Chapter 1: Part A: A Unique Approach of Preparing 3,3-Disubstituted Oxindoles from Acyclic Tetrasubstituted Aldehydes: Total Synthesis of (-)-Coerulescine and (-)-Coixspirolactam A, Chapter 1: Part B: Synthetic Scope of Brønsted Acid Catalyzed Reactions of Carbonyl Compounds and Ethyl Diazoacetate,

Md Shahnawaz Ali
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

Part of the Organic Chemistry Commons

Recommended Citation
https://dc.uwm.edu/etd/2638

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact scholarlycommunicationteam-group@uwm.edu.
CHAPTER 1: PART 1: A UNIQUE APPROACH OF PREPARING 3,3-DISUBSTITUTED OXINDOLES FROM ACYCLIC TETRASUBSTITUTED ALDEHYDES: TOTAL SYNTHESIS OF (-)-COERULESCINE AND (-)-COIXSPIROLACTAM A

CHAPTER 1: PART 2: SYNTHETIC SCOPE OF BRØNSTED ACID CATALYZED REACTIONS OF CARBONYL COMPOUNDS AND ETHYL DIAZOACETATE

CHAPTER 2: INVESTIGATION OF THE C2-ALKYLATION OF 1-(1H-INDOL-3-YL)-N,N-DIMETHYLMETHANAMINE

by

Md Shahnawaz Ali

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry at The University of Wisconsin-Milwaukee

May 2021
ABSTRACT

CHAPTER 1: PART A: A UNIQUE APPROACH OF PREPARING 3,3-DISUBSTITUTED OXINDOLES FROM ACYCLIC TETRASUBSTITUTED ALDEHYDES: TOTAL SYNTHESIS OF (-)-COERULESCINE AND (-)-COIXSPIROLACTAM A

by

Md Shahnawaz Ali

The University of Wisconsin-Milwaukee, 2021
Under the Supervision of Professor M. Mahmun Hossain

(-)-Coerulescine and (-)-coixspirolactam A, two naturally occurring compounds characterized with an all-carbon quaternary center containing a spirooxindole, have been synthesized asymmetrically. The key feature of their total synthesis involves

a novel rational construction of the chiral 3,3-disubstituted oxindole core from the acyclic chiral tetrasubstituted aldehyde. The later scaffold was prepared in high enantioselectivity (up to 86%) from the ethyl 3-hydroxy-2-(2-nitrophenyl)acrylate 1 by exploring both intermolecular and intramolecular Pd-mediated asymmetric
allylic allylations (Pd-AAA). A through optimization of these approaches is described in this thesis.

CHAPTER 1: PART B: SYNTHETIC SCOPE OF BRØNSTED ACID CATALYZED REACTIONS OF CARBONYL COMPOUNDS AND ETHYL DIAZOACETATE

The comprehensive study of the reactions of carbonyl compounds and ethyl diazoacetate in the presence of a Brønsted acid catalyst is described. In this, a broad range of 3-oxo esters were synthesized from a variety of ketones, specifically benzophenones and aliphatic ketones. For the diaryl ketones, we have characterized two inseparable products of migration by two-dimensional nuclear magnetic resonance spectroscopy (2D-NMR) and calculated the ratio of their relative migratory tendencies. However, the symmetric and nonsymmetrical aliphatic ketones provided the higher migration for relatively longer alkyl chains length. In case of the aliphatic aldehydes, we got exclusively the expected β-keto ester by a 1,2-hydride shift.

CHAPTER 2: INVESTIGATION OF THE C2-ALKYLATION OF 1-(1H-INDOL-3-YL)-N,N-DIMETHYLMETHANAMINE

Indole derivatives can be conveniently alkylated at the C2 position by choosing appropriate N-protecting group and appropriate base. However, 1-(1H-indol-3-yl)-
N,N-dimethylmethanamine (commercially named as gramine) is also limited to that restricted choice of a protecting group for such alkylation. Herein we explore a the lithiation of gramine with different protecting groups (such as Ms, Ts, Me, TIPS etc.) on the N-heteroatom and investigate the alkylation at the C-2 position by trapping the C-2 lithio species with a variety of electrophiles such as methyl iodide, benzyl bromide, prenyl bromide, allyl bromide, etc.
To
my parents
my wife
and especially my son
TABLES OF CONTENTS

Chapter 1: A Unique Approach of Preparing 3,3-Disubstituted Oxindoles from Acyclic Tetrasubstituted Aldehydes Using Pd-AAA: Total Synthesis of (-)-Coerulescine and (-)-Coixspirolactam A (Part-A)

1.1 Part 1: Introduction
1.1.1 Importance of 3,3-disubstituted oxindoles and their asymmetric synthesis
1.1.2 Useful synthesis of natural and bioactive compounds containing the 3,3-disubstituted oxindole
2.1 Strategies for the catalytic asymmetric synthesis of 3,3-disubstituted oxindoles
2.1.1 Intramolecular Heck Coupling/modified coupling
2.1.2 Direct functionalization
2.1.2.1 Organocatalytic functionalization of C3-H
2.1.2.2 Halogenation
2.1.2.2.a Fluorination
2.1.2.2.b Chlorination
2.1.2.3 Sulfenylation
2.1.2.4 Hydroxylation
2.1.3 Nucleophilic addition to the Isatin moiety
2.1.4 Other approaches
2.1.4.1 1,4-Michael addition
2.1.4.2 Metal carbenoid assisted C-C bond formation
2.1.4.3 Asymmetric Strecker reaction
2.1.4.5 Desymmetrization of diyne
3.1 Part 2: Introduction (Pd-AAA)
3.1.1 General mechanism of regio and stereospecific Pd-catalyzed asymmetric allylation 33
3.1.2 General consideration for optimizing reaction procedure for Pd-AAA 35
3.1.3 Approaches involved in stereocontrol interactions of Pd-AAA 38
3.1.3.1 Stereo control on prochiral electrophiles 40
3.1.3.2 Stereo control on prochiral nucleophiles in Pd-AAA 41
3.1.3.2.1 Intermolecular alkylation of prochiral nucleophiles 46
3.1.3.2.2 Intramolecular alkylation of prochiral nucleophiles 49
3.1.3.2.2. A Pd-Catalyzed decarboxylative asymmetric allylic alkylation (Pd-DAAA) 56
3.1.3.2.2. B Asymmetric Claisen rearrangement as a route to quaternary stereocenter 64
3.1.4 Other approaches 69

4.1 Part 3: Introduction to Spirooxindole pyrolidine 70
4.1.1 Synthesis of (-)-Coerulescine: (by Denishefsky et al) 72
4.1.2 Synthesis of (-)-Coerulescine: (by Hayashi et al) 73
4.1.3 Synthesis of (-)-Coerulescine: (by Hayashi et al) 75
4.1.4 Synthesis of (-)-Coerulescine: (by Park et al) 77

4.2.1 Part 4: Introduction to Spirooxindole lactone 79
4.2.2 Different approaches for the synthesis of spirooxindole lactone 80
4.2.3 Previous synthesis Coixspirolactam A 83

1.2 Results and Discussion 85
1.2.1 Optimization study of intermolecular Pd -AAA of prochiral 2-nitro-3-hydroxy phenyl acrylate 85
1.2.2 Optimization study of intramolecular Pd mediated decarboxylative asymmetric alkylation (Pd-DAAA) 101
1.2.3 Optimization study of intramolecular Pd-mediated Claisen rearrangement 105
1.2.4 Optimization of synthetic steps involving chiral 3,3-disubstituted oxindole 109

1.3 General methods and experimental 119
1.3.1 General procedure for the intermolecular asymmetric alkylation 120
1.3.2 General procedure for the O-allylation of prochiral enol acrylate 122
1.3.3 General procedure for the Pd-mediated rearrangement of O-allylated enol acrylate 124
1.3.4 General procedure for the O-allylation of prochiral enol acrylate 125
1.3.5 General procedure for the Pd-mediated rearrangement of O-carboxy allylated enol acrylate 127
CHAPTER 1: SYNTHETIC SCOPE OF BRØNSTED ACID CATALYZED REACTIONS OF CARBONYL COMPOUNDS AND ETHYL DIAZOACETATE (PART- B)

5.1 Introduction 160
5.1.1 Synthetic approaches for the preparation of 3-hydroxy aryl acrylates 161
5.1.1.1 Iron Lewis acid catalyzed reactions 161
5.1.1.2 Bronsted acid catalyzed reactions 164
5.1.1.3 Organic base catalysed reaction 166
5.2 Application of hydroxy acrylates from the present synthetic point of view 167
5.2.1 Synthesis of 2-and 4-quinolinone derivatives 167
5.2.2 Synthesis of pyrimidine/pyrimidinone type compounds 168
5.2.3 Synthesis of uracil type compounds 169
5.2.4 Synthesis of Vinyl derivatives 170
5.2.5 Synthesis of chromenone crown ether 171
5.3 Results and discussion 173
5.3.1 Development of benzophenone derived acrylates 173
5.3.2 Development of aliphatic carbonyl derived acrylates 178
5.4 General methods and experimental 180
5.4.1 General Procedure for the one-pot synthesis of 3-oxo-esters 183
5.5 References 188

CHAPTER 1: EXPLORING 18-CROWN-6-ETHER COMPLEX AS A BRONSTED ACID CATALYST (PART- C)

6.1 Introduction 197
6.2 Results and Discussion 200
6.3 General procedure for the synthesis of 3-hydroxy arylacrylates 203
6.4 References 204

CHAPTER 2: INVESTIGATION OF C2-ALKYLATION OF N-PROTECTED GRAMINE

7.1 Introduction 206
7.1.1 Concepts on the C2-alkylation of Indole/ phenothiazine/N-carboxy protected indole 207
7.1.2 Precedence for C2-alkylation of BOC-protected gramine 210
7.2 Results and discussion 211
7.3 General methods and experimental 216
7.3.1 General procedure for the N-protection of gramine 216
7.3.2 General procedure for preparing N-protected 1H-indole-3-carboxaldehyde 219
7.3.3 General procedure for the reductive amination of N-protected 1H-indole-3-carbaldehyde 221
7.3.4 General procedure for C2 alkylation of gramine 222
7.4 References 226
APPENDICES 229
Appendix A: HPLC, HRMS and NMR data 229
Curriculum vitae 352
LIST OF TABLES

<table>
<thead>
<tr>
<th>Entry</th>
<th>Title of the table</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Solvent optimization studies for the Pd-AAA reaction on 3-hydroxy-2-nitrophenyl acrylate 1</td>
<td>88</td>
</tr>
<tr>
<td>Table 2</td>
<td>Optimization of ligands for intermolecular Pd-AAA reaction of compound 1</td>
<td>91</td>
</tr>
<tr>
<td>Table 3</td>
<td>Optimization of catalyst, ligand, and their loading for the intermolecular Pd-AAA reaction of compound 1</td>
<td>93</td>
</tr>
<tr>
<td>Table 4</td>
<td>Optimization of solvents with bases for the intermolecular Pd-AAA reaction of 1</td>
<td>94</td>
</tr>
<tr>
<td>Table 5</td>
<td>Optimization of additives for the intermolecular Pd-AAA reaction of compound 1</td>
<td>96</td>
</tr>
<tr>
<td>Table 6</td>
<td>Screening additives for intermolecular Pd-AAA reaction of 1 in different solvents</td>
<td>97</td>
</tr>
<tr>
<td>Table 7</td>
<td>Screening electrophile for intermolecular Pd-AAA reaction of 1</td>
<td>99</td>
</tr>
<tr>
<td>Table 8</td>
<td>Optimization studies for Pd-DAAA of O-carboxy alkylated Product 10</td>
<td>102</td>
</tr>
<tr>
<td>Table 9</td>
<td>Optimization studies for Claisen rearrangement of O-alkylated product 9</td>
<td>106</td>
</tr>
<tr>
<td>Table 10</td>
<td>Optimization reaction conditions for the oxidation of oxindole 4</td>
<td>112</td>
</tr>
<tr>
<td>Table 11</td>
<td>Optimization for the oxidation of Ms-protected oxindole 5</td>
<td>114</td>
</tr>
<tr>
<td>Table 12</td>
<td>Optimization of one-pot reductive amination cyclization of Ms-protected oxindole aldehyde 6</td>
<td>115</td>
</tr>
<tr>
<td>Table 13</td>
<td>Optimization results of effectivity of crown-ether complex A and B on promoting coupling between EDA and carbonyl compounds</td>
<td>200</td>
</tr>
</tbody>
</table>
LIST OF SCHEMES

<table>
<thead>
<tr>
<th>Scheme no</th>
<th>Scheme Description</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheme 1</td>
<td>Enantioselective Heck coupling of butenanilide</td>
<td>7</td>
</tr>
<tr>
<td>Scheme 2</td>
<td>Enantioselective tandem Heck cyclization of anilide</td>
<td>8</td>
</tr>
<tr>
<td>Scheme 3</td>
<td>Intramolecular coupling using NHC and modified NHC ligand-Pd catalyst pair</td>
<td>8</td>
</tr>
<tr>
<td>Scheme 4</td>
<td>Palladium catalyzed asymmetric intramolecular arylation of α-keto amides</td>
<td>9</td>
</tr>
<tr>
<td>Scheme 5</td>
<td>Iridium-catalyzed asymmetric intramolecular direct hydroarylation of α-keto amide</td>
<td>9</td>
</tr>
<tr>
<td>Scheme 6</td>
<td>First asymmetric PTC mediated alkylation of a 3-substituted oxindole</td>
<td>10</td>
</tr>
<tr>
<td>Scheme 7</td>
<td>Chiral triazolium salt catalyzed asymmetric alkylation of oxindoles</td>
<td>11</td>
</tr>
<tr>
<td>Scheme 8</td>
<td>Organocatalytic amination of oxindole with DIAD</td>
<td>12</td>
</tr>
<tr>
<td>Scheme 9</td>
<td>Hydroamination of oxindoles with nitrosobenzene</td>
<td>13</td>
</tr>
<tr>
<td>Scheme 10</td>
<td>Organocatalyzed fluorination of oxindoles</td>
<td>14</td>
</tr>
<tr>
<td>Scheme 11</td>
<td>Proposed catalytic cycle for the catalytic asymmetric organocatalyzed fluorination of oxindoles</td>
<td>15</td>
</tr>
<tr>
<td>Scheme 12</td>
<td>Organocatalytic chlorination of oxindoles using N-chlorosuccinimide (NCS)</td>
<td>16</td>
</tr>
<tr>
<td>Scheme 13</td>
<td>Sulfenylation (trifluoromethylthiolation) of 3-substituted oxindole using Bronsted base Catalysis</td>
<td>18</td>
</tr>
<tr>
<td>Scheme 14</td>
<td>Asymmetric hydroxylation of oxindole using various phase-transfer catalyst</td>
<td>20</td>
</tr>
<tr>
<td>Scheme 15</td>
<td>Pd catalyzed asymmetric alkylation for the synthesis of 3-hydroxy oxindole</td>
<td>22</td>
</tr>
<tr>
<td>Scheme 16</td>
<td>Catalytic asymmetric alkylation of the Isatin derivatives with arylboronic acid</td>
<td>23</td>
</tr>
<tr>
<td>Scheme 17</td>
<td>Decarboxylative addition of β-ketoacids to the Isatin derivatives catalyzed by Ytterbium</td>
<td>24</td>
</tr>
<tr>
<td>Scheme</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>18</td>
<td>Allylation, crotylation and reverse prenylation of Isatin derivatives using Ir catalyst</td>
<td>24</td>
</tr>
<tr>
<td>19</td>
<td>Diastereoconvergence for different substrates of N-protected oxindoles</td>
<td>26</td>
</tr>
<tr>
<td>20</td>
<td>Three component cascade reaction for the enantioselective synthesis of 3,3-disubstituted oxindole</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>Preliminary study of the Strecker reaction for N-aryl Isatin ketimines</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>Direct cyanidation using thiourea driven Cinchona mediated alkaloid catalyst</td>
<td>31</td>
</tr>
<tr>
<td>23</td>
<td>Asymmetric CuAAC reactions for the preparation of 3,3-disubstituted oxindole</td>
<td>32</td>
</tr>
<tr>
<td>24</td>
<td>Formation of stereocenters by Pd-AAA reaction</td>
<td>34</td>
</tr>
<tr>
<td>25</td>
<td>Mechanism of regio and stereospecific Pd-catalyzed asymmetric allylation</td>
<td>35</td>
</tr>
<tr>
<td>26</td>
<td>Modes of asymmetric induction by electrophile</td>
<td>36</td>
</tr>
<tr>
<td>27</td>
<td>Pd-AAA strategy for the synthesis of acyclic tetrasubstituted building blocks by using electrophilic isoprene monoepoxide</td>
<td>41</td>
</tr>
<tr>
<td>28</td>
<td>Mechanism of dynamic kinetic transformation (DYKAT) of isoprene monoepoxide</td>
<td>42</td>
</tr>
<tr>
<td>29</td>
<td>Cartoon model for wall and flap concept inducing regio and stereoselective AAA</td>
<td>42</td>
</tr>
<tr>
<td>30</td>
<td>Mechanistic pathways for Pd-AAA of isoprene monoepoxide</td>
<td>43</td>
</tr>
<tr>
<td>31</td>
<td>Synthesis of tertiary ether through the Pd-AAA of prochiral electrophile isoprene monoepoxide</td>
<td>44</td>
</tr>
<tr>
<td>32</td>
<td>Catalytic recognition of prochiral nucleophile (enolates)</td>
<td>46</td>
</tr>
<tr>
<td>33</td>
<td>Potential mechanism for the erosion of enolate stereochemistry</td>
<td>47</td>
</tr>
<tr>
<td>34</td>
<td>Reaction example shows the enolate erosion mechanism</td>
<td>47</td>
</tr>
<tr>
<td>35</td>
<td>Asymmetric allylation of a 1,3-diketone and an α-nitro ester by counterion recognition of a chiral phosphine ligand</td>
<td>49</td>
</tr>
</tbody>
</table>
Scheme 36 Pd/BINAP-catalyzed allylation of alpha-acetamido-beta-keto ester 50
Scheme 37 Pd Catalyzed Asymmetric Allylation of beta keto ester 51
Scheme 38 Direct alpha arylation of α-arylpropanals with allylic alcohols 52
Scheme 39 Typical features related to the triple catalytic activation 53
Scheme 40 Chiral counterion strategy for the cinnamylolation of α-nitro esters 54
Scheme 41 Enantiocontrol synthesis of acyclic quaternary carbon atoms from unprotected enol and its synthetic scope 55
Scheme 42 Pd-catalyzed Carroll rearrangement by Tsuji 56
Scheme 43 Palladium-catalyzed enantioselective decarboxylative asymmetric allylic alkylation of stereodefined acyclic enolates (by Marek et al) 57
Scheme 44 Synthesis of stereocontrolled carboxy allyl enolate 58
Scheme 45 Synthetic scope of the stereoconfined Pd-DAAA 59
Scheme 46 Pd-DAAA for carboxyallyl substrates (with selective scope) by Brian Stoltz 60
Scheme 47 Effect of enolate geometry on the asymmetric induction during Pd-DAAA 61
Scheme 48 Pd-DAAA of carboxy-allyl enol using the Trost ligand 62
Scheme 49 Pd-DAAA of N-acyl indole derived enol carbonate by using the Ty-PHOS ligand 63
Scheme 50 Remote stereo-control of the diastereoselective reaction 64
Scheme 51 First catalytic conversion of allyl amidates to carbamates 65
Scheme 52 Rare metal induced O-allylation and their further rearrangement 66
Scheme 53 Aluminum and Boron catalyzed O-allyl rearrangement for acyclic quaternary carbon formation 67
Scheme 54 Pd catalyzed rearrangement of O-allyl ether using the DACH-naphthyl Trost ligand 68
Scheme 55 Recent approaches for asymmetric induction using Rh, Cr and B 69
Scheme 56 Danishefsky synthesis of (S)-(−)-coerulescine 72
Scheme 57 Hayashi synthesis of (R)-(−)-Coerulescine 73
Scheme 58 Basai total synthesis of (+)-Coerulescine 75
Scheme 59 Park total synthesis of (S)-(−)-Coerulescine using PTC 77
Scheme 60 Different successful approaches for preparing lactone derivatives 81
Scheme 61 Synthesis of coixspirolactam A and the elucidation of its absolute configuration 83
Scheme 62 Retention of structural information during the asymmetric induction 86
Scheme 63 Screening the previously optimized reaction conditions 87
Scheme 64 Synthesis of carboxyallyl acrylate and the Pd-DAAA to form compound 2 101
Scheme 65 Synthesis of O-allylated enol 9 and the Pd induced rearrangement to form compound 2. 105
Scheme 66 Intermolecular vs intramolecular Pd-AAA 108
Scheme 67 Asymmetric synthesis of chiral 3,3-disubstituted oxindole 109
Scheme 68 Formation of 3,3-disubstituted indoline 111
Scheme 69 Proposed synthesis of (−)-coerulescine 112
Scheme 70 Attempted oxidation of 4 after TIPS protection and reductive amination cyclization 113
Scheme 71 Attempted oxidation of 4 after tosyl protection and reductive amination cyclization 113
Scheme 72 Attempted oxidation of 4 after mesityl protection 114
Scheme 73 One pot reductive amination cyclization to synthesize (−)-coerulescine 115
Scheme 74 Total Synthesis of (−)-coerulescine and (−)-coixspirolactam A 117
Scheme 75 Iron Lewis catalysed synthesis of 3-hydroxy aryl acrylate by Hossain et al 161
Scheme 76 Iron Lewis acid catalyzed synthesis of 3-hydroxy-2-aryl acrylate by Kirchner et al 162
Scheme 77 Role of commercially available Bronsted acid for the decomposition of 6

Scheme 78 First Bronsted acid catalyzed coupling of aromatic aldehydes and EDA by Hossain et al

Scheme 79 Organic base catalyzed formation of 3-hydroxy aryl acrylate by Wang et al

Scheme 80 Synthesis of 2-and 4-Quinolinone derivatives from 3-hydroxy arylacrylate

Scheme 81 Synthesis of pyrazolopyrimidinones from 3-hydroxyarylacrylate

Scheme 82 Synthetic application of 3-hydroxy arylacrylate 2 for preparing uracil derivatives

Scheme 83 Synthesis of thio vinyl derivatives from 3-hydroxy arylacrylate

Scheme 84 Synthesis of Chromenone-Crown Ethers from 3-hydroxy arylacrylate

Scheme 85 Formation of 3-hydroxy aryl acrylate/3-oxo-esters in presence of HBF4.OEt2 catalyst by 1,2-migration

Scheme 86 Synthetic scope and migratory aptitude of aryl-phenyl groups

Scheme 87 Migratory aptitude of alkyl-hydride Groups

Scheme 88 Preparation of 3-hydroxy-2-aryl acrylates from the reaction of aromatic aldehydes and EDA catalyzed by complex A and complex B

Scheme 89 Stabilization of the indole ring due to resonance

Scheme 90 C2 alkylation of the indole moiety after carboxy induce lithiation assistance

Scheme 91 C2 alkylation at the β-aliphatic position from the heteroatom (nitrogen)

Scheme 92 Precedence of C2-prenylation of BOC-protected gramine

Scheme 93 Protection of heteroatom nitrogen of gramine

Scheme 94 Two-step alternative route to prepare N-protected gramine

Scheme 95 C2-alkylation of N-protected gramine

Scheme 96 Deuteration study of N-tosyl and N-Me protected gramine
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure no</th>
<th>Description</th>
<th>Page no</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Privileged heterocyclic motifs contain oxindole core</td>
<td>1</td>
</tr>
<tr>
<td>Figure 2</td>
<td>Examples of some natural and nonnatural moieties synthesized from 3,3-disubstituted oxindoles</td>
<td>3</td>
</tr>
<tr>
<td>Figure 3</td>
<td>Strategies for the synthesis of 3,3-disubstituted oxindoles</td>
<td>6</td>
</tr>
<tr>
<td>Figure 4</td>
<td>Simplified working model of Ni-catalyst with oxindole framework</td>
<td>27</td>
</tr>
<tr>
<td>Figure 5</td>
<td>Examples of the variety of ligands widely used in Pd-AAA</td>
<td>37</td>
</tr>
<tr>
<td>Figure 6</td>
<td>Examples of some commercially source of Pd(0) as a catalyst</td>
<td>38</td>
</tr>
<tr>
<td>Figure 7</td>
<td>Examples for the structure of spirooxindole containing natural products</td>
<td>71</td>
</tr>
<tr>
<td>Figure 8</td>
<td>Representative natural products and bioactive molecules containing the spirooxindole lactone and lactams</td>
<td>79</td>
</tr>
<tr>
<td>Figure 9</td>
<td>Selected ligands for Pd-AAA of prochiral 2-nitro-3-hydroxy phenyl acrylate, 1</td>
<td>90</td>
</tr>
<tr>
<td>Figure 10</td>
<td>Synthetic scope of ketone derived acrylates for both natural and synthetic drug candidates</td>
<td>160</td>
</tr>
<tr>
<td>Figure 11</td>
<td>Newman projections of six possible rotamers (A-F) and the predicted intermediates</td>
<td>175</td>
</tr>
<tr>
<td>Figure 12</td>
<td>HMBC cross peak spectra for the products of para-methyl benzophenone</td>
<td>176</td>
</tr>
<tr>
<td>Figure 13</td>
<td>HMBC cross peak spectra for the products of para-methoxy benzophenone</td>
<td>177</td>
</tr>
<tr>
<td>Figure 14</td>
<td>Commercially available predominant isomers of dicyclohexyl-18-crown-6-ether complexes</td>
<td>198</td>
</tr>
<tr>
<td>Figure 15</td>
<td>Application of acrylate for the preparation of pharmaceutically important compounds</td>
<td>202</td>
</tr>
</tbody>
</table>
Figure 16 Important biologically active natural products containing C2-substituted indole moiety
ACKNOWLEDGEMENTS

At first, I would like to express my sincere gratitude to my supervisor, Professor M. Mahmun Hossain for his exceptional guidance, boundless support, and immense encouragement during the course of this work. He never left me unattended and pursued me to make things happen. He taught me how to learn and made me an independent researcher.

My heartfelt appreciation and respect go to my PhD committee members Professor James M. Cook, A. Andy Pacheco, Professor Mark Dietz, and Professor Xiaohua Peng for their careful observations, suggestions, and motivation during my research. I would also like to thank Dr. F. Holger Foersterling and Dr. Anna Banko for their continuous support with NMR and HRMS analyses. I would also like to thank Dr. Mizzanoor Rahaman, Dr. S. A. Asad, Marcus Jellen and my current group members Khorshada Jahan, Jawad Bin Belayet, AFM Tawheedur Rahman and Tye Seideman for their critical help and participation in fruitful discussions.

Finally, I wish to thank the Graduate School (UWM) for financial support and the office staff of the Department of Chemistry and Biochemistry (UWM) for their assistance during this work. Last but not least, my wholehearted thanks go to my family members without whom it would have been impossible for me. My parents, wife and my son who have supported me from every direction beyond their ability and helped me achieve Ph.D.
1.1 Introduction

1.1.1 Importance of 3,3-disubstituted oxindoles and their asymmetric synthesis

The Chiral 3,3-disubstituted-2-oxindole frameworks carrying a tetrasubstituted carbon stereocenter at the 3-position are present in several alkaloid natural products. This privileged heterocyclic motif makes up the core of a large family of bioactive natural products and a series of pharmaceutically active compounds (Figure 1). [1,2] One specific molecular architecture of this class of compounds encompasses the spiro[pyrrolidine-3,3’-oxindole] ring system that exists

Figure 1 Privileged heterocyclic motifs contain oxindole core
in a number of spirooxindole alkaloids such as 1–5. Such oxindoles were first isolated from the family of plants termed the Apocynaceae and Rubiaceae and characterized by a spirofusion to a pyrrolidine ring at the 3-position of the oxindole core. Another significantly explored family of 3-substituted 3-hydroxyoxindole units covers a large variety of alkaloids and natural products exemplified by 6-9 (Figure 1). Moreover, 3-substituted 3-amino oxindoles are very useful because of the presence of this structure in pharmaceutical candidates, [3a, 3b] such as the potent gastrin/CCK-B receptor antagonist AG-041R 12 and the vasopressin V1b receptor antagonist SSR-149415. The existence of sulfur-containing tetrasubstituted carbon stereocenter was first discovered in Spirobrassinin 14 oxindole.

An extension of the importance added with the previous discussion of spiropyrolidine moiety is the γ-lactone scaffold. A recent isolation of natural product like Coixspirolactam (A/B/C), 10-12 from the traditional Chinese medicine adlay bran exhibit potent anti-proliferative effects on human lung cancer cells (A549), human colorectal carcinoma cells (HT-29 and COLO205), and human breast cancer cell lines (MCF-7, T-47D and MDA-MB-231).[4] Out of many other scopes of obtaining 3,3-disubstituted oxindole a couple of them has been added to the Figure 1 numbered from 13-18.
1.1.2 Useful synthesis of natural and bioactive compounds containing the 3,3-disubstituted oxindole

Based on the broad natural availability of such oxindoles, it is evident that the 3,3-disubstituted oxindole framework can be utilized to synthesize pyrrolidinoindolines bearing a carbon substituent at C-3a of the hexahydropyrrolo-[2,3-b]indole ring system, which exists in a number of natural products such as 1-6 with strong bioactivity (Figure 2). [5] Some other agents with this pivotal

Figure 2 Examples of some natural and nonnatural moieties synthesized from 3,3-disubstituted oxindoles
core has already been explored for the synthesis of unnatural drug candidates shown in Figure 2, compounds 7-14. Owing to its importance and versatility in the synthesis of these natural products, drugs and related analogues, much effort has naturally gone into the asymmetric synthesis of the 3,3-disubstituted oxindole framework. The aim is to facilitate the synthesis of sufficient quantities of the desired natural, unnatural products and related analogues for biological evaluation and studies on structure-activity relationships. The overreaching goal is the development of new therapeutic agents or important biological tools.
2.1 Strategies for the catalytic asymmetric synthesis of 3,3-disubstituted oxindoles

Although the development of the strategies for chiral 3,3-disubstituted oxindole core is quite recent but the importance of its impact attracted a lot of chemists to develop dozens of catalytic asymmetric reactions. These reactions could be categorized into the following categories based on the substrates employed for the reaction design: 1) intramolecular coupling reactions 2) direct functionalization of 3-substituted oxindoles 3) nucleophilic additions to Isatins and 4) others (Figure 3). Intriguingly, to realize the impact of each and individual component of a reaction a detail study of use of chiral metal catalysts or organocatalyst are both reported in some cases. Most of the approaches avoided the formation of oxindole ring by using commercially available oxindoles because the ring formation is the critical step to optimize. But the problem is there are only very limited number of substituted oxindole and thus somehow limited the expansion of the scope for putting different substituent on the aromatic ring. Idea of putting different substituent on the benzene ring oxindole selectively is still an elusive challenge. It should be mentioned that there is no single example of inducing chirality before the for the formation of oxindole so far observed from the literature survey. In the following sections, we summarize these exciting results in each category, and briefly discuss the scope, advantages, and limitations of each method.
Figure 3 Strategies for the synthesis of 3,3-disubstituted oxindoles
2.1.1 Intramolecular Heck Coupling/modified coupling

The palladium-catalyzed asymmetric synthesis of 3,3-disubstituted oxindoles by intramolecular amide \(\alpha \)-arylation has received much attention. The first practical catalytic asymmetric method for the enantioselective synthesis of chiral oxindoles was developed in the past decade of the past century by Overman and coworkers in the context of the total syntheses of the alkaloids (-)-physostigmine and (-)-physovenine. [6] A couple of other methods reported the formation of disubstituted oxindole by modified Heck coupling strategies such as intramolecular amide \(\alpha \)-arylation and cyanomimidation reaction. [7] Overman’s approach relied on the intramolecular Heck reaction of the (Z)-(2-methyl)-2-butenanilide, which was catalyzed by a palladium (0) complex formed in situ from commercially available (S)-BINAP and Pd\(_2\)(dba)\(_3\) to afford the 3,3-disubstituted oxindole 2 with excellent enantioselectivity (Scheme 1). Subsequently, Overman’s group found that this approach could also be applied to the enantioselective synthesis of 3-alkyl-3-aryloxindoles (Scheme 2 for a representative example). [8]

Scheme 1. Enantioselective Heck cyclization of anilide
Following the seminal work of Hartwig and coworkers, which discovered that by using chiral NHC ligands they could perform this reaction at room temperature with moderate enantioselectivities (40–76% ee) [9], subsequent research focused on modifying the structure of the NHC ligand L1* in order to upgrade the stereoselectivity of the process (Scheme 3a). [10] In 2007, Kündig and coworkers modified the NHC ligand using a strategy that (i) instead of using alkyl system an aromatic ring can be introduced and (ii) ortho position of the ligand can be made more sterically hindered by putting methyl/methoxy substituent. They were able to achieve high enantioselectivities (up to 95% ee) in the cyclization of o-bromo(α-aryl)propanilides by means of the sterically hindered NHC ligand L2* (Scheme 3b). [11]

Scheme 3 Intramolecular coupling using NHC and modified NHC ligand-Pd catalyst pair
Moreover, the use of palladium has also proven to be a very useful [12] for intramolecular asymmetric arylation of α-keto amides introduced by Shibasaki et al during the optimization study of 3-hydroxy-3-alkyl oxindole synthesis. The catalyst [Pd(CH₃CN)₄](BF₄)₂/(R)-difluorPhos (5 mol%/6 mol% - chiral ligand L*)(Scheme 4) could generate chiral 3-hydroxy-2-oxindole derivatives in moderate to good yields and excellent stereoselectivity (up to 95% ee). [13]

Scheme 4 Palladium catalyzed asymmetric intramolecular arylation of α-keto amides

![Scheme 4 Palladium catalyzed asymmetric intramolecular arylation of α-keto amides](image)

Additionally, Yamamoto's group used Iridium catalyst to prepare 3-hydroxy-3-substituted-oxindole derivatives. They promoted an asymmetric intramolecular direct hydroarylation of α-ketoamides using cationic iridium ([Ir(cod)₂](BaRF₄)) and chiral ligand L* to afford the desired products in high to excellent yields and enantioselectivities (Scheme 5). [14] Further studies indicated that the turnover-limiting step in the catalytic cycle was the carbonyl insertion step into the aryl-iridium bond. [15]

Scheme 5: Iridium-catalyzed asymmetric intramolecular direct hydroarylation of α-keto amide

![Scheme 5: Iridium-catalyzed asymmetric intramolecular direct hydroarylation of α-keto amide](image)
2.1.2. Direct functionalization

In 1991, Wong group reported the first known example of asymmetric C-H functionalization of a 3-prochiral oxindole to generate the C-3 quaternary stereocenter via phase-transfer catalysis (Scheme 6). [16] The catalytic asymmetric alkylation of a 3-substituted oxindole was achieved by means of phase-transfer catalysis (PTC), in the context of a formal total synthesis of (-)-esermethol. The alkylation of the 3-Me-oxindole with chloroacetonitrile was performed under PTC conditions with the aid of the quinidine-derived quaternary ammonium salt catalyst, and furnished the 3,3-disubstituted oxindole with excellent yield 83% and moderate enantioselectivity of 77%.

Scheme 6 First Asymmetric PTC mediated alkylation of a 3-substituted oxindole

Remarkably, one more example of the application of PTC catalysis to the asymmetric alkylation of oxindoles by alkyl halides has been reported up to now. In 2010, Ooi and coworkers synthesized and tested the chiral triazolium salt. Under PTC conditions, this compound catalyzed the asymmetric alkylation of a series of 3-substituted N-Boc oxindoles with reactive alkyl bromides with excellent yield up to 99% and enantioselectivity up to 98% (Scheme 7). [17]
Scheme 7 Chiral triazolium salt catalyzed asymmetric alkylation of oxindoles

\[
\begin{align*}
\text{R} & \quad \text{+ R'CH}_2\text{Br} \quad \xrightarrow{\text{C2 (2 mol%)}} \quad \text{Yield 82-99\%, ee: 85-98\%}} \\
\text{K}_2\text{CO}_3, \text{EtOAc, -20 °C} & \\
\end{align*}
\]

Where, \(R = \text{H, Me, OMe, R'} = \text{Me, Et, }^3\text{Pr, allyl} \)
\(R'' = \text{Ph, p-Br-Ph, p-tolyl, m-anisyl, CH}_2\text{=CH, CH}_2\text{=CMe etc} \)

Additionally, some other protocols have also been established based on acid induced catalysis, direct fluorination / hydroxylation, asymmetric Michael addition, asymmetric Mannich reaction and aldol reaction that would be described briefly in the following discussion. [18]
2.1.2.1 Organocatalytic functionalization of C3-H

In 2009 three independent research groups reported, almost at the same time, the organocatalytic enantioselective electrophilic α-amination reaction involving 3-substituted oxindoles as nucleophile. All three-group used azodicarboxylates as a source of nitrogen and a cinchona alkaloid as an organocatalyst. Chronologically, the group of Liu and Chen reported high yields and enantioselectivities ranging from good to high when the amination of unprotected oxindoles.

