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ABSTRACT

ALGORITHMIC AND COMBINATORIAL RESULTS IN SELECTION AND
COMPUTATIONAL GEOMETRY

by

Ke Chen

The University of Wisconsin-Milwaukee, 2021
Under the Supervision of Professor Adrian Dumitrescu

This dissertation investigates two sets of algorithmic and combinatorial problems. The

first part focuses on the selection problem under the pairwise comparison model. For the

classic “median of medians” scheme, contrary to the popular belief that smaller group sizes

cause superlinear behavior, several new linear time algorithms that utilize small groups are

introduced. Then the exact number of comparisons needed for an optimal selection algo-

rithm is studied. In particular, the implications of a long standing conjecture known as Yao’s

hypothesis are explored. For the multiparty model, we designed low communication com-

plexity protocols for selecting an exact or an approximate median of data that is distributed

among multiple players.

In the second part, three computational geometry problems are studied. For the longest

spanning tree with neighborhoods, approximation algorithms are provided. For the stretch

factor of polygonal chains, upper bounds are proved and almost matching lower bound

constructions in R2 and higher dimensions are developed. For the piercing number τ and

independence number ν of a family of axis-parallel rectangles in the plane, a lower bound

construction for ν = 4 that matches Wegner’s conjecture is analyzed. The previous matching

construction for ν = 3, due to Wegner himself, dates back to 1968.
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Chapter 0

Introduction

This thesis is divided into two parts. Chapters 1, 2, and 3 focus on several aspects of the

selection problem. Chapters 4, 5, and 6 investigate three different flavors of computational

geometry problems. The following provides an overview of each topic studied.

0.1 Selection Problems

Given a set A of n objects with an unknown total order, the selection problem asks for the ith

smallest element for a prespecified integer i ∈ [1, . . . , n]. Although under certain models it is

possible to determine the order in one shot (for instance, in a 100-meter dash of 8 athletes),

in this thesis we focus on the more common regime where only pairwise comparisons are

allowed. Algorithms are then evaluated by the number of comparisons performed to find the

target.

One special case is the min (resp. max) problem where i = 1 (resp. i = n). Many

natural approaches used since ancient times, knockout tournament as an example, can easily

be proved optimal. The story becomes much more complicated for i = 2. It is believed that

C. L. Dodgson, better known as Lewis Carroll, was the first to write about awarding second

prize to the defeated in the final round of a tennis tournament can be unfair. In his 1883

essay, Dodgson proposed a refined tournament that determines the true second-best player.

1



Although correct, his method turned out to be suboptimal (and unfortunately is never tried

in tennis games despite being quite interesting). In 1932, J. Schreier provided an algorithm

that uses at most n − 2 + dlog ne comparisons to find the second best among n players.

Thirty years later, S. S. Kislitsyn finally proved that this number is indeed the best possible.

When i ≥ 3 (and i ≤ n− 2 by symmetry), the optimal algorithm remains unknown.

For larger i, in particular i = dn/2e (i.e., selecting the median), the asymptotic complexity

of the best algorithm for selection was comparable to sorting for a while until 1973. In that

year, Blum, Floyd, Pratt, Rivest, and Tarjan published their now classic “median of medians”

deterministic algorithm Select that only requires O(n) number of comparisons.

0.1.1 Selection algorithms with small groups

The central idea of Select is to find a good pivot element to partition the input set so

that a large chunk of elements can be ruled out (because they cannot be the target). This is

achieved by arranging elements into small groups where medians can be easily found, then

the median of these medians is determined recursively and used as the partition pivot.

In their original paper, Blum et al. proved linearity of this algorithm when the group size

is an odd number at least 5. Since then, it has been perpetuated in the literature that using

smaller group sizes will force the worst-case number of comparisons to become superlinear,

namely Ω(n log n). In Chapter 1, we first point out that the usual arguments found in the

literature justifying the superlinear worst case fall short of proving this claim. We further

prove that it is possible to use group size smaller than 5 while maintaining the linear number

of comparisons. To this end, three simple variants of Select are introduced: the repeated

step algorithm, the shifting target algorithm, and the hyperpair algorithm, all of which use

linear number of comparisons.
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Relevant paper.

K. Chen and A. Dumitrescu, Selection algorithms with small groups, International Journal

of Foundations of Computer Science, Vol. 31, No. 3 (2020), 355–369. A preliminary version in

Proceedings of the 29th International Workshop on Algorithms and Data Structures (WADS

2015), Victoria, Canada, August 2015; LNCS 9214, Springer, 2015, pp. 189–199.

0.1.2 Yao’s hypothesis

The selection problem can be viewed as a special case of the poset production problem. Let

P be a partially ordered set (poset). A sequence of comparisons on an n-element set X

(n ≥ |P |) is said to produce P if the obtained poset contains a subposet that is isomorphic

to P . The poset production problem asks for the smallest number of comparisons needed to

produce a given target poset P . Selecting the ith smallest element from an n-element set X

is equivalent to producing the “star poset” Sn−ii−1 where one element (the target) is known to

be greater than i− 1 elements and less than the remaining n− i elements.

Frances Yao conjectured in 1974 that having extra elements does not help in producing

the star posets (i.e., the minimum number of comparisons required remains the same). This

conjecture, known as the Yao’s hypothesis, has many compelling implications for the selection

problem. Take the median selection as an example, the current best upper bound is slightly

lower than 3n, and the best lower bound is marginally higher than 2n; whereas Schönhage,

Paterson, and Pippenger showed that Yao’s hypothesis implies a median selection algorithm

for n elements that uses at most 2.5n+ o(n) comparisons.

Chapter 2 focuses on Vi(n), the exact number of comparisons needed for selecting the ith

smallest from n elements. A brief survey is provided on the known upper and lower bounds.

Further implications of Yao’s hypothesis on Vi(n), both structurally and computationally,

are explored. Then we carried out an exhaustive search to calculate the values of Vi(n) for

small i and n, aiming at potential contradictions to Yao’s hypothesis. Our search produced

a few new values for n up to 13. Although no direct contradiction was found, we believe

3

https://arxiv.org/abs/1409.3600


that this framework is a feasible way to tackle Yao’s hypothesis once more computing power

is available.

0.1.3 Multiparty selection

Being a widely used subroutine for many tasks, the selection problem naturally appears in

distributed systems. In 1979, Andrew Yao first considered the two-party model where the

two players Alice and Bob each holds a subset of {1, 2, . . . , n}. The goal is to determine the

median of the multiset A ∪ B (A and B are disjoint). In this setup, algorithms are often

referred to as protocols, and the main objective is to minimize the amount of information

communicated (in bits).

A trivial solution for the two-party model is Alice send her entire set to Bob who will then

compute the median of the union and send it back. The total communication complexity

is O(n log n) bits. Several intuitive classic protocols dating back to 1980s achieve a much

better bound O(log2 n) which has been subsequently reduced to O(log n). This is optimal in

the sense that merely sharing the result (a single number) between the two players require

exchanging log n bits.

In Chapter 3, this model is generalized to a multiparty setting with broadcasting (each

message can be seen by all players). For k players, we show a deterministic protocol for

finding the median with O(k log2 n) communication complexity.

0.1.4 Approximate median

Among the selection problems, it is commonly believed (although no proof is known) that

selecting the median is the hardest. On the other hand, finding the exact median is not

always necessary in practice. In 1974, Frances Yao suggested the concept of a mediocre

element. For a set A with |A| = n, an element is (i, j)-mediocre if it is neither among the

top i nor among the bottom j elements of A. Observe that (b(n− 1)/2c, bn/2c)-mediocre

elements are exact medians of A. Intuitively, smaller i and j means wider tolerance for
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inaccuracy, which makes the task easier.

In Chapter 3, the approximate median problem under the multiparty model is studied.

We provide a protocol for selecting a mediocre element near the median among k players

with communication complexity O(k log n). Somewhat surprisingly, we show that in the

two-party model (under suitable additional assumptions), the communication complexity of

finding a mediocre element in the vicinity of the median is bounded from above by a constant

and is therefore independent of n.

Relevant paper.

K. Chen and A. Dumitrescu, Multiparty selection, Proceedings of the 31st International

Symposium on Algorithms and Computation (ISAAC 2020), Online, December 2020, to

appear.

0.2 Computational Geometry

For the classroom definition, computational geometry is the study of algorithms that compute

certain geometric objects. Typical examples include computing convex hull of a set of points,

polygon triangulation, and Euclidean shortest path. The first topic in this part of the thesis

falls under this definition.

More broadly, computational geometry is the interconnection between computer science

and geometry. Often times, geometric results are motivated by network design questions;

meanwhile, computational tools are also widely used in solving geometric problems – our

second and third topics are respective examples.

0.2.1 Longest spanning tree with neighborhoods

The Euclidean maximum spanning tree problem seeks a maximum length tree that connects

a given set of n points in the Euclidean space Rd, d ≥ 2. It finds applications in cluster
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analysis and network visualization where a set of points are partitioned into homogeneous

classes (clusters) such that the maximum distance between elements of the same cluster is

minimized (known as the complete-linkage clustering). The problem is easily solvable in

polynomial time by Prim’s or Kruskal’s algorithm.

In Chapter 4, this problem is generalized where the input points are replaced by n

compact neighborhoods in Rd. We need to select a point in each neighborhood so that the

longest spanning tree on these points has maximum length. Similar generalizations have

been studied in the literature for the minimum spanning tree and the traveling salesman

problem. The neighborhoods can model uncertainty or inaccuracy of the inputs. It can also

be used for hierarchical networks where a “backbone” is constructed before we zoom into

each neighborhood to expand local networks.

With the neighborhood setup, the greedy approach becomes suboptimal. We suspect

that the generalized problem is already NP-hard in the plane, so an approximation algorithm

with ratio 0.511 is provided. It is the first, albeit small, improvement beyond the simple 1/2

approximation.

Relevant paper.

K. Chen and A. Dumitrescu, On the longest spanning tree with neighborhoods, Discrete

Mathematics, Algorithms and Applications, Vol. 12, No. 5 (2020). A preliminary version

in Proceedings of the 12th International Frontiers of Algorithmics Workshop (FAW 2018),

Guangzhou, China, May 2018; in LNCS.

0.2.2 Stretch factor of polygonal chains

Let P = (p1, p2, . . . , pn) be a polygonal chain in Rd. The stretch factor of P is the ratio

between the total length of P and the distance of its endpoints,
∑n−1

i=1 |pipi+1|/|p1pn|. For

a parameter c ≥ 1, we call P a c-chain if |pipj| + |pjpk| ≤ c|pipk|, for every triple (i, j, k),

1 ≤ i < j < k ≤ n. The stretch factor is a global property: it measures how close P is to
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a straight line, and it involves all the vertices of P ; being a c-chain, on the other hand, is a

fingerprint-property: it only depends on subsets of O(1) vertices of the chain.

In Chapter 5, we investigate how the c-chain property influences the stretch factor. In

the Euclidean plane R2, we show that for every ε > 0, there is a noncrossing c-chain that has

stretch factor Ω(n1/2−ε), for sufficiently large constant c = c(ε). From the other direction,

the stretch factor of a c-chain P is shown to be O
(
n1/2

)
, for every constant c ≥ 1, regardless

of whether P is crossing or noncrossing. These results generalize to Rd. For every dimension

d ≥ 2 and every ε > 0, a noncrossing c-chain that has stretch factor Ω
(
n(1−ε)(d−1)/d) is

constructed; on the other hand, the stretch factor of any c-chain is O
(
(n− 1)(d−1)/d

)
.

From the algorithmic perspective, it is trivial to test whether an n-vertex chain in Rd

is a c-chain in O(n3) time by examining all triples 1 ≤ i < j < k ≤ n. Our coauthors,

W. Mulzer and Cs. D. Tóth, give a randomized subcubic algorithm based on recent re-

sults from geometric range searching that runs in O
(
n3−1/d polylog n

)
expected time and

O(n log n) space.

Relevant paper.

K. Chen, A. Dumitrescu, W. Mulzer, and Cs. D. Tóth, On the Stretch factor of polygonal

chains, SIAM Journal on Discrete Mathematics, submitted. A preliminary version in Pro-

ceedings of the 44th International Symposium on Mathematical Foundations of Computer

Science (MFCS 2019), Aachen, Germany, August 2019; LIPIcs series, Schloss Dagstuhl.

0.2.3 Wegner’s inequality for axis-parallel rectangles

Given a family F of sets, a piercing set is a set of elements from
⋃
F∈F F intersecting every

set in F . The piercing number of F , denoted by τ(F), is the size of a minimum piercing set.

The independence number of F , namely the maximum number of pairwise disjoint sets in F ,

is denoted by ν(F). According to an old conjecture of Wegner, if F is a set of axis-parallel

rectangles in the plane, then its piercing number is at most twice its independence number
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minus 1, that is, τ(F) ≤ 2ν(F) − 1. In 2015, Corea et al. came up with an elegant lower

bound construction with τ(F) ≥ 2ν(F) − 4. On the other hand, the current best upper

bound, due to the same group of authors, is a O
(
(log log ν(F))2

)
factor away.

In Chapter 6, we exhibit families of axis-parallel rectangles in the plane with τ = 7 and

ν = 4 and thereby show that Wegner’s inequality, if true, cannot be improved for ν = 4.

The analogous result for ν = 3, due to Wegner, dates back to 1968. A key element in our

proof is establishing a connection with the maximum empty box problem: Given a set P of

n points inside an axis-parallel box U in Rd, find a maximum-volume axis-parallel box that

is contained in U but contains no points of P in its interior. Whereas our construction can

be extended to any larger independence number (ν = 5, 6, . . .), its analysis remains open.

Relevant paper.

K. Chen and A. Dumitrescu, On Wegner’s conjecture for axis-parallel rectangles, Discrete

Mathematics, Vol. 343, Issue 12 (2020) 112091.
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Part I

Selection Problems
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Chapter 1

Selection Algorithms with Small

Groups

1.1 Introduction

Together with sorting, selection is one of the most widely used procedures in computer al-

gorithms. Indeed, it is easy to find numerous algorithms (documented in at least as many

research articles) that use selection as a subroutine. Two classic examples from computa-

tional geometry are [24, 27].

Given a sequence A of n numbers (usually stored in an array), and an integer (target)

parameter 1 ≤ i ≤ n, the selection problem asks to find the ith smallest element in A.

Sorting the numbers trivially solves the selection problem, but if one aims at a linear time

algorithm, a higher level of sophistication is needed. A now classic approach for selection [7,

15, 20, 30, 33] from the 1970s is to use an element in A as a pivot to partition A into

two smaller subsequences and recurse on one of them with a (possibly different) selection

parameter i.

The time complexity of this kind of algorithms is sensitive to the pivots used. For

example, if a good pivot is used, many elements in A can be discarded; whereas if a bad
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pivot is used, in the worst case, the size of the problem may be only reduced by a constant,

leading to a quadratic worst-case running time. But choosing a good pivot can be time

consuming.

Randomly choosing the pivots yields a well-known randomized algorithm with expected

linear running time (see e.g., [8, Ch. 9.2], [25, Ch. 13.5], or [28, Ch. 3.4]), however its worst

case running time is quadratic in n.

The first deterministic linear time selection algorithm Select (called pick by the au-

thors), in fact a theoretical breakthrough at the time, was introduced by Blum et al. [7]. By

using the median of medians of small (constant size) disjoint groups of A, good pivots that

guarantee reducing the size of the problem by a constant fraction can be chosen with low

costs. The authors [7, page 451, proof of Theorem 1] required the group size to be at least

5 for the Select algorithm to run in linear time. It has been perpetuated in the literature

the idea that Select with groups of 3 or 4 does not run in linear time: an exercise of the

book by Cormen et al. [8, page 223, exercise 9.3-1] asks the readers to argue that “Select

does not run in linear time if groups of 3 are used”.

We first point out that the argument for the Ω(n log n) lower bound in the solution to

this exercise [9, page 23] is incomplete by failing to provide an input sequence with one third

of the elements being discarded in each recursive call in both the current sequence and its

sequence of medians; the difficulty in completing the argument lies in the fact that these

two sequences are not disjoint thus cannot be constructed or controlled independently. The

question whether the original Select algorithm runs in linear time with groups of 3 remains

open at the time of this writing.

