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ABSTRACT 
 

THE FLOW LESS TRAVELED: DOCUMENTING INDEPENDENT ORIGINAL RESEARCH ON FLUID 

FLOW INTERACTIONS IN THE LAURENTIAN GREAT LAKES AND IMMEDIATE SURROUNDINGS 

 

 

by 

 

Thomas F. Hansen 

 

 
The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor John A. Janssen 

 

This work is a compilation of several research projects undertaken by the author. Each research effort identifies a 

problem which has been addressed traditionally using methods that are significantly costly, to such an extent that, in 

general, funding, convenience, and practicality are primary limiting factors to their effective implementation. In 

each case, the author has been able to either build upon existing, less expensive alternatives, or even invent novel 

approaches.  The fundamental recurring research question is, can creative, even novel, computational approaches 

make more efficient use of resources to interpret or present data in such a way as to make what was previously 

impractical, inconvenient, or simply unachievable, now well within reach of even those with modest budgets?  The 

first detailed is a research program which examines applications of digital in-line holographic microscopy, which 

operates by effectively replaces physical lenses with computational methods. The next uses digital storage and 

visualization to create real-time updating bathymetry maps using single-beam sonar already installed on most 

aquatic vessels. Also reviewed here is an interactive real-time computational fluid dynamics (CFD) model in which 

the user can simply reach out their hand and see the simulated fluid flow respond with swirling vortices and other 

fluid phenomena, a powerful tool for live demonstrations using equipment already installed in most classrooms. 

Finally, machine learning is applied to the problem of measuring fluid flow, in which a simple subsurface float can 

be used to measure current speed nearly as well as an expensive ADCP using a trained neural network running on an 

ordinary PC. Each are examples of replacing or augmenting existing, relatively expensive methods with far less 

costly alternatives, bringing the science of freshwater to a potentially much wider participatory scale than previously 

possible. 
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FRONTISPIECE AND EPIGRAPH 

 

 
Photo: Tom Hansen 

 Just a few blocks away from the UWM campus lies one of the largest bodies of freshwater in the world.  Known 

collectively as "gichi-gami" by the native Ojibwe peoples, the North American Great Lakes are in fact an incredible 

natural wonder with many stories to tell.  They hold fully 20% of the world's surface freshwater supply and are 

home to vast ecosystems just as complex and varied as the environment on land that we observe with our own five 

senses every day.  

 Yet most of us drive right past the lake almost every day and just see the surface [see photo above], and that's it. 

 Now, let's take a moment to put this in perspective: imagine if, one day, a new type of locust came down from 

the sky, and within just a few years' time virtually transformed the entire landscape, covering virtually every square 

inch of the land, our lawns, parks, forests, even our homes —everything—choking out virtually every other plant 

and animal that was there before.   

 Sounds absolutely horrible and unthinkable, doesn't it?   

 Yet, something just like that has been going on for the last 20 years, just those same few blocks away, as the 

zebra and quagga mussels have dramatically changed the ecosystems of Lake Michigan, completely covering huge 

swaths of the bottom—every rock, crevice, hill and valley as far as the eye can see.   But most of us just look at the 

lake and see that same surface, and think Nothing. Had. Even. Happened. 

 My research explores new ways to increase awareness of these precious lakes, sensing what's going on, such as 

how the water currents are flowing,  listening for the pulse of the ecosystem. Further, it explores new technologies to 

create imaginative interactive displays to help convey what all this data are telling us, and at as low a cost as 
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possible. It accomplishes this by using commonplace technology, such as the cameras,  motion sensors, and wireless 

radios that almost all of us carry around with us every day in our smartphones. 

 This leads us to a major goal of my work, which is to democratize freshwater science, to give those of us 

without big research grants—the students, the citizen scientists, the hobbyists—and, perhaps most important of all, 

the next generation, our children, a chance to grasp what the impact of something like the dreissenid mussel invasion 

can have on day-to-day life on the other side of this surface. 