Scheme 8 Organocatalytic Amination of oxindole with DIAD

![Scheme 8 Organocatalytic Amination of oxindole with DIAD](image)

$R^1 = \text{Me, Ar, CH}_2\text{Ar}$; $R^2 = \text{H, Hal, MeO}$

$Ar = \text{Ph, p-ClC}_6\text{H}_4$, p-BrC_6H_4, α-FC_6H_4, α-FC_6H_4, 2-Naphthyl, 2-Thiophenyl.

$R = \text{isobutyl, prenyl, isopropyl}$

Yield up to 99%, ee up to 94%

Yield up to 99%, ee up to 98%
was performed using dimeric dihydroquinidine-derived (DHQD)₂PHAL as an organocatalyst and diisopropyl azodicarboxylate (DIAD) as amination reagent. [19] The results obtained by the group has presented in Scheme 8 (condition A). Moreover, performing a fine tuning of reaction variables (solvent, temperature etc.) and more sterically hindered C3 substituent, Zhou and co-workers obtained slightly better yield and enantiobenefit (Scheme 8, condition B). Thus, in this case dimeric quinidine derived (QD)₂PYR and CH₂Cl₂ were the preferred organocatalyst and solvent, respectively (Scheme 8). [20]

Shortly after, Barbas and co-workers reported the asymmetric C3-amination of N-benzyl protected oxindoles, using dimeric cinchona-derived organo-catalyst 1 and diethyl azodicarboxylate (DEAD) as electrophilic aminating reagent (Scheme 8. Condition C). The protection of the nitrogen allowed broadening the scope of oxindoles used, obtaining slightly better results than when the unprotected analogues were employed. [21] However, using nitrosobenzene and unprotected oxindoles, Liu and Chen could obtain the corresponding hydroxyamination products with high yields and good enantioselectivities by employing cinchona organocatalyst O1 (Scheme 9). [22]

Scheme 9 Hydroamination of oxindoles with nitrosobenzene
2.1.2.2 Halogenation:

The exchange of the 3-hydrogen of oxindoles by halogens is a challenging practice of improving the biological activity of these molecules for drug discovery. Benefit in bioavailability, metabolic stability and increasing protein-ligand interactions are the three main reason for the popularity of fluorinated drugs nowadays compare to the nonfluorinated parents. [23] Thus 3-substituted 3-fluorooxindoles can be referred as an interesting medicinally potential target. [24]

2.1.2.2.a Fluorination:

At the beginning of this century, a pioneering work by Shibata and co-workers described a new method for the asymmetric enantioselective C3-fluorination of oxindoles. The main problem associated with fluorine is the stable source of obtaining that, unstable sources of fluorine lead to multistep procedures. [25] Initially in 2001, Shibata’s group used a stoichiometric combination of various cinchona alkaloid derivatives and Selectfluor® in their procedure using indanones and tetralones as model substrate. However, in 2008 when they established a successful procedure

Scheme 10 Organocatalyzed fluorination of oxindoles
for the organocatalytic enantioselective C3-fluorination of oxindoles, by using a catalytic amount of bis-cinchona-derived alkaloid (DHQD)$_2$AQN, C and N-fluorobenzenesulfonimide (NFSI) as a source of electrophilic fluorine (Scheme 10). [26]

Some years later, another work was reported by Zhang et al in which (DHQD)$_2$PHAL (1) was used as an organocatalyst instead of (DHQD)$_2$AQN and added a tertiary butyl substituent on the para position of NFSI’s phenyl ring. The authors reported slight increase of ee from 86-88% the

Scheme 11 Proposed catalytic cycle for the catalytic asymmetric organocatalyzed fluorination of oxindoles

CA = Cinchona alkaloid
previous reported enantioselectivities. [27] In both articles, a similar catalytic cycle for this reaction was proposed (Scheme 11). The researchers hypothesized that the NFSI analogues react with the quinuclidine ring of the cinchona derived organo-catalyst to afford intermediate A. This species moves the inorganic base to the organic phase by acting as phase-transfer catalyst, affording intermediate B, which then promotes the enolization of the oxindole to form enolate C and intermediate D. Then either intermediates A or B or NFSI, can fluorinate the enolate generating the final product.

2.1.2.2.b Chlorination

The organocatalytic asymmetric chlorination of oxindoles is a rare reaction. [28] There are very few examples, mainly based on the use of Brønsted bases as organocatalysts. One example is the enantioselective C3-chlorination of 3-aryloxindoles using the cinchona alkaloid derivative as an

Scheme 12 Organocatalytic chlorination of oxindoles using N-chlorosuccinimide (NCS)

Condition A: Catalyst: 20 mol%
R₁ = H, Me, F; R₂ = Me, Ar, Bn
THF, -30 °C, 2-5 h,
Yield: 81-99%, ee: 7-93%

Condition B: Catalyst 5 mol%
Ar = 4-tBuC₆H₄
R₁ = H, Me, OMe, F; R₂ = Me, Ar, Bn
Et₂O, -30 °C, 1 h
Yield: 93-99%, ee: 90-99%
organocatalyst (condition 1) and N-chlorosuccinimide (NCS) as the chlorine source (Scheme 12).

[29]

The procedure gave rise to the corresponding 3-aryl-3-chlorooxindoles in high yields and moderate to high enantioselectivities under mild reaction conditions. However, the use of 3-alkyl and 3-benzyl-substituted oxindoles rendered the chlorination product in low optical purity. In addition, a similar chlorination procedure by using an iminophosphorane base organocatalysts has been proven to be more advantageous (Scheme 12, condition B). [30] Higher conversions and enantioselectivities were achieved even with lower catalyst loadings and short reaction time at room temperature. Furthermore, alkyl and benzyl substituents at C3 were well tolerated and excellent results were also achieved. Finally, it is worth mentioning that the catalyst could be recycled up to six times after chromatographic purification with almost no decrease in efficiency.
2.1.2.3 Sulfenylation:

The presence of a trifluoromethylthio (SCF₃) functionality in the structure of bioactive compounds gives rise to some important properties, such as a reduced hydrophilicity and higher electron-withdrawing ability, which helps to enhance their transmembrane permeation bioavailability. [31] Therefore, the addition of SCF₃ to oxindoles may lead to interesting developments for pharmacological applications. The trifluoromethylthiolation of oxindoles can be carried out by using Brønsted base catalysts, particularly cinchona alkaloid-derived organocatalysts (Scheme 13).

Scheme 13 Sulfenylation (trifluoromethylthiolation) of 3-substituted oxindole using Bronsted base Catalysis

A precedence of such activation was first established in 2014 by Tan’s group. They have executed that the asymmetric trifluoromethylthiolation of 3-arylated oxindoles could be achieved via in situ generation of an active electrophilic trifluoromethylthio species from AgSCF₃ and trichloroisocyanuric acid (TCCA) in presence of dimeric cinchona alkaloid organocatalysts such
as (DHQD)$_2$PYR (CPD-01) (Scheme 13, Condition A). [32] The scope of this reaction is broad as both electron-donating and electron-withdrawing substituents on the oxindole can afford high yields and enantioselectivities of the final products. The main advantage of this procedure is the fact that the starting materials are cheap and there is no need for the isolation of the SCF$_3$ reagent, saving time and money. Moreover, Chin et al initiated the asymmetric trifluoromethylthiolation of oxindoles using trifluoromethyl-substituted thioperoxide as the electrophilic reagent and quinine as organocatalysts, affording 3-substituted-3-SCF$_3$ oxindoles (Scheme 13, Condition B). [33] When exploring the scope of this reaction, an exchange of the N-protecting group from Boc to less hindered groups, caused any noticeable change in the enantioselectivity. It was also observed that the 3-trifluoromethylthiolated reaction products from 3-arylated oxindoles had lower optical purity than those from 3-alkylated ones. In addition, the same organocatalyst can be used for the enantioselective synthesis of 3-aryl-3-SCF$_3$-substituted oxindoles using N-(trifluoromethylthio)phthalimide with good results (Scheme 13, Condition C). [34]
2.1.2.4 Hydroxylation

Itoh et al developed a convenient protocol of hydroxylation for 3-substituted oxindoles in presence of molecular oxygen, using cinchonidine derived phase-transfer catalyst CPD-02. (Scheme 14, Condition A). [35] However, reduction using 4 equivalents of (EtO)$_3$P turned out to be vital for achieving high yields and ee when N-p-methoxybenzyl (PMB)- protected oxindoles were employ-

Scheme 14 Asymmetric hydroxylation of oxindole using various phase-transfer catalyst

In subsequent studies, pentanidium-based phase-transfer catalyst CPD-03 was employed in presence of molecular oxygen, they achieved slightly better enantiobenefit than in the previous case (Scheme 14, Condition B). [36] What is significant about this procedure is that there is no need for an additional reducing agent. According to the authors, this reaction proceeds via a kinetic
resolution of the hydroperoxyl oxindole intermediate by means of its reduction by the in situ generated enolate of the 3-substituted oxindole. Finally, it is worth mentioning that, only phase-transfer catalysis has been used to achieve the asymmetric electrophilic hydroxylation of oxindoles.
2.1.3 Nucleophilic addition to Isatin moiety

A direct but challenging approach of introducing various functionality in the prochiral moiety using metal catalyst is asymmetric allylation. The idea is to put the allyl group at first and later convert it to the require functionality by additional steps. Such a commercially available oxindole moiety is known as Isatin. Qiao and coworkers published the asymmetric allylation of Isatin analogues with allylic alcohols using the catalyst [Pd(OAc)2] / La* (5 mol% / 10 mol%) (Scheme 15a). During screening different ligands of chiral spiro phosphoramidite family La* proved to be the best to access tertiary homoallylic alcohols 3-allyl-3-hydroxy-oxindole derivatives. Although the process resulted in very high yields with moderate enantioselectivities (up to 71% ee). [37]

Scheme 15 Pd Catalyzed asymmetric allylation for the synthesis of 3-hydroxy oxindole
Moreover, Aikawa et al., also focused on the synthesis of tertiary alcohol, studied ene reactions of N-protected Isatins along with isopropenylxy(triisopropyl)-silane (Scheme 15b) and aldol reaction using isopropenylxy(tert-butyldimethyl)-silane trimethylsilyl ketene thioacetal (Scheme 15c). In both the cases they have used [Pd(SbF\(_6\)]\(_2\)] and the chiral ligand L\(_b^*\) in 10 mol% as an optimized quantity. The chiral 3-hydroxy-3-substituted-oxindole derivatives were isolated in high yields and with remarkable ee in some cases (>99% ee). [38]

Use of arylboronic acids to the N-substituted Isatins for nucleophilic addition allowed the formation of 3-aryl-3-hydroxyoxindole derivatives with moderate to good yields and enantioselectivities. A pair of C2-symmetric cationic N-heterocyclic carbene-Pd\(_2\)-diaqua complex, prepared from the chiral ligand L\(_c^*\) was incorporated as a catalyst (Scheme 16). [39]

Scheme 16 Catalytic asymmetric allylation of isatin derivatives with arylboronic acid

Lanthanides have also been described for their potential application in asymmetric catalysis. [40-42] Among them, ytterbium was applied in the enantioselective decarboxylative addition of β-ketoacids to Isatins. The author mentioned that the use of N-substituted Isatins is crucial for the
reaction yield and enantioselectivity, in the presence of the catalytic system Yb(OTf)$_3$/Ld*. As a result, chiral 1-benzyl-3-hydroxy-3-substituted-oxindole derivatives were obtained in very good yields (88-95%) and moderate to excellent enantioselectivities (65-98% ee) (Scheme 17). [43]

Scheme 17 Decarboxylative addition of β-ketoacids to isatin derivatives catalyzed by ytterbium

Iridium is a transition-metal from period 6 of the periodic table that presents a wide range of

Scheme 18 Allylation, crotylation and reverse prenylation of Isatin derivatives using Ir catalyst
applications in synthesis. [44] Itoh et al. reported the first asymmetric allylations (Scheme 18a), crotylations (Scheme 18b) and prenylations (Scheme 18c). N-benzyl-isatin derivatives, using an isopropanol mediated transfer hydrogenation, in the presence of the catalyst [Ir(cod)Cl]2 (2.5 mol%) and the ligand (R)-p-phos L_e* ((R)-(þ)-2,2,6,6-tetramethoxy-4,4-bis(diphenylphosphino)-3,30 -bipyridine - 5 mol%), achieving moderate to good yields and good to excellent enantioselectivities (up to 96% ee). [45]
2.1.4 Other approaches:

2.1.4.1 1,4-Michael addition:

Mechler and Peters developed a polyfunctional, readily available novel NiII-bis(phenoxylimine) type catalyst which can overwrite the inherent diastereoselectivity in direct 1,4-additions of oxindoles to nitroolefins to give rise to the epimeric product series (Scheme 19). Crucial for the switch in diastereoselectivity is the interplay of a Lewis acid, free hydroxy groups, and an axially chiral bismidazolium linker in combination with the appropriate arrangement of the different chirality elements. The axially chiral bismidazolium determines the configuration of the stereocenter generated at the nitroolefin, while the constitution as well as the relative and absolute configuration of the iminoalcohol side arms mainly control the stereocenter generated at the oxindole. [46] The group has reported a novel polyfunctional catalyst type in which a NiII-
bis(phenoxylimine) unit, free hydroxy groups, and an axially chiral bisimidazolium entity participate in the stereocontrol of the direct 1,4-addition of oxindoles to nitroolefins. Both epimers of the 1,4-adduct are accessible in excess on demand by changes to the ligand constitution and configuration.

The observed diastereodivergency might be explained by a mechanism in which the Ni centers, OH group, and the bisimidazolium moieties cooperate (Figure 4). A control experiment with an N-methyloxindole resulted in no 1,4-adduct. We thus suggest a scenario in which oxindole enolization is triggered by bidentate coordination of the carbonyl group to Ni(II). As shown above, changes within the iminoalcohol side arms have an influence on the preferred configuration of the stereocenter at the oxindole. The orientation of the oxindole in the C-C bond-forming transition state might thus be dictated by the iminoalcohol moieties. Whereas, the preferred configuration of the generated stereocenter in the nitroalkane chain is always identical when using the Ra-configured bisimidazolium linker. For that reason, we suggest that the nitroolefin is activated by hydrogen bonds/electrostatic interactions with the bisimidazolium groups, whereas the free hydroxy groups might be important to control the reactive conformation of the oxindole-Ni(II) adduct (Figure 4). It should be noted that the iminoalcohol side chains can be symmetrically

Figure 4 Simplified working model of Ni-catalyst with oxindole framework
inequivalent after substrate coordination. The flexibility of an axially chiral bisimidazolium linker might be beneficial to readily adopt the optimal positions of both reacting centers.

2.1.4.2 Enantioselective Michael Addition Cascade: Metal carbenoid assisted C-C bond formation

The first practically highly enantioselective synthesis of indolyl-indanes through a combination of either ruthenium (II) or Rhodium(II) complexes and quinine-derived squaramide enables 3-diazooxindoles, indoles, and nitroalkenes to undergo highly efficient asymmetric three-component reactions, thus affording optically active 3,3’-bis(indole)s through a consecutive C-C bond-forming sequence, (Scheme 20). It should be noted that an early attempt by Enders group

Scheme 20 Three component cascade reaction for the enantioselective synthesis of 3,3-disubstituted oxindole

Where X = H, 5-Br, 5-OMe, 5-Me, 6-Br; X' = H, 5-MeO, 6-Cl, 6-MeO, 7-Me

R = Ph, 4-BrC₆H₄, 4-MeOOC₆H₄, 3-ClC₆H₄, 2-BrC₆H₄, 2-MeOOC₆H₄, 2-NO₂C₆H₄, 2-furyl, PhCH=CH etc.
back on 2013 reported the formation of 3-methyloxindole (R=Me) with only 39% yield and 33% ee and oxindole (R=H) gave 44% yield and 73% ee although the same group later in 2015 reported a one pot scalable triple domino asymmetric synthesis of fully substituted cyclopentane-oxindoles through an organocatalytic triple Michael domino reaction. [47-48] In fact, N-benzyl-3-diazooxindoles, N-methylindoles and nitroalkenes reacted under [RuCl₂(p-cymene)]₂ and quinine-based squaramide catalysis.
2.1.4.3 Asymmetric Strecker reaction:

Zhou et al first applied safe cyanide source, trimethylsilyl cyanide (TMSCN) in the Strecker reaction [49] of N-aryl Isatin ketimines (Scheme 21). At that time, the bifunctional tertiary-amine catalyzed Strecker reaction was undeveloped. [50] Although Deng had reported a highly enantioselective chiral tertiary-amine mediated ketone cyanosilylation, [51] the breakthrough was achieved by a newly developed phosphoramidate derived from the Cinchona alkaloid.

Scheme 21 Preliminary study of the Strecker reaction for N-aryl isatin ketimines

Preliminary studies indicated that 10 mol % phosphinamide catalyst C1 afforded oxindole based aminonitrile with moderate ee. [52] However, the best results of enantioselectivity were obtained whenever they used phosphinamide catalyst with amide or thiourea as the H-bond donor (Scheme 21). These results encouraged the Chouhan group to examine their potency in other reactions and triggered subsequent research on catalytic enantioselective addition of nucleophiles to Isatin ketimines for the synthesis of chiral 3-substituted 3-aminooxindoles. [53] The same group furnished an asymmetric synthesis with thiourea driven cinchona alkaloid and ended up with
excellent results (Scheme 22a). The catalyst Ca they developed was proved useful later for Zhou et al who perused another approach using Isatin a starting material with same catalyst and found an excellent outcome as well (Scheme 22b)

Scheme 22 Direct cyanidation using thiourea driven Cinchona alkaloid

![Scheme 22 Direct cyanidation using thiourea driven Cinchona alkaloid](image)

R¹ = Me, Bn, 3,4-Cl₂C₆H₃CHCH₂
R² = 5-F, 5-Cl, 5-Br, 5-I, 5-NO₂, 5-Me, 5-MeO, 6-MeO, 7-Cl, 7-Br, 7-CF₃, 7-Me, 5,7-Br₂, 4,6-Me₂

Yield: 81-95%, ee: 90->99%

R¹ = Me, Bn, 3,4-Cl₂C₆H₃CHCH₂
R² = 5-F, 5-Me, 5-Et, 5-MeO, 7-Cl, 7-Me, 5,7-Br₂, 4,6-Me₂

Yield: 41-86%

ee: 76-96%
2.1.4.4 Desymmetrization of diyne:

The Cu-catalyzed alkyne-azide cycloaddition (CuAAC) reaction has been applied in many areas of research; however, applying this strategy to the asymmetric synthesis remain still undeveloped. [54] Zhou group reported a strategy to develop enantioselective CuAAC, namely, desymmetrization of prochiral diynes (Scheme 23). [55] The key idea was to develop a highly enantioselective desymmetric CuAAC of oxindole-based 1,6-heptadiynes, furnishing quaternary oxindoles (Scheme 23) bearing a 1,2,3-triazole-containing moiety with 84–98% ee. This research also revealed that suppressing achiral diazole formation while achieving excellent enantioselectivity was very difficult, although they were fortunate to identify 2,6-hexadione as a solvent that could solve this problem in this case.

Scheme 23 Asymmetric CuAAC reactions for the preparation of 3,3-disubstituted oxindole

```
R¹ = H, Me, MeO, 5-F, 7-Me
R² = Me, Bn, Ac,
R³ = Bn, CH₂CO₂Bn, 7-Me, Bn, c-hexyl, Ph, 4-OC₆H₄CH₂, 3-MeC₆H₄CH₂, 4-MeC₆H₄CH₂ etc
maximun ratio of P:Q = 11 : 1
ee: 84-98%
```
3.1 Introduction:

Part: II Palladium Catalyzed Asymmetric Allylic Alkylation

Palladium-catalyzed asymmetric allylic alkylation (Pd-AAA) stands as a unique reaction due to the high number of stereocenters that can be created by this process. Arguably, few transition-metal-catalyzed reactions offer the synthetic chemist the ability to form C–C, C–N, C–O, C–F, and C–S bonds by such a variety of mechanisms for asymmetric induction (Scheme 24). The development of Pd-AAA has been reviewed extensively; however, a specific aspect of Pd-AAA has not significantly matured over the past 20 years, namely the synthesis of acyclic quaternary stereocenters. Unfortunately, the term “quaternary center” is a confusing terminology, because it is also used to mean “quaternary-substituted carbon”, that includes tri-carbon-substituted carbon such as occurs in tertiary alcohols. The term “all-carbon quaternary centers” is also found in the literature. Thus the ‘Quaternary substituted carbons’ and ‘quaternary carbons’ in the full sense must be distinguished carefully. Thus, in this chapter we are using the term “quaternary carbon” to designate those carbon centers that are substituted with four carbon substituents.

Pd-AAA has been shown to be successful for inducing asymmetry on both electrophilic and nucleophilic partners. Consequently, the discussion can be divided mainly into these two classes of reactions, with an emphasis on vinyl epoxides as electrophiles and enolates as prochiral nucleophiles. Possibility of using cyclic pronucleophiles that are readily converted into acyclic tetrasubstituted stereocenters after the alkylation reaction is also less explored as well.
Asymmetric induction can be done by two different methods either by stereo control of the prochiral electrophile or the prochiral nucleophile. The process proceeds with different type of mechanism and can be described by considering different examples introduced by different group of researchers. A details discussion on the asymmetric induction for the synthesis of cyclic tetrasubstituted stereocenter is more common practice. [58] But the formation of acyclic quaternary stereocenter is still limited due to their conformation mobility. [59] Our focus in this part of chapter is to elaborate the idea of exploring the less accessible acyclic quaternary molecules using asymmetric allylic alkylation.
3.1.1 General mechanism of regio and stereospecific Pd-catalyzed asymmetric allylation

In the case of Pd-allylic alkylation, the most common mechanism operative involves an initial coordination of a chiral Pd(0) catalyst with an olefin bearing a leaving group at the allylic position (Scheme 25). Ionization occurs with inversion, where the η^2-π-allyl–Pd(II) complex is situated on the opposite face to the leaving group. Alkylation of the η^3-π-allyl–Pd(II) complex occurs with inversion of the stereochemistry about Pd(II), with simultaneous regeneration of the chiral Pd(0) catalyst. Because both the ionization and nucleophilic addition occur with inversion, the nucleophilic substitution occurs with net retention of the stereochemistry of the leaving group. An outer-sphere attack of a nucleophile is the most common pathway for soft nucleophiles ($\text{pKa} <$)

Scheme 25 Mechanism of regio and stereospecific Pd-catalyzed asymmetric allylation
25). For hard nucleophiles, the nucleophile attacks the metal directly and undergoes an inner-
sphere reductive elimination with retention of stereochemistry about Pd(II), and overall net
inversion of stereochemistry.

Nucleophiles such as ketone enolates alkylate at the α- carbon, producing a stereocenter on the
nucleophile. In this case, asymmetric induction can be difficult to achieve since the C–C bond
forming event most commonly occurs via an outer-sphere mechanism and the nucleophile remains
distal to the chiral information about the metal–ligand environment. Alkylation of allyl
electrophiles bearing substituents, although typically much easier substrates for obtaining
asymmetric induction, operate via more complicated mechanisms involving π–σ–π equilibration
of the π-allyl intermediate (Scheme 26d). Additionally, the enantio-determining step of the
reaction may occur during any step of the catalytic cycle, save for dissociation of the alkylation
product. In Pd-AAA, only two mechanisms are likely to be operative in the synthesis of acyclic

Scheme 26 Modes of asymmetric induction by electrophile

- **a. Differentiation of enantiotopic termini**
- **b. Differentiation of enantiotopic olefin faces**
- **c. Differentiation of enantiotopic leaving group**
- **d. π-σ-π equilibration**
tetrasubstituted stereocenters on the electrophile, namely differentiation of enantio-topic olefin faces (Scheme 26b) and \(\pi-\sigma-\pi\) equilibration (Scheme 26d). In most cases, the chiral ligands employed in Pd-AAA are phosphines, and a variety of scaffolds have arisen from the many creative approaches toward acyclic stereocontrol in allylic alkylation (Figure 5). [60]

Figure 5 Examples of the variety of ligands widely used in Pd-AAA
A feature that is unique to transition-metal catalyzed asymmetric allylic alkylation reaction is the ability to convert different types of starting materials such as chiral racemic, meso and achiral to enantiomerically pure compound. Therefore, several factors are primarily considered during the optimization study of the reaction conditions.

3.1.2 General consideration for optimizing reaction procedure for Pd-AAA

i. Choice of appropriate solvent system that effect the formation of stable catalyst-ligand complex with solvent cage sometimes ion pair interaction

ii. Choice of appropriate source of metal to reduce the interaction of the leaving ligand in the reaction system. Such as a leaving ligand can act as a base and influence the reaction rate of the incoming electrophile/nucleophile and a bulky substituent attach to the catalyst stable complex may act on formation of desire geometry of the Catalyst-Ligand complex. Some of the commonly used Pd(0) source widely used in Pd-AAA or Pd-DAAA have shown in Figure 6.

Figure 6 Examples of some commercially source of Pd(0) as a catalyst
iii. Choice of ligand that hinder one site of the electrophile (during inner sphere reaction mechanism) and exposed another site for the nucleophilic attack selectively. For the outer sphere mechanism, the metal directly interacts with the substrate. The types of ligands to effect the site selective transformation have followed three general concepts in design: (1) creating chiral space with an array of groups whose conformational bias originates from primary stereogenic centers [61] (2) desymmetrization of electron density on the donor atoms of the ligand where different bond lengths on each side of the chiral space promote differential reactivity at each terminus [62] (3) attaching a tethering agent to the main skeletal symmetry which can coordinate with the incoming nucleophile. [63] Figure 5 lists those ligands which are most prevalent in AAA-driven natural product total synthesis.

v. Tuning the reaction temperature controls the kinetics of the reaction and thus influence the preferential formation of thermodynamic and kinetic products.

vi. Addition order of the reactant may control the availability of the substrate to the catalyst-ligand system.

vii. Choice of proper electrophile based on the lability of the leaving group and steric hindrance of the attacking site by the catalyst-ligand complex or toward the nucleophile

viii. Controlling the concentration of the substrate on selected solvent system increases the interaction of the reactant molecules and thus control the rate of reaction

ix. Use of different additives participate in some way such as formation of H-bonding, works as a linker, increase the availability of the rapid molecular interactions may
affect the reaction outcomes. [64]

x. Consistency of the required reaction environment such as inert atmosphere, controlled increase or decrease of temperature and pressure.

Therefore, a fine tuning of all the different factors mentioned earlier can introduce an excellent outcome of getting one optically pure compound. Some other techniques of getting one selective isomer such as kinetic resolution, dynamic kinetic resolution, chiral derivatization is limited due to the additional step or the reduced yield because of the separation. Therefore, the significance of an enantiomer selectively is utmost goal for the organic chemist.

3.1.3 Approaches involved in stereocontrol interactions of Pd-AAA

Herein our discussion of the asymmetric induction will be based on two different approach:

1. Stereocontrol of the prochiral electrophile and

2. Stereocontrol of the prochiral nucleophile
3.1.3.1 Stereocontrol on prochiral electrophiles

An ideal example of the Pd-AAA of prochiral electrophile was introduced by the Trost group using isoprene monoepoxide back in 1998. The success of this novel approach was due to the alkylation at the branched position for carbon, [65] oxygen [66] and nitrogen [67] nucleophiles to afford acyclic tetrasubstituted building blocks (Scheme 27).

Scheme 27 Pd-AAA strategy for the synthesis of acyclic tetrasubstituted building blocks by using electrophilic isoprene monoepoxide

Their approach was basically a dynamic kinetic asymmetric transformation (DYKAT), whereby they choose the racemic isoprene monoepoxide which is ionized by a palladium catalyst, with the initially formed π-allyl species bearing an opposite sense of chirality or opposite syn/anti configuration (Scheme 28). Since π-allyl contains two hydrogen substituents on the unbranched terminus, the η¹-σ-Pd(II) complex allows for rotation from one stereoisomer to the other without syn/anti isomerization (Scheme 28a). They have considered the π-allyl complex that places the higher priority group cis to the central hydrogen as the syn isomer. But the π-allyl stereochemistry and the syn/anti configuration have isomerized at the branched carbon because of the π–σ–π equilibration (Scheme 28b). An important structural consideration for this reaction can be represented by flap and wall model involving the equilibrium between syn and anti-isomers (Scheme 29).
A pair of diastereomeric π-allyl complexes are formed due to the ionization of butadiene monoepoxide (2). The presence of more sterically hindered hydroxymethylene substituent compared to the hydrogen substituent favors complex 2a due to the least amount of steric clash with the ligand (flap-wall) environment. The regioselectivity of such nucleophilic addition shows
an opposite idea of typically observed for Pd-AAA, where the branched isomer is formed in high selectivity mostly. Therefore, ‘wall and flap model’ becomes an attractive design to represent the approximate chiral environment about each terminus of the electrophile based on chelation of a C2-symmetric ligand bearing diarylphosphines (i.e., Trost ligand, BINAP). In fact, if we compare the case of isoprene monoepoxide (1a as shown in Scheme 27), the methyl and hydroxymethylene substituents they are sterically very similar but the presence of an alkoxide from the epoxide opening improvise the electronically dissimilarity (Scheme 30a). As a result, we can dictate three factors for the alkylation at the branched terminus, namely: 1. The alkoxide group present in the molecule behaves more like a leaving group often acts as a base for the pronucleophile 2. They are also engaged in hydrogen bond directed alkylation of the nucleophile. 3. Ligand and additive effects can alter the most favorable trajectory of the incoming nucleophile toward the branched

Scheme 30 Mechanistic pathways for Pd-AAA of isoprene monoepoxide
product. [68] The outer-sphere nucleophilic attack occurs with inversion of the stereochemistry of the π-allyl, and each enantiomer of product can be obtained from two of the stereoisomeric complexes (Scheme 30b).

Later in 2004, it was observed by the same group that, primary alcohol can be alkylated at the branched carbon with high enantioselectivity in the Pd-AAA of isoprene monoepoxide (Scheme 31). [65] The reaction introduced the useful interaction of the alkyl boron substance during exploring the scope of several primary alcohols 3 as competent nucleophilic partners in this.

Scheme 31 Synthesis of tertiary ether through the Pd-AAA of prochiral electrophile isoprene monoepoxide
reaction. For substrates with low enantioselectivity using triethylborane as catalyst, it was reasoned that etherification was occurring faster than the required π-allyl equilibration. Use of the relatively bulky tri-sec-butylborane proved useful for solving this problem (4b and 4d). With a hampered rate of etherification, the products were formed with higher enantioselectivity. Spontaneous cyclization to a hemiketal (4d) or lactone (4b) occurred when the nucleophilic alcohol contained a pendant ketone or methyl ester respectively. The etherification product due to the addition of 4-methoxybenzyl alcohol is a particularly useful synthetic precursor due to the ubiquity of PMB-protected alcohols in synthetic sequences.
3.1.3.2 Stereocontrol on prochiral nucleophiles in Pd-AAA reaction

Achieving high enantiocontrol on nucleophiles remains fundamentally more difficult than getting enantiocontrol on the electrophilic partner, due to the change of mechanism from inner sphere to outer sphere mechanism for nucleophilic addition. For this type of approach, the chiral environment created by the metal catalyst-ligand is distal from the isolated nucleophile. Therefore, the nucleophilic attack of specific site selective face is challenging. This problem is combined by the presence of enantioconvergent and enantiodivergent allylation pathways (Scheme 32).

Scheme 32 Catalytic recognition of prochiral nucleophile (enolates)

In the case of enantioconvergent allylation (Scheme 32a), the chiral catalyst recognizes the substituents at the site of reaction. Although the restriction of controlling the enolate geometry has been removed, R^1 and R^2 are limited to sterically differentiable substituents (i.e., alkyl vs. aryl). When an enantiodivergent pathway is operative (Scheme 32b), the catalyst recognizes the substituents vicinal to the site of reaction. This pathway is desirable if R^1 and R^2 are of limited steric differentiation; however, the enolate geometry must be strictly controlled to observe high
enantioselectivity. The enantiodivergent pathway has an important advantage over the enantioconvergent pathway since the identity of X can be exploited as an achiral auxiliary and a tunable parameter for reaction optimization. As will be seen, both the α-substituents and the enolate geometry are commonly recognized by the catalyst in the allylation event. In this case, the presence of match-mismatch effects will be apparent when both enolate isomers can be synthesized in geometrically pure form. The stereo fidelity of the enolate is assumed to remain intact during enantio-divergent allylations; however, oxygen-to-carbon migration may provide a mechanism for erosion of the enolate geometry if palladium enolates are formed as intermediates (Scheme 33). A potential example was summarized by the isomerization of palladium enolates which has been

Scheme 33 Potential mechanism for the erosion of enolate stereochemistry

![Scheme 33](image)

Scheme 34 Reaction example shows the enolate erosion mechanism

Example reaction:

![Scheme 34](image)
exploited for the Pd-AAA DYKAT of butenolide electrophiles with phenolic nucleophiles (Scheme 34). [69] In this scenario, the palladium enolate is formed on the butenolide electrophile and the mechanism for isomerization of the π-allyl species involves carbon-to oxygen migration. Another complicity of inducing asymmetry has been so far explored quite a bit based on the accomplishing control of enolate geometry. In situ formation of enolate using external base/additives or the intentional synthesis of O-allyl/O-carboxy allyl in control E/Z geometry (of course sometimes racemic) using control equivalence of base are two most popular approach. As a result, there are two different approach namely intermolecular asymmetric allylation and intramolecular asymmetric allylation has been introduced so far.
3.1.3.2.1 Intermolecular alkylation of prochiral nucleophiles

Many of the first syntheses of acyclic tetrasubstituted stereocenters by reactions of prochiral nucleophiles were discovered by the Ito group. In 1992, Ito et al reported the allylation of an acyclic 1,3-diketone 5 (Scheme 35a) in modest enantioselectivity by employing Ferrocenyl ligand (point and planar chiral) scaffold bearing an aza-crown ether. [70] Later in 1996, the same group established allylation of a challenging aliphatic α-nitro ester 7 by utilizing the similar strategy mentioned earlier (Scheme 35b). [71] In order to enhance enantioselectivity upon nucleophilic attack of a π-allyl Palladium (II) complex, it was envisioned that linking a crown ether to chiral phosphine ligands would allow for recognition of the nucleophile counterion. In this case, the chiral information of the catalyst could be relayed distal the site of the reaction, thus solving the problem of poor selectivity when using prochiral nucleophiles in Pd-AAA. In both cases, significant optimization of the crown ether and counterion was required to obtain the enantioselectivity.

Scheme 35 Asymmetric allylation of a 1,3-diketone and an alpha nitro ester by counterion recognition of a chiral phosphine ligand

a.

![Scheme 35a](image)

b.

![Scheme 35b](image)
An early report on asymmetric induction utilizing acyclic prochiral nucleophiles was provided [72] on α-acetamido-β-keto esters 9 using Pd(0)/BINAP-catalyzed Pd-AAA (Scheme 36). High levels of enantioselectivity were reported when using potassium tert-butoxide as base. Additionally, high geometric control of the resulting olefinic products 10 was reported, even for commonly difficult allylic acetates as an electrophile such 10g and 10h. The highest enantioselectivities were observed for cinnamylation reactions mostly for electron stabilized cinnamyl acetate (10c, 10d and 10f), simple allylations proceeded in good enantioselectivity as well.

Scheme 36 Pd/BINAP-catalyzed allylation of α-acetamido-β-keto ester
Other work by the Ito group demonstrated acyclic control in the cinnamylation of 1,3-diketones (Scheme 37). [73] They have demonstrated the cinnamylation of acyclic 1,3-diketones in good enantioselectivity. Cryogenic temperatures were required for high enantiocontrol in this reaction, however, in conjunction with their work on α-acetamido-β-keto esters and α-acetamido-β-ketophosphonates, these reactions serve as some of the earliest examples of Pd-AAA with stereocontrol on acyclic nucleophiles under simple catalyst conditions.

Scheme 37 Pd-Catalyzed asymmetric allylation of β-keto ester

In 2011, List and Jiang were able to demonstrate the asymmetric α-allylation of α-arylpropanals, 15 under three-way catalysis using chiral acid, enamine, and palladium (Scheme 38). [74] Surprisingly, they optimized the reaction using an achiral source of palladium, Palladium tetrakis, by achiral amine catalyst, 14 in the presence of (S)-TRIP phosphoric acid L*. In addition to allyl alcohol, more substituted alcohols 16 were effective in the reaction. The limitation of this protocol is that elongation of the aliphatic aldehyde side chains of α-arylpropanals diminishes the enantioselectivity albeit with reduced yield 17f even though the reaction showed impressive display of control for asymmetric quaternary carbon synthesis.
In the discussion they stated that the geometry was highly controlled firstly due to the in situ transients formed chiral enamine due to their steric elements (Scheme 39a), and then the chiral information is transferred by hydrogen bonding by the enamine to the chiral phosphate (Scheme 39b). The chiral phosphoric acid also acts as a ligand to the π-allyl-Pd(II) species. The resulted complex is counterion-paired with the cationic π-allylpalladium(II) species, asymmetric induction can be realized in the alkylation event. Interestingly, under the reaction conditions, allyl alcohols
can be used directly, due to the activation of the hydroxyl leaving group by the phosphoric acid (Scheme 39c).