Further, we show that this restriction on the group size is unnecessary, namely that group

sizes smaller than 5 can be used by a linear time deterministic algorithm for the selection

problem. Since selecting the median in smaller groups is easier to implement and requires

fewer comparisons (e.g., 3 comparisons for group size 3 versus 6 comparisons for group size

5), it is attractive to have linear time selection algorithms that use smaller groups. Our main
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result concerning selection with small group size is summarized in the following theorem.

Theorem 1.1. There exist suitable variants of Select with groups of 2, 3, and 4 running

in O(n) time.

Historical background. The interest in selection algorithms has remained high over the

years with many exciting developments (e.g., lower bounds, parallel algorithms, etc) taking

place; we only cite a few here [2, 6, 10, 12–19, 21, 22, 29, 32, 33]. We also refer the reader

to the dedicated book chapters on selection in [1, 4, 8, 11, 25, 26] and the more recent

articles [3, 23], including experimental work.

Outline. In Section 1.2, the classic Select algorithm is introduced (rephrased) under

standard simplifying assumptions. In Section 1.3, we introduce a variant of select, the

repeated step algorithm, which runs in linear time with either group size 3 and 4. With

groups of 3, the algorithm executes a certain step, “group by 3 and find the medians of the

groups”, twice in a row. In Section 1.4, we introduce another variant of select, the shifting

target algorithm, a linear time selection algorithm with group size 4. In each iteration, upper

or lower medians are used based on the current rank of the target, and the shift in the target

parameter i is controlled over three consecutive iterations. In Section 1.5, we introduce yet

another variant of select, the hyperpair algorithm, a linear time selection algorithm with

group size 2. The algorithm performs the “group by pairs” step four times in a row to form

hyperpairs. In Section 1.6, we briefly introduce three other variants of select with group

size 4, including one due to Zwick [34], all running in linear time.

In Section 1.7, we compare our algorithms (with group size 3 and 4) with the original

Select algorithm (with group size 5) by deriving upper bounds on the exact numbers of

comparisons used by each algorithm. We also present experimental results that verify our

numeric calculations. In Section 1.8, we summarize our results and formulate a conjecture

on the running time of the original Select algorithm from [7] with groups of 3 and 4, as

suggested by our study.
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1.2 Preliminaries

Without affecting the results, the following two standard simplifying assumptions are con-

venient: (i) the input sequence A contains n distinct numbers; and (ii) the floor and ceiling

functions are omitted in the descriptions of the algorithms and their analyses. We also

assume that all the grouping steps are carried out using the “natural” order, i.e., given a se-

quence A = {a1, a2, . . . , an}, “arrange A into groups of size m” means that group 1 contains

a1, a2, . . . , am, group 2 contains am+1, am+2, . . . , a2m and so on. Under these assumptions,

Select with groups of 5 (from [7]) can be described as follows (using this group size has

become increasingly popular, see e.g., [8, Ch. 9.2]):

1. If n ≤ 5, sort A and return the ith smallest number.

2. Arrange A into groups of size 5. Let M be the sequence of medians of these n/5 groups.

Select the median of M recursively, let it be m.

3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m} (the order

of elements is preserved). If i = |A1| + 1, return m. If i < |A1| + 1, go to step 1 with

A ← A1 and n ← |A1|. If i > |A1| + 1, go to step 1 with A ← A2, n ← |A2| and

i← i− |A1| − 1.

m

3n/10 elements greater or equal to m

3n/10 elements smaller or equal to m

Figure 1.1: One iteration of the Select algorithm with group size 5. At least 3n/10 elements
can be discarded.
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Denote the worst case running time of the recursive selection algorithm on an n-element

input by T (n). As shown in Figure 1.1, at least 3 ∗ (n/5)/2 = 3n/10 elements are discarded

at each iteration, which yields the recurrence

T (n) ≤ T (n/5) + T (7n/10) +O(n). (1.1)

This recurrence is one of the following generic form:

T (n) ≤
k∑

i=1

T (ai n) +O(n), where ai > 0 for i = 1, . . . , k and
k∑

i=1

ai ≤ 1. (1.2)

It is well-known [8, Ch. 4] (and can be verified by direct substitution) that the solution

of (1.2) is

T (n) =





O(n) if
∑k

i=1 ai < 1,

O(n log n) if
∑k

i=1 ai = 1.

(1.3)

As such, since the coefficients in (1.1) sum to 1/5 + 7/10 = 9/10 < 1, we see that the

original Select algorithm with group size 5 runs in T (n) = Θ(n) (as it is well-known).

1.3 The Repeated Step Algorithm

Using group size 3 directly in the Select algorithm in [7] yields

T (n) ≤ T (n/3) + T (2n/3) +O(n), (1.4)

which solves to T (n) = O(n log n). Here a large portion (at least one third) of A is discarded

in each iteration but the cost of finding such a good pivot is too high, namely T (n/3). The

idea of our repeated step algorithm, inspired by the algorithm in [5], is to find a weaker pivot

in a faster manner by performing the operation “group by 3 and find the medians” twice in

a row (as illustrated in Figure 1.2). It is worth noting that this method is akin to using the

14



Tukey’s ninther [31]. More precisely, M ′ as defined in step 3 below is the sequence formed

by the Tukey’s ninthers of groups of 9 elements in A.

Algorithm

1. If n ≤ 3, sort A and return the ith smallest number.

2. Arrange A into groups of size 3. Let M be the sequence of medians of these n/3 groups.

3. Arrange M into groups of size 3. Let M ′ be the sequence of medians of these n/9

groups.

4. Select the median of M ′ recursively, let it be m.

5. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If i =

|A1| + 1, return m. If i < |A1| + 1, go to step 1 with A ← A1 and n ← |A1|. If

i > |A1|+ 1, go to step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

m

M

M ′

Figure 1.2: One iteration of the repeated step algorithm with groups of 3. Empty disks
represent elements that are guaranteed to be smaller than or equal to m. Filled squares
represent elements that are guaranteed to be greater than or equal to m.

Analysis. Since elements are discarded if and only if they are too large or too small to

be the ith smallest element, the correctness of the algorithm is implied. Regarding the time

complexity of this algorithm, we have the following lemma:
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Lemma 1.2. The repeated step algorithm with groups of 3 runs in Θ(n) time on an n-element

input.

Proof. By finding the median of medians of medians instead of the median of medians, the

cost of selecting the pivot m reduces from T (n/3) + O(n) to T (n/9) + O(n). We need to

determine how well m partitions A in the worst case. In step 4, m is guaranteed to be greater

than or equal to 2∗(n/9)/2 = n/9 elements in M . Each element in M is a median of a group

of size 3 in A, so it is greater than or equal to 2 elements in its group. All the groups of A

are disjoint, thus m is greater than or equal to 2n/9 elements in A. Similarly, m is smaller

than or equal to 2n/9 elements in A. Thus, in the last step, at least 2n/9 elements can be

discarded. The recursive call in step 4 takes T (n/9) time. So the resulting recurrence is

T (n) ≤ T (n/9) + T (7n/9) +O(n),

and since the coefficients on the right side sum to 8/9 < 1, by (1.3), we have T (n) = Θ(n),

as required.

Note that grouping by 3 twice and finding the median of medians of medians is different

from grouping by 9 and finding the median of medians. The number of comparisons required

for grouping by 3 twice is 3n/3+3n/9 = 12n/9, while for grouping by 9 the number is 14n/9

(14 comparisons for selecting the median of 9). The number of elements guaranteed to be

discarded is also different: for grouping by 3 twice, at least 2n/9 elements can be discarded,

while for grouping by 9, this number is 5n/18. So our method trades some of the quality of

the pivots for speed (discards fewer elements than the median of 9 approach) by doing fewer

comparisons.
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1.4 The Shifting Target Algorithm

In the Select algorithm introduced in [7], the group size is restricted to odd numbers, where

the median of a group has a privileged symmetric position. For group size 4, depending on

the choice of upper, lower, or average median, there are three possible partial orders to be

considered (see Figure 1.3).

Figure 1.3: Three partial orders of 4 elements based on the upper (left), lower (middle), and
average (right) medians. The empty square represents the average of the upper and lower
median, which is not necessarily part of the 4-element sequence.

If the upper (or lower) median is always used, only 2 ∗ (n/4)/2 = n/4 elements are

guaranteed to be discarded in each iteration (see Figure 1.4), which gives the recurrence

T (n) ≤ T (n/4) + T (3n/4) +O(n). (1.5)

The term T (n/4) is for the recursive call to find the median of all n/4 medians. This

recursion solves to T (n) = O(n log n). Even if we use the average of the two medians, the

recursion remains the same since only 2 elements from each of the (n/4)/2 = n/8 groups are

guaranteed to be discarded.

Observe that if the target parameter satisfies i ≤ n/2 (resp., i ≥ n/2), using the lower

(resp., upper) median gives a better chance to discard more elements and thus obtain a

better recurrence; detailed calculations are given in the proof of Lemma 1.3. Inspired by this

idea, we propose the shifting target algorithm as follows:

Algorithm

1. If n ≤ 4, sort A and return the ith smallest number.
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2. Arrange A into groups of size 4. Let M be the sequence of medians of these n/4 groups.

If i ≤ n/2, the lower medians are used; otherwise the upper medians are used. Select

the median of M recursively, let it be m.

3. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If i =

|A1| + 1, return m. If i < |A1| + 1, go to step 1 with A ← A1 and n ← |A1|. If

i > |A1|+ 1, go to step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

Analysis. Regarding the time complexity, we have the following lemma.

Lemma 1.3. The shifting target algorithm with group size 4 runs in Θ(n) time on an n-

element input.

Proof. We shall prove that in at most three consecutive iterations, the size of the problem

is reduced by a large enough fraction so that the resulting recurrence is of the form in (1.2)

with
∑k

i=1 ai < 1.

m

n/4 elements smaller or equal to m

3n/8 elements greater or equal to m

Figure 1.4: Group size 4 with lower medians used.

If in some iteration, we have i ≤ n/4, then the lower medians are used (see Figure 1.4).

Recall that m is guaranteed to be greater than or equal to 2 ∗ (n/4)/2 = n/4 elements of A.

So either m is the ith smallest element in A or at least 3 ∗ (n/4)/2 = 3n/8 largest elements

are discarded, see Figure 1.5. Hence the worst-case running time recurrence is

T (n) ≤ T (n/4) + T (5n/8) +O(n). (1.6)
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n
4

5n
8 n

︸ ︷︷ ︸
m in here

i

Figure 1.5: When i ≤ n/4, at least 3n/8 largest elements (shaded) can be discarded.

Observe that in this case the coefficients on the right side sum to 7/8 < 1, yielding a linear

solution, as required.

Now consider the case n/4 < i ≤ n/2, again the lower medians are used. If |A1| ≥ i, i.e.,

the rank of m is higher than i, at least 3 ∗ (n/4)/2 = 3n/8 largest elements are discarded

and (1.6) applies. Otherwise, suppose that only t = |A1| ≥ 2 ∗ (n/4)/2 = n/4 smallest

elements are discarded. Then in the next iteration, i′ = i− t, n′ = n− t.

If i′ ≤ n′/4, at least 3n′/8 elements are discarded, see Figure 1.6. The first iteration

5n′

8
n′

3
n′

4

n
4

5n
8 n

︸ ︷︷ ︸

i
n
2

n′i′

m′ in here

worst case m

Figure 1.6: When n/4 < i ≤ n/2 and the rank of m is lower than i, at least n/4 smallest
elements (shaded on top) are discarded. In the next iteration, if i′ ≤ n′/4, at least 3n′/8
largest (shaded on bottom) elements can be discarded.

satisfies recurrence (1.5) and we can use recurrence (1.6) to bound the term T (3n/4) from

above. We deduce that in two iterations the worst case running time satisfies the recurrence:

T (n) ≤ T (n/4) + T (3n/4) +O(n)

≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 5/8) +O(n)

= T (n/4) + T (3n/16) + T (15n/32) +O(n). (1.7)
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Observe that the coefficients on the right side sum to 29/32 < 1, yielding a linear solution,

as required. Subsequently, we can therefore assume that i′ ≥ n′/4. We have

i′/n′ = (i− t)/(n− t) ≤ (i− n/4)/(n− n/4)

≤ (n/2− n/4)/(n− n/4) = 1/3.

Since 1/4 < i′/n′ ≤ 1/3 ≤ 1/2, the lower medians will be used. As described above, if at

least 3n′/8 largest elements are discarded, in two iterations, the worst case running time

satisfies the same recurrence (1.7).

So suppose that only t′ ≥ 2 ∗ (n′/4)/2 = n′/4 smallest elements are discarded. Let

i′′ = i′ − t′, n′′ = n′ − t′. We have

i′′/n′′ = (i′ − t′)/(n′ − t′) ≤ (i′ − n′/4)/(n′ − n′/4)

≤ (n′/3− n′/4)/(n′ − n′/4) = 1/9.

Since i′′/n′′ ≤ 1/9 < 1/4, in the next iteration, at least 3n′′/8 elements will be discarded,

see Figure 1.7.

The first two iterations satisfy recurrence (1.5) and we can use recurrence (1.6) to bound

the term T (9n/16) from above. We deduce that in three iterations the worst case running

time satisfies the recurrence:

T (n) ≤ T (n/4) + T (3n/4) +O(n)

≤ T (n/4) + T ((3n/4)/4) + T ((3n/4) ∗ 3/4) +O(n)

= T (n/4) + T (3n/16) + T (9n/16) +O(n)

≤ T (n/4) + T (3n/16) + T ((9n/16)/4) + T ((9n/16) ∗ 5/8) +O(n)

= T (n/4) + T (3n/16) + T (9n/64) + T (45n/128) +O(n).
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Figure 1.7: In at most three consecutive iterations, the size of the problem is guaranteed to
reduce by a large fraction.

The sum of the coefficients on the right side is 119/128 < 1, so again by (1.3), the solution

is T (n) = Θ(n).

By symmetry, the analysis also holds for the case i ≥ n/2, and the proof of Lemma 1.3

is complete.

1.5 The Hyperpair Algorithm

For completeness, we consider the ultimate group size 2, i.e., each group contains a pair of

elements. The upper (resp. lower) median of a pair is the larger (resp. smaller) element in

that pair. In the original Select algorithm, if pairs were used, only 1 ∗ (n/4) elements are

guaranteed to be discarded in each iteration, which gives the recurrence

T (n) ≤ T (n/2) + T (3n/4) +O(n). (1.8)

The term T (n/2) is for the recursive call to find the median of the n/2 upper (or lower)

medians. However, the above recursion does not yield a solution linear in n. Now, one can
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make the following adjustment: instead of taking the median of half the input recursively, let

the algorithm recursively compute the jth smallest element among the n/2 upper medians,

where j = n/6. Then 2j = n/2− j = n/3 elements can be discarded in each iteration, thus

the size of the largest remaining recursive call is n − n/3 = 2n/3. However, even with this

adjustment, the resulting recurrence (1.9) does not yield a solution linear in n.

T (n) ≤ T (n/2) + T (2n/3) +O(n). (1.9)

The key for obtaining a linear running time in this setting seems to be to use groups of

2 in a repeated manner. The following algorithm has the same flavor as the repeated step

algorithm in section 1.3 but uses group size 2. Its name, the hyperpair algorithm, will be

justified in the analysis.

Algorithm

1. If n ≤ 2, sort A and return the ith smallest number.

2. Arrange A into groups of size 2. Let M1 be the sequence of upper medians of these

n/2 pairs.

3. Arrange M1 into pairs. Let M2 be the sequence of lower medians of these n/4 pairs.

4. Arrange M2 into pairs. Let M3 be the sequence of upper medians of these n/8 pairs.

5. Arrange M3 into pairs. Let M4 be the sequence of lower medians of these n/16 pairs.

6. Select the median of M4 recursively, let it be m.

7. Partition A into two subsequences A1 = {x|x < m} and A2 = {x|x > m}. If i =

|A1| + 1, return m. If i < |A1| + 1, go to step 1 with A ← A1 and n ← |A1|. If

i > |A1|+ 1, go to step 1 with A← A2, n← |A2| and i← i− |A1| − 1.