 My research envisions a day when homemade water monitoring buoys rival the popularity of do-it-yourself 

weather stations; a day when there are just as many 5th grade science fair projects about fish swimming in water as 

there are about birds flying through the air—a day when learning about a mother preparing to lay her eggs might just 

as easily be about a female lake trout carefully selecting that perfect spot on a reef for her brood to hatch safe from 

predators, as about a robin making its nest in a nearby tree. 

 

 —Tom Hansen, speech and single slide from 2019 Three Minute Thesis competition 
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INTRODUCTION 

 

This work is a compilation of several research projects undertaken by the author. Each research effort identifies a 

problem which has been addressed traditionally using methods that are significantly costly, to such an extent that, in 

general, funding, convenience, and practicality are primary limiting factors to their effective implementation. In 

each case, the author has been able to either build upon existing, less expensive alternatives, or even invent new 

novel approaches.  The fundamental recurring research question is, can creative, even novel, computational 

approaches make more efficient use of resources to interpret or present data in such a way as to make what was 

previously impractical, inconvenient, or simply unachievable, now well within reach of even those with modest 

budgets?  The first detailed is a research program which examines applications of digital in-line holographic 

microscopy, which operates by effectively replaces physical lenses with computational methods. The next uses 

digital storage and visualization to create real-time updating bathymetry maps using single-beam sonar already 

installed on most aquatic vessels. Also reviewed here is an interactive real-time computational fluid dynamics 

(CFD) model in which the user can simply reach out their hand and see the simulated fluid flow respond with 

swirling vortices and other fluid phenomena, a powerful tool for live demonstrations using equipment already 

installed in most classrooms. Finally, machine learning is applied to the problem of measuring fluid flow, in which a 

simple subsurface float can be used to measure current speed nearly as well as an expensive ADCP using a trained 

neural network running on an ordinary PC. Each are examples of replacing or augmenting existing, relatively 

expensive methods with far less costly alternatives, bringing the science of freshwater to a potentially much wider 

participatory scale than previously possible. 

Following the science 

 These varied areas of research were not arrived at arbitrarily. The chart shown in Figure 99 shows the 

relationship among the various research interests that were followed to arrive at the projects in this work.  
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Figure 1. The flow less traveled: each arrow represents following the science to the project or area of interest. 
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CHAPTER 1 

 

MEASURING FLOW SPEEDS IN NATURAL WATERS BY TRAINING AN 

ARTIFICIAL NEURAL NETWORK TO ANALYZE HIGH-FREQUENCY FLOW-

INDUCED VIBRATIONS OF TETHERED FLOATS 
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MEASURING FLOW SPEEDS IN NATURAL WATERS BY TRAINING AN 

ARTIFICIAL NEURAL NETWORK TO ANALYZE HIGH-FREQUENCY FLOW-

INDUCED VIBRATIONS OF TETHERED FLOATS 

Manuscript as submitted to Environmental Monitoring and Assessment, January 13, 2021 

 

Abstract 

Measuring water currents in natural waters is limited by the cost of sensors. Standard sonar-based acoustic 

current doppler profilers (ADCPs) are high cost, about $10K per unit. Tilt current meters (TCMs) are much cheaper. 

They consist of a bottom-mounted subsurface float equipped with an inertial measurement unit (IMU) and data center 

that records the float's motion and attitude as a time series. The flow speed is measured by calculating the tilt angle of 

the float in response to the current. However, tilt-based measurements require the float system to be carefully 

engineered, and its physical response optimized for good results. Even so, high-frequency flow-induced vibrations 

often dominate the motion and must be averaged and filtered out of the data and discarded. This represents the loss of 

potentially valuable information but decoding the high-frequency components for such useful data is difficult. These 

experiments explore using an artificial neural network (ANN) approach to extract useful information from that high-

frequency data. The methods were informed by the ANN designs and data augmentation techniques used by 

neurologists to observe the tremors and other motions exhibited by patients experiencing symptoms of Parkinson's 

disease. The results are clear and promising.  This novel approach could facilitate new sensor system designs that can 

be empirically or self-calibrated more efficiently and have a lower barrier to application than those currently 

available. 

