choose is 10 sets of lumbar spine CT images 

provided by my advisor, Dr. Zeyun Yu. These CT sets are all DICOM format. Below is 

one of the raw data we use. The visualization is done by ImageJ 3D volume viewer.  

 

Figure 3: lumbar spine visualization from different view angles 

 Figure 3 shows the different views of one of the lumbar spine datasets. The left one is 

the view along the z-axis facing the XY plane. The middle picture is the view along the 

y-axis facing the XZ plane and the one on the right is the view along the x-axis facing 

the YZ plane. A typical range of the intensity of this dataset is from -10 to 2500. The 

smaller the intensity value, the darker it is on the image. We can observe that bone 

structures have a much higher intensity than the tissues and organs thus appears to be 
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very bright in the images. This is ideal for us since our goal is to reconstruct bone 

structure so images with strong contrast are a good start. The challenge of this dataset 

and any other CT images is that intensity values are not evenly distributed. There are 

more data points in the XY plane and far fewer data points along the z-axis. So, the 

spacing between the voxels along the z-axis turns out to be bigger than the distance on 

the XY plane. Section 5 will introduce the method we use for post-processing to solve 

this issue.  

At the beginning of this project, we tried to use the original raw data for training but 

quickly found out that data preprocessing is needed to fit our needs since we have 

limited resources and computing power to do the training. There are two main barriers 

to stop us from using the original DICOM data 

• The raw lumbar spine images contain too many details for us to reconstruct. 

Since we only have 10 datasets. It’s not a feasible approach to train a deep 

learning model to learn how to reconstruct the whole lumbar spine with such 

limited datasets.  

• The original DICOM set is too big to fit in our network for training. The single 

DICOM slice usually has a size of 600 KB. There are at least 250 slices in one 

DICOM CT set, which means if we were to use the original CT volume as the 

ground truth for training. Each ground truth will be 150 MB. Given we usually 

trained hundreds of input pairs for training. Our GPU simply cannot handle this 

data stream.   

The solution for these barriers is data segmentation where we break down the original 

CT set to smaller and management pieces. The details will be introduced in section 3.2 
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3.2 Data Segmentation as the Ground Truth  

We know our ROI (Regin of Interest) is the spine. More specifically, the individual 

vertebrae on the spine. So, we decide to segment the individual vertebrae out as a new 

volume for ground truth. This decision marked the fundamental steps for this project. 

The approach to break down the original CT set into smaller and management pieces 

effectively solves the two barriers mention above and give us other advantages 

• By segmenting the vertebrae, we illuminate the unwanted details in the original 

images. The new volume we get has far less noise from tissues and organs as 

we just focus on the vertebrae itself 

• The size of the new volume is significantly smaller than the original volume. 

• We effectively create more training data by segmenting the vertebras, as each 

dataset contains at least 5 vertebras to work with. We increase our training 

ground truth from 10 to 50 

To implement this idea. Our first approach is to write scripts to automate this process. 

The idea is we sample data points on the spinal canal. The canal itself has a lower 

intensity value in the image. It’s also located in the center of the spine sounded by 

bones, so it is easy to locate it. Once data sampling is done. We apply 3D cubic spline 

[16] to sketch the curve of the canal. Then with every data point on the curve, we create 

a plane that’s in the direction of the tangent line of the curve. Then compute the average 

intensity on the curve and plot the result as a graph. The result is shown in Figure 4 
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Figure 4: intensity change along the curve to indicate vertebra position 

As Figure 4 shows, you can find vertebras in between the two local minimum of the 

graph. Once the location is found, we can cut the vertebras along the direction of the 

tangent line of the curve. This idea is significant since the human spine is not a straight 

line. Capturing the intensity along the curve is necessary for us to get accurate results. 

For timing reasons, the above implementation plan was not complete in time so we 

eventually choose to segment the vertebra manually. As shown in Figure 5, we 

manually choose our region of interest and create arrays to store the intensity values of 

the individual vertebras. We repeat this manual process for every dataset and 

eventually get 50 vertebras as our ground truth. Now that the ground truth is ready. The 

next section will introduce how we obtain X-ray images out of these CT volumes to use 

as the training input 
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Figure 5: Manual segmentation 

Figure 7 shows the 3D view of the result we get. We use these vertebrae as our ground 

truth for the training. The visualization is implemented by MATLAB volume viewer 

 

Figure 6: Vertebra visualization 

3.3 2D Projection as the training input   

Since the only data we have at hand is CT volumes, we must manually compute X-ray 

images out of these CT images to use as the training input. Though 3D reconstruction 

from 2D is a changing task, the reverse process is very straight forward. Milickovic et al 

[10] introduced a ray-tracing method to compute DDR (digitally reconstructed 
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radiographs). The common method for computing projection using ray tracing is to 

either choose the maximum intensity or the average intensity along the ray and project 

the value as the 2D radiographs. We use MATLAB package to implement an average 

ray-tracing method to compute our X-ray images. We also use MATLAB to rotate the 3D 

object while keeping the sources of the average ray fixed. By doing that we can obtain 

projections from any angles, Figure 7 shows some of the X-ray images we computed. 