Analysis. In order to calculate the time complexity of this algorithm, we need to estimate

how well m partitions the sequence A. Observe that steps 2–5 can be viewed as constructing
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hyperpairs, as in the non-recursive selection algorithm of Schönhage et al. [30]. In their

definition, a single element is a hyperpair with itself as the center ; given two disjoint copies

of a hyperpair, we can combine them to form a larger hyperpair by comparing their centers

and taking the upper or lower of these as the new center. The hyperpairs P constructed in

our algorithm are illustrated in Figure 1.8. Observe that in P , three elements are guaranteed

c

Figure 1.8: Construction of a hyperpair P with 16 elements; the center of each hyperpair is
marked by an empty circle.

to be greater than its center c and three are guaranteed to be smaller than c. We are now

ready to establish the time complexity of this algorithm:

Lemma 1.4. The hyperpair algorithm runs in Θ(n) time on an n-element input.

Proof. Steps 2–5 take n/2 +n/4 +n/8 +n/16 = 15n/16 comparisons to form the hyperpairs

P . The pivot m is the median of the centers of these n/16 hyperpairs. So the cost of

selecting the pivot is T (n/16) + 15n/16. By the above observation about the center c of P ,

m is guaranteed to be greater than or equal to 4 ∗ (n/16)/2 = n/8 elements in A. Similarly,

m is guaranteed to be smaller than or equal to n/8 elements in A. Thus, in the last step, at
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least n/8 elements can be discarded. The resulting recurrence is

T (n) ≤ T (n/16) + T (7n/8) +O(n),

and since the coefficients on the right side sum to 15/16 < 1, by (1.3), we have T (n) = Θ(n),

as required.

Note that larger hyperpairs can also be used to obtain linear-time algorithms. If the

“group into pairs” step is repeated 2k times, k ≥ 2, where upper and lower medians are

used alternatively, then n/22k hyperpairs of size 22k are built. Each center is guaranteed to

be greater than or equal to 2k elements in its hyperpair and is also guaranteed to be smaller

than or equal to 2k elements in its hyperpair. So using the median of these centers as pivot,

at least 2k ∗
(
n/22k

)
/2 = n/2k+1 elements can be discarded. The resulting recurrence is

T (n) ≤ T
(
n/22k

)
+ T

((
1− 1/2k+1

)
n
)

+O(n),

where the O(n) term involves
∑2k

j=1 n/2
j = n − n/22k comparisons to build the hyperpairs

and at most n comparisons to partition the sequence. Since the coefficients on the right side

sum to 1−
(
2k−1 − 1

)
/22k < 1, by (1.3), we have T (n) = Θ(n).

1.6 Other Variants

A similar idea of repeating the group step (from Section 1.3) also applies to the case of

groups of 4 and yields

T (n) ≤ T (n/16) + T (7n/8) +O(n),

and thereby another linear time selection algorithm with group size 4.

A hybrid algorithm. Yet another variant of Select with group size 4 (we refer to it as

the hybrid algorithm), can be obtained by using the ideas of both algorithms together, i.e.,
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repeat the grouping by 4 step twice in a row while M contains the lower medians and M ′

contains the upper medians (or vice versa). Recursively selecting the median m of M ′ takes

time T (n/16). Notice that m is greater than or equal to 3∗ (n/16)/2 = 3n/32 elements in M

of which each is greater than or equal to 2 elements in its group in A. So m is greater than

or equal to 3n/16 elements of A. Also, m is smaller than or equal to 2 ∗ (n/16)/2 = n/16

elements in M of which each is smaller than or equal to 3 elements in its group of A. So m

is smaller than or equal to 3n/16 elements of A, thus the resulting recurrence is

T (n) ≤ T (n/16) + T (13n/16) +O(n),

again with a linear solution, as desired.

Zwick’s variant. The fact that the Select algorithm can be modified so that it works

with groups of 4 in linear time was observed prior to this writing. The following variant,

from 2010, is due to Zwick [34]. Split the elements of A into quartets. Find the 2nd smallest

element of each quartet (i.e., the lower median), and let M be this subset of n/4 elements.

Recursively find the (3/5)(n/4)th smallest elementm ofM . Now (3/5)(n/4) groups of A have

2 elements smaller than or equal to m, so m is greater than or equal to 2(3/5)(n/4) = 3n/10

elements in A. Similarly, (2/5)(n/4) groups of A have 3 elements greater than or equal to m,

so m is smaller than or equal to 3(2/5)(n/4) = 3n/10 elements in A. Thus, the remaining

recursive call involves at most 7n/10 elements, and the resulting recurrence is

T (n) ≤ T (n/4) + T (7n/10) +O(n).

Since 1/4 + 7/10 < 1, the solution is linear.
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1.7 Comparison of the Algorithms and Experimental

Results

To compare our algorithms with the original Select algorithm, we first derive upper bounds

on the exact numbers of comparisons for each variant in the same manner as in Section 2

of [7]. It should be noted that all recurrent formulas and all proofs do not provide (nor aim to

provide) tight bounds or expected number of comparisons. Tighter analytical bounds might

exist than those shown. Let now T (n) denote the total number of comparisons performed.

For the original Select algorithm with group size 5, we have

T (n) ≤ T (n/5) + T (7n/10) + 6n/5 + n,

in which the term 6n/5 is for computing the n/5 medians (each takes at most 6 comparisons)

and the term n is for partitioning the sequence around the selected pivot. Solving the

recurrence yields T (n) ≤ 22n. Similarly, for the repeated step algorithm, we have

T (n) ≤ T (n/9) + T (7n/9) + 3n/3 + 3n/9 + n,

and consequently, T (n) ≤ 21n. For the hybrid algorithm, we have

T (n) ≤ T (n/16) + T (13n/16) + 4n/4 + 4n/16 + n,

and consequently, T (n) ≤ 18n. For Zwick’s algorithm, we have

T (n) ≤ T (n/4) + T (7n/10) + 4n/4 + n,

and consequently, T (n) ≤ 40n. For the hyperpair algorithm, we have

T (n) ≤ T (n/16) + T (7n/8) + 15n/16 + n,
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and consequently, T (n) ≤ 31n. For the shifting target algorithm, the analysis is more

involved; it yields T (n) ≤ 66n.

Algorithm Group Upper Bound Average Time
Comparisons Swaps

Average Max Average Max

Hybrid 4 18n 364.3ms 4.1 4.2 1.2 1.2
Repeated step 3 21n 446.9ms 4.3 4.4 1.8 1.8

Original 5 22n 468.9ms 5.7 5.8 1.5 1.5
Hyperpair(4) 2 31n 480.6ms 2.9 2.9 3.0 3.0

Zwick’s 4 40n 541.1ms 6.3 6.3 2.0 2.0
Shifting target 4 66n 558.0ms 6.6 6.7 2.0 2.1

Original 4 O(n log n) 560.2ms 6.7 6.7 2.0 2.0
Original 3 O(n log n) 813.4ms 8.2 8.5 3.4 3.5

Hyperpair(6) 2 127n/3 452.4ms 2.8 2.8 2.8 2.8
Hyperpair(8) 2 73n 456.0ms 2.8 2.8 2.8 2.9
Hyperpair(10) 2 2047n/15 458.8ms 2.9 2.9 2.9 2.9

Table 1.1: Experimental results. The last four columns are values per element. The numbers
in parentheses for the hyperpair algorithms indicate the numbers of times the “group into
pairs” step is repeated. The “Upper Bound” column shows the leading term in the solution
of the corresponding recurrence for the worst-case number of comparisons.

We note that sharper upper bounds are possible by taking extra care in avoiding com-

parisons with known outcomes against the pivot; however, for simplicity of implementation

we opted to forego this saving. In order to avoid the overhead of repeated array copying,

all the algorithms were implemented in-place, in the sense that, with the exception of the

recursion, only O(1) extra space is used in addition to the input array. This requires minor

modifications of the algorithms; however, their running time analyses remain unchanged.

We carried out 1000 experiments1 on selecting medians in arrays of 10 million randomly

permuted distinct integers. The results are summarized in Table 1.1.

We observed that the experimental results agree with the worst-case estimates in the

number of comparisons, in the sense that they show roughly the same speed ranking. One

1The experiments were performed on a desktop with 64bits operating system, 7.8GB memory and
Intel R© CoreTM i7-2600 3.4GHz processor. The C code used can be downloaded at https://drive.google.
com/file/d/0B7USj6ZPkysnMjNwV014RDJGMWc/view?usp=sharing.
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reason why the experimental speed ranking does not fully match the analytical bounds

derived is the existence of other operations performed during the selection process that are

unaccounted for by the recurrences, such as data copying (shown in the last two columns of

the table as swaps). It is worth noting that optimizations introduced in Section 3 of [7], or

others discussed in [3], may be used to reduce the multiplicative constant factors.

1.8 Conclusion

The question whether the original selection algorithm introduced in [7] (outlined in Sec-

tion 1.2) runs in linear time with group size 3 and 4 remains unsettled. Although the

recurrences

T (n) ≤ T (n/3) + T (2n/3) +O(n), and

T (n) ≤ T (n/4) + T (3n/4) +O(n)

(see (1.4) and (1.5)) for its worst-case running time with these group sizes both solve to

T (n) = O(n log n), we believe that they only give non-tight upper bounds on the worst case

scenarios. In any case and against popular belief we think that Θ(n log n) is not the answer

in regard to the time complexity of selection with these group sizes:

Conjecture 1.5. The Select algorithm introduced by Blum et al. [7] runs in o(n log n)

time with groups of 3 or 4.
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Chapter 2

Exact Number of Comparisons and

Yao’s Hypothesis

2.1 Introduction

How many comparisons does it need to guarantee to find the median score of five students?

If that is too easy, how about trying sixteen students? Surprisingly, the answer to this latter

simple question remains unknown up to date.

Formally, we are given a totally ordered set X of n distinct elements (with the order

unknown) and an integer parameter 1 ≤ i ≤ n, the selection problem asks to find the ith

smallest element in X using only pairwise comparisons. Let Vi(n) be the minimum number of

comparisons required in the worst case to solve this problem. By symmetry, we shall assume

that i ≤ dn/2e (unless otherwise noted). Together with sorting, selection is one of the

most widely used procedure in computer science. Numerous applications, including many

selection algorithms themselves, recursively involve some small-scale selection subroutines

like the ones we ask at the beginning. The exact values of Vi(n) (and the corresponding

optimal algorithm) for small i and n are therefore critical for the performance of these

algorithms, see [3, 11] for some examples.
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It is well known since the 70’s that Vi(n) = Θ(n). However, after decades of efforts,

the leading coefficients are still not determined. Take the median selection for example, the

current best upper bound is slightly lower than 3n while the best lower bound is marginally

higher than 2n. Section 2.1.1 gives a brief historical survey on this gap. Frances Yao [21] has

a long-standing conjecture (still open) which will be discussed in Section 2.1.2. One of the

major implication is that the upper bound for median selection can be dramatically lowered

to about 2.5n.

Our research will focus on getting a better understanding, both computationally and

structurally, of Vi(n) for small i and n. This will in turn help us to tackle Yao’s hypothesis,

and further improve the general bounds for selection problems.

2.1.1 Gap for Median Selection

Trivially, we have Vi(n) = O(n log n) by sorting the setX; and Vi(n) = Ω(n) by a connectivity

argument (or by observing that each element must be compared at least once). In 1969,

Hadian and Sobel [10] gave an upper bound Vi(n) ≤ n− i+ (i− 1)dlog2(n− i+ 2)e which is

tight for i = 1, 2. Their algorithm was successively improved by Kirkpatrick [13], Yap [22]

and Hyafil [12], for various ranges of i within n (see Section 2.2.1 for more details). Note

that these algorithms are asymptotically optimal (i.e., Vi(n) = O(n)) for a fixed i, but when

i = O(n), the above formula still gives Vi(n) = O(n log n). In particular, the median selection

is assumed to be the hardest (although no proof is known) and has drawn the most attention

in the literature. For simplicity, we write M(n) = Vdn/2e(n).

In 1973, Blum, Floyd, Pratt, Rivest, and Tarjan [2] were the first to close the asymptotic

gap by showing that M(n) ≤ 5.44n. Their Select algorithm partitions X into small groups

(subsets of constant size at least 5), then uses the median of medians of these groups as a

pivot to rule out a constant fraction of X and only recurses on the remaining. More recently,

suitable variants of Select with group size 3 and 4 still running in O(n) time have also

been put forward [3, 23].
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By introducing the concepts of “factory” and “recycling”, Schönhage, Paterson, and

Pippenger [20] established an algorithm that finds the median of an n element set X with at

most 3n + O
(

(n log n)3/4
)

comparisons. After more than twenty years, Dor and Zwick [7]

utilized some more sophisticated recycle schemes to decrease the upper bound for median

selection to M(n) ≤ 2.95n.

On the other hand, Blum et al. [2] were also the first to prove a general non-trivial lower

bound Vi(n) ≥ n + i − 2, which implies M(n) ≥ 1.5n − O(1), by using a simple adversary

argument. Several groups of authors [12, 13] improved this bound to around 1.8n with more

complicated adversaries. In 1979, Fussenegger and Gabow [8] introduced a new counting

approach and slightly raised the lower bound for some ranges of Vi(n). Bent and John [1]

strengthened this counting technique to achieve M(n) ≥ 2n+O (
√
n). This bound held the

record for over a decade until Dor and Zwick [6] proved that M(n) ≥ (2 + ε)n + o(n) for

some ε > 2−40 which was further improved in [4] to the current best lower bound for median

selection M(n) ≥ 2.01n+ o(n).

2.1.2 Yao’s Hypothesis

Both selection and sorting are special cases of a more general problem called poset produc-

tion. Let P be a partially ordered set (poset). A sequence of comparisons on an n-element

set X (n ≥ |P |) is said to produce P if the obtained poset contains a subposet that is isomor-

phic to P . Following the notations of Schönhage, Paterson, and Pippenger [20], we define

g(P, n) to be the minimum number of comparisons required in the worst case to produce P

in X, and let g(P ) denote g(P, |P |).

Let Skl be the star-shaped poset of k+ l+ 1 elements (see Figure 2.1), i.e., one element is

known to be greater than l elements and less than k elements, all the other relations can be

inferred from these relations. Note that selecting the ith smallest element from an n-element

set X is the same as producing Sn−ii−1 on X. So Vi(n) = g
(
Sn−ii−1 , n

)
= g

(
Sn−ii−1

)
.
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Figure 2.1: The Hasse diagram of Skl .

Yao conjectured [21] in 1974 that:

g
(
Skl
)

= g
(
Skl , n

)
for n ≥ l + k + 1, (2.1)

i.e., having extra elements would not help in producing Skl . It is not hard to see that

equation (2.1) holds when l = 0 (or k = 0). Yao [21] also proved that it holds when l = 1.

The conjecture remains open for other values of l. Let Yi(n) denote the minimum number

of comparisons needed in the worst case to select the ith smallest element from n elements

assuming Yao’s hypothesis. Clearly, Yi(n) ≤ Vi(n). Furthermore, if Yao’s hypothesis is true,

then Yi(n) = Vi(n) for all suitable pairs (n, i).

Schönhage, Paterson, and Pippenger [20] showed that Yao’s hypothesis implies a median

selection algorithm for n elements that uses at most 2.5n+o(n) comparisons. We shall prove

a slightly generalized version such that the intermediate results are useful for our research

on small i and n.