Keywords: fluid flow, water current, natural waters, machine learning, artificial neural networks, neural networks, 

convolutional neural networks 

 

Introduction 

 

Background 

Accurate measurement of water current flows is essential to most areas of aquatic environmental research, from 

fisheries and aquatic habitat studies (Houghton et al. 2010; Johansen 2014) to physical limnology (Mortimer 2004) 
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and oceanography (Hokimoto 2012; Sieyes et al. 2008).  Despite its high value, the barrier in obtaining such data has 

generally been the high cost of the sensors (Albaladejo et al. 2010)  (Beltaos 2012). 

A more inexpensive type of water current meter, known as a tilt current meter, has come into use (Sheremet 

2009; Figurski et al. 2011; Anarde and Figlus 2017). Meters of this type have grown in popularity primarily due to 

the availability of inexpensive micro-electro-mechanical systems (MEMS) inertial motion units, or IMUs (Kamil et 

al. 2014; Santoso et al. 2015; Vasyukov et al. 2014). 

MEMS-based tilt current meters, which effectively and accurately measure current flows in environmental 

waters, are now commercially available (Lowell Instruments LLC, North Falmouth, MA 2016), and their 

performance rivals that of ADCPs for single-depth measurements (Figurski et al. 2011; Sheremet 2009; Lowell et al. 

2015).  The ambient flow is determined by recording the float's current-induced motions as a high-frequency time 

series using embedded MEMS IMU sensors. Tilt is then calculated by averaging this time-series to smooth out any 

vortex shedding or other flow-induced vibrations and applying standard formulae to determine the tilt angle. The 

principle of hydrodynamic drag (Hoerner 1965)—which establishes a predictable relationship between the speed of 

ambient fluid flow surrounding an immersed body and the drag force experienced by that body—allows the tilt angle 

to be looked up in a calibration table prepared by the manufacturer to determine the flow speed which corresponds 

with the observed tilt angle. Please refer to Figure 2 for a schematic. 

 

The problem 

 Traditional tilt-based calculations performed on the data from tilt-based current meters involve filtering out the 

collected data's high-frequency component.  This component—caused by vortex shedding and other flow-induced 

vibrations—represents lost information that contains useful data that could increase the effectiveness of calibration 

and measurements. 

 The high-frequency component of this data is rich with information. Several laboratory studies have been done 

(Johnstone and Stappenbelt 2016; Marble et al. 2018), which were focused on observing and predicting the vortex-

induced motions produced by subjecting immersed cylinders to known and controlled flows. These studies show that 

cylinders not dissimilar to the subjects of this work exhibit very complex vibrational behavior in the presence of fluid 

flow, the nature of which is at least partially dependent on the speed of such flow. 
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 Also, research in the field of environmental flow and vortex-induced vibrations is quite extensive.  However, the 

existing body of research is almost exclusively motivated by and focuses on assessing and mitigating the destructive 

and harmful effects of vortex shedding in various environmental and industrial settings. Examples include the 

operation of ROVs (Sayer 1996; Allen and Hening 2002; Gomes et al. 2003) and maintenance of offshore platforms 

(Gonçalves et al., 2010; Irani and Finn, 2004). A very few studies, such as (Zahari and Dol 2014), look at vortex 

shedding as a way to generate electricity. 

A well-established technology for measuring fluid flow speed uses analysis of vortex-induced vibrations of an 

immersed bluff body: the vortex flowmeter (Fussell 1973; Hondoh et al. 2001; Mcmurtrie Charles and Rodely Alan 

1971; Venugopal et al. 2011; Xu et al. 2009). However, this technology only appears to be used in closed pipes in 

commercial and industrial applications—a well-controlled environment. 

 

An innovative solution to an ill-posed problem 

 Given the very high complexity that characterizes flow-induced vibrations, particularly in the relatively noisy 

environment found in natural waters, the author proposes experimentally investigating the efficacy of training an 

artificial neural network (ANN) to determine flow speed based on those vibrations. 

