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ABSTRACT 

TWO ESSAYS ON LEVERAGING ANALYTICS 

TO IMPROVE HEALTHCARE 

 

 

by 

Deepika Gopukumar 

 

 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor Huimin Zhao 

 

 

The healthcare cost has continued to increase over the past few years despite various policies, 

efforts, and initiatives taken by the government. It is still projected to grow over the next few 

years by the Centers for Medicare and Medicaid Services (CMS). Readmissions have been a 

major contributor to the increase in costs and have always been a contributing factor. To get a 

perspective, considering the fact that at least 9% of individuals who had COVID-19 were likely 

to get readmitted shortly, according to a study by the Centers for Disease Control and Prevention 

(CDC) COVID-19 response team, along with their high estimated treatment cost, the problem of 

high healthcare costs will continue to grow. The implementation of the American Recovery and 

Reinvestment Act of 2009 has led to massive increase in digital health data facilitating various 

studies to utilize analytics to improve healthcare. The goal of the two essays in this dissertation is 

to address the identified research gaps in the literature in readmission analytics. 

In Essay 1, I deploy the term readmission in two different ways and then focus on building and 

identifying predictive models that are suitable for costs billed by hospitals for the identified 

readmission categories. By using a data-driven approach, my initial analysis revealed that 21% 
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of readmitted individuals (regardless of the number of days to readmission) alone contributed to 

48% of the healthcare cost. Apart from that, my analysis revealed that the readmission cost (for 

the identified readmission categories in this study) varied from the previous admission cost at 

both individual and aggregated levels. Deep learning-based models performed the best for all 

scenarios. 

In Essay 2, I focus on creating a multitask learning-based joint model for predicting different 

outcomes related to readmissions, namely, likelihood, cost, and length of stay. I then evaluate the 

performance of the joint model and analyze its usefulness. Analysis was done for the identified 

top three categories of readmission belonging to the same major diagnostic groups from Essay1. 

Results showed that the joint model performed slightly better than the single-task baseline model 

for specific scenarios. The joint model was also beneficial in determining predictors that were 

consistently important to predict all the outcomes related to readmissions regardless of not giving 

us a universally best model. 
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CHAPTER 1 

Introduction 

As per the National Health Expenditure report by the Centers for Medicare and Medicaid Services 

(CMS), the healthcare cost has continued to increase during this decade, and projections show such 

increase in costs to continue over the next few years as well. This projection was even without 

including the pandemic due to its uncertain nature. A part of this rising healthcare costs is due to 

the frequent readmission of patients. A recent study by COVID-19 response team of Centers for 

Disease Control and Prevention (CDC) revealed that at least 9 percent of the COVID-19 patients 

were expected to get readmitted shortly after discharge with a 1.6 percent having chance of getting 

readmitted more than once. Readmissions are already expensive. To get a perspective, considering 

that the average cost of COVID-19 treatment with complication has been estimated to be over 

$20,000 during the hospital stay which indicates that this problem of high costs due to 

readmissions will continue to grow. Fortunately, the implementation of the American Recovery 

and Reinvestment Act of 2009 has led to a rapid adoption of electronic health records by physicians 

and hospitals, and a massive increase in digital data about patients and treatments. This voluminous 

data has facilitated several studies focusing on predicting early readmissions, frequency of 

readmissions, and timing of readmissions. There have also been studies focusing on predicting 

health care costs utilizing heuristic, regression, classification trees, and clustering algorithms. On 

the policy side, measures have also been introduced by the Government to reduce excess 

readmissions. The Hospital Readmission Reduction Program (HRRP) was established by the CMS 

under the Affordable Care Act beginning October 2012 to impose penalty on hospitals with all-

cause excess readmissions within 30-days for several chronic conditions and specific procedures. 

However, studies show that although the HRRP might have decreased readmissions significantly, 
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it might not have helped in decreasing the health care cost substantially. On the contrary, studies 

indicate that the HRRP, in some cases, might have even unintentionally led to an increase in 

mortality incidents. Apart from this, the HRRP might have prevented readmission within 30 days 

only for the patients to get readmitted at later stages (that is, after more than the 30 days window 

has passed), which would have later contributed to the increase in healthcare costs. Based on the 

results from systematic literature review, a few research gaps were identified. 

This dissertation advances the applications and techniques used for costs billed by hospitals for 

readmission-based analytics by developing predictive models. It consists of two essays. The first 

essay identifies the predictive model most suitable for predicting readmission costs by applying a 

variety of predictive techniques ranging from simple to sophisticated methods. The second essay 

proposes using a multitask learning-based simple interpretable model for jointly predicting tasks 

related to readmissions, namely, likelihood, cost, and length of stay. 

Essay 1 - A Machine Learning Approach on Costs Billed by Hospitals for Readmissions 

There are many studies focusing on predicting early readmissions or the length of stay but very 

limited studies on costs billed by hospitals for readmissions. In this essay, I primarily focus on 

using a variety of predictive methods to predict the cost billed by hospitals for readmissions based 

on the two defined categories of readmission to identify the models that are best suitable. Apart 

from that, I also analyze the following questions: 

• Is there a variation in percentage of individuals contributing to healthcare costs? 

• Did the number of readmissions vary based on the two defined categories of readmission? 

• Did the readmission cost vary significantly compared to the previous admission cost based 

on the two defined categories of readmission? 
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Initially, I deploy the term readmission in two different ways and consider them as two different 

categories for my analysis. By using a data-driven approach, my analysis revealed that most of the 

cost were contributed by individuals who got readmitted without considering the number of days 

to readmission for both the identified categories of readmission. My analysis also showed that the 

number of readmissions varied based on the two defined categories of readmission. Apart from 

this, my analysis revealed that the cost associated with readmissions varied from the previous 

admission cost at both individual and aggregated levels. A variety of predictive methods, including 

state-of-the-art, were applied for predicting costs billed by hospitals for readmission of individuals 

belonging to the two identified categories of readmission mentioned above. The results revealed 

that deep learning models based on multilayer perceptron performed the best for both the identified 

categories of readmission. 

Essay 2 - A Multitask Learning Approach for Heterogenous Tasks With Specific Sub-

population  

Many studies have focused on building single-task models in the context of readmissions, 

healthcare costs, and the length of stay. Even though the studies have found impact of the length 

of stay on readmissions and costs but none of these studies have tried to learn these outcomes using 

a joint model. There might be shared predictors that are useful in predicting all three outcomes. 

Multitask learning for homogenous task (classification) has been previously used in Information 

Systems (IS) research. However, to the best of my knowledge, there are no studies that have 

reported to apply multitask learning-based method for heterogenous tasks with specific sub-

population. Initially, I focus on how to create a multitask learning-based joint model for 

heterogenous tasks with specific sub-population. I then identify the scenarios where the joint 

model was beneficial, and in what way the joint model was beneficial. For identifying the scenarios 
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where joint model was beneficial, I compare the performance of the joint model with the single-

task learning-based baseline model for the identified top three categories of readmission belonging 

to the same major diagnostic groups from Essay 1. I also identify the joint predictors that are 

helpful for all the outcomes i.e., readmissions, readmission costs, and the readmitted length of stay. 

Results showed that the joint model performed slightly better compared to the single-task learning-

based baseline model for specific scenarios. Results also indicated that even though the joint model 

performed only slightly better in terms of predictive power in comparison to the baseline model, 

it was beneficial in determining predictors that was consistently important to predict all the 

outcomes specific to all three identified top categories of readmission belonging to the same major 

diagnostic category regardless of it not giving us a best model for readmissions. 
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CHAPTER 2 

ESSAY 1 - A Machine Learning Approach on Costs 

Billed by Hospitals for Readmissions 

 

 

2.1. Introduction 

Electronic health record (EHR) is now widely used by hospitals. Data shows that the adoption of 

EHR by physician offices has almost doubled since 2008 (Jamoom and Yang 2016). At least partly, 

the reason is the mandate by the Government  related to using EHR  for both payers and providers, 

which was implemented as part of the American Recovery and Reinvestment Act of 2009 to treat 

patients administered under government insurance (Atherton 2011). As per HealthIT.gov website 

created by the Office of the National Coordinator for Health Information Technology (ONC), EHR 

data consists of patient-related data, such as administrative data (such as billing, payments), health- 

related data (such as diagnosis, procedures, comorbidities), and hospital-related details of the 

patient getting treatment, etc.  Research shows that electronic health records contribute toward 

improving the overall health care quality and in reducing adverse drug reaction events (Campanella 

et al. 2016; Plantier et al. 2017).  

Even with the implementation of technological innovations like EHR and various reforms for 

funding healthcare initiatives, the healthcare cost has continued to increase. As per the recent 

National Health Expenditure fact sheet by the Centers for Medicare and Medicaid Services (CMS), 

the National Health Expenditure has grown 4.6% in the year 2018 and attributed for 17.7% of 

Gross Domestic Product. The United States of America (USA) spends over USD 10,000 per 

resident, which is considerably high compared to other countries included in Organization for 

Economic Co-operation and Development where the average cost is only USD 4,000 per person 

after adjusting for purchasing power (OECD 2019).  
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Among various possibilities, the shorter length of stay, which is a measure of hospital performance 

(also referred to as  hospital efficiency), decreases costs per discharge (OECD 2020). Even a single 

day reduction in the length of stay had projected to save USD 680 among patients with community-

acquired pneumonia (Fine et al. 2000). The length of stay during a single in-patient hospital visit 

started to decrease after Medicare implemented payment of a fixed amount for a particular 

diagnosis of a patient, which created hidden financial incentives for hospitals by releasing patients 

sooner (Frakt 2016). The insurance status of a person has also shown to influence the length of 

stay with uninsured having a shorter length of stay (Mainous et al. 2011). However, a shorter 

length of stay has been found to be positively correlated with frequent readmissions. For example, 

a hospital visit related to heart failure having a shorter length of stay has shown to increase in 

readmissions related to cardiovascular and heart failure conditions (Sud et al. 2017). As such, 

people with chronic conditions tend to get readmitted frequently (Mudge et al. 2011). The hospital 

cost associated with 30-day all-cause readmissions was about $41.3 billion for the year 2011 

(Hines et al. 2014). Even pre-pandemic recent news reported that the hospital readmission costs 

$26 billion annually for Medicare alone (Wilson 2019). During this pandemic, as per a recent study 

by COVID-19 response team of Centers for Disease Control and Prevention (CDC), at least 9 

percent of the Covid-19 patients were expected to get readmitted shortly after discharge with a 1.6 

percent having chance of getting readmitted more than once based on the data from Premier 

Healthcare Database, and readmission was found to be common among patients who combated 

COVID-19 (Kuehn 2020; LaPointe 2020). As per Kaiser Health News, the average cost of 

COVID-19 treatment with complication during a hospital stay was estimated to be over $20,000 

(Byrne 2020). This means that there could be further increase in readmission costs, which in turn 

would contribute to rising healthcare costs. Predicting readmission costs could help hospitals in 
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determining optimal length of stay, as both the shorter and longer length of stay could lead to 

higher healthcare costs. For example, if a hospital determines that the cost associated with 

readmission is greater than just extending the length of stay for a patient, they could increase the 

length of stay of the patient, and vice versa. This might help in avoiding unnecessary readmissions 

due to early discharges.  According to CMS, a readmission is defined as an admission to a hospital 

within 30 days of discharge from the same or another hospital irrespective of the cause of 

readmission (Commission 2007). Readmission policies vary from one nation to another nation 

(Kristensen et al. 2015). So, in this study, I deploy the term readmission in two different ways, 

namely, Readmission with Same Major Diagnostic Category (RSDC) and All-cause Readmission 

Category (RADC). RSDC is defined as an admission to a hospital within 30 days of discharge 

from the same or another hospital with the cause of readmission being the same, and RADC is 

defined as an admission to a hospital within 30 days of readmission irrespective of the cause of 

readmission. In this context, the term “cause of readmission” is considered to be readmissions 

based on major diagnostic category (MDC). Both planned and unplanned readmissions are 

considered. 

Application of machine learning algorithms have previously shown to accurately predict 

healthcare costs and the prior cost has shown to be helpful in predicting the future cost (Bertsimas 

et al. 2008). Apart from this, predictive analytics has proven beneficial in other areas of healthcare 

like prediction of early readmissions, risk analysis, and preventive care (Bates et al. 2014; Lin et 

al. 2017). Based on descriptive statistics by the Agency for Healthcare Research and Quality 

(AHRQ), costs associated with readmissions were found to be higher for two-third of the common 

diagnosis for the year 2016 (Kommers 2019). As there are limited studies on predicting 

readmission costs compared to predicting readmissions, it is not known what kind of models will 
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be better suitable for predicting readmission costs. So, in this essay, I focus on building predictive 

models for readmission costs for the identified categories of readmission (i.e., both RSDC and 

RADC).  

Before directly focusing on building predictive models for both RSDC and RADC, I tried to do a 

few additional analyses. Firstly, for understanding the contribution of readmissions in terms of 

rising healthcare costs based on my definitions of readmission i.e., RSDC and RADC, I checked 

the variation in percentage of individuals contributing to healthcare costs. Next, I analyze whether 

readmissions varied for MDCs based on RSDC and RADC. This was done to see if redefining 

readmission with respect to MDC made any difference since readmission policies vary across 

countries. Then, I determined whether the readmission cost varied significantly compared to the 

previous admission cost for both RSDC and RADC. Finally, I strive to build predictive models for 

predicting readmission costs billed by hospitals for both RSDC and RADC. 

The rest of the paper is organized as follows. In the next section, the existing literature in related 

areas are reviewed and the identified research gaps are explained. Then, the models used are 

explained and the results are reported using various performance measures. Finally, the 

implications, contributions, limitations, and proposed directions for future research are discussed. 

2.2. Literature Review 

Excess readmissions contribute to increasing healthcare costs. In an effort to reduce excess 

readmissions, the Hospital Readmission Reduction Program (HRRP) was established by the CMS 

under the Affordable Care Act beginning October 2012 to impose penalty on hospitals with all-

cause excess readmissions within 30-days for chronic conditions, namely, Acute Myocardial 

Infarction (AMI), Heart Failure (HF), Pneumonia, Chronic Obstructive Pulmonary Disease 
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(COPD), Elective Primary Total Hip Arthroplasty and/or Total knee Arthroplasty (THA/TKA), 

and Coronary Artery Bypass Graft (CABG) surgery (McIlvennan et al. 2015). The HRRP 

decreased payment to hospitals with excess readmissions covered under Medicare insurance. 

There have been mixed views after the HRRP was implemented as after implementation, the 

number of readmissions decreased (Wasfy et al. 2017). However, a few studies indicate that the 

HRRP had led to unintended increases in mortalities, which might be plausibly causing a decrease 

in readmissions (Gupta et al. 2018; Wadhera et al. 2018).  

A previous study whose objective was only to analyze the cost variation and not build any 

predictive models specific to readmission costs indicated that the cost variation between 

readmitted and non-readmitted individuals without considering Medicare hospitalization stay and 

readmission was about 60% higher in the case of readmitted individuals (USD 56,856) compared 

to the non-readmitted individuals (USD 35,465) in 2000-2011 (Zheng et al. 2019). Furthermore, 

the conditions of readmitted individuals were found to be worse based on Charlson Comorbidity 

Index (CCI), making them more likely to get readmitted after the 30-day period to avoid penalty, 

hence questioning the studies of reduction in readmissions if they actually helped in reducing 

healthcare costs (Zheng et al. 2019).  

Extant studies in predictive analytics on readmissions and healthcare costs could be broadly 

classified into different categories, namely, predicting all-cause 30-day readmissions, predicting 

readmissions specific to a population, predicting time to readmissions, and predicting general 

healthcare costs (Appendix A). A literature review on the models for predicting readmissions 

showed that most of the developed models performed poorly (Kansagara et al. 2011). 

Readmissions were also found to be a strong predictor of mortality within a year in cancer patients 

after colectomy (Greenblatt et al. 2010). 
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There has been an increase in studies to predict readmissions to reduce excess costs associated 

with them. Recent studies on predicting readmissions have focused mainly on deep learning 

methods, such as artificial neural networks and convolution neural networks, as they were helpful 

in capturing the plausible non-linear dependencies among independent variables in electronic 

health records (Jamei et al. 2017; Wang et al. 2018). Apart from these, several studies used multiple 

logistic regression, support vector machine, neural networks, tree-based methods, etc., to predict 

readmissions early on and most of them performed better than the traditional standard tools used 

by hospitals like LACE index or HOSPITAL scores (Cui et al. 2018; Schoonover et al. 2014; 

Shadmi et al. 2015; Sushmita et al. 2016; Wang et al. 2018; Xiao et al. 2018; Yu et al. 2015). 

Bayesian analysis was found useful in calculating the probability of the future condition of a 

patient, which includes identifying whether the patient would be readmitted or not (Cai et al. 2016). 

With the implementation of the HRRP, several studies nowadays have focused on creating and 

using models like beta geometric Erlang-2, naïve Bayes, multivariate logistic regression, etc. for 

identifying readmissions specific to a chronic condition or procedure mainly related to heart 

conditions (Bardhan et al. 2015; Shameer et al. 2017; Tabata et al. 2014). Predicting readmissions 

have also been focused on specific populations like the elderly population, pediatric populations, 

etc., where machine learning techniques have proven to be better compared to the standard tools 

like LACE index, and tree-based lasso techniques have shown to provide better interpretability 

(Cotter et al. 2012; Radovanovic et al. 2015). Multivariate Cox proportional hazard model was 

used in identifying time to readmission in patients with repeated hospitalizations due to psychosis 

(Schmutte et al. 2010).  

As there are limited studies on predicting readmission costs, the literature review was also done 

on studies related to predictive modeling of general healthcare costs. Prior studies on healthcare 
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costs showed that the previous cost was helpful in the prediction of the future healthcare cost 

(Bertsimas et al. 2008; Sushmita et al. 2015). Healthcare costs could be accurately predicted using 

data mining techniques (Bertsimas et al. 2008). Linear regression models built using factors, such 

as age, gender, and count measures like number of diagnosis, were helpful in predicting general 

health expenditure (Farley et al. 2006). 

Based on the above literature review, a few research gaps were found. Most of the studies have a 

narrow contextual focus, such as identifying early readmissions or readmissions for a particular 

disease, single hospital, or diseases that are part of the HRRP, or time until readmission. Most of 

these studies also considered readmission based on the standard definition provided by the CMS, 

which considered readmission irrespective of the diagnostic category, i.e., all-cause. Only a few 

of the studies extended the number of days to 90 and 120 for readmission or built predictive models 

focusing on readmission costs. Almost all the studies focused on building models using a single 

hospital or a single region (California, Washington, and North Texas).  

Only one study tried to predict costs associated with readmissions, but it tried only a few methods, 

such as linear regression and tree-based models, for building their predictive models, and the study 

was based on a small-scale dataset from a specific region (Sushmita et al. 2016). So, based on a 

single study that used a small-scale dataset from only one specific region, conclusions cannot be 

drawn on the models that would be best suitable for predicting readmission costs. Also, they did 

not use any sophisticated models, such as deep learning-based models, which has shown to 

improve predictive accuracy and have been found more suitable for healthcare-related data 

(Hammoudeh et al. 2018; Piccialli et al. 2021; Wang et al. 2018). Apart from that, their study did 

not analyze a rich dataset about patients from different institutions or regions, thereby, decreasing 

the scope for external validity of the model for predicting readmission costs. 
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Even though nowadays the focus is mainly on building simpler interpretable models as part of 

explainable artificial intelligence (XAI), restricting models to use glass box-based models will 

cause limitations in scenarios, especially where simpler methods might not capture the intricacies 

within the data and perform badly. Prior studies have shown that the machine learning algorithms 

in healthcare population-based research suffer from dataset drift as the input data is created from 

non-stationary units and they have issues to be generalized for a newer population as there could 

be differences in administrative practices (Kelly et al. 2019). Deep learning-based models have 

shown to work well with large datasets as more data would help it learn effective representations 

of the outcome variable.  

Due to the above-mentioned reasons, the analysis for this essay was done on a nation-wide 

readmission dataset as it could help to generalize the results by taking into account the problem of 

dataset drift and varying administrative practices across different institutions or regions. In 

addition, given that electronic health data are susceptible to having the number of features to 

exceed the number of observations or having correlated features, voluminous, incomplete, and 

imbalanced, a need for using modern predictive methods that could handle such inherent problems 

in the data arises (Jovanovic et al. 2016).  

2.3. Methodology 

2.3.1. Dataset and its Description 

Nationwide Readmission Database (NRD) by AHRQ was used for this essay (Databases 2013). 

The dataset includes individuals from the entire United States of America who were admitted for 

the year 2013. The total number of records in the dataset was 14,325,172. It includes both with 

and without repeat hospital visits. Each admission record consists of demographic (gender, age, 
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median household income, etc.), clinical information (diagnosis, procedure used, etc.), 

comorbidities (hypertension, diabetes, depression, etc.), hospital details (bed size, teaching or non-

teaching hospital, etc.), severity details (All Patient Refined Diagnostic Related Groups i.e., APR 

DRG for severity of illness, risk of mortality, etc.), cost-related and administrative-related data 

(length of stay, cost billed by hospitals, etc.). Variables used in this essay along with their 

descriptive statistics and description are given in the appendix (Appendix B). 576,701 and 

1,091,580 individuals were identified for each of the identified readmission categories, i.e., RSDC 

and RADC, respectively.  