Theorem 2.1. For 1 ≤ i ≤ n, we have:

Yi(2n− i+ 1) ≤ Yi(n) + n, (2.2)

Y2i(n+ i) ≤ Yi(n) + n, (2.3)

Ydn/2e(n) ≤ 2.5n+ o(n). (Theorem 3.1 in [20])

34



The theorem is an easy consequence of the following lemma:

Lemma 2.2. Assuming Yao’s hypothesis, for k, l ∈ N, we have:

g
(
S2k+1
l

)
≤ g

(
Skl
)

+ k + l + 1, (2.4)

g
(
Sk2l+1

)
≤ g

(
Skl
)

+ k + l + 1. (2.5)

Proof. Suppose that we want to produce S2k+1
l for some nonnegative integers k and l. Start

with 2k+2l+2 elements, we first use k+ l+1 comparisons to form pairs. Then apply g
(
Skl
)

comparisons on the smaller elements of all the pairs (see Figure 2.2 Left) to get S2k+1
l as a

subposet. According to Yao’s hypothesis (2.1), we have:

g
(
S2k+1
l

)
= g

(
S2k+1
l , 2k + 2l + 2

)
≤ g

(
Skl
)

+ k + l + 1.

discarded

l

k

︸ ︷︷ ︸

︷ ︸︸ ︷
discarded

l

k

︸ ︷︷ ︸

︷ ︸︸ ︷

Figure 2.2: Left: illustration of inequality (2.2). Right: illustration of inequality (2.3).

Similarly, first forming k + l + 1 pairs, then applying g
(
Skl
)

comparisons on the larger

elements of all the pairs (see Figure 2.2 Right) yields:

g
(
Sk2l+1

)
= g

(
Sk2l+1, 2k + 2l + 2

)
≤ g

(
Skl
)

+ k + l + 1.
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Figure 5.7: Left: the chains P 1 and R1 (red); Right: the chains P 2 and R1 (red).

on each of them to obtain R2 = (v1, u1, v2, u2, . . . , v8, u8, v9), which is similar to P 2. Continue

this construction inductively to get the desired chain Rm for any m ≥ 1.

For part (ii), see Figure 5.7 (right). By definition, g5(P
2) is the subchain (v7, v8, v9,

v10, v11). Observe that the segments v7v8 and v10v11 are collinear by symmetry. Moreover,

they are parallel to v1v17 since ∠v7v8v9 = ∠v1v5v9. So g5(P
2) is similar to P 1; see Fig-

ure 5.7 (left). Then for m ≥ 2, g5(P
m) is the subchain of Pm starting at vertex v7, ending

at vertex v11. By the construction of Pm, g5(P
m) is similar to Pm−1.

Proof of Lemma 5.7. We proceed by induction on m again. The claim is vacuously true for

P 0. For P 1, among all ten choices of 1 ≤ i < j < k ≤ 5, |p2p3|+|p3p4||p2p4| = c∗ = c−2
2
< c is the

largest, and so P 1 is also a c-chain. Assume that m ≥ 2 and Pm−1 is a c-chain. We need

to show that Pm is also a c-chain. Consider a triplet of vertices {pi, pj, pk} ⊂ Pm, where

1 ≤ i < j < k ≤ n = 4m + 1.

Recall that Pm consists of four copies of the subchain Pm−1, namely g1(P
m), g2(P

m),

g3(P
m), and g4(P

m), see Figure 5.8 (left). If {pi, pj, pk} ⊂ gl(P
m) for any l = 1, 2, 3, 4, then

by the induction hypothesis,

|pipj|+ |pjpk|
|pipk|

≤ c.

So we may assume that pi and pk belong to two different gl(P
m)’s. There are four cases to

consider up to symmetry:

Case 1. pi ∈ g1(Pm) and pk ∈ g2(Pm);

Case 2. pi ∈ g1(Pm) and pk ∈ g3(Pm);
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Case 3. pi ∈ g1(Pm) and pk ∈ g4(Pm);

Case 4. pi ∈ g2(Pm) and pk ∈ g3(Pm).

1
c∗+1

Figure 5.8: Left: Chain Pm with its four subchains of type Pm−1 marked by their con-
vex hulls; Right: Chain Pm with the scaled copy of itself Rm (in red) constructed in
Lemma 5.8 (i).

By Lemma 5.8 (i), the vertex set of g1(P
m)∪ g2(Pm) is contained in the chain Rm shown

in Figure 5.8 (right). If we are in Case 1, i.e., pi ∈ g1(Pm) and pk ∈ g2(Pm), then pi, pj, pk can

be thought of as vertices of Rm. The similarity between Rm and Pm, maps points pi, pj, pk

to suitable points p′i, p
′
j, p
′
k ∈ Pm such that

|p′ip′j|+ |p′jp′k|
|p′ip′k|

=
|pipj|+ |pjpk|
|pipk|

.

Since pi ∈ g1(R
m) ∪ g2(Rm) while pk ∈ g3(R

m) ∪ g4(Rm), the triplet (p′i, p
′
j, p
′
k) does not

belong to Case 1. In other words, Case 1 can be represented by other cases.

Recall that in Lemma 5.5, we showed that conv(Pm) is an isosceles triangle T of diameter

1. Observe that if |pipk| ≥ 1
c∗+1

, then

|pipj|+ |pjpk|
|pipk|

≤ 1 + 1
1

c∗+1

= 2c∗ + 2 = c,

as required. So we may assume that |pipk| < 1
c∗+1

, therefore only Case 4 remains, i.e.,

pi ∈ g2(Pm) and pk ∈ g3(Pm).

By Lemma 5.8 (ii), the “top” subchain g5(P
m) of Pm is also similar to Pm−1, see Fig-

ure 5.9 (left). If pi and pk are both in g5(P
m), i.e., pi ∈ (g3 ◦ g2(Pm)) ∪ (g4 ◦ g2(Pm)) and
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1
c∗+1

Figure 5.9: Left: Chain Pm with its subchain g5(P
m) marked by its convex hull; Right: The

last case where pi is in the left shaded subchain and pk is in the right shaded subchain.

pk ∈ (g1 ◦ g3(Pm)) ∪ (g2 ◦ g3(Pm)), then so is pj.

By the induction hypothesis, we have

|pipj|+ |pjpk|
|pipk|

≤ c.

So we may assume that at least one of pi and pk is not in g5(P
m). Without loss of generality,

let pi ∈ g2(Pm)\g5(Pm). The similarity that maps Pm−1 to g2(P
m) and g5(P

m), respectively,

have the same scaling factor of a = c∗
2(c∗+1)

, and they carry the bottom dashed segment in

Figure 5.9 (right), to the two red segments.

Claim 5.9. If pi ∈ g2(Pm) \ g5(Pm) and pk ∈ g3(Pm), then |pipk| > c∗
2(c∗+1)2

.

Proof. As noted above, we assume that pi is in conv(g2(P
m) \ g5(Pm)) = ∆q1q2q3 in Fig-

ure 5.10. If pk ∈ g5(P
m) ∩ g3(Pm) = ∆q7q6q5, then the configuration is illustrated in

Figure 5.10 (left). Note that ∆q1q2q3 and ∆q7q6q5 are reflections of each other with respect

to the bisector of ∠q3q4q5. Hence the shortest distance between ∆q1q2q3 and ∆q7q6q5 is

min{|q3q5|, |q2q6|, |q1q7|}. Since c∗ ≥ 1, we have

|q1q7| > |q7q9| = |q3q5| = a3/2 =

(
c∗

2(c∗ + 1)

)3/2

≥ c∗
2(c∗ + 1)2

.

Further note that q2q4q6q8 is an isosceles trapezoid, so the length of its diagonal is bounded

by |q2q6| > |q2q4| = c∗
2(c∗+1)2

. Therefore the claim holds when pk ∈ ∆q7q6q5.
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Otherwise pk ∈ g3(Pm) \ g5(Pm) = ∆q9q8q7: see Figure 5.10 (right). Note that ∆q1q2q3

and ∆q9q8q7 are reflections of each other with respect to the bisector of ∠q4q5q6. So the

shortest distance between the shaded triangles is the minimum between |q3q7|, |q2q8|, and

|q1q9|. However, all three candidates are strictly larger than |q4q6| = c∗
2(c∗+1)2

. This completes

the proof of the claim.

q1

q2

q3 q4

q5

q6 q7

q8

q9 q1

q2

q3 q4

q5

q6 q7

q8

q9

Figure 5.10: pi ∈ ∆q1q2q3, Left: pk ∈ ∆q7q6q5; Right: pk ∈ ∆q9q8q7.

Now the diameter of g2(P
m) ∪ g3(Pm) is a = c∗

2(c∗+1)
(note that there are three diameter

pairs), so

|pipj|+ |pjpk|
|pipk|

<
2 · c∗

2(c∗+1)

c∗
2(c∗+1)2

= 2c∗ + 2 = c,

as required. This concludes the proof of Lemma 5.7 and Theorem 5.4.

Remarks

1. For m ≥ 1, let Pm
∗ = g2(P

m) ∪ g3(Pm), see Figure 5.11 (right). Observe that Pm
∗ is a

c-chain with n = 4m/2 + 1 vertices and stretch factor

√
c(c− 2)/8(n− 1)

1+log(c−2)−log c
2 .

Since
√
c(c− 2)/8 ≥ 1 for c ≥ 4, this improves the result of Theorem 5.4 by a constant

factor. Since this construction does not improve the exponent, and the analysis would

be longer (requiring a case analysis without new insights), we omit the details.
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Figure 5.11: The chains P 4 (left) and P 4
∗ (right).

2. If c were used instead of c∗ = (c − 2)/2 in the lower bound construction, then the

condition c ≥ 4 in Theorem 5.4 could be replaced by c ≥ 1, and the bound could be

improved from

(n− 1)
1+log(c−2)−log c

2 to (n− 1)
1+log c−log(c+1)

2 .

Although we were unable to prove that the resulting Pm’s, m ∈ N, are c-chains, a

computer program has verified that the first few generations of them are indeed c-

chains.

3. The upper bounds in Theorem 5.1–5.3 are valid regardless of whether the chain is

crossing or not. On the other hand, the lower bound in Theorem 5.4 is given by

noncrossing chains. A natural question is whether a sharper upper bound holds if the

chains are required to be noncrossing. Specifically, can the exponent of n in the upper

bound be reduced to 1/2− ε, where ε > 0 depends on c?

5.4 Generalizations to Higher Dimensions

A c-chain P with n vertices and its stretch factor δP can be defined in any metric space, not

just the Euclidean plane. We now discuss how our results generalize to other metric spaces,

with a particular focus on the high-dimensional Euclidean space Rd. First, we examine the

upper bounds from Section 5.2.

As already noted in Section 5.2, the upper bound δP ≤ c(n− 1)log c of Theorem 5.1 holds

for any positive distance function that need not even satisfy the triangle inequality.
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Theorem 5.2 uses only the triangle inequality, and the bound δP ≤ c(n − 2) + 1 holds

in any metric space. This bound cannot be improved, in the following sense: For every

c ≥ 2 +
√

5 and even n, we can define a finite metric space on the vertex set of P by

|p1pn| = 1; for 1 < i < n,

|p1pi| =





c+ 1

2
if i is even

c− 1

2
if i is odd

, |pipn| =





c− 1

2
if i is even

c+ 1

2
if i is odd

,

and |pipj| = c for all 1 < i < j < n. It is easy to verify that P is a c-chain (the case that puts

the strongest constraint on c in the c-chain property (5.1) occurs if, e.g., i = 1, 1 < j < n is

even, and j < k < n is odd) and that P has stretch factor

δP =

∑n−1
i=1 |pipi+1|
|p1pn|

= |p1p2|+ |pn−1pn|+
n−2∑

i=2

|pipi+1| = c(n− 2) + 1.

The proof of Theorem 5.3 uses a volume argument in the plane. The argument6 extends

to Rd, for all constant dimensions d ≥ 2, and yields δP = O
(
(n− 1)(d−1)/d

)
.

Theorem 5.10. For a c-chain P with n vertices in Rd, for some constant d ≥ 2, we have

δP = O
(
(n− 1)(d−1)/d

)
.

Lower bounds in Rd We show that the exponent (d − 1)/d in Theorem 5.10 cannot be

improved. More precisely, for every ε > 0, we construct a family of axis-parallel chains in

Rd whose stretch factor is n(1−ε)(d−1)/d for sufficiently large n(ε). For the higher-dimensional

case, we focus on axis-parallel chains, as they are easier to analyze. In the plane (d = 2),

this construction is also possible, but it yields weaker bounds than Theorem 5.4.

Theorem 5.11. Let d ≥ 2 be an integer. For all constants ε > 0 and sufficiently large

6Theorem 5.10 is mainly the work of Csaba D. Tóth.
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c = Ω(d), there is a positive integer n0 such that for every n ≥ n0, there exists an axis-

parallel c-chain in Rd with n vertices and stretch factor at least (n− 1)(1−ε)(d−1)/d.

Proof. Let d ≥ 2, ε > 0, and c = Ω(d) be given. We describe a recursive construction in

terms of an even integer parameter

r > 3(1−ε)/(dε). (5.6)

We recursively define a family Qc = {Qm}m∈N of axis-parallel c-chains in Rd, where each

chain Qm has nm ≤ 3m+1rdm vertices. Then, we show that the stretch factor of every Qm is

at least (nm − 1)(1−ε)(d−1)/d for sufficiently large m ∈ N.

Construction of Qc For each chain in Qc, we maintain a subset of active directed

edges, which are disjoint, have the same length, and are parallel to the same coordinate axis.

In a nutshell, the recursion works as follows. We start with a chain Q0 that consists of a

single segment that is labeled active; then for m = 1, 2, . . ., we obtain Qm by replacing each

active edge in a fixed chain π by a homothetic copy of Qm−1. The chain π is defined below;

it consists of 6rd + 1 edges, 3rd of which are active.

We define the chain π in four steps, see Figure 5.12 for an illustration. Let ei, i = 1, . . . , d,

be the standard basis vectors in Rd.

(1) Consider the (d − 1)-dimensional hyperrectangle A = [0, 1] × [0, r − 1]d−2. Let γ0 be

an axis-parallel Hamiltonian cycle on the 2rd−2 integer points that lie in A such that

the origin is incident to an edge parallel to the x1-axis. We label the vertices of γ0 by

vi, for i = 1, . . . , 2rd−2, in order, where v1 is the origin.

(2) Let a = (3r2 + 1)/(3r) = r + 1/(3r), and consider the d-dimensional hyperrectangle

A × [0, a] = [0, 1] × [0, r − 1]d−2 × [0, a]. We construct a Hamiltonian cycle γ1 on the

4rd−2 points in
{
vi × {0, a} | i = 1, . . . , 2rd−2

}
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by replacing every edge (v2i−1, v2i) in γ0 with three edges

((v2i−1, 0), (v2i−1, a)), ((v2i−1, a), (v2i, a)), and ((v2i, a), (v2i, 0)).

Note that γ1 has 4rd−2 edges, such that 2rd−2 edges have length a and are parallel

to the xd-axis. Also note that the origin v1 is incident to a unit edge parallel to the

x1-axis, and to an edge of length a parallel to the xd-axis.

(3) Delete the edge of γ1 that is incident to the origin v1 and parallel to the x1-axis.

This turns γ1 into a Hamiltonian chain γ2 from the origin to the vertex e1 in the

hyperrectangle A× [0, a] = [0, 1]× [0, r − 1]d−2 × [0, a].

(4) Consider the hyperrectangle B(π) = [0, 3r2 + 1]×[0, r−1]d−2×[0, a]. Let π be the chain

from the origin to (3r2 + 1) ·e1 that is obtained by the concatenation of 3r2/2 copies of

γ2, translated by vectors (2j − 1) · e1 for j = 1, 2, . . . , 3r2/2, interlaced with 3r2/2 + 1

unit segments parallel to e1. Note that π has (3r2/2) ·
(
4rd−2 − 1

)
+3r2/2+1 = 6rd+1

edges, (3r2/2) · 2rd−2 = 3rd of which have length a and are parallel to the xd-axis. We

label all these edges as active, so that π has 3rd active edges. Observe that B(π) is

the minimum axis-parallel bounding box of π.

Lemma 5.12. The chain π is a c′-chain for c′ = 8 + 2r
√
d− 1. Furthermore, if the points

q1, q2, and q3 are contained in active edges, in this order along π and not all in the same

edge, then

|q1q2|+ |q2q3|
|q1q3|

≤ 8 + 2r
√
d− 1.

Proof. We extend π to a chain π′ by attaching a parallel copy of γ2 to each end of π. We

prove the lemma for π′. Then, the lemma also follows for π, as π is a subchain of π′.

Write π′ = (p1, . . . , pn). Since pi, pj, and pk are endpoints of active edges, for any choice of

1 ≤ i < j < k ≤ n, the second claim in the lemma implies that π′ is a c′-chain.