Neural networks have a long history of demonstrating the ability to identify patterns in data, effectively cut 

through noise, and even solve problems previously thought to be statistically impossible (Sejnowski 2020). In 

particular, neural networks have been successfully applied to ill-posed problems (Raissi et al. 2018) or inverse 

problems. Data on the effects of phenomena of interest are known, and these data must be used to infer characteristics 

of the original phenomena. 

These attributes, among others, have led to artificial neural networks being increasingly applied to the study of 

fluid dynamics (Morton et al. 2018; Thuerey and Xiangyu 2018; Wang et al. 2018). 

Inverse problems are common in healthcare due to the high costs and harmful physical effects upon patients that 

direct physical observation of their internal organs generally incurs. Thus, non-invasive medical diagnostic and 

monitoring methods are largely inverse problems that rely on using external observations to infer internal state. 

Artificial neural networks have had a substantial positive impact on the effectiveness of medical imaging techniques 

such as X-rays, CAT scans, and MRIs (Chen et al. 2019), as well as other non-invasive data collection techniques 

such as wearable sensors (Gholamiangonabadi et al. 2020; Mathur et al. 2018; Zhang et al. 2019). 
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The experimental design was informed in no small part by the artificial neural network (ANN) designs and data 

augmentation techniques used by neurologists to observe the tremors and other motions exhibited by patients 

experiencing symptoms of Parkinson's disease and other motion disorders (Um et al. 2017).  These techniques proved 

invaluable in these experiments. 

All ANN models were implemented in Python 3 (Van Rossum and Drake 2009) within the Anaconda 

environment (Anaconda Inc. 2020) using the popular Tensorflow (Abadi et al. 2016) library. Additional libraries and 

functions are cited as they are mentioned. 

 

Materials and Methods 

Data were collected from several deployments over several years as part of an ongoing effort to explore 

inexpensive sensor alternatives. This study examines data from two sets of these deployments: a small time series 

recorded by a unit designed and built in-lab using spare parts and a much larger set of time series collected from a 

manufactured commercially available tilt current meter. 

 

Lab-constructed floats 

 There were no cheap and commercially available MEMS-based tilt current meters in 2015. (Lowell et al. 2015). 

A small group of researchers, including the author, set about the design and construction of a set of ad-hoc floats, 

primarily using spare tubing and other materials, to prove a concept. 

 

Physical description 

 Several floats were constructed, comprised of approximately 6-inch sections of about 6-inch diameter PVC pipe.  

Sealed inside were 16 C-cell batteries, which powered a custom-built circuit assembly consisting of an Arduino Uno, 

a standard MEMS accelerometer, magnetometer, and gyroscope. The onboard Arduino processor ran custom code to 

collect the accelerometer, magnetometer, and gyroscope readings at a sample rate of 2Hz.   Please refer to Figure 3 

for a schematic diagram of the float design. 

 

Deployment locations 
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 The lab-constructed floats were deployed by ship in Lake Michigan's nearshore, in the north gap of the outer 

harbor of Milwaukee, Wisconsin, on November 16, 2015.  The exact locations and dates/times of the deployments are 

detailed in Table 1 and Figure 4.  

 

 

Deployment Data Collected 

Deployment Dates/Times Readings  ADCP Speeds (cm/s) 

 Start End (N) Min Median Max 

1 11/16/2015 12:19:19 11/16/2015 13:45:09 10301 33.5085 95.5753 139.1119 

2 11/16/2015 12:20:16 11/16/2015 13:45:09 10187 33.6795 95.8240 139.1119 

 

Table 1. Data Collection Times and select statistics.  Readings above the 99th percentile were excluded from the data 

to compute these statistics to reduce outliers' effect on the result. 

 

 

Commercial off-the-shelf (COTS) unit 

In 2018, the laboratory obtained a commercially produced tilt current meter, a Lowell Instruments TCM-1 

(Lowell Instruments LLC, North Falmouth, MA 2017).  