Scheme 39 Typical features related to the triple catalytic activation

A dual-catalytic approach was showed by Ooi’s group for the α-cinnamylation of α-nitro esters shown in (Scheme 40). [75] They have also employed the achiral phosphine like system developed by List and Jiang. A Pd/ligand ratio of 1:2 was used, as it was believed that a C2- symmetric palladium complex would form upon cis-complexation of the phosphine ligands. An interesting finding about this synthesis is the use of a linked cationic ammonium functionality with the chiral BINOL counterion. Excellent yields and enantioselectivities were observed for the reaction when using cinnamyl carbonate electrophiles (Scheme 40) although no enantioselectivity was observed for the simple allyl system (19d).
In 2015, Hossain et al published the first unprecedented example of the Intermolecular Palladium-Catalyzed Asymmetric Allylic Alkylation of 3-hydroxy aryl acrylates for the synthesis of all-carbon α-aryl quaternary aldehydes. [76] The formation of servocontrolled enol/ protection of enol with bulky protecting group are the common practices but the use of unprotected enol as a nucleophilic counterpart with a thorough optimization ligands, solvents, temperatures was not established before, the group published an excellent enantiocontrol by a fine tuning of variables and resulted ee up to 94% with quantitative yield. Both the electron donating and electron withdrawing substituents resulted from good to excellent enantio-discriminations as shown in Scheme 41.
Scheme 41 Enantiocontrol synthesis of acyclic quaternary carbon from unprotected enol and its synthetic scope

\[
\text{Ar} \text{CO}_2\text{H} + \text{OAc} \xrightarrow{\text{Pd_2(dba)_3, CHCl}_3 (2.5\text{ mol\%})} \text{Ar} \text{CO}_2\text{O}
\]

(R,R)-DACH Napthyl Tsot Ligand
(6 mol\%)DIPEA, HecTol (1:1),
-20\degreeC, 12 h

95% yield, 94% ee
80% yield, 81% ee
>99% yield, 90% ee

81% yield, 89% ee
75% yield, 83% ee
>99% yield, 82% ee
3.1.3.2.2 Intramolecular Pd-mediated asymmetric allylic alkylation

A. Pd-Catalyzed Decarboxylative Asymmetric Allylic Alkylation (Pd-DAAA)

The intention of inserting allylic groups into the α-position of carbonyl-containing compounds was first reported by Carroll in 1940. [77] In this version of the Carroll rearrangement, Pd(OAc)$_2$ in the presence of triphenylphosphine, was employed as the catalyst (Scheme 42). However, the reaction only found limited scope in organic synthesis due to the harsh conditions required to induce the [3,3]-sigmatropic rearrangement. The limitation was overcome by Tsuji-Trost reaction through the development of mild synthetic route to the formation of allylic compounds via π-allyl palladium complexes. [78] The unique idea involves the reaction of activated nucleophiles such as enolates, amines and phenols with allylic compounds such as allyl acetates and allyl halides, allyl carbonates and allyl mesylate/tosylates. In 1980 Tsuji and Saegusa independently reported the decarboxylative alkylation of β-keto allyl esters (Scheme 42). [79] Here the electrophile and nucleophile are generated in situ eliminating the requirement to prepare preformed enolate equivalents.

Scheme 42 Pd-catalyzed Carroll rearrangement by Tsuji

During the 1980s other groups extended the substrate scope to allyl enol carbonates, silyl enol ethers and enol acetates. [80] Although regioselectivity was excellent for the above transformation, it was a further 20 years before the reaction was performed enantioselectivity. Several methods to
address their synthesis have been developed, particularly in cyclic systems. [81] In acyclic systems, however, the synthesis of this motif is less explored. [82] This is in part due to additional problems that often arise in acyclic systems such as reduced rigidity of substrates leading to lower levels of selectivity. Additionally, selectively controlling the formation of fully substituted olefins/enolates is required for high selectivity in many catalytic processes. In the case of electrophilic functionalization of fully substituted enolates, the general and selective formation of such enolates as pure geometric isomers is highly challenging and has slowed progress. Although selective enolizations have been reported, these typically require highly specialized substrates, often incorporating chiral auxiliaries to impart selectivity in the enolate formation step. [83]

Recently a practical approach of Pd-DAAA for the formation of acyclic quaternary carbon was introduced by Marek et al in 2004 involving the use of achiral acyclic amide enolates in combination with enantioselective palladium-catalyzed decarboxylative allylic alkylation technology (Scheme 43). They have synthesized the carboxy allyl enolate species in two steps.

Scheme 43 Palladium-catalyzed enantioselective decarboxylative asymmetric allylic alkylation of stereo defined acyclic enolates (by Marek)

![Scheme 43 Palladium-catalyzed enantioselective decarboxylative asymmetric allylic alkylation of stereo defined acyclic enolates (by Marek)](image)

[84] A copper-promoted carbomagnesiation reaction using Normant-type reagent (RMgBr/CuI in a 2:1 ratio) provided highly regioselective formation of compound 21 in diethyl ether as solvent.
Scheme 44 Synthesis of stereocontrolled carboxy allyl enolate

Then the resulting vinyl magnesium species with molecular iodine leads to the formation of fully substituted vinyl iodide 21 in excellent yields as a single constitutional isomer (Scheme 44). The vinyl iodide is then directly converted to the corresponding vinyl lithium species by iodine–lithium exchange. Finally the oxidation with an externally prepared oxenoid (t-BuOOLi) retained the stereoselectivity. The resulting stereodefined fully substituted enolate is then reacted with AllocCl to deliver well-diversified products 22 in excellent yields as single isomers as shown in Scheme 44.

Later they reported an excellent outcome of the asymmetric induction using chiral Trost ligand by a thorough optimization of ligands, solvents, catalyst loading. During the study they realized the enolate geometry plays the vital roles for the conservation of enantioselectivity and therefore the syn position of small substituent to the allyloxy carbonyl group concluded as a favorable enolate structure for getting high optical purity of the desired compound. [85] Gratifyingly, the scope of the reaction process appears to be fairly broad with respect to the R3 substituent on the carbamate group (COOR3 where R3 = Me, Et, t-Bu and Bn; 23a-c, respectively) and produced reaction products 24a–c of uniformly high enantiomeric excess.
Recently, Stoltz group has become interested in preparing fully substituted acyclic enolates and applying them toward the synthesis of acyclic quaternary stereocenters, particularly via transition-metal catalyzed allylic alkylation (Scheme 46). [86] While palladium-catalyzed allylic alkylation has been employed in the synthesis of acyclic tertiary stereocenters, the formation of all-carbon quaternary stereocenters has proven more challenging. Using the allylating agent consistently they found a huge impact of solvent especially non-polar solvents such as 3:1 mixture of hexane/toluene for providing highest and most reproducible yields. In this solvent system, using ligand L1* gave the desired product obtained in 98% isolated yield and 90% ee. They have also reduced
the catalyst loading from 1.0 mol% to 0.5 mol% and found similar yield and selectivity without significantly increasing reaction time. Some of the selective substrate scope of the reaction has been presented in the **Scheme 46**.

After optimizing the reaction conditions, they tried to examine the importance of enolate geometry on the transformation (**Scheme 47**). Whenever they used ligand L1*, for E/Z ratio of enolates from >98:2 and 25:75 they have isolated the desired product in excellent ee of 91 and 90% respectively. Surprisingly, the 25:75 E/Z ratio of enolates provides the product in a diminished 64% yield and
50% ee (compared to 89% yield and 86% ee) whenever using ligand L2*.

Scheme 47 Effect of enolate geometry on the asymmetric inductions during Pd-DAAA

They mentioned that a dynamic kinetic resolution of the two enolate geometries and different facial selectivity between the two enolates occurs in the reaction when L2 is used as the ligand, possibly due to facile equilibration between O-bound and C-bound palladium enolates. Therefore, the enolate geometry along with right kind of ligand is a major tunable area along with other general parameters of these type of reactions. In fact, an analogous phenomenon regarding different enolate geometries was observed by the Trost lab when forming acyclic tertiary stereocenters via palladium-catalyzed allylic alkylation. [87]

In 2014 Hossain’s group reported a synthesis of chiral aldehydes bearing all carbon quaternary stereocenters via the decarboxylative asymmetric allylic alkylation (DAAA) (Scheme 48). [88] At first, they were able to develop a stereoselective synthesis for the formation of both E- and Z-allyl carbonate by optimizing the choice of base and screening temperature along with solvent. Then a
fine tuning of solvent with number of different ligands resulted the formation of desired quaternary aldehyde up to 73% enantioselectivity and 96% conversion. A general trend of getting better enantiobenefit for electron donating group was observed compared to the electron withdrawing groups.

Scheme 48 Pd-DAAA of carboxy-allyl enol using Trost ligand

![Scheme 48 Pd-DAAA of carboxy-allyl enol using Trost ligand](image)

Where, R = H, 4-Me, 4-F, 4-OMe, 5-Br-2-OMe, 2,4-Cl₂

A recent approach of the first enantioselective palladium-catalyzed decarboxylative allylic alkylation of fully substituted N-acyl indole-derived enol carbonates forming acyclic all-carbon quaternary stereocenters is reported by Stoltz group in 2019 (Scheme 49). [89] Use of a novel electron deficient phosphinoxazoline (PHOX) ligand namely (S)-Ty-PHOX yielded up to 99% and ee up to 98%.

After getting an optimized ratio of E/Z for the enolate they have agreed that the control of substrate enolate geometry is crucial for high selectivity. They have examined the scope of the transformation for accessing various acyclic all-carbon quaternary stereocenters (Scheme 49). The presence of electron-rich aryl groups resulted in a slight increase in selectivity, with both p-Me (28e) and p-OMe (28f) substrates yielding the desired products in 98% ee each, and the bis-OMe
substrate (2g) in 95% ee. Notably, both methoxy containing substrates 28f and 28g required longer reaction times to reach full conversion (i.e., 24h). An examination of electron-poor aryl groups demonstrated that, while p-Cl (28h), p-Br (28i), and p-F (28j) groups were well tolerated (94–96% ee), a p-CF₃ (28k) containing substrate provided the product in a diminished 72% ee, believed to result from increased stabilization of the resultant enolate.
B. Asymmetric Claisen rearrangement as a route to quaternary stereocenter

To make chiral Claisen rearrangement products using an asymmetric route there are several possibilities. If no external asymmetric induction is applied, the enantiomers can be separated via resolution, but this method suffers from the disadvantage of losing half of the unwanted enantiomer, which is highly undesirable. The first option is to transfer chirality from either the allylic or vinylic fragment of the allyl enol ether to the chiral carbon through a complete [1,3]-chirality transfer (remote stereocontrol), although other positions in the allyl enol ether substrate have also been used to transfer the chirality. Alternatively, more than one chiral center can be used to transfer the stereochemical information. The chiral allylic fragment can be obtained by such well known processes like the Sharpless asymmetric epoxidation, [90] enantioselective reduction of carbonyl compounds[6] and enzymatic processes. [91] In the diastereoselective reaction proceeding through remote stereocontrol the chiral center is usually present to position one and six (Scheme 50).

Scheme 50 Remote stereo-control of the diastereoselective reaction

Overman et al. reported the first examples of a truly catalytic reaction of the conversion of allyl amidates into the corresponding carbamates employing chiral palladium catalysts. [92] A series of chiral oxazoline substituted ligands were tested by Uozumi and Hayashi in the palladium (II)-
The most conventional approach of using Palladium usually being used for the primary O-allylation and the 1,2-Claisen type rearrangement is usually conveyed out by using other rare metals like Europium, Holmium etc. Some of the examples has shown in the Scheme 52. [93] Beside the use of rare metal with Pd catalyst, the use of achiral Al (III) Lewis acids are able to accelerate the aliphatic Claisen rearrangement as well. However, their applicability as catalysts is mainly prevented by product inhibition. [94] Al (III), B (III), and Mg (II) chiral Lewis acid complexes have been efficient for the asymmetric reaction but have not found applicability for a catalytic version of the reaction. However, the Lewis acid catalysts are substrate specific, (Scheme 53) if one metal Lewis acid is found to catalyze the Claisen rearrangement of a specific allyl enol ether substrate, this does not make it suitable as a catalyst for a varied range of allyl enol ether substrates.
Scheme 52 Rare metal induced O-allylation and their further rearrangement

(a) O-allylation of enolic cyclic substrate

\[
\begin{align*}
\text{Pd}_2(\text{dba})_3\cdot\text{CHCl}_3 & \quad \text{L}^*, \text{rt, CH}_2\text{Cl}_2 \\
\text{HO(fod)}_3 \cdot \text{CHCl}_3 & \quad \text{CHCl}_3
\end{align*}
\]

\[n = m = 1, 44\% \ (83\% \ ee, 87\% \ ee)\]
\[n = 2, m = 1.95\% \ (92\% \ ee, 98\% \ ee)\]
\[n = m = 2, 96\% \ (90\% \ ee, 98\% \ ee)\]

(b) O-allylation of the phenolic substrate

\[
\begin{align*}
\text{Pd}_2(\text{dba})_3\cdot\text{CHCl}_3 & \quad \text{L}^* \\
\text{HO(fod)}_3 \ (10 \ \text{mol}) & \quad \text{CHCl}_3 \ 50^\circ\text{C}
\end{align*}
\]

Yield 88\%, ee: 97\%

The following example shows some of the metal induced O-allyl rearrangement where the catalyst used in stoichiometric or more amount of the aluminum and boron catalyst.
Scheme 53 Aluminum and Boron catalyzed O-allyl rearrangement for acyclic quaternary carbon formation

But the use of Pd-L* for the rearrangement is quite rare and little complicated because of the reaction condition. A representative study has been shown by Hossain et al. [95] They have shown the first Palladium (0)-catalyzed asymmetric allylic alkylation (AAA) of O-allyl enol ether rearrangement of via π-allylpalladium intermediate using Trost chiral diphosphine (Scheme 54). This unprecedented reaction produced very rare a-aryl quaternary aldehydes with multi-functional groups. The main novelty in the chemistry demonstrates the formation of enol, 30 from the unprotected enol 29 using nBu4NI as a phase transfer catalyst (PTC) in presence of KOH base. Therefore, they have used the ethers as a precursor for p-allylpalladium intermediates, to the best of the knowledge, perhaps without prior precedent. Chiral ligand (R,R)-L* was found to be optimal in this Pd-AAA reaction and provided good to excellent yield (80–95%) and enantioselectivity (70–90%) with a range of analogs.
Scheme 54 Pd catalyzed rearrangement of O-allyl ether 30 using DACH-naphthyl Trost ligand

In fact a small number of catalytic achiral metal catalysts that speed up the Claisen rearrangement have been reported, for example Pd(II) complexes, lanthanide (III) complexes and TiCl₄. [96-98] In both metal promoted and metal catalyzed Claisen rearrangement reaction, substituents on allyl enol ether have a dramatic effect on the rate of rearrangement briefly.
3.1.4 Some Other recent approaches for the synthesis of achiral quaternary center

Additionally, the Evans lab has reported the use of rhodium-catalyzed allylic alkylation to furnish acyclic α-quaternary nitriles and aldehydes (Scheme 55a). [99] In the later work, they showed that both enolate geometries (E/Z) result similar enantiomeric excess of the product, which they have predicted as a consequence of substrate selectivity and not the result of an enolate equilibration event. In contrast, a dynamic equilibration of tributyltin enolates has been invoked by the Jacobsen group to directly alkylate fully substituted acyclic enolates with alkyl halides catalyzed by a [Cr(salen)] complex, affording α-quaternary ketones in high enantioselectivity starting with mixtures of enolates (Scheme 55b). [100a] Recently, Shimizu and Kanai demonstrated the preparation of acyclic α-quaternary carboxylic acids via allylic alkylation utilizing a hybrid boron-palladium catalytic system (Scheme 55c). [100b]

Scheme 55 Recent approaches for asymmetric induction using Rh, Cr and B

![Scheme 55](image-url)
Part 3: Introduction

Introduction to Spirooxindole pyrolidine

Phalaris coerulescens, a lesser-known species of Phalaris, is a winter growing perennial with rapid germination, vigorous seedling growth and high production in its seedling year. Trials in Australia in the late 1950s and the 1960s produced conflicting reports on persistence and productivity. [101] The introduced strains were not commercialized but it has become volunteer species in higher rainfall areas, particularly in the state of Victoria, where it has also been circumstantially associated with horsy fatalities.

P. coerulescens has recently reintroduced to Australia to provide a more persistent and productive grass, other than the traditional perennial veldt grass (Ehrharta calycina), for low water-holding, acid soils. Trials of P. coerulescens accessions were established in the south east of South Australia already. Because of the known potential toxicity of Phalaris and of a suspected association of P. coerulescens with horse fatalities on a farming property in Victoria in the late 1980s, it was considered necessary to investigate the accessions for alkaloid content before further agronomic development was pursued. [102] In the process of evaluating the alkaloid content of the various P. coerulescens accessions by TLC, HPLC and GC-mass spectrometry methods a new alkaloid was identified and isolated.

Thereafter a detail phytochemical study of various accessions of Phalaris coerulescens for the presence of toxic phenylethylamines, indoloamines and tetrahydro-β-carbolines revealed the presence of oxindoles previously not reported to occur in Phalaris species. One of the oxindoles,
the structure of which was elucidated by spectroscopic methods (in fact a spirooxindole), has not been reported to occur naturally and has been given the trivial name coerulescine.

Figure 7 Examples for the structure of spirooxindole containing natural products

![Spirotryprostatin B](image1) (R)(-)-Coerulescine (S)(-)-Coerulescine (R)(-)-Horsfiline Strychnofoline

A spirooxindole is a key structure of coerulescine, horsfiline, elacomine, spirotryprostatin B, and strychnofoline can exhibit various biological activities. [103-104] Among the spirooxindole alkaloids, the relatively simple structure of coerulescine has become attractive to many medicinal chemists as a new pharmaceutical skeleton (**Figure 7**). It was first isolated in 1998 from *Pharalis coerulescens* by Colegate et al. [102]. The construction of the quaternary stereogenic center of (–)-coerulescine has been quite challenging, and until now, only four synthetic methods have been reported for the synthesis of enantiomerically enriched coerulescine.
4.1.1 Synthesis of (-)-Coerulescine: (by Denishefsky et al)

The first reported synthesis of natural product (-)-coerulescine was introduced during the investigation on the oxidative diastereoselective rearrangement of chiral tetrahydro-β-carboline precursors, for the targeted synthesis of Phalarine which is a natural product isolated from Phalaris Coerulescine (blue canary grass) by Denishefsky group in 2010. [105] They have reported the synthesis of (s)-coerulescine with excellent enantioselectivity (94%) but not as a final product rather a metabolic intermediate. The synthesis of the intermediate has shown in Scheme 56. L-tryptophan has used as the starting material and 4 step functional modification of the substrate produced compound 32 after recrystallization (Scheme 56). Then the subsequent rearrangement of the six (6) member ring and decarboxylation resulted the coerulescine as an intermediate.

Scheme 56 Denishefsky synthesis of (S)-(−)-coerulescine

\[
\text{(S)(−)-Coerulescine)
\]

i. MeOH, 2N aq HCl, ii. 37% aq HCHO, reflux
iii. TMSCl, MeOH, reflux
iv. 37% aq HCHO, NaBH3CN, AcOH 69% after recrystallization
v. NMS, AcOH, THF, O°C Quantitative
vi. 7 M NH3 / MeOH, rt, quant
vii. TFA, Et3N, DCM, quant
viii. NaBH4, EtOH, reflux, 73%
4.1.2 Synthesis of (-)-Coerulescine: (by Hayashi et al)

Later in 2014, Hayashi et al report the three one-pot sequential synthesis of (-)-coerulescine by employing two key reactions, namely 1) the synthesis of a 2-oxoindoline-3-ylidene acetaldehyde from acetaldehyde and an Isatin derivative and 2) the organocatalyzed Michael addition of nitromethane to the 2-oxoindoline-3-ylidene acetaldehyde to construct the all-carbon quaternary stereogenic centers with excellent enantioselectivity (Scheme 57). [106] Furthermore, they also synthesized (-)-coerulescine according to the route of Danishefsky and co-workers to verify the small optical rotation of coerulescine and to define the solvent for optical rotation comparison. [105] In this way they concluded the absolute configuration of (-)-coerulescine to be R which is not analogous to the experimental outcome earlier done by Danishefsky’s group.

Scheme 57 Hayashi synthesis of (R)-(−)-Coerulescine
The aldol addition of Isatin derivatives 35 with acetaldehyde generated the β-hydroxyaldehyde and dehydration under acidic conditions provided 36 directly as a mixture of E/Z isomers (Scheme 57). The interesting outcome is the one pot formation of the enals 36 from Isatins 35 in excellent yield. This method was found to be higher yielding and more convenient than reported methods; for example, enal 36 has been produced in 27% over 3 steps by the reduction of the 3-position on 35 to form an alcohol, alkylation with bromoacetaldehyde diethyl ether, and acetal deprotection to afford 36. Therefore, the approach was to start with an aldol reaction of the commercially available isatin derivatives 35 with acetaldehyde, followed by dehydration under acidic conditions to give 2-oxoindoline-3-ylidene acetaldehydes 36 as E/Z mixtures in excellent yields. The enantioselective conjugate addition of nitromethane to 36 generated aldehydes 37 with excellent enantioselectivity in the construction of the all-carbon quaternary stereogenic centers. Zn, AcOH, and water were added to the same reaction vessel to reduce the nitro group into an amine. At the same time, an intramolecular reductive amination proceeded to form the pyrrolidino spirocycle. Formaldehyde was then added to the reaction mixture sequentially to install the N-methyl group by an intermolecular reductive amination. The four reactions from aldehydes 36 were performed in the same reaction vessel and afforded 38 in 69% yield over 4 steps. Removal of the benzyl group under Birch conditions furnished (R)-horsfiline (1) and (R)-coerulescine in good yields. They understood that the spirooxyindole may tends to racemize under acidic conditions; [107-108] therefore, the optical purity was checked by HPLC analysis over a chiral phase. This showed the ee values of the prepared coerulescine was 94%, which indicated that racemization did not occur during their synthesis. Hence, the three one-pot sequential syntheses of (R)-coerulescine were developed in good total yield.
4.1.3 Synthesis of (-)-Coerulescine: (by Basai et al)

In 2015, Basai et al. also constructed the quaternary stereogenic center of coerulescine via an α-hydroxymethylation of α-(aminoalkyl)oxindole using cinchona-derived thiourea bifunctional organocatalysts as shown in the Scheme 58 starting from compound 39 as a potential starting material.[109]

Scheme 58: Basai total synthesis of (+)-Coerulescine

Compound 39 was potentially attached to a primary alcohol on the C3 position to form 40 with very good yield and enantioselectivity. Compound 40 was then treated with trifluoroacetic acid to get oxindole which was further reacted with methanesulfonyl chloride to afford mesylate 41 in 83% yield over 2 steps (Scheme 58). The latter was then converted to naturally occurring (+)-
coerulescine in 85% yield when subjected to catalytic Pd–C in ethanol (1 atm of H₂). This protocol is a newer approach, but the overall yield and the number of steps is not comparable to the other established protocol especially the formation of the starting material add 4 more steps to the overall consideration of the synthetic feasibility.
4.1.4 Synthesis of (-)-Coerulescine: (by Park et al)

Recently a practical enantioselective synthetic method for preparing (S)-(+-)coerulescine is reported through the use of diphenylmethyl tert-butyl \(\alpha \)-(2-nitrophenyl)malonate (16% overall yield, 7 steps) by Park et al. [110] Allylation is the key step under phase-transfer catalytic conditions (82% ee). Then the compound was recrystallized and the enantiobenefit was raised up to >99% (Scheme 59).

Scheme 59: Park total synthesis of (S)(+-)Coerulescine using PTC
For the first step, the enantioselective allylation of 42 was performed under the reported PTC conditions with allyl bromide (10.0 equiv.), 50 mol% KOH (s) and (R, R)-L* at 0 °C in toluene to produce the allylated product (S)-43 (yield 83%, ee: 82%). A reduction using sodium borohydride, afforded lactone 45 (95%) via the oxidative cleavage of the terminal allylic double bond was done ozonolysis which resulted compound 44. Without purifying 45, the treatment of additional sodium borohydride with cerium (III) trichloride heptahydrate and tetrahydrofuran as a co-solvent at 0 °C selectively reduced 45 to the corresponding diols 46 (52% from 44) in situ. Diol 46 was purified as a single stereoisomer (>99% ee) with a 45% yield by recrystallizing (86% ee) using ethyl acetate and hexane (1:5). Dimesylation of 47 (94%) followed by N-alkylation in the presence of excess methylamine successfully produced N-methylpyrrolidines 48 retaining the enantiobenefit. The reduction of the nitro group on 48 by a catalytic hydrogenation under Pd/C and atmospheric H₂ afforded amine 49. Finally, the prepared amine 49 was directly cyclized to (+)- coerulescine {observed [α] 20 D = 3.08 (c=1, MeOH); literature [α] 20 D = 1.0 (c=2.4, MeOH) (Mukaiyama et al., 2014)} by stirring with silica gel (SiO₂) in CH₂Cl₂ with no racemization (90% from 49, >99% ee).
Part 4: Introduction

4.2.1 Introduction to spirooxindole lactone

A 2-oxindole spirofused with either a lactone or lactam moiety is a privileged three-dimensional framework existing across a large family of alkaloid natural products with diverse biological profiles. [1] For example, coixspiro lactam A–C, isolated from the traditional Chinese medicine adlay bran, [5] exhibit potent anti-proliferative effects on human lung cancer cells A549, human colorectal carcinoma cells HT-29, and COLO 205 (Figure 8). [4] Although their optical rotations were reported, the absolute configuration of the spiro-carbon center was not elucidated. Another oxindone containing moiety namely, Trigolutes A–C are extracted from the twigs of trigonostemonlutescens and show promising activity in the treatment of hemorrhagic fever with renal syndrome. [111] Lactam derivatives such as compound 50 of spirooxindole are antagonists on the mouse CRTH2 receptor and may directly mediate the recruitment of inflammatory cells.

Figure 8 Representative natural products and bioactive molecules containing the spirooxindole lactone and lactams

![Chemical structures](image-url)
in allergic diseases such as asthma, allergic rhinitis, and atopic dermatitis. [112] The S enantiomer, which is separated by preparative chiral-phase HPLC is about 52 times more active than the R isomer. Therefore, highly enantioselective assembly of these spirooxindole lactones/lactams is of great interest in medicinal chemistry. [113] Although stereoselective construction of the spirooxindole has been well established, asymmetric synthesis of allcarbon spirooxindoles containing either a lactone or lactam moiety has had limited success. [114-115]

4.2.2 Different approaches for the synthesis of spirooxindole lactone

In 2014, Liang and Xu developed a novel approach to chiral spirooxindole δ-lactones through bifunctional thiourea catalyzed [5+1] annulation of oxindoles with ester-linked bisenones (Scheme 60a). [115a] An enantioselective synthesis of spirooxindole alkylidene-ϒ-lactones was successfully developed by Quintavalla and co-workers through organocatalytic aldol reaction of C3-alkylated oxindoles with aldehydes (Scheme 60b).[115b] The first asymmetric synthesis of spirooxindole ϒ-lactams was accessed by an oxoindolin-3-ylidene involving a four-component reaction promoted by a recyclable fluorous bifunctional cinchona alkaloid/thiourea organocatalyst (Scheme 60c).[115c] Each of these reactions must start from either oxindoles or their derivatives to deliver a specific skeleton after a long reaction time (up to 8 days). Therefore, a general and highly enantioselective approach, applicable to all spirooxindole ϒ- and δ-lactones/lactams, starting from non-oxindole-based materials, under mild reaction conditions is highly desirable.
Out of many known and unknown natural spiro lactone one very recent study on the extract of Adlay (Chinese pearl barley, soft-shelled Job’s tears, Coixlachryma-jobi L. var. ma-yuen Stapf) grass crop that has long been described by Kuo et al in 2008 is our focus of discussion. [116-117] The adlay seeds are used in traditional Chinese medicine and as a ‘nourishing’ food. It is mainly planted in Taiwan, China, and Japan, where it is considered a health food supplement. According to the ancient Chinese medical book Pen-Tsao-Kang-Mu, Li (1596), the seed of adlay was used in China for the treatment of warts, chapped skin, rheumatism, and neuralgia, and as an anti-inflammatory or anti-helminthic agent. Numerous recent reports have indicated that the consumption of adlay seed is beneficial to the human body. [118-119]
Takahashi et al. (1986) reported that coixans A, B, and C isolated from adlay seeds have hypoglycemic activity in rats. [120] Coixenolide was isolated from adlay seeds, and it exhibited anti-tumor activity towards Ehrlich ascites sarcoma in mice. [121] The anti-tumor constituents of adlay include a-monolinolein, and free fatty acids such as palmitic, stearic, oleic, and linoleic acids. [122-123] In addition, recent studies indicate that adlay has antitumor effects. Chiang et al found that adlay inhibited sarcoma-180 tumor in mice. [118] Kuo et al. indicated that a methanolic extract of adlay hull has antiproliferative activity against human histolytic lymphoma U937 monocytic cells via apoptosis. Chang et al reported that a methanolic extract of adlay has an anti-proliferative effect on A549 lung cancer cells by inducing cell cycle arrest and apoptosis. [116] Feeding mice a diet containing adlay reduced the number of surface lung tumors in mice. Shih et al showed that dehulled adlay suppressed early events in colon carcinogenesis and it also reduced COX-2 protein expression. [117]
4.2.3 Previous synthesis Coixspirolactam A

Recently the natural product coixspirolactam A was conveniently synthesized asymmetrically and absolute configuration was elucidated for the first time by Zhu et al. The key achievement of this finding is an efficient one-pot assembly of all-carbon spiro-oxindole compounds from non-oxindole-based materials through a palladium-catalyzed asymmetric Heck/carbonylative lactonization and lactamization sequence. [124] They have also reported the formation of diversified spirooxindole γ- and δ-lactones/lactams in high yields with good to excellent enantioselectivities (up to 99% ee) under mild reaction conditions.

The N-(2-iodophenyl)-N-methylacrylamide derivative 1, bearing a branched homoallylic alcohol, was investigated in Pd-catalyzed carbonylation (Scheme 58). When PPh₃ was used as a ligand in the presence of balloon pressure of CO, intramolecular carbopalladation followed by carbonylative

Scheme 61 Synthesis of coixspirolactam A and the elucidation of its absolute configuration

![Scheme 61](image)
lactonization occurred to give a racemic spirooxindole δ-lactone in excellent yield. Encouraged by this result, several chiral bidentate phosphine ligands were then screened and ligand (R)-L* delivered the product with good enantioselectivity (91% ee) with excellent chemical yield 92%. The optimized result was obtained using PivOH was used as an additive and K₂CO₃ as a base.

To elucidate the absolute stereochemistry of coixspirolactam A, both enantiomers R and S were synthesized conveniently through a two-step sequence with 99% and 97% ee, respectively (Scheme 58). By comparing their optical rotations with the reported value, (c = 0.70, MeOH at 27 °C), the structure of coixspirolactam A was confirmed as R. [125]
1.2 Results and Discussion

1.2.1 Optimization study of Pd-AAA of prochiral 2-nitro-3-hydroxy phenyl acrylate

The formation of all carbon quaternary stereocenter [126] by catalytic enantioselective manner has proven to be a challenge for the organic chemist since they are working on developing concise and facile synthetic route for drug designing and development of new synthetic route for the targets with proven potency. From the synthetic point of view a considerable number of such bioactive compounds contains a moiety namely 3,3-disubstituted oxindole. Therefore, we envisioned a retrosynthetic route as a primary goal which is achievable through the formation of all carbon quaternary center shown in retrosynthetic plan 1.

Retrosynthetic Plan 1:

Out of many different metal (such as Rh, Pt, Ni, Cr and Ru etc.) catalyzed approach, Pd-AAA that has played a key role in creating such stereocenter and allowed researchers to synthesize numerous biologically potent natural products. [127-129] However, synthetic methodologies to access
acyclic quaternary carbon center is still rare due to the conformational mobility of the structures. The existence of such aryl quaternary stereocenters in a growing number of biologically active natural products and pharmaceutical agents [130] demands a pressing need for the ability to construct this important motif enantioselectivity. Our group has first reported the synthesis of 3-hydroxy aryl acrylate with an outstanding scope of the reaction in 1998 which was then modified to a facile reaction protocol in 2004 by introducing a Brønsted acid HBF$_4$.OEt$_2$ in place of Iron Lewis acid catalyst. [131,132] But the scope was somehow limited to the electron withdrawing o-nitro group due to the complexity of work up procedure. We have recently sorted out a convenient work

Scheme: 62 Retention of structural information during asymmetric induction

<table>
<thead>
<tr>
<th>Aryl bound tertiary</th>
<th>All-carbon α-aryl quaternary center</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prochiral α-carbon</td>
<td></td>
</tr>
</tbody>
</table>

up protocol for 2-nitro-3-hydroxy phenyl acrylate and isolated the desired compound with 78% yield. Due to the presence of aryl bound tertiary α-prochiral carbon centers in 3-hydroxyaryl acrylates, these compounds should allow us to synthesize chiral all-carbon α-aryl quaternary stereocenters (Scheme 62). The necessity of having nitro group is the potential planning of forming an oxindole ring after preparing the o-nitro containing quaternary aldehyde 2. One of the most convenient practice is Pd- AAA that can introduce an alkyl group by nucleophilic attack. To prove
this hypothesis, we first attempted allylation (as alkyl group) of a nitro containing substrate 1 which in fact demands a thorough investigation to prepare the challenging unprecedented formation of the quaternary chiral aldehyde, (ethyl 2-formyl-2-(2-NO₂-phenyl)pent-4-enoate 2. The screening has initiated based on our previous success with Pd-AAA using a chiral Trost modular ligand mediated enantioselective synthesis. [133] To our disappointment, the attempt failed to result better enantiomeric excess (ee) may be because of the steric hindrance of the α-prochiral center due to the presence of nitro group at ortho-position (Scheme 63).

Scheme 63 Screening the previously optimized reaction condition

![Scheme 63](image)

Even though the results were dissatisfactory, it might be only because of the optimized condition, which is not good enough for ortho-substituted analogs specially the electron withdrawing group like nitro and fluoro. We must optimize the reaction variables and find out a different condition for this class of analogs. Therefore we started with screening the solvent along with temperature at first by keeping the exact same ligand and Pd₂(dba)₃.CHCl₃ as a source of Pd(0).