116



γ1γ0

v1

v2

v3

v4

v8

v7

v6

v5

γ2

π

︸ ︷︷ ︸
24 copies of γ2’s and 25 unit segments

· · ·

Figure 5.12: The cycles γ0 (top left), γ1 (top middle), and the chains γ2 (top right), π
(bottom) for d = 3 and r = 4. The cycles and chains are in red, their bounding boxes are
outlined in black.

We give an upper bound for the ratio (|q1q2|+|q2q3|)/|q1q3|. Recall that all the active edges

in π′ come from the 3r2/2+2 translated copies of the chain γ2; and γ2 has vertices in an axis-

aligned bounding box B = [0, 1]× [0, r− 1]d−2× [0, a]. Denote by B0, B1, . . . , B3r2/2, B3r2/2+1

the minimum axis-aligned bounding boxes of the 3r2/2 + 2 translates of γ2 in π′. Suppose

that q1, q2, and q3 are in Bi1 , Bi2 , and Bi3 , respectively. By assumption, i1 ≤ i2 ≤ i3.

If i1 = i3, then q1, q2, and q3 are in Bi1 . Since q1 and q3 are not on the same active edge,

and since γ0 has integer coordinates, we have |q1q3| ≥ 1. Consequently,

|q1q2|+ |q2q3|
|q1q3|

≤ 2 · diam (Bi1)

1

≤ 2
√

12 + (d− 2)(r − 1)2 + a2

= 2
√

1 + (d− 2)(r − 1)2 + (r + 1/(3r))2

≤ 2
√

2 + (d− 1)r2

< 2
√

2 + 2r
√
d− 1.
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Otherwise i1 < i3, and the first coordinates of q1 and q3 differ by at least 2(i3− i1)− 1 ≥

i3 − i1, hence |q1q3| ≥ i3 − i1. In this case,

|q1q2|+ |q2q3|
|q1q3|

≤ 2 · diam(Bi1 ∪Bi3)

i3 − i1

≤ 2 ·
√

(2(i3 − i1) + 1)2 + (d− 2)(r − 1)2 + a2

i3 − i1
≤ 4(i3 − i1) + 4 + 2r

√
d− 1

i3 − i1
≤ 8 + 2r

√
d− 1,

as claimed. This completes the proof of Lemma 5.12.

Q0

Q1

Q2

Figure 5.13: The chains Q0 (top), Q1 (middle), and Q2 (bottom) for d = r = 2. The active
edges are highlighted by red bold lines. The bounding box B of Q1 and bounding boxes B′

of homothetic copies of Q1 in Q2 are shaded.

Now the axis-parallel chains Qm can be defined recursively (see Figure 5.13 for an illus-

tration). Let Q0 be a line segment of length 3r2 + 1, parallel to the x1-axis, labeled active.

Let Q1 be π and let B = B(π) be its minimum axis-parallel bounding box. Recall that

B = [0, 3r2 + 1]× [0, r − 1]d−2 × [0, a].
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Figure 5.14: The chains Q1 (top) and Q2 (bottom) for d = 3 and r = 2.

We maintain the invariant that each chain Qm (m ∈ N) is contained in B. In order

to do this, let B′ be a hyperrectangle obtained from B by a rotation of 90 degrees in the

〈e1, ed〉 plane, and scaling by a factor of a/(3r2 + 1) = 1/(3r); i.e., B′ = [0, a/(3r)]× [0, (r−

1)/(3r)]d−2 × [0, a]. In particular, the longest edges of B′ are parallel to the active edges in

B, and they all have length a. Place a translate of B′ along each active edge in Q1 such that

all such translates are contained in B. Note that the distance between any two translates is

at least 1− 2a/(3r) = 1/3− 2/(9r2) ≥ 5/18.

For all m ≥ 1, we construct Qm+1 by replacing the active edges of Q1 with a scaled (and

rotated) copy of Qm in each translate of B′; and we let the active edges of Qm+1 be the

active edges in these new copies of Qm.

Instead of keeping track of the total length of Qm, we analyze the total length of the

active edges of Qm. In each iteration, the number of active edges increases by a factor of

3rd and the length of an active edge decreases by a factor of a/(3r2 + 1) = 1/(3r). Overall
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the total length of active edges increases by a factor of rd−1. It follows that for all m ∈ N,

the chain Qm has 3mrdm active edges, and their total length is (3r2 + 1) · r(d−1)m. Next

we estimate the number of vertices in Qm. Recall that the recursive construction replaces

each active edge with 3rd active edges and 3rd + 1 inactive edges (which are never replaced).

Consequently, for m ≥ 1, the number of inactive edges in Qm is (3rd + 1)
∑m−1

i=0 3irdi, and

the total number of vertices is

nm = 1 + 3mrdm + (3rd + 1)
m−1∑

i=0

3irdi = 1 + 3mrdm + (3rd + 1)
3mrdm − 1

3rd − 1
.

Note that

3mrdm < nm ≤ 3 · 3mrdm. (5.7)

Since the distance between the two endpoints of Qm remains 3r2 + 1, using (5.6) and (5.7),

the stretch factor of Qm is at least

|Qm|
3r2 + 1

≥ r(d−1)m ≥
( nm

3m+1

) d−1
d ≥ n

(1−ε) d−1
d

m ,

for sufficiently large m.

It remains to show that Qc = {Qm : m ∈ N} is a family of c-chains, where c = Ω(d). We

proceed by induction on m. The claim is trivial for m = 0, and it follows from Lemma 5.12

for m = 1.

Now, let m ≥ 2. Write Qm = (p1, . . . , pn), and let 1 ≤ i < j < k ≤ n. We shall derive an

upper bound for the ratio (|pipj| + |pjpk|)/|pipk|. Recall that Qm is obtained by replacing

each active edge of Q1 = π by a scaled copy of Qm−1. If pi and pk are in the same copy of

Qm−1, then so is pj and induction completes the proof.

Otherwise let B′i, B
′
j, and B′k be the bounding boxes of the copies of Qm−1 that contain

pi, pj, and pk, respectively. Let ai, aj, and ak be the active segments in Q1 that are replaced

by B′i, B
′
j, and B′k; and let qi ∈ ai, qj ∈ aj, and qk ∈ ak be the orthogonal projections of pi,
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pj, and pk onto ai, aj, and ak, respectively. (If i = 1, then let qi = p1; if k = n, then let

qk = pn. Since the proof of Lemma 5.12 works on the extended chain π′, it applies to qi, qj,

and qk regardless of this special condition.)

Since each projection happens within a hyperplane orthogonal to the xd-axis onto an

active edge in a translated copy of [0, a/(3r)]× [0, (r−1)/(3r)]d−2× [0, a], we have that |piqi|,

|pjqj|, and |pkqk| are each bounded above by

√
a2/(3r)2 + (d− 2)(r − 1)2/(3r)2 ≤

√
d− 1/3 + 1/3r ≤

√
d− 1/3 + 1/6.

As there are at least two distinct active edges among ai, aj, and ak (and as the distance

between p1 or pn and any active edge in π is at least 1), we have

|qiqj|+ |qjqk| ≥ max{|qiqj|, |qjqk|} ≥ 1.

Combining these two bounds with the triangle inequality, we get

|pipj|+ |pjpk| ≤ (|piqi|+ |qiqj|+ |qjpj|) + (|pjqj|+ |qjqk|+ |qkpk|)

≤ |qiqj|+ |qjqk|+
4

3

√
d− 1 +

2

3

≤
(

5

3
+

4

3

√
d− 1

)
(|qiqj|+ |qjqk|).

On the other hand, we have |pipk| ≥ 5
18
|qiqk|, as this lower bound holds for the projections

of the edges to each coordinate axis. Now Lemma 5.12 yields

|pipj|+ |pjpk|
|pipk|

≤ 5/3 + 4
√
d− 1/3

5/18
· |qiqj|+ |qjqk||qiqk|

≤ (6 + 24
√
d− 1/5) · (8 + 2r

√
d− 1)

= O(r(d− 1)).

This completes the proof of Theorem 5.11.
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5.5 Algorithm for Recognizing c-Chains7

In this section, we design a randomized Las Vegas algorithm to recognize c-chains in d-

dimensional Euclidean space. More precisely, given a polygonal chain P = (p1, . . . , pn) in Rd,

and a parameter c ≥ 1, the algorithm decides whether P is a c-chain, in O
(
n3−1/d polylog n

)

expected time. By definition, P = (p1, . . . , pn) is a c-chain if |pipj|+ |pjpk| ≤ c |pipk| for all

1 ≤ i < j < k ≤ n; equivalently, pj lies in the ellipsoid of major axis c with foci pi and pk.

Consequently, it suffices to test, for every pair 1 ≤ i < k ≤ n, whether the ellipsoid of major

axis c|pipk| with foci pi and pk contains pj, for all j, i < j < k. For this, we can apply recent

results from geometric range searching.

Theorem 5.13. For every integer d ≥ 2, there are randomized algorithms that can decide,

for a polygonal chain P = (p1, . . . , pn) in Rd and a threshold c > 1, whether P is a c-chain

in O
(
n3−1/d polylog n

)
expected time and O(n log n) space.

Agarwal, Matoušek and Sharir [3, Theorem 1.4] constructed, for a set S of n points in

Rd, a data structure that can answer semi-algebraic range searching queries; in particular,

it can report the number of points in S that are contained in a query ellipsoid. Specifically,

they showed that, for every d ≥ 2 and ε > 0, there is a constant B and a data structure with

O(n) space, O (n1+ε) expected preprocessing time, and O
(
n1−1/d logB n

)
query time. The

construction was later simplified by Matoušek and Patáková [28]. Using this data structure,

we can quickly decide whether a given polygonal chain is a c-chain.

The idea is to repeatedly subdivide the chain into two equal-sized subchains until single

vertices are reached and construct an ellipsoid range searching data structure for each of the

subchains obtained. Then for each pair of indices 1 ≤ i < k ≤ n, we only need to query

the data structures that correspond to disjoint maximal subchains that make up the chain

(pi, . . . , pn).

In this decision algorithm only the construction of the data structures uses randomization,

7This section is mainly the work of Wolfgang Mulzer and Csaba D. Tóth.
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which is independent of the value of c. The parameter c is used for defining the ellipses Ei,k,

and the queries to the data structures; this part is deterministic. Hence, we can find the

optimal value of c by Meggido’s parametric search [29] in the second part of the algorithm.

Meggido’s technique reduces an optimization problem to a corresponding decision prob-

lem at a polylogarithmic factor increase in the running time. An optimization problem is

amenable to this technique if the following three conditions are met [35]: (1) the objective

function is monotone in the given parameter; (2) the decision problem can be solved by eval-

uating bounded-degree polynomials, and (3) the decision problem admits an efficient parallel

algorithm (with polylogarithmic running time using a polynomial number of processors). All

three conditions hold in our case: The area of each ellipse with foci in S monotonically in-

creases with c; the data structure of [28] answers ellipse range counting queries by evaluating

polynomials of bounded degree; and the
(
n
2

)
queries can be performed in parallel. Alterna-

tively, Chan’s randomized optimization technique [12] is also applicable. Both techniques

yield the following result.

Corollary 5.14. There are randomized algorithms that can find, for a polygonal chain P =

(p1, . . . , pn) in Rd, the minimum c ≥ 1 for which P is a c-chain in O
(
n3−1/d polylog n

)

expected time and O(n log n) space.

We note that, for c = 1, the test takes O(n) time: it suffices to check whether points

p3, . . . , pn lie on the line spanned by p1p2, in that order.

Remark Recently, Agarwal et al. [1, Theorem 13] designed a data structure for semi-

algebraic range searching queries that supports O(log n) query time, at the expense of higher

space and preprocessing time. The size and preprocessing time depend on the number of

free parameters that describe the semi-algebraic set. An ellipsoid in Rd is defined by 2d+ 1

parameters: the coordinates of its foci and the length of its major axis. Specifically, they

showed that, for every d ≥ 2 and ε > 0, there is a data structure with O(n2d+1+ε) space

and O(n2d+1+ε) expected preprocessing time that can report the number of points in S
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contained in a query ellipsoid in O(log n) time. This data structure allows for a tradeoff

between preprocessing time and overall query time in the algorithm above. However the

resulting tradeoff does not seem to yield an improvement over the expected running time in

Theorem 5.13 for any d ≥ 2.
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Chapter 6

Wegner’s Inequality for Axis-Parallel

Rectangles

6.1 Introduction

Given a collection of sets E, a piercing set is a set of elements from ∪F∈EF intersecting every

set in E. The piercing number of E is the minimal size of a piercing set. Given a hypergraph

H = (X,E), a cover of H is a set C ⊆ X such that every edge of H contains a point in C,

namely, for every e ∈ E we have e∩C 6= ∅. As such, a cover is precisely a piercing set of E.

The piercing number τ(H) of a hypergraph H = (X,E) is the piercing number of its edge

set E. It is sometimes also called the covering number or stabbing number of the hypergraph.

Given integers p ≥ q > 1, a family F of sets is said to satisfy the (p, q)-property if among

every p sets in F there exist q sets with a non-empty intersection. The independence number

or matching number of F , namely the maximum number of pairwise disjoint sets in F , is

denoted by α(F) or ν(F). Clearly, ν(F) ≤ τ(F). If ν(F) = 1 then we say that F is an

intersecting family.

In the above terminology, Helly’s theorem [22] says that if a family F of convex sets in Rd

satisfies the (d+ 1, d+ 1)-property then τ(F) = 1. Finding the piercing number of families
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of sets in Rd satisfying the (p, q)-property has been known in the literature as the (p, q)-

problem. In particular, a collection of pairwise-intersecting intervals (i.e., an intersecting

family of intervals) must have a point that belongs to all the intervals.

Hadwiger and Debrunner [20, 21] conjectured in 1957 that the (p, q)-property in a family

F of convex sets in Rd implies that τ(F) is bounded by a constant depending on d, p, and

q. They proved this under the condition that (d − 1)p < d(q − 1) in the following stronger

form:

Theorem 6.1 (Hadwiger–Debrunner [20]). Let F be a finite family of convex sets in Rd

satisfying the (p, q)-property for p ≥ q > 1. If (d− 1)p < d(q − 1) then τ(F) ≤ p− q + 1.

In 1992 Alon and Kleitman [3] resolved the Hadwiger–Debrunner conjecture, proving

that in a family of convex sets in Rd that satisfies the (p, q)-property, the piercing number

is bounded by a constant:

Theorem 6.2 (Alon–Kleitman [3]). Let p ≥ q ≥ d + 1 be integers. Then there exists a

constant c = c(d; p, q) depending only on d, p, q, such that if a family F of convex sets in Rd

satisfies the (p, q)-property then τ(F) ≤ c.

In many cases the upper bounds on the piercing number improve significantly if we deal

with families of “nice” sets. One such example is a result by Danzer, who proved:

Theorem 6.3 (Danzer [10]). If a family of disks in R2 satisfies the (2, 2)-property, then

τ(F) ≤ 4.

In this chapter we restrict our attention to axis-parallel hyper-rectangles (or boxes) in Rd.

The following inequality [16, Ineq. (3.4), p. 355] applies to any such family F that satisfies

the (p, q)-property:

τ(F) ≤
(
p− q + d

d

)
, p ≥ q ≥ 2. (6.1)

Many have examined the case q = 2. The main unsettled question here is whether

τ(F) = O(ν(F)). The following is a long-standing conjecture in dimension 2:
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Conjecture 6.4 (Wegner [32], Gýarfás–Lehel [19]). If a family F of axis-parallel rectangles

in R2 satisfies the (p, 2)-property, then τ(F) ≤ 2p− 3.

The (p, 2)-property can be rephrased as a family F of axis-parallel rectangles in R2 with

ν(F) = p− 1. As such, Conjecture 6.4 can be formulated as follows:

Conjecture 6.5. If F is a family of axis-parallel rectangles in R2, then τ(F) ≤ 2ν(F)− 1.