 

Physical description 

The Lowell Instruments TCM-1 (Lowell Instruments LLC, North Falmouth, MA 2016) consists of an extended, 

thin cylindrical package.  The sensor, datalogger, and battery compartment are located at the instrument's anchored 

end, contained entirely within the cylinder. Please refer to Figure 5 for a schematic diagram of the design. 

Deployment locations 

The instrument was deployed at various locations along an estuarine river face dock and its immediate vicinity, 

per the accompanying Table 2 and Figure 6.  The site, located in the Milwaukee Inner Harbor, was chosen because 

the current flows there are dominated by the effects of seiche in Lake Michigan, regularly exhibiting a range of flow 

speeds and changes of direction (House 1987; Mortimer 2004) 

 

Deployment Data Collected 

Deployment Dates/Times # of datapoints Tilt-Calculated Speeds (cm/s) 

 Start End N Min Median Max 

2 6/28/2018 10:45 7/2/2018 9:58 5,425,865 0.1142 4.4563 18.3259 

3 7/19/2018 13:18 7/20/2018 13:58 1,406,100 0.2146 1.7819 13.4885 

4 7/20/2018 14:00 7/23/2018 12:22 4,012,509 0.0297 1.7409 11.5482 
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5 7/24/2018 16:28 7/25/2018 12:55 1,138,450 0.0423 0.7234 9.3730  

6 7/31/2018 12:08 8/2/2018 14:25 2,866,453 0.0357 3.2495 13.5263 

7 8/2/2018 14:28 8/3/2018 14:28 1,368,766 0.0401 1.6116 10.0425 

 

Table 2. Data Collection Times and select statistics.  Readings above the 99th percentile were excluded from the data 

to compute these statistics to reduce outliers' effect on the result. 

 

 

Processing the data 

 

Characterization of the motion data recorded 

 The lab-built floats recorded the following data points at a rate of 2Hz: accelerometer x, y, and z axes; 

magnetometer x, y, and z-axes; and gyroscope x, y, and z axes.  A total of 85 minutes of data were recorded. A 

sample of those data is charted in Figure 7.  A strong high-frequency component is evident, which makes it an 

excellent example for our experiments.  For the data we have available for these units, a nearby ADCP, a Nortek 

Aquadopp, located within a few meters of the units, recorded the current speed simultaneously.  These ADCP 

readings were used during calibration and testing. 

 Like the lab-built units, the IMU in the commercial TCM-1 tilt meter consists of three orthogonal accelerometers 

and three orthogonal magnetometers aligned with the x, y, and z axes. The sensors are positioned with the positive z-

axis pointing down the center of the cylindrical float towards the tethered pivot, and the x and y axes normal to the z-

axis using the right-hand rule. (The orientation of the sensors with respect to the sensor packaging was depicted in 

Figure 5.)  Note that the commercial unit does not have any gyroscope sensors. 

Collected data, a representative sample of which is charted in Figure 8, was initially analyzed using the 

manufacturer's software. This particular sensor has a very well-documented set of calibration trials published and 

available (Lowell et al. 2015), demonstrating that the tilt-based calculations compare quite favorably to ADCP 

measurements. So these calculated values were directly used to calibrate the ANN-based methods. 

Artificial Neural Network Architecture 

The design goal is to produce an artificial neural network (ANN) that takes as input the high-frequency 

components of the motion sensor data from a subsurface float—normally filtered out as noise—and can decode, or 

infer, the speed of the water current that the float was experiencing at the time the data was recorded.  This is known 

as a function estimation problem or a regression. 
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 Artificial neural networks, or ANNs, have seen recent applications in vibrational analysis. A good starting point 

for this research was found in the architecture used to classify Parkinson's disease patients' motor states (Um, 2017). 

There is an emphasis in that design on extracting the most information from the least amount of data.   

 For this work, some features of the ANN had to be modified to achieve acceptable results. The global average 

pooling (GAP) layer that served to reduce the output for classification turned out to be inappropriate for this 

application, which, in contrast to classification, is a regression, or continuous function estimation. Using the GAP 

layer often caused the model training to fail to converge. Similar results were observed when using fully connected 

ReLU-activated layers as the final layers of the model. In the end, a small number of fully connected layers with a 

linear activation function gave reliably good results. 