We have to resize the X-ray to 128 * 128 and convert the images to a PNG file with an 

intensity range from 0 to 255 to fit in our training networks. The reason will be explained 

the Section 7.2 limitations. Also, since the distribution of data points in the 3D volume is 

not even, the quality of the X-rays various depending on what angles we take the 

projection. Usually, we find X-ray images projected along the x-axis tend to have the 

best quality  
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Figure 7: Manually Computed X-ray images 
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4 Deep Learning Model 

4.1 CNN Based Encoder-Decoder framework  

Our Deep learning model is implemented based on the network presented by Shen et al 

[2]. The model is publicly available on GitHub written in Pytorch. We use it as our base 

and implement the network using Keras. Some details are changed in the network to fit 

our needs. The overall structure is shown in Figure 8: Part a is the 2D input, in this case 

it is the manually created projection of a vertebra CT volume. Part b is the 

representation network, Part c is the transformation network, part d is the generation 

network and finally, e is the 3D volumetric image that represents the network’s 

prediction. The model is s CNN based encoder-decoder framework.  All parts of this 

model will be introduced in the following sections 

 

Figure 8: Deep Learning Model Overview [2] 
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4.2 Representation Network 

The representation network is the encoder part of this network. This network takes the 

2D input data as the sources and outputs the 2D feature map to the transformation 

network. There is no shape transformation in this network. The functionality of this 

network is to convert the original input to the embedded feature maps while 

downsampling the input data. The basic building block for this network is 2D convolution 

layers and 2D batch normalization layers. Skip connection is implemented to enhance 

the learning of the feature maps at each layer as the skip connection combined the 

feature map learned from the previous layer with the current layer. The network can 

take in a single or multiple X-ray projections as input. When multiple projections are 

used to feed in the network. The first layer of the representation network will always try 

to convert it to the same feature map by adjusting the filter sizes of the convolutional 

layers. Thus, no matter how many inputs we get. As long as the size of the images is 

the same, we will get the prediction with the same size.  

4.3 Transformation Network 

This transformation network is where this model is different from the regular 2D to 2D 

encoder-decoder framework. We can break down this layer into three parts 

• 2D feature maps learning layer: A filter size of 1*1 is applied in this convolutional 

layer so the size of the feature map does not change. The shape of the feature 

map at this point is still 2D 

• 2D to 3D transformation layer: This layer takes in the 2D feature maps as the 

input and used the transformation function to transfer 2D feature maps to a 3D 

representation. There is no learning parameter present in this layer 
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• 3D feature maps learning layer: A filter size of 1*1*1 is applied in this 

deconvolutional layer to learn the 3D representation of the feature map 

transferred by the previous layer. The shape and sizes of the 3D feature maps 

remain unchanged. 

4.4 Generation Network 

This layer is the decoder version of the model. It takes the 3D feature maps from the 

transformation network as its input and outputs the final 3D volumetric array with 

intensity values as the network’s prediction. The functionality of this network is to 

convert the 3D feature maps to 3D volume while upsampling the data to match the 

desire 3D shape and size. The basic building block for this network are 3D convolution 

layers and 3D batch normalization layers 

4.5 Loss Function 

We can view the process of deep learning as an optimization problem. Deep learning 

networks use data-driven parameters to optimize a loss function specified by the user. 

The goal is to minimize the loss function. In theory, if the production is perfect. Then 

loss function will have a value of 0. In our case, we want to measure the difference 

between our prediction and the ground truth. So mean square error becomes our first 

choice since it computes the differences mentioned above for every voxel. So the 

minimum value for MSE will be 0 if our prediction matches the ground truth 100%. The 

figure below shows the equation of MSE. 
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Figure 9: MSE Equation [17] 

In our case, n is the number of voxels in the 3D volume, Y values will be the observed 

and predicted intensity values respectfully. MSE is very commonly used in regression 

problems as the ground truth and the prediction are often numerical types so computing 

the difference between them is a straightforward yet very effective way to measure 

accuracy.  
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5 Model Training Details 

5.1 Optimizing the model  

As the time I am writing this thesis, the team has conducted  50 different experiments 

on this project. We focus on optimizing the network in the early stage of our 

experiments such as adjust the skip connection and adding drop out layer to prevent 

overfitting. We adjust the learning rate and implement the auto save checkpoints feature 

so the best performance network is saved as a checkpoint in a training  

5.2 Training with different input 

Our model in the earlier version can only take one X-ray image as the training input at a 

time. Midway through our project, we adjust our model to have the ability to take 

multiple inputs at once. Meanwhile, we also implement 3D object rotation in MATLAB so 

we can take projection from any angle. The focus shift from adjusting the network to 

change training input. We tried to experiment with three different combinations: Using 

projections along the x-axis only, using projection along the z-axis only and using 

projections along both the x-axis and z-axis. The training result is shown in section 6,1  

5.3 Training platform 

In the early stage of the experiment, the model was trained on the NVIDIA® GeForce® 

RTX 2080 Ti graphics card. This GPU has 12 GB of memory, which is not enough to 

train the network we build so we eventually move on to Google Colab professional 

version since Google offers a higher GPU Memory.  
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5.4 Training time 

We conduct 50 experiments on this project, averaging 3 model training for each 

experiment. The average training times vary from 12 hours to a day. The total effort on 

model training in this project is roughly 2,400 hours 
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6 Result 

In section 6.1, the training results of various experiments explained in section 5.2 are 

displayed in three separate tables. Section 6.2 shows the ground truth of one test 

vertebrae and three predictions generated by models that have the highest PSNR 

value.  