Károlyi [26] proved that if F is a family of axis-parallel boxes in Rd, then

τ(F) ≤ ν(F)(1 + log(ν(F)))d−1. (6.2)

For the planar case, Eckhoff [16] gives the following upper-bound inequality based on

a recurrence relation found independently by Wegner [33] and by Fon-Der-Flaass and Kos-

tochka [17].

τ(F) ≤ (ν(F) + 1) dlog(ν(F) + 1)e − 2dlog(ν(F)+1)e + 1. (6.3)

After about 25 years, Correa et al. [9] improved Károlyi’s bound for the plane by com-

bining results of [4] and [6].

τ(F) = O
(
ν(F) · (log log ν(F))2

)
. (6.4)

From the other direction, Jeĺınek found an elegant construction with τ(F) = 2ν(F)− 4,

for every ν ≥ 4 [9], and thereby showed that the factor 2 in Wegner’s conjecture cannot be

improved. On the other hand, one may note that this bound is not competitive for small ν,

e.g., ν = 4, 5. Our Theorem 6.6 below is relevant in this case.

For the special case of squares, better bounds are in effect. It is known that τ(F) ≤ 4ν(F)

for families of squares and τ(F) ≤ 2ν(F) − 1 for families of unit squares [1, 12, 13]. The

current state of the art for the ratio lim sup τ(F)/ν(F) depending on the rectangle-type in

the family is summarized in Table 6.1.
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Rectangles Squares Unit squares
Upper bound O ((log log ν)2) 4 2
Lower bound 2 3/2 3/2

Table 6.1: Bounds on the ratio lim sup τ(F)/ν(F).

The function f(n). In order to study the dependence between τ(F) and ν(F) it is con-

venient to define an integer function. As in [17], define f(n) as the minimum integer such

that every family F of axis-parallel rectangles with ν(F) ≤ n can be pierced by f(n) points.

(Alternatively, the condition ν(F) ≤ n can be replaced by ν(F) = n in the definition.) A line

sweep argument found independently by Wegner [33] and Fon-Der-Flaass and Kostochka [17]

(mentioned previously; see also [16, Ineq. (3.6), p. 356]) yields the following recurrence:

f(n) ≤ f

(⌊
n− 1

2

⌋)
+ f

(⌈
n− 1

2

⌉)
+ n. (6.5)

Taking into account that f(0) = 0 and f(1) = 1, one immediately obtains

f(2) ≤ f(0) + f(1) + 2 = 3,

f(3) ≤ f(1) + f(1) + 3 = 5,

f(4) ≤ f(1) + f(2) + 4 ≤ 8,

f(5) ≤ f(2) + f(2) + 5 ≤ 11,

...

The general solution to the recurrence (6.5) (equivalent to (6.3)) is:

f(n) ≤ (n+ 1) dlog(n+ 1)e − 2dlog(n+1)e + 1. (6.6)

Lower bound constructions yield f(1) = 1, f(2) = 3, and f(3) = 5, and these are the

only exact values known [16]. For small n, the resulting bounds are recorded in Table 6.2.
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n 2 3 4 5
Upper bound on f(n) 3 5 8 11
Lower bound on f(n) 3 5 7(∗) 8(∗)

Table 6.2: Bounds on f(n) for small n. The starred entries are proved in this chapter.

Our results. (i) Our main result—the first starred entry in Table 6.2—is Theorem 6.6

below (its proof appears in Section 6.4). It gives f(4) ≥ 7; recall that f(4) ≤ 8 is known.

(ii) A lower bound on the ratio τ(F)/ν(F) in higher dimensions is given by Theorem 6.7 in

Section 6.2 (its proof appears in Section 6.5). Both results rely on the connection between

piercing numbers for families of axis-parallel boxes in Rd and the Maximum Empty Box

problem in [0, 1]d, introduced in Section 6.2.

Theorem 6.6. There exists a finite family S of axis-parallel rectangles with ν(S) = 4 and

τ(S) = 7. That is, f(4) ≥ 7.

Related work. Among the many variants of the (p, q)-property and Helly’s theorem in

particular, we can only mention a few here. Danzer and Grünbaum [11] investigated the

following problem: if d and n are positive integers, what is the smallest h = h(d, n) such

that a family of boxes in Rd is n-pierceable if each of its h-member subfamilies is n-pierceable?

The showed that h(d, n) is infinite for all (d, n) with d ≥ 2 and n ≥ 3 except for (d, n) = (2, 3)

when it is 16.

Larman et al. [29] showed that any collection of n axis-parallel rectangles contains
√
n/ log n of them which are pairwise intersecting or pairwise disjoint; on the other hand,

there are trivial examples with at most
√
n in each of the two classes. If the conjecture

τ(F) = O(ν(F)) were true, then the lower bound
√
n/ log n could be improved to Ω(

√
n);

see also [5, p. 410].

Hadwiger had asked whether any collection of closed convex sets where every four have

a triple that has a nonempty intersection (i.e., has at least one point in common) can be

pierced by two points. Danzer exhibited six congruent triangles in the plane that can only

be pierced by three points. The current best bound on the piercing number for such a family
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with the (4, 3)-property is 13; this bound is due to Kleitman et al. [28]. As such, the current

gap for this problem is between 3 and 13.

Károlyi and Tardos [27] studied transversal numbers of hypergraphs related to multiple

intervals and axis-parallel rectangles. Kaiser and Rabinovich [24] formulated a multicompo-

nent generalization of Helly’s theorem to convex (n, d)-bodies. Karasev [25] considered the

problem of piercing families of convex sets in Rd such that every d or fewer sets in the family

have a common point. Chan and Har-Peled [7] proved that for every family F of axis-parallel

rectangles in R2 in which for every two intersecting rectangles, one of them contains a corner

of the other, we have τ(F) = O(ν(F)).

Aronov, Ezra, and Sharir [4] have studied the of size of ε-nets for axis-parallel rectan-

gles and boxes. Chalermsook and Chuzhoy [6] gave a O(log log n)-approximation algorithm

for the problem of computing a Maximum Independent Set of Rectangles (MISR). Cor-

rea et al. [9] have used the above-mentioned results in combination. Besides combinatorial

results, they have obtained several approximation algorithms for piercing various classes of

rectangles, e.g., diagonal-pierced rectangles.

Govindarajan and Nivasch [18] studied a strengthening of the (p, q)-property by requiring

that, among every p members of S, at least q meet at a point of X, where X is a fixed convex

curve in the plane; they showed that the piercing number can be substantially reduced in

that case. Chudnovsky, Spirkl, and Zerbib [8] showed that if for each two intersecting boxes

in a family F of boxes in Rd, a corner of one is contained in the other, then F can be pierced

by at most O(k log log k) points, where k = ν(F), and in the special case where F contains

only cubes this bound improves to O(k).

Su and Zerbib [31] recently showed that results on piercing numbers have a natural inter-

pretation in voting theory. For a survey of piercing in the context of geometric transversals,

the reader is referred to the survey article [23].
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6.2 Setup

In this section, we demonstrate an idea of constructing lower bound examples (i.e., families

of axis-parallel rectangles) that support Wegner’s Conjecture 6.5. By applying this idea,

examples with τ(F) = 2ν(F)−1 for ν(F) = 2, 3, 4 are obtained respectively. The last result

in this sequence proves Theorem 6.6 (in Section 6.4). Whereas examples for the previous two

ratios were previously known, we include ours to help the reader understand the construction

better; as it illustrates the main ideas at a smaller scale.

6.2.1 Maximum Empty Box

A box in Rd, d ≥ 2, is a closed axis-parallel hyperrectangle [a1, b1]×· · ·× [ad, bd] with ai ≤ bi

for 1 ≤ i ≤ d. Given a set S of n points in the unit cube Ud = [0, 1]d, a box B ⊂ Ud is

empty if it contains no points of S in its interior. Let Ad(S) be the maximum volume of an

empty box contained in Ud, and let Ad(n) be the minimum value of Ad(S) over all sets S of

n points in Ud.

For a fixed d, it is known [30] that Ad(n) is of the order Θ( 1
n
). The following upper bound

holds for any d ≥ 2:

Ad(n) <

(
2d−1

d−1∏

i=1

pi

)
· 1

n
, (6.7)

where pi is the ith prime, as shown in [14, 30]. In particular, A2(n) < 4
n
.

A sharper upper bound has been recently obtained for larger d. The current best upper

and lower bounds on Ad(n), for d ≥ 54, are as follows:

log d

4(n+ log d)
≤ Ad(n) ≤ 27d+1

n
. (6.8)

The lower bound is due to Aistleitner, Hinrichs, and Rudolf [2], and the upper bound is due
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to Larcher [2, Section 4]. For d = 2 the current best bounds (see [14, 15]) are

(
5A2(4)− o(1)

)
· 1

n
=
(
1.25− o(1)

)
· 1

n
≤ A2(n) <

4

n
. (6.9)

Following Aistleitner et al. [2], define

cd = lim inf
n→∞

n · Ad(n). (6.10)

Taking (6.8) into account, we have

log d

4
≤ cd ≤ 27d+1, for d ≥ 2. (6.11)

6.2.2 Discretization and connection with Maximum Empty Box

A long-standing open question—appearing in Eckhoff’s survey [16, p. 359]—is whether τ =

O(ν) for systems of axis-parallel boxes in a fixed dimension d. Whereas we cannot answer

this question, here we show that the ratio τ/ν must grow with the dimension d and further

elaborate on the rate of this growth. It follows from (6.1) that τ(F) ≤ d + 1, for any

family of boxes in Rd having the (3, 2)-property. In particular, τ(R) ≤ d+ 1, for systems of

axis-parallel boxes in Rd with ν(R) = 2. On the other hand, we have

τ(R)/ν(R) = Ω(
√
d/ log d) (6.12)

for systems of axis-parallel boxes in Rd with ν(R) = 2 (this can be derived from a classical

result of Erdős on k-chromatic triangle-free graphs, see [16, 17]). By taking multiple copies

of this construction, it follows that there exist families of axis-parallel boxes in Rd with any

given ν for which (6.12) holds.

One may wonder if there is any relation between (6.11) and (6.12). Observe that the large

gap in (6.11) for the key parameter cd leaves plenty of room for improvement. We next show
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that if cd = ω(
√
d/ log d) were to hold, then one would obtain systems of axis-parallel boxes

in Rd with τ(R)/ν(R) = ω(
√
d/ log d), and thereby improve the lower bound in (6.12). The

following result can be derived from Lemma 6.10 in combination with the aforementioned

result of Aistleitner et al. [2].

Theorem 6.7. For every d ≥ 1024, there exists a system of axis-parallel boxes in Rd where

τ(R)/ν(R) ≥ cd/2.

In particular, by the current state of the art, we have τ(R)/ν(R) = Ω(log d), a bound

that grows with d but is inferior to the bound in (6.12).

We start with a technical lemma that provides a discretization mechanism for extracting

a finite family of hyper-rectangles from an infinite family. For a finite point set P ⊂ Ud,

a, δ > 0, where Ad(P ) ≥ a+ 2δ, a+ 2δ < 1, and 1/δ ∈ N, let R′(P, a, δ; d) denote the infinite

family of axis-parallel empty boxes of volume at least a+ 2δ in Ud. Observe that if P ⊂ P ′,

then R′(P ′, a, δ; d) ⊂ R′(P, a, δ; d).

Lemma 6.8. For P ⊂ Ud, a, δ > 0, where Ad(P ) ≥ a+ 2δ, a+ 2δ < 1, and 1/δ ∈ N, there

exists a finite family of axis-parallel empty boxes in Ud, denoted by R(P, a, δ; d), so that:

(i) for each box r ∈ R(P, a, δ; d) we have r ∩ P = ∅ and Vol(r) = a+ δ,

(ii) for every r′ ∈ R′(P, a, δ; d), there exists r ∈ R(P, a, δ; d), with r ⊆ r′.

(In particular, every box in R(P, a, δ; d) has no points of P on its boundary.)

Proof. Let j = 4d/δ + 1, and consider the j × · · · × j d-dimensional grid contained in Ud:

xi =
0

j − 1
,

1

j − 1
, . . . , 1, for i = 1, . . . , d.

Let R1 be the set of non-degenerate boxes determined by this grid. Note that R1 is a finite

set whose cardinality is |R1| =
(
j
2

)d
. Let R2 ⊂ R1 be the subset of grid boxes with volume

at least a + 1.5δ. Let R3 be the set of concentric scaled down homothetic copies of boxes

135



in R2 of volume exactly a + δ. Observe that R1, R2, and R3 are independent of P . Set

R(P, a, δ; d) = {r ∈ R3 | r ∩ P = ∅}. It is not clear a priori, whether this set is non-empty;

we argue below that it is.

Consider any hyper-rectangle r′ ∈ R′(P, a, δ; d); assume that r′ = [s1, t1]× · · ·× [sd, td] ⊆

Ud, where Vol(r′) ≥ a + 2δ. Put ∆j = tj − sj for j = 1, . . . , d; we have Vol(r′) =
∏d

j=1 ∆j

and

a+ 2δ ≤ ∆j ≤ 1, for j = 1, . . . , d.

By construction, each interval [sj, tj] contains a grid -interval Ij of length

|Ij| ≥ ∆j −
2

j − 1
= ∆j −

2δ

4d
= ∆j −

δ

2d
.

Note that

|Ij| ≥ a+ 2δ − δ

2d
≥ a+ 1.75δ.

Then r2 :=
∏d

j=1 Ij ∈ R1 is a grid hyper-rectangle (box) whose volume is

Vol(r2) ≥
d∏

j=1

(
∆j −

δ

2d

)
≥

d∏

j=1

∆j −
d∑

j=1

δ

2d

=
d∏

j=1

∆j −
δ

2
≥ a+ 2δ − 0.5 δ = a+ 1.5δ. (6.13)

The first inequality above follows from Lemma 6.9 below with k = d, ai = ∆i, and

δi = δ/(2d) for i = 1, . . . , k. This implies r2 ∈ R2. Furthermore, since r2 is contained in r′,

it is empty of points of P in its interior.

By construction, the smaller concentric homothetic copy of r2 of volume exactly a + δ,

denoted here by r, belongs to R3. Since r lies strictly inside r2, we have r ∩ P = ∅ and thus

r ∈ R(P, a, δ; d) as required.

Lemma 6.9. Let a, δ ∈ (0, 1), where a + 2δ ≤ ∏k
i=1 ai ≤ a1, . . . , ak ≤ 1 and δ1, . . . , δk > 0,
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where
∑k

i=1 δi ≤ δ. Then
k∏

i=1

(ai − δi) ≥
k∏

i=1

ai −
k∑

i=1

δi.

Proof. By the hypothesis, we have ai ≥ a+ 2δ > δ > δi, for every i. We prove the inequality

by induction on k. For k = 1 there is nothing to prove. Assume that the inequality holds

for k − 1:
k−1∏

i=1

(ai − δi) ≥
k−1∏

i=1

ai −
k−1∑

i=1

δi. (6.14)

The left hand-side of (6.14) is clearly positive. Observe that

k−1∏

i=1

ai −
k−1∑

i=1

δi ≥
k∏

i=1

ai −
k∑

i=1

δi ≥ a+ 2δ − δ = a+ δ,

thus the right hand-side of (6.14) is also positive. We can multiply the inequality by (ak −

δk) ≥ a+ δ > 0. This yields

k∏

i=1

(ai − δi) ≥
(
k−1∏

i=1

ai −
k−1∑

i=1

δi

)
(ak − δk)

≥
k∏

i=1

ai −
k∑

i=1

δi + δk

(
k−1∑

i=1

δi

)

≥
k∏

i=1

ai −
k∑

i=1

δi.

Indeed, the next to last inequality is equivalent to

k∑

i=1

δi ≥ ak

k−1∑

i=1

δi + δk

k−1∏

i=1

ai,

which is implied by ak ≤ 1 and
∏k−1

i=1 ai ≤ 1.

We have thus shown that the inequality holds for k and this completes the induction

proof.

The connection between piercing numbers and Maximum Empty Box is highlighted
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by the following two lemmas.

Lemma 6.10. For a, δ > 0, where a + 2δ < 1, and 1/δ ∈ N, if Ad(n) ≥ a + 2δ holds for

some n ∈ N, then τ(R(∅, a, δ; d)) ≥ n+ 1.