Initially, we have studied variable polarity solvents of both protic and aprotic classes, namely DCM, DME, ether, toluene, MeOH, EtOH, tPA, tBuOH, Acetonitrile, DMF, HMPA, and THF. Surprisingly, we did not observe any O-allylation with any of these single solvents or the mixture
Table 1 Solvent optimization studies for the Pd-AAA of 3-hydroxy-2-nitro phenyl acrylate 1

<table>
<thead>
<tr>
<th>Entry[a]</th>
<th>Solvents</th>
<th>Temp, [°C]</th>
<th>Conv. [%][b]</th>
<th>ee [%][c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCM</td>
<td>rt</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>DME</td>
<td>-10</td>
<td>47</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>MeOH</td>
<td>-10</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>i-PA</td>
<td>-10</td>
<td>100</td>
<td>24</td>
</tr>
<tr>
<td>5</td>
<td>Acetonitrile</td>
<td>rt</td>
<td>85</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>THF</td>
<td>rt</td>
<td>99</td>
<td>38</td>
</tr>
<tr>
<td>7</td>
<td>THF</td>
<td>-10</td>
<td>92</td>
<td>46</td>
</tr>
<tr>
<td>8</td>
<td>t-Butanol</td>
<td>rt</td>
<td>80</td>
<td>42</td>
</tr>
<tr>
<td>9</td>
<td>toluene</td>
<td>rt</td>
<td>95</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>toluene</td>
<td>-10</td>
<td>70</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>DMF</td>
<td>rt</td>
<td>82</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>HMPA</td>
<td>rt</td>
<td>100</td>
<td>31</td>
</tr>
<tr>
<td>13</td>
<td>CF₃CH₂OH</td>
<td>-10</td>
<td>20</td>
<td>n.d.</td>
</tr>
<tr>
<td>14</td>
<td>1,4-dioxan</td>
<td>rt</td>
<td>47</td>
<td>27</td>
</tr>
<tr>
<td>15</td>
<td>Cyclohexane</td>
<td>rt</td>
<td>40</td>
<td>53[^{[d]}]</td>
</tr>
<tr>
<td>16</td>
<td>Cyclohexane : toluene (3:1)</td>
<td>rt</td>
<td>38</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>Cyclohexane : THF (3:1)</td>
<td>rt</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>18</td>
<td>THF : t-BuOH (1:1)</td>
<td>rt</td>
<td>90</td>
<td>21</td>
</tr>
<tr>
<td>19</td>
<td>THF : toluene (1:1)</td>
<td>rt</td>
<td>75</td>
<td>33</td>
</tr>
<tr>
<td>20</td>
<td>THF : 1,4-dioxane (1:1)</td>
<td>rt</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>THF: 1,4-dioxane (1:1)</td>
<td>10</td>
<td>75</td>
<td>racemic</td>
</tr>
<tr>
<td>22</td>
<td>THF : t-BuOH (1:1)</td>
<td>-10</td>
<td>47</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>THF : toluene (1:1)</td>
<td>-10</td>
<td>99</td>
<td>21</td>
</tr>
<tr>
<td>24</td>
<td>Tol : Hex : tBuOH (1 : 1 :1)</td>
<td>rt</td>
<td>99</td>
<td>30</td>
</tr>
<tr>
<td>25</td>
<td>Tol : Hex : THF (1 : 1 :1)</td>
<td>-10</td>
<td>33</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>Amyl alcohol</td>
<td>rt</td>
<td>65</td>
<td>11</td>
</tr>
</tbody>
</table>

[a] Reaction conditions 1 (0.105-0.210 mmol), THF (2-5 mL). [b] Conversions were calculated from NMR. [c] Enantiomeric excess determined by chiral HPLC analysis. [d] Inversion of configuration.
of solvents. Conversion is good at room temperature in most of the cases (Table 1, entry 1, 5, 6, 8, 9, 11, 12, 18, 20 and 24) except 1,4-dioxane and cyclohexane (entry 14 and 15) and even at low temperature in some cases (entry 3, 4, and 7) for the single solvent system. However, for some cases at low temperature, the conversion was low (entry 2, 11, 14 and 27). We did not find a patterned correlation of enantioselectivity with the change in polarity of solvents. For example, toluene (nonpolar) provided 11% ee (entry 9) and increasing the polarity seemed like decreasing ee as with DCM (entry 1) but the most polar protic alcohols relatively increased the ee value (entry 8). The order of increasing ee obtained from primary to tertiary alcohol (entry 3, 4, and 8) at different temperature especially t-BuOH provided a promising ee but we could not go further lowering the temperature due to high freezing point of the solvent. However, polar aprotic solvent THF and HMPA proved to be relatively better class of solvent, as among acetonitrile, DMF, nitromethane, HMPA and THF (entry 5, 6, 11 and 12), HMPA provided 31% (entry 13) and THF provided maximum 38% ee at rt (entry 6). On the other hand, temperature does have an effect on ee in some cases (entry 7 vs 6; entry 9 vs 10). Surprisingly the solvent cyclohexane provided the best result of enantioselectivity, but the conversion was too low (entry 15) and we saw an inversion of configuration which was confirmed by chiral HPLC analysis. We have therefore planned to explore this solvent later so that we can make both enantiomer of our targeted compounds. From the screening of different solvents, we found best conditions (ee 46%) with THF at −10 °C (entry 7). It seems like the reaction goes to completion without any base in THF at as low as −10 °C without affecting %conversion or % ee. The use of binary or ternary solvent system provided no interesting result to explore furthermore (entry 16 to 25).

Whenever we achieved an enantiomeric excess from 6% to 46% by tuning the solvents, we then
turned our investigation of different ligands on enantiodiscrimination. We have selected five C2-
symmetric ligands namely Trost modular (diphenylphosphino)benzoic acid (DPPBA), 2,2’-
bis(diphenylphosphino)-1,1’-binaphthyl (BINAP) and bioxazoline (BOX) ligand; two
nonsymmetrical

Figure 9 Selected ligands for Pd-AAA of prochiral 2-nitro-3-hydroxy phenyl acrylate, 1

ligands such as a mixed P/N-type phosphinooxazoline (PHOX); ferrocenyl oxazoline and
phosphoramidite for the investigation (Figure 9). For this optimization, we kept the solvent
constant to THF that provided maximum ee of 46% and studied the effect of ligands. It should be
mentioned that such a diverse selection of ligands may lead the formation of both C-alkylation and
O-alkylation products at the same time. It has been observed that the DPPBA ligand class,
including L1, L5, L7, L10 and nonsymmetrical PHOX ligand L4 showed better enantioselectivity
Table 2 Optimization of ligands for intermolecular Pd-AAA of compound 1 (Method A)

![Chemical structure](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand</th>
<th>Temp [°C]</th>
<th>Conv.[%][b], 2</th>
<th>Conv.[%][b], 9</th>
<th>ee[%][c]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>rt</td>
<td>99</td>
<td>0</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>0</td>
<td>95</td>
<td>0</td>
<td>42</td>
</tr>
<tr>
<td>3</td>
<td>L1</td>
<td>-10</td>
<td>92</td>
<td>0</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>L1</td>
<td>-20</td>
<td>nr</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>L2</td>
<td>-10</td>
<td>99</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>L3</td>
<td>-10</td>
<td>60</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>7</td>
<td>L4</td>
<td>-10</td>
<td>80</td>
<td>20</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>L5</td>
<td>-10</td>
<td>100</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>9</td>
<td>L6</td>
<td>-10</td>
<td>99</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>L7</td>
<td>-10</td>
<td>30</td>
<td>70</td>
<td>36</td>
</tr>
<tr>
<td>11</td>
<td>L8</td>
<td>-10</td>
<td>nr</td>
<td>nr</td>
<td>n.d.</td>
</tr>
<tr>
<td>12</td>
<td>L9</td>
<td>-10</td>
<td>29</td>
<td>71</td>
<td>n.d.</td>
</tr>
<tr>
<td>13</td>
<td>L10</td>
<td>-10</td>
<td>90</td>
<td>0</td>
<td>41[d]</td>
</tr>
</tbody>
</table>

[a] Reaction conditions 1 (0.105-0.210 mmol), THF (2-5 mL). [b] Conversions were calculated from NMR. [c] Enantiomeric excess determined by chiral HPLC analysis [d] Inversion of conversion.

(Table 2). But ligands L4 and L7 formed C-allylated product 2 along with O-allylated product ethyl 3-(allyloxy)-2-(2-nitrophenyl)acrylate 9. Although both ligands L1 (46% ee) and L5 (30% ee) regio-selectively provided the C-allylated product 2, we selected ligand L1 to explore further for its promising optical selectivity. The Ferrocenyl ligands L9 has also been employed, which ensued the O-allylated product 9 with very poor yield of desired compound 2 (entry 12). One BOX ligand L6 has been tried as well without much success (entry 7). The (S,S)-L10 was used which
gave the product similar to the results obtained from \((R,R)-L1\) (entry 13 vs entry 1-3) and also confirmed the identifying peaks for the inversion of conversion during HPLC analysis. The preliminary result prompted us to study the influence of the reaction parameters such as solvent, temperature and additive.

Achieving a result of 46% ee for the L1 ligand using THF as a choice of solvent driven us to explore the source of different Pd(0) which sometimes ensure the better selectivity of the nucleophilic attack [134]. That is the reason researcher explored different source of catalyst. We have achieved a low enantioselectivity compare to Pd_2(dba)_3.CHCl_3 (Table 3). Whenever screening that we didn’t find an alternative source of palladium to explore as shown in Table 3. Basically, the conversion was almost in good range whenever screening the alternative palladium source such as [Pd(C_3H_5)Cl]_2, (entries 1-6, 8-11) but stereoselectivity was not satisfactory and the other sources proved to be unproductive (entries 7 and 12). But We got an idea that the catalyst Pd_2(dba)_3.CHCl_3 might be the right choice along with the (R,R)-L1 (DACH-Napthyl Trost ligand) considering THF as a choice of solvent based on the results we obtained so far. increase of enantioselectivity for using BSA (Bis(trimethyl silyl) acetamide) (entry 17) but the conversion was low (20%).
Table 3. Selected optimization of catalyst, ligand, and their loading for the Pd-AAA of compound 1

<table>
<thead>
<tr>
<th>entry</th>
<th>Solvent</th>
<th>Ligand (mol%)</th>
<th>catalyst</th>
<th>temp [°C]</th>
<th>conv. [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1⁵</td>
<td>toluene</td>
<td>(R,R)-L1(7.5 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>95</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>toluene</td>
<td>(R,R)-L1(6.0 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>72</td>
<td>29</td>
</tr>
<tr>
<td>3⁵</td>
<td>THF</td>
<td>(R,R)-L1(7.5 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>rt</td>
<td>90</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>THF</td>
<td>(R,R)-L1(6.0 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>rt</td>
<td>81</td>
<td>22</td>
</tr>
<tr>
<td>5</td>
<td>THF</td>
<td>(R,R)-L1(5.0 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>THF</td>
<td>(R,R)-L1(6.0 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>0</td>
<td>69</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>THF</td>
<td>(R,R)-L1(6.0 mol%)</td>
<td>Pd(OAc)₂Cl₂</td>
<td>rt</td>
<td><10</td>
<td>n.d.</td>
</tr>
<tr>
<td>8⁸</td>
<td>toluene</td>
<td>(R,R)-L1(6.0 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>72</td>
<td>29</td>
</tr>
<tr>
<td>9⁸</td>
<td>toluene</td>
<td>(R,R)-L1(7.5 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>95</td>
<td>35</td>
</tr>
<tr>
<td>10ᵩ</td>
<td>THF</td>
<td>(R,R)-L1(7.5 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>27</td>
<td>11</td>
</tr>
<tr>
<td>11ᵩ</td>
<td>THF</td>
<td>(R,R)-L1(7.5 mol%)</td>
<td>[Pd(C₃H₅)₂Cl]₂</td>
<td>-10</td>
<td>34</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>THF</td>
<td>(R,R)-L1(6.0 mol%)</td>
<td>[Rh(COD)Cl]₂</td>
<td>rt</td>
<td><10</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

⁵All reactions have carried out in 0.105-0.210 mmol scale. ⁶Conversions were calculated from NMR. ⁷Enantiomeric excess calculated by chiral HPLC. ⁸7.5 mol% of ligand used. ⁹1,2 equiv of DIPEA, ¹02 equiv of tBuOH added. ¹¹3 equiv of tBuOH added, n.d.-Not Determined

Then we thought to explore different bases which may help to deprotonate the enolic proton to form the enolate and accelerate the attack of the nucleophile to the Pd-L*-electrophile complex. Another idea is the in-situ formation of the salt (such as the TEA can form a salt with the enolate
geometry) that sterically benefit the attack of the nucleophile from one site compared to the other site towards the electrophile. Screening the most widely used organic bases such as DIPEA

Table 4 Optimization of solvents with bases for the intermolecular Pd-AAA of 3-hydroxy-2-nitro phenyl acrylate 1

![Chemical structure of compounds 1 and 2]

<table>
<thead>
<tr>
<th>entry</th>
<th>solvent</th>
<th>base</th>
<th>temp. [°C]</th>
<th>conv. [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCM</td>
<td>DIPEA</td>
<td>rt</td>
<td>100</td>
<td>rac</td>
</tr>
<tr>
<td>2</td>
<td>DCM</td>
<td>CsF</td>
<td>-20</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>toluene</td>
<td>CsF</td>
<td>rt</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>4</td>
<td>toluene</td>
<td>DIPEA</td>
<td>-10</td>
<td>81</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>THF</td>
<td>DIPEA</td>
<td>-20</td>
<td>100</td>
<td>53</td>
</tr>
<tr>
<td>6</td>
<td>THF</td>
<td>CsF</td>
<td>-20</td>
<td>99</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>THF</td>
<td>CsF</td>
<td>-10</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>THF</td>
<td>CsCl</td>
<td>-10</td>
<td>52</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>THF</td>
<td>quinine</td>
<td>-20</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>THF</td>
<td>(DHQ)₂AQN</td>
<td>-10</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>11</td>
<td>THF</td>
<td>(DHQ)₂AQN</td>
<td>rt</td>
<td>81</td>
<td>40</td>
</tr>
<tr>
<td>12</td>
<td>THF</td>
<td>KOTBu</td>
<td>-20</td>
<td>100</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>THF</td>
<td>DPG</td>
<td>-10</td>
<td>99</td>
<td>48</td>
</tr>
<tr>
<td>14</td>
<td>THF</td>
<td>TMG</td>
<td>-10</td>
<td>75</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>THF</td>
<td>TMG</td>
<td>0</td>
<td>67</td>
<td>23</td>
</tr>
<tr>
<td>16</td>
<td>THF</td>
<td>TEA</td>
<td>rt</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>THF</td>
<td>BSA</td>
<td>-10</td>
<td>20</td>
<td>87</td>
</tr>
</tbody>
</table>
All reactions have carried out in 0.105-0.210 mmol scale, \(^{b}\) Used in 2-3 equiv, \(^{c}\) Conversions were calculated from NMR \(^{d}\) Enantiomeric excess calculated by chiral HPLC.

provided the racemic formation of the compound using DCM solvent (entry 1, \textbf{Table 4}). During the study we saw that the other based like CsF, DIPEA and DPG (diphenyl guanidine), quinine, (DHQ)\(_2\)AQN (Hydroquinine anthraquinone-1,4-diyl diether) delivered decent percentage of ee (entries 5, 6, 7, 9, 10 and 13) at lower temperature. We have considered that the effect of getting better enantiobenefit is because of Cs\(^+\) counterion with the carbonyl group of the ligand but the maximum we managed is 57\% ee with quantitative conversion (entry 7). Though the ee using (DHQ)\(_2\)AQN was high but the use of chiral auxiliaries (like quinine containing bases) in stoichiometric amount limited the scope of further exploring that. Moreover, bases like CsCl, K'OBU, TMG (tetramethyl guanidine) and TEA (entries 8, 12, 14-16) could not add any value to achieving our targeted results. An attempt to tune the solvent with base using toluene and DCM remain unsuccessful (entries 2-4).

Now a days, the role of additive is one of the known approaches, although the mechanism of action for most of them is either unknown or not clear. Our screening of the additive was mainly based on the previously published literature for inducing high asymmetry. Few of these additives provided mentionable enantioselectivity in our case are \(t\)BuOH and NaHSO\(_3\) (entries 14 and 16). \(t\)BuOH as additives has been employed before by Trost and co-workers with significant improvement in \(ee\), which proved to be true for our case as well. [135] It participated in the enantiodiscriminative process most satisfactorily so far with 65\% ee (entry 14). We assume the reason is the H-bond interaction of tertiary alcohol and its bulkiness fits one of the enol structures favorable then the other one. NaHSO\(_3\) is another interesting additive we have found that provided us as much as 53\% ee (entry 16). Since tertiary alcohol \(t\)BuOH provided relatively better ee, we
tried to use different alcohols such as BINOL, isopropyl alcohol, MeOH, amyl alcohol, isoamyl alcohol, CF$_3$CH$_2$OH and phenol but none of them provided further improvement of the

Table 5. Optimization of additives for the intermolecular Pd-AAA of compound 1

<table>
<thead>
<tr>
<th>entrya</th>
<th>additiveb</th>
<th>conv.f [%]</th>
<th>eeg [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>HMPAe</td>
<td>83</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>nBu$_4$NIb,c</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>nBu$_4$NFb,c</td>
<td>100</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>Ph$_3$SiClb</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>KHSO$_3$e</td>
<td>63</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>B(OMe)$_3$b</td>
<td>100</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>CH$_3$COOH</td>
<td>10</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>C$_6$H$_5$OHe</td>
<td>64</td>
<td>37</td>
</tr>
<tr>
<td>9</td>
<td>R-Binoldd</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>10</td>
<td>MeOHe</td>
<td>60</td>
<td>37</td>
</tr>
<tr>
<td>11</td>
<td>amyl alcohole</td>
<td>87</td>
<td>09</td>
</tr>
<tr>
<td>12</td>
<td>isoamylalcohole</td>
<td>85</td>
<td>41</td>
</tr>
<tr>
<td>13</td>
<td>iPAe</td>
<td>70</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>tBuOHe</td>
<td>100</td>
<td>65</td>
</tr>
<tr>
<td>15</td>
<td>H$_2$Oe</td>
<td>65</td>
<td>40</td>
</tr>
<tr>
<td>16</td>
<td>NaHSO$_3$e</td>
<td>90</td>
<td>53</td>
</tr>
<tr>
<td>17</td>
<td>tBuOHf & Zn(OAc)$_2$</td>
<td>60</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>DMEe</td>
<td>33</td>
<td>11</td>
</tr>
<tr>
<td>19</td>
<td>CF$_3$CH$_2$OHe</td>
<td>100</td>
<td>43</td>
</tr>
<tr>
<td>20</td>
<td>NMPh</td>
<td>100</td>
<td>34</td>
</tr>
</tbody>
</table>
All reactions have carried out in 0.105-0.210 mmol scale. 1.2 equivalent of additives, unless otherwise mentioned. 30 mol%. 10 mol%. 2-3 equivalent, Conversions calculated from NMR. Enantiomeric excess calculated by chiral HPLC. Reaction ran at rt.

Enantiomeric excess (entries 8-13, 19). Further investigation of different organic salts and acids were screened without much success (entries 1-6, 17, 18 and 20).

During screening different additives with our choice of solvent THF, we have also tried to see the impact of some selected additives with other solvents to explore the feasibility of tuning other solvents. As we expect from the previous screening that

Table 6 Screening additives for intermolecular Pd-AAA of 1 in different solvents

<table>
<thead>
<tr>
<th>entry</th>
<th>Solvent</th>
<th>Temperature [°C]</th>
<th>additive</th>
<th>conv. [%]</th>
<th>ee [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cyclohexane</td>
<td>rt</td>
<td>DIPEA</td>
<td>100</td>
<td>23</td>
</tr>
<tr>
<td>2</td>
<td>Cyclohexane</td>
<td>rt</td>
<td>tBuOH</td>
<td>100</td>
<td>27</td>
</tr>
<tr>
<td>3</td>
<td>Cyclohexane</td>
<td>10</td>
<td>DIPEA</td>
<td>80</td>
<td>27</td>
</tr>
<tr>
<td>4</td>
<td>Cyclohexane</td>
<td>10</td>
<td>tBuOH</td>
<td>80</td>
<td>25</td>
</tr>
<tr>
<td>5</td>
<td>Cyclohexane</td>
<td>10</td>
<td>tBuOH</td>
<td>40</td>
<td>81</td>
</tr>
<tr>
<td>6</td>
<td>Cyclohexane</td>
<td>10</td>
<td>tBuOH</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td>Cyclohexane</td>
<td>rt</td>
<td>tBuOH</td>
<td>20</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>1,4-dioxane</td>
<td>rt</td>
<td>tBuOH</td>
<td>27</td>
<td>29</td>
</tr>
<tr>
<td>9</td>
<td>1,4-dioxane</td>
<td>rt</td>
<td>K₂CO₃</td>
<td>25</td>
<td>37</td>
</tr>
<tr>
<td>10</td>
<td>CF₃CH₂OH</td>
<td>-10</td>
<td>LiCl</td>
<td>20</td>
<td>n.d.</td>
</tr>
<tr>
<td>11</td>
<td>CF₃CH₂OH</td>
<td>-10</td>
<td>tBuOH</td>
<td>10</td>
<td>n.d.</td>
</tr>
<tr>
<td>12</td>
<td>tBuOH</td>
<td>-10</td>
<td>NaHSO₃</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>DME</td>
<td>-10</td>
<td>tBuOH</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>Hex: Tol</td>
<td>-10</td>
<td>tBuOH</td>
<td>75</td>
<td>25</td>
</tr>
<tr>
<td>15</td>
<td>Toluene</td>
<td>rt</td>
<td>CsF</td>
<td>100</td>
<td>38</td>
</tr>
</tbody>
</table>
All reactions have carried out in 0.105-0.210 mmol scale. 1.2 equivalent of additives, unless otherwise mentioned. 30 mol%. Conversions calculated from NMR. 2 equiv of DIPEA added, 1 equiv of tBuOH added, 2-3 equivalent, enantiomeric excess calculated by chiral HPLC.

The room temperature might not be a good choice for reaction, got the same feedback from solvent cyclohexane, 1,4-dioxane and toluene (Table 6, entries 1, 2, 7-9, and 15). Considering the high freezing point of cyclohexane, we had to run the reaction at 10 °C. We tried to optimize the quantity of the tBuOH as a choice of additive and obtained up to 81% ee but the conversion was low (entry 5 vs entries 4 and 6). Choice of dioxane with the additives proved to be a random selection. Other solvent-additive pairing could not change our obtained results so far.

Hoping to explore more to increase the enantioselectivity, we then choose different electrophiles based on the change alkyl/aryl groups (cinnamyl acetate and prenyl acetate) and leaving groups (allyl alcohol, cinnamyl mesylate). The idea is that the phenyl group might introduce a steric effect on the electrophile and help to manage lower dihedral angle compared to allyl acetate, thus susceptible to more stereoselectivity. The choice of prenyl acetate was considered based on making the allyl group more stable by forming tertiary carbocation. We thought the relatively bulky mesylate group might help to make the nucleophilic attack more selective. We have seen the same results that the cinnamyl acetate resulted the ee value of up to 70% with low conversion of 71% compare to the allyl acetate (65% ee with quantitative conversion) shown in Table 7 entry 3 using DIPEA as an additive at -10 °C. Whereas other additives like tBuOH, TEA and variation of temperature as well as catalyst (entries 1, 2, 4-7) could not result anything better. Formation of O-allylated 13' have also noticed during screening additives with [Pd(C₃H₅)Cl]₂ (entry 8-9). Other electrophiles resulted either racemic product (entry 10) or the lower conversion of the expected product 13 (entries 11-12).
Table 7 Screening electrophile for intermolecular Pd-AAA of 1

![Diagram](image)

Where, \(R = \text{H, Me, Ar} \), \(X = -\text{OH, -I, -OAc, -OMs} \)

<table>
<thead>
<tr>
<th>Entry</th>
<th>Ligand, (L1^*) (mol%)</th>
<th>Catalyst (2.5 mol%)</th>
<th>Electrophile</th>
<th>Temp [°C]</th>
<th>Addtv. (2 eqv)</th>
<th>Conv.[%]</th>
<th>ee[%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.0</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>rt</td>
<td>DIPEA</td>
<td>55</td>
<td>40</td>
</tr>
<tr>
<td>2</td>
<td>6.0</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>0</td>
<td>DIPEA</td>
<td>99</td>
<td>53</td>
</tr>
<tr>
<td>3</td>
<td>6.0</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>-10</td>
<td>DIPEA</td>
<td>71</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>0</td>
<td>DIPEA(^d)</td>
<td>69</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>6.0</td>
<td>[Pd(C(_3)H(_5)Cl(_2)] (R = \text{H, Ar = Ph, X = OAc})</td>
<td>50</td>
<td>DIPEA</td>
<td>40</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7.5</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>rt</td>
<td>tBuOH</td>
<td>20-30</td>
<td>n.d.</td>
</tr>
<tr>
<td>7</td>
<td>7.5</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>rt</td>
<td>TEA</td>
<td>40</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>6.0</td>
<td>[Pd(C(_3)H(_5)Cl(_2)]</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>-10</td>
<td>DIPEA</td>
<td>Cpd 13' as a major product</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7.5</td>
<td>[Pd(C(_3)H(_5)Cl(_2)]</td>
<td>(R = \text{H, Ar = Ph, X = OAc})</td>
<td>-10</td>
<td>tBuOH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>6.0</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{H, R' = H, X = -OH})</td>
<td>rt</td>
<td>tBuOH</td>
<td>80</td>
<td>racemic</td>
</tr>
<tr>
<td>11</td>
<td>6.0</td>
<td>Pd(_2)(dba)(_3).CHCl(_3)</td>
<td>(R = \text{CH}_3, R' = \text{CH}_3, X = -OAc})</td>
<td>rt</td>
<td>-</td>
<td>10-20</td>
<td>n.d.</td>
</tr>
<tr>
<td>12</td>
<td>7.5</td>
<td>[Pd(C(_3)H(_5)Cl(_2)]</td>
<td>(R = \text{CH}_3, R' = \text{CH}_3, X = -OAc})</td>
<td>rt</td>
<td>-</td>
<td>10-20</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

\(^a\)All reactions have carried out in 0.105-0.210 mmol scale \(^b\)Conversions calculated from NMR.
\(^c\)Enantiomeric excess calculated by chiral HPLC.
Since we have achieved 65% ee (with quantitative conversion) of compound 2 using allyl acetate from the Pd-AAA reaction of 1 (see Table 5, entry 14) and 70% ee compound 13 (with 71% conversion) from the allylation using cinnamyl acetate, we went on to implement the intramolecular Pd-AAA technique for further increase the ee.
1.2.2 Optimization study of intramolecular Pd mediated decarboxylative asymmetric allylation (Pd-DAAA) reaction

At first, we tried to explore Pd catalyzed asymmetric allylic alkylation (Pd-DAAA). We therefore made the carboxy allyl enol compound 10 from compound 1 using NaHMDS/LiHMDS as a base. Optimizing the required amount of base (1 equiv) along with an activating agent TMEDA (tetramethyl ethylenediamine), we obtained the desired compound 10 with quantitative conversion. It should be mentioned that the role of the activating agent is to form chelated complex with the NaHMDS/LiHMDS base which helps to deprotonate the enolic proton in a controlled manner. Addition of more activating agent could not influence the percentage conversion.

Scheme 64 Synthesis of carboxyallyl acrylate and the Pd-DAAA to form compound 2

One we obtained compound 10, the next step was to rearrange the compound ethyl 3-(((allyloxy)carbonyl)oxy)-2-(2-nitrophenyl)acrylate 10 to form compound 2 by decarboxylative manner (loss of CO₂ as a gas). But the synthesis of compound 2 needs a systematic optimization of variables like solvents, ligands, and temperature to achieve a better optical selectivity. Therefore, we have screened the parameters as shown in Table 8.

By using our previously optimized reaction conditions i.e considering THF as a choice of solvent,
five different ligands L1-L5 were applied for screening initially where ligand L1 provided reasonable enantioselectivity (44% ee) providing compound 2 (Table 8, entry 1-6) at -20 °C. Later, the use of solvent DME and toluene produced the desired product with roughly similar enantiobenefit (Table 8, entry 7 and 8). Switching to a mixed solvent system such as THF-toluene or THF-hexane, we observed a decreasing value of both conversion and ee (Table 8, entries 9 and 10). We subsequently explored less polar solvent mixture of toluene-hexane (2:1) at different temperatures; the best results obtained at -10 °C (Table 8, entry 13 vs entries 11, 12 and 14). Increasing or decreasing ratio of toluene/hexane didn’t

Table 8 Selected optimization studies for decarboxylative rearrangement of O-Carboxy alkylated Product 10
All reactions have carried out in 0.1-0.2 mmol scale, aConversions were calculated from NMR aenantiomeric excess calculated by chiral HPLC

<table>
<thead>
<tr>
<th>entry[^]</th>
<th>ligand</th>
<th>solvents</th>
<th>temp[^C]</th>
<th>conv.[b][%]</th>
<th>ee[^c][%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(R,R)-L1</td>
<td>THF</td>
<td>rt</td>
<td>99</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>(S)-L2</td>
<td>THF</td>
<td>rt</td>
<td>99</td>
<td>04[^d]</td>
</tr>
<tr>
<td>3</td>
<td>(R,R)-L3</td>
<td>THF</td>
<td>rt</td>
<td>99</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>(R,R)-L4</td>
<td>THF</td>
<td>rt</td>
<td>99</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>(S)-L5</td>
<td>THF</td>
<td>rt</td>
<td>50</td>
<td>rac</td>
</tr>
<tr>
<td>6</td>
<td>(R,R)-L1</td>
<td>THF</td>
<td>-20</td>
<td>>99</td>
<td>44</td>
</tr>
<tr>
<td>7</td>
<td>(R,R)-L1</td>
<td>DME</td>
<td>rt</td>
<td>>99</td>
<td>34</td>
</tr>
<tr>
<td>8</td>
<td>(R,R)-L1</td>
<td>toluene</td>
<td>rt</td>
<td>>99</td>
<td>35</td>
</tr>
<tr>
<td>9</td>
<td>(R,R)-L1</td>
<td>THF:tol (1:1)</td>
<td>rt</td>
<td>85</td>
<td>25</td>
</tr>
<tr>
<td>10</td>
<td>(R,R)-L1</td>
<td>THF:hex (1:1)</td>
<td>rt</td>
<td>90</td>
<td>21</td>
</tr>
<tr>
<td>11</td>
<td>(R,R)-L1</td>
<td>tol:hex (2:1)</td>
<td>rt</td>
<td>95</td>
<td>43</td>
</tr>
<tr>
<td>12</td>
<td>tol:hex (2:1)</td>
<td>(R,R)-L1</td>
<td>40</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>13</td>
<td>(R,R)-L1</td>
<td>tol:hex (2:1)</td>
<td>-10</td>
<td>>99</td>
<td>55</td>
</tr>
<tr>
<td>14</td>
<td>(R,R)-L1</td>
<td>tol:hex (2:1)</td>
<td>-20</td>
<td>>99</td>
<td>48</td>
</tr>
<tr>
<td>15</td>
<td>(R,R)-L1</td>
<td>tol:hex (1:1)</td>
<td>-10</td>
<td>67</td>
<td>30</td>
</tr>
<tr>
<td>16</td>
<td>(R,R)-L1</td>
<td>tol:hex (3:1)</td>
<td>-10</td>
<td>48</td>
<td>21</td>
</tr>
<tr>
<td>17</td>
<td>(R,R)-L1</td>
<td>Tol:hex(2:1)</td>
<td>40</td>
<td>100</td>
<td>38</td>
</tr>
<tr>
<td>18</td>
<td>(R,R)-L1</td>
<td>toluene</td>
<td>-78-rt</td>
<td>100</td>
<td>28</td>
</tr>
<tr>
<td>19</td>
<td>(R,R)-L1</td>
<td>dioxane</td>
<td>rt</td>
<td>10-20</td>
<td>n.d.</td>
</tr>
<tr>
<td>20</td>
<td>(R,R)-L1</td>
<td>THF</td>
<td>0</td>
<td>85</td>
<td>19</td>
</tr>
<tr>
<td>21</td>
<td>(R,R)-L1</td>
<td>DCM</td>
<td>rt</td>
<td>75</td>
<td>23</td>
</tr>
<tr>
<td>22</td>
<td>tol:hex (2:1)</td>
<td>(R,R)-L4</td>
<td>-10</td>
<td>99</td>
<td>08</td>
</tr>
<tr>
<td>23</td>
<td>tol:hex (2:1)</td>
<td>(R,R)-L4</td>
<td>rt</td>
<td>99</td>
<td>racemic</td>
</tr>
<tr>
<td>24</td>
<td>tol:hex (2:1)</td>
<td>(R,R)-L9</td>
<td>rt</td>
<td>nr</td>
<td>-</td>
</tr>
</tbody>
</table>

[^]: All reactions have carried out in 0.1-0.2 mmol scale, [^b]: Conversions were calculated from NMR [^c]: Enantiomeric excess calculated by chiral HPLC
improved the enantioselectivity (Table 8, entry 15 and 16). Use of similar solvent mixture at different temperature resulted either low conversion of lower enantioselectivity as shown in table 9 (entries 17-21). Later, we decided to screen more ligands like L8 and L9 along with L4 and ended up with either racemic or a very low enantioselectivity (entries 21-24).

We believe that the reason of getting low enantioselectivity is the non-regioselective formation of carboxy enol acrylate 10 i.e., the formation of racemic 10.
1.2.3 Optimization study of intramolecular Pd-mediated Claisen rearrangement

As we did not achieve a higher enantiobenefit from the intermolecular approach, we embarked upon our investigation of another intramolecular Pd-AAA involving intramolecular Claisen type rearrangement of O-allylated compound 9 for preparing compound 2. Compound 9 was prepared under alkaline conditions from the reaction of 1 and allyl bromide/allyl iodide (1.2 equiv) using nBu4NI as a phase transfer catalyst. (Scheme 65).

Scheme 65 Synthesis of O-allylated enol 9 and the Pd induced rearrangement to form compound 2

The formation of compound 9 with quantitative conversion encourage us to move towards the rearrangement approach using Pd with different ligand. This approach is very less explored and limited to the substrate scope as well. After a general screening of ligands L1-L4, L9 and L12 in toluene : MeOH (20 : 1), we found ligand L1 was promising to achieve better enantioselectivity (32% ee) of compound 2 at -20 °C (Table 9, entry 7 vs entries 1-7). Elevation of temperature decreased the enantioselectivity for L1 (entry 8). Increasing the percentage of toluene in MeOH (30:1) retained almost the same ee with a considerably higher conversion (entry 9) at -10 °C. Additionally, a slight improvement of selectivity was observed in pure toluene at room temperature and -20 °C (entries 10 and 11). We believe that the low polarity systems may help to improve stereoinduction by helping to form tight ion pairs via the formation of “solvent cages”, and thus
bring the enolate and Pd π-allyl complex closer together.[136] Therefore, we drew our attention to a methodical decrease in polarity of toluene by adding hexane. A lower value of both conversion and ee were obtained using a 2:1 ratio of toluene-hexane solvent (entry 12). An equal volume of hexane and toluene (1:1) resulted a slight increase of ee (entry 13 vs entry 14); lowering the temperature from 25 °C to -10 °C strikingly increased the value of ee (58%) with an excellent conversion (entry 14). Higher ratio of hexane/toluene (2:1 and 3:1) at -10 °C demonstrated lower value of the obtained results (entries 15 and 16). Moreover, use of polar solvents such as DCM or THF provided inferior results compared to toluene or toluene/hexane (entries 17 and 18 vs entries 10-16). Screening similar solvent system at different temperature did not prove to be helpful for this approach as well (entries 19-22)

Table 9 Optimization studies for Claisen rearrangement of O-alkylated product 9 (Method B)
All reactions have carried out in 0.1-0.2 mmol scale, Conversions were calculated from NMR enantiomeric excess calculated by chiral HPLC.
From the above studies, it is noteworthy that both the yield and ee (of compound 2) remained roughly unaffected whether the Pd-AAA reaction was performed intermolecularly or intramolecularly. However, the intermolecular approach, Method A appears to be more appealing than the intramolecular approaches, Method B and C because it requires one less step to prepare compound 2 and gave better results (Scheme 66). For further improvement of enantioselectivity, we decided to recrystallize compound 2 prepared by Method A. [137] Upon recrystallization from hexane, the supernatant led the enantioenriched product to 85% ee with 58% yield (Scheme 66).

Scheme 66 Intermolecular vs Intramolecular Pd-AAA
1.2.4 Optimization of synthetic steps involving chiral 3,3-disubstituted oxindole

Since we have achieved 86% ee of compound 2 from the Pd-AAA reaction of 1, we went on to synthesize our targeted 3,3′-disubstituted oxindole framework 4 in order to show the application of the developed acyclic quaternary molecule 2 in the synthesis of a significantly accessible building block 4 (Scheme 67). Reduction of aldehyde using NaBH₄ of 2 provided compound 3 with more than 99% yield. Then selective reduction of nitro group of 3 has targeted through different approaches shown in Table 10. Use of reducing agent like Sn with HCl or Fe with HCl and Zn with TiCl₄ provided trace to low yielding of the product (Table 10, entries 1-3). But the Zn with NH₄Cl whenever used in the ratio of 1:1.25 yielded less product (Table 10 entry 4); increase ratio of that 1: 2.25 proved to be optimized (Table 10, entry 5). Increasing amount of NH₄Cl showed complexity of separating the compound from the crude mixture. An attempt to get rid of NH₄Cl during the reaction using an aqueous solution of surfactant to ethanol proved detrimental to the formation of the oxindole, 4. (Table 10, entry 6).