The dataset has close to 285 mutually exclusive categories of ICD-9 codes for grouping diagnosis 

and procedures related to patients that could be used for adjustment of risks. Prior studies have 

shown that aggregated higher-level grouping of diseases were sufficient in providing better results 

compared to going to a specific disease at the lowest level of hierarchy in case of pediatric 

readmissions (Radovanovic et al. 2015). 1 

Before going into the next section, the terms previous admission cost, sum of previous admission 

costs, and average of previous admission costs are defined as these terms differ with respect to 

RSDC and RADC. The previous admission cost for RSDC is defined as the cost billed by the 

hospital for only previous last admission having same MDC. The previous admission cost for 

RADC is defined as the cost billed by the hospital for only previous admission irrespective of the 

MDCs. The rehospitalization cost or readmission cost or total charge for both RSDC and RADC 

is defined as the cost billed by the hospital associated with one readmission visit with the 

 
1. As per the CMS, Diagnostic Related Groups (DRG) are grouped under Major Diagnostic Categories (MDC) formed 

focusing on a specific medical specialty and are mutually exclusive to make them clinically consistent. They are built 

based on principal diagnosis codes (ICD9-Codes in this dataset). In this context, MDC codes are considered, which 

are grouped at the higher level rather than going to the specific DRG payment codes. 
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readmission criteria based on the definitions of RSDC and RADC, respectively. The sum of 

previous admission costs for RSDC is defined as the total cost billed by the hospital for all the 

previous admissions having same MDC. The sum of previous admission costs for RADC is defined 

as the total cost billed by the hospital for all the previous admissions irrespective of the MDCs. 

The average of previous admission costs for RSDC is defined as the average cost billed by the 

hospital for all the previous admissions having same MDC. The average of previous admission 

costs for RADC is defined as the average cost billed by the hospital for all the previous admissions 

irrespective of the MDCs. 

2.3.2. Models Used and Their Description 

Before going to the results, a brief overview about the learning algorithms used for this study and 

the rationale behind selecting these specific models for analysis is given. Initially, a few 

experiments were run by splitting the data randomly (80% for training and 20% for testing) several 

times and the following were experimented: 

• Having the baseline model that gives the predicted value of the readmission cost for all 

individuals as the overall average cost of previous admissions for all individuals with 

respect to RSDC and RADC.  

• Having the baseline model that gives the predicted value of the readmission cost for all 

individuals as the overall average cost of readmissions for all individuals with respect to 

RSDC and RADC.  

• Having the baseline model that gives the predicted value of the readmission cost for all 

individuals as the ratio of average of readmission costs to the average of the previous 

admission costs and then multiply it with the previous admission cost with respect to RSDC 

and RADC. 
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• Running the model using average of the previous admission cost with respect to RSDC and 

RADC as an independent variable. 

• Running the model using sum of the previous admission cost with respect to RSDC and 

RADC as an independent variable. 

• Running the model by just using the last previous admission cost with respect to RSDC 

and RADC as an independent variable. 

Based on the above experiments, it was found that linear regression performed better than baseline 

models for both RSDC and RADC. Similarly, it was also found that using average of the previous 

admission cost with respect to RSDC and RADC as an independent variable performed slightly 

better compared to using sum of the previous admission cost and only the last previous admission 

cost with respect to RSDC and RADC as independent variables. So, for the actual analysis, I 

considered the below models for both RSDC and RADC with the average of previous admission 

costs as one of the independent variables (All the numeric independent variables were scaled 

except for the average of previous admission costs for which I applied log transformation. Log 

transformation was also applied to the readmission cost, i.e., dependent variable): 

• Linear Regression (Baseline Model) 

Rationale: It is a simple and most widely used method in majority of the studies for 

modeling general healthcare costs (Farley et al. 2006; Leigh et al. 2005; Sushmita et al. 

2015). 

• Lasso Regression, Elastic Net Regression, and Ridge Regression 

Rationale: In the machine learning literature, regularization techniques are suggested to 

prevent overfitting and multicollinearity by placing a constraint on the loss function. It 

could either add the penalty as a sum of absolute value of coefficients (L1 penalty) in case 
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of Lasso or as a sum of squared value of coefficients in case of Ridge regression (L2 

penalty).  Lasso gives us sparse solutions by shrinking the estimates to zero whereas ridge 

regression shrinks the estimates near zero. As explained in the literature review section, 

electronic health data are complex in nature with issues of multicollinearity, etc., so I 

considered applying regularization techniques for predicting readmission costs. Another 

advantage of regularization technique is that the created models are interpretable. Elastic 

Net regression takes the advantage of both Lasso and Ridge regression by linearly 

combining both L1 and L2 penalties. 

• Extreme Gradient Boosting (XGBoost) 

Rationale: It is very popular and currently the most efficient gradient-boosted trees 

algorithm. Its performance for capturing both linear and non-linear relationships has made 

it one of the widely used algorithms. Prior studies have also shown tree-based models to 

be beneficial (Sushmita et al. 2016). So, I included this tree-based model for predicting 

readmission costs to take care of any non-linearity that exists. 

• Deep learning model using Multilayer Perceptron (MLP) 

Rationale: As seen in the literature review section previously, deep learning-based models 

are found to be beneficial with regard to electronic health related data. As the dataset is 

tabular, I used deep learning model using MLP instead of convolution neural network 

(CNN). I did not use recurrent neural network (RNN) as majority of the records in the 

dataset for both RADC or RSDC had only one or two readmissions. MLP with shallow 

neural nets will have either one or two hidden layers whereas deep neural nets use three or 

more hidden layers. MLP hyper-parameter tuning was performed based on methods used 

in prior studies; the values used in this application are shown in Table 1. Even though 
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having the number of hidden layers as one, two or three performed better in comparison to 

linear regression, I increased the number of hidden layers to 4 to get fine-tuned low error 

values and fewer number of epochs with consistent error values for majority of the epochs. 

Table 1 Deep Learning MLP Configuration Details 

Configuration Value 

Number of hidden layers 4 

Number of neurons in first hidden layer 80 

Number of neurons in second hidden layer 60 

Number of neurons in third hidden layer 50 

Number of neurons in fourth hidden layer 20 

Activation functions used in hidden layers ReLU 

Final activation function Linear 

Batch type Minibatch 

Mini-batch (weights get updated after each mini-batch) 30 

Momentum 0.9 

Learning rate 0.0001 

Number of epochs (1 epoch = 1 forward pass + 1 backward pass) 200 

                       

2.3.3. Performance Measures Used 

Eight verification statistics were used to measure the performance of the methods used. I define 𝑛 

as the total number of observations, i.e., patients, 𝑦𝑖  as the actual value of readmission costs 

incurred by patients, and ŷ𝑖 as the predicted values of readmission costs. Then, the measures are 

provided as follows: 

Mean Absolute Percent Error (MAPE): MAPE measures the error size in terms of percentage. 

𝑀𝐴𝑃𝐸 = ∑ ((
|ŷ𝑖 − 𝑦𝑖|

|𝑦𝑖|
))

𝑛

𝑖=1

∗ 100 
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Root Mean Squared Error (RMSE): RMSE gives the standard deviation of the residual, which is 

the difference between actual and predicted values. 

𝑅𝑀𝑆𝐸 = √(
∑ (ŷ𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
) 

Mean Absolute Error (MAE): MAE gives the average value of errors for a given set of predictions. 

𝑀𝐴𝐸 =
∑ |ŷ𝑖 − 𝑦𝑖|

𝑛
𝑖=1

𝑛
 

Relative Absolute Error (RAE): RAE compares the total absolute error of the model to the total 

absolute error of the simplest model. 

𝑅𝐴𝐸 =
∑ |ŷ𝑖 − 𝑦𝑖|𝑛

𝑖=1

∑ |𝑚𝑒𝑎𝑛(𝑦𝑖) − 𝑦𝑖|𝑛
𝑖=1

 

Root Relative Squared Error (RRSE): RRSE gives the relative comparison of what it would have 

been if a naïve model was used. 

𝑅𝑅𝑆𝐸 =
√∑ |ŷ𝑖 − 𝑦𝑖|2𝑛

𝑖=1

√(∑ |𝑚𝑒𝑎𝑛(𝑦𝑖) − 𝑦𝑖|2)𝑛
𝑖=1

 

Normalized Root Mean Square Error (NRMSE1): NRMSE1 is used to compare models with 

different scales. 

𝑁𝑅𝑀𝑆𝐸1 =
𝑅𝑀𝑆𝐸

max(𝑦𝑖) − min(𝑦𝑖)
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Normalized Root Mean Square Error (NRMSE2): NRMSE2 is used to compare models with 

different scales. 

𝑁𝑅𝑆𝑀𝐸2 =
𝑅𝑀𝑆𝐸

∑ 𝑦𝑖
𝑛
𝑖=1

 

Mean Absolute Deviation (MAD): MAD describes how the values are spread away from the mean. 

𝑀𝐴𝐷 =
𝑀𝐴𝐸

∑ 𝑦𝑖
𝑛
𝑖=1

 

The lower the MAPE, RMSE, MAE, RAE, RRSE, NRMSE1, NRMSE2, and MAD, the better is 

the fit of the model. 

2.4. Results 

Initially, I analyzed the distribution of costs (in percentage) contributed by individuals (in 

percentage) by giving different criteria for readmissions within RADC and RSDC. From Table 2 

row 2 (at least one readmission without any condition on the number of days) (excluding column 

headings), it is clear that 48% of healthcare costs came from 21% of individuals who got 

readmitted without considering the number of days to readmission for both RADC and RSDC. 

Similarly, from row 3 (excluding column headings) of Table 2, it is also clear that even if the 

number of days to readmissions is considered as 30 days, 11% of the individuals contributed 

towards 31% of the cost for RADC and 6% of the individuals contributed towards 17% of the cost 

for RSDC. 
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Table 2 Distribution of Individuals and Their Contribution Towards Healthcare Cost 

Distribution Category RADC RSDC 

% of 

individuals 

% of cost % of 

individuals 

% of cost 

Without any readmissions 79 52 79 52 

At least one readmission 

without any condition on 

number of days 

21 48 21 48 

At least one readmission and 

having number of days less than 

or equal to 30 days 

11 31 6 17 

At least two readmissions and 

having at least one of the 

records with number of days 

less than or equal to 30 days 

6 22 3 13 

At least two readmissions and 

having at least two of the 

records with number of days 

less than or equal to 30 days 

0.43 3.39 0.17 1.19 

At least three readmissions and 

having at least one of the 

records with number of days 

less than or equal to 30 days 

3 14 2 10 

At least three readmissions and 

having at least three of the 

records with number of days 

less than or equal to 30 days 

0.05 0.42 0.02 0.17 

 

My further analysis on the dataset showed that the cost associated with readmissions varied from 

the initial admission cost for most of the diagnosis (Figure 1). The cost of readmissions was found 

to be higher compared to the previous admission cost for 49% of individuals for RADC category. 

Among that, the cost associated with readmissions was found to be thrice compared to the previous 

admission cost for nearly 15% of individuals. Similarly, the cost of readmission was found to be 

higher compared to the previous admission cost for 53% of individuals for RSDC category. Among 

that, the cost associated with readmissions was found to be thrice compared to the previous 

admission cost for nearly 16% of individuals. I also observed that the number of readmissions 
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decreased for RSDC in comparison with RADC when the number of days was considered as a 

criterion for readmissions. 

Next, I identified the major diagnostic categories having the highest number of readmissions for 

both RADC and RSDC. The two groups are quite similar in terms of MDCs having the highest 

number of readmissions. The categories with the highest number of readmissions for both RSDC 

and RADC are shown in Table 3 in descending order. 

Table 3 MDCs Having the Highest Number of Readmissions 

RSDC RADC 

Diseases and Disorders of the Circulatory 

System 

Diseases and Disorders of the Circulatory 

System 

Diseases and Disorders of the Respiratory 

System 

Diseases and Disorders of the Respiratory 

System 

Diseases and Disorders of the Digestive 

System 

Diseases and Disorders of the Digestive 

System 

Infectious and Parasitic DDs (systemic or 

unspecified sites) 

Pregnancy, Childbirth and Puerperium 

Diseases and Disorders of the Kidney and 

Urinary Tract 

Mental Diseases and Disorders 

Diseases and Disorders of the Nervous 

System 

Diseases and Disorders of the Nervous 

System 

 

Next, I analyzed if the average readmitted cost for each of the MDCs for both RSDC and RADC 

varied from the previous admission cost (Figure 1(a) and 1(b)). In case of RSDC, the average 

readmitted cost was higher compared to the average of previous admitted cost for 80% of the 

MDCs, whereas it was only 52% of the MDCs for RADC.  
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Figure 1 Comparison of Average Previous Admission Costs and Average Readmission Costs 

 

Figure 1(a) RSDC 

 
 

Figure 1(b) RADC 

 
 

Based on the above analysis, I see that readmitted costs varied from previous admission costs at 

both individual and aggregated levels. Next, I try applying various, including state-of-the-art, 

predictive methods to model costs associated with readmissions at an individual level for both 

RSDC and RADC. One 10-fold cross validation was used, and the test results are shown in Table 

4(a) for RSDC and Table 4(b) for RADC. The descriptive statistics of each fold of training and 

testing is included in Appendix D and Appendix E. The results of each fold for both training and 

testing for RSDC and RADC are included in the Appendix (Appendix F to U).       
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Table 4 Test Results Based on Different Performance Measures 

 

Table 4(a) Test Results of RSDC 

Model 

MAPE 

(%) RMSE MAE RAE RRSE NRMSE1 NRMSE2 MAD 

Linear Regression 4.2679 0.5641 0.4313 0.5276 0.5456 0.0553 0.0549 0.0419 

Lasso 4.2691 0.5642 0.4314 0.5276 0.5457 0.0553 0.0549 0.0419 

Elastic Net 4.2692 0.5642 0.4314 0.5277 0.5457 0.0553 0.0549 0.0419 

Ridge 4.2994 0.5651 0.4339 0.5309 0.5466 0.0554 0.0549 0.0422 

XGBoost 14.6135 1.5413 1.5014 1.8368 1.4908 0.1512 0.1499 0.1460 

Deep Learning  3.2982 0.4374 0.3349 0.4098 0.4230 0.0429 0.0425 0.0325 

 

Table 4(b) Test Results of RADC 

Model 

MAPE 

(%) RMSE MAE RAE RRSE NRMSE1 NRMSE2 MAD 

Linear Regression 4.2076 0.5582 0.4265 0.5368 0.5538 0.0546 0.0541 0.0413 

Lasso 4.2084 0.5582 0.4266 0.5369 0.5539 0.0546 0.0541 0.0414 

Elastic Net 4.2085 0.5582 0.4266 0.5369 0.5539 0.0546 0.0541 0.0414 

Ridge 4.2398 0.5591 0.4293 0.5309 0.5548 0.0547 0.0542 0.0416 

XGBoost 14.5618 1.5387 1.5049 1.8893 1.5266 0.1510 0.1492 0.1455 

Deep Learning  3.2175 0.4265 0.3273 0.4119 0.4232 0.0420 0.0413 0.0317 

 

 

 

Figure 2 Model Comparisons Based on Various Metrics 

 

Figure 2(a) Comparison of All Models Based on All Metrics Except MAPE for RSDC 
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Figure 2(b) Comparison of All Models Based on All Metrics Except MAPE for RADC 

 
 

 

 

 

Figure 2(c) Comparison of All Models Based on MAPE for RSDC 
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Figure 2(d) Comparison of All Models Based on MAPE for RADC 

 
 

 

From Table 4(a), Table 4(b), and Figure 2, I find that the deep learning-based model performed 

the best for all performance metrics for both RADC and RADC. Some other observations were 

also made from the results. Firstly, models using regularization techniques (lasso regression, 

elastic net regression, and ridge regression) performed quite similar to linear regression. Secondly, 

XGBoost performed the worst in comparison with all other models for this application. 

I also performed paired student t-test for each of the metrics to check if the difference between the 

deep learning model and linear regression model is statistically significant and found that the 

difference in every metric is significant (p< 0.05).  

2.5. Contributions 

This study makes two important contributions. First, to the best of my knowledge, this would be 

the first study to apply generalization techniques and deep learning-based models for predicting 

readmission costs. Deep learning-based models have proven useful in modeling health-related 

data. Prior studies, even if they predicted readmission costs, used only a few methods, such as 
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limited features, whose applicability in different geographies is questionable, as they were based 

on hospitals from a specific region, which might have the issue of dataset drift as explained before.  

Second, previous studies that predicted readmitted costs used only the all-cause definition of 

readmission. This study tried to redefine readmission using MDCs instead of DRGs by giving 

different criteria to MDC to see what kind of models would be suitable for predicting readmission 

costs even if the criteria for readmission changes, as readmission policies vary from one nation to 

another. This could help with generalization to know what kind of models are best suitable for 

predicting readmission costs even if readmission policies vary. 

2.6. Implications 

This study has several practical implications. First, this study would help individuals to plan their 

finances. If an individual has an estimate of the amount billed by the hospital for his/her future 

readmission, he/she can opt for the right insurance plan and the amount to be deposited to Health 

Savings Account (HSA). HSA is a tax-free savings account to pay for qualified medical expenses.  

If an individual opts for HSA combining with High Deductible Health Plan (HDHP), their 

premium will go down significantly. This would help individuals to save costs.  

Second, predicting readmission costs could help hospitals with their financial planning. Under the 

Affordable Care Act, non-profit hospitals are obliged to provide a financial assistance policy and 

emergency care policy to low-income groups. Predicting readmission costs can help hospitals 

equip themselves better in terms of providing financial support to individuals who cannot afford 

readmission costs by planning with the loan providers armed with less risky estimates for 

readmission costs. Hospitals can also prepare their patients in advance about future costs that 

would be incurred by them. This would help patients in planning their own finances.  
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Third, this study can potentially be useful for healthcare policy makers. For example, after 

accurately predicting readmission costs at the individual level, the individuals can be put into cost 

buckets which would in turn be helpful for policy makers to identify high-cost readmitted 

individuals. Based on that, policy makers could implement new policies or modify existing policies 

related to readmissions.    

2.7. Conclusions, Limitations, and Future Research 

The readmission cost is one of the main contributors of the healthcare cost. However, the majority 

of previous studies have focused mainly on predicting early readmissions. There have been mixed 

reviews after policies like HRRP have been implemented, making it inconclusive if the healthcare 

cost has decreased. The goal of this study was to see if readmission costs, which showed to vary 

from initial admission costs, could be accurately predicted. Results revealed that deep learning-

based model performed the best for all performance measures.  

This study includes data only from a single year. So, if an individual is readmitted during the month 

of January, then the individual is considered as an initial admission as the starting month of the 

dataset would be January. This dataset cannot be linked to any other year or any other external 

database. Besides, in this study, I have focused only on readmission costs.  

Modeling readmission likelihood and the length of stay are also important in the context of 

readmissions as these outcomes have influence on one another. So, joint modeling of readmission 

costs along with readmission likelihood and the length of stay might be more beneficial instead of 

focusing only on modeling readmission costs. In this essay, I had identified readmissions 

belonging to RSDC and RADC. For my future analysis, I will also deploy the term readmission as 

Readmission with Different Major Diagnostic Category (RDDC). RDDC will be defined as an 
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admission to a hospital within 30 days of discharge from the same or another hospital with the 

cause of readmission being different. I will then build predictive models for RDDC. After that, I 

will compare the built predictive models for RDDC with the predictive models that were built for 

RSDC. Apart from that, in this essay, I have considered the standard defined categories of major 

diagnostic category as the cause of readmission. The standard defined categories of major 

diagnostic category belong to either a single organ system or an etiology. For my future study, I 

will consider categories that are correlated in terms of causing the set of related health 

complications that eventually lead to readmissions. These categories may span across multiple 

major diagnostic categories. I expect that such recategorizations should help in better prediction 

of costs. The recategorization in terms of correlated categories would be a significant contribution 

in the field of healthcare economics.  
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CHAPTER 3 

Essay 2- A Multitask Learning Approach 

for Heterogenous Tasks  

With Specific Sub-population 

 

3.1. Introduction 

Digital revolution was brought into the healthcare industry by passing of the Health Information 

Technology for Economic and Clinical Health Act (HITECH) by the Congress as part of the 

American Recovery and Reinvestment Act of 2009. Financial incentives worth $19.2 billion were 

allocated for physicians and hospitals to implement electronic health record (EHR). The healthcare 

cost has continued to increase tremendously irrespective of the various efforts taken by the 

government to modernize the United States (U.S.) healthcare system. As per the data shared by 

the Center for Medicaid and Medicare Services (CMS), the national health expenditure reached 

$3.8 trillion in the year 2019 and has been projected to reach $6.2 trillion by 2028. It accounted 

for 17.7% of the nation’s Gross Domestic Product (GDP) (Keehan et al. 2020). 

One of the major contributors of these rising healthcare costs is attributed to readmissions. 