Proof. Assume for contradiction that there exists a piercing set P with n points forR(∅, a, δ; d).

Since Ad(n) ≥ a + 2δ by assumption, there exists a hyper-rectangle r′ amidst the points in

P that is empty in its interior, whose volume is at least a + 2δ. By Lemma 6.8, there ex-

ists a hyper-rectangle r ∈ R(∅, a, δ; d), with r ⊂ r′ and Vol(r) = a + δ and r ∩ P = ∅, in

contradiction to our assumption that P is a piercing set for R(∅, a, δ; d). This concludes the

proof.

Lemma 6.11. Let P ⊂ Ud be a finite point set and a, δ > 0, where a + 2δ < 1, 1/δ ∈ N,

and Ad(P ) ≥ a+ 2δ. Let r′1, . . . , r
′
j ∈ R′(P, a, δ; d) be j empty hyper-rectangles that require j

piercing points in Ud \ P . Then τ(R(P, a, δ; d)) ≥ j.

Proof. By Lemma 6.8, for every hyper-rectangle r′i, 1 ≤ i ≤ j, there exists a hyper-rectangle

ri ∈ R(P, a, δ; d), with ri ⊂ r′i and Vol(ri) = a + δ and ri ∩ P = ∅. Since piercing r′1, . . . , r
′
j

requires j piercing points in Ud\P , piercing r1, . . . , rj also requires j piercing points in Ud\P .

Consequently, τ(R(P, a, δ; d)) ≥ j.

Piercing a set of rectangles (contained in [0, 1]2) whose areas are above some threshold is

dual to the problem of finding a large empty rectangle (beyond this threshold) amidst the

points in the piercing set. This insight could be used directly in the pursuit of a better lower

bound for Wegner’s inequality, it may, however, be ineffective. Here we extend the system

of rectangles by adding a grid of segments (i.e., degenerate rectangles) as explained below.

The main idea is that piercing the grid segments imposes constraints on the position of the

piercing points and this allows the existence of a large empty rectangle.
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6.2.3 Construction

All rectangles in our construction are axis-parallel and contained in the unit square U =

[0, 1]2. Let k ≥ 2 be a fixed integer; here we will work with k = 2, 3, 4. Let a = 1/(k + 1)

and δ = 10−3. Note that 1/δ ∈ N, as required by Lemma 6.8. Let R′ = R′(∅, a, δ; 2) and let

R = R(∅, a, δ; 2) be the system obtained from R′ as in Lemma 6.8. Recall that R′ is the set

of all rectangles contained in U with area at least 1/(k + 1) + 2δ; and that the area of each

rectangle in (the finite family) R is 1/(k + 1) + δ.

Our construction is the following finite family of rectangles (see Figure 6.2 (left) for k = 2):

S = R∪ G, (6.15)

where G is the k × k grid described below.

H = {[1/(k + 1), k/(k + 1)]× {i/(k + 1)}, i = 1, 2, . . . , k},

V = {{i/(k + 1)} × [1/(k + 1), k/(k + 1)], i = 1, 2, . . . , k},

G = H ∪ V . (6.16)

We show that (for every k ≥ 2) the matching number of this family is equal to k.

Lemma 6.12. ν(S) = k.

Proof. The k (degenerate) rectangles in H immediately yield ν(S) ≥ k. It remains to prove

the upper bound. Let I be an independent set of rectangles in S. If I consists only of

segments in G, it is clear that |I| ≤ k. If I consists only of rectangles in R, a simple area

argument implies that

|I| ≤
⌊

1

1/(k + 1) + δ

⌋
≤ k.

Assume now that I consists of rectangles in R and grid segments in G. Observe that

any segment s ∈ H divides U into a top and a bottom region in the sense that any rectangle

from R whose vertical extent intersects s must intersect s. A similar observation applies
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to segments in V . If multiple segments are in I, these segments must be members of the

same family (H or V), and the regions are further subdivided in the same manner. For each

resulting region, the same area argument gives an upper bound on the number of independent

rectangles from R in that region.

Specifically, let h = |I ∩ H|; without loss of generality, we may assume that h > 0. Let

i1, . . . , ih ∈ {1, 2, . . . , k} be the subscripts of the segments in I ∩ H in ascending order. For

convenience, put i0 = 0 and ih+1 = k + 1. The area argument yields:

|I ∩ R| ≤
h∑

j=0

⌊
(ij+1 − ij)/(k + 1)

1/(k + 1) + δ

⌋
=

h∑

j=0

⌊
ij+1 − ij

1 + (k + 1)δ

⌋

≤
h∑

j=0

(ij+1 − ij − 1) = ih+1 − i0 − (h+ 1) = (k + 1)− (h+ 1) = k − h.

Therefore, |I| = |I ∩ G|+ |I ∩ R| ≤ h+ (k − h) = k, as required.

Key terms used in bounding the piercing number. Let P be a piercing set for S. Let

X denote the set of k2 grid points in H ∩ V . A subset of X is independent if no two points

are on the same grid segment (that is, no two coordinates are the same). Let J denote a

maximal set of independent points in X∩P . Obviously 0 ≤ |J | ≤ k. Assume in what follows

that |J | < k. Let H(J) and V(J) be the grid segments pierced by J . Consider any pair of

segments h, v, where h ∈ H\H(J) and v ∈ V \V(J); then h and v cannot be pierced by the

common point h ∩ v, because J ∪ {h ∩ v} would be an independent set of larger cardinality

than J , a contradiction. Therefore, we can view this pair of segments as “disjoint” although

they share a common point. Broadly, we refer to any set of t rectangles that are pierced in

P \ J by t distinct piercing points as quasi-disjoint (with respect to the given J).

In our analyses we distinguish several cases depending on the size of J , as defined above,

and use quasi-disjointness to infer the possible structure of a piercing set (Subsection 6.3.2

is the first such use).
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6.3 Preliminary constructions

The simplest lower bound example with τ/ν ≥ 3/2 is the “5-cycle” from the hypergraph

setting (also mentioned in [26]): five rectangles forming a cycle where each rectangle only

intersects its two neighbors in the cycle. It is worth noting that the 5-cycle can be realized

with (axis-aligned) unit squares; see Figure 6.1. Our construction here is more complex but

the relatively simple proofs in this section pave the way for the proof of Theorem 6.6.

Figure 6.1: A 5-cycle made from unit squares.

6.3.1 k = 2

According to (6.15) and (6.16), our construction consists of four segments that make G, see

Figure 6.2 (left), and a finite number of rectangles with area 1/3 + δ.

By Lemma 6.12 for k = 2 we have ν(S) = 2. For example, in Figure 6.2 (right), the

segment s = [1/3, 2/3]× {2/3} divides U into the top region with area 1/3 and the bottom

region with area 2/3. The top region can have at most
⌊

1/3
1/3+δ

⌋
= 0 rectangles from R in an

independent set I, and the bottom region can have at most
⌊

1/3
1/3+δ

⌋
= 1 rectangle from R

in I. Thus, any independent set containing s has size at most 2; and the same bound holds

for any other case.

To see that this construction gives the ratio τ/ν = 3/2, it suffices to prove the following:

Claim 6.13. τ(S) = 3.

Proof. To see that τ(S) ≤ 3, consider the three points shown in Figure 6.3 (left), namely

(1/3, 2/3), (1/2, 1/2), and (2/3, 1/3). First note that all segments in G are pierced. It is easy
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Figure 6.2: Left: the four segments in G. Right: an independent set of size 2 in S = R∪ G.

to check that with the aforementioned three points, the maximum empty rectangle in U has

area 1/3. Therefore, all rectangles in R are pierced.

Figure 6.3: Left: three points piercing all rectangles in S = R ∪ G. Right: two points
required to pierce all segments in G leave a rectangle from R unpierced.

We now prove the lower bound. Assume for contradiction that τ(S) ≤ 2, i.e., there

exist two points in U that collectively pierce the rectangles in S. Observe that at least

two points are required to pierce all segments in G. Up to symmetry by rotation and

reflection of U , there is only one case, shown in Figure 6.3 (right), where the two points

are (1/3, 2/3) and (2/3, 1/3). Consider the rectangle r′ = [0, 0.6] × [0, 0.6] ∈ R′. We have

Area(r′) = 0.36 > 1/3 + 2δ, so by Lemma 6.8 there is a rectangle r ∈ R that is contained in

r′. Since r′ is not pierced by the two points, neither is r.

6.3.2 k = 3

The first lower bound example with τ/ν ≥ 5/3 was found by Wegner [33] (see also [16]) in

1968. It has 23 rectangles. A slight variation of this example was later independently found

by Fon-Der-Flaass and Kostochka [17].

According to (6.15) and (6.16), our construction consists of six segments making the
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Figure 6.4: Left: the six segments in G and the center square Q. Right: R∪G can be pierced
by 4 points.

3 × 3 grid G and a finite number of rectangles with area 1/4 + δ; see Figure 6.4 (left). By

Lemma 6.12 with k = 3, the system S = G ∩ R has ν = 3; however, τ < 5. In fact, S

can be pierced by the four points (1/4, 1/2), (1/2, 1/4), (1/2, 3/4), and (3/4, 1/2), depicted

in Figure 6.4 (right). We therefore add the center square Q = [1/3, 2/3] × [1/3, 2/3] and

redefine S := R∪ G ∪ {Q}.

Adding Q introduces a few more cases in the proof of ν(S) = 3, but the idea is the same

as in the proof of Lemma 6.12 in Section 6.2.3; here we omit the details. To show τ(S) ≤ 5,

observe that adding the point (1/2, 1/2) to the earlier set of four points is enough to pierce

all rectangles in S.

Figure 6.5: Four cases for |J | = 2 and two cases for |J | = 3; disjoint unpierced rectangles
are shown in red. (In the 4th case for |J | = 2, the point h1 ∩ v1 cannot be used to pierce the
two red segments!)
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Assume for contradiction that τ(S) = 4, i.e., P is a 4-point piercing set for S. In

particular, P is a piercing set for G. Let X denote the set of 9 grid points in H ∩ V . Let J

denote a maximal set of independent points in X ∩ P . Obviously 0 ≤ |J | ≤ 3. Since points

in J are independent, they together cover 2|J | grid segments. By the maximality of J , each

of the remaining |P | − |J | points in P can cover at most one new grid segment from the

remaining 6− 2|J |. To cover all the segments in G, we have |P |− |J | ≥ 6− 2|J | which yields

|J | ≥ 2. Up to symmetry by rotation and reflection of U , if |J | = 2, there are four cases. In

each of them, we exhibit three unpierced quasi-disjoint rectangles from R′ ∪ G ∪ {Q}, thus

by Lemma 6.11, at least three more points are needed; however, there are only two available

points in P , a contradiction. If |J | = 3, there are two cases. In each of them, we exhibit

two disjoint unpierced rectangles from R′, thus by Lemma 6.11, at least two more points are

needed, see Figure 6.5; however, there is only one available point in P , a contradiction.

6.4 Main construction: k = 4

In this section we prove Theorem 6.6. Recall that S = R ∪ G where R consists of a finite

number of rectangles with area 1/5 + δ and G is a 4× 4 grid, see Figure 6.6 (left).

H = {hi = [1/5, 4/5]× {i/5}, i = 1, 2, 3, 4},

V = {vi = {i/5} × [1/5, 4/5], i = 1, 2, 3, 4},

G = H ∪ V .

By Lemma 6.12 for k = 4 we have ν(S) = 4. Figure 6.6 (middle) shows an independent

set of size 4 in S. To obtain Theorem 6.6, we need the following.

Lemma 6.14. τ(S) = 7.
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Figure 6.6: Left: the eight segments in G. Middle: an independent set of size 4 in S = R∪G.
Right: a set of 7 points piercing S.

Proof. The following set of 7 piercing points shows that τ(S) ≤ 7; see Figure 6.6 (right).

P =

{(
1

5
,
3

5

)
,

(
1

3
,
1

3

)
,

(
2

5
,
4

5

)
,

(
1

2
,
1

2

)
,

(
3

5
,
1

5

)
,

(
2

3
,
2

3

)
,

(
4

5
,
2

5

)}
.

Observe first that all the segments in G are pierced. It is not hard to verify that the area

of the largest empty rectangle in U amidst these 7 points is equal to 1/5. Recall that the

area of every rectangle in R is 1/5 + δ, therefore all rectangles in R are pierced.

The proof of the lower bound τ(S) ≥ 7 is more involved, but the idea is the same as in the

earlier proofs for k = 2 and 3. Assume for contradiction that there exists a set P of 6 points

in U that collectively pierce all the rectangles in S. We show that piercing the grid segments

in G imposes constraints on the position of the piercing points and this allows the existence

of a large empty rectangle, i.e., one whose area is at least 1/5 + 2δ. By Lemma 6.11, this

further implies the existence of an unpierced rectangle whose area is 1/5 + δ in the system

R (and thus in S), which contradicts the assumption that P is a piercing set for S.

Let X denote the set of 16 grid points in H ∩ V . Recall that H = {h1, h2, h3, h4} and

V = {v1, v2, v3, v4} (labeled in ascending order of y- and x-coordinates, respectively). Let J

denote a maximal set of independent points in X ∩ P . Obviously 0 ≤ |J | ≤ 4. Since points

in J are independent, they together cover 2|J | grid segments. By the maximality of J , each

of the remaining |P | − |J | points in P can cover at most one new grid segment from the

remaining 8− 2|J |. To cover all the segments in G, we have |P |− |J | ≥ 8− 2|J | which yields

|J | ≥ 2. Henceforth, we distinguish three cases depending on the size of J .
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Case |J | = 4. Up to symmetry by rotation and reflection of U , there are 7 configurations

for these 4 points, see Figure 6.7. For each configuration, we provide 3 unpierced disjoint

rectangles, each of area at least 1/5 + 2δ. This shows that there are 3 unpierced disjoint

rectangles in R which cannot all be pierced by the remaining |P | − |J | = 6− 4 = 2 points.

(a)

r1

r3

r2

(b)

r1

r3

r4

(c)

r5

r3

r6

(d)

r5

r3

r6

(e)

r5

r3

r7

(f)

r9

r8

r10

(g)

r9

r11 r3

Figure 6.7: Seven configurations for |J | = 4, the unpierced disjoint rectangles are shown in
red.

The following 11 rectangles, r1, . . . , r11 are used. Observe that all entries in the third

column of Table 6.3, representing excess areas, are nonnegative for δ ≤ 10−3 (the bottleneck

entry is r10, its excess area vanishes for δ ≈ 1/430).

Rectangle Dimensions Area− (1/5 + 2δ)

r1 [0, 1/4 + 3δ]× [0, 4/5− δ] 3δ/20− 3δ2

r2 [1/4 + 4δ, 4/5− δ]× [0, 2/5− 2δ] 1/50− 51δ/10 + 10δ2

r3 [2/5 + δ, 1]× [2/3− 4δ, 1] δ/15− 4δ2

r4 [1/4 + 4δ, 4/5− δ]× [1/5 + δ, 3/5− δ] 1/50− 51δ/10 + 10δ2

r5 [0, 1/3 + 4δ]× [0, 3/5− δ] δ/15− 4δ2
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r6 [2/5 + δ, 11/15 + 5δ]× [0, 3/5− δ] δ/15− 4δ2

r7 [2/5 + δ, 1]× [0, 1/3 + 4δ] δ/15− 4δ2

r8 [2/3− 4δ, 1]× [2/5 + δ, 1] δ/15− 4δ2

r9 [0, 3/5− δ]× [0, 1/3 + 4δ] δ/15− 4δ2

r10 [1/5 + δ, 2/3− 5δ]× [1/3 + 5δ, 4/5− δ] 4/225− 38δ/5 + 36δ2

r11 [0, 1/3 + 4δ]× [2/5 + δ, 1] δ/15− 4δ2

Table 6.3: List of rectangles used for the case |J | = 4.