Scheme 67 Asymmetric synthesis of chiral 3,3-disubstituted oxindole
Table 10 Optimization for the formation of chiral 3,3 disubstituted oxindole from 2

<table>
<thead>
<tr>
<th>Entry</th>
<th>Reagent</th>
<th>Solvent</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fe (4-5 equiv), HCl, NH₄OAc</td>
<td>EtOH : H₂O (2:1)</td>
<td>Trace/no product</td>
</tr>
<tr>
<td>2</td>
<td>Sn (4-5 equiv), HCl, NH₄OAc</td>
<td>EtOH : H₂O (2:1)</td>
<td>Trace/no product</td>
</tr>
<tr>
<td>3</td>
<td>Zn (3-4 equiv), TiCl₄ (2 equiv)</td>
<td>Ether : H₂O (1:1)</td>
<td>Trace/no product</td>
</tr>
<tr>
<td>4</td>
<td>Zn (4 equiv), NH₄Cl (5 equiv)</td>
<td>EtOH : H₂O (4:1)</td>
<td>10-20%</td>
</tr>
<tr>
<td>5</td>
<td>Zn (8 equiv), NH₄Cl (9.5 equiv)</td>
<td>EtOH : H₂O (4:1)</td>
<td>85%</td>
</tr>
<tr>
<td>6</td>
<td>Zn (8 equiv), NH₄Cl (9.5 equiv)</td>
<td>EtOH : H₂O (1:1)</td>
<td>Trace/no product</td>
</tr>
</tbody>
</table>

*a all reactions have conducted 1-2 mmol, b used for adjusting pH of the solution, c 1 equiv of PEG surfactant had added. d isolated yield

One new finding during the attempt of synthesizing oxindole, 4 from compound 3 is that whenever we tried to cyclize the Mesyl protected allyl alcohol, 14 we ended up with the formation of 3,3-disubstituted indoline, 18 instead of the expected formation of Mesyl protected oxindole (Scheme 68). We believe that because of the bulky mesyl group; allows the rotation of the ester functionality distant from the reduced amine to form compound 15. This approach therefore introduces a new dimension of exploring various substrate scope of compound 15 for future research.
However, when we get our key intermediate, 4 we therefore planned a route for the total synthesis of rarely explored (-)-coerulescine moiety. Oxidative cleavage using the conventional oxidant like K₂OsO₄.2H₂O, OsO₄, ozonolysis and classical RuCl₃.3H₂O provided trace or no product almost each instance shown in scheme Table 11 (entries 1-5). We therefore found the formation of lactol derivative (an acetal ring), 12 during oxidative cleavage which happened because of the cyclization of the in-situ formed aldehyde after oxidation and intramolecular cyclization with the alcoholic -OH functionality in compound 4 (Table 11, entries 6 and 7).
Scheme 69 Proposed synthesis of (-)-coerulescine

\[\text{Scheme 69 Proposed synthesis of (-)-coerulescine} \]

\[\text{Scheme 69 Proposed synthesis of (-)-coerulescine} \]

Table 11 Optimization reaction conditions for the oxidation of oxindole 4

<table>
<thead>
<tr>
<th>entry</th>
<th>reagent</th>
<th>Solvent / temp / time</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i. OsO₄ (2 mol%), 2,6-Lutidine (2 equiv), ii. NaIO₄ (4 equiv),</td>
<td>Dioxane: H₂O (5:1), 25 °C, 22 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>2</td>
<td>i. K₂OsO₄.2H₂O (20 mol%), NMO (5 equiv), ii. NaIO₄ (5 equiv),</td>
<td>THF : H₂O (3:1), rt, 12 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>3</td>
<td>O₃ (1 min/mmol), -78°C, Pyridine (3 equiv),</td>
<td>DCM, -78 °C</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>4</td>
<td>RuCl₃ (3.5 mol%), Oxone (1.5 equiv), NaHCO₃ (4.7 equiv),</td>
<td>ACN / H₂O (1.5/1), rt, 6-8 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>5</td>
<td>RuCl₃ (3.5 mol%), Oxone (1.5 equiv), NaHCO₃ (4.7 equiv),</td>
<td>ACN / H₂O (6/1), rt, 6-8 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>6</td>
<td>RuCl₃ (3.5 mol%), NaIO₄ (2.6 equiv)</td>
<td>ACN / H₂O (6/1), rt,</td>
<td>Small Cpd 12</td>
</tr>
<tr>
<td>7</td>
<td>RuCl₃ (3.5 mol%), NaIO₄ (2.6 equiv)</td>
<td>ACN / H₂O (6/1), rt,</td>
<td>15% cpd 12</td>
</tr>
</tbody>
</table>

aAll reactions have conducted 1-2 mmol scale
Therefore, we decided to protect the hydroxy group (which is interfering the formation of aldehyde) with various protecting groups such as TIPS, tosyl and mesyl. At first the hydroxy group was protected by TIPS group to prepare compound 16 and then the oxidation was successfully carried out using classical oxidant RuCl$_3$.3H$_2$O/NaIO$_4$ to prepare 17. The following step of reductive amination cyclization could not proceed with the TIPS protected oxindole 17. We believe that the bulky TIPS group made the oxygen more hindered; only identified the product 17' (by mass spectrometry) rather getting the expected product 7.

Scheme 70 Attempted oxidation of 4 after TIPS protection and reductive amination cyclization

Secondly, the attempt of oxidation followed by tosyl protection of compound 4 proceeded well but lability of tosyl group in the ACN : H$_2$O solvent system resulted the formation of compound 12 as shown in **Scheme 71**. After exploring TIPS and tosyl protection, we decided to mesylate group which is in fact not that bulky (like TIPS) or as labile as (Tosyl). The oxidation was optimized.

Scheme 71 Attempted oxidation of 4 after tosyl protection and reductive amination cyclization
(as shown in Table 12) followed by the mesyl protection. The use of oxone /NMO as a co-oxidant along with NaHCO₃ resulted trace product (Table 12, entries 1 and 6). But NaIO₄ as terminal oxidant in a solvent system of ACN:H₂O-1.5:1 gave us 30% yield of the expected product 6 (Table 12, entry 2). A fine tuning of binary solvent system ACN:H₂O (6:1) provided 85% of isolated yield (Table 12, entries 3-5). Though we achieved an excellent outcome of desired oxidation.

Scheme 72 Attempted oxidation of 4 after mesityl protection

![Scheme 72](image)

Table 12 Optimization for the oxidation of Ms-protected Oxindole 5

<table>
<thead>
<tr>
<th>entry</th>
<th>reagents</th>
<th>solvent</th>
<th>yield(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Oxone (1.5 equiv), NaHCO₃ (4.7 equiv)</td>
<td>ACN:H₂O-1.5:1</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>2</td>
<td>NaIO₄ (2 equiv)</td>
<td>ACN:H₂O-1.5:1</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>NaIO₄ (2.6 equiv)</td>
<td>ACN:H₂O-1.5:1</td>
<td>35-40%</td>
</tr>
<tr>
<td>4</td>
<td>NaIO₄ (2 equiv)</td>
<td>ACN:H₂O-6.0:1</td>
<td>50%</td>
</tr>
<tr>
<td>5</td>
<td>NaIO₄ (2.6 equiv)</td>
<td>ACN:H₂O-6.0:1</td>
<td>85%</td>
</tr>
<tr>
<td>6</td>
<td>NMO (5 equiv), NaIO₄ (5 equiv)</td>
<td>THF:H₂O-3.0:1</td>
<td>Trace product</td>
</tr>
</tbody>
</table>

*a 1-2 mmol of the compound 4 and 5 was used

(compound 6), we needed to explore the way to form the pyrolidine ring from 6. Therefore, we started screening various condition of reductive amination cyclization shown in Scheme 73.
Scheme 73 One pot reductive amination cyclization to synthesize (-)-coerulescine

![Scheme 73](image)

Table 13: Optimization of One-pot reductive amination cyclization of Ms-Protected oxindole aldehyde 6

<table>
<thead>
<tr>
<th>entry<sup>a</sup></th>
<th>Reaction conditions</th>
<th>remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>i. MeNH<sub>2</sub> (in EtOH) (1 equiv), DCE, rt, 2h ii. NaBH<sub>3</sub>CN (1 equiv), pH= 6-7, overnight</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>2</td>
<td>i. MeNH<sub>2</sub> (in EtOH) (1. equiv), DCE, rt, 4A0 mol. sieve, 2h ii. NaBH<sub>4</sub> (1.2 equiv), 2h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>3</td>
<td>i. MeNH<sub>2</sub>,HCl (1.05 equiv), TEA (1.5 equiv), DCE, rt, 2h NaBH<sub>4</sub> (1.5 equiv), 3.5 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>4</td>
<td>MeNH<sub>2</sub> (in EtOH) (1.05 equiv), Ti(OiPr)<sub>4</sub> (2 equiv), EtOH, rt, 3h; NaBH<sub>4</sub> (1.5 equiv), 3 h</td>
<td>15-20%</td>
</tr>
<tr>
<td>5</td>
<td>i. MeNH<sub>2</sub> (in THF) (1.25 equiv), THF, rt, 3h ii. NaBH<sub>4</sub> (1.5 equiv), 4 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>6</td>
<td>i. MeNH<sub>2</sub> (in THF) (1.25 equiv), THF, rt, 3h ii. NaBH<sub>4</sub> (1.5 equiv), CH<sub>3</sub>COOH (1 equiv), 4 h</td>
<td>Trace / no product</td>
</tr>
<tr>
<td>7</td>
<td>MeNH<sub>2</sub> (in THF) (1.05 equiv), Ti(OiPr)<sub>4</sub> (2 equiv), rt, 3 h NaBH<sub>4</sub> (1.1 equiv), 2 h</td>
<td>95% product</td>
</tr>
</tbody>
</table>

^a 1-2 mmol of the compound 6 was used for optimization study

Through the study, use of MeNH₂ (in EtOH) along with NaBH₃CN/NaBH₄ and additives (triethylamine, CH₃COOH) in 1,2-DCE as solvent did not result any considerable amount of
product for isolation (entries 1-3, 5-6). But the use of Ti(O\text{Pr})_4 with MeNH_2 in EtOH resulted in 15% of the isolated product which was a promising result for further screening. Fortunately, a source of MeNH_2 in THF and Ti(O\text{Pr})_4 provided 95% of the desired compound (-)-coerulescine which exactly matches the NMR spectra and optical rotation of Hyaashi et al. We believe the cyclization was pursued by the formation of the non-isolated intermediate 6'.

In summary, our overall synthesis can be shown by the **Scheme 74**. Our synthesis commenced with a reduction of aldehyde functionality of compound 2 by sodium borohydride in methanol to provide alcoholic product 3. The ortho-nitro functional group of compound 3 was selectively reduced to afford the desired oxindole 4. Later, the hydroxy group of the compound 4 was protected by mesyl group to prepare compound 5. The oxidative cleavage of 5 using an optimized amount of NaIO_4 (2.4 equiv) along with RuCl_3.3H_2O (3.5 mol%) afforded compound 6. Finally, one pot reductive amination-cyclization of 6 using commercially available methyl amine solution in presence of titanium isopropoxide yielded the desired product (-)-coerulescine with an overall yield of 34%. The NMR of 7 was matched with the values reported in the literature. [138]
Scheme 74 Total Synthesis of (-)-coerulescine and (-)-coixspirolactam A

Conditions: [A] Allyl acetate, [Pd\(_{(2\text{,dba})_2}\text{CHCl}_3\)], L\(^*\), -10 °C, 58%. [B] NaBH\(_4\), MeOH, 0 °C - rt, 1 h, 99%. [C] Zn, NH\(_4\)Cl, EtOH:H\(_2\)O (4:1), reflux, 2 h, 80%. [D] MsCl, NEt\(_3\), DCM, 0 °C, 4 h, 85%. [E] (i) RuCl\(_3\).3H\(_2\)O, 1,2-DCE: H\(_2\)O (2:1) (ii) NaIO\(_4\) (3 equiv), 32 h, 68%. [F] (i) RuCl\(_3\).3H\(_2\)O, ACN: H\(_2\)O (6:1) (ii) NaIO\(_4\) (2.4 equiv), 12-14 h, 80%. [G] (i) MeNH\(_2\), Ti(O\(_{\text{Pr}}\))\(_4\), MeOH, rt, 5 h. (ii) NaBH\(_4\), rt, 2 h, 95%.

In order to synthesize another targeted natural product coixspirolactam A 8, compound 5 was oxidized with an optimized quantity of RuCl\(_3\).3H\(_2\)O (3.5 mol%) with higher equivalent of NaIO\(_4\) (3 equiv) involving prolonged reaction time (32 h). We assume that the formation of such lactone is due to intramolecular lactonization of non-isolated carboxylic acid 8a. [139] The desired product
was obtained with an overall yield of 32% in five steps and NMR was matched with the values reported in the literature. [140]

In summary, we have explored different approaches of Pd-AAA for the enantioselective synthesis of acyclic all carbon quaternary aldehyde starting from a rare prochiral ortho-nitro arylacrylate. The efficient intermolecular Pd-AAA was forwarded to develop a unique route to synthesize chiral 3,3-disubstituted oxindole 4. By utilizing the present methodology as a key step, the concise synthesis of spirocyclic (-)-coerulescine 7 and (-)-coixspirolactam A 8 have been described. We believe that this protocol is going to be a beneficial tool for synthetic chemists in the total synthesis of natural products and drug discovery either in academic or industrial laboratories.
1.3 General methods and experimental

Experimental procedures and tabulated characterization data

Compound 1, (Z)-ethyl-3-hydroxy-2-nitro-phenylacrylate was synthesized by using our published procedure. Isolated Yield: 78%. The identity of this compound was confirmed by 1H, 13C NMR and HRMS.[141]

1H NMR (CDCl$_3$, 300 MHz): δ 11.98 (d, $J = 12.0$ Hz, 1H), 7.99 (d, $J = 6.0$ Hz, 1H), 7.61 (t, $J = 7.5$ Hz, 1H), 7.47 (t, $J = 7.5$ Hz, 1H), 7.29 (t, $J = 6.0$ Hz, 1H), 4.22 (brs, 2H), 1.15 (t, $J = 7.5$ Hz, 3H).

13C NMR (CDCl$_3$, 75 MHz): δ 170.0, 162.2, 149.2, 133.3, 133.2, 129.2, 128.6, 124.9, 106.6, 61.3, 13.7.

HRMS (ESI+): Calculated (m/z) for C$_{14}$H$_{16}$NO$_5$ (M-H)$^-$: 236.0564, Found 236.0562.

Melting Point: 88-90 °C
1.3.1 General procedure for the synthesis of Ethyl 2-formyl-2-(2-nitrophenyl)pent-4 enolate, 2 (Method A-Intermolecular Approach)

\[
\text{1} + \text{OAc} \quad \xrightarrow{[\text{Pd}_2(\text{dba})_3\text{CHCl}_3 \text{ (2.5 mol%) \quad L^* \text{ (6 mol%)}}] \quad \xrightarrow{\text{tBuOH (2 equiv), 12 h}} \quad \text{2 (93%)}
\]

In an oven dried and desiccator-cooled sealable test tube was added Pd$_2$(dba)$_3$.CHCl$_3$ (5.4 mg, 0.00525 mmol, 2.5 mol%) and (R, R)-L* (10.0 mg, 0.0126 mmol, 6 mol%). The test tube was then evacuated and backfilled with argon three times. Previously distilled and degassed tetrahydrofuran (THF) was added to the flask and the mixture was stirred for 15 min until it was homogeneous, and an orange color persisted. Then, allyl acetate (28 µL, 0.252 mmol, 1.2 equiv) was added to the system and the solution was stirred at room temperature for an additional 5 min. In the meantime, the other test tube was charged with 3-hydroxy 2-nitro phenyl acrylate 1 (50.0 mg, 0.210 mmol, 1.0 equiv) with the addition of 2 mL of degassed tetrahydrofuran (THF) and it was finely dissolved in solvent. Then the cat-L*-allyl acetate mixture was added to the solution of 3-hydroxy 2-nitro phenyl acrylate 1 via cannula. Additive, tBuOH (39 µL, 0.420 mmol, 2.0 equiv) was added into the reaction mixture. The mixture was stirred at room temperature and confirmed the completion of reaction by TLC monitoring. The crude was passed through a thick pad of silica (2 cm) and solvent was decanted. The crude was then purified by column chromatography on silica gel elution (hexane/EtOAc = 19/1) and 53.5 mg (93% yield) of white solid product 2 was obtained.
1H NMR (CDCl$_3$, 300 MHz): δ 10.16 (s, 1H), 8.16 (d, J = 9.0 Hz, 1H), 7.72 (t, J = 10.5 Hz, 1H), 7.64 (t, J = 9.0 Hz, 1H), 7.54 (td, J = 15.0, 1.5 Hz, 1H), 5.80-5.67 (m, 1H), 5.29-5.17 (m, 2H), 4.22 (q, J = 9.0 Hz, 2H), 3.04 (d, J = 3.0 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H).

13C NMR (CDCl$_3$, 75 MHz): δ 196.9, 169.4, 148.4, 133.7, 131.1, 130.7, 130.5, 129.0, 125.9, 120.4, 63.9, 62.0, 37.8, 14.0.

HRMS (ESI+): Calculated (m/z) for C$_{14}$H$_{16}$NO$_5$ (M+Na)$^+$: 300.0842, Found 300.0834. **Melting point:** 101-103 °C
1.3.2 General procedure for the synthesis of general procedure for the O-allylation of prochiral enol acrylate: Synthesis of (E/Z)-ethyl 3-(allyloxy)-2-(2-nitrophenyl)acrylate, 9

(Z)-Ethyl 2-nitro-3-hydroxyphenylacrylate, 1 (50.0 mg, 0.210 mmol, 1.0 equiv) was dissolved in freshly distilled dichloromethane (5 mL) under argon. nBu4NI (7.8 mg, 0.021 mmol, 0.1 equiv), allyl bromide (22.0 µL, 0.252 mmol, 1.2 equiv), and potassium hydroxide (118.0 mg, 2.10 mmol, 10 equiv) were added, and the reaction mixture was stirred at room temperature until reaction completion was confirmed by NMR. The reaction was quenched by adding saturated NH4Cl solution, and the aqueous layer was extracted with diethyl ether (2 × 25 mL). The organic portions were combined and dried over Na2SO4. Then, the organic layer was then passed through a cotton plug and the solvent was removed by rotary evaporation. Pure product 9 was isolated by flash chromatography on silica gel elusion (hexane/EtOAc= 9/1) as (58.0 mg, 99.2% yield) a light-yellow oil.

\[\text{1H NMR (300 MHz, CDCl}_3\text{): } \delta 8.05 (d, J = 6.0 \text{ Hz}, 1H), 7.65 (s, 1H), 7.61 (t, J = 4.5 \text{ Hz}, 1H), 7.46 (dd, J = 6.0, 3.0 Hz, 2H) 5.96-5.88 (m, 1H), 5.34 (dd, J = 9.0, 6.0 Hz, 2H), 4.54 (d, J = 3.0 Hz, 2H), 4.18 (q, J = 7.5 Hz, 2H), 1.23 (t, J = 4.5 Hz, 3H); \]
13C NMR (75 MHz, CDCl$_3$): δ 166.1, 157.9, 148.9, 133.3, 132.6, 132.1, 128.3, 128.2, 124.5, 119.3, 127.6, 75.3, 60.7, 14.1.

HRMS (ESI+): Calculated (m/z) for C$_{14}$H$_{15}$NO$_5$ (M+H)$^+$: 278.1023, Found 278.1013.
1.3.3 General procedure for the Pd-mediated rearrangement of compound 9 to prepare Ethyl 2-formyl-2-(2-nitrophenyl) pent-4 enolate, 2 (Method B)

Except for the variation in solvent, ligand and temperature, all O-allyl rearrangement reactions were carried out by the following general procedure:

In an oven dried and desiccator-cooled sealable test tube was added Pd$_2$(dba)$_3$.CHCl$_3$ (4.7 mg, 0.0045 mmol, 2.5 mol%) and (R,R)-L1 (8.6 mg, 0.010 mmol, 6.0 mol%). The test tube was then evacuated and backfilled with argon three times. Previously degassed (1:1) hex: tol (5 mL) was added to the flask and the mixture was stirred for 15 min until it was homogeneous, and an orange color persisted. In the meantime, another test tube was charged with Ethyl-3-(allyloxy)-2-nitrophenylacrylate 9 (50.0 mg, 0.180 mmol, 1.0 equiv), evacuated and backfilled with Argon, and then degassed solvent hex: tol (1 mL: 1 mL) was added to dissolve. Both the test tubes were then put into -10 °C cooling bath and stir for another 15 min before transferring the substrate solution into the catalyst mixture via a cannula. The reaction was stirred for 24 h, unless otherwise mentioned. The reaction mixture was then passed through a thick pad of silica plug and the solvent was removed in vacuo. The pure product, 2 was isolated (42.1 mg, 84.2 % yield) by flash column chromatography eluting through silica gel (hexane / EtOAc = 10/1) as a white solid and confirmed by 1H NMR. and 13C NMR.
1.3.4 General procedure for the carboxy allylation of prochiral enolacrylate to prepare Ethyl 3-(allyloxy)carbonyl)oxy)-2-(2-nitrophenyl)acrylate, 10

To a flask was added anhydrous THF (2 mL) via syringe, followed by NaHMDS (1M solution in THF); (43.0 µL, 0.210 mmol, 1.0 equiv) and TMEDA (31.5 µL, 0.210 mmol, 1.0 equiv), both reagents being added at room temperature. After the mixture was stirred for 5 min, 3-hydroxy-2-nitro-phenylacrylate, 1 (50.0 mg, 0.210 mmol, 1.0 equiv) was dissolved in anhydrous THF (2 mL) in a separate flask and is then transferred to the reaction flask containing the NaHMDS / TMEDA mixture via syringe at room temperature. The mixture allowed stirring at room temperature for 20 min, at which point allylchloroformate (25 µL, 0.231 mmol, 1.1 equiv) was added dropwise via syringe at rt. The resulting solution was then allowed to stir at temperature for 45 minutes. The reaction was monitored by taking a small aliquot (0.1 mL) via syringe from the reaction flask, passing it through a small silica plug, concentrating the solvent under vacuum and taking a 1H NMR. When the reaction completed, the crude mixture was passed through a silica plug (4 cm diameter medium porosity fritted funnel, 2 cm of silica). The silica plug was rinsed through with additional solvent (10 mL) to ensure quantitative elution of product. The solvent was then concentrated under reduced pressure at room temperature. Finally, the crude yellow powder product 10 (67 mg, 99% yield) was pure enough for next step reaction.
\textbf{1H NMR (300 MHz, CDCl$_3$):} δ 8.38 (s, 1H), 8.17 (d, $J = 3.0$ Hz, 1H), 7.68 (t, $J = 4.5$ Hz), 7.55 (t, $J = 6.0$ Hz, 1H), 7.41 (dd, $J = 6.0$ Hz, 3.0 Hz, 1H), 5.97-5.97 (m, 1H), 5.42 -5.32 (m, 2H), 4.73 (d, $J = 3.0$ Hz, 2 H), 4.24 (q, $J = 3.0$ Hz, 2H), 1.27 (t, $J = 4.5$ Hz, 3H)

\textbf{13C NMR (75 MHz, CDCl$_3$):} δ 164.8, 151.3, 148.2, 145.9, 133.3, 132.8, 130.3, 129.4, 127.1, 124.9, 120.6, 116.6, 70.1, 61.5, 14.1.

\textbf{HRMS (ESI+):} Calculated (m/z) for C$_{15}$H$_{15}$NO$_7$ (M+H)$^+$: 322.0921, Found 322.0910.

\textbf{Melting Point:} 72-74 °C.
Preparation of Ethyl 2-formyl-2-(2-nitrophenyl) pent-4 enolate, 2 using DAAA: (Method C)

Except for the variation in solvent, ligand, and temperature, all DAAA reactions were carried out by the following general procedure:

To a dry flask was added \(\text{Pd}_2(\text{dba})_3\cdot\text{CHCl}_3\) (4.0 mg, 0.004 mmol, 2.5 mol%) followed by \((R, R)-\text{DACH-naphthyl Trost ligand L1}\) (7.0 mg, 0.0088 mmol, 5.5 mol%). To the flask was added a mixture of dry and degassed THF (3 mL) at room temperature and the mixture stirred for 15 minutes. After several minutes of stirring, the mixture turned into a bright yellow color (occasionally a slight pink hue is observable) with a small amount of beige precipitate. The resulting mixture was cooled down to -10 °C and was transferred via cannula to a separate flask containing compound 10 (50.0 mg, 0.16 mmol, 1.0 equiv) dissolved in THF (2 mL) which was already cooled down to -10 °C. The reaction mixture stirred at this temperature until the reactant completely disappeared (monitored by TLC) and a cloudy yellow/green solution was obtained. After the reaction, the solution was passed through a silica plug (1 cm fritted funnel, 2 cm silica, medium porosity filter) which was washed through with DCM (10 mL). The solvent was concentrated under vacuum and the residue was purified with flash column chromatography on silica gel (hexane/EtOAc = 20/1) to afford compound 2 (37.0 mg, 85.7 % yield) as a white solid.
Synthesis of (Ethyl 2-(hydroxymethyl)-2-(2-nitrophenyl)pent-4-enoate (3)

Ethyl 2-formyl-2-(2-nitrophenyl)pent-4-enoate, 2 (430.0 mg, 1.55 mmol, 1.0 equiv) was added to a 100 mL round bottom flask and placed in an argon atmosphere. 30 mL of anhydrous methanol was added, and it could dissolve through stirring. The reaction flask was then brought down to 0 °C and NaBH₄ (294.0 mg, 7.76 mmol, 5.0 equiv) was added to the stirring mixture. Subsequently the mixture was removed from the ice for 5 min and returned it until the reaction monitored through the end by Thin layer chromatography (TLC). 10 ml of water was added to quench the reaction and then extracted using DCM (3 x 30 mL). The organic fraction was then dried with Na₂SO₄ and concentrated in vacuo. The crude was purified by column chromatography on silica gel eluted with 20% EtOAc in hexane to afford the above-mentioned product, 3 as colorless viscous liquid (429.0 mg, >99% yield).

\[1^H \text{NMR (CDCl}_3, 300 \text{ MHz}) : \delta 7.93 (t, J = 4.5 \text{ Hz}), 7.65 (t, J = 4.5 \text{ Hz}, 1H), 7.57 (d, J = 3.0 \text{ Hz}, 1H), 7.49-7.45 (m, 1H), 5.67-5.61 (m, 1H), 5.11 (dd, J = 15.0 , 6.0 \text{ Hz}, 2H), 4.36 (d, J = 9.0 \text{ Hz}, 1H), 4.20-4.10 (m, 2H), 3.98 (d, J = 6.0 \text{ Hz}, 1H), 3.11-2.96 (m, 2H), 2.41 (brs, 1H), 1.24 (t, J = 4.5 \text{ Hz}); \]

\[1^C \text{NMR (CDCl}_3, 75 \text{ MHz}) : \delta 172.8, 150.2, 133.3, 132.9, 132.6, 130.4, 128.2, 125.7, 119.0, 67.2, 61.3, 55.1, 39.3, 14.0. \]

HRMS (ESI+): Calculated (m/z) for C₁₄H₁₇NO₅ [M+H]⁺: 280.1179, Found: 280.1173
Ethyl 2-(hydroxymethyl)-2-(2-nitrophenyl)pent-4-enoate, 3 (200 mg, 0.72 mmol, 1.0 equiv) zinc powder (400 mg, 6.12 mmol, 8.5 equiv) and solid NH₄Cl (370.0 mg, 6.92 mmol, 9.6 equiv) were taken in a round bottom flask in an argon atmosphere. A degassed solvent mixture of EtOH: H₂O (4:1) mixture was added to the flask via syringe followed by vigorous stirring under reflux temperature. The mixture was then allowed to react for 2 h and monitored by TLC before cooling down to the room temperature. Then a cotton plug was used to separate the Zn dust and the solvent was removed by rotary evaporation. The crude was then extracted by ethyl acetate and finally purified via column chromatography using neutral alumina as a stationary phase with MeOH/DCM = 1/10, which yielded the desired oxindole 4, as pale-yellow solid powder (0.13 g, 85% yield).

1H NMR (CDCl₃, 300MHz): δ 8.40 (s, 1H), 7.41-7.22 (m, 2H), 7.10 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 9.0 Hz, 1H), 5.55-5.43 (m, 1H), 5.09-4.96 (m, 2H), 3.97 (d, J = 9.0 Hz, 1H), 3.83 (d, J = 9.0 Hz, 1H), 2.71-2.59 (m, 2H), 1.97 (s, 1H);

13C NMR (CDCl₃, 75MHz): δ 180.5, 140.9, 131.6, 129.9, 128.5, 123.7, 122.7, 119.3, 109.8, 66.5, 54.6, 37.3.

HRMS (ESI+): Calculated (m/z) for C₁₂H₁₃NO₂ (M+H)⁺: 204.1001, Found 204.1019.
(S)-(3-allyl-2-oxoindolin-3-yl)methyl methanesulfonate (5)

![Chemical structure of 4 and 5]

To a clean oven dried flask, DCM (6mL) was added to dissolve 3-allyl-3-(hydroxymethyl)indolin-2- one 4 (70.0 mg, 0.35 mmol, 1.0 equiv). Then triethylamine (117.1 µL, 0.84 mmol, 2.4 equiv) was added and the solution was maintained in an ice bath for 30 minutes under argon atmosphere. After that, MsCl (32.0 µL, 0.42 mmol, 1.2 equiv) was added and ran the reaction until the consumption of the starting material, as judged by TLC analysis. The mixture was neutralized by 10 mL of 1M HCl then the aqueous layer was extracted with CH₂Cl₂ (3 x 10 mL). The organic fraction was washed with NaHCO₃ (saturated) and brine (1 x 10 mL). The combined organic layer was dried over anhydrous MgSO₄; evaporated using rotary evaporator. The crude product was purified by silica gel column chromatography (50/50 = EtOAc/hexane) to afford 5 as a light-yellow oil (87.0 mg, 90% yield).

1H NMR (CDCl₃, 500 MHz): δ 7.79 (brs, 1H), 7.32 (d, J = 5.0 Hz, 2H), 7.12 (t, J = 15 Hz, 1H), 6.93 (d, J = 5.0 Hz, 1H), 5.56-5.47 (m, 1H), 5.12 (d, J = 15 Hz), 5.05 (d, J = 10 Hz, 1H), 4.56 (d, J = 10.0 Hz, 1H), 4.46 (d, J = 10.0 Hz, 1H), 2.84 (s, 3H), 2.62 (d, J = 5.0 Hz, 2H);

13C NMR (CDCl₃, 125 MHz): δ 177.6, 140.8, 130.2, 129.0, 127.8, 124.2, 122.9, 120.3, 110.0, 71.8, 52.7, 37.9, 37.2.

HRMS (ESI+): Calculated (m/z) for C₁₃H₁₅NO₄S [M+H]⁺: 282.0795, Found: 282.0782.
(S)-2-oxo-3-(2-oxoethyl)indolin-3-yl)methyl methanesulfonate (6)[143]

\[
\begin{align*}
\text{OMs} & \quad \xrightarrow{\text{RuCl}_3 \cdot 3\text{H}_2\text{O (3.5 mol%), NaIO}_4 (2.6 \text{ equiv}), \text{ACN:H}_2\text{O} (6:1), \text{rt, 24 h}}} \quad \text{OMs} \\
\end{align*}
\]

To a stirred mixture of compound 6 (30.0 mg, 0.11 mmol, 1.0 equiv) and RuCl₃ stock solution (15 µL, 0.0037 mmol, 3.5 mol%) in CH₃CN (3.0 mL) and distilled water (0.5 mL) was added in portions NaIO₄ (61.2 mg, 0.286 mmol, 2.6 equiv) over a period of 5 minutes at room temperature. The color of the mixture color changed from the black to yellowish brown. Then the reaction was monitored by TLC until the starting material disappeared completely. Adding 2 mL of saturated Na₂S₂O₃ solution quenched the reaction. The organic layer was then separated and extracted three times using DCM. The combined organic layer was washed with water and brine, respectively. Then it was dried over MgSO₄ and filtered through a cotton plug and finally decanted. The crude purified via column chromatography using silica gel as a stationary phase with MeOH/DCM = 1/9, which yielded the desired product 7, as pale-yellow oil (25.7 mg, 85% yield).

\text{1H NMR (CDCl₃, 500 MHz):} \ \delta 9.58 \text{ (s, 1H)}, 8.10 \text{ (s, 1H)}, 7.33-7.29 \text{ (m, 2H)}, 7.10 \text{ (t, } J = 11.40 \text{ Hz, 1H)}, 6.97 \text{ (d, } J = 7.70 \text{ Hz, 1H)}, 4.58 \text{ (d, } J = 9.85 \text{ Hz, 1H)}, 4.32 \text{ (d, } J = 9.85 \text{ Hz, 1H)}, 3.22 \text{ (d, } J = 18.0 \text{ Hz, 1H)}, 3.13 \text{ (d, } J = 18.0 \text{ Hz, 1H}), 2.87 \text{ (s, 3H)};

\text{13C NMR (CDCl₃, 125 MHz):} \ \delta 197.1, 177.5, 141.3, 136.4, 129.5, 128.0, 124.0, 123.0, 110.6, 71.9, 49.3, 46.1, 37.4.

\text{HRMS (ESI+):} \ \text{Calculated (m/z) for C}_{13}\text{H}_{15}\text{NO}_4\text{S [M+H]}^+: 284.302, \ \text{Found: 284.303.}
Synthesis of (-)-Coerulescene (7) [144]

Titanium (IV) isopropoxide (128.0 μL, 0.42 mmol, 2.0 equiv) was added to a commercially available solution of methylamine in THF (2 M) (9.0 μL, 0.22 mmol, 1.05 equiv) followed by the addition of the compound 7 (59.1 mg, 0.21 mmol, 1.0 equiv). The reaction mixture was stirred at ambient temperature for 5 h, after which sodium borohydride (8.0 mg, 0.21 mmol, 1.0 equiv) was added and the resulting mixture was further stirred for another period of 2 h. The reaction was then quenched by the addition of water (2 mL), the resulting inorganic precipitate was filtered and washed with diethyl ether (10 mL). The organic layer was separated, and the aqueous part was further extracted with ethyl acetate ether (2 x 10 mL). The combined ether extracts were dried (K₂CO₃) and concentrated in vacuo and obtained (40.1 mg, 95% yield) (-)-coerulescine 7 with high purity. The proton NMR, carbon NMR and the optical rotation is exactly matched with the data reported by Hayashi et al. [145]

¹H NMR (CDCl₃, 300 MHz): δ 8.81 (s, 1H), 7.41 (d, J = 10.0 Hz, 1H), 7.20 (t, J = 7.50 Hz, 1H), 7.06 (t, J = 7.5 Hz, 1H), 6.92 (d, J = 5.0 Hz, 1H), 3.04-2.79 (m, 4H), 2.49 (s, 3H), 2.46-2.42 (m, 1H), 2.15-2.10 (m, 1H).

¹³C NMR (CDCl₃, 75 MHz): δ 182.8, 140.0, 136.2, 127.8, 123.4, 122.9, 109.5, 66.4, 56.8, 53.7, 41.9, 38.0.

HRMS (ESI+): Calculated (m/z) for C₁₂H₁₄N₂O [M+H]⁺: 203.1186, Found: 203.1179; [α]²⁷D +1.1 (c 2.0, CHCl₃). Enantiomeric excess = 85%
Synthesis of (-)-coixspirolactam A (8)[146]

To a stirred mixture of compound 6 (61.0 mg, 0.22 mmol, 1.0 equiv) and RuCl$_3$ stock solution (29 µL, 0.0075 mmol, 3.5 mol%) in 1,2-dichloroethane (3 mL) and distilled water (3 mL) was added in portions NaIO$_4$ (141.2 mg, 0.66 mmol, 3.0 equiv) over a period of 5 minutes at room temperature. The color of the mixture changed from the black to yellowish brown. Then the reaction was monitored by TLC until the starting material disappeared completely. After 32 h the reaction was quenched by adding 2 mL of saturated Na$_2$S$_2$O$_3$ solution. The organic layer was then separated and extracted three times using DCM. The combined organic layer was washed with water and brine, respectively. Then it was dried over MgSO$_4$ and filtered through a cotton plug and finally decanted. The crude was eluted through silica gel using 80% EtOAc in hexane solvent mixture and the product 8 was separated as a white solid powder (29.9 mg, 68% yield). The proton NMR, carbon NMR and the optical rotation is exactly matched with the data reported by Andrade et al. [147]

1H NMR (500 MHz, CDCl$_3$): δ 7.92 (s, 1H), 7.33 (d, $J = 10$ Hz, 2H), 7.15 (t, $J = 12.5$ Hz, 1H), 6.97 (d, $J = 10.0$ Hz, 1H), 4.63 (d, $J = 5.0$ Hz, 1H), 4.42 (d, $J = 10.0$ Hz, 1H), 3.19 (d, $J = 15.0$ Hz, 1H), 2.75 (d, $J = 15.0$ Hz, 1H);

13C NMR (125 MHz, CDCl$_3$): δ 177.4, 174.2, 139.8, 131.0, 129.6, 123.8, 122.8, 110.5, 74.8, 51.0, 38.4.
HRMS (ESI+): Calculated (m/z) for C\textsubscript{11}H\textsubscript{9}NO\textsubscript{3} [M+H]+: 204.0660, Found: 203.0652.

Synthesis of (S)-(3-allyl-2-oxoindolin-3-yl)methyl 4-methylbenzenesulfonate (11)

To a clean oven dried flask, DCM (6mL) was added to dissolve 3-allyl-3-(hydroxymethyl)indolin-2-one 4 (98.0 mg, 0.48 mmol, 1.0 equiv), Then pyridine (78.1 µL, 0.96 mmol, 2.0 equiv) was added dropwise and the solution was maintained in an ice bath for 30 minutes under argon atmosphere. After that, TsCl (106.0 µL, 0.72 mmol, 1.5 equiv) was added and ran the reaction until the consumption of the starting material, monitored by TLC analysis. The mixture was neutralized by 10 mL of 1M HCl then the aqueous layer was extracted with CH\textsubscript{2}Cl\textsubscript{2} (3 x 10 mL). The organic fraction was washed with NaHCO\textsubscript{3} (saturated) and brine (1 x 10 mL). The combined organic layer was dried over anhydrous MgSO\textsubscript{4}; evaporated using rotary evaporator. The crude product was purified by silica gel column chromatography (25/75 = EtOAc/hexane) to afford compound 11 as a yellow viscous oil (155.3 mg, 90% yield).