6.1 Training Result  

Table 1:Training dataset containing x and z axes projections 

Exp 

Number 

Number of projections 

used for training 

Number of 

epochs 

Training Loss Validation Loss 

35 360 52 0.0028 0.0049 

36 720 86 0.0047 0.0057 

37 216 54 0.0023 0.0027 

38 504 26 0.0029 0.0035 

 

 

Figure 10: Loss curve for x and z axes projections 
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Table 2:Training dataset containing x-axis projections only 

Exp 

Number 

Number of projections 

used for training 

Number of 

epochs 

Training Loss Validation Loss 

39 360 86 0.0050 0.0057 

40 256 26 0.0039 0.0054 

41 180 30 0.0035 0.0052 

42 108 70 0.0029 0.0044 

 

 

Figure 11:Loss curve for x-axis projections 

 

Table 3:Training dataset containing z-axis projections only 

Exp 

Number 

Number of projections 

used for training 

Number of 

epochs 

Training Loss Validation Loss 

43 360 23 0.0047 0.1120 

44 256 27 0.0037 0.0077 
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45 180 30 0.0048 0.0067 

46 108 22 0.0031 0.0059 

 

 

Figure 12:Loss curve for z-axis projections 

Key observation: 

• Training experiments with fewer projections tend to perform better than the ones 

with more projections. This is because we carefully choose the X-rays with the 

best quality for training. As the number of projections becomes larger. Inevitably 

there will be X-rays with worse quality. The reason for the quality variance is 

explained in section 3.3. This observation shows we don’t have enough high-

quality data at hands so as the dataset gets larger, our result is skewed by noisy 

data 
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• Training experiments with X-rays projected along the x-axis have the best 

performance among the three groups. As mentioned in section 3.3, projection 

along the x-axis has the best quality. So training results with the x-axis projection 

have better performance than the other groups. This observation further proves 

that high-quality data is the key for a better model performance in deep learning 

project  

6.2 Ground truth vs Prediction  

 

Figure 13: Ground Truth 
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Figure 14: Prediction 1, PSMR: 12.87 

 

Figure 15: Production 2, PSNR: 14.74 
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Figure 16: Production 3, PSNR: 13.05 

 

PSNR (Peak Signal-to-Noise) [18], the equation is shown in the below figured, where 

MAXf is the maximum intensity of an image. MSE here is mean square error, the 

equation shown in figure 9. PSNR is a common matrix for accessing the image quality 

of the target image compare to the original image, which is an ideal matrix to evaluate 

the quality of image reconstruction. Another reason we choose PSNR is it’s based on 

MSE, which we use as our loss function. The ideal range for PSNR for the image 

reconstruction is above 30 

 

Figure 17: PSNR Equation [18] 
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7 Conclusion 

7.1 Proof of Concept  

Based on the evaluation of the result, it is clear that the result can not be applied to real 

medical applications since the accuracy is too low. None the less, this study proves the 

feasibility of the approach to use deep learning to reconstruct CT volume given ultra-

sparse X-rays as input. One of the biggest observations we got from this project is that 

a large amount of high-quality training data is the key to better model performance in 

deep learning projects.  

7.2 Limitations 

This section will introduce our biggest challenge while doing this research, namely, 

limitation on computing power. Based on our experiences with this project. Training 

deep learning models that involve 3D volume will require a significant amount of 

computing resources. Our single RTX 2080 ti GPU can not run the network so we 

switched to Google Colab, the problem with Google Colab is that it limit the training time 

to be 24 hours maximum per training. This limitation significantly affects our training 

result as training usually requires days or even weeks for the learning to converge to a 

reasonable result. So our challenge is that either we use our GPU to have unlimited 

training time but we have to shrink the network and downsample the inputs. Which will 

hurt the performance, or we use Google Colab to have a better GPU memory but are 

limited on training time, It is estimated by our team that if we desire results that is 

acceptable for medical use cases. Then a GPU of memory at least 16 GB is required, 

with training time being up to a week 
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7.3 Future Work 

This is an ongoing project at the UWM Visualization Lab. The team finds a new dataset 

that has hundreds of chest CT data, so we are moving on to a larger dataset for 

training. The team is also exploring different methods for projecting X-ray images from 

CT volume so the image quality could be better. As we know the input quality dominates 

the model performance. Lastly, the team is planning to buy a new station with a better 

GPU to eliminate the limitation on the computing resources.  With all these 

improvements, the hope is one day we can apply this project to help Doctors so that 

they only need to take a single  X-ray image and we can provide an acceptable CT scan 

using our model.  
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