The argument is summarized in the following table:

Configuration J 3 unpierced disjoint rectangles

(a) {(1/5, 4/5), (2/5, 3/5), (3/5, 2/5), (4/5, 1/5)} r1, r2, r3

(b) {(1/5, 4/5), (2/5, 3/5), (3/5, 1/5), (4/5, 2/5)} r1, r3, r4

(c) {(1/5, 4/5), (2/5, 2/5), (3/5, 3/5), (4/5, 1/5)} r3, r5, r6

(d) {(1/5, 4/5), (2/5, 1/5), (3/5, 3/5), (4/5, 2/5)} r3, r5, r6

(e) {(1/5, 4/5), (2/5, 1/5), (3/5, 2/5), (4/5, 3/5)} r3, r5, r7

(f) {(1/5, 3/5), (2/5, 4/5), (3/5, 1/5), (4/5, 2/5)} r8, r9, r10

(g) {(1/5, 2/5), (2/5, 4/5), (3/5, 1/5), (4/5, 3/5)} r3, r9, r11

Table 6.4: |J | = 4. All 7 configurations are handled by providing three unpierced disjoint
rectangles.

Case |J | = 3. Up to symmetry by rotation and reflection of U , there are 16 configurations

for these 3 points, see Figure 6.8. For each configuration, there are |G| − 2|J | = 8 − 6 = 2

unpierced grid segments. These two segments must intersect otherwise J is not independent.

However they cannot be pierced by one point because otherwise the configuration would have
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been handled in the previous case where |J | = 4; as such, they are quasi-disjoint. Out of the

16 configurations, we handle 13 using the same technique as in the previous case. That is, we

exhibit 4 unpierced quasi-disjoint rectangles, each of them either is a grid segment (i.e., in G)

or has area at least 1/5+2δ (i.e., in R′). This shows that there are 4 unpierced quasi-disjoint

rectangles in G ∪ R which cannot all be pierced by the remaining |P | − |J | = 6 − 3 = 3

points. The other three configurations are handled differently.

The following 6 additional rectangles are used. Observe that all entries in the third

column of Table 6.5, representing excess areas, are nonnegative for δ ≤ 10−3 (the bottleneck

entries are r12, r15, r16, and r17, their excess areas vanish for δ = 1/60).

Rectangle Dimensions Area− (1/5 + 2δ)

r12 [0, 3/5− δ]× [1/5 + δ, 8/15 + 5δ] δ/15− 4δ2

r13 [1/5 + δ, 4/5− δ]× [2/3− 5δ, 1] δ/3− 10δ2

r14 [0, 1/3 + 5δ]× [1/5 + δ, 4/5− δ] δ/3− 10δ2

r15 [0, 3/5− δ]× [2/5 + δ, 11/15 + 5δ] δ/15− 4δ2

r16 [2/3− 4δ, 1]× [0, 3/5− δ] δ/15− 4δ2

r17 [7/15− 5δ, 4/5− δ]× [2/5 + δ, 1] δ/15− 4δ2

Table 6.5: List of additional rectangles used for the case |J | = 3.

Arguments for the first 13 configurations are summarized in the following table:

Configuration J 4 unpierced quasi-disjoint rectangles

(a) {(1/5, 4/5), (2/5, 3/5), (3/5, 2/5)} h1, v4, r12, r13

(b) {(1/5, 4/5), (2/5, 3/5), (4/5, 2/5)} h1, v3, r8, r12

(c) {(1/5, 4/5), (2/5, 3/5), (4/5, 1/5)} h2, v3, r8, r9

(d) {(1/5, 4/5), (3/5, 3/5), (4/5, 2/5)} h1, v2, r3, r14
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(e) {(1/5, 4/5), (2/5, 1/5), (3/5, 3/5)} h2, r7, r8, r15

(f) {(1/5, 4/5), (3/5, 3/5), (4/5, 1/5)} v2, r3, r5, r6

(g) {(1/5, 4/5), (3/5, 2/5), (4/5, 3/5)} v2, r3, r5, r16

(h) {(1/5, 4/5), (3/5, 1/5), (4/5, 3/5)} v2, r3, r5, r16

(i) {(1/5, 4/5), (3/5, 1/5), (4/5, 2/5)} h3, v2, r3, r5

(j) {(1/5, 3/5), (2/5, 4/5), (4/5, 2/5)} h1, v3, r8, r12

(k) {(1/5, 2/5), (2/5, 4/5), (3/5, 3/5)} r3, r9, r11, r16

(l) {(2/5, 4/5), (3/5, 3/5), (4/5, 2/5)} h1, v1, r3, r4

(m) {(1/5, 2/5), (2/5, 4/5), (4/5, 3/5)} v3, r9, r11, r16

Table 6.6: |J | = 3. The first 13 configurations are handled by exhibiting 4 unpierced quasi-
disjoint rectangles.

For each of the remaining three configurations, we exhibit 7 unpierced rectangles, each of

which is either a grid segment (i.e., in G) or has area at least 1/5 + 2δ (i.e., in R′). Observe

that each point in U \ X (recall that X is the set of grid points) can cover at most 2 of

these 7 rectangles. Therefore, at least 4 more piercing points are needed. The arguments

are summarized in the following table:

Configuration J 7 unpierced rectangles

(n) {(1/5, 4/5), (2/5, 2/5), (3/5, 3/5)} h1, v4, r3, r9, r14, r15, r16

(o) {(1/5, 4/5), (2/5, 1/5), (4/5, 3/5)} h2, v3, r3, r5, r7, r15, r16

(p) {(1/5, 3/5), (2/5, 4/5), (3/5, 2/5)} h1, v4, r3, r5, r7, r12, r17

Table 6.7: |J | = 3. The remaining 3 configurations are handled by exhibiting 7 unpierced
rectangles that need at least 4 additional piercing points.

Case |J | = 2. Up to symmetry by rotation and reflection of U , there are 13 configurations
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Figure 6.8: 16 configurations for |J | = 3. For the first 13 configurations, the unpierced quasi-
disjoint rectangles are shown in red; for the last 3 configurations, the 7 unpierced rectangles
that need at least 4 additional piercing points are shown in red.

for these 2 points, see Figure 6.9. For each configuration, there are |G| − 2|J | = 8 − 4 = 4

unpierced grid segments. As in the previous case, these segments are quasi-disjoint (i.e.,

cannot be pierced at their intersections) because otherwise the configuration would have been

handled in the previous cases where |J | = 3 or 4. Note that there remain |P |−|J | = 6−2 = 4

points, so they must all be placed on segments in G, one for each unpierced segment.
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Figure 6.9: 13 configurations for |J | = 2. For the first 8 configurations, the unpierced quasi-
disjoint rectangles are shown in red; for the last 5 configurations, the 9 unpierced rectangles
that cannot be pierced by 4 points in G \X are shown in red.

Out of the 13 configurations, we handle the first 8 using the same technique as in the

previous cases. That is, we provide 5 unpierced quasi-disjoint rectangles, each of them either

is a grid segment (i.e., in G) or has area at least 1/5 + 2δ (i.e., in R′). This shows that

there are 5 unpierced quasi-disjoint rectangles in G ∪ R which cannot all be pierced by the

remaining 4 points. The remaining 5 configurations are handled differently.
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The following 13 additional rectangles are used. Observe that all entries in the third col-

umn of Table 6.8 are nonnegative for δ ≤ 10−3 (the bottleneck entries are r20, r21, r22, r23, r27,

and r30, their excess areas vanish for δ ≈ 1/255).

Rectangle Dimension Area− (1/5 + 2δ)

r18 [2/5 + δ, 1]× [1/5 + δ, 8/15 + 5δ] δ/15− 4δ2

r19 [1/5 + δ, 8/15 + 5δ]× [0, 3/5− δ] δ/15− 4δ2

r20 [0, 11/20− 5δ]× [0, 2/5− 2δ] 1/50− 51δ/10 + 10δ2

r21 [0, 11/20− 5δ]× [1/5 + δ, 3/5− δ] 1/50− 51δ/10 + 10δ2

r22 [2/5 + δ, 4/5− δ]× [9/20 + 5δ, 1] 1/50− 51δ/10 + 10δ2

r23 [3/5 + 2δ, 1]× [9/20 + 5δ, 1] 1/50− 51δ/10 + 10δ2

r24 [11/20− 3δ, 1]× [0, 9/20 + 3δ] 1/400 + 7δ/10 + 9δ2

r25 [1/5 + δ, 8/15 + 6δ]× [1/5 + δ, 4/5− δ] δ/3− 10δ2

r26 [0, 9/20 + 3δ, 1]× [0, 9/20 + 3δ] 1/400 + 7δ/10 + 9δ2

r27 [0, 2/5− 2δ]× [9/20 + 5δ, 1] 1/50− 51δ/10 + 10δ2

r28 [7/15− 5δ, 4/5− δ]× [2/5 + δ, 1] δ/15− 4δ2

r29 [2/5 + δ, 1]× [7/15− 5δ, 4/5− δ] δ/15− 4δ2

r30 [9/20 + 5δ, 1]× [0, 2/5− 2δ] 1/50− 51δ/10 + 10δ2

Table 6.8: List of additional rectangles used for the case |J | = 2.

Arguments for the first 8 configurations are summarized in the following table:

Configuration J 5 unpierced quasi-disjoint rectangles

(a) {(1/5, 4/5), (3/5, 3/5)} h1, v2, r3, r14, r18

(b) {(1/5, 4/5), (4/5, 3/5)} h1, v2, r3, r14, r18
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(c) {(1/5, 4/5), (3/5, 2/5)} h3, v2, r3, r5, r7

(d) {(1/5, 4/5), (4/5, 2/5)} h3, v2, r3, r5, r7

(e) {(1/5, 4/5), (4/5, 2/5)} h2, v3, r8, r9, r15

(f) {(2/5, 4/5), (3/5, 2/5)} h3, v1, r3, r16, r19

(g) {(2/5, 4/5), (4/5, 2/5)} h1, h3, v1, r3, r4

(h) {(2/5, 4/5), (3/5, 1/5)} h3, v1, r3, r16, r19

Table 6.9: |J | = 2. The first 8 configurations are handled by providing 5 unpierced quasi-
disjoint rectangles.

There are 5 more configurations. For each of them, we exhibit 9 unpierced rectangles,

each of which is either a grid segment (i.e., in G) or has area at least 1/5 + 2δ (i.e., in R′).

Recall that if |P | = 6, the remaining 4 piercing points must all lie on the grid segments

G \X (X is the set of grid points). But each point in G \X can cover at most 2 of these 9

rectangles, which is a contradiction. The arguments are summarized in the following table:

Configuration J 9 unpierced rectangles

(i) {(1/5, 4/5), (2/5, 3/5)} h1, h2, v3, v4, r20, r21, r22, r23, r24

(j) {(1/5, 3/5), (2/5, 4/5)} h1, h2, v3, v4, r20, r21, r22, r23, r24

(k) {(2/5, 4/5), (3/5, 3/5)} h1, h2, v1, v4, r3, r9, r11, r16, r25

(l) {(2/5, 4/5), (4/5, 3/5)} h1, h2, v1, v3, r3, r9, r11, r16, r25

(m) {(2/5, 3/5), (3/5, 2/5)} h1, h4, v1, v4, r26, r27, r28, r29, r30

Table 6.10: |J | = 2. The remaining 5 configurations are handled by providing 9 unpierced
rectangles that cannot be pierced by 4 points in G \X.

This concludes the proof of Lemma 6.14.

153



Now Theorem 6.6 immediately follows from Lemma 6.12 (with k = 4) and Lemma 6.14.

Remarks.

1. An alternative proof of Theorem 6.6 could be obtained by restricting rectangles in R

to those that are used in the proof of the lower bound on τ (Lemma 6.14) and their

images under rotation and reflection of U . This would make the resulting lower bound

example smaller with regard to number of rectangles in it. But its description would

be tedious and not as enlightening as our presentation here.

2. A natural question is whether our construction can be used to create lower bound

examples for larger k. Interestingly enough, for k = 5 the rectangles in S can be

pierced by 8 points. In Figure 6.10, all the segments in G are pierced and the area of

the largest empty rectangle is 1/6 so all rectangles in R are also pierced. Recall that

in the construction for k = 3, we added a center square to increase τ by 1. A similar

fix might be possible (but in view of Figure 6.10, a center square clearly won’t work).

Another major difficulty is that the number of cases required to prove a lower bound

on τ grows rapidly with respect to k.

1
5

9
20

4
5

7
10

3
10

11
20

Figure 6.10: The system S = G ∪ R for k = 5 can be pierced by 8 points.

3. The straightforward method to construct lower bounds by taking unions yields the

following:

f(m+ n) ≥ f(m) + f(n), for every m,n ≥ 0. (6.17)
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By (6.17) and Theorem 6.6 we have f(5) ≥ f(4) + f(1) ≥ 7 + 1 = 8; alternatively, the

result follows from f(5) ≥ f(3) + f(2) = 5 + 3 = 8.

6.5 Higher dimensions

Proof of Theorem 6.7. By (6.11), we have cd ≥ log d
4
≥ 10

4
. By the definition of cd, see (6.10),

there exist arbitrarily large integers n such that nAd(n) ≥ cd − 1. Let k = b n
cd−1
c+ 1. Since

n can be arbitrarily large, we may assume that k ≥ 10. On one hand, we have k > n
cd−1

and

thus n < (cd−1)k. On the other hand, we have k ≤ n
cd−1

+1, and therefore n ≥ (k−1)(cd−1).

Note that cd ≥ 10/4 and k ≥ 10 imply that kcd/2 ≥ k + cd.

Consider the system of boxes

R′ := R′
(
∅, 1

k + 1
,

1

4k2
; d

)
.

Observe that the preconditions for Lemma 6.8 are trivially met; and so the system

R := R
(
∅, 1

k + 1
,

1

4k2
; d

)

exists. Note that ν(R) = k. Since

Ad(n) ≥ cd − 1

n
>

1

k
>

1

k + 1
+

2

4k2
(for k ≥ 10),

Lemma 6.10 yields

τ(R) = τ

(
R
(
∅, 1

k + 1
,

1

4k2
; d

))

≥ n+ 1 ≥ (k − 1)(cd − 1) + 1

= kcd − (k + cd) + 2 >
kcd
2
.

155



Consequently, we have τ(R) ≥ ν(R)cd/2, or τ(R)/ν(R) ≥ cd/2, as required.
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[19] A. Gyárfás and J. Lehel, Covering and coloring problems for relatives of intervals,
Discrete Mathematics 55(2) (1985), 167–180.
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[33] G. Wegner, Anmerkungen zu ‘Über eine kombinatorisch-geometrische Frage von Had-
wiger und Debrunner’, Unpublished notes (4 pages), Göttingen, 1968.

158



Curriculum Vitae

Ke Chen

Education

• B.S. in Computer Science, Southeast University, 2011

• M.S. in Computer Science, University of Wisconsin-Milwaukee, 2014

• Ph.D, University of Wisconsin-Milwaukee, 2021

Dissertation Title

Algorithmic and Combinatorial Results in Selection and Computational Geometry

Publications

1. K. Chen and A. Dumitrescu, Nonconvex cases for carpenter’s rulers, Theoretical Com-

puter Science, 2015. Special issue with invited papers from the FUN 2014 conference.

A preliminary version in Proceedings of the 7th International Conference on Fun with

Algorithms (FUN 2014), Lipari Island, Sicily, Italy, July 2014; Vol. 8496 of LNCS, pp.

89–99.

2. K. Chen and A. Dumitrescu, Selection algorithms with small groups, International

Journal of Foundations of Computer Science, Vol. 31, No. 3 (2020), 355–369. A pre-

liminary version in Proceedings of the 29th International Workshop on Algorithms and

Data Structures (WADS 2015), Victoria, Canada, August 2015; LNCS 9214, Springer,

2015, pp. 189–199.

3. K. Chen and A. Dumitrescu, On the longest spanning tree with neighborhoods, Dis-

crete Mathematics, Algorithms and Applications, Vol. 12, No. 5 (2020). A preliminary

version in Proceedings of the 12th International Frontiers of Algorithmics Workshop

(FAW 2018), Guangzhou, China, May 2018; in LNCS.

159

http://www.cs.uwm.edu/faculty/ad/ruler2.pdf
https://arxiv.org/abs/1409.3600
https://arxiv.org/abs/1712.03297


4. K. Chen, A. Dumitrescu, W. Mulzer, and Cs. D. Tóth, On the Stretch factor of polyg-
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