According to CMS, a readmission is defined as an admission to a hospital within 30 days of 

discharge from the same or another hospital irrespective of the cause of readmission (Commission 

2007). In this essay, a readmission is defined as an admission to a hospital within 30 days of 

discharge from the same or a different hospital with the cause of readmission being the same. The 

cause of readmission could be grouped either based on diagnostic related groups (DRGs) or major 

diagnostic category (MDC). MDC is considered as the cause of readmission in this essay. 

Medicare spending for a year was $56,856 (60% higher) for individuals who were readmitted in 

comparison with non-readmitted individuals who only spent $35,365 in 2000-2011 (Zheng et al. 

2019). Readmission policies vary from country to country. For example, readmission policies of 
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Germany focused mainly on preventing unintended readmissions of individual patients due to the 

introduction of DRG-based payments whereas readmission policies of U.S., Denmark, and 

England focused on both improvement in quality and readmission rates (Kristensen et al. 2015). 

Readmissions have also been identified as a measure of burden of illness instead of quality of care 

(Ansari et al. 2018). Prior studies have analyzed the relationship between the length of stay (LOS) 

and readmission rates as a reduction in LOS was found to be associated with an increase in 

unintended readmission rates after pancreatectomy (Carey and Lin 2014; Kohlnhofer et al. 2014; 

Mazmudar et al. 2018). The LOS is commonly used as an indicator for hospital performance and 

have also been studied with its relation to quality of care (Thomas et al. 1997).  

With the increasing interest in big data and analytics and the sparsity of predictive analytics in the 

Information Systems literature, the use of innovative methods for predictive analytics has become 

increasingly relevant in Information Systems research (Shmueli and Koppius 2011). Machine 

learning techniques have been widely used in accurately predicting readmissions, general 

healthcare costs, length of stays, etc., as they help to improve diagnosis and prognosis, thus leading 

to improvement in healthcare outcomes (Bardhan et al. 2015; Bertsimas et al. 2008; Hachesu et al. 

2013; Hon et al. 2016; Shams et al. 2015). However, most of these models focused on training 

single tasks independently and not training them simultaneously. Multitask learning-based 

methods improve generalization by training related tasks in parallel, thereby creating a shared 

representation (Caruana 1997). Even though a single-task learning may perform reasonably well, 

it does not consider the information that can be obtained from other related tasks, which might be 

helpful in learning better outcomes through multitask learning (Caruana 1997). 

Deep learning, regularization, and Bayesian-based approaches can be used for multitask learning 

(Zhang and Yang 2021). Even though deep learning-based models perform superior, however, 
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nowadays more emphasis is on explainable artificial intelligence (XAI) to convert black box 

models to glass models using model-specific or model-agnostic approaches, especially in the 

medical domain (Arrieta et al. 2020; Holzinger et al. 2017; Rai 2020). So, in this essay, I focus on 

using model-specific XAI, i.e., regularization-based multitask learning, to build models that could 

also be interpretable, rather than just focusing on improving the predictive accuracy. Only limited 

studies have used multitask learning in Information Systems research, and these studies have only 

used it for modeling homogenous tasks  (classification) (Lin et al. 2017). In this essay, I define TI 

as the set of both readmitted and non-readmitted individuals. Similarly, I define RI as the subset 

of only readmitted individuals. Also, in this essay, heterogenous tasks means prediction tasks of 

both classification and regression. Predicting readmissions would involve TI whereas predicting 

readmission costs and the readmitted length of stay would involve RI. I use the term specific sub-

population in this essay as one task involves TI whereas other two tasks involve RI.  

In this essay, the following questions are addressed: 

• How can heterogenous tasks with specific sub-population be modeled jointly? 

• How did the joint model perform in comparison with single-task models for predicting 

readmissions, readmission costs, and the readmitted length of stay for different MDCs? 

• What common predictor variables were chosen by the joint model to predict readmissions, 

readmission costs, and the readmitted length of stay for different MDCs?  

The rest of the paper is organized as follows. In the next section, I review the existing literature 

related to predictive analytics in the context of readmissions, healthcare costs, and the length of 

stay, and explain the research gaps. Then, I explain the methodology used in this study and report 

on the results that were found. Finally, I discuss the implications, contributions, limitations, and 

directions for future research.  
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3.2. Literature Review 

U.S. has implemented readmission policies to improve quality of care and reduce excess 

readmission rates. For example, the Hospital Readmission Reduction Program (HRRP) was 

established by the CMS under the Affordable Care Act beginning October 2012. It imposes 

penalties on hospitals with excess  all-cause readmissions within 30-days for the following specific 

chronic conditions (McIlvennan et al. 2015): 

* Acute Myocardial Infarction (AMI)  

* Heart Failure (HF) 

* Pneumonia  

* Chronic Obstructive Pulmonary Disease (COPD)  

* Elective Primary Total Hip Arthroplasty and/or Total knee Arthroplasty (THA/TKA) 

* Coronary Artery Bypass Graft (CABG) surgery 

However, the analysis after the implementation of the HRRP has shown mixed results. For 

example, some studies have found HRRP to be successful in decreasing readmissions whereas 

others have indicated an increase in mortality (Wadhera et al. 2018; Wasfy et al. 2017). 

Predictive analytics for methods specific to readmissions, health care costs, length of stays, and 

multitask learning in healthcare can be broadly classified into different areas, namely, predicting 

all-cause 30 days readmissions for all/specific population, predictions specific to general 

healthcare/readmission costs, predictions specific to the length of stay, and methods used by the 

existing studies for multitask learning in healthcare.  
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Prior review study on risk prediction models for hospital readmissions showed that most of the 

current readmission risk prediction models did not perform well and more efforts are required to 

improve the predictive performance on readmissions (Kansagara et al. 2011). Studies have used 

logistic regression, support vector machines, neural networks, and tree-based methods to predict 

early readmissions (Cui et al. 2018; Schoonover et al. 2014; Shadmi et al. 2015; Sushmita et al. 

2016; Wang et al. 2018; Xiao et al. 2018; Yu et al. 2015). These methods outperformed standard 

tools used by hospitals, such as LACE index and HOSPITAL scores (Sushmita et al. 2016). Recent 

models focus on creating models that not only have high accuracy but are also interpretable (Xiao 

et al. 2018). Studies trying to identify time to readmissions used Cox proportional hazard models 

(Schmutte et al. 2010). The above-mentioned studies were either related to an entire population or 

specific to a sub-population having congestive health failure, diabetes, psychosis, etc.   

Previous studies have shown that data mining techniques were highly successful in predicting 

general healthcare costs (Bertsimas et al. 2008). Supervised learning techniques, including linear 

regression, lasso, gradient boosting, random forest, M5 model tree, and classification and 

regression tree (CART), have been used for predicting healthcare costs (Bertsimas et al. 2008; 

Duncan et al. 2016; Frees et al. 2013; Kuo et al. 2011; Morid et al. 2017; Sushmita et al. 2015). 

Prior healthcare costs have been found to be a good predictor for future healthcare costs (Sushmita 

et al. 2015). There are limited studies that focused on predicting readmission costs. Regression and 

M5 tree-based models have been used to predict readmission costs (Sushmita et al. 2016).  

Supervised learning techniques, such as multiple linear regression, support vector machines, lasso 

multitask learning, and random forest, have been used to predict the long-term vs short-term length 

of stay of diabetic patients (Morton et al. 2014). Random forest has been found to be helpful in 

predicting the prolonged length of stay of general surgery patients (Chuang et al. 2018). Semi-
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supervised techniques have also been found successful in predicting the length of stay with high 

accuracy compared to supervised learning techniques (Livieris et al. 2018). Regression models 

have been successful in predicting the length of stay at pediatric emergency departments (Combes 

et al. 2014).  

Multitask learning with a Bayesian approach has been used for risk profiling in chronic care and 

diabetes (Lin et al. 2017; Liu et al. 2019). Deep learning-based multitask learning approaches have 

been used to predict patient mortality (Si and Roberts 2019; Suresh et al. 2018). Multitask learning 

has also been used to predict mortality of diverse rare diseases (Liu et al. 2020). 

Based on the literature review, a few research gaps were identified. First, there are very limited 

studies related to prediction of readmission costs (Sushmita et al. 2016). Second, those existing 

studies have not jointly learned the predictive models for readmissions, readmission costs, and the 

readmitted length of stay. Third, even though multitask learning methods have been studied 

extensively in predictive analytics, to the best of my knowledge, there is no specific multitask 

learning-based method that focused on heterogenous tasks having specific sub-population. Also, 

there are very limited studies related to using multitask learning for heterogenous tasks (they did 

not have specific sub-population with respect to the tasks)  (Yang et al. 2009). 

3.3. Methodology 

3.3.1. Dataset 

Healthcare Cost and Utilization Project’s Nationwide Readmission Database by Agency for 

Healthcare Research and Quality was used for analysis in this essay (Databases 2013). The total 

number of records for the year 2013 in the dataset was 14,325,172. Each admission record consists 

of demographic (gender, age, median household income, etc.), clinical information (diagnosis, 

procedure used, etc.), severity information (All Patients Refined Diagnosis Related Groups, i.e., 
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APR DRG in terms of severity of illness, mortality, etc.), hospital details (bed size, teaching or 

non-teaching hospital, etc.), cost-related and administrative-related data (length of stay). Variables 

along with their descriptions used in this essay are given in Appendix V (Table 27). 

3.3.2. Models 

3.3.2.1. Baseline Models 

The following models were used as the baseline models: 

• Logistic regression for predicting readmissions  

• Linear regression for predicting readmission costs 

• Linear regression for predicting the length of stay 

3.3.2.2. Joint Model 

I define 𝑠 as the index of the readmission task, 𝑘 as the index of the cost billed by hospitals or the 

length of stay task, 𝑛𝑠 as the total number of individuals, i.e., including both readmitted and non-

readmitted, 𝑛k as the total number of readmitted individuals, 𝑗 as the index of individuals in 𝑛𝑠, 𝑙 

as the index of individuals in 𝑛k,  𝑌1 as whether an individual from 𝑛𝑠 was readmitted or not, 𝑌2 

as the cost billed by hospitals for individuals from 𝑛k, 𝑌3 as the length of stay of an individual 

from 𝑛k, 𝑊1 as the coefficient vector of the readmission task, 𝑊2  as the coefficient vector for the 

task of costs billed by hospitals, 𝑊3 as the coefficient vector for the length of stay task,  𝑋 as the 

vector of predictors, 𝐶1 as the constant of the readmission task, 𝐶2 as the constant for the task of 

costs billed by hospitals, and 𝐶3 as the constant for the length of stay task.  

 

 



36 

 

The loss function for predicting the readmission task (𝐿𝑟) is given as: 

𝐿𝑟 =
1

𝑛𝑠
∑ log (1 + 𝑒−𝑌1𝑠,𝑗(𝑋𝑠,𝑗𝑊1𝑠

𝑇+𝐶1𝑠))
𝑛𝑠

𝑗=1
 

 

The loss function for predicting the readmission cost (𝐿𝑟𝑐) is given as: 

𝐿𝑟𝑐 =
1

𝑛𝑘
∑ ||𝑌2𝑘,𝑙 −  𝑋𝑘,𝑙𝑊2𝑘

𝑇 −  𝐶2𝑘||2
2

𝑛𝑘

𝑙=1

 

The loss function for predicting the readmitted length of stay (𝐿𝑟𝑙) is given as: 

𝐿𝑟𝑙 =
1

𝑛𝑘
∑ ||𝑌3𝑘,𝑙 − 𝑋𝑘,𝑙𝑊3𝑘

𝑇 −  𝐶3𝑘||2
2

𝑛𝑘

𝑙=1

 

The objective loss function of the model 𝐿𝑡 (i.e., combined loss function for all three tasks) is 

formulated by combining the three empirical losses:  

𝐿𝑡 =  𝐿𝑟  + 𝐿𝑟𝑐 + 𝐿𝑟𝑙 

Joint feature selection with multitask learning methods has been used previously for modeling 

homogenous tasks (either classification or regression tasks) to create joint sparse representations 

(Cao et al. 2019; Evgeniou and Pontil 2007; Liu et al. 2012) . For modeling the joint heterogenous 

(classification and regression) problems for specific sub-population, multitask learning with joint 

feature selection is used by placing constraints on the loss function as follows: 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =  min (L𝑡) + 𝜆1𝛺(𝑊) +  𝜆2||𝑊||𝐹
2   

 

where   

𝑡 is the number of tasks, i.e., 3 (readmission, readmission cost, and readmitted 

length of stay), 
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𝜆1 illustrates the strength of the relatedness of tasks, i.e., effect of cross-task 

regularization, 

𝜆2 is the penalty of quadratic form of 𝑊 for regularization, 

𝛺(𝑊) is the ||𝑊||2,1 used to create group sparse structure. 

The matrix 𝑊 has row values corresponding to features and column values corresponding to tasks.  

The ||𝑊||2,1 penalizes the (2,1) norm of the matrix 𝑊. The (2,1) norm of the matrix 𝑊 is obtained 

by first applying the 2 −norm (across the tasks) of the rows 𝑤𝑓   corresponding to feature 𝑓 of the 

matrix 𝑊 and then applying 1 norm of the vector by adding the absolute sum of the coefficients 

of the matrix 𝑊 (Evgeniou and Pontil 2007) . This ensures that variables that are consistently 

important to all three tasks (readmissions, readmission costs, and the readmitted length of stay) are 

selected. Nesterov’s accelerated gradient descent method was used as the solver. 

3.3.3. Performance Measures Used 

Three verification statistics were used to evaluate the performance of the model. I define 𝑛 as the 

total number of observations, i.e., including both readmitted and non-readmitted 

individuals/patients, 𝑛i as the total number of readmission observations, i.e., only readmitted 

individuals/patients, 𝑦𝑖1 as whether an individual 𝑖 was readmitted or not, 𝑦𝑖2 as the actual value 

of the cost billed by hospitals for the readmitted individual 𝑖, 𝑦𝑖3 as the actual value of the length 

of stay of the readmitted individual 𝑖, ŷ𝑖1 as whether an individual 𝑖 was predicted as being 

readmitted, ŷ𝑖2 as the predicted value of the cost billed by hospitals for the readmitted individual 

𝑖, and ŷ𝑖3 as the predicted value of the length of stay for the readmitted individual 𝑖. Then, the 

measures are as follows: 
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Misclassification rate for readmission:  

𝑀𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =
1

𝑛
∑ 1(𝑦𝑖1≠ŷ𝑖1)

𝑛

𝑖=1

 

Root Mean Squared Error (RMSE) for readmitted cost: 

𝑅𝑀𝑆𝐸 = √(
∑ (ŷ𝑖2 − 𝑦𝑖2)2𝑛𝑖

𝑖=1

𝑛𝑖
) 

Mean Absolute Error (MAE) for readmitted cost:  

𝑀𝐴𝐸 =
∑ |ŷ𝑖2 − 𝑦𝑖2|𝑛𝑖

𝑖=1

𝑛𝑖
 

Root Mean Squared Error (RMSE) for readmitted length of stay: 

𝑅𝑀𝑆𝐸 = √(
∑ (ŷ𝑖3 − 𝑦𝑖3)2𝑛𝑖

𝑖=1

𝑛𝑖
) 

Mean Absolute Error (MAE) for readmitted length of stay:  

𝑀𝐴𝐸 =
∑ |ŷ𝑖3 − 𝑦𝑖3|𝑛𝑖

𝑖=1

𝑛𝑖
 

3.4. Results 

For my analysis, I considered top three major diagnostic categories belonging to readmissions with 

same major diagnostic categories identified in Essay 1. They are listed below: 

• Diseases and Disorders of the Circulatory System 

• Diseases and Disorders of the Respiratory System 

• Diseases and Disorders of the Digestive System 



39 

 

I applied both baseline models and the joint model for the above three major diagnostic categories. 

I define the previous admission cost as the cost billed by the hospital for the previous admission. 

I define the readmission cost as the cost billed by the hospital for the admission when the 

readmission occurred within 30 days belonging to the same major diagnostic category. I define the 

previous admitted length of stay as the length of stay for the previous admission. I define the 

readmitted length of stay as the length of stay when the readmission occurred within 30 days 

belonging to the same major diagnostic category. Selective feature scaling was applied on all 

numeric independent variables, except for the previous admission cost and the previous admitted 

length of stay. Log transformation was applied on the previous admission cost and the readmission 

cost. Log (previous admitted length of stay + 1) transformation was applied on the previous 

admitted length of stay, and log (readmitted length of stay + 1) was applied on the readmitted 

length of stay, as they had zero values. The readmission cost and the readmitted length of stay 

were then divided by their means respectively to bring heterogenous tasks to the same scale. One 

10-fold stratified cross-validation was used for training and testing. All together 15,000 samples 

were considered for each of the above-mentioned major diagnostic categories. Average testing 

errors are given in Table 5 for all three tasks. Individual training and testing errors for each fold of 

all three major diagnostic categories are given in the appendix (Appendix W, X, and Y). It was 

observed that the entire joint model (i.e., for all three tasks) performed slightly better for the 

Diseases and Disorders of the Digestive System whereas it performed slightly better only for 

specific tasks in case of Diseases and Disorder of the Circulatory System and Diseases and 

Disorders of the Respiratory System (see Figure 3 and Table 5). As the joint model was performing 

differently for each of top three major diagnostic categories, further analysis was done on 

predictors selected by joint models for these top three major diagnostic categories (Table 6). Apart 
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from this, I plan to conduct future experiments in my next study to identify reasons for the 

difference in performance of the joint model for specific scenarios.  

Table 5 Test Results of Top Three Major Diagnostic Category Groups 

Table 5(a) Test Results of Diseases and Disorders of the Circulatory System  
RMSE MAE Misclassification Rate 

Tasks Linear 

Regression 

Joint 

Model 

Linear 

Regression 

Joint 

Model 

Logistic 

Regression 

Joint 

Model 

Readmission - - - - 0.4331 0.4213 

Readmission 

Cost 

0.1168 0.1204 0.0929 0.0939 - - 

Readmitted 

Length of Stay 

0.4374 0.4389 0.3468 0.3472 - - 

 

Table 5(b) Test Results of Diseases and Disorders of the Respiratory System  
RMSE MAE Misclassification Rate 

Tasks Linear 

Regression 

Joint 

Model 

Linear 

Regression 

Joint 

Model 

Logistic 

Regression 

Joint 

Model 

Readmission - - - - 0.4383 0.4488 

Readmission 

Cost 

0.1859 0.0943 0.0769 0.0728 - - 

Readmitted 

Length of Stay 

0.3778 0.3756 0.2938 0.2913 - - 

 

 

Table 5(c) Test Results of Diseases and Disorders of the Digestive System  
RMSE MAE Misclassification Rate 

Tasks Linear 

Regression 

Joint 

Model 

Linear 

Regression 

Joint 

Model 

Logistic 

Regression 

Joint 

Model 

Readmission - - - - 0.4169 0.4053 

Readmission 

Cost 

0.1028 0.1013 0.0799 0.0782 - - 

Readmitted 

Length of Stay 

0.3894 0.3881 0.3044 0.3018 - - 
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Figure 3 Comparison of Single-task vs Multitask (Joint Model) for Various MDCs 

Figure 3(a) Comparison of the Readmission Task 

 

Figure 3(b) Comparison of Readmission Costs Based on RMSE

 
 

 

Figure 3(c) Comparison of Readmission Costs Based on MAE 
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Figure 3(d) Comparison of the Readmitted Length of Stay Based on RMSE 

 

Figure 3(e) Comparison of the Readmitted Length of Stay Based on MAE 
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Table 6 Predictors Selected by the Joint Model for Top Three Major Diagnostic Categories 

Variable  Diseases and 

Disorders of the 

Circulatory 

System 

Diseases and 

Disorders of the 

Respiratory 

System 

Diseases and 

Disorders of the 

Digestive System 

AGE x x x 

AWEEKEND x x x 

DISCWT x x x 

DISPUNIFORM x ✓  x 

DQTR ✓  ✓  ✓  

ELECTIVE x x x 

FEMALE x x x 

HCUP_ED x ✓  ✓  

NCHRONIC x x x 

NDX x x x 

NECODE x x x 

NPR x x x 

ORPROC x x x 

PAY1 x x x 

PL_NCHS ✓  ✓  ✓  

REHABTRANSFER x x x 

RESIDENT x ✓  ✓  

SAMEDAYEVENT x x x 

PREV_CHG ✓  ✓  ✓  

ZIPINC_QRTL x ✓  ✓  

PREV_LOS x ✓  ✓  

HOSP_BEDSIZE ✓  ✓  ✓  

H_CONTRL x ✓  ✓  

HOSP_URCAT4 x x x 

HOSP_UR_TEACH x x x 

TOTAL_DISC x x x 

APRDRG_RISK_MORTALITY ✓  ✓  ✓  

APRDRG_SEVERITY ✓  ✓  ✓  

 

3.5. Contributions and Implications  

This study has research contributions as well as practical implications. I follow a design science 

approach where the motive is to develop an Information Technology artifact that would help to 

solve a practical problem (Hevner et al. 2004). To the best of my knowledge, this is the first study 

in Information Systems research that deploys a multitask learning-based method for heterogenous 
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tasks with a specific sub-population – this is an important research contribution. The only prior 

multitask learning approach in Information Systems research was used for homogenous tasks 

(classification) (Lin et al. 2017). Specifically, in the domain of healthcare analytics, to the best of 

my knowledge, this is the first study to jointly learn the readmission probability, readmission cost, 

and readmitted length of stay using multitask learning. 