\textit{H NMR (CDCl\textsubscript{3}, 300 MHz):} \(\delta \) 7.89 (brs, 1H), 7.25 (t, \(J = 4.5 \) Hz, 5H), 7.09 (t, \(J = 7.5 \) Hz, 2H), 6.91 (d, \(J = 6.0 \) Hz, 2H), 5.59-5.45 (m, 1H), 5.10-4.97 (m, 2H), 3.94 (d, \(J = 6.0 \) Hz, 1H), 3.83 (d, \(J = 9.0 \) Hz, 1H), 2.75-2.59 (m, 2H), 2.04 (s, 3H),
13C NMR (CDCl$_3$, 125 MHz): δ 177.6, 140.8, 130.2, 129.0, 127.8, 124.2, 122.9, 120.3, 110.0, 71.8, 52.7, 37.9, 37.2.

Synthesis of (3S)-5-hydroxy-4,5-dihydro-2H-spiro[furan-3,3'-indolin]-2'-one (12)

To a stirred mixture of compound 4 (100.0 mg, 0.49 mmol, 1.0 equiv), RuCl$_3$ stock solution (68 μL, 0.0171 mmol, 3.5 mol%) in CH$_3$CN (3.0 mL) and distilled water (0.5 mL) was added in portions NaIO$_4$ (272.6 mg, 1.28 mmol, 2.6 equiv) over a period of 5 minutes at room temperature. The color of the mixture color changed from the black to yellowish brown. Then the reaction was monitored by TLC until the starting material disappeared completely. Added 2 mL of saturated Na$_2$S$_2$O$_3$ solution quenched the reaction. The organic layer was then separated and extracted three times using DCM. The combined organic layer was washed with water and brine, respectively. Then it was dried over MgSO$_4$ and filtered through a cotton plug and finally decanted. The crude purified via column chromatography using silica gel as a stationary phase with MeOH/DCM = 1/8, which yielded the desired product 12, as yellow oil (52.1 mg, 52 % yield).

1H NMR (CDCl$_3$, 500 MHz): δ 8.31 (s, 1H), 7.32-7.25 (m, 2H), 7.10 (d, $J = 10.0$ Hz, 1H), 6.94 (d, $J = 15.0$ Hz, 1H), 4.25 (d, $J = 3.0$ Hz, 1H), 4.34 (s, -C-OH, 1H), 4.21 (d, $J = 3.5$ Hz, 1H), 4.09 (d, $J = 14.0$ Hz, 1H), 3.98 (d, $J = 14.2$ Hz, 1H), 2.61 - 2.52 (m, 1H), 2.12 - 2.11 (m, 1H)
13C NMR (CDCl$_3$, 125 MHz): δ 197.1, 177.5, 141.3, 136.4, 129.5, 128.0, 124.0, 123.0, 110.6, 71.9, 49.3, 46.1, 37.4;

MS (20:20): Calculated (m/z) for C$_{11}$H$_{11}$NO$_3$ [M+H]$^+$: 205.21, Found: 205.16 (100%), 206.11 (17%).

General procedure for the synthesis of (E/Z)-ethyl 2-formyl-2-(2-nitrophenyl)-5-phenylpent-4-enoate (13)

In an oven dried and desiccator-cooled sealable test tube was added Pd$_2$(dba)$_3$.CHCl$_3$ (5.4 mg, 0.00525 mmol, 2.5 mol%) and (R, R)-L* (10.0 mg, 0.0126 mmol, 6 mol%). The test tube was then evacuated and backfilled with argon three times. Previously distilled and degassed tetrahydrofuran (THF) was added to the flask and the mixture was stirred for 15 min until it was homogeneous, and an orange color persisted. Then, cinnamyl acetate (42 µL, 0.252 mmol, 1.2 equiv) was added to the system and the solution was stirred at room temperature for an additional 5 min. In the meantime, the other test tube was charged with 3-hydroxy 2-nitro phenyl acrylate 1 (50.0 mg, 0.210 mmol, 1.0 equiv) with the addition of 2 mL of degassed tetrahydrofuran (THF) and it was finely dissolved in solvent. Then the cat-L*-allyl acetate mixture was added to the solution of 3-hydroxy 2-nitro phenyl acrylate 1 via cannula. Additive, tBuOH (39 µL, 0.420 mmol, 2.0 equiv) was added into the reaction mixture. The mixture was stirred at room temperature and confirmed the completion of reaction by TLC monitoring. The crude was passed through a thick pad of silica
(2 cm) and solvent was decanted. The crude was then purified by column chromatography on silica gel elution (hexane/EtOAc = 10/1) and 37.0 mg (55% yield) of clear oily liquid product 13 was obtained. During the column chromatography some decarbonylated product formed. The NMR of that compound 13a has attached.

NMR for compound 13:

1H NMR (CDCl$_3$, 300 MHz): δ 10.24 (s, 1H), 8.17 (d, $J = 9.0$ Hz, 1H), 7.74 (d, $J = 6.0$ Hz, 2H), 7.58 (t, $J = 4.5$ Hz, 1H), 7.31-7.26 (m, 5H), 6.60 (d, 1H), 6.11 (t, $J = 7.5$ Hz, 1H), 4.20 (q, $J = 7.5$ Hz, 2H), 3.23 (d, $J = 9.0$ Hz, 2H), 1.20 (t, $J = 7.5$ Hz, 3H);

13C NMR (CDCl$_3$, 75 MHz): δ 196.8, 169.4, 148.4, 133.7, 131.1, 130.7, 130.5, 129.0, 125.9, 120.4, 63.9, 62.0, 37.8, 14.0;

NMR for compound 13a:

1H NMR (CDCl$_3$, 300 MHz): δ 7.92 (d, $J = 6.0$ Hz, 1H), 7.61 (d, $J = 3.0$ Hz, 2H), 7.46 – 7.41 (m, 2H), 7.31 – 7.21 (m, 5H), 6.44 (d, $J = 18$ Hz, 1H), 6.22 – 6.14 (m, 1H) 4.39 (t, $J = 7.5$ Hz, 1H), 4.21 – 4.13 (m, 2H), 3.11 - 3.02 (m, 1H), 2.85 – 2.78 (m, 1H) 1.22 (t, $J = 10.5$ Hz, 3H).

13C NMR (CDCl$_3$, 75 MHz): δ 172.07, 149.5, 137.1, 133.0, 132.9, 130.0, 128.5, 128.2, 127.3, 126.2, 124.8, 61.3, 46.6, 36.3, 14.1.
Synthesis of (S)-ethyl 2-(((methylsulfonyl)oxy)methyl)-2-(2-nitrophenyl)pent-4-enoate (14)

To a clean flame dried flask, DCM (6mL) was added to dissolve compound 3 (200.0 mg, 0.72 mmol, 1.0 equiv). Then triethylamine (201 µL, 1.44 mmol, 2.0 equiv) was added and the solution was maintained in an ice bath for 30-45 minutes under argon atmosphere. After that, MsCl (66.0 µL, 0.86 mmol, 1.2 equiv) was added and ran the reaction until the consumption of the starting material, as judged by TLC analysis. After confirming the disappearance of the starting material, the mixture was neutralized by 1M HCl (as required observed by pH paper) then the aqueous layer was extracted with CH₂Cl₂ (3 x 25 mL). The organic fraction was washed with NaHCO₃ (saturated) and brine (1 x 25 mL). The combined organic layer was dried over anhydrous MgSO₄; evaporated using rotary evaporator. The crude product was purified by silica gel column chromatography (25/75 = EtOAc/hexane) to afford 14 as a colorless oil oil (225.6 mg, 88% yield).

1H NMR (CDCl₃, 500 MHz): δ 7.93 (d, J = 10 Hz, 1H), 7.67 (t, J = 7.5 Hz, 1H), 7.59 (d, J = 10.0 Hz, 1H), 7.54-7.50 (m, 1H), 5.68-5.60 (m, 1H), 5.32-5.15 (m, 2H), 4.93 (d, J = 10 Hz, 1H), 4.87 (d, J = 10.0 Hz, 1H), 4.21-4.08 (m, 2H), 3.05 (t, J = 7.6 Hz, 2H), 2.84 (s, 3H), 1.24 (t, J = 7.5 Hz, 3H)

13C NMR (CDCl₃, 125 MHz): δ 169.9, 149.9, 132.7, 132.0, 131.4, 130.9, 128.8, 125.8, 120.2, 71.6, 61.7, 53.4, 39.3, 37.1, 14.0.
Synthesis of ethyl 3-allylindoline-3-carboxylate (15)

Compound 14 (220 mg, 0.62 mmol, 1.0 equiv) zinc powder (182 mg, 2.77 mmol, 4.5 equiv) and solid NH₄Cl (281.8 mg, 5.27 mmol, 8.5 equiv) were taken in a round bottom flask in an argon atmosphere. A degassed solvent mixture of EtOH: H₂O (4:1) (20 mL) mixture was added to the flask via syringe followed by vigorous stirring under reflux temperature. The mixture was then allowed to react for 3h and monitored by TLC before cooling down to the room temperature. Then a cotton plug was used to separate the Zn dust and the solvent was removed by rotary evaporation. The crude was then extracted by ethyl acetate and finally purified via column chromatography using neutral alumina as a stationary phase with MeOH/DCM = 1/20, which yielded the desired indole 15, as colorless liquid (0.11 g, 78% yield).

1H NMR (CDCl₃, 500 MHz): δ 7.36 (s, 1H), 7.12 (t, J = 7.5 MHz, 1H), 6.80 – 6.77 (m, 1H), 6.69 (d, J = 10 Hz) 5.73 – 5.68 (m, 1H), 5.15 – 5.10 (m, 1H), 4.23 (q, J = 7.5 Hz, 2H), 3.52 (d, J = 5.0 Hz) 2.86 (t, J = 7.5 Hz, 1H), 2.77 – 2.55 (m, 1H) 1.31 (t, J = 7.5 Hz)

13C NMR (CDCl₃, 125 MHz): δ 177.3, 150.5, 133.3, 130.1, 128.8, 124.7, 119.0, 118.7, 110.2, 61.2, 56.3, 53.5, 42.5, 29.7.
Synthesis of (S)-3-allyl-3-(((triisopropylsilyl)oxy)methyl)indolin-2-one (16)

To a clean oven dried flask, DCM (6mL) was added to dissolve 3-allyl-3-(hydroxymethyl)indolin-2-one 4 (180.0 mg, 0.89 mmol, 1.0 equiv), then the base 2,6-Lutidine (308.0 µL, 3.0 equiv) was added and the solution was maintained at room temperature for 30 minutes under argon atmosphere. After that, TIPS-OTf (359.0 µL, 1.5 equiv) was added and ran the reaction until the consumption of the starting material, as judged by TLC analysis. The crude mixture was then extracted 3X by using water. The combined organic layer was dried over anhydrous MgSO₄; evaporated using rotary evaporator. The crude product was purified by silica gel column chromatography (30/70 = EtOAc/hexane) to afford 16 as a light-yellow oil (273.0 mg, 70% yield).

^1H NMR (CDCl₃, 500 MHz): δ 8.48 (s, 1H), 7.31-6.87 (m, 4H), 5.52-5.46 (m,1H), 5.07-4.91 (m, 2H), 4.02-3.92 (m, 2H), 2.73-2.54 (m, 2H), 1.28-1.00 (m, 21 H).

^13C NMR (CDCl₃, 125 MHz): δ 177.3, 150.5, 133.3, 130.1, 128.8, 124.7, 119.0, 118.7, 110.2, 61.2, 56.3, 53.5, 42.5, 29.7.
Synthesis of (S)-2-(2-oxo-3-(((triisopropylsilyl)oxy)methyl)indolin-3-yl)acetaldehyde, 17

To a stirred mixture of compound 16 (70.0 mg, 0.19 mmol, 1.0 equiv) and RuCl₃ stock solution (28 µL, 0.007 mmol, 3.5 mol%) in CH₃CN (6.0 mL) and distilled water (4.0 mL) was added. Then 63.9 mg (0.76 mmol, 4 equiv) of NaHCO₃ charged to the reaction vessel all at once along with the addition of 43.37 mg (0.285 mmol 1.5 equiv. The color of the mixture color changed from the brown to dark black. Then the reaction was monitored by TLC until the starting material disappeared completely. We have added saturated Na₂S₂O₃ solution quenched the reaction. The organic layer was then separated and extracted three times using ethyl acetate. The combined organic layer was washed with water and brine, respectively. Then it was dried over MgSO₄ and filtered through a cotton plug and finally decanted. The crude purified via column chromatography using silica gel as a stationary phase with EtOAc/hexane =6/1, which yielded the desired product 17, as pale-yellow oil (28.2 mg, 40% yield).

¹H NMR (CDCl₃, 300 MHz): δ 9.40 (s, 1H), 7.43 (s, 1H), 7.27-7.22 (m, 2H), 7.02 (t, J = 4.5 Hz, 1H), 6.90 (d, J = 6.0 Hz, 1H), 4.00 (d, J = 9.0 Hz, 1H), 3.84 (d, J = 9.0 Hz, 1H), 3.22 (d, J = 18.0 Hz, 1H), 3.13 (d, J = 18.0 Hz), 0.94-0.98 (m, 21H);

¹³C NMR (CDCl₃, 125 MHz): δ 179.9, 141.1, 132.2, 131.4, 127.8, 124.3, 122.1, 118.7, 109.2, 55.8, 55.7, 37.3, 29.8, 17.9, 17.5, 12.5, 12.4, 12.3.

MS (ESI+): Calculated (m/z) for C₂₀H₃₁NO₃Si, Found: 339.30 (100%), 360.35(40%).
References for Chapter A

49 Zhou et al

57 (a) Jiajie Feng, Michael Holmes, and Michael J. Krische, Acyclic Quaternary Carbon Stereocenters via Enantioselective Transition Metal Catalysis, *Chem. Rev.* 2017, 117, 12564–12580

58 (a) Christopher J. Douglas and Larry E. Overman, Catalytic asymmetric synthesis of all-carbonquaternary stereocenters, *PNAS* 2011, 101, 5363-5367; (b) Hong, Allen Y.; Stoltz, Brian

64 Liang Hong, Wangsheng Sun, Dongxu Yang, Guofeng Li, and Rui Wang, Additive Effects on Asymmetric Catalysis, *Chem. Rev.* 2016, 116, 6, 4006–4123

85 Yury Minko and Ilan Marek, Stereodefined acyclic trisubstituted metal enolates towards the asymmetric formation of quaternary carbon stereocentres, Chem. Commun., 2014, 50, 12597

88 Eduardo Alberch Colin Brook Sharif A. Asad Maria Shevyrev Joseph S. Ulicki M. Mahmun Hossain, Stereoselective allyl enol carbonates for the synthesis of chiral aldehydes bearing all-carbon quaternary stereocenters via the decarboxylative asymmetric allylic alkylation (DAAA), *Synlett.* **2015,** 26, 388–392

95 N. Uddin, M. Rahaman, E. Alberch, S. A. Asad, M. M. Hossain, Palladium(0)-catalyzed rearrangement of allyl enol ethers to form chiral quaternary carbon centers via asymmetric allylic

122 Tokuda, H., Matsumoto, T., Konoshima, T., Kozuka, M., Nishino, H., Iwashima, A., Inhibitory effects on Epstein-Barr virus activation and anti-Inhibitory effects on Epstein-Barr virus

141 M. M. Hossain, US Patent 6,683205 B2, **2004**.

Chapter 1: Synthetic Scope of Brønsted Acid Catalyzed Reactions of Carbonyl Compounds and Ethyl Diazooacetate-Part B

Where, R= Alkyl, Aryl
5.1 Introduction

To an intension of exploring the synthetic scope of the 3-hydroxy aryl acrylate beyond the limitations of aromatic aldehydes, we decided to work on the aromatic ketones along with the aliphatic ketone and aldehydes. Our focus was mainly the development of the quaternary ketones which can be implemented for the synthesis of natural and synthetic products like elacomine, flustramine, spirotryprostatin etc as shown in Figure 10.

Figure 10 Synthetic scope of ketone derived acrylates for both natural and synthetic drug candidates
5.1.1 Synthetic approaches for the preparation of 3-hydroxy aryl acrylates:

5.1.1.1 Lewis acid catalyzed reactions

In our previous work, we reported the formation of 3-hydroxy-2-aryl acrylates by 1,2-aryl migration from the reactions of aromatic aldehydes with ethyl diazoacetate (EDA) in the presence of an iron Lewis acid catalyst. [131] The approach proceeded by iron Lewis acid catalyst, $[\eta^5-(C_5H_5)Fe^+(CO)_2(THF)]BF_4 \ 1$, catalysed reaction with the formation of desired compound 2 along with β-ketoester $2'$ from moderate to excellent yields (Scheme 75). Our group reported that

Scheme 75 Iron Lewis catalysed synthesis of 3-hydroxy aryl acrylate by Hossain et al
benzaldehyde having electron donating groups provided higher yield of product 2 (2b, 2c and 2e) compared to having electron withdrawing groups (2d and 2f). Later on, other groups also reported the similar type of reactions by using different Lewis acid catalysts. [146-151]. One of such noticeable work was published by Kirchner and coworkers. The specially of their approach is the regioselective formation of 2 (consistently got <3% of 2’) by using cationic iron pincer complexes such as [Fe(PNP)(CH₃CN)₃][BF₄]₂ and [Fe(PNP)(CO)(CH₃CN)₂][BF₄]₂, where PNP are various

Scheme 76 Iron Lewis acid catalyzed synthesis of 2 by Kirchner et al
tridentate pincer-type ligands based on 2,6-diaminopyridine, and \(R = \text{Ph, iPr, biphenol, Ph}^{\text{Hex}} \). The most effective catalyst was found to be \(\text{cis-}[\text{Fe}(\text{PNP-iPr})(\text{CO})(\text{CH}_3\text{CN})_2]\text{BF}_4 \) (Scheme 76). [145]

Based on their proposed mechanism, the presence of CO ligand makes CH\(_3\)CN more labile in the catalyst 3, due to its stronger \textit{trans}-effect and easily substituted by incoming aromatic aldehyde 4 to form \([\text{Fe} (\text{PNP-iPr})(\text{CO})(\text{CH}_3\text{CN})(\kappa^1\text{(O)-aldehyde})]^2^+ \) complex 5. Then the ligand substituted complex 5 was attacked by 6 and formed the complex 7 by subsequent liberation of N\(_2\). Preferential migratory tendency of the aryl group over hydride led to a \(\kappa^1\text{O-coordinated aldehyde ester ligand} \) 8. Finally, the aldehyde ester ligand was easily removed from 8 by an incoming CH\(_3\)CN, and rapidly tautomerized to yield the thermodynamically more stable 2 (Scheme 76).
5.1.1.2 Bronsted Acid catalyzed reactions

In 2004, our group explored the catalyst scopes to produce 3-hydroxy-2-aryl acrylates and 3-oxo-esters with Brønsted type acids by using similar substrates. [152] We have screened several commercially available Brønsted acids, such as HNO₃, H₂SO₄, HClO₄, HCl besides HBF₄, to see the protonation tendency and the counterion effect on selective product formation. They found that the acids with nucleophilic counterions, such as Cl⁻, AcO⁻, and NO₃⁻, provided a small amount of product 1 since these acids readily quenched by EDA 6 and formed byproduct 9 (Scheme 77). However, HBF₄ did not quench by EDA due to the presence of non-nucleophilic counterion (BF₄⁻) rather protonated the carbonyl oxygen to access O-protonated benzaldehyde 10 which initiated the reaction (Scheme 77). Therefore, they explored the substrate scope (Scheme 78) with their developed simplified protonation technique. Unfortunately, no more precedence of other Bronsted acid catalyzed approached have been reported so far. Later Kirchner et al synthesized the acrylates following the same protocol for the computational study of the migratory tendency or aryl group

Scheme 77 Role of commercially available Bronsted acid for the decomposition of 6

![Scheme 77 Role of commercially available Bronsted acid for the decomposition of 6](image)
relative to the alkyl group. [153a]

Scheme 78 First Bronsted acid catalyzed coupling of aromatic aldehyde, 4 and EDA, 6 by Hossain et al

\[
\begin{align*}
\text{R} & \quad \text{OH} \\
\end{align*}
\]

\[
\begin{align*}
\text{2a (74\%)} & \\
\text{2b (51\%)} & \\
\text{2c (90\%)} & \\
\text{2d (55\%)} & \\
\text{2e (35\%)} & \\
\text{2f (60\%)} & \\
\end{align*}
\]
5.1.1.3 Organic base catalysed reaction

In 2007, Wang et al. reported 1, 8-diazabicyclo [5.4.0]undec-7-ene (DBU) catalysed nucleophilic reaction between 4 and EDA 6 to synthesize 2 via β-hydroxy diazo ester 11 as an intermediate. Initially, the β-Hydroxy group of 11 was protected by trimethylsilyl chloride (TMSCl) to form compound 12. In the presence of Rh(II)-catalyst, compound 12 underwent 1,2-aryl migration to provide the final product 1 (Scheme 79). [153b, 153c] The steric factors play an important role in the 1,2-migratory aptitude of Rh(II)-catalysed reaction. When the substituent was bulkier at the β-position, such as a siloxy group, aryl migration was favored over hydride migration.

Scheme 79 Organic base catalyzed formation of 3-hydroxy arylacrylate, 2 by Wang et al
5.2 Application of hydroxy acrylates for present synthetic point of view

5.2.1 Quinolone/quinolinone type compounds

4-Quinolones and 2-quinolones captured great interest by medicinal chemists due to their effective biological properties. [154–156]. 3-aryl-4-quinolones showed antitumor [157a] and antimalarial activity, [157b] and acted as a platelet aggregation inhibitor, [157c] while 3-aryl-2-quinolones reported to be acting as an integrin antagonist. [158] The first approach to synthesize 3-aryl-2-

Scheme 80 Synthesis of 2- and 4-Quinolinone derivatives from 3-hydroxy aryl acrylate 2

quinolones 14 and 3-aryl-4-quinolones 17 from 3-hydroxy-2-aryl acrylate 2 was reported in 1997
by Bisagni et al. [159] Condensation reactions between 2 and 3,5-dimethoxy aniline 13 formed non-regioselective E/Z mixture of intermediate 16 which underwent cyclization by refluxing in Dowtherm A (biphenyl/diphenyl ether mixture 26.5 : 73.5) to prepare 17. On the other hand, by direct heating of 2 and 13 at 230 °C they obtained 3-phenyl-2-quinolone 14. They also prepared other quinolone derivatives such as 15, 18, 19, and 20 from quinolones 14 and 15 using a little far of chemical methodologies (Scheme 80).

5.2.2 Synthesis of Pyrimidine/pyrimidinone type compounds

After years of research on various neurological disorders which mainly related to the GABAergic system, it has been evident that such disorders can be treated by targeting the GABA A-Receptors (GABA A-Rs). [160] Moreover, development of compounds of different structural classes can modulate, directly activate or inhibit GABA A-R subtypes. Therefore, different types of fused nitrogen-containing heterocyclic systems have been extensively investigated to synthesize GABA A-Receptors sub-type ligands. [161] Selleri et al. described the synthesis of second-generation pyrazole-pyrimidine compound 22, containing an aryl ring at 6-position

Scheme 81 Synthesis of pyrazolopyrimidinone from 3-hydroxyarylacrylate 2

\[\text{R} = \text{H; } R_1 = \text{Ph, 4-FPh, 3-BrPh, 3-CF}_3\text{Ph, 3-OMePh, 3-MePh, 2-Py, 3-Py, 2-thiyl, 3-thiyl, benzyl, 1-naphthalen, 2-naphthalen} \]
as an isostere of the thiophene ring to evaluate in vitro GABAA-receptors affinity. [162] A single step approach of preparing compound 22 has proposed by the reaction between a suitable pyrazole 21 and 2 in diglyme at reflux condition (Scheme 81).

5.2.3 Synthesis of Uracil type compounds

Uracil is one of the three basic pyrimidines obtained in naturally occurring nucleic acids.41 Because of structural similarities with nucleosides and nucleotides, uracil plays a pivotal role in the treatment for human immunodeficiency virus (HIV), [163] hepatitis B virus (HBV), [164] hepatitis C virus (HCV), [165] herpes simplex virus (HSV), [166] and various types of cancer. [167]

In 2007, our group has reported NaOEt catalyzed synthesis of a series of derivatives 24 using a variety of acrylates including both electron donating and electron withdrawing groups (Scheme 82). [168]

Scheme 82 Synthetic application of 3-hydroxy arylacrylate 2 for preparing Uracil derivatives
Another approach of similar synthetic approach was attempted by Davies and Piggott for the synthesis of \(24\) from the reaction of \(1\) and \(68\) in the presence of NaOH (Scheme 82). [169] Interestingly, whenever other amides were attempted to be used in this reaction, no product was yielded.

5.2.4 Synthesis of Vinyl derivatives

A unique idea of direct trifluoromethylthiolation of \(\text{C}_{\text{sp}^2}\text{-OH}\) bond activation of \(2\) using silvertrifluoromethanethiol \(25\) has recently explained by Qing and co-workers; a variety of trifluoromethyl sulfides \(26\) has been synthesized thereafter. [170] The employment of both of \(n\text{-Bu}_4\text{NI}\) and KI activated \(25\) to afford the desired product \(26\) (Scheme 83). This convenient approach of incorporating an extremely high lipophilic [171] trifluoromethylthio group (SCF\(_3\)) might simplify the synthesis of many pharmaceutical and agrochemical compounds such as toltrazuril [172], fipronil [173] and tiflorex. [174]

Scheme 83 Synthesis of thio vinyl derivatives from 3-hydroxy aryl acrylate

\[
\begin{align*}
\text{2} & \quad + \quad \text{AgSCF}_3 \\
& \quad \quad \quad \quad n\text{-Bu}_4\text{NI}, \text{KI} \\
& \quad \quad \quad \quad \text{toluene, 120°C} \\
& \quad \quad \quad \quad \text{26}
\end{align*}
\]

\(R = \text{H, 4-Me, 4-tBu, 4-NC, 4-NO}_2, 4-F, 2-\text{NO}_2-3\text{-OMe, 2,5-di-Br, 2-Br-5-CF}_3, 2-\text{Br-3-OCF}_3, 4-\text{Ph, naphthyl}\)
5.2.5 Synthesis of Chromenone Crown ether

Macrocyclic ethers (depending on the ring size) have been used to estimate cationic recognition and selective cation binding using different physical approaches such as filtration, absorption etc. [175-177] Erk et al. reported the synthesis of various 3-phenyl chromenone-crown ether moieties 31 and 32 which was used for the detection of cations such as Li⁺, Na⁺, K⁺, and Rb⁺ as well as perchlorates with fluorescence spectroscopy. [178,179] Compounds 31 and 32 were synthesized by the addition of crown ether (12-Crown-4, 15-Crown-4, and 18-Crown-6) to chromenones 29 and 30; which was obtained from the cyclization of triacetate 27 or triol 28 with compound 2 (Scheme 84).

Scheme 84 Synthesis of Chromenone-Crown Ethers from 3-hydroxy arylacrylate 2

Therefore, we attempted to unfold the scope of these underdeveloped substrates. We expected to obtain product mixture of the migrated products due to the variation of migratory tendency of different alkyl/aryl groups and investigated the relative product ratios (from crude by NMR
analysis or possibly from isolated products). However, reactions of more sterically hindered and less electrophilic aromatic/aliphatic ketones or aliphatic aldehydes with EDA in the presence of a Brønsted acid catalyst are certainly rare. Before starting our investigation, we have outlined a general mechanism for the 1,2-aryl migration of carbonyl substrates considering EDA as a reaction partner with an optimized amount of HBF4.OEt2 as a catalyst (Scheme 85). To expand the scope of this reaction, benzophenones, aliphatic ketone (both symmetric and nonsymmetric) along with aliphatic aldehydes were employed as substrates in this transformation.

Scheme 85 Formation of 3-hydroxy aryl acrylate/3-Oxo-Esters in presence of HBF4.OEt2 catalyst by 1,2-migration.
5.3 Results and Discussion

5.3.1 Development of Benzophenone derived acrylates

We first focused on the synthesis of benzophenone and substituted benzophenones (Scheme 86).

The result obtained from the reaction of benzophenone with EDA was encouraging; the yield is low may be because of the sterically hindered and very less reactive structure of benzophenone which does not allow the nucleophilic EDA to attack with the mild reaction conditions. Though we expected much better yield from the electron donating para substituted methyl or methoxy

Scheme 86 Synthetic scope and migratory aptitude of Aryl-Phenyl groups

![Scheme 86 Synthetic scope and migratory aptitude of Aryl-Phenyl groups](image)

"Reaction conditions: 33 (5.0-10.0 mmol), 6 (10.0-20 mmol), HBF₄·OEt₂ (1.0-2.0 mmol), CH₂Cl₂ (15-20 mL) at -78 °C to rt for 3 days. The ratios of the products are calculated from the NMR of the crude mixtures."
group in one of the phenyl rings on the benzophenone moiety, but the yield was similar. From our enquiry, it was revealed that when an electron donating group such as methyl was present in the monosubstituted benzophenone (34b), both phenyl and para-tolyl migrated products were formed in a ratio of 1:1.2. Our result agree with the value (1.28 ± 0.09) reported by Curtin and Crew in the acid catalyzed deamination reaction of 2-amino-l-phenyl-l-p-tolylethanol involving carbocation intermediate.[180] Moreover, in our study the p-anisyl group in compound 34c provided the relatively better migration (1.5/1) might be because of the additional interaction energy in the transition state induce by the para-methoxy group during carbocation formation.[161] In the case of electron rich 3,4-disubstituted benzophenone (34f and 34g), we obtained exclusively the disubstituted phenyl-migrated products (34f and 34g) and the yield increase a little. This type of migration was also found in naphthyl phenyl ketone (34h) where electron rich naphthyl group was migrated to give the product (34h). The exclusive formation of (34f), (34g), and (34h) may be due to the better stability of the corresponding phenonium carbocation intermediate. On the other hand, when an electron withdrawing group (34d and 34e) was present in the monosubstituted benzophenone, trace or no product was observed which could be due to the instability of carbocation intermediate. [132]

The above findings could be explained with respect to six probable rotamers A-F (Figure 11) from the reaction of benzophenones and EDA in the presence of HBF₄·OEt₂. Rotamers A-C are interconvertible due to the rotation of C-C bonds and their diastereomeric form of rotamers, D-F are also interconvertible. In both rotamer A and E, migrating phenyl group and leaving diazonium group were anti to each other, thus the formation of 3-oxo-ester 34 was favorable. Whereas, in rotamers B and D, the aryl migrating group was anti to the leaving group could favor
the formation of aryl migrated product $34'$. However, the aryl migration from rotamer A/E was more favorable over phenyl from rotamer B/D due to its ability of the electron donating methyl and methoxy group to stabilize an intermediate arylonium ion (Figure 11, P) by six electron resonance participation. Whereas it is also stable for unsubstituted phenyl group (Figure 11, N) but relatively less compare to P. Therefore, during the crude NMR analysis, we saw more of $34b$, $34c$ compared to $34b'$ and $34c'$. In our discussion, we did not consider rotamers C and F which are perquisite for the formation of epoxide, not observed in our reactions.

Figure 11 Newman projections of six possible rotamers (A-F) and the predicted intermediates

As we obtained mixture of products from the reactions of para-methyl ($33b$) and para-methoxy benzophenone ($33c$) and EDA, we undertook 2D NMR studies to confirm the structure of the products. After analyzing HMBC spectra, we observed a cross peak signal between the ortho-proton of the benzene ring (a doublet at δ 7.99) and the carbonyl carbon of ester (δ 193.7) (red line
in Figure 12), which correlates with the structure of (34b) generated by para-methyl phenyl migration. On the other hand, a cross peak signal was identified among the ortho-proton (a doublet at δ 7.89) and the para-methyl carbon of the benzene ring (δ 2.39) as well as with the carbonyl carbon of ester (δ 192.9) (green line in Figure 12). This cross coupling nicely correlates with (34b’) formed by phenyl migration. By comparing the peaks at δ 7.89 and δ 7.99 in the crude mixture (see experimental section), we concluded the product (34b) yielded slightly more product (34b’) due to the favorable migration of electron donating para-methyl phenyl over phenyl group.

Figure 12 HMBC cross peak spectra for the products of para-methylbenzophenone

![Diagram showing HMBC cross peak spectra and chemical structures of compounds 34b and 34b’](image)
Similarly, we have confirmed the structure of (34c) by 2D NMR by comparing a cross peak signal between the ortho-proton of the benzene ring (a doublet at δ 7.98) and the carbonyl carbon of ester (δ 194.0) (red line in Figure 13) and the structure of 34c’ from the cross peak signal among the ortho-proton (a doublet at δ 7.97) and the para-methoxy carbon of the benzene ring (δ 3.86) with the carbonyl carbon of ester (δ 192.0) (green line in Figure 13) (see also experimental section).

Figure 13 HMBC cross peak spectra for the products of para-methoxybenzophenone
5.3.2 Development of Aliphatic carbonyl derived acrylates

Lastly, to demonstrate further utility of the reaction, transformation of the aliphatic aldehydes and ketones were explored. Symmetrical ketone such as 35a-35c provided yield up to 52% and the nonsymmetrical ketones resulted from 55-64% isolated yield. The aliphatic aldehydes with linear (35g and 35h) and branched alkyl group (20f) yielded up to 82%. The results of these reactions are summarized in Scheme 78. For the migratory aptitude of unsymmetrical aliphatic ketones, increasing the steric bulk of the alkyl group increases its tendency to migrate. The longer alkyl chain migrated products dominated over the methyl migrated products (35d/35d’ and 35e/35e’=2:1) due to the hyperconjugation effect with longer chain alkyl group, triggered better stability of the carbocation intermediate. [182] In the case of aliphatic aldehydes, the hydride migrated products (35f, 35g, and 35h) formed exclusively as observed with aromatic aldehyde. [183]

Scheme 87 Migratory Aptitude of Alkyl-Hydride Groups

\[\text{Reaction conditions: 36 (2.0-8.0 mmol), 6 (4.0-16.0 mmol), HBF}_4\cdot\text{OEt}_2 (0.4-1.6 mmol), CH}_2\text{Cl}_2 (10-15 mL) at -78 \degree\text{C to rt for 3 days.} \]

\[\text{The ratios of the products are calculated after isolation.} \]
In summary, we investigated the reaction of less explored benzophenone/aliphatic ketones as well as aliphatic aldehydes with EDA employed as the reaction partner. The distinct reactivity between carbonyl compounds and EDA has allowed the incorporation of a diverse range of substituent patterns into the product formation. Depending on the migratory aptitudes of hydride, alkyl, phenyl, and aryl groups, a wide range of 3-oxo-esters are formed. We anticipate that these valuable synthons will further prove its utility in preparing important building blocks of biologically active natural and synthetic compounds.
5.4 General methods and experimental

5.4.1 General Procedure for the One-Pot Synthesis of 3-Oxo-Esters

For each experiment, carbonyl compounds (2.0-8.0 mmol, 1.0 equiv) was dissolved in 10-20 mL of freshly distilled dichloromethane under nitrogen at -78 °C. A Brønsted acid, HBF₄·OEt₂ catalyst (0.4-1.6 mmol, 0.2 equiv) was added, and the reaction mixture was stirred for 1 hour at the same temperature. Ethyl diazoacetate (EDA) (4.0-16.0 mmol, 2.0 equiv) was diluted in 5 mL of freshly distilled dichloromethane and added to the solution over a period of 0.5-1 h. Then, the reaction mixture was allowed to stir for 72 h at room temperature. After completion of the reaction, it was quenched by adding THF. The reaction mixture was filtered through a silica plug using dichloromethane as solvent and the solvent removed by rotary evaporation. Pure products were isolated by silica gel column chromatography with 0-10% ethyl acetate in hexane.

Ethyl 3-oxo-2,3-diphenylpropanoate (34a). [184a] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.37 g, 20%) from the reaction of benzophenone (1.25 g, 6.86 mmol, 1.0 equiv) and EDA (1.67 mL, 13.72 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.19 mL, 1.37 mmol, 0.2 equiv).

1H NMR (CDCl₃, 300 MHz): δ 8.00 (d, J = 6.0 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.47-7.32 (m, 7H), 5.66 (s, 1H), 4.25 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.5 Hz, 3H).

Ethyl 3-oxo-3-phenyl-2-(p-tolyl)propanoate (34b) and ethyl 3-oxo-2-phenyl-3-(p-tolyl)propanoate (7b’). The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 13:1). The title product was isolated as a colorless oil (0.36 g, 21%) from the reaction of 4-methylbenzophenone (1.18 g, 6.01
mmol, 1.0 equiv) and EDA (1.45 mL, 12.02 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.17 mL, 1.20 mmol, 0.2 equiv).