 A convolutional neural network (CNN) was also introduced to recognize repeated features in the data samples 

easily.  The traditional CNN architecture generally has a deep (several consecutive layers) CNN sub-network fed into 

a fully-connected set of layers, with a small number of linearly-activated layers that drive the output.  This seemed to 

work well for this problem up to a point. However, if the input is fed in parallel to both a CNN subnetwork and a 

fully-connected subnetwork, and then the concatenated outputs of both networks are fed into a small number of 

linearly activated layers to drive the output, the resulting network outperformed the traditional CNN architecture for 

this problem. 

 The basic layout of the model is as follows.  The input examples were fed into a multilayer dense perceptron 

block and a multilayer convolutional neural network (CNN) in parallel.  Both subnetworks' output was then 

concatenated and fed into a second multilayer dense Perceptron block, which then drives a very small perceptron, 

labeled "Regression Prep," defined using a linear activation function. (In these experiments, the omission of a final 

linear perceptron often caused calibration convergence failure.)  The model was then trained using the tilt-calculated 

flow speed as the label. With the loss function defined as the mean squared error, the error is defined as the difference 

between the tilt-calculated flow speed and the neural network's output.  Please refer to Figures 9, 10, and 11 for 

schematic representations of the ANN and component subnetworks.  The next section details the dimensional 

hyperparameter values that were used. 

Initial ANN hyperparameter tuning and optimization 

Initial hyperparameters (such as the actual depth and width of each component of the network) were calculated 

using a genetic algorithm with design elements drawn from several sources (Bergstra et al. 2011; Fridrich 2017; 
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Ippolito 2020; Orive et al. 2014; Pant 2018)   This initial optimization was used as a starting point, after which 

manual adjustments were made based on empirical observations. The final parameters used for the commercial float 

data were: Dense1(dropout=.0377, width=384, depth=9); Conv(dropout=.0398, filters=23, kernelsize=13, depth=7, 

maxpoolsize=2); Dense2(depth=0). 

For the trials on the data from the lab-constructed float, some additional adjustments to the model parameters 

were made to optimize the results.  The new set of parameters were: Dense1(dropout=0.15, width=384, depth=6), 

Conv(dropout=0.140, filters=23, kernelsize=13,depth=7,maxpoolsize=2), Dense2(width=185, depth=3).   

Preparing and organizing the data for input to the neural network 

 This study's purpose is to demonstrate the extraction of useful data from the customarily discarded high-

frequency components of the data collected by the sensors. Therefore, it was essential to prepare the data carefully 

such that the high-frequency components are separated from the low-frequency displacement information. 

The first experiments were performed on the more recent 2018 data from the commercial TCM-1 unit (Lowell 

Instruments LLC, North Falmouth, MA 2016).  This data was chosen primarily due to the considerable size of the 

dataset—over 16 million points in six time series lasting a total of 281 hours, or nearly 12 days of data—as compared 

with less than 2 hours of data from the first experiment.  The accelerometer x- and y-axis accelerometer readings 

were selected as the only input to the ANN model because the vibrations appeared to be most strongly expressed in 

this data. This choice of inputs made it more straightforward to apply certain data augmentation techniques, as will be 

shown later. 

 Note here that when performing the tilt-based calculations, the tilt angle θ can be calculated directly from these 

same data, using the following formula. Values 𝐴𝑥 and 𝐴𝑦 are the accelerometer x and y-axis accelerometer readings, 

respectively: 

θ = arcsin

(

 
√Ax

2 + Ay
2

𝑔

)

 Eqn. 1 

 

To prevent the neural network model training process from simply calibrating itself to infer this relation, it was 

essential to find an effective method to detrend the data or remove the low frequency and net displacement 

information.  This is important for the data from the commercial TCM-1 unit (Lowell Instruments LLC, North 

Falmouth, MA 2016) 
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Two detrending methods were tested, the results of which on the input signal are shown in Figure 12. The first 

method consists of applying a Savitzky-Golay filter (Savitzky and Golay 1964) to the accelerometer data and 

subtracting that smoothed data from the original.  The second method applies forward differences defined as 

 

Δ𝑆𝑛 ≡ 𝑆(𝑛+1) − 𝑆𝑛 Eqn. 2 

 

as produced by Python's numpy.diff() function (C. R. Harris et al. 2020).  