Jointly predicting all three tasks would give us better estimates of effects of predictors than 

predicting them separately. Thus, the benefit of using a better model would obviously accrue from 

deploying the joint model. Apart from that, the regularization forces the joint model to use fewer 

variables. So, hospitals can now focus only on fewer variables that would have been jointly 

selected for all three tasks. As per Kaiser Health News, the CMS will penalize 2,545 hospitals for 

the fiscal year 2020 for excess readmissions of Medicare patients (Ellison 2020). So, predicting 

readmissions would be beneficial to hospitals to avoid penalties. Predicting readmission costs will 

be helpful for individuals to plan their finances, as a survey has shown that delaying care has been 

used as a strategy by three in ten Americans (Saad 2018). Federal and state laws provide rules to 

hospitals for charity care, which would provide financial assistance to individuals who are unable 

to pay for their treatment. Predicting readmission costs would be helpful for hospitals to provide 

better financial assistance to individuals. Similarly, predicting the readmitted length of stay would 

be helpful for hospitals to optimize hospital resources like bed allocations, costs, etc. As 

multitasking helps to learn better outcomes based on the information obtained from other similar 

tasks, it will give hospitals the benefit of getting better estimates for tasks in comparison to using 

single-task models. This will be shown using the counterfactual analysis in the future study. 

3.6. Conclusion, Limitation, and Future Research 
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The joint model performed slightly better for Diseases and Disorders of the Digestive System in 

comparison to baseline models. As the joint model performed only slightly better for specific tasks 

in comparison to baseline models for the Disease and Disorders of the Circulatory System and 

Disease and Disorders of the Respiratory System, further analysis is needed to identify the cause 

of the difference in performance with respect to specific major diagnostic categories. In this essay, 

I tried to analyze the difference in behavior by identifying joint predictors with respect to major 

diagnostic categories (Table 6).  The variables that were commonly used by the joint model across 

all three major diagnostic groups were All Patient Related Diagnostic Related Groups in terms of 

risk mortality and severity, the quarter in which an individual was admitted, the size of the hospital 

in terms of number of beds, the location of an individual in terms of urban-rural classification by 

the National Center for Health Statistics (NCHS), and the cost from previous admission. The 

variables that were additionally used by Diseases and Disorders of the Digestive System (the major 

diagnostic group for which the entire joint modeling worked well) were if the discharge included 

services from emergency department, the residency status (i.e., resident or non-resident) of an 

individual, median household income of an individual, the length of stay from the previous 

admission, and the ownership of the hospital (i.e., government, private, etc.).   

The future analysis will include an in-depth study of the data and distribution of data, thereby 

providing recommendations on the way the data needs to be collected for multitask learning-based 

model to work better for all tasks with respect to each of these major diagnostic categories. The 

future analysis will also include applying multitask learning on different datasets to examine the 

generalizability of the current findings. Similarly, the conclusions are based on top three categories 

of readmissions for RSDC from Essay 1. In future research, I plan to test the joint model for 

readmissions based on RADC for top major diagnostic categories identified in Essay 1.  
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APPENDIX A:  

Literature Review of Predictive Analytics on Readmissions and Healthcare Costs 

Table 7 Detailed Literature Review of Essay 1 

Study Models Used Dataset 

Predicting All-cause Hospital Readmissions 

(Wang et al. 2018) Convolution neural network and 

multilayer perceptron 

Barnes Jewish Hospital 

(Jamei et al. 2017) Artificial neural network Hospital stays in California from 

Sutter Health’s EHR system 

(Cai et al. 2016) Bayesian analysis Sydney metropolitan hospital 

 For readmission analysis: support 

vector machine, decision trees, 

random forest, logistic regression, 

generalized boosting model 

For readmission cost: Linear 

regression and tree-based models 

Chain of northwestern hospital 

(Picker et al. 2015) Multiple logistic regression Barnes Jewish Hospital 

(Zheng et al. 2015) Support vector machine, neural 

network, and random forest 

Data derived from medical 

records 

(Yu et al. 2015) Support vector machine, and Cox 

regression model 

Three U.S. based hospitals 

(Shadmi et al. 2015) Decision tree, and neural network Clalit Health Services, admitted 

to internal medicine ward in Israel 

(Schoonover et al. 2014) Logistic regression - 

(Morris et al. 2011) Multiple logistic regression Academic medical center 

Predicting Readmissions Specific to a Population 

(Shameer et al. 2017) Naïve Bayes Mount Sinai Heart Failure Cohort 

(Jovanovic et al. 2016) Tree lasso logistic regression Hospital discharge records from 

California 

(Bardhan et al. 2015) Beta geometric Erlang-2 model 67 hospitals from North Texas 

(Radovanovic et al. 2015) Lasso regularization with group-

level feature selection 

Pediatric patient data from 

California (Healthcare Cost 

Utilization Project) 

(Tabata et al. 2014) Multivariate logistic regression Kitasato University Hospital 

(Cotter et al. 2012) Logistic regression Department of Medicine for the 

elderly 

(Kelly et al. 2012) Logistic regression All acute public hospitals in 

Ireland 

(Hasan et al. 2010) Logistic regression General medicine services from 

six academic medical centers 

(Greenblatt et al. 2010) Multivariate logistic regression SEER 

Predicting Time to Readmissions 

(Schmutte et al. 2010) Multivariate Cox proportional 

hazard model 

A large public-private health 

system 
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Predicting General Healthcare Costs 

(Sushmita et al. 2015) M5 model tree State in-patient database and 

survey specific to Washington 

State 

(Bertsimas et al. 2008) Classification trees, and clustering Commercially insured population 

(Farley et al. 2006) Linear regression Claims data from managed care 

organization 

(Leigh et al. 2005) Linear regression Annual survey 

Predicting Patients With High Healthcare Costs 

(Fleishman and Cohen 

2010) 

Logistic regression Medical expenditure panel survey 
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APPENDIX B: 

 Variables Used in Essay 1 Along With Their Descriptions and Descriptive Statistics 

(Variable Names and Their Explanations are Retrieved From AHRQ Website)2 

Table 8 Variable Descriptions and Descriptive Statistics of Essay 1 

Variable Name Explanation Descriptive 

Statistics 

for RSDC 

Descriptive 

Statistics for 

RADC 

AGE Age in years of a patient  56 (mean) 60 (mean) 

AWEEKEND Indicates if the admission took place 

on a weekend: (1) yes, (0) no 

0 – 78.72% 

1 – 21.28% 

0 – 77.79% 

1 – 22.21% 

DISCWT NRD discharge weight to be used for 

calculating national estimates 

2.38 (mean) 2.36(mean) 

DISPUNIFORM Indicates the disposition status of a 

patient: (1) routine, (2) transfer to 

short term hospital, (5) other transfers, 

including skilled nursing facility, 

intermediate care, and another type of 

facility, (6) home health care, (7) 

against medical advice, (20) died in 

hospital, (99) discharged alive, 

destination unknown 

1 – 59.75% 

(highest 

category) 

99 – 0.11% 

(lowest 

category) 

 

 

1 – 51.01% 

(highest 

category) 

99 – 0.15% 

(lowest 

category) 

 

 

DQTR Indicates the quarter of the year: (1) 

Jan–Mar, (2) Apr–Jun, (3) Jul–Sep, (4) 

Oct–Dec 

1- 19.98% 

2- 25.36% 

3- 26% 

4- 28.66% 

1- 19.75% 

2- 24.92% 

3- 25.76% 

4- 29.58% 

ELECTIVE Indicates the elective status of an 

admission: (1) yes, (0) no  

0 – 83.61% 

1- 16.39% 

0 – 87.41% 

1- 12.59% 

FEMALE Indicates the sex of a patient:(0) male, 

(1) female.  

0- 46.26% 

1- 53.74% 

0- 46.55% 

1- 53.45% 

HCUP_ED Indicates if the discharge record 

included emergency department (ED) 

services: (0) record does not meet any 

HCUP ED criteria, (1) ED revenue 

code was on State Inpatient Database 

(SID) record, (2) ED charge reported 

on SID record, (3) ED CPT procedure 

code on SID record, (4) other 

indication of ED services 

1- 39.76% 

3-0.0002% 

 

1-43.6% 

3-0.0003% 

 

LOS Length of stay 6 6 

MDC MDC that was in use on the discharge 

date. The details of MDC categories 

are given in Table 9 of Appendix C. 

 

5-20.35% 

(highest 

category) 

 

5-16.83% 

(highest 

category) 

 
2 https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddde.jsp 
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24-0.01% 

(lowest 

category) 

 

24-0.05% 

(lowest 

category) 

 

NCHRONIC Number of chronic conditions 5 (mean) 5 (mean) 

NDX Number of diagnoses coded 11(mean) 12 (mean) 

NPR Number of procedures coded 1 (mean) 1 (mean) 

NECODE Number of external causes of injury 

codes coded 

0 (mean) 0 (mean) 

NRD_STRATUM NRD stratum for post-stratification 

based on geographic region, 

urban/rural location, teaching status, 

size of hospital based on number of 

beds, and control/ownership.  

1-7.70% 

(highest 

category) 

81-0.01% 

(lowest 

category) 

 

1-7.18% 

(highest 

category) 

23,41,43, and 

81-0.02% 

(lowest 

category) 

ORPROC Indicates if the discharge record has a 

major operating room procedure: (1) 

yes,  (0) no  

0-77.80% 

1- 22.21% 

0-81.14% 

1-18.86% 

PAY1 Indicates the type of insurance: (1) 

Medicare, (2) Medicaid, (3) private 

insurance, (4) uninsured (self-pay), (5) 

uninsured (no charge), (6) other 

1- 49.03% 

(highest 

category) 

5-0.65% 

(lowest 

category) 

 

1-56.16% 

(highest 

category) 

5-0.57% 

(lowest 

category) 

PL_NCHS Indicates the patient location using the 

National Center for Health Statistics 

(NCHS) urban-rural classification 

scheme for U.S. counties: (1) 

"Central" counties of metro areas of 

>=1 million population, (2) "Fringe" 

counties of metro areas of >=1 million 

population, (3) counties in metro areas 

of 250,000–999,999 population, (4) 

counties in metro areas of 50,000–

249,999 population, (5) micropolitan 

counties, (6) not metropolitan or 

micropolitan counties 

1-32.59% 

(highest 

category) 

6-5.88% 

(lowest 

category) 

1-31.63% 

(highest 

category) 

6-6.09% 

(lowest 

category) 

REHABTRANSFER Indicates if the record had transfer to 

rehabilitation, evaluation, or other 

aftercare: (1) yes, (0) no 

0- 99.08% 

1-0.92% 

0-98.95% 

1-1.05% 

RESIDENT Indicates if a patient is a resident of 

the State in which he or she received 

hospital care: (1) yes, (0) no 

0-3.35% 

1-96.65% 

0-3.31% 

1- 96.69% 

SAMEDAYEVENT Indicates the same day event status of 

a patient: (0) not a combined transfer 

or other same-day stay record, (1) 

combined transfer involving two 

discharges from different hospitals, (2) 

0-96.48% 

(highest 

category) 

0-96.21% 

(highest 

category) 
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combined same-day stay involving 

two discharges at different hospitals, 

(3) combined same-day stay involving 

two discharges at the same hospital, 

(4) combined same-day stay involving 

three or more discharges at same or 

different hospitals 

4-0.32% 

(lowest 

category) 

4-0.35% 

(lowest 

category) 

ZIPINC_QRTL Indicates the median household 

income quartiles for patient's ZIP 

code. For 2013, the median income 

quartiles are defined as: (1) $1 - 

$37,999; (2) $38,000 - $47,999; (3) 

$48,000 - $63,999; and (4) $64,000 or 

more. 

1-30.70% 

(highest 

category) 

4-19.21% 

(lowest 

category) 

1-30.08% 

(highest 

category) 

4-19.61% 

(lowest 

category) 

TOTCHG Costs billed by the hospital for the 

readmission 

$52715 

(mean) 

10.29 (mean 

log value) 

$53041 

(mean) 

10.32 (mean 

log value) 

PREVCHG1 (Variable 

defined by me for this 

essay) 

Costs billed by the hospital for the last 

previous admission  

$48004 

(mean) 

10.19 (mean 

log value) 

$54925 

(mean) 

10.34 (mean 

log value) 

AVG_PREVCHG 

(Variable defined by me 

for this essay) 

Average of costs billed by hospitals 

for all previous admissions 

$48273 

(mean) 

10.23 (mean 

log value) 

$55774 

(mean) 

10.39 (mean 

log value) 

SUM_PREVCHG 

(Variable defined by me 

for this essay) 

Sum of costs billed by hospitals for all 

previous admissions 

$64102 

(mean) 

10.41 (mean 

log value) 

$84215 

(mean) 

10.66 (mean 

log value) 

HOSP_BEDSIZE Indicates the size of a hospital based 

on the number of beds: (1) small, (2) 

medium, (3) large.  

3-67.98% 

(highest 

category) 

1-8.98% 

(lowest 

category) 

 

3-67.23% 

(highest 

category) 

1-9.36% 

(lowest 

category) 

 

HOSP_UR_TEACH Indicates the teaching status of the 

hospital: (0) metropolitan non-

teaching, (1) metropolitan teaching, 

(2) non-metropolitan 

1-53.20% 

(highest 

category) 

2-7.43% 

(lowest 

category) 

1-51.05% 

(highest 

category) 

2-8.05% 

(lowest 

category) 

HOSP_URCAT4 Indicates the urban-rural location of 

the hospital: (1) large metropolitan 

areas with at least 1 million residents, 

(2) small metropolitan areas with less 

than 1 million residents, (3) 

micropolitan areas, (4) not 

metropolitan or micropolitan 

1-59.01% 

(highest 

category) 

4-1.71% 

(lowest 

category) 

1-58.00% 

(highest 

category) 

4-1.91% 

(lowest 

category) 
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H_CONTRL Indicates the control/ownership of the 

hospital: (1) government, nonfederal 

[public]; (2) private, not-for-profit 

[voluntary]; (3) private, investor-

owned [proprietary] 

2-68.51% 

(highest 

category) 

1-14.59% 

(lowest 

category) 

 

2-68.60% 

(highest 

category) 

1-13.99% 

(lowest 

category) 

 

TOTAL_DISC  Total number of discharges for this 

hospital in the NRD  

19806 

(mean) 

20311 (mean) 

APRDRG_Risk_Mortality Indicates the 3M All Patient Refined 

DRG: Risk of mortality subclass: (0) 

No class specified, (1) minor 

likelihood of dying, (2) moderate 

likelihood of dying, (3) major 

likelihood of dying, (4) extreme 

likelihood of dying  

1-42.83% 

(highest 

category) 

0-0.03% 

(lowest 

category) 

 

1-34.42% 

(highest 

category) 

0-0.04% 

(lowest 

category) 

 

APRDRG_Severity Indicates the 3M All Patient Refined 

DRG: Severity of illness subclass: (0) 

No class specified, (1) minor loss of 

function (includes cases with no 

comorbidity or complications), (2) 

moderate loss of function, (3) major 

loss of function, (4) extreme loss of 

function  

2-40.83% 

(highest 

category) 

0-0.03% 

(lowest 

category) 

 

2-37.48% 

(highest 

category) 

0-0.04% 

(lowest 

category) 

 

CM_AIDS Indicates if the AHRQ comorbidity 

measure - acquired immune deficiency 

syndrome is present: (1) yes, (0) no  

0-99.75%  

1-0.25% 

0-99.73% 

1-0.27% 

CM_ALCOHOL Indicates if the AHRQ comorbidity 

measure - alcohol abuse is present: (1) 

yes, (0) no  

0-94.75% 

1-5.25% 

0-94.97% 

1-5.03% 

CM_ANEMDEF Indicates if the AHRQ comorbidity 

measure - deficiency anemias are 

present: (1) yes, (0) no  

0-77.94% 

1-22.06% 

0-74.98% 

1-25.02% 

CM_ARTH Indicates if the AHRQ comorbidity 

measure - rheumatoid 

arthritis/collagen vascular diseases are 

present: (1) yes, (0) no  

0-97.29% 

1-2.71% 

0-96.85% 

1-3.15% 

CM_BLDLOSS Indicates if the AHRQ comorbidity 

measure - chronic blood loss anemia is 

present: (1) yes, (0) no  

0-97.44% 

1-2.56% 

0-97.91% 

1-2.09% 

CM_CHF Indicates if the AHRQ comorbidity 

measure - congestive heart failure is 

present: (1) yes, (0) no  

0-90.40% 

1-9.60% 

0-85.99% 

1-14.01% 

CM_CHRNLUNG Indicates if the AHRQ comorbidity 

measure - chronic pulmonary disease 

is present: (1) yes, (0) no  

0-78.49% 

1-21.51% 

0-76.87% 

1-23.13% 

CM_COAG Indicates if the AHRQ comorbidity 

measure - coagulopathy is present: (1) 

yes, (0) no  

0-94.11% 

1-5.89% 

0-93.37% 

1-6.63% 
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CM_DEPRESS Indicates if the AHRQ comorbidity 

measure - depression is present: (1) 

yes, (0) no  

0-88.79% 

1-11.21% 

0-88.01% 

1-11.99% 

CM_DM Indicates if the AHRQ comorbidity 

measure - diabetes (uncomplicated) is 

present: (1) yes, (0) no  

0-79.36% 

1-20.64% 

0-77.65% 

1-22.35% 

CM_DMCX Indicates if the AHRQ comorbidity 

measure - diabetes (with chronic 

complications) is present: (1) yes, (0) 

no  

0-94.86% 

1-5.14% 

0-93.81% 

1-6.19% 

CM_DRUG Indicates if the AHRQ comorbidity 

measure - drug abuse is present: (1) 

yes, (0) no  

0-93.73% 

1-6.27% 

0-94.75% 

1-5.25% 

CM_HTN_C Indicates if the AHRQ comorbidity 

measure - hypertension  

(uncomplicated and complicated) is 

present: (1) yes, (0) no  

0-50.48% 

1-49.52% 

0-45.63% 

1-54.37% 

CM_HYPOTHY Indicates if the AHRQ comorbidity 

measure - hypothyroidism is present: 

(1) yes, (0) no  

0-88.77% 

1-11.23% 

0-87.35% 

1-12.65% 

CM_LIVER Indicates if the AHRQ comorbidity 

measure - liver disease is present: (1) 

yes, (0) no  

0-96.49% 

1-3.51% 

0-95.78% 

1-4.22% 

CM_LYMPH Indicates if the AHRQ comorbidity 

measure – lymphoma is present: (1) 

yes, (0) no  

0-99.07% 

1-0.93% 

0-98.60% 

1-1.40% 

CM_LYTES Indicates if the AHRQ comorbidity 

measure - fluid and electrolyte 

disorders are present: (1) yes, (0) no  

0-72.95% 

1-27.05% 

0-68.07% 

1-31.93% 

CM_METS Indicates if the AHRQ comorbidity 

measure - metastatic cancer is present: 

(1) yes, (0) no  

0-96.89% 

1-3.11% 

0-95.77% 

1-4.23% 

CM_NEURO Indicates if the AHRQ comorbidity 

measure - other neurological disorders 

are present: (1) yes, (0) no  

0-92.01% 

1-7.99% 

0-90.05% 

1-9.95% 

CM_OBESE Indicates if the AHRQ comorbidity 

measure – obesity is present: (1) yes, 

(0) no  

0-88.39% 

1-11.61% 

0-88.39% 

1-11.61% 

CM_PARA Indicates if the AHRQ comorbidity 

measure - paralysis is present: (1) yes, 

(0) no 

0-97.20% 

1-2.80% 

0-96.44% 

1-3.56% 

CM_PERIVASC Indicates if the AHRQ comorbidity 

measure - peripheral vascular 

disorders are present: (1) yes, (0) no 

0- 93.51% 

1-6.49% 

0- 92.53% 

1-7.47% 

CM_PSYCH Indicates if the AHRQ comorbidity 

measure - psychosis is present: (1) 

yes, (0) no 

0- 94.68% 

1-5.32% 

0- 94.17% 

1-5.83% 

CM_PULMCIRC Indicates if the AHRQ comorbidity 

measure - pulmonary circulation 

disorders are present: (1) yes, (0) no 

0- 97.40% 

1-2.60% 

0- 96.35% 

1-3.65% 
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CM_RENLFAIL Indicates if the AHRQ comorbidity 

measure - renal failure is present: (1) 

yes, (0) no 

0- 84.06% 

1-15.94% 

0- 81.39% 

1-18.61% 

CM_TUMOR Indicates if the AHRQ comorbidity 

measure - solid tumor without 

metastasis is present: (1) yes, (0) no 

0- 97.21% 

1-2.79% 

0- 96.38% 

1-3.62% 

CM_ULCER Indicates if the AHRQ comorbidity 

measure - peptic ulcer disease 

excluding bleeding is present: (1) yes, 

(0) no 

0- 99.95% 

1-0.05% 

0- 99.95% 

1-0.05% 

CM_VALVE Indicates if the AHRQ comorbidity 

measure - valvular disease is present: 