¹H NMR (CDCl₃, 500 MHz): δ 7.98 (d, J = 10.0 Hz, 2H), 7.88 (d, J = 5.0 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.44 (q, J = 7.5 Hz, 4H), 7.37 (t, J = 7.5 Hz, 1H), 7.31 (d, J = 10.0 Hz, 3H), 7.24 (d, J = 10.0 Hz, 2H), 7.18 (d, J = 5.0 Hz, 2H), 5.61 (s, 1H), 5.59 (s, 1H), 4.26-4.22 (m, 4H), 2.40 (s, 2H), 2.34 (s, 3H), 1.26 (t, J = 6.0 Hz, 6H).

¹³C{¹H} NMR (CDCl₃, 75 MHz): δ 193.5, 192.9, 169.0, 168.9, 144.5, 137.9, 135.8, 133.5, 133.3, 133.2, 130.0, 129.6, 129.4, 129.1, 128.9, 128.8, 128.8, 128.1, 66.1, 66.0, 61.7, 60.5, 60.2, 21.7, 21.2, 14.1, 14.0.

HRMS (ESI/Q-TOF): Calculated (m/z) for C₁₈H₁₉O₃ (M+H)⁺ : 283.1329, Found 283.1264.

Ethyl 2-(4-methoxyphenyl)-3-oxo-3-phenylpropanoate (34c) and ethyl 3-(4-methoxyphenyl)-3-oxo-2-phenylpropanoate (34c'). [184a] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 9:1). The title product was isolated as a colorless oil (0.36 g, 22%) from the reaction of 4-methoxybenzophenone (1.15 g, 5.42 mmol, 1.0 equiv) and EDA (1.31 mL, 10.84 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.15 mL, 1.08 mmol, 0.2 equiv).

¹H NMR (CDCl₃, 300 MHz): δ 7.99-7.95 (m, 4H), 7.55 (t, J = 6.0 Hz, 2H), 7.44 (t, J = 6.0 Hz, 4H), 7.37-7.28 (m, 4H), 6.90 (d, J = 9.0 Hz, 4H), 5.58 (s, 1H), 5.57 (s, 1H), 4.24 (q, J = 7.5 Hz, 4H), 3.86 (s, 3H), 3.80 (s, 3H), 1.29-1.24 (m, 6H).

¹³C{¹H} NMR (CDCl₃, 75 MHz): δ 193.6, 191.8, 169.1, 169.0, 163.8, 159.4, 135.7, 133.4, 133.4, 131.3, 130.7, 129.5, 129.9, 128.8, 128.7, 128.6, 128.0, 125.0, 114.3, 113.9, 61.7, 60.3, 59.7, 55.5, 55.2, 14.1, 14.0.
Ethyl 3-(4-chlorophenyl)-3-oxo-2-phenylpropanoate (34d) and ethyl 2-(4-chlorophenyl)-3-oxo-3-phenylpropanoate (34d'). [184b] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 9:1). The title product was isolated as a colorless oil (trace amount) from the reaction of 4-chlorobenzophenone (1.21 g, 5.58 mmol, 1.0 equiv) and EDA (1.35 mL, 11.16 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.15 mL, 1.12 mmol, 0.2 equiv).

1H NMR (CDCl₃, 500 MHz): δ 7.98-7.90 (m, 2H), 7.46-7.35 (m, 8H), 5.60 (s, 0.3H), 5.55 (s, 0.7H), 4.28-4.21 (m, 3H), 1.29-1.24 (m, 5H).

13C{1H} NMR (CDCl₃, 75 MHz): δ 192.1, 168.5, 140.0, 134.0, 133.7, 132.7, 130.9, 130.3, 129.5, 129.1, 129.0, 128.9, 128.9, 128.8, 128.3, 128.2, 62.0, 61.9, 60.6, 59.7, 14.0.

Ethyl 2-(3,4-dimethylphenyl)-3-oxo-3-phenylpropanoate (34f). The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/dichloromethane = 1:1). The title product was isolated as a colorless oil (0.50 g, 30%) from the reaction of 3,4-dimethylbenzophenone (1.18 g, 5.61 mmol, 1.0 equiv) and EDA (1.36 mL, 10.22 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.15 mL, 1.12 mmol, 0.2 equiv).

1H NMR (CDCl₃, 500 MHz): δ 7.49-7.31 (m, 6H), 7.15-7.07 (m, 2H), 5.24 (s, 1H), 4.38-4.24 (m, 2H), 2.24 (s, 3H), 2.28 (s, 3H), 1.21 (t, J = 7.5 Hz, 2H).

13C{1H} NMR (CDCl₃, 125 MHz): δ 169.8, 168.2, 153.4, 152.2, 139.6, 138.3, 137.1, 136.9, 130.3, 130.2, 130.0, 130.0, 129.8, 129.7, 129.4, 129.2, 128.7, 128.6, 128.6, 127.1, 126.9, 126.4, 126.2, 124.8, 99.6, 99.5, 64.2, 19.8, 19.7, 13.8.

HRMS (ESI/Q-TOF): Calculated (m/z) for C₁₀H₁₃O₃ (M+H)+: 297.1485; Found 297.1474.
Ethyl 2-(3,4-dimethoxyphenyl)-3-oxo-3-phenylpropanoate (34g). [184c] The compound was prepared according to the general procedure and purified by silica gel column chromatography (dichloromethane). The title product was isolated as a colorless oil (0.43 g, 28%) from the reaction of 3,4-dimethoxybenzophenone (1.15 g, 4.75 mmol, 1.0 equiv) and EDA (1.15 mL, 9.50 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.13 mL, 0.95 mmol, 0.2 equiv).

1H NMR (CDCl₃, 500 MHz): δ 7.99 (d, J = 5.0 Hz, 2H), 7.56 (t, J = 7.5 Hz, 2H), 7.45 (t, J = 7.5 Hz, 4H), 6.95 (d, J = 10.0 Hz, 2H), 6.86 (d, J = 10.0 Hz, 4H), 5.56 (s, 1H), 4.24 (q, J = 5.0 Hz, 4H), 3.89 (s, 3H), 3.87 (s, 3H), 1.27 (t, J = 5.0 Hz, 2H).

13C{1H} NMR (CDCl₃, 125 MHz): δ 193.5, 169.0, 149.2, 149.0, 135.8, 133.5, 128.9, 128.7, 125.4, 122.1, 112.5, 111.2, 61.7, 60.0, 56.0, 55.8, 30.9, 14.1.

Ethyl 2-(naphthalen-2-yl)-3-oxo-3-phenylpropanoate (34h). The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 20:1). The title product was isolated as a colorless oil (0.34 g, 23%) from the reaction of 2-naphthyl phenyl ketone (1.08 g, 4.65 mmol, 1.0 equiv) and EDA (1.12 mL, 9.30 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.13 mL, 0.93 mmol, 0.2 equiv).

1H NMR (CDCl₃, 500 MHz): δ 8.29 (s, 1H), 7.97-7.88 (m, 6H), 7.65-7.60 (m, 2H), 7.58-7.51 (m, 3H), 4.29-4.23 (m, 3H), 1.31 (t, J = 7.5 Hz, 3H).

13C{1H} NMR (CDCl₃, 125 MHz): δ 196.7, 169.8, 137.9, 135.3, 134.8, 132.4, 132.3, 131.9, 130.1, 129.4, 128.4, 128.3, 127.8, 126.8, 125.8, 68.2, 61.1, 14.2.

HRMS (ESI/Q-TOF): Calculated (m/z) for C₂₁H₁₉O₃ (M+H)⁺: 319.1329, Found 319.1365.
Ethyl 2-ethyl-3-oxopentanoate (35a). [184d] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.53 g, 52%) from the reaction of 3-pentanone (0.51 g, 5.92 mmol, 1.0 equiv) and EDA (1.43 mL, 11.84 mmol, 2.0 equiv) in the presence of HBF₄⋅OEt₂ (0.16 mL, 1.18 mmol, 0.2 equiv).

1H NMR (CDCl₃, 300 MHz): δ 4.09 (q, $J = 6.0$ Hz, 2H), 3.28 (t, $J = 7.5$ Hz, 1H), 2.49-2.42 (m, 2H), 1.78 (t, $J = 7.5$ Hz, 2H), 1.17 (t, $J = 6.0$ Hz, 3H), 0.97 (t, $J = 7.5$ Hz, 3H), 0.82 (t, $J = 7.5$ Hz, 3H).

Ethyl 3-oxo-2-propylhexanoate (35b). The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.45 g, 50%) from the reaction of 4-heptanone (0.52 g, 4.53 mmol, 1.0 equiv) and EDA (1.43 mL, 9.06 mmol, 2.0 equiv) in the presence of HBF₄⋅OEt₂ (0.13 mL, 0.91 mmol, 0.2 equiv).

1H NMR (CDCl₃, 300 MHz): δ 4.15 (q, $J = 7.5$ Hz, 2H), 3.41 (t, $J = 6.0$ Hz, 1H), 2.52-2.43 (m, 2H), 1.82-1.78 (m, 2H), 1.59 (q, $J = 7.5$ Hz, 2H), 1.24 (t, $J = 6.0$ Hz, 5H), 0.91-0.86 (m, 6H).

13C(1H) NMR (CDCl₃, 125 MHz): δ 205.3, 169.9, 61.1, 58.9, 43.6, 30.2, 20.7, 16.9, 14.0, 13.8, 13.5.

HRMS (ESI/Q-TOF): Calculated (m/z) for C₁₁H₂₁O₃ (M+H)⁺: 201.1485; Found 201.1478.

Ethyl 2-butyl-3-oxoheptanoate (35c). [184e] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.38 g, 47%) from the reaction of 5-nonanone
(0.51 g, 3.59 mmol, 1.0 equiv) and EDA (0.87 mL, 7.18 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.10 mL, 0.72 mmol, 0.2 equiv).

1H NMR (CDCl₃, 500 MHz): δ 4.14-4.11 (m, 2H), 3.36 (t, \(J = 7.5 \) Hz, 1H), 2.51-2.41 (m, 2H), 2.33 (t, \(J = 5.0 \) Hz, 1H), 1.78-1.75 (m, 2H), 1.51-1.47 (m, 2H), 1.27-1.24 (m, 3H), 1.22-1.18 (m, 3H), 0.85-0.81 (m, 6H).

13C{1H} NMR (CDCl₃, 125 MHz): δ 205.3, 169.9, 61.0, 59.1, 42.4, 41.4, 29.5, 27.8, 25.9, 25.5, 22.3, 22.1, 14.0, 13.7.

Ethyl 2-acetylhexanoate (35d) and ethyl 2-methyl-3-oxoheptanoate (35d’). [184f] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.51 g, 55%) from the reaction of 2-hexanone (0.50 g, 4.99 mmol, 1.0 equiv) and EDA (1.20 mL, 9.98 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.14 mL, 1.0 mmol, 0.2 equiv).

1H NMR (CDCl₃, 300 MHz): δ 4.24-4.20 (m, 4H), 3.53 (q, \(J = 7.5 \) Hz, 1H), 3.41 (t, \(J = 7.5 \) Hz, 1H), 2.63-2.48 (m, 1H), 2.25 (s, 3H), 1.85-1.81 (m, 2H), 1.61-1.57 (m, 3H), 1.36-1.28 (m, 15H), 0.94-0.91 (m, 6H).

13C{1H} NMR (CDCl₃, 125 MHz): δ 206.0, 203.4, 170.6, 169.9, 61.2, 59.9, 41.0, 29.5, 28.7, 27.9, 25.6, 22.4, 22.2, 14.1, 14.0, 13.8.

Ethyl 2-acetyldecanoate 35e [184g] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.36 g, 44%) from the reaction of 2-decanone (0.53 g, 3.39 mmol, 1.0 equiv) and EDA (0.89 mL, 6.78 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.09 mL, 0.68 mmol, 0.2 equiv).
Ethyl 2-acetyldecanoate (35e). The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.16 g, 20%) from the reaction of 2-decanone (0.53 g, 3.39 mmol, 1.0 equiv) and EDA (0.89 mL, 6.78 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.09 mL, 0.68 mmol, 0.2 equiv).

Ethyl 5-methyl-3-oxohexanoate (35f). [184h] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil (0.56 g, 55%) from the reaction of 3-methylbutanal (0.51 g, 5.92 mmol, 1.0 equiv) and EDA (1.43 mL, 11.84 mmol, 2.0 equiv) in the presence of HBF₄·OEt₂ (0.16 mL, 1.2 mmol, 0.2 equiv).
Ethyl 3-oxooctanoate (35g). [185f] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil with hexane (0.60 g, 62%) from the reaction of hexanal (0.52 g, 5.19 mmol, 1.0 equiv) and EDA (1.43 mL, 10.38 mmol, 2.0 equiv) in the presence of HBF$_4$∙OEt$_2$ (0.14 mL, 1.04 mmol, 0.2 equiv).

1H NMR (CDCl$_3$, 300 MHz): δ 4.19 (q, $J = 6.0$ Hz, 2H), 3.42 (s, 2H), 2.53 (t, $J = 7.5$ Hz, 2H), 1.61-1.59 (m, 2H), 1.29-1.25 (m, 4H), 0.88-0.82 (m, 3H).

13C(1H) NMR (CDCl$_3$, 75 MHz): δ 203.0, 167.3, 61.3, 49.3, 43.0, 31.9, 31.2, 29.7, 23.2, 22.7, 22.4, 14.1, 13.9.

Ethyl 3-oxodecanoate (35h). [184i] The compound was prepared according to the general procedure and purified by silica gel column chromatography (hexane/ethyl acetate = 50:1). The title product was isolated as a colorless oil with hexane (0.70 g, 82%) from the reaction of octanal (0.51 g, 3.98 mmol, 1.0 equiv) and EDA (0.96 mL, 7.96 mmol, 2.0 equiv) in the presence of HBF$_4$∙OEt$_2$ (0.11 mL, 0.80 mmol, 0.2 equiv).

1H NMR (CDCl$_3$, 300 MHz): δ 4.91 (q, $J = 7.5$ Hz, 2H), 3.16 (s, 1H), 2.28 (t, $J = 7.5$ Hz, 1H), 1.32 (s, 2H), 1.03-0.98 (m, 15H), 0.62 (d, $J = 6.0$ Hz, 6H).

13C(1H) NMR (CDCl$_3$, 75 MHz): δ 201.7, 166.5, 88.2, 60.1, 48.3, 41.9, 31.0, 28.4, 28.3, 28.3, 22.7, 21.9, 13.2, 13.2.
References for Chapter 1-Part B

Part C: Exploring 18-Crown-6-ether complex as a Bronsted Acid catalyst
6.1 Introduction

Macrocyclic ether containing scaffolds have been used to estimate cationic recognition and selective cation binding using different physical approaches such as filtration, absorption etc. [175-177] which was used for the detection of cations such as Li⁺, Na⁺, K⁺, and Rb⁺ as well as perchlorates by the help of fluorescence spectroscopy. [178-179] Several crown ether complexes have been synthesized so far because of its synthetic application in different fields such as trapping metal ion in commercial waste container, as an additive in the asymmetric synthesis, to prepare soluble ionic liquids etc.

A class of commercially available 18-crown-6 ether is shown in the Figure 14A. As part of our ongoing research on the synthesis and reactivity of 18-crown-6 ether cationic complexes, we have recently isolated the cis-syn-cis and cis-anti-cis isomers of dicyclohexano-18-crown-6 as their hydronium cationic salts using Tf₂NH super acids for the first time. However, this type of complexes was separated before using K⁺ and NH₄⁺ as a choice of cation. The uniqueness of this isolation of such crown complexes with specific geometry of cyclohexyl group may distinctly function for synthetic applications (Figure 14B).

There are data in the literature for the stability constants of the cis-syn-cis and cis-anti-cis isomers of dicyclohexano-18-crown-6 with different alkali- and alkaline-earth metal cation salts in water and in methanol, [185-188] and for potassium picrate in dichloromethane (picrate = 2,4,6-trinitrophenolate). [189] However, explanation of the effect of the pendent hydronium ion as an available proton source (which is related to the association constant) instead of alkali metal has remained underdeveloped. In 1995 Bartsch et al introduced an excellent approach for more
accessibility of one form of coordinated hydrogen compared to other. [190] It should be added that host-guest association in organic media of low polarity imposes requirements different from those found for the association in polar solvents.

To understand the influence of stereochemical availability of proton, we decided to screen our complexes as a proton donor (Brønsted acid) catalyst in an organic reaction. In 2004, Hossain’s group reported a coupling reaction of Ethyl diazoacetate (EDA) with aromatic aldehyde in presence of tetrafluoroboric acid diethyl ether complex (HBF₄.OEt₂) as a Brønsted acid catalyst. [132] We plan to study the same coupling reaction by replacing HBF₄.OEt₂ with our crown complex A/B to determine the catalytic strength and scope of this reaction in organic synthesis. In

Figure 14 Commercially available predominant isomers of Dicyclohexyl-18-crown-6-ether complexes

(A)
B) Isolated protonated complex having specific geometrical structures

![Complex A](image1.png) \(\text{Tf}_2\text{NH}^-\) \hspace{5cm} ![Complex B](image2.png) \(\text{Tf}_2\text{NH}^-\)

C) Geometry of the crown ether before protonation

![cis-syn-cis](image3.png) \hspace{1cm} ![cis-anti-cis](image4.png)

In this regard, we investigated the reaction of EDA with different aromatic aldehydes in the presence of complex A and complex B (Scheme 88). We focused mainly on the accessibility of the hydrogen ion of the complex instead of optimizing the percentage yield of the reaction. Therefore different equivalent of complex A and B have been explored instead of choosing different solvent systems or coupling partners.
6.2 Results and Discussions

The results obtained from the screening of both complex A and complex B has summarized in Table 14. At room temperature, in the presence of 0.12 equiv of complex A, benzaldehyde with 2 equiv of EDA provided a decent percentage of yield (52%) of hydroxy acrylate, 1a (Table 14).

Scheme 88 Preparation of 3-hydroxy-2-aryl acrylates from the reaction of aromatic aldehydes and EDA catalyzed by complex A and complex B

![Scheme 88](image)

Table 14 Optimization results of effectivity of Crown-ether complex A and B on exploring coupling between EDA and Carbonyl compounds

<table>
<thead>
<tr>
<th>Entry</th>
<th>Carbonyl compound</th>
<th>Complex</th>
<th>Temp (°C)</th>
<th>3-hydroxyacrylate</th>
<th>% yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>A</td>
<td>rt</td>
<td>2a</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>A</td>
<td>0</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Ad</td>
<td>rt</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Ae</td>
<td>rt</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Bf</td>
<td>rt</td>
<td>2a</td>
<td>trace</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>A</td>
<td>rt</td>
<td>2b</td>
<td>71</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>B</td>
<td>rt</td>
<td>2b</td>
<td>17</td>
</tr>
<tr>
<td>8b</td>
<td>1c</td>
<td>A</td>
<td>rt</td>
<td>2c</td>
<td>N/R</td>
</tr>
<tr>
<td>9b</td>
<td></td>
<td>B</td>
<td>rt</td>
<td>2c</td>
<td>N/R</td>
</tr>
</tbody>
</table>
1 equiv of substrate was reacted with 2 equiv of EDA (added dropwise over 20-30 mins) in the presence of 0.12 equiv of catalyst complex and stirred for an additional 14h at that temperature unless otherwise stated. The reaction was allowed to stir for an additional 12h. An unidentified compound was isolated about 5-10%. 0.25 equiv of catalyst A used. 0.05 equiv of catalyst A used. 0.05, 0.12 & 0.25 equiv of catalyst B used.

(entry 1). Lowering the temperature reduced the yield of the product to 28% (Table 14, entry 2). Increasing catalyst loading did not improve yield of the product (Table 14, entry 3 vs entry 1); whereas, decreasing amount of the catalyst loading from 0.12 equiv to 0.05 equiv significantly reduced the yield of the product (Table 14, entry 4 vs entry 1). Coupling reaction with benzaldehyde and EDA in the presence of Complex B resulted trace amount of 1a (Table 14, entry 5). With complex A, electron rich para-methoxybenzaldehyde gave better yield (71%) of acrylate 2a (Table 14, entry 6). We believe that happen due to formation of stable carbocation during the 1,2-aryl migration. Very poor yield of 2a was obtained when the reaction was done with complex B (Table 14, entry 7). Electron deficient ortho-nitrobenzaldehyde provided no product of 3a in presence of complex A or complex B (Table 14, entries 8-9). Compounds having electron withdrawing group might destabilized the carbocation during migration and resulted trace or no product formation. It should be added that use of benzophenone with both the complex A and B at -78-rt with the same reaction condition ended up with trace or no product.

Based on the mechanism proposed by Hossain et al, to start the reaction, protonation of carbonyl oxygen of benzaldehyde is required followed by the nucleophilic attack of EDA. [132] It is very likely that the carbonyl group of aromatic aldehydes could easily binds to the proton from the less crowded face of the cis-syn-cis of complex A, [190] which initiated the reaction to form the products. Whereas cis-anti-cis configuration of catalyst B may hinder the binding of the proton to the incoming carbonyl compounds. As a result, there was little, or trace amount of product formation was observed.
There are few catalysts are known to give selective formation of 3-hydroxyacylates from the reaction of aromatic aldehydes and EDA. [149-150] In most of the cases, the acrylates form along with β-keto esters or exclusively the latter compound. [191] Therefore, the use of crown ether complex A as a catalyst, would be an additional finding for the selective synthesis of acrylates. The possibility of preparing such prochiral molecules is pivotal for the synthesis of pharmaceutically important scaffold as shown in Figure 15. [192, 88]

Figure 15 Application of acrylate for the preparation of pharmaceutically important compounds
6.3 General procedure for the synthesis of 3-hydroxy arylacrylates

For each experiment, carbonyl compounds (3.5-8.0 mmol, 1.0 equiv) was dissolved in 10-20 mL of freshly distilled dichloromethane under nitrogen at -78 °C. A Brønsted acid, HBF₄-ΟEt₂ catalyst (0.18-2.0 mmol, 0.05-0.25 equiv) was added, and the reaction mixture was stirred for 1 hour at the same temperature. Ethyl diazoacetate (EDA) (7.0-16.0 mmol, 2.0 equiv) was diluted in 5 mL of freshly distilled dichloromethane and added to the solution over a period of 0.5-1 h. Then, the reaction mixture was allowed to stir for 24-72 h at room temperature (depending on the substrate-aromatic aldehydes have ran for 24 h and the ketones have run until up to 3 days). After completion of the reaction, it was quenched by adding THF and Na₂SO₄ had added to resolve the problem associated with unreacted EDA. The reaction mixture was filtered through a silica plug using dichloromethane as solvent and the solvent removed by rotary evaporation. Pure products were isolated by silica gel column chromatography with 5-20% ethyl acetate in hexane.
References

Chapter 2 Investigation of C2-alkylation of N-protected Gramine
7.1 Introduction

An indole core with an alkyl substituent in the C2-position serve as precursors for a variety of medicinally important alkaloids and their analogs.[193] Some of the representative examples are Indomethacin 1 (non-steroidal anti-inflammatory drug commonly used for the treatment of rheumatoid arthritis)[194], Tryprostatin A 2 (act as a breast cancer resistance protein inhibitor)[195] and Tryprostatin B 3 (act as a microtubule inhibitor)[196], Neoechinulin A 4 (shows anti-nitration, antioxidant and cytoprotective activity against peroxynitrite from SIN-1 in PC12 cells)[197], and Arbidol 5 (used the treatment of influenza infection)[198] (Figure 16). Due to the weak reactivity of the C–H bond at the C2-position of an indole and the possibility of metalation on the aromatic ring, C2–H alkylation of indoles are still challenging for chemists.[199] Therefore, strong bases like \(^n\)BuLi, \(^{sec}\)BuLi, \(^t\)BuLi, LDA etc. was used as a deprotonation source to obtain information concerning the position of attack by this organometallic compound either on indole or some of its derivatives.

Figure 16 Important biologically active natural products containing C2-substituted indole moiety

![Indomethacin, Tryprostatin A, Tryprostatin B, Neoechinulin A, Arbidol](image)

206
7.1.1 Concepts on the C2-alkylation of Indole/phenothiazine/N-carboxy protected indole

Gilman and Sengupta introduce the lithiation chemistry in hetero-cyclic nuclei, explained the way of metalation happen which is quite different from ordinary electrophilic substitution processes.[200] Treatment of the indole with excess (up to 4 equiv) of n-BuLi could not introduce anything next to the heteroatom nitrogen (at C2 position) which is in sharp contrast to the study based on carbazole. The reason is the more acidic proton of -N-H comes out first and thus the metalation are evident in that place. But Metalation of aromatic phenothiazine was successfully resulted due the introduction of carboxy group to the N-H to induce a lithiation on that position. As a result, they got an alkylation in C-1 position of the aromatic ring Scheme 89a. [201] Which means the presence of sulfur/oxygen might enhanced the acidity of the C1 proton and thus get alkylated. In case of less reactive indole, it is due to the stabilization of the anion shown in the following Scheme 89b.

Scheme 89 Stabilization of the indole ring due to resonance

a. ![Scheme 89a](image)

Where, X = O, S

b. ![Scheme 89b](image)

The early attempt of carbamate strategy shown by Akutagawa et al in 1986, was basically a one pot method of preparing 2-substituted indole derivatives. [202] Indole was first converted to the lithium carbamate by sequential treatment with n-BuLi in THF, followed by CO₂. Then the
lithiation of the lithium carbamate at the C2 position was achieved with 1.2 equivalent of \(t\text{-BuLi} \) at -20 °C (Scheme 90). Addition of the electrophile at -70 °C and warming it up to room temperature for several hours primarily formed the crude product mixture. An aqueous acid treatment followed by gentle warming deprotected the product from CO\(_2\) and thus gave the desired C2 substituted indoles 6 in good to excellent yield (52-86%).

Scheme 90 C2 alkylation of indole moiety after carboxy induce lithiation assistance

![Scheme 90](image)

The interesting things to notice about the carbamate directed lithiation method is its expansion scope of alkylation to the \(\beta \)-aliphatic and \(\beta \)-aromatic carbons. Therefore, unlike other methods for directing lithiation the carbamate anion route is not restricted to those patterns where the carbanion present \(\alpha \) to the nitrogen heteroatom and thus both the \(\beta \)-aliphatic and \(\beta \)-aromatic carbons have been successfully lithiated. For an instance when 2-alkylindoles 7 protected by lithium carbamate it can be lithiated on the \(\alpha \)-carbon of the alkyl side chain which is \(\beta \) to the nitrogen to form product 9 as shown by exemplifying the following **Scheme 91**.

Scheme 91 C2 alkylation at the \(\beta \)-aliphatic position from the heteroatom (nitrogen)

![Scheme 91](image)

Even though the carbanion can be delocalized in to the 3-position of the indole ring to give
substitution at the C3 position, the only product observed at the aliphatic carbon. The addition of a substituent at the 3-position disfavors this delocalization and lithiation fails to occur with 2,3-dialkylinodoles other than the exception of 2,3-dimethylindole. Because of the enhance acidity of methyl groups compared to another alkyl permits deprotonation to occur.

Here the carbamate groups provide some assistance to lithiation by prior coordination to the lithiated species, but their main mode of action appears to be by dipole stabilization of the lithiated species once formed. The dipolar effect of the carbamate anions is not as strong as other systems such as nitrosamines, formamidines and oxazolidines and cannot be used for the asymmetric allylation as well. The advantage for the carbamates is their convenience (one pot procedure and available reagents) and versatility (for protection, main nucleophilic attack/reaction and deprotection) of accomplishing the completion of the reaction readily. The scope of the carbamate reaction is the electron rich heterocyclic system that can form relatively stable carbamate derivatives.

In brief a summary can be drawn from the above discussion that the formation of carbanion due to the deprotonation over the assistance of heteroatoms can occur in at least four distinct environments. One such example can be shown based on simple pyridine moiety.

a. A ring: CH which is α-to the heteroatom

b. An exocyclic CHXY linkage attached α or γ to a pyridine-link nitrogen

c. A CHXY directly attached to the pyrrole like link nitrogen atom

d. The Ortho position of the aromatic ring α-to the ring nitrogen.
7.1.2 Precedence for C2-alkylation of BOC-protected gramine

A breakthrough came when the Hossain’s group developed an unprecedented incorporation of prenyl group at the C-2 position of (3-(dimethylaminomethyl)indole) (commercially named as gramine) in 2019 during the concise total synthesis of Tryprostatin B (Scheme 92). [203] The idea was executed by using a BOC protection of the more acidic nitrogen of the indole ring and then by conducting the lithiation using n-BuLi as a base to pull out the proton from the C2 position.

Scheme 92 Precedence of C2-prenylation of BOC-protected Gramine

This unusual procedure opens a new window to explore a variety of N-protected gramine’s to synthesize C2 substituted gramine salts by subsequent reactions with electrophiles which might be potentially effective for framing biologically and pharmaceutically important compounds. In our present research, we have examined several protecting groups and electrophiles to investigate the scope of this reaction and to probe the reaction mechanism.

7.2 Results and Discussions
At first, we decided to screen various N-protecting groups, make sure the effect of the protecting group on the C2-alkylation more precisely C-2 metatation. Our attempt of screening focused on the direct protection of the indole nitrogen of the commercially available compound \(24 \) (Scheme 93). We believe there might be a directing effect of certain protecting group for inducing alkyl group exactly on the C2 position. One step protection using TIPS group resulted the desired compound \(25a \) with 84% yield but the product \(25b \) and \(25c \) obtained with very low yield. We therefore tried to confirm the reason why we are not getting the tosyl protection with better yield.

Scheme 93 Protection of heteroatom nitrogen of gramine

![Scheme 93 Protection of heteroatom nitrogen of gramine](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>PG (1.1-1.2 equiv)</th>
<th>Solvent</th>
<th>Base (1.5-2 equiv)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TIPS(TIPS-Cl)</td>
<td>DCM</td>
<td>NaH</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>Tosyl (TsCl)</td>
<td>ACN</td>
<td>NaH</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Mesyl (MsCl)</td>
<td>ACN</td>
<td>NaH</td>
<td>21</td>
</tr>
</tbody>
</table>

\(^{a}\)All reactions have carried out from 4-8 mmol scale, NaH added at -78 °C and the protecting reagents have added after 45-60 minutes and the reactions bought to the room temperature, each reactions have done several times.
conversion. We have observed that during preparing the N-tosyl gramine the reaction also forming another compound N, N-dimethyl sulfonamide \(25b'\) 35% of isolated yield which means compound \(25b\) is not stable under strong basic condition. The base NaH might pull the electron next to the tertiary amine nitrogen heteroatoms and forcing the pair of electrons throughout the aromatic system to finally retouch the tosyl group to form such byproduct \(25b'\).

Therefore, we decided to explore a new route to protect the indole-3-carboxaldehyde compound \(26\) first and then to convert that to gramine by reductive amination reaction. It should be mentioned that commercially there are very few gramine is available with different substituent on the aromatic ring but if we can prepare gramine from Indole 3-carboxaldehyde it would be beneficial for exploring lot of gramine analogues. Initially, we considered three protecting group -Ts, -Ms and -Me (Scheme 94); out of that methyl gave a very good productivity of 80% isolated yield (compound \(27d\)). For the mesyl protection we obtained about 64% of desired product, \(27c\) but the tosyl protection was limited to 30% product \(27a\) formation. We then thought to switch the base from NaH to relatively mild organic base DIPEA for tosyl protection and successfully isolated 80% of the product \(27b\). Surprisingly the reductive amination to form N-protected gramine did not work good with the tosyl protection and obtained \(25b\) with 27% isolated yield, but the reaction went well with mesyl and methyl protections.

After getting couple of N-protected gramine compounds in hand we started studying the C2-alkylation using prenyl bromide and benzyl bromide as electrophile in presence of \(n\)-BuLi as
Scheme 94 Two-step alternative route to prepare N-protected gramine

$$\text{PG, } \text{NaH (1.5 equiv)} \xrightarrow{\text{solvent, temp.}} \text{PG} \xrightarrow{i. \text{ dimethylamine (in THF) (3 equiv), Ti(OPr)$_4$ (1.1 equiv)}} \text{PG} \xrightarrow{\text{ii. NaBH}_4 (1.1 equiv)}$$

P.G, Tosyl chloride (1.2-1.5 equiv) Mesyl CH$_2$N$_2$Cl (1.2 equiv) Methyl chloroformine (1.1 equiv)

27b, yield 30a, yield 80b 27c, yield 64% 27d, yield 84%

25b, yield 27% 25c, yield 80% 25d, yield 85%

aused NaH as a base, bused DIPEA (1.5 equiv), DMAP (0.05 mol%) as a base

a lithiating agent (Scheme 95). It is expected that the monoalkylated salt would form first due to the lone pair electron of nitrogen on the amine and then the nucleophilic C2 carbon attacks the electrophile to form C-C bond by the extrusion of the leaving group. Surprisingly, we have got only monoalkylated salt (28a, 28c, 28d) for methyl and TIPS, mesityl protected gramine even we have screened different equivalent of n-BuLi (from 2-4 equiv). It should be mentioned that Iwao et al reported lithiation at C-2 position by using N-methyl tyramine in the presence of tBuLi in ether at 0 °C. [204] The anomaly of the two findings may be because of the use of stronger base and different type of electrophiles than us. However, tosyl protection gave a mixture of monoalkylated product 28b and 28b’ which could not be separated successfully by column chromatography.
Scheme 95 C2-alkylation of N-protected gramine

*all reactions have carried out from 2-5 mmol quantity, n-BuLi was added at -78 °C and the protecting reagent had added after 60-90 minutes of lithiation, overnight

Then we decided to do a deuteration study to see whether the proton from C2 had pulled out by the base or it remains intact even after introducing a strong base like n-BuLi. Running the study with
N-Me gramine we have seen no deuteration even after 24 h waiting after quenched with MeOD. Similar reaction was performed with the N-tosyl gramine and n-butyllithium in THF, quenching with MeOD, location of the deuterium incorporation was calculated by analysis of the mass spectrum and 1H NMR (Scheme 96 and SI). In 1H NMR, the singlet of the C-2 position for H was diminished by the incorporation of D and the percentage of D incorporation was calculated 91% based on 1H NMR.

Scheme 96 Deuteration study of N-tosyl and N-Me protected gramine

In summary, we have so far got some idea about the assistance of the protecting group especially the tosyl group which has similar nature like CO$_2$ in indole protection. Therefore, the lone pair on the oxygen present in the tosyl group might help initial lithiation then the electrophilic attack on that specific position. Mesyl group on the other side should show the assistance but it is not happening may be because of the less donating and non-resonating methyl group instead of the aromatic participation of the phenyl group. The idea also justified when the methyl protection did not work with the procedure. However, the bulkiness of the TIPS group could not direct the lithiation rather stopped that completely.
7.3 General methods and experimental

7.3.1 General procedure for the N-protection of gramine

20 ml of DCM was added to 1 gm (5-10 mmol, 1 equiv) 1-(1H-indol-3-yl)-N,N-dimethylmethanamine and stirred for 5 minutes to dissolve. Then the bright yellow solution bought to -78 °C using dry ice-acetone bath. By the time the solution reached the desired temperature, we have washed the NaH (containing mineral oil) by hexane and weighed 0.275-0.30 g (11.46 mmol, 2.0-2.1 equiv). Added the NaH to the reaction flask and stirred for an hour at -78 °C. Then we have added 6.876 mmol, 1.2 equiv protecting reagent all at once. The reaction was monitored by TLC for completion and the desired product 25 was isolated by column chromatography using 10-20% EtOAc in hexane as oily liquid.

Synthesis of N,N-dimethyl-1-(1-(triisopropylsilyl)-1H-indol-3-yl)methanamine (25a)

20 ml of DCM was added to 1 gm (5.73 mmol, 1 equiv) 1-(1H-indol-3-yl)-N,N-dimethylmethanamine and stirred for 5 minutes to dissolve. Then the bright yellow solution bought to -78 °C using dry ice-acetone bath. By the time the solution reached the desired temperature, we have washed the NaH (containing mineral oil) by hexane and weighed 0.275 g (11.46 mmol, 2.0 equiv). Added the NaH to the reaction flask and stirred for an hour at -78 °C. Then we have added 1.33 g (6.876 mmol, 1.2 equiv) triisopropropylsilyl chloride all at once. The reaction was monitored by TLC for completion and 1.60 g of the desired product 25a was isolated by column chromatography using 10-20% EtOAc in hexane as a light beige oily liquid.

1H NMR (CDCl3, 500 MHz): δ 7.70 (t, J = 7.5 Hz, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.18 (m, s, 1H), 7.16 (dd, J = 10 Hz, 5 Hz, 2H), 3.66 (s, 2H), 2.30 (s, 6H), 1.78 – 1.71 (m, 3H), 1.67 (d, J = 10 Hz, 18H).
\[^{13}\text{C}\ \text{NMR}\ (\text{CDCl}_3,\ 75\ \text{MHz})\]: \delta 141.3, 131.4, 130.5, 121.4, 119.6, 119.2, 115.1, 113.9, 54.7, 18.2, 12.9.