Examination of spectrograms generated from representative data samples before and after the detrending 

methods were applied revealed that a simple numerical difference applied to the data was preferred.  It was very 

effective at removing the lowest frequencies while at the same time preserving the higher frequency signal. This 

method was chosen because it requires no windowing of the data, unlike subtracting a smoothed value. Each data 

point generated is only dependent on immediately adjacent values of the time series. 

Creating labeled training inputs 

 Training, or calibrating, an artificial neural network (ANN) consists of preparing examples of the data in the 

network's intended domain, along with a label, which is the desired result in the network's intended range. For these 

experiments, the input to the training mode of the neural network consists of tuples ti : 

 

𝑡𝑖 = (𝐴𝑥𝑖 ,  𝐴𝑦𝑖 ,  𝑈𝑖),  i ∈ (1,2,… , 𝑁) Eqn. 3 

 

where at each time point i, Axi is the data derived from the accelerometer reading parallel to the x-axis, Ayi is the data 

derived from the accelerometer reading parallel to the y-axis, and Ui is the corresponding current speed computed 

using the traditional tilt method.  Note that the Ui values were smoothed using a sliding Hann window weighted 

mean, with a window size of 1024 data points or 1024 / 16Hz = 64 seconds. The Hann window was selected due to its 

favorable spectral characteristics (J. Harris 1978) and its history as applied eponymously to climatological data (Hann 

and Ward 1903). 

A moving window was then used to divide the data stream into potentially overlapping samples sj of w = 1024 

data points each, as follows: 

𝑆𝑗 = (𝑡𝑗𝑘 , 𝑡𝑗𝑘+1, … , 𝑡𝑗𝑘+𝑤−1); j ∈ (0,1,2,3, … ) Eqn. 4 

where j is the sample number, 𝑘 is the spacing or stride between samples, and 𝑤 is the window size. Note that the 

samples overlap when 𝑘 < 𝑤. Overlapping of samples is done to provide the neural network with enough samples to 

train the model effectively.  Each sample corresponds to a unique label, so there is no redundancy introduced. 
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Finally, the labeling was simplified by taking the value of U from the middle of each sample window, or ujk+w/2, 

and used it to label the entire window. Thus, the actual sample inputs to the neural network look like this: 

 

𝑆𝑗 = [[(𝐴𝑥(𝑗∙𝑘), 𝐴𝑦(𝑗∙𝑘)), (𝐴𝑥(𝑗∙𝑘), 𝐴𝑦(𝑗∙𝑘)), … , (𝐴𝑥(𝑗∙𝑘), 𝐴𝑦(𝑗∙𝑘))], 𝑈(𝑗∙𝑘)+𝑤/2] Eqn. 5 

 

 

This process may become more apparent by referring to Figure 13. 

     

Selection of Training Data 

The initial experiments with ANN training were performed with the 2018 data using the commercially purchased 

float. Training and testing data were drawn from separate deployments to increase confidence that the model can 

infer the current flows from entire deployments previously unseen during training. Because the performance of a 

neural network model is generally limited by the range of values supplied to it during training (Wu et al. 2018), we 

selected Deployment 2 because it displayed the broadest range of water current speeds. 

However, the current speed distribution was heavily skewed—an attribute shared by all the deployments—with 

the selected training dataset having a mode of approximately 0.5 cm/s and a median of 4.46 cm/s. This limited the 

effectiveness of the training because a disproportionate number of samples were clustered near the mode. To improve 

training quality, sample selection for both training and validation data used a label-leveling scheme