(1) yes, (0) no 

0- 96.68% 

1-3.32% 

0- 95.17% 

1-4.83% 

CM_WGHTLOSS Indicates if the AHRQ comorbidity 

measure - weight loss is present: (1) 

yes, (0) no 

0-92.87% 

1-7.13% 

0- 91.40% 

1-8.60% 

 

 

 

 

 

 

 

 

 

 

 

 

 



61 

 

APPENDIX C: 

 Major Diagnostic Categories and Their Descriptions 

(Retrieved From the CMS Website)3 

Table 9 MDC and its Description 

MDC Description 

0 Pre-MDC 

1 Diseases and Disorders of the Nervous System 

2 Diseases and Disorders of the Eye 

3 Diseases and Disorders of the Ear, Nose, Mouth and Throat 

4 Diseases and Disorders of the Respiratory System 

5 Diseases and Disorders of the Circulatory System 

6 Diseases and Disorders of the Digestive System 

7 Diseases and Disorders of the Hepatobiliary System and Pancreas 

8 Diseases and Disorders of the Musculoskeletal System and Connective Tissue 

9 Diseases and Disorders of the Skin, Subcutaneous Tissue and Breast 

10 Diseases and Disorders of the Endocrine, Nutritional and Metabolic System 

11 Diseases and Disorders of the Kidney and Urinary Tract 

12 Diseases and Disorders of the Male Reproductive System 

13 Diseases and Disorders of the Female Reproductive System 

14 Pregnancy, Childbirth and Puerperium 

15 Newborn and Other Neonates (Perinatal Period) 

16 Diseases and Disorders of the Blood and Blood Forming Organs and 

Immunological Disorders 

17 Myeloproliferative DDs (Poorly Differentiated Neoplasms) 

18 Infectious and Parasitic DDs (Systemic or unspecified sites) 

19 Mental Diseases and Disorders 

20 Alcohol/Drug Use or Induced Mental Disorders 

21 Injuries, Poison and Toxic Effect of Drugs 

22 Burns 

23 Factors Influencing Health Status and Other Contacts with Health Services 

24 Multiple Significant Trauma 

25 Human Immunodeficiency Virus Infection 

 

 

 

 

 
3 https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/AcuteInpatientPPS/Acute-Inpatient-Files-for-

Download-Items/CMS1247844 
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APPENDIX D:  

Descriptive Statistics of Each Fold of 10-fold Cross Validation for Readmissions Belonging to Same 

Major Diagnostic Group Related Analysis 

 

Table 10 Descriptive Statistics of Each Fold of RSDC data 

Table 10(a) Training Set RSDC 

Fold 

(Train) 

Mean 

(Readmission 

Cost) 

Max 

(Readmission 

Cost) 

Min 

(Readmission 

Cost) 

1 10.2726 15.4250 4.7622 

2 10.2854 15.4250 4.7622 

3 10.2864 15.3516 4.7622 

4 10.2855 15.4250 4.7622 

5 10.2859 15.4250 4.7622 

6 10.2865 15.4250 4.7622 

7 10.2862 15.4250 4.8040 

8 10.2860 15.4250 4.7622 

9 10.2859 15.4250 4.7622 

10 10.2865 15.4250 4.7622 

 

Table 10(b) Testing Set RSDC 

Fold 

(Test) 

Mean 

(Readmission 

Cost) 

Max 

(Readmission 

Cost) 

Min 

(Readmission 

Cost) 

1 10.3933 15.2981 5.4294 

2 10.2787 15.2832 5.5215 

3 10.2695 15.4250 5.1240 

4 10.2771 15.0776 4.8040 

5 10.2739 15.1679 4.8904 

6 10.2687 15.2613 5.0563 

7 10.2712 15.1452 4.7622 

8 10.2725 15.0915 4.8122 

9 10.2733 15.1208 4.8978 

10 10.2688 15.3516 4.9273 
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APPENDIX E:  

Descriptive Statistics of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 11 Descriptive Statistics of Each Fold of RADC data 

Table 11(a) Training Set RADC 

Fold 

(Train) 

Mean 

(Readmission 

Cost) 

Max 

(Readmission 

Cost) 

Min 

(Readmission 

Cost) 

1 10.3035 15.4250 4.6821 

2 10.3171 15.4250 4.6821 

3 10.3172 15.4250 4.7005 

4 10.3171 15.4250 4.6821 

5 10.3172 15.4250 4.6821 

6 10.3179 15.4250 4.6821 

7 10.3170 15.4250 4.6821 

8 10.3178 15.4250 4.6821 

9 10.3175 15.3622 4.6821 

10 10.3173 15.4250 4.6821 

 

Table 11(b) Testing Set RADC 

Fold 

(Test) 

Mean 

(Readmission 

Cost) 

Max 

(Readmission 

Cost) 

Min  

(Readmission 

Cost) 

1 10.4279 15.2529 5.2204 

2 10.3059 14.8843 4.7875 

3 10.3050 15.1184 4.6821 

4 10.3060 15.2515 4.7875 

5 10.3045 15.0095 5.0563 

6 10.2987 15.2981 5.0626 

7 10.3064 15.1792 5.2983 

8 10.2995 15.3622 5.1591 

9 10.3020 15.4250 4.8978 

10 10.3038 15.1452 4.7005 
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APPENDIX F:  

Results Based on MAPE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Same Major Diagnostic Group Related Analysis 

 

Table 12 MAPE for Models Based on RSDC 

Table 12(a) MAPE (%) of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 4.2736 4.1824 4.2749 4.1824 4.2750 4.1825 4.3049 4.2066 

2 4.2651 4.2860 4.2662 4.2873 4.2664 4.2876 4.2966 4.3179 

3 4.2645 4.2779 4.2656 4.2786 4.2657 4.2788 4.2960 4.3105 

4 4.2654 4.2525 4.2665 4.2542 4.2668 4.2545 4.2970 4.2848 

5 4.2646 4.2983 4.2656 4.3003 4.2657 4.3004 4.2961 4.3323 

6 4.2637 4.2818 4.2648 4.2836 4.2650 4.2836 4.2952 4.3146 

7 4.2683 4.2668 4.2696 4.2674 4.2691 4.2672 4.2999 4.2994 

8 4.2630 4.2898 4.2643 4.2909 4.2638 4.2905 4.2947 4.3203 

9 4.2679 4.2442 4.2692 4.2445 4.2694 4.2446 4.2995 4.2751 

10 4.2631 4.2998 4.2641 4.3014 4.2645 4.3017 4.2947 4.3320 

MEAN 4.2659 4.2679 4.2671 4.2691 4.2672 4.2692 4.2975 4.2994 

 

Table 12(b) MAPE (%) of RSDC for Hyper Tuning From Lasso towards Elastic Net Based Models   

Model Hyper tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 4.2749 4.1824 4.2749 4.1824 4.2750 4.1824 4.2749 4.1825 

2 4.2663 4.2875 4.2663 4.2875 4.2662 4.2873 4.2663 4.2875 

3 4.2655 4.2785 4.2657 4.2787 4.2656 4.2786 4.2657 4.2787 

4 4.2665 4.2542 4.2665 4.2541 4.2666 4.2542 4.2665 4.2542 

5 4.2657 4.3004 4.2657 4.3003 4.2657 4.3005 4.2658 4.3005 

6 4.2644 4.2831 4.2650 4.2835 4.2650 4.2834 4.2648 4.2835 

7 4.2696 4.2674 4.2695 4.2674 4.2692 4.2672 4.2696 4.2675 

8 4.2643 4.2909 4.2638 4.2904 4.2643 4.2909 4.2644 4.2910 

9 4.2691 4.2445 4.2691 4.2445 4.2692 4.2445 4.2692 4.2445 

10 4.2642 4.3015 4.2642 4.3015 4.2642 4.3014 4.2643 4.3016 

MEAN 4.2670 4.2690 4.2671 4.2690 4.2671 4.2691 4.2672 4.2691 
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Table 12(c) MAPE (%) of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 4.2750 4.1825 4.2752 4.1826 4.2754 4.1828 4.2760 4.1833 

2 4.2665 4.2877 4.2666 4.2878 4.2669 4.2881 4.2675 4.2886 

3 4.2658 4.2788 4.2661 4.2791 4.2662 4.2792 4.2669 4.2800 

4 4.2668 4.2545 4.2669 4.2545 4.2672 4.2549 4.2678 4.2555 

5 4.2660 4.3008 4.2659 4.3006 4.2663 4.3011 4.2670 4.3019 

6 4.2650 4.2829 4.2645 4.2839 4.2653 4.2842 4.2662 4.2846 

7 4.2691 4.2672 4.2701 4.2679 4.2702 4.2681 4.2698 4.2679 

8 4.2644 4.2910 4.2647 4.2912 4.2649 4.2915 4.2654 4.2919 

9 4.2693 4.2447 4.2695 4.2448 4.2698 4.2451 4.2695 4.2451 

10 4.2644 4.3016 4.2645 4.3017 4.2649 4.3021 4.2655 4.3027 

MEAN 4.2672 4.2692 4.2674 4.2694 4.2677 4.2697 4.2682 4.2701 

 

Table 12(d) MAPE (%) of RSDC for Tree and Deep Learning-based Models 

Model XGBoost  Deep Learning 

Fold Training Testing Training Testing 

1 14.6281 14.5031 3.3363 3.2256 

2 14.6132 14.6339 3.2576 3.2883 

3 14.6102 14.6096 3.2400 3.2887 

4 14.6114 14.6263 3.2756 3.3119 

5 14.6124 14.6378 3.2837 3.3042 

6 14.6101 14.6243 3.2867 3.3115 

7 14.6124 14.6409 3.3015 3.3277 

8 14.6112 14.6317 3.3211 3.3460 

9 14.6116 14.5992 3.2612 3.2619 

10 14.6097 14.6277 3.2665 3.3162 

MEAN 14.6130 14.6135 3.2830 3.2982 

 

 

 

 

 



66 

 

APPENDIX G:  

Results based on MAPE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 13 MAPE for Models Based on RADC 

Table 13(a) MAPE (%) of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 4.2201 4.0789 4.2210 4.0795 4.2211 4.0796 4.2522 4.1052 

2 4.2059 4.2096 4.2069 4.2106 4.2071 4.2108 4.2383 4.2420 

3 4.2068 4.2272 4.2077 4.2284 4.2078 4.2285 4.2391 4.2617 

4 4.2048 4.2082 4.2058 4.2091 4.2059 4.2092 4.2373 4.2412 

5 4.2044 4.2137 4.2054 4.2148 4.2054 4.2148 4.2369 4.2462 

6 4.2021 4.2345 4.2032 4.2344 4.2033 4.2346 4.2346 4.2667 

7 4.2064 4.2080 4.2073 4.2093 4.2075 4.2095 4.2387 4.2406 

8 4.2039 4.2446 4.2048 4.2457 4.2049 4.2459 4.2362 4.2781 

9 4.2050 4.2234 4.2060 4.2241 4.2061 4.2242 4.2375 4.2565 

10 4.2033 4.2276 4.2043 4.2285 4.2043 4.2286 4.2358 4.2599 

MEAN 4.2063 4.2076 4.2072 4.2084 4.2073 4.2085 4.2387 4.2398 

 

Table 13(b) MAPE (%) of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper tuning From Lasso Towards Elastic Net Regression 

Fold Trainin

g 

Testing Trainin

g 

Testing Trainin

g 

Testing Trainin

g 

Testing 

1 4.2211 4.0795 4.2211 4.0795 4.2211 4.0795 4.2211 4.0795 

2 4.2068 4.2105 4.2070 4.2107 4.2068 4.2105 4.2070 4.2107 

3 4.2077 4.2284 4.2077 4.2284 4.2078 4.2285 4.2077 4.2284 

4 4.2058 4.2091 4.2058 4.2091 4.2058 4.2090 4.2058 4.2091 

5 4.2054 4.2148 4.2054 4.2147 4.2054 4.2148 4.2055 4.2149 

6 4.2032 4.2345 4.2032 4.2345 4.2033 4.2345 4.2033 4.2345 

7 4.2073 4.2093 4.2072 4.2092 4.2074 4.2094 4.2073 4.2093 

8 4.2049 4.2459 4.2047 4.2457 4.2048 4.2458 4.2049 4.2459 

9 4.2061 4.2241 4.2061 4.2241 4.2061 4.2241 4.2061 4.2241 

10 4.2043 4.2285 4.2043 4.2285 4.2043 4.2286 4.2044 4.2286 

MEAN 4.2073 4.2084 4.2072 4.2084 4.2073 4.2085 4.2073 4.2085 
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Table 13(c) MAPE (%) of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper tuning From Elastic Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 4.2212 4.0796 4.2213 4.0797 4.2214 4.0798 4.2218 4.0802 

2 4.2070 4.2107 4.2071 4.2108 4.2072 4.2109 4.2077 4.2114 

3 4.2078 4.2285 4.2079 4.2286 4.2081 4.2288 4.2085 4.2292 

4 4.2059 4.2092 4.2060 4.2093 4.2062 4.2095 4.2066 4.2099 

5 4.2056 4.2149 4.2056 4.2150 4.2058 4.2151 4.2061 4.2155 

6 4.2034 4.2346 4.2035 4.2347 4.2036 4.2348 4.2039 4.2352 

7 4.2074 4.2094 4.2075 4.2095 4.2077 4.2097 4.2081 4.2100 

8 4.2049 4.2459 4.2050 4.2460 4.2052 4.2462 4.2056 4.2466 

9 4.2061 4.2242 4.2062 4.2243 4.2064 4.2245 4.2068 4.2249 

10 4.2044 4.2287 4.2045 4.2287 4.2046 4.2289 4.2050 4.2292 

MEAN 4.2074 4.2086 4.2075 4.2087 4.2076 4.2088 4.2080 4.2092 

 

Table 13(d) MAPE (%) of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 14.5779 14.4319 3.1916 3.2075 

2 14.5611 14.5827 3.2038 3.2246 

3 14.5610 14.5827 3.1790 3.2031 

4 14.5598 14.5742 3.2179 3.2196 

5 14.5586 14.5708 3.1793 3.2189 

6 14.5598 14.5713 3.1850 3.2211 

7 14.5614 14.5723 3.1809 3.1983 

8 14.5591 14.5739 3.1746 3.2014 

9 14.5590 14.5855 3.1837 3.2194 

10 14.5601 14.5726 3.2069 3.2612 

MEAN 14.5618 14.5618 3.1903 3.2175 
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APPENDIX H: 

Results Based on RMSE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Same Major Diagnostic Group Related Analysis 

 

Table 14 RMSE for Models Based on RSDC 

Table 14(a) RMSE of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5643 0.5598 0.5644 0.5599 0.5644 0.5599 0.5653 0.5595 

2 0.5639 0.5635 0.5640 0.5636 0.5640 0.5636 0.5649 0.5649 

3 0.5638 0.5646 0.5639 0.5647 0.5639 0.5647 0.5648 0.5656 

4 0.5635 0.5668 0.5636 0.5670 0.5636 0.5670 0.5645 0.5675 

5 0.5639 0.5634 0.5640 0.5636 0.5640 0.5636 0.5649 0.5652 

6 0.5635 0.5671 0.5636 0.5672 0.5636 0.5672 0.5645 0.5679 

7 0.5641 0.5618 0.5642 0.5619 0.5641 0.5618 0.5651 0.5635 

8 0.5635 0.5666 0.5637 0.5667 0.5636 0.5666 0.5646 0.5674 

9 0.5641 0.5616 0.5642 0.5616 0.5642 0.5616 0.5651 0.5622 

10 0.5636 0.5660 0.5637 0.5661 0.5637 0.5662 0.5646 0.5673 

MEAN 0.5638 0.5641 0.5639 0.5642 0.5639 0.5642 0.5648 0.5651 

 

Table 14(b) RMSE of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5644 0.5599 0.5644 0.5599 0.5644 0.5599 0.5644 0.5599 

2 0.5640 0.5636 0.5640 0.5636 0.5640 0.5636 0.5640 0.5636 

3 0.5639 0.5647 0.5639 0.5647 0.5639 0.5647 0.5639 0.5647 

4 0.5636 0.5670 0.5636 0.5670 0.5636 0.5670 0.5636 0.5670 

5 0.5640 0.5636 0.5640 0.5636 0.5640 0.5636 0.5640 0.5636 

6 0.5636 0.5672 0.5636 0.5672 0.5636 0.5672 0.5636 0.5672 

7 0.5642 0.5619 0.5642 0.5619 0.5642 0.5618 0.5642 0.5619 

8 0.5637 0.5667 0.5636 0.5666 0.5637 0.5667 0.5637 0.5667 

9 0.5642 0.5616 0.5642 0.5616 0.5642 0.5616 0.5642 0.5616 

10 0.5637 0.5662 0.5637 0.5662 0.5637 0.5661 0.5637 0.5662 

MEAN 0.5639 0.5642 0.5639 0.5642 0.5639 0.5642 0.5639 0.5642 
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Table 14(c) RMSE of RSDC for Hyper Tuning from Elastic Net Towards Ridge Based Models 

Model From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5644 0.5599 0.5644 0.5599 0.5644 0.5599 0.5644 0.5598 

2 0.5640 0.5636 0.5640 0.5636 0.5640 0.5636 0.5640 0.5636 

3 0.5639 0.5647 0.5639 0.5647 0.5639 0.5647 0.5639 0.5647 

4 0.5636 0.5670 0.5636 0.5670 0.5636 0.5670 0.5636 0.5670 

5 0.5640 0.5637 0.5640 0.5636 0.5640 0.5637 0.5640 0.5637 

6 0.5636 0.5671 0.5636 0.5672 0.5636 0.5672 0.5636 0.5672 

7 0.5641 0.5618 0.5642 0.5619 0.5642 0.5619 0.5642 0.5618 

8 0.5637 0.5667 0.5637 0.5667 0.5637 0.5667 0.5637 0.5667 

9 0.5642 0.5616 0.5642 0.5616 0.5642 0.5616 0.5642 0.5616 

10 0.5637 0.5661 0.5637 0.5661 0.5637 0.5662 0.5637 0.5662 

MEAN 0.5639 0.5642 0.5639 0.5642 0.5639 0.5642 0.5639 0.5642 

 

Table 14(d) RMSE of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.5293 1.5424 0.4373 0.4305 

2 1.5294 1.5421 0.4309 0.4346 

3 1.5292 1.5388 0.4292 0.4334 

4 1.5291 1.5419 0.4332 0.4374 

5 1.5293 1.5442 0.4357 0.4377 

6 1.5292 1.5392 0.4371 0.4403 

7 1.5293 1.5421 0.4393 0.4425 

8 1.5293 1.5429 0.4425 0.4457 

9 1.5291 1.5386 0.4333 0.4330 

10 1.5291 1.5409 0.4337 0.4387 

MEAN 1.5292 1.5413 0.4352 0.4374 
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APPENDIX I:  

Results Based on RMSE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 15 RMSE for Models Based on RADC 

Table 15(a) RMSE of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5592 0.5474 0.5593 0.5474 0.5593 0.5474 0.5602 0.5474 

2 0.5580 0.5584 0.5580 0.5585 0.5580 0.5585 0.5590 0.5594 

3 0.5582 0.5562 0.5583 0.5563 0.5583 0.5563 0.5592 0.5581 

4 0.5578 0.5601 0.5578 0.5601 0.5578 0.5601 0.5588 0.5608 

5 0.5577 0.5603 0.5578 0.5604 0.5578 0.5604 0.5587 0.5611 

6 0.5575 0.5624 0.5576 0.5623 0.5576 0.5623 0.5585 0.5631 

7 0.5580 0.5581 0.5581 0.5582 0.5581 0.5582 0.5590 0.5592 

8 0.5579 0.5593 0.5579 0.5594 0.5579 0.5594 0.5589 0.5607 

9 0.5579 0.5587 0.5580 0.5588 0.5580 0.5588 0.5589 0.5599 

10 0.5577 0.5607 0.5578 0.5608 0.5578 0.5607 0.5587 0.5615 

MEAN 0.5580 0.5582 0.5581 0.5582 0.5581 0.5582 0.5590 0.5591 

 

Table 15(b) RMSE of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5593 0.5474 0.5593 0.5474 0.5593 0.5474 0.5593 0.5474 

2 0.5580 0.5585 0.5580 0.5585 0.5580 0.5585 0.5580 0.5585 

3 0.5583 0.5563 0.5583 0.5563 0.5583 0.5563 0.5583 0.5563 

4 0.5578 0.5601 0.5578 0.5601 0.5578 0.5601 0.5578 0.5601 

5 0.5578 0.5604 0.5578 0.5604 0.5578 0.5604 0.5578 0.5604 

6 0.5576 0.5623 0.5576 0.5623 0.5576 0.5623 0.5576 0.5623 

7 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 

8 0.5579 0.5594 0.5579 0.5594 0.5579 0.5594 0.5579 0.5594 

9 0.5580 0.5588 0.5580 0.5588 0.5580 0.5588 0.5580 0.5588 

10 0.5578 0.5608 0.5578 0.5608 0.5578 0.5608 0.5578 0.5608 

MEAN 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 
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Table 15(c) RMSE of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5593 0.5474 0.5593 0.5474 0.5593 0.5474 0.5593 0.5474 

2 0.5580 0.5585 0.5580 0.5585 0.5580 0.5585 0.5580 0.5585 

3 0.5583 0.5563 0.5583 0.5563 0.5583 0.5563 0.5583 0.5563 

4 0.5578 0.5601 0.5578 0.5601 0.5578 0.5601 0.5578 0.5601 

5 0.5578 0.5604 0.5578 0.5604 0.5578 0.5604 0.5578 0.5604 

6 0.5576 0.5623 0.5576 0.5623 0.5576 0.5623 0.5576 0.5623 

7 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 

8 0.5579 0.5594 0.5579 0.5594 0.5579 0.5594 0.5579 0.5594 

9 0.5580 0.5588 0.5580 0.5588 0.5580 0.5588 0.5580 0.5588 

10 0.5578 0.5608 0.5578 0.5607 0.5578 0.5607 0.5578 0.5607 

MEAN 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 0.5581 0.5582 

 

Table 15(d) RMSE of RADC for Tree and Deep Learning Based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.5312 1.5370 0.4234 0.4308 

2 1.5309 1.5394 0.4270 0.4298 

3 1.5310 1.5395 0.4214 0.4246 

4 1.5309 1.5381 0.4289 0.4287 

5 1.5311 1.5382 0.4215 0.4255 

6 1.5310 1.5378 0.4232 0.4266 

7 1.5312 1.5439 0.4220 0.4241 

8 1.5311 1.5374 0.4200 0.4224 

9 1.5310 1.5380 0.4209 0.4251 

10 1.5310 1.5374 0.4219 0.4275 

MEAN 1.5310 1.5387 0.4230 0.4265 
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APPENDIX J:  

Results Based on MAE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Same Major Diagnostic Group Related Analysis 

 

Table 16 MAE for Models Based on RSDC 

Table 16(a) MAE of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.4313 0.4279 0.4314 0.4279 0.4314 0.4279 0.4340 0.4298 

2 0.4310 0.4327 0.4311 0.4328 0.4311 0.4328 0.4337 0.4354 

3 0.4310 0.4316 0.4311 0.4316 0.4311 0.4316 0.4337 0.4343 

4 0.4310 0.4297 0.4311 0.4298 0.4312 0.4299 0.4337 0.4324 

5 0.4310 0.4334 0.4311 0.4335 0.4311 0.4336 0.4337 0.4363 

6 0.4309 0.4320 0.4310 0.4322 0.4310 0.4322 0.4336 0.4348 

7 0.4314 0.4305 0.4315 0.4305 0.4314 0.4305 0.4341 0.4333 

8 0.4308 0.4332 0.4309 0.4333 0.4309 0.4333 0.4335 0.4358 

9 0.4313 0.4283 0.4314 0.4283 0.4314 0.4283 0.4340 0.4309 

10 0.4309 0.4335 0.4310 0.4337 0.4310 0.4337 0.4336 0.4363 

MEAN 0.4311 0.4313 0.4312 0.4314 0.4312 0.4314 0.4337 0.4339 

 

Table 16(b) MAE of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.4314 0.4279 0.4314 0.4279 0.4314 0.4279 0.4314 0.4279 

2 0.4311 0.4328 0.4311 0.4328 0.4311 0.4328 0.4311 0.4328 

3 0.4311 0.4316 0.4311 0.4316 0.4311 0.4316 0.4311 0.4316 

4 0.4311 0.4298 0.4311 0.4298 0.4311 0.4298 0.4311 0.4298 

5 0.4311 0.4336 0.4311 0.4336 0.4311 0.4336 0.4311 0.4336 

6 0.4310 0.4321 0.4310 0.4322 0.4310 0.4321 0.4310 0.4321 

7 0.4315 0.4305 0.4315 0.4305 0.4314 0.4305 0.4315 0.4305 

8 0.4309 0.4333 0.4309 0.4333 0.4309 0.4333 0.4309 0.4333 

9 0.4314 0.4283 0.4314 0.4283 0.4314 0.4283 0.4314 0.4283 

10 0.4310 0.4337 0.4310 0.4337 0.4310 0.4337 0.4310 0.4337 

MEAN 0.4312 0.4314 0.4312 0.4314 0.4312 0.4314 0.4312 0.4314 
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Table 16(c) MAE of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.4314 0.4279 0.4315 0.4279 0.4315 0.4279 0.4315 0.4280 

2 0.4311 0.4328 0.4312 0.4328 0.4312 0.4328 0.4312 0.4329 

3 0.4311 0.4316 0.4311 0.4316 0.4311 0.4316 0.4312 0.4317 

4 0.4312 0.4299 0.4312 0.4299 0.4312 0.4299 0.4312 0.4300 

5 0.4311 0.4336 0.4311 0.4336 0.4311 0.4336 0.4312 0.4337 

6 0.4310 0.4321 0.4310 0.4322 0.4310 0.4322 0.4311 0.4322 

7 0.4314 0.4305 0.4315 0.4305 0.4315 0.4305 0.4315 0.4305 

8 0.4309 0.4333 0.4310 0.4333 0.4310 0.4334 0.4310 0.4334 

9 0.4314 0.4283 0.4314 0.4284 0.4315 0.4284 0.4314 0.4284 

10 0.4310 0.4337 0.4310 0.4337 0.4310 0.4337 0.4311 0.4338 

MEAN 0.4312 0.4314 0.4312 0.4314 0.4312 0.4314 0.4313 0.4315 

 

Table 16(d) MAE of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.5004 1.5045 0.3356 0.3309 

2 1.5006 1.5027 0.3297 0.3326 

3 1.5005 1.4996 0.3285 0.3326 

4 1.5004 1.5020 0.3318 0.3347 

5 1.5006 1.5001 0.3337 0.3352 

6 1.5004 1.4994 0.3346 0.3357 

7 1.5005 1.5020 0.3362 0.3385 

8 1.5005 1.5031 0.3396 0.3414 

9 1.5004 1.4993 0.3321 0.3313 

10 1.5004 1.5011 0.3316 0.3356 

MEAN 1.5005 1.5014 0.3333 0.3349 
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APPENDIX K:  

Results Based on MAE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 17 MAE for Models Based on RADC 

Table 17(a) MAE of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.4273 0.4186 0.4273 0.4186 0.4273 0.4186 0.4300 0.4207 

2 0.4264 0.4265 0.4265 0.4266 0.4265 0.4266 0.4292 0.4293 

3 0.4265 0.4279 0.4266 0.4280 0.4266 0.4280 0.4293 0.4310 

4 0.4263 0.4263 0.4264 0.4263 0.4264 0.4264 0.4291 0.4291 

5 0.4262 0.4268 0.4263 0.4269 0.4263 0.4269 0.4290 0.4296 

6 0.4261 0.4283 0.4262 0.4283 0.4262 0.4283 0.4289 0.4311 

7 0.4264 0.4263 0.4265 0.4264 0.4265 0.4264 0.4292 0.4291 

8 0.4262 0.4292 0.4263 0.4292 0.4263 0.4293 0.4290 0.4321 

9 0.4263 0.4274 0.4264 0.4274 0.4264 0.4274 0.4292 0.4302 

10 0.4262 0.4279 0.4262 0.4280 0.4262 0.4280 0.4290 0.4307 

MEAN 0.4264 0.4265 0.4265 0.4266 0.4265 0.4266 0.4292 0.4293 

 

Table 17(b) MAE of RADC for Hyper Tuning From Lasso towards Elastic Net Based Models 

Model Hyper tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.4273 0.4186 0.4273 0.4186 0.4273 0.4186 0.4273 0.4186 

2 0.4264 0.4266 0.4265 0.4266 0.4264 0.4266 0.4265 0.4266 

3 0.4266 0.4280 0.4265 0.4280 0.4266 0.4280 0.4266 0.4280 

4 0.4264 0.4263 0.4264 0.4263 0.4264 0.4263 0.4264 0.4263 

5 0.4263 0.4269 0.4263 0.4269 0.4263 0.4269 0.4263 0.4269 

6 0.4262 0.4283 0.4262 0.4283 0.4262 0.4283 0.4262 0.4283 

7 0.4265 0.4264 0.4265 0.4264 0.4265 0.4264 0.4265 0.4264 

8 0.4263 0.4293 0.4263 0.4292 0.4263 0.4292 0.4263 0.4293 

9 0.4264 0.4274 0.4264 0.4274 0.4264 0.4274 0.4264 0.4274 

10 0.4262 0.4280 0.4262 0.4280 0.4262 0.4280 0.4262 0.4280 

MEAN 0.4265 0.4266 0.4265 0.4266 0.4265 0.4266 0.4265 0.4266 

 

 



75 

 

Table 17(c) MAE of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.4273 0.4186 0.4273 0.4186 0.4274 0.4187 0.4274 0.4187 

2 0.4265 0.4266 0.4265 0.4266 0.4265 0.4266 0.4265 0.4267 

3 0.4266 0.4280 0.4266 0.4280 0.4266 0.4281 0.4266 0.4281 

4 0.4264 0.4264 0.4264 0.4264 0.4264 0.4264 0.4264 0.4264 

5 0.4263 0.4269 0.4263 0.4269 0.4263 0.4269 0.4264 0.4269 

6 0.4262 0.4283 0.4262 0.4283 0.4262 0.4283 0.4262 0.4284 

7 0.4265 0.4264 0.4265 0.4264 0.4265 0.4265 0.4266 0.4265 

8 0.4263 0.4293 0.4263 0.4293 0.4263 0.4293 0.4264 0.4293 

9 0.4264 0.4274 0.4264 0.4274 0.4265 0.4274 0.4265 0.4275 

10 0.4263 0.4280 0.4263 0.4280 0.4263 0.4280 0.4263 0.4281 

MEAN 0.4265 0.4266 0.4265 0.4266 0.4265 0.4266 0.4265 0.4267 

 

Table 17(d) MAE of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.5005 1.5022 0.3246 0.3326 

2 1.5006 1.5394 0.3278 0.3293 

3 1.5006 1.5023 0.3232 0.3254 

4 1.5006 1.5014 0.3294 0.3286 

5 1.5005 1.5007 0.3235 0.3266 

6 1.5005 1.5003 0.3248 0.3271 

7 1.5007 1.5013 0.3238 0.3253 

8 1.5006 1.5000 0.3222 0.3240 

9 1.5005 1.5008 0.3233 0.3260 

10 1.5005 1.5004 0.3236 0.3281 

MEAN 1.5006 1.5049 0.3246 0.3273 
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APPENDIX L:  

Results Based on RAE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Same Major Diagnostic Group Related Analysis 

 

Table 18 RAE for Models Based on RSDC 

Table 18(a) RAE of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5285 0.5162 0.5286 0.5162 0.5286 0.5162 0.5318 0.5185 

2 0.5270 0.5292 0.5271 0.5293 0.5271 0.5293 0.5303 0.5325 

3 0.5268 0.5294 0.5269 0.5294 0.5269 0.5294 0.5301 0.5327 

4 0.5268 0.5272 0.5269 0.5274 0.5270 0.5274 0.5301 0.5306 

5 0.5273 0.5272 0.5274 0.5275 0.5274 0.5275 0.5305 0.5308 

6 0.5266 0.5308 0.5267 0.5310 0.5267 0.5310 0.5298 0.5342 

7 0.5273 0.5279 0.5274 0.5280 0.5273 0.5279 0.5305 0.5314 

8 0.5267 0.5303 0.5268 0.5304 0.5268 0.5303 0.5300 0.5334 

9 0.5269 0.5277 0.5270 0.5277 0.5271 0.5277 0.5302 0.5309 

10 0.5268 0.5304 0.5269 0.5305 0.5269 0.5305 0.5301 0.5337 

MEA

N 

0.5271 0.5276 0.5272 0.5277 0.5272 0.5277 0.5303 0.5309 

 

Table 18(b) RAE of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning from Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5286 0.5162 0.5286 0.5162 0.5286 0.5162 0.5286 0.5162 

2 0.5271 0.5293 0.5271 0.5293 0.5271 0.5293 0.5271 0.5293 

3 0.5269 0.5294 0.5269 0.5294 0.5269 0.5294 0.5269 0.5294 

4 0.5269 0.5274 0.5269 0.5274 0.5269 0.5274 0.5269 0.5274 

5 0.5274 0.5275 0.5274 0.5275 0.5274 0.5275 0.5274 0.5275 

6 0.5266 0.5309 0.5267 0.5310 0.5267 0.5310 0.5267 0.5310 

7 0.5274 0.5280 0.5274 0.5280 0.5273 0.5279 0.5274 0.5280 

8 0.5268 0.5304 0.5268 0.5303 0.5268 0.5304 0.5268 0.5304 

9 0.5270 0.5277 0.5270 0.5277 0.5270 0.5277 0.5270 0.5277 

10 0.5269 0.5305 0.5269 0.5305 0.5269 0.5305 0.5269 0.5305 

MEAN 0.5272 0.5277 0.5272 0.5277 0.5272 0.5277 0.5272 0.5277 
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Table 18(c) RAE of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper tuning from Elastic Net towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5286 0.5162 0.5287 0.5162 0.5287 0.5162 0.5287 0.5163 

2 0.5271 0.5293 0.5271 0.5294 0.5272 0.5294 0.5272 0.5294 

3 0.5269 0.5294 0.5269 0.5295 0.5270 0.5295 0.5270 0.5295 

4 0.5270 0.5274 0.5270 0.5274 0.5270 0.5275 0.5271 0.5275 

5 0.5274 0.5275 0.5274 0.5275 0.5274 0.5275 0.5275 0.5276 

6 0.5267 0.5309 0.5267 0.5310 0.5267 0.5310 0.5268 0.5311 

7 0.5273 0.5279 0.5274 0.5280 0.5274 0.5280 0.5274 0.5280 

8 0.5268 0.5304 0.5268 0.5304 0.5269 0.5304 0.5269 0.5305 

9 0.5271 0.5277 0.5271 0.5277 0.5271 0.5278 0.5271 0.5278 

10 0.5269 0.5305 0.5269 0.5305 0.5270 0.5306 0.5270 0.5306 

MEAN 0.5272 0.5277 0.5272 0.5278 0.5272 0.5278 0.5273 0.5278 

 

 

Table 18(d) RAE of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.8384 1.8149 0.4112 0.3992 

2 1.8346 1.8379 0.4031 0.4068 

3 1.8339 1.8394 0.4015 0.4093 

4 1.8338 1.8429 0.4055 0.4106 

5 1.8357 1.8250 0.4083 0.4079 

6 1.8335 1.8422 0.4089 0.4124 

7 1.8340 1.8420 0.4109 0.4151 

8 1.8344 1.8398 0.4151 0.4179 

9 1.8330 1.8472 0.4057 0.4081 

10 1.8344 1.8363 0.4055 0.4106 

MEAN 1.8346 1.8368 0.4076 0.4098 
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APPENDIX M:  

Results Based on RAE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 19 RAE for Models Based on RADC 

Table 19(a) RAE of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5381 0.5241 0.5381 0.5242 0.5382 0.5242 0.5415 0.5268 

2 0.5363 0.5367 0.5364 0.5368 0.5364 0.5368 0.5398 0.5402 

3 0.5365 0.5380 0.5365 0.5381 0.5366 0.5381 0.5400 0.5418 

4 0.5360 0.5381 0.5361 0.5382 0.5361 0.5382 0.5395 0.5417 

5 0.5361 0.5371 0.5362 0.5373 0.5362 0.5373 0.5396 0.5407 

6 0.5358 0.5399 0.5359 0.5399 0.5359 0.5399 0.5393 0.5435 

7 0.5362 0.5378 0.5363 0.5379 0.5363 0.5379 0.5397 0.5413 

8 0.5361 0.5400 0.5362 0.5402 0.5362 0.5402 0.5396 0.5437 

9 0.5363 0.5375 0.5364 0.5375 0.5364 0.5376 0.5398 0.5411 

10 0.5360 0.5389 0.5361 0.5390 0.5361 0.5390 0.5395 0.5424 

MEA

N 

0.5363 0.5368 0.5364 0.5369 0.5364 0.5369 0.5398 0.5403 

 

Table 19(b) RAE of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5381 0.5242 0.5382 0.5242 0.5382 0.5242 0.5382 0.5242 

2 0.5364 0.5368 0.5364 0.5368 0.5364 0.5368 0.5364 0.5368 

3 0.5366 0.5381 0.5365 0.5381 0.5366 0.5381 0.5365 0.5381 

4 0.5361 0.5382 0.5361 0.5382 0.5361 0.5382 0.5361 0.5382 

5 0.5362 0.5373 0.5362 0.5373 0.5362 0.5373 0.5362 0.5373 

6 0.5359 0.5399 0.5359 0.5399 0.5359 0.5399 0.5359 0.5399 

7 0.5363 0.5379 0.5363 0.5379 0.5363 0.5379 0.5363 0.5379 

8 0.5362 0.5402 0.5362 0.5402 0.5362 0.5402 0.5362 0.5402 

9 0.5364 0.5375 0.5364 0.5375 0.5364 0.5375 0.5364 0.5375 

10 0.5361 0.5390 0.5361 0.5390 0.5361 0.5390 0.5361 0.5390 

MEAN 0.5364 0.5369 0.5364 0.5369 0.5364 0.5369 0.5364 0.5369 
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Table 19(c) RAE of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5382 0.5242 0.5382 0.5242 0.5382 0.5242 0.5382 0.5242 

2 0.5364 0.5368 0.5364 0.5368 0.5364 0.5368 0.5365 0.5369 

3 0.5366 0.5381 0.5366 0.5381 0.5366 0.5382 0.5366 0.5382 

4 0.5361 0.5382 0.5361 0.5382 0.5361 0.5382 0.5362 0.5383 

5 0.5362 0.5373 0.5362 0.5373 0.5362 0.5373 0.5363 0.5373 

6 0.5359 0.5399 0.5359 0.5400 0.5359 0.5400 0.5360 0.5400 

7 0.5363 0.5379 0.5363 0.5379 0.5363 0.5380 0.5364 0.5380 

8 0.5362 0.5402 0.5362 0.5402 0.5362 0.5402 0.5363 0.5403 

9 0.5364 0.5376 0.5364 0.5376 0.5364 0.5376 0.5365 0.5376 

10 0.5361 0.5390 0.5361 0.5390 0.5361 0.5390 0.5361 0.5391 

MEAN 0.5364 0.5369 0.5364 0.5369 0.5365 0.5370 0.5365 0.5370 

 

Table 19(d) RAE of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.8896 1.8809 0.4087 0.4165 

2 1.8874 1.8900 0.4123 0.4144 

3 1.8876 1.8888 0.4065 0.4092 

4 1.8867 1.8953 0.4142 0.4148 

5 1.8872 1.8888 0.4069 0.4111 

6 1.8869 1.8914 0.4084 0.4124 

7 1.8870 1.8938 0.4072 0.4103 

8 1.8874 1.8876 0.4053 0.4078 

9 1.8874 1.8876 0.4066 0.4100 

10 1.8872 1.8894 0.4070 0.4131 

MEAN 1.8874 1.8893 0.4083 0.4119 
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APPENDIX N:  

Results Based on RRSE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Same Major Diagnostic Group Related Analysis 

 

Table 20 RRSE for Models Based on RSDC 

Table 20(a) RRSE of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5466 0.5342 0.5467 0.5342 0.5467 0.5342 0.5476 0.5339 

2 0.5450 0.5447 0.5452 0.5448 0.5452 0.5448 0.5460 0.5461 

3 0.5447 0.5479 0.5448 0.5480 0.5448 0.5480 0.5457 0.5488 

4 0.5446 0.5484 0.5447 0.5485 0.5448 0.5486 0.5456 0.5490 

5 0.5453 0.5430 0.5453 0.5432 0.5453 0.5432 0.5462 0.5447 

6 0.5444 0.5503 0.5445 0.5504 0.5445 0.5504 0.5454 0.5511 

7 0.5451 0.5445 0.5452 0.5446 0.5451 0.5446 0.5460 0.5462 

8 0.5446 0.5491 0.5447 0.5492 0.5446 0.5491 0.5455 0.5498 

9 0.5448 0.5468 0.5449 0.5468 0.5449 0.5468 0.5458 0.5474 

10 0.5447 0.5475 0.5448 0.5476 0.5449 0.5476 0.5457 0.5487 

MEAN 0.5450 0.5456 0.5451 0.5457 0.5451 0.5457 0.5460 0.5466 

 

Table 20(b) RRSE of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5467 0.5342 0.5467 0.5342 0.5467 0.5342 0.5467 0.5342 

2 0.5452 0.5448 0.5452 0.5448 0.5451 0.5448 0.5452 0.5448 

3 0.5448 0.5480 0.5448 0.5480 0.5448 0.5480 0.5448 0.5480 

4 0.5447 0.5485 0.5447 0.5485 0.5447 0.5485 0.5447 0.5485 

5 0.5453 0.5432 0.5453 0.5432 0.5453 0.5432 0.5453 0.5432 

6 0.5445 0.5504 0.5446 0.5504 0.5446 0.5504 0.5445 0.5504 

7 0.5452 0.5446 0.5452 0.5446 0.5451 0.5446 0.5452 0.5446 

8 0.5447 0.5492 0.5446 0.5491 0.5447 0.5491 0.5447 0.5492 

9 0.5449 0.5468 0.5449 0.5468 0.5449 0.5468 0.5449 0.5468 

10 0.5449 0.5476 0.5449 0.5476 0.5448 0.5476 0.5449 0.5476 

MEAN 0.5451 0.5457 0.5451 0.5457 0.5451 0.5457 0.5451 0.5457 
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Table 20(c) RRSE of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5467 0.5342 0.5467 0.5342 0.5467 0.5342 0.5467 0.5342 

2 0.5452 0.5448 0.5452 0.5448 0.5452 0.5448 0.5452 0.5448 

3 0.5448 0.5480 0.5448 0.5480 0.5448 0.5480 0.5448 0.5480 

4 0.5448 0.5486 0.5447 0.5485 0.5448 0.5486 0.5448 0.5486 

5 0.5454 0.5432 0.5453 0.5432 0.5453 0.5432 0.5454 0.5432 

6 0.5445 0.5503 0.5445 0.5504 0.5445 0.5504 0.5446 0.5504 

7 0.5451 0.5446 0.5452 0.5446 0.5452 0.5446 0.5451 0.5446 

8 0.5447 0.5491 0.5447 0.5492 0.5447 0.5492 0.5447 0.5491 

9 0.5449 0.5468 0.5449 0.5468 0.5449 0.5468 0.5449 0.5468 

10 0.5448 0.5476 0.5448 0.5476 0.5449 0.5476 0.5449 0.5476 

MEAN 0.5451 0.5457 0.5451 0.5457 0.5451 0.5457 0.5451 0.5457 

 

Table 20(d) RRSE of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.4813 1.4718 0.4236 0.4108 

2 1.4782 1.4908 0.4165 0.4202 

3 1.4774 1.4933 0.4146 0.4206 

4 1.4779 1.4918 0.4186 0.4231 

5 1.4787 1.4881 0.4213 0.4218 

6 1.4775 1.4936 0.4223 0.4273 

7 1.4778 1.4947 0.4245 0.4289 

8 1.4777 1.4952 0.4283 0.4319 

9 1.4768 1.4982 0.4185 0.4216 

10 1.4779 1.4904 0.4192 0.4243 

MEAN 1.4781 1.4908 0.4208 0.4230 
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APPENDIX O:  

Results Based on RRSE of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 21 RRSE for Models Based on RADC 

Table 21(a) RRSE of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5550 0.5418 0.5550 0.5418 0.5550 0.5418 0.5559 0.5418 

2 0.5532 0.5535 0.5533 0.5536 0.5533 0.5536 0.5542 0.5545 

3 0.5534 0.5516 0.5535 0.5517 0.5535 0.5517 0.5544 0.5535 

4 0.5528 0.5575 0.5529 0.5575 0.5529 0.5575 0.5538 0.5582 

5 0.5530 0.5552 0.5531 0.5553 0.5531 0.5553 0.5540 0.5559 

6 0.5527 0.5585 0.5528 0.5585 0.5528 0.5585 0.5537 0.5593 

7 0.5532 0.5541 0.5532 0.5542 0.5532 0.5542 0.5542 0.5552 

8 0.5531 0.5550 0.5531 0.5551 0.5531 0.5551 0.5541 0.5564 

9 0.5532 0.5540 0.5532 0.5541 0.5532 0.5541 0.5542 0.5552 

10 0.5529 0.5567 0.5529 0.5567 0.5529 0.5567 0.5539 0.5575 

MEAN 0.5532 0.5538 0.5533 0.5539 0.5533 0.5539 0.5542 0.5548 

 

Table 21(b) RRSE of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5550 0.5418 0.5550 0.5418 0.5550 0.5418 0.5550 0.5418 

2 0.5533 0.5536 0.5533 0.5536 0.5533 0.5536 0.5533 0.5536 

3 0.5535 0.5517 0.5535 0.5517 0.5535 0.5517 0.5535 0.5517 

4 0.5529 0.5575 0.5529 0.5575 0.5529 0.5575 0.5529 0.5575 

5 0.5531 0.5553 0.5531 0.5553 0.5531 0.5553 0.5531 0.5553 

6 0.5528 0.5585 0.5528 0.5585 0.5528 0.5585 0.5528 0.5585 

7 0.5532 0.5542 0.5532 0.5541 0.5532 0.5542 0.5532 0.5542 

8 0.5531 0.5551 0.5531 0.5551 0.5531 0.5551 0.5531 0.5551 

9 0.5532 0.5541 0.5532 0.5541 0.5532 0.5541 0.5532 0.5541 

10 0.5529 0.5567 0.5529 0.5567 0.5529 0.5567 0.5529 0.5567 

MEAN 0.5533 0.5539 0.5533 0.5539 0.5533 0.5539 0.5533 0.5539 
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Table 21(c) RRSE of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.5550 0.5418 0.5550 0.5418 0.5550 0.5418 0.5550 0.5418 

2 0.5533 0.5536 0.5533 0.5536 0.5533 0.5536 0.5533 0.5536 

3 0.5535 0.5517 0.5535 0.5517 0.5535 0.5517 0.5535 0.5518 

4 0.5529 0.5575 0.5529 0.5575 0.5529 0.5575 0.5529 0.5575 

5 0.5531 0.5553 0.5531 0.5553 0.5531 0.5553 0.5531 0.5552 

6 0.5528 0.5585 0.5528 0.5585 0.5528 0.5585 0.5528 0.5585 

7 0.5532 0.5542 0.5532 0.5542 0.5532 0.5542 0.5532 0.5542 

8 0.5531 0.5551 0.5531 0.5551 0.5531 0.5551 0.5531 0.5551 

9 0.5532 0.5541 0.5532 0.5541 0.5532 0.5541 0.5532 0.5541 

10 0.5529 0.5567 0.5529 0.5567 0.5529 0.5567 0.5529 0.5567 

MEAN 0.5533 0.5539 0.5533 0.5539 0.5533 0.5539 0.5533 0.5539 

 

Table 21(d) RRSE of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 1.5196 1.5212 0.4202 0.4264 

2 1.5179 1.5259 0.4233 0.4261 

3 1.5180 1.5268 0.4178 0.4211 

4 1.5172 1.5310 0.4251 0.4267 

5 1.5181 1.5241 0.4179 0.4216 

6 1.5177 1.5272 0.4195 0.4237 

7 1.5179 1.5327 0.4183 0.4210 

8 1.5179 1.5257 0.4164 0.4192 

9 1.5180 1.5250 0.4173 0.4215 

10 1.5178 1.5264 0.4183 0.4245 

MEAN 1.5180 1.5266 0.4194 0.4232 
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APPENDIX P:  

Results Based on NRMSE1 of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Same Major Diagnostic Group Related Analysis 

 

Table 22 NRMSE1 for Models Based on RSDC 

Table 22(a) NRMSE1 of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0529 0.0567 0.0529 0.0567 0.0529 0.0567 0.0530 0.0567 

2 0.0529 0.0577 0.0529 0.0577 0.0529 0.0577 0.0530 0.0579 

3 0.0532 0.0548 0.0532 0.0548 0.0532 0.0548 0.0533 0.0549 

4 0.0529 0.0552 0.0529 0.0552 0.0529 0.0552 0.0529 0.0552 

5 0.0529 0.0548 0.0529 0.0548 0.0529 0.0548 0.0530 0.0550 

6 0.0528 0.0556 0.0529 0.0556 0.0529 0.0556 0.0529 0.0557 

7 0.0531 0.0541 0.0531 0.0541 0.0531 0.0541 0.0532 0.0543 

8 0.0529 0.0551 0.0529 0.0551 0.0529 0.0551 0.0529 0.0552 

9 0.0529 0.0549 0.0529 0.0549 0.0529 0.0549 0.0530 0.0550 

10 0.0529 0.0543 0.0529 0.0543 0.0529 0.0543 0.0530 0.0544 

MEAN 0.0529 0.0553 0.0529 0.0553 0.0529 0.0553 0.0530 0.0554 

 

Table 22(b) NRMSE1 of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper tuning from Lasso towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0529 0.0567 0.0529 0.0539 0.0529 0.0567 0.0529 0.0567 

2 0.0529 0.0577 0.0529 0.0577 0.0529 0.0577 0.0529 0.0577 

3 0.0532 0.0548 0.0533 0.0548 0.0532 0.0548 0.0532 0.0548 

4 0.0529 0.0552 0.0529 0.0552 0.0529 0.0552 0.0529 0.0552 

5 0.0529 0.0548 0.0529 0.0548 0.0529 0.0548 0.0529 0.0548 

6 0.0529 0.0556 0.0529 0.0556 0.0529 0.0556 0.0529 0.0556 

7 0.0531 0.0541 0.0531 0.0541 0.0531 0.0541 0.0531 0.0541 

8 0.0529 0.0551 0.0529 0.0551 0.0529 0.0551 0.0529 0.0551 

9 0.0529 0.0549 0.0529 0.0549 0.0529 0.0549 0.0529 0.0549 

10 0.0529 0.0543 0.0529 0.0543 0.0529 0.0543 0.0529 0.0543 

MEAN 0.0529 0.0553 0.0529 0.0551 0.0529 0.0553 0.0529 0.0553 
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Table 22(c) NRMSE1 of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0529 0.0567 0.0529 0.0567 0.0529 0.0567 0.0529 0.0567 

2 0.0529 0.0577 0.0529 0.0577 0.0529 0.0577 0.0529 0.0577 

3 0.0532 0.0548 0.0533 0.0548 0.0532 0.0548 0.0533 0.0548 

4 0.0529 0.0552 0.0529 0.0552 0.0529 0.0552 0.0529 0.0552 

5 0.0529 0.0548 0.0529 0.0548 0.0529 0.0548 0.0529 0.0548 

6 0.0529 0.0556 0.0529 0.0556 0.0529 0.0556 0.0529 0.0556 

7 0.0531 0.0541 0.0531 0.0541 0.0531 0.0541 0.0531 0.0541 

8 0.0529 0.0551 0.0529 0.0551 0.0529 0.0551 0.0529 0.0551 

9 0.0529 0.0549 0.0529 0.0549 0.0529 0.0549 0.0529 0.0549 

10 0.0529 0.0543 0.0529 0.0543 0.0529 0.0543 0.0529 0.0543 

MEAN 0.0529 0.0553 0.0529 0.0553 0.0529 0.0553 0.0529 0.0553 

 

Table 22(d) NRMSE1 of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 0.1434 0.1563 0.0410 0.0436 

2 0.1434 0.1580 0.0404 0.0445 

3 0.1444 0.1494 0.0405 0.0421 

4 0.1434 0.1501 0.0406 0.0426 

5 0.1434 0.1502 0.0409 0.0426 

6 0.1434 0.1508 0.0410 0.0431 

7 0.1440 0.1485 0.0414 0.0426 

8 0.1434 0.1501 0.0416 0.0434 

9 0.1434 0.1505 0.0406 0.0424 

10 0.1434 0.1478 0.0407 0.0421 

MEAN 0.1436 0.1512 0.0409 0.0429 
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APPENDIX Q:  

Results Based on NRMSE1 of Each Fold of 10-fold Cross Validation for Readmissions Belonging to 

Different Major Diagnostic Group Related Analysis 

 

Table 23 NRMSE1 for Models Based on RADC 

Table 23(a) NRMSE1 of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0521 0.0546 0.0521 0.0546 0.0521 0.0546 0.0521 0.0546 

2 0.0519 0.0553 0.0519 0.0553 0.0519 0.0553 0.0520 0.0554 

3 0.0520 0.0533 0.0521 0.0533 0.0521 0.0533 0.0521 0.0535 

4 0.0519 0.0535 0.0519 0.0535 0.0519 0.0535 0.0520 0.0536 

5 0.0519 0.0563 0.0519 0.0563 0.0519 0.0563 0.0520 0.0564 

6 0.0519 0.0549 0.0519 0.0549 0.0519 0.0549 0.0520 0.0550 

7 0.0519 0.0565 0.0519 0.0565 0.0519 0.0565 0.0520 0.0566 

8 0.0519 0.0548 0.0519 0.0548 0.0519 0.0548 0.0520 0.0549 

9 0.0522 0.0531 0.0522 0.0531 0.0522 0.0531 0.0523 0.0532 

10 0.0519 0.0537 0.0519 0.0537 0.0519 0.0537 0.0520 0.0538 

MEAN 0.0520 0.0546 0.0520 0.0546 0.0520 0.0546 0.0521 0.0547 

 

Table 23(b) NRMSE1 of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0521 0.0546 0.0521 0.0546 0.0521 0.0546 0.0521 0.0546 

2 0.0519 0.0553 0.0519 0.0553 0.0519 0.0553 0.0519 0.0553 

3 0.0521 0.0533 0.0521 0.0533 0.0521 0.0533 0.0521 0.0533 

4 0.0519 0.0535 0.0519 0.0535 0.0519 0.0535 0.0519 0.0535 

5 0.0519 0.0563 0.0519 0.0563 0.0519 0.0563 0.0519 0.0563 

6 0.0519 0.0549 0.0519 0.0549 0.0519 0.0549 0.0519 0.0549 

7 0.0519 0.0565 0.0519 0.0565 0.0519 0.0565 0.0519 0.0565 

8 0.0519 0.0548 0.0519 0.0548 0.0519 0.0548 0.0519 0.0548 

9 0.0522 0.0531 0.0522 0.0531 0.0522 0.0531 0.0522 0.0531 

10 0.0519 0.0537 0.0519 0.0537 0.0519 0.0537 0.0519 0.0537 

MEAN 0.0520 0.0546 0.0520 0.0546 0.0520 0.0546 0.0520 0.0546 
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Table 23(c) NRMSE1 of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0521 0.0546 0.0521 0.0546 0.0521 0.0546 0.0521 0.0546 

2 0.0519 0.0553 0.0519 0.0553 0.0519 0.0553 0.0519 0.0553 

3 0.0521 0.0533 0.0521 0.0533 0.0521 0.0533 0.0521 0.0533 

4 0.0519 0.0535 0.0519 0.0535 0.0519 0.0535 0.0519 0.0535 

5 0.0519 0.0563 0.0519 0.0563 0.0519 0.0563 0.0519 0.0563 

6 0.0519 0.0549 0.0519 0.0549 0.0519 0.0549 0.0519 0.0549 

7 0.0519 0.0565 0.0519 0.0565 0.0519 0.0565 0.0519 0.0565 

8 0.0519 0.0548 0.0519 0.0548 0.0519 0.0548 0.0519 0.0548 

9 0.0522 0.0531 0.0522 0.0531 0.0522 0.0531 0.0522 0.0531 

10 0.0519 0.0537 0.0519 0.0537 0.0519 0.0537 0.0519 0.0537 

MEAN 0.0520 0.0546 0.0520 0.0546 0.0520 0.0546 0.0520 0.0546 

 

 

Table 23(d) NRMSE1 of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 0.1436 0.1538 0.0394 0.0429 

2 0.1435 0.1530 0.0397 0.0426 

3 0.1438 0.1480 0.0393 0.0407 

4 0.1435 0.1475 0.0399 0.0410 

5 0.1435 0.1551 0.0392 0.0427 

6 0.1435 0.1507 0.0394 0.0417 

7 0.1435 0.1563 0.0393 0.0429 

8 0.1435 0.1512 0.0391 0.0440 

9 0.1444 0.1467 0.0394 0.0404 

10 0.1435 0.1477 0.0393 0.0409 

MEAN 0.1436 0.1510 0.0394 0.0420 
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APPENDIX R:  

Results Based on NRMSE2 of Each Fold of 10-fold Cross Validation for 

Readmissions Belonging to Same Major Diagnostic Group Related Analysis 

 

Table 24 NRMSE2 for RSDC Models 

Table 24(a) NRMSE2 of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0549 0.0539 0.0549 0.0539 0.0549 0.0539 0.0550 0.0538 

2 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0549 0.0550 

3 0.0548 0.0550 0.0548 0.0550 0.0548 0.0550 0.0549 0.0551 

4 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0549 0.0552 

5 0.0548 0.0548 0.0548 0.0549 0.0548 0.0549 0.0549 0.0550 

6 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0549 0.0553 

7 0.0548 0.0547 0.0549 0.0547 0.0548 0.0547 0.0549 0.0549 

8 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0549 0.0552 

9 0.0548 0.0547 0.0549 0.0547 0.0549 0.0547 0.0549 0.0547 

10 0.0548 0.0551 0.0548 0.0551 0.0548 0.0551 0.0549 0.0552 

MEAN 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 0.0549 0.0549 

 

Table 24(b) NRMSE2 of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0549 0.0539 0.0549 0.0539 0.0549 0.0539 0.0549 0.0539 

2 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 

3 0.0548 0.0550 0.0548 0.0550 0.0548 0.0550 0.0548 0.0550 

4 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 

5 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 

6 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 

7 0.0549 0.0547 0.0548 0.0547 0.0548 0.0547 0.0548 0.0547 

8 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 

9 0.0549 0.0547 0.0549 0.0547 0.0549 0.0547 0.0549 0.0547 

10 0.0548 0.0551 0.0548 0.0551 0.0548 0.0551 0.0548 0.0551 

MEAN 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 
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Table 24(c) NRMSE2 of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0549 0.0539 0.0549 0.0539 0.0549 0.0539 0.0549 0.0539 

2 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 0.0548 

3 0.0548 0.0550 0.0548 0.0550 0.0548 0.0550 0.0548 0.0550 

4 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 

5 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 

6 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 

7 0.0548 0.0547 0.0549 0.0547 0.0549 0.0547 0.0548 0.0547 

8 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 0.0548 0.0552 

9 0.0549 0.0547 0.0549 0.0547 0.0549 0.0547 0.0548 0.0547 

10 0.0548 0.0551 0.0548 0.0551 0.0548 0.0551 0.0548 0.0551 

MEAN 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 0.0548 0.0549 

 

Table 24(d) NRMSE2 of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 0.1489 0.1484 0.0425 0.0414 

2 0.1487 0.1500 0.0419 0.0423 

3 0.1487 0.1498 0.0417 0.0422 

4 0.1487 0.1500 0.0421 0.0426 

5 0.1487 0.1503 0.0424 0.0426 

6 0.1487 0.1499 0.0425 0.0429 

7 0.1487 0.1501 0.0427 0.0431 

8 0.1487 0.1502 0.0431 0.0434 

9 0.1487 0.1498 0.0421 0.0421 

10 0.1487 0.1501 0.0422 0.0427 

MEAN 0.1487 0.1499 0.0423 0.0425 
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APPENDIX S:  

Results Based on NRMSE2 of Each Fold of 10-fold Cross Validation for 

Readmissions Belonging to Different Major Diagnostic Group Related Analysis 

 

Table 25 NRMSE2 for RADC Models 

Table 25(a) NRMSE2 of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0543 0.0525 0.0543 0.0525 0.0543 0.0525 0.0544 0.0525 

2 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0542 0.0543 

3 0.0541 0.0540 0.0541 0.0540 0.0541 0.0540 0.0542 0.0542 

4 0.0541 0.0543 0.0541 0.0544 0.0541 0.0544 0.0542 0.0544 

5 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0542 0.0545 

6 0.0540 0.0546 0.0540 0.0546 0.0540 0.0546 0.0541 0.0547 

7 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0542 0.0543 

8 0.0541 0.0543 0.0541 0.0543 0.0541 0.0543 0.0542 0.0544 

9 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0542 0.0544 

10 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0542 0.0545 

MEAN 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0542 0.0542 

 

Table 25(b) NRMSE2 of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0543 0.0525 0.0543 0.0525 0.0543 0.0525 0.0543 0.0525 

2 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 

3 0.0541 0.0540 0.0541 0.0540 0.0541 0.0540 0.0541 0.0540 

4 0.0541 0.0544 0.0541 0.0544 0.0541 0.0543 0.0541 0.0544 

5 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 

6 0.0540 0.0546 0.0540 0.0546 0.0540 0.0546 0.0540 0.0546 

7 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 

8 0.0541 0.0543 0.0541 0.0543 0.0541 0.0543 0.0541 0.0543 

9 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 

10 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 

MEAN 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 
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Table 25(c) NRMSE2 of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0543 0.0525 0.0543 0.0525 0.0543 0.0525 0.0543 0.0525 

2 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 

3 0.0541 0.0540 0.0541 0.0540 0.0541 0.0540 0.0541 0.0540 

4 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 

5 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 

6 0.0540 0.0546 0.0540 0.0546 0.0540 0.0546 0.0540 0.0546 

7 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 

8 0.0541 0.0543 0.0541 0.0543 0.0541 0.0543 0.0541 0.0543 

9 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 0.0541 0.0542 

10 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 0.0541 0.0544 

MEAN 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 0.0541 

 

Table 25(d) NRMSE2 of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 0.1486 0.1474 0.0411 0.0413 

2 0.1484 0.1494 0.0414 0.0417 

3 0.1484 0.1494 0.0408 0.0412 

4 0.1484 0.1492 0.0416 0.0416 

5 0.1484 0.1493 0.0409 0.0413 

6 0.1484 0.1493 0.0410 0.0414 

7 0.1484 0.1498 0.0409 0.0411 

8 0.1484 0.1493 0.0407 0.0410 

9 0.1484 0.1493 0.0408 0.0413 

10 0.1484 0.1492 0.0409 0.0415 

MEAN 0.1484 0.1492 0.0410 0.0413 

 

 

 

 

 



92 

 

APPENDIX T:  

Results Based on MAD of Each Fold of 10-fold Cross Validation for 

Readmissions Belonging to Same Major Diagnostic Group Related Analysis 

 

Table 26 MAD for RSDC Models 

Table 26(a) MAD of RSDC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0420 0.0412 0.0420 0.0412 0.0420 0.0412 0.0422 0.0414 

2 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 0.0422 0.0424 

3 0.0419 0.0420 0.0419 0.0420 0.0419 0.0420 0.0422 0.0423 

4 0.0419 0.0418 0.0419 0.0418 0.0419 0.0418 0.0422 0.0421 

5 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0422 0.0425 

6 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 0.0422 0.0423 

7 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0422 0.0422 

8 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0421 0.0424 

9 0.0419 0.0417 0.0419 0.0417 0.0419 0.0417 0.0422 0.0419 

10 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0421 0.0425 

MEAN 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0422 0.0422 

 

Table 26(b) MAD of RSDC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0420 0.0412 0.0420 0.0412 0.0420 0.0412 0.0420 0.0412 

2 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 

3 0.0419 0.0420 0.0419 0.0420 0.0419 0.0420 0.0419 0.0420 

4 0.0419 0.0418 0.0419 0.0418 0.0419 0.0418 0.0419 0.0418 

5 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 

6 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 

7 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 

8 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 

9 0.0419 0.0417 0.0419 0.0417 0.0419 0.0417 0.0419 0.0417 

10 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 

MEAN 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 
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Table 26(c) MAD of RSDC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0420 0.0412 0.0420 0.0412 0.0420 0.0412 0.0420 0.0412 

2 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 

3 0.0419 0.0420 0.0419 0.0420 0.0419 0.0420 0.0419 0.0420 

4 0.0419 0.0418 0.0419 0.0418 0.0419 0.0418 0.0419 0.0418 

5 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 

6 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 0.0419 0.0421 

7 0.0419 0.0419 0.0420 0.0419 0.0420 0.0419 0.0419 0.0419 

8 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 

9 0.0419 0.0417 0.0419 0.0417 0.0419 0.0417 0.0419 0.0417 

10 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 0.0419 0.0422 

MEAN 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0419 0.0420 

 

Table 26(d) MAD of RSDC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 0.1461 0.1448 0.0327 0.0312 

2 0.1459 0.1462 0.0321 0.0324 

3 0.1459 0.1460 0.0319 0.0324 

4 0.1459 0.1461 0.0323 0.0326 

5 0.1459 0.1460 0.0324 0.0326 

6 0.1459 0.1460 0.0325 0.0327 

7 0.1459 0.1462 0.0327 0.0330 

8 0.1459 0.1463 0.0330 0.0332 

9 0.1459 0.1459 0.0323 0.0322 

10 0.1459 0.1462 0.0322 0.0327 

MEAN 0.1459 0.1460 0.0324 0.0325 
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APPENDIX U:  

Results based on MAD of Each Fold of 10-fold Cross Validation for 

Readmissions Belonging to Different Major Diagnostic Group Related Analysis 

 

Table 27 MAD for RADC Models 

Table 27(a) MAD of RADC for Regression and Generalization Based Models 

Model Linear Regression Lasso Regression Elastic Net 

Regression 

Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0415 0.0401 0.0415 0.0401 0.0415 0.0401 0.0417 0.0403 

2 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0416 0.0417 

3 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0416 0.0418 

4 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0416 0.0416 

5 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0416 0.0417 

6 0.0413 0.0416 0.0413 0.0416 0.0413 0.0416 0.0416 0.0419 

7 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0416 0.0414 

8 0.0413 0.0417 0.0413 0.0417 0.0413 0.0417 0.0416 0.0419 

9 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0416 0.0418 

10 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0416 0.0418 

MEAN 0.0413 0.0413 0.0413 0.0414 0.0413 0.0414 0.0416 0.0416 

 

Table 27(b) MAD of RADC for Hyper Tuning From Lasso Towards Elastic Net Based Models 

Model Hyper Tuning From Lasso Towards Elastic Net Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0415 0.0401 0.0415 0.0401 0.0415 0.0401 0.0415 0.0401 

2 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

3 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 

4 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

5 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

6 0.0413 0.0416 0.0413 0.0416 0.0413 0.0416 0.0413 0.0416 

7 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

8 0.0413 0.0417 0.0413 0.0417 0.0413 0.0417 0.0413 0.0417 

9 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 

10 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 

MEAN 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 
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Table 27(c) MAD of RADC for Hyper Tuning From Elastic Net Towards Ridge Based Models 

Model Hyper Tuning From Elastic Net Towards Ridge Regression 

Fold Training Testing Training Testing Training Testing Training Testing 

1 0.0415 0.0401 0.0415 0.0401 0.0415 0.0401 0.0415 0.0402 

2 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

3 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0414 0.0415 

4 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

5 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

6 0.0413 0.0416 0.0413 0.0416 0.0413 0.0416 0.0413 0.0416 

7 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

8 0.0413 0.0417 0.0413 0.0417 0.0413 0.0417 0.0413 0.0417 

9 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 

10 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 0.0413 0.0415 

MEAN 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 0.0413 0.0414 

 

Table 27(d) MAD of RADC for Tree and Deep Learning-based Models 

Model XGBoost Deep Learning 

Fold Training Testing Training Testing 

1 0.1456 0.1441 0.0315 0.0319 

2 0.1454 0.1457 0.0318 0.0320 

3 0.1455 0.1458 0.0313 0.0316 

4 0.1454 0.1457 0.0319 0.0319 

5 0.1454 0.1456 0.0314 0.0317 

6 0.1454 0.1457 0.0315 0.0318 

7 0.1455 0.1457 0.0314 0.0316 

8 0.1454 0.1456 0.0312 0.0315 

9 0.1454 0.1457 0.0313 0.0316 

10 0.1454 0.1456 0.0314 0.0318 

MEAN 0.1455 0.1455 0.0315 0.0317 
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APPENDIX V:  

Variables Used in Essay 2 Along With Their Descriptions 

 

(Variable Names and Their Explanations are Retrieved From AHRQ Website)4 

Table 28 Variables and Their Descriptions Used in Essay 2 

 
4 https://www.hcup-us.ahrq.gov/db/nation/nrd/nrddde.jsp 

Variable Name Explanation 

AGE Age in years of a patient  

AWEEKEND Indicates if the admission took place on a weekend: (1) yes, (0) no 

DISCWT NRD discharge weight to be used for calculating national estimates 

DISPUNIFORM Indicates the disposition status of a patient: (1) routine, (2) transfer 

to short term hospital, (5) other transfers, including skilled nursing 

facility, intermediate care, and another type of facility, (6) home 

health care, (7) against medical advice, (20) died in hospital, (99) 

discharged alive, destination unknown 

DQTR Indicates the quarter of the year:  (1) Jan–Mar, (2) Apr–Jun, (3) 

Jul–Sep, (4) Oct–Dec 

ELECTIVE Indicates the elective status of an admission: (1) yes, (0) no 

FEMALE Indicates the sex of a patient:(0) male, (1) female.  

HCUP_ED Indicates if the discharge record included emergency department 

(ED) services: (0) record does not meet any HCUP ED criteria, (1) 

ED revenue code was on State Inpatient Database (SID) record, (2) 

ED charge reported on SID record, (3) ED CPT procedure code on 

SID record, (4) other indication of ED services 

PREV_LOS Length of stay from previous admission 

MDC MDC that was in use on the discharge date. The details of the MDC 

categories are given in Table 9 of Appendix C. 

NCHRONIC Number of chronic conditions 

NDX Number of diagnoses coded 

NPR Number of procedures coded 

NECODE Number of external causes of injury codes coded 

ORPROC Indicates if the discharge record has a major operating room 

procedure: (1) yes, (0) no 

PAY1 Indicates the type of insurance: (1) Medicare, (2) Medicaid, (3) 

private insurance, (4) uninsured (self-pay), (5) uninsured (no 

charge), (6) other 

PL_NCHS Indicates the patient location using the National Center for Health 

Statistics (NCHS) urban-rural classification scheme for U.S. 

counties: (1) "Central" counties of metro areas of >=1 million 

population, (2) "Fringe" counties of metro areas of >=1 million 

population, (3) counties in metro areas of 250,000–999,999 

population, (4) counties in metro areas of 50,000–249,999 
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population, (5) micropolitan counties, (6) not metropolitan or 

micropolitan counties 

REHABTRANSFER Indicates if the record had transfer to a rehabilitation, evaluation, or 

other aftercare: (1) yes, (0) no 

RESIDENT Indicates if a patient is a resident of the State in which he or she 

received hospital care: (1) yes, (0) no 

SAMEDAYEVENT Indicates the same day event status of a patient: (0) not a combined 

transfer or other same-day stay record, (1) combined transfer 

involving two discharges from different hospitals, (2) combined 

same-day stay involving two discharges at different hospitals, (3) 

combined same-day stay involving two discharges at the same 

hospital, (4) combined same-day stay involving three or more 

discharges at same or different hospitals 

ZIPINC_QRTL Indicates the median household income quartiles for patient's ZIP 

code. For 2013, the median income quartiles are defined as: (1) $1 - 

$37,999; (2) $38,000 - $47,999; (3) $48,000 - $63,999; and (4) 

$64,000 or more. 

TOTCHG Costs billed by the hospital for readmissions 

PREVCHG Costs billed by the hospital for the last previous admission 

HOSP_BEDSIZE Indicates the size of a hospital based on the number of beds: (1) 

small, (2) medium, (3) large. 

HOSP_UR_TEACH Indicates the teaching status of the hospital: (0) metropolitan non-

teaching, (1) metropolitan teaching, (2) non-metropolitan 

HOSP_URCAT4 Indicates the urban-rural location of the hospital: (1) large 

metropolitan areas with at least 1 million residents, (2) small 

metropolitan areas with less than 1 million residents, (3) 

micropolitan areas, (4) not metropolitan or micropolitan 

H_CONTRL Indicates the control/ownership of the hospital: (1) government, 

nonfederal [public]; (2) private, not-for-profit [voluntary]; (3) 

private, investor-owned [proprietary] 

TOTAL_DISC  Total number of discharges for this hospital in the NRD  

APRDRG_Risk_Mortality Indicates the 3M All Patient Refined DRG: Risk of mortality 

subclass: (0) No class specified, (1) Minor likelihood of dying, (2) 

Moderate likelihood of dying, (3) Major likelihood of dying, (4) 

Extreme likelihood of dying  

APRDRG_Severity Indicates the 3M All Patient Refined DRG: Severity of illness 

subclass: (0) No class specified, (1) Minor loss of function 

(includes cases with no comorbidity or complications), (2) 

Moderate loss of function, (3) Major loss of function, (4) Extreme 

loss of function  
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APPENDIX W:  

Results of Essay 2 for Each Fold of 10-fold Cross Validation for 

Readmissions Belonging to Diseases and Disorders of the Circulatory System 

Table 29 Overall Results of Essay 2 for Circulatory MDC 

  

Multitask Learning Algorithm (lambda1= 0.221 and 

lambda2 = 0.225) Linear Regression 

Logistic 

Regression 

  Metric 

  RMSE MAE 

Misclassificatio

n Error RMSE MAE 

Misclassificatio

n Error 

Fol

d Task 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

1 R - - - - 0.419 0.444 - - - - 0.429 0.445 

1 RC 0.120 0.122 0.094 0.096 - - 0.117 0.120 0.092 0.096 - - 

1 LOS 0.438 0.453 0.347 0.354 - - 0.434 0.450 0.344 0.354 - - 

2 R - - - - 0.431 0.448 - - - - 0.427 0.457 

2 RC 0.120 0.119 0.094 0.092 - - 0.117 0.115 0.093 0.089 - - 

2 LOS 0.439 0.438 0.346 0.355 - - 0.436 0.435 0.344 0.354 - - 

3 R - - - - 0.423 0.420 - - - - 0.434 0.420 

3 RC 0.120 0.117 0.094 0.093 - - 0.117 0.114 0.093 0.091 - - 

3 LOS 0.442 0.421 0.344 0.332 - - 0.435 0.438 0.354 0.347 - - 

4 R - - - - 0.419 0.395 - - - - 0.432 0.419 

4 RC 0.120 0.120 0.094 0.094 - - 0.117 0.120 0.092 0.096 - - 

4 LOS 0.438 0.448 0.347 0.351 - - 0.435 0.446 0.345 0.349 - - 

5 R - - - - 0.414 0.423 - - - - 0.428 0.453 

5 RC 0.121 0.115 0.094 0.090 - - 0.117 0.112 0.093 0.088 - - 

5 LOS 0.440 0.436 0.348 0.342 - - 0.436 0.432 0.346 0.338 - - 

6 R - - - - 0.424 0.415 - - - - 0.432 0.427 

6 RC 0.120 0.119 0.094 0.092 - - 0.117 0.115 0.093 0.095 - - 

6 LOS 0.440 0.433 0.348 0.344 - - 0.437 0.427 0.345 0.342 - - 

7 R - - - - 0.431 0.419 - - - - 0.432 0.415 

7 RC 0.120 0.127 0.094 0.094 - - 0.117 0.118 0.092 0.093 - - 

7 LOS 0.438 0.452 0.346 0.358 - - 0.434 0.448 0.344 0.354 - - 

8 R - - - - 0.428 0.415 - - - - 0.431 0.437 

8 RC 0.120 0.122 0.094 0.097 - - 0.117 0.118 0.093 0.094 - - 

8 LOS 0.441 0.425 0.348 0.342 - - 0.437 0.421 0.346 0.338 - - 

9 R - - - - 0.420 0.424 - - - - 0.431 0.433 

9 RC 0.120 0.120 0.094 0.096 - - 0.117 0.118 0.092 0.094 - - 

9 LOS 0.441 0.429 0.348 0.338 - - 0.437 0.427 0.346 0.338 - - 

10 R - - - - 0.414 0.411 - - - - 0.432 0.426 

10 RC 0.120 0.123 0.094 0.095 - - 0.117 0.119 0.092 0.095 - - 

10 LOS 0.438 0.455 0.346 0.357 - - 0.434 0.450 0.344 0.354 - - 

R – Readmissions; RC – Readmission Costs; LOS – Readmitted Length of Stay 
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APPENDIX X:  

Results of Essay 2 for Each Fold of 10-fold Cross Validation for  

Readmissions Belonging to Diseases and Disorders of the Respiratory System 

Table 30 Overall Results of Essay 2 for Respiratory MDC 

  

Multitask Learning Algorithm (lambda1= 0.125 and 

lambda2 = 0.125) Linear Regression 

Logistic 

Regression 

  RMSE MAE 

Misclassificatio

n Error RMSE MAE 

Misclassificatio

n Error 

Fol

d 

Tas

k 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

1 R - - - - 0.442 0.459 - - - - 0.434 0.441 

1 RC 0.094 0.095 0.073 0.075 - - 0.098 0.103 0.077 0.080 - - 

1 

LO

S 0.377 0.363 0.292 0.286 - - 0.379 0.369 0.294 0.291 - - 

2 R - - - - 0.453 0.447 - - - - 0.441 0.426 

2 RC 0.094 0.095 0.072 0.074 - - 0.099 0.098 0.077 0.078 - - 

2 

LO

S 0.375 0.380 0.291 0.298 - - 0.378 0.380 0.294 0.298 - - 

3 R - - - - 0.450 0.441 - - - - 0.439 0.442 

3 RC 0.094 0.096 0.073 0.073 - - 0.099 0.098 0.077 0.076 - - 

3 

LO

S 0.374 0.388 0.291 0.298 - - 0.377 0.389 0.293 0.300 - - 

4 R - - - - 0.448 0.437 - - - - 0.439 0.443 

4 RC 0.095 0.093 0.073 0.071 - - 0.099 0.097 0.077 0.077 - - 

4 

LO

S 0.377 0.365 0.292 0.287 - - 0.379 0.367 0.294 0.290 - - 

5 R - - - - 0.453 0.422 - - - - 0.438 0.414 

5 RC 0.094 0.099 0.072 0.076 - - 0.098 0.104 0.077 0.081 - - 

5 

LO

S 0.375 0.379 0.291 0.289 - - 0.378 0.382 0.294 0.293 - - 

6 R - - - - 0.446 0.463 - - - - 0.437 0.453 

6 RC 0.095 0.093 0.073 0.071 - - 0.099 0.097 0.077 0.073 - - 

6 

LO

S 0.376 0.376 0.291 0.292 - - 0.378 0.379 0.294 0.295 - - 

7 R - - - - 0.446 0.456 - - - - 0.438 0.445 

7 RC 0.094 0.097 0.073 0.076 - - 0.099 0.100 0.077 0.078 - - 

7 

LO

S 0.375 0.383 0.291 0.299 - - 0.378 0.385 0.293 0.301 - - 

8 R - - - - 0.443 0.441 - - - - 0.436 0.436 

8 RC 0.095 0.091 0.073 0.071 - - 0.099 0.969 0.077 0.077 - - 

8 

LO

S 0.378 0.356 0.293 0.277 - - 0.380 0.360 0.295 0.281 - - 

9 R - - - - 0.446 0.457 - - - - 0.436 0.435 

9 RC 0.094 0.094 0.073 0.072 - - 0.099 0.097 0.077 0.075 - - 

9 

LO

S 0.374 0.395 0.291 0.299 - - 0.376 0.396 0.293 0.301 - - 

10 R - - - - 0.443 0.464 - - - - 0.436 0.447 

10 RC 0.095 0.091 0.073 0.071 - - 0.099 0.097 0.077 0.075 - - 

10 

LO

S 0.377 0.370 0.292 0.288 - - 0.379 0.372 0.294 0.290 - - 

R– Readmissions; RC – Readmission Costs; LOS – Readmitted Length of Stay 
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APPENDIX Y: 

 Results of Essay 2 for Each Fold of 10-fold Cross Validation for 

Readmissions Belonging to Diseases and Disorders of the Digestive System 

Table 31 Overall Results of Essay 2 for Digestive MDC 

  

Multitask Learning Algorithm (lambda1= 0.13 and 

lambda2 = 0.13) Linear Regression 

Logistic 

Regression 

  RMSE MAE 

Misclassificatio

n Error RMSE MAE 

Misclassificatio

n Error 

Fol

d 

Tas

k 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

Traini

ng 

Testi

ng 

1 R - - - - 0.404 0.418 - - - - 0.415 0.435 

1 RC 0.100 0.106 0.077 0.082 - - 0.102 0.107 0.080 0.083 - - 

1 

LO

S 0.388 0.394 0.301 0.310 - - 0.389 0.396 0.304 0.310 - - 

2 R - - - - 0.404 0.395 - - - - 0.418 0.420 

2 RC 0.102 0.100 0.078 0.079 - - 0.103 0.102 0.080 0.080 - - 

2 

LO

S 0.388 0.395 0.301 0.306 - - 0.389 0.396 0.304 0.310 - - 

3 R - - - - 0.402 0.403 - - - - 0.418 0.414 

3 RC 1.102 0.102 0.079 0.076 - - 0.103 0.102 0.083 0.077 - - 

3 

LO

S 0.389 0.382 0.302 0.298 - - 0.391 0.383 0.305 0.300 - - 

4 R - - - - 0.406 0.411 - - - - 0.417 0.426 

4 RC 0.100 0.102 0.077 0.079 - - 0.103 0.104 0.080 0.082 - - 

4 

LO

S 0.388 0.390 0.302 0.306 - - 0.390 0.391 0.304 0.309 - - 

5 R - - - - 0.403 0.398 - - - - 0.419 0.412 

5 RC 0.102 0.098 0.078 0.077 - - 0.103 0.099 0.080 0.078 - - 

5 

LO

S 0.390 0.370 0.304 0.286 - - 0.392 0.372 0.306 0.288 - - 

6 R - - - - 0.406 0.410 - - - - 0.421 0.410 

6 RC 0.101 0.102 0.078 0.079 - - 0.103 0.104 0.080 0.082 - - 

6 

LO

S 0.388 0.394 0.301 0.307 - - 0.389 0.396 0.304 0.310 - - 

7 R - - - - 0.405 0.423 - - - - 0.416 0.429 

7 RC 0.102 0.099 0.079 0.078 - - 0.103 0.102 0.080 0.079 - - 

7 

LO

S 0.390 0.373 0.303 0.291 - - 0.392 0.373 0.306 0.292 - - 

8 R - - - - 0.400 0.415 - - - - 0.415 0.436 

8 RC 0.102 0.101 0.079 0.076 - - 0.103 0.102 0.080 0.078 - - 

8 

LO

S 0.387 0.400 0.300 0.313 - - 0.388 0.401 0.303 0.315 - - 

9 R - - - - 0.406 0.401 - - - - 0.418 0.412 

9 RC 0.102 0.103 0.078 0.080 - - 0.103 0.105 0.080 0.082 - - 

9 

LO

S 0.389 0.381 0.303 0.293 - - 0.391 0.383 0.306 0.296 - - 

10 R - - - - 0.408 0.379 - - - - 0.422 0.375 

10 RC 0.102 0.101 0.079 0.078 - - 0.103 0.101 0.080 0.080 - - 

10 

LO

S 0.387 0.402 0.301 0.309 - - 0.388 0.403 0.304 0.313 - - 

R – Readmissions; RC – Readmission Costs; LOS – Readmitted Length of Stay 
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