\text{N,N-dimethyl-1-(1-tosyl-1H-indol-3-yl)methanamine (25b)}

20 ml of acetonitrile was added to 1 gm (5.73 mmol, 1 equiv) 1-(1H-indol-3-yl)-N,N-dimethylmethanamine and stirred for 5 minutes to dissolve. Then the solution was bought to -78 °C using dry ice-acetone bath. By the time the solution reached the desired temperature, we have washed the NaH (containing mineral oil) by hexane and weighed 0.275 g (11.46 mmol, 2.0 equiv). Added the NaH to the reaction flask and stirred for an hour at -78 °C. Then we have added 1.31 g (6.876 mmol, 1.2 equiv) 4-toluenesulfonyl chloride all at once. The reaction was monitored by TLC for completion and 0.34 g of the desired product 25b was isolated by column chromatography using 20-30% EtOAc in hexane as a brown oily liquid.

\[^1\text{H}\ \text{NMR}\ (\text{CDCl}_3,\ 300\ \text{MHz})\]: \delta 8.03 (d, \textit{J} = 9.0 \text{ Hz}, 1\text{H}), 7.76 (t, \textit{J} = 9.0 \text{ Hz}, 1\text{H}), 7.65 (d, \textit{J} = 9.0 \text{ Hz}, 1\text{H}), 7.54 (s, 1\text{H}), 7.32 (t, \textit{J} = 7.5 \text{ Hz}, 1\text{H}), 7.22 (t, \textit{J} = 7.5 \text{ Hz}, 1\text{H}), 7.11 (d, \textit{J} = 6.0 \text{ Hz}, 2\text{H}), 3.52 (s, 2\text{H}), 2.23 (s, 6\text{H}), 2.21 (s, 3\text{H}).

\text{N,N-dimethyl-1-(1-methyl-1H-indol-3-yl)methanamine (25c)}

20 ml of acetonitrile was added to 1 gm (5.73 mmol, 1 equiv) 1-(1H-indol-3-yl)-N,N-dimethylmethanamine and stirred for 5 minutes to dissolve. Then the solution bought to -78 °C using dry ice-acetone bath. By the time the solution reached the desired temperature, we have washed the NaH (containing mineral oil) by hexane and weighed 0.275 g (11.46 mmol, 2.0 equiv). Added the NaH to the reaction flask and stirred for an hour at -78 °C. Then we have added 0.43 ml (6.876 mmol, 1.2 equiv) methyl iodide dropwise within 5 minutes. The reaction
was monitored by TLC for completion and 0.23 g of the desired product 25a was isolated by column chromatography using 5-15% EtOAc in hexane as colorless oil.

1H NMR (CDCl$_3$, 500 MHz): δ 7.92 (d, J = 10.0 Hz, 1H), 7.76 (d, J = 10.0 Hz, 1H), 7.41-7.32 (m, 3H), 3.69 (s, 2H), 3.10 (s, 3H), 2.31 (s, 6H).

13C NMR (CDCl$_3$, 75 MHz): δ 135.4, 130.9, 125.0, 124.4, 123.5, 120.6, 120.1, 113.1, 54.5, 50.5, 45.6, 44.6, 40.6.
7.3.2 General procedure for preparing N-protected 1H-indole-3-carbaldehyde 26

To a 20 ml of DCM solvent, we have added 1g (6.84 -13.7 mmol, 1 equiv) of 1H-indole-3-carbaldehyde 26. After dissolving the starting material completely, we put the solution in a dry ice acetone bath to set up the temperature at -78 °C. Then 0.25-0.30 g (10.3-12.0 mmol, 1.5-1.8 equiv) of NaH was added after washing it with hexane. We let the reaction run for an hour and half and then started adding 0.47 -1.20 mL (7.52 -10.25 mmol, 1.1-1.5 equiv) of protecting reagent dropwise. The reaction left overnight for completion and quenched with water. The crude was then separated in 2 later. The organic layer was collected, and the aq. layer washed with DCM two more time. All the organic fractional gathered and rotavap. The crude was clean enough to carry out the next step.

Synthesis of 1-tosyl-1H-indole-3-carbaldehyde (27b)

To a 20 ml of DCM solvent, we have added 1g (6.84 mmol, 1 equiv) of 1H-indole-3-carbaldehyde 26. After dissolving the starting material completely, we put the solution in a dry ice acetone bath to set up the temperature at -78 °C. Then 0.25 g (10.3 mmol, 1.5-1.8 equiv) of NaH was added after washing it with hexane. We let the reaction run for an hour and half and then started adding 1.20 ml (8.20 mmol, 1.2 equiv) of Tosyl chloride dropwise. The reaction left overnight for completion and quenched with water. The crude was then separated in 2 later. The organic layer was collected, and the aq. layer washed with DCM two more time. All the organic fractional gathered and rotavap. The crude was clean enough to carry out the next step.
Synthesis of 1-(methylsulfonyl)-1H-indole-3-carbaldehyde (27c)

To a 20 ml of DCM solvent, we have added 1g (6.84 mmol, 1 equiv) of 1H-indole-3-carbaldehyde 26. After dissolving the starting material completely, we put the solution in a dry ice acetone bath to set up the temperature at -78 °C. Then 0.25 g (10.3 mmol, 1.5-1.8 equiv) of NaH was added after washing it with hexane. We let the reaction run for an hour and half and then started adding 0.64 ml (8.20 mmol, 1.2 equiv) of methyl iodide dropwise. The reaction left overnight for completion and quenched with water. The crude was then separated in 2 later. The organic layer was collected, and the aq. layer washed with DCM two more time. All the organic fractional gathered and rotavap. The crude was clean enough to carry out the next step.

1H NMR (CDCl₃, 300 MHz): δ 10.1 (s, 1H), 8.37 (d, J = 9.0 Hz, 2H), 7.97 (d, J = 9.0 Hz, 1H), 7.87 (d, J = 9.0 Hz, 1H) 7.45-7.31 (m, J = 4H), 2.37 (s, 3H).

13C NMR (CDCl₃, 75 MHz): δ 186.5, 186.0, 138.3, 137.8, 125.9, 124.7, 123.6, 122.2, 122.00, 121.0, 118.7, 112.8, 111.7, 40.3.

Synthesis of 1-methyl-1H-indole-3-carbaldehyde (27d)

To a 20 ml of DCM solvent, we have added 1g (6.84 mmol, 1 equiv) of 1H-indole-3-carbaldehyde 26. After dissolving the starting material completely, we put the solution in a dry ice acetone bath to set up the temperature at -78 °C. Then 0.25 g (10.3 mmol, 1.5 equiv) of NaH was added after washing it with hexane. We let the reaction run for an hour and half and then started adding 0.47 ml (7.52 mmol, 1.1 equiv) of methyl iodide dropwise. The reaction left overnight for completion
and quenched with water. The crude was then separated in 2 later. The organic layer was collected, and the aq. layer washed with DCM two more time. All the organic fractional gathered and rotavap. The crude was clean enough to carry out the next step.

\[\text{1H NMR (CDCl3, 500 MHz): } \delta 10.3 \text{ (s, 1H), } 8.34 \text{ (d, } J = 10.0 \text{ Hz, 2H), } 7.71 \text{ (s, 1H), } 7.40-7.28 \text{ (m, 3H), } 3.90 \text{ (s, 3H).} \]

\[\text{13C NMR (CDCl3, 75 MHz): } \delta 184.4, 139.1, 125.3, 124.0, 123.0, 122.1, 118.1, 108.9, 33.7. \]

7.3.3 General procedure for the reductive amination of N-protected 1H-indole-3-carbaldehyde 27

500 mg – 1000 mg of compound 27 (b-d) was added in 15-20 ml of MeOH solvent and bought it to 0 \(^\circ\)C by using an ice bath. When dissolved, 3 equiv of dimethylamine (in 2M THF) solution was added all at once. The reaction ran for 3 - 4 h and added monitored by TLC until the starting material disappear. While done with the TLC monitoring 1.1 equiv. of NaBH\(_4\) was added slowly in 3 portions within 5 minutes. The reduction then ran for 1 hour for completion. The reaction was quenched with water, methanol was removed by rotary evaporation and the organic fraction had separated by extracting with EtOAc. The crude obtained as an oily liquid then purified with MeOH: DCM (1:50) solvent mixture.

NMR for the final product 25a, 25b and 25c has attached to appendix A.
7.3.4 General procedure for C2 alkylation of Gramine

Synthesis of N,N,3-trimethyl-N-((2-(3-methylbut-2-en-1-yl)-1-tosyl-1H-indol-3-yl)methyl)but-2-en-1-aminium (28b/28b’)

A solution of N,N-dimethyl-1-(1-(methylsulfonyl)-1H-indol-3-yl)methanamine 25 (0.50 – 1.0 mmol) in THF (15 mL) was taken in three necked round bottomed flask and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and n-butyl lithium (0.40–0.72 mL, 1.0 – 2.0 mmol, 2 equiv) (2.5 M in hexane) was added dropwise to the reaction mixture maintaining a temperature -78 °C over a period of 1 h under nitrogen atmosphere. Then the electrophile (2.25-6.0 mmol, 4.5-6.0 equiv) was added to the reaction dropwise through the dropping funnel over a period of 30 min. The reaction mixture was allowed to warm to room temperature and was stirred overnight. After consumption of the starting material, as judged by TLC analysis, water (5 mL) was added to the reaction mixture and THF was removed under reduced pressure. The mixture was then extracted with CH₂Cl₂ (3 x 15 mL), the combined organic layers were washed with brine solution (1 x 10 mL) and dried over anhydrous Na₂SO₄ and evaporated in vacuo to obtain crude product. The residue was purified with flash column chromatography on silica gel (DCM/MeOH = 25/1) to afford mixture of either monoalkylated product 28 or a mixture of mono/dialkylated products (28/29).
Synthesis of N,N,3-trimethyl-N-((1-tosyl-1H-indol-3-yl)methyl)but-2-en-1-aminium bromide 28b/ N,N,3-trimethyl-N-((2-(3-methylbut-2-en-1-yl)-1-tosyl-1H-indol-3-yl)methyl)but-2-en-1-aminium bromide 29b

A solution of N,N-dimethyl-1-(1-tosyl-1H-indol-3-yl)methanamine 25b (0.2 g, 0.61 mmol) in THF (15 mL) was taken in three necked round bottomed flask and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and n-butyl lithium (0.47 mL, 1.22 mmol, 2 equiv) (2.5 M in hexane) was added dropwise to the reaction mixture maintaining a temperature -78 °C over a period of 1 h under nitrogen atmosphere. Prenyl bromide (0.32 mL, 2.745 mmol) was added to the reaction dropwise through the dropping funnel over a period of 30 min. The reaction mixture was allowed to warm to room temperature and was stirred overnight. After consumption of the starting material, as judged by TLC analysis, water (5 mL) was added to the reaction mixture and THF was removed under reduced pressure. The mixture was then extracted with CH₂Cl₂ (3 x 15 mL), the combined organic layers were washed with brine solution (1 x 10 mL) and dried over anhydrous Na₂SO₄ and evaporated in vacuo to obtain crude product. The residue was purified with flash column chromatography on silica gel (DCM/MeOH = 25/1) to afford mixture of 28b/29b as a brown oily liquid (27%).

¹H NMR (CDCl₃, 300 MHz): δ 8.24 – 8.21 (m, 1H), 8.22 (d, J = 3.0 Hz, 1H), 8.10 (d, J = 3.0 Hz, 2H), 7.61 (d, J = 9.0 Hz, 2H), 7.38 – 7.34 (m, 2H), 7.22 (d, J = 9.0 Hz, 2H), 5.35 (t, J = 10.5 Hz, 1H), 5.17 (s, 2H), 5.10 (s, 1H), 4.49 (d, J = 9.0 Hz, 2H), 3.93 (s, 2H), 3.47 (s, 2H), 3.10 (s, 6H), 2.37 (s, 3H), 2.08 (d, J = 12 Hz, 3H), 1.87 (d, J = 6.0 Hz, 6H), 1.79 (s, 3H), 1.64 (s, 3H), 1.27 (S, 6H), 0.91(d, J = 9.0 Hz, 3H)
Synthesis of N-benzyl-N,N-dimethyl-1-(1-(triisopropylsilyl)-1H-indol-3-yl)methanaminium bromide (28a*)

A solution of N,N-dimethyl-1-(1-(triisopropylsilyl)-1H-indol-3-yl)methanamine 25a (0.2 g, 0.61 mmol) in THF (15 mL) was taken in a three-necked round bottomed flask and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and n-butyl lithium (0.47 mL, 1.22 mmol, 2 equiv) (2.5 M in hexane) was added dropwise to the reaction mixture maintaining a temperature of -78 °C over a period of 1 h under nitrogen atmosphere. Prenyl bromide (0.32 mL, 2.745 mmol) was added to the reaction dropwise through the dropping funnel over a period of 30 min. The reaction mixture was allowed to warm to room temperature and was stirred overnight. After consumption of the starting material, as judged by TLC analysis, water (5 mL) was added to the reaction mixture and THF was removed under reduced pressure. The mixture was then extracted with CH$_2$Cl$_2$ (3 x 15 mL), the combined organic layers were washed with brine solution (1 x 10 mL) and dried over anhydrous Na$_2$SO$_4$ and evaporated in vacuo to obtain crude product. The residue was purified with flash column chromatography on silica gel (DCM/MeOH = 25/1) to afford mixture of 28b/29b as a brown oily liquid (56%).

1H NMR (CDCl$_3$, 500 MHz): δ 7.93 (d, $J = 10.0$ Hz, 1H), 7.74 (s, 1H), 7.69 (d, $J = 10.0$ Hz, 2H), 7.54 (d, $J = 10.0$ Hz, 1H), 7.44 – 7.36 (m, 3H), 7.20 (t, $J = 7.5$ Hz, 2H), 5.31 (s, 2H), 5.24 (s, 2H), 3.17 (s, 6H), 1.78-1.69 (m, 3H), 1.14 (d, 18H)

13C NMR (CDCl$_3$, 75 MHz): δ 141.2, 137.1, 133.4, 129.1, 127.8, 122.6, 121.6, 119.3, 114.5, 104.6, 67.0, 60.8, 48.2, 18.1, 12.7.
Synthesis of N,N,3-trimethyl-N-((1-methyl-1H-indol-3-yl)methyl)but-2-en-1-aminium bromide (28d)

A solution N,N-dimethyl-1-(1-methyl-1H-indol-3-yl)methanamine 25d (0.2 g, 1.06 mmol) in THF (15 mL) was taken in three necked round bottomed flask and nitrogen was bubbled through the solution for 20 min. This mixture was cooled to -78 °C and n-butyl lithium (0.82 mL, 2.12 mmol, 2 equiv) (2.5 M in hexane) was added dropwise to the reaction mixture maintaining a temperature -78 °C over a period of 1 h under nitrogen atmosphere. Benzyl bromide (0.57 mL, 4.77 mmol, 4.5 equiv) was added to the reaction dropwise through the dropping funnel over a period of 30 min. The reaction mixture was allowed to warm to room temperature and was stirred overnight. After consumption of the starting material, as judged by TLC analysis, water (5 mL) was added to the reaction mixture and THF was removed under reduced pressure. The mixture was then extracted with CH₂Cl₂ (3 x 15 mL), the combined organic layers were washed with brine solution (1 x 10 mL) and dried over anhydrous Na₂SO₄ and evaporated in vacuo to obtain crude product. The residue was purified with flash column chromatography on silica gel (DCM/MeOH = 25/1) to afford mixture of 28b/29b as a brown oily liquid (52.1 %).

¹H NMR (CDCl₃, 500 MHz): δ 7.63 – 7.34 (m, 9H), 5.35 (s, 1H), 5.05 (s, 1H), 4.52 (s, 6H), 3.73 (s, 2H), 2.55 (s, 3H)

¹³C NMR (CDCl₃, 75 MHz): δ 137.8, 137.0, 134.6, 133.3, 122.5, 121.2, 119.4, 109.9, 100.6, 66.7, 61.4, 53.5, 47.9, 33.7.
References for Chapter 2

APPENDIX A
HPLC, NMR, HPLC DATA
HPLC data of compound 2 (Method A)

Enantiomeric excess (ee) was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: hexane/EtOH = 19/1, λ = 254 nm). t_R major = 13.2 min, t_R minor = 15.4 min, e.r. = 82.7 : 17.3.

Racemic:

![Racemic HPLC chromatogram]

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak1</td>
<td>12.954</td>
<td>10845787</td>
<td>50.03</td>
<td>BV</td>
<td></td>
<td>Found</td>
<td>Q20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Peak2</td>
<td>15.040</td>
<td>10833499</td>
<td>49.97</td>
<td>VB</td>
<td></td>
<td>Found</td>
<td>Q20</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11202717</td>
<td>100.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chiral:

![Chiral HPLC chromatogram]

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Peak Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Peak1</td>
<td>13.167</td>
<td>9263994</td>
<td>82.69</td>
<td>BV</td>
<td>Found</td>
</tr>
<tr>
<td>2</td>
<td>Peak2</td>
<td>15.403</td>
<td>1938723</td>
<td>17.31</td>
<td>Vb</td>
<td>Found</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11202717</td>
<td>100.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
After Single Crystallization:

Enantiomeric excess (ee) was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: hexane/EtOH = 19/1, $\lambda = 254$ nm), t_R major = 13.2 min, t_R minor = 15.4 min, e.r. = 93:7.

Racemic:

![Graph](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak1</td>
<td>18.156</td>
<td>178850689</td>
<td>49.98</td>
<td>503376</td>
<td>BV</td>
<td></td>
<td></td>
<td>Found</td>
<td>Q20</td>
</tr>
<tr>
<td>Peak2</td>
<td>20.310</td>
<td>17900723</td>
<td>50.02</td>
<td>472642</td>
<td>VB</td>
<td></td>
<td></td>
<td>Found</td>
<td>Q20</td>
</tr>
</tbody>
</table>

Chiral:

![Graph](image)

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak1</td>
<td>17.426</td>
<td>17161625</td>
<td>92.83</td>
<td>458382</td>
<td>BV</td>
<td></td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Peak2</td>
<td>19.771</td>
<td>1305303</td>
<td>7.07</td>
<td>34491</td>
<td>VB</td>
<td></td>
<td></td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>
HPLC data of compound 2 (Method B):
Enantiomeric excess (ee) was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: hexane/EtOH = 19/1, λ = 254 nm). t_R major = 13.6 min, t_R minor = 15.6 min, e.r. = 78.5:21.5.

Racemic:

![Racemic HPLC graph]

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Peak1</td>
<td>13.692</td>
<td>11824523</td>
<td>49.13</td>
<td>398915</td>
<td>BV</td>
<td>Found</td>
<td>Q20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Peak2</td>
<td>15.856</td>
<td>12036146</td>
<td>50.87</td>
<td>356665</td>
<td>Vb</td>
<td>Found</td>
<td>Q20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chiral:

![Chiral HPLC graph]

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Peak1</td>
<td>13.692</td>
<td>34737989</td>
<td>78.46</td>
<td>1190873</td>
<td>BV</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Peak2</td>
<td>15.907</td>
<td>9539524</td>
<td>21.54</td>
<td>323901</td>
<td>Vb</td>
<td>Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
HPLC data of compound 2 (Method C):
Enantiomeric excess (ee) was determined by using HPLC with a chiral stationary phase. Stationary phase (AD column, flow rate = 1.0 mL/min, eluent: hexane/EtOH = 19/1, λ = 254 nm). tR major = 12.8 min, tR minor = 14.9 min, e.r. = 76.8:23.2.

Racemic:

![Racemic HPLC chromatogram]

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak1</td>
<td>12.619</td>
<td>4011517</td>
<td>49.70</td>
<td>148643</td>
<td>BV</td>
<td></td>
<td>Found</td>
<td>Q20</td>
<td></td>
</tr>
<tr>
<td>Peak2</td>
<td>14.679</td>
<td>4046906</td>
<td>50.22</td>
<td>130095</td>
<td>VB</td>
<td></td>
<td>Found</td>
<td>Q20</td>
<td></td>
</tr>
</tbody>
</table>

Chiral:

![Chiral HPLC chromatogram]

<table>
<thead>
<tr>
<th>Name</th>
<th>Retention Time</th>
<th>Area</th>
<th>% Area</th>
<th>Height</th>
<th>Int Type</th>
<th>Amount</th>
<th>Units</th>
<th>Peak Type</th>
<th>Peak Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak1</td>
<td>12.795</td>
<td>53965702</td>
<td>76.78</td>
<td>1502548</td>
<td>BB</td>
<td></td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Peak2</td>
<td>14.882</td>
<td>16323128</td>
<td>23.22</td>
<td>567342</td>
<td>Bb</td>
<td></td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 1 in CDCl$_3$
13C NMR Spectrum of Compound 1 in CDCl$_3$
HRMS of Compound 1
1H NMR Spectrum of Compound 2 in CDCl$_3$
13C NMR Spectrum of Compound 2 in CDCl$_3$
HRMS of Compound 2

Event #: 1 MS(E+) Ret. Time: 0.124 -> 2.571 -> 0.053 -> 0.110 Scan #: 15 -> 291 -> 7 -> 13

Measured region for 300.0834 m/z

C14 H15 N O S [M+Na]+: Predicted region for 300.0842 m/z

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M)</th>
<th>Ion</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Dif. (mDa)</th>
<th>Dif. (ppm)</th>
<th>Iso</th>
<th>DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>77.56</td>
<td>C14 H15 N O S</td>
<td>[M+Na]+</td>
<td>300.0834</td>
<td>300.0842</td>
<td>-0.8</td>
<td>-2.67</td>
<td>80.93</td>
<td>8.0</td>
</tr>
</tbody>
</table>
$^{1}\text{H NMR Spectrum of Compound 3 in CDCl}_3$
13C NMR Spectrum of Compound 3 in CDCl$_3$
HRMS of compound 3
1H NMR Spectrum of Compound 4 in CDCl$_3$
13C NMR Spectrum of Compound 4 in CDCl$_3$
HRMS of Compound 4
1H NMR Spectrum of Compound 5 in CDCl$_3$
13C NMR Spectrum of Compound 5 in CDCl$_3$
HRMS of Compound 5

- Event: 1 MSI(-), Ret. Time: 0.453
- Scan: 87-3

Measured region for 262.0702 m/z

Predicted region for 282.0795 m/z

<table>
<thead>
<tr>
<th>Rank</th>
<th>Source</th>
<th>Formula (M+)</th>
<th>Int</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Δm (ppm)</th>
<th>Δm (mDa)</th>
<th>Int</th>
<th>DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>MH+</td>
<td>C13H15N4O8</td>
<td>262.0795</td>
<td>262.0795</td>
<td>282.0795</td>
<td>-4.81</td>
<td>44.87</td>
<td>7.0</td>
<td></td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 6 in CDCl$_3$
$^{13}\text{C} \text{ NMR Spectrum of Compound 6 in } \text{CDCl}_3$
HRMS of Compound 6
1H NMR Spectrum of Compound 7 in CDCl$_3$ ((-)‐Coerulescine)
13C NMR Spectrum of Compound 7 in CDCl$_3$ (-)-(Coerulescine)
1H NMR Spectrum of Compound 8 in CDCl$_3$ ((-)‐Coixspirolactam A)
13C NMR Spectrum of Compound 8 in CDCl$_3$ ((-)‐Coixspirolactam A)
1H NMR Spectrum of Compound 9 in CDCl$_3$
13C NMR Spectrum of Compound 9 in CDCl$_3$
HRMS of Compound 9

Measured region for 278.1013 m/z

C14 H15 N OS (M+H+) - Predicted region for 278.1023 m/z

<table>
<thead>
<tr>
<th>Name</th>
<th>Error_Formula (Da)</th>
<th>mass</th>
<th>Meas. (Da)</th>
<th>Pred. (Da)</th>
<th>Diff (ppm)</th>
<th>Delta (ppm)</th>
<th>Int.</th>
<th>DUCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>278.1015</td>
<td>278.1023</td>
<td>-0.4</td>
<td>-3.08</td>
<td>87.79</td>
<td>5.0</td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 10 in CDCl$_3$
\[^{13}\text{C NMR Spectrum of Compound 10 in CDCl}_3 \]
HRMS of Compound 10

Measured region for 322.0910 m/z

C15 H15 N O7 [H+H]+: Predicted region for 322.0921 m/z

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M+)</th>
<th>log</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Diff. (ppm)</th>
<th>Diff. (pm)</th>
<th>lln</th>
<th>DHE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>66.07</td>
<td>C15 H15 N O7</td>
<td>[H+H]+</td>
<td>322.0910</td>
<td>322.0921</td>
<td>-1.1</td>
<td>-42.0</td>
<td>32.47</td>
<td>5.0</td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 11 in CDCl$_3$
1H NMR Spectrum of Compound 12 in CDCl$_3$
$^{13}\text{C} \text{ NMR Spectrum of Compound 12 in CDCl}_3$
^{1}H NMR Spectrum of Compound 13 in CDCl$_3$
13C NMR Spectrum of Compound 13 in CDCl$_3$
1H NMR Spectrum of Compound 13a in CDCl$_3$
1H NMR Spectrum of Compound 13a in CDCl$_3$
1H NMR Spectrum of Compound 14 in CDCl$_3$
13C NMR Spectrum of Compound 14 in CDCl$_3$
1H NMR Spectrum of Compound 15 in CDCl$_3$
13C NMR Spectrum of Compound 15 in CDCl$_3$
1H NMR Spectrum of Compound 16 in CDCl$_3$
1H NMR Spectrum of Compound 17 in CDCl$_3$
13C NMR Spectrum of Compound 17 in CDCl$_3$
1H NMR Spectrum of Compound 25a in CDCl$_3$
13C NMR Spectrum of Compound 25a in CDCl$_3$
1H NMR Spectrum of Compound 25c in CDCl$_3$
1H NMR Spectrum of Compound 25c in CDCl$_3$
1H NMR Spectrum of Compound 25d in CDCl$_3$
1H NMR Spectrum of Compound 27b in CDCl$_3$
1H NMR Spectrum of Compound 25b in CDCl$_3$
1H NMR Spectrum of Compound 25c in CDCl$_3$
13C NMR Spectrum of Compound 25d in CDCl$_3$
1H NMR Spectrum of Compound 27c in CDCl$_3$
13C NMR Spectrum of Compound 27c in CDCl$_3$
$^1\text{H NMR Spectrum of Compound 27d in CDCl}_3$
13C NMR Spectrum of Compound 27d in CDCl$_3$
1H NMR Spectrum of Compound 28b and 29b' in CDCl$_3$
1H NMR Spectrum of Compound 28a’ in CDCl$_3$
13C NMR Spectrum of Compound 28a' in CDCl$_3$
13C NMR Spectrum of Compound 28c in CDCl$_3$
1H NMR Spectrum of Compound 28d in CDCl$_3$
13C NMR Spectrum of Compound 28d in CDCl$_3$
1H NMR Spectrum of Compound 34a in CDCl$_3$
HRMS of Compound 34a

C17H16O3 [M+H]

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M)</th>
<th>Ion</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Dif. (mDa)</th>
<th>Dif. (ppm)</th>
<th>Isoli</th>
<th>DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>76.52</td>
<td>C17H16O3</td>
<td>[M+H]**</td>
<td>269.1170</td>
<td>269.1172</td>
<td>-0.2</td>
<td>-0.74</td>
<td>76.52</td>
<td>10.0</td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 34b and 34b' in CDCl$_3$
$^{13}\text{C NMR Spectrum of Compound 34b and 34b' in CDCl}_3$
HRMS of 34b/34b'
1H NMR Spectrum of Compound 34c and 34c' in CDCl$_3$
13C NMR Spectrum of Compound 34c and 34c' in CDCl$_3$
1H NMR Spectrum of Compound 34d and 34d' in CDCl$_3$
13C NMR Spectrum of Compound 34d and 34d’ in CDCl$_3$
HRMS of Compound 34d and 34d'
1H NMR Spectrum of Compound 34f in CDCl$_3$
13C NMR Spectrum of Compound 34f in CDCl$_3$
1H NMR Spectrum of Compound 34g in CDCl$_3$
13C NMR Spectrum of Compound 34g in CDCl$_3$
HRMS of Compound 34g

C19H20O5 [M+H]+; Predicted region for 329,1384 m/z
1H NMR Spectrum of Compound 34h in CDCl$_3$
13C NMR Spectrum of Compound 34h in CDCl$_3$
HRMS of Compound 34h

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M⁻)</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Dif. (mDa)</th>
<th>Dif. (ppm)</th>
<th>Ion DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25.24</td>
<td>C21 H18 O3</td>
<td>310.1365</td>
<td>310.1329</td>
<td>3.4</td>
<td>11.28</td>
<td>69.00</td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 35a in CDCl$_3$
1H NMR Spectrum of Compound 35b in CDCl$_3$
13C NMR Spectrum of Compound 35b in CDCl$_3$
HRMS of Compound 35b

![Image of HRMS spectra for Compound 35b showing measured and predicted regions with mass values and peaks.](image)
1H NMR Spectrum of Compound 35c in CDCl$_3$
13C NMR Spectrum of Compound 35c in CDCl$_3$
1H NMR Spectrum of Compound 35d and 35d' in CDCl$_3$
13C NMR Spectrum of Compound 35d and 35d’ in CDCl$_3$
HRMS of Compound 35d

C10 H18 O3 [M+H]+ - Predicted region for 187.1329 m/z
1H NMR Spectrum of Compound 35e in CDCl$_3$
13C NMR Spectrum of Compound 35e in CDCl$_3$
$^1\text{H NMR Spectrum of Compound 35e'}$ in CDCl$_3$
$^{13}\text{C} \text{ NMR Spectrum of Compound } 35e' \text{ in } \text{CDCl}_3$
HRMS of Compound 35e'

C_{14}H_{26}O_{3} [M+H]^+ : Predicted region for 243.1955 m/z

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M)</th>
<th>Ion</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Dif. (mDa)</th>
<th>Dif. (ppm)</th>
<th>Iso</th>
<th>DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52.20</td>
<td>C_{14}H_{26}O_{3}</td>
<td>[M+H]^+</td>
<td>243.1940</td>
<td>243.1955</td>
<td>-1.3</td>
<td>-0.17</td>
<td>66.67</td>
<td>2.0</td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 35f in CDCl$_3$
1H NMR Spectrum of Compound 35g in CDCl$_3$
13C NMR Spectrum of Compound 35g in CDCl$_3$
HRMS of Compound 35g

Event: 1 MS(El+) Ret. Time: 0.373 -> 0.760 -> 0.113 -> 0.249 Scan#: 113 -> 229 -> 55 -> 75

Measured region for 187.1329 m/z:

Predicted region for 187.1329 m/z:

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M)</th>
<th>Ion</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Df (mDa)</th>
<th>Df (ppm)</th>
<th>Isq</th>
<th>DRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>53.74</td>
<td>C10 H18 O3</td>
<td>[M+H]+</td>
<td>187.1329</td>
<td>187.1329</td>
<td>0.0</td>
<td>0.0</td>
<td>53.74</td>
<td>2.0</td>
</tr>
</tbody>
</table>
1H NMR Spectrum of Compound 9h in CDCl$_3$
13C NMR Spectrum of Compound 35h in CDCl$_3$
HRMS of Compound 35h

<table>
<thead>
<tr>
<th>Rank</th>
<th>Score</th>
<th>Formula (M)</th>
<th>Ion</th>
<th>Meas. m/z</th>
<th>Pred. m/z</th>
<th>Df. (mDa)</th>
<th>Df. (ppm)</th>
<th>Iso</th>
<th>DBE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>36.03</td>
<td>C12 H22 O3</td>
<td>[M+H]+</td>
<td>215.1661</td>
<td>215.1642</td>
<td>1.9</td>
<td>8.83</td>
<td>68.69</td>
<td>2.0</td>
</tr>
</tbody>
</table>
2D NMR of
Ethyl 3-oxo-3-phenyl-2-(p-tolyl)propanoate (34b) and
ethyl 3-oxo-2-phenyl-3-(p-tolyl)propanoate (34b')
HSQC Aliphatic Down-field
HSQC Aliphatic Up-field
HSQC Aromatic
HMBC Aliphatic Down Field
HMBC Aromatic-Aliphatic
HMBC (Combination of Three Parts)
2D NMR of

Ethyl 3-oxo-3-phenyl-2-(p-tolyl)propanoate (34c) and ethyl 3-oxo-2-phenyl-3-(p-tolyl)propanoate (34c’)

COSY Spectrum
HMBC Aliphatic-Aromatic
Identifying peaks and their relative integration
Md Shahnawaz Ali

Highlights

- Asymmetric Synthesis
- Method Development
- HPLC
- Reaction Scale-up
- Gas Chromatography
- Hard Working

- Organometallic Chemistry
- Multistep Synthesis
- NMR
- Ligand Synthesis
- Develop SOP
- Writing Manuscript

- Process Chemistry
- Natural Product
- Pd-Chemistry
- FTIR
- Team Worker
- Leadership

EDUCATION

Ph.D. (Candidate)- Organic Chemistry

Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee (UWM), WI, USA
May 2021 (Anticipated)
Advisor: Dr. M Mahmum Hossain, Professor

Master of Science

Department of Applied Chemistry & Chemical technology, University of Dhaka, Dhaka-1000, Bangladesh
Dec 2008
Advisor: Dr. Manoranjan Saha, Professor

Bachelor of Science

Department of Applied Chemistry & Chemical technology, University of Dhaka, Dhaka-1000, Bangladesh
Jan 2007
Advisor: Dr. Manoranjan Saha, Professor

RESEARCH EXPERIENCE

University of Wisconsin Milwaukee, Milwaukee, WI
Position: Teaching and Research Assistant
Sep 2015 – Present

- Five years of progressive experience in organic chemistry especially on synthesis, purification, and characterization of novel small natural products
- Extensive hands-on experience in air/moisture sensitive small-scale catalytic synthesis (using schlenk lines)
- Synthesis and optimization of metal catalyzed asymmetric allylic alkylation reactions
- Experience in design, synthesis and study of novel natural compounds and their analogues
- Development of C2 alkylated Indole products and its data driven kinetic and mechanistic study
- Hands-on large-scale multistep one pot synthesis of chiral ligands and catalysts

BANGLADESH ATOMIC ENERGY COMMISSION (BAEC)

Position: Master’s Thesis Researcher (Polymer Chemistry)
Jan 2007 - Feb 2008

- Modification of physico-mechanical properties of Sodium Alginate bio-degradable polymer film
- Preparation of bio-medical grade fiber from Calcium Alginate Polymer Fiber

Teaching Experience
Dept. of Chemistry & Biochemistry (UWM), Milwaukee, WI

Organic Chemistry. Teaching Assistant. Supervised and instructed students in organic chemistry laboratory techniques. Evaluating exams, preparing questions and solving problems related to the organic course and laboratory procedures. (September 2015 - present)

General Chemistry. Teaching Assistant. Carefully and sincerely taught general chemistry for both discussion and laboratory classes for almost all 100 level Chemistry courses. Assisted students individually with their lack of understanding on specific topics. (September 2009 - present)

ADDITIONAL SKILLS

- Experience in handing highly hazardous chemicals such as nBuLi, HF, TiCl₄, EDA etc.
- Trained on handling industrial equipment, chemicals and hazardous substances based on standard operating procedure (SOP)
- Certified training on ‘Industrial Process Unit Operation & Process Control Technique’ from Training Institute of Chemical Industries (TICI) in Bangladesh

CONFERENCE AND SEMINAR PRESENTATION

PUBLICATIONS

1. Ali, M Shahnawaz; Rahaman, Mizanur; Belayet, Jawad B; Asad, Sharif A; Hossain, M Mahmun. ‘A Unique Approach to Preparing 3,3-Disubstituted Oxindole from Acyclic Tetrasubstituted Aldehyde: Total Synthesis of (-)-Coerulescine & (-)-Coixspirolactam A’-Submitted.

2. Rahaman, Mizanur; Ali, M Shahnawaz; Jahan, Khorshada; Belayat, Jawad; Hossain, M Mahmun. ‘Synthetic Scope of Brønsted Acid-Catalyzed Reactions of Carbonyl 2 Compounds and Ethyl Diazooacetate- DOI: 10.1021/acs.joc.0c03972

SCHOLARSHIPS/AWARDS

- UWM Chancellor Fellowship (Fall, 2015 - Spring, 2020)
- Best Organic Teaching Assistant (2019 - 2020)
- UWM- Dept. of Chemistry outstanding credential award (2020)
- Graduate Student Council Award (2020).

PROFESSIONAL EXPERIENCE

Internship - R & D - Millipore Sigma, Tutonia Avenue, Milwaukee, WI, USA. (Jan, 2021 - now)

AFFILIATIONS

American Chemical Society (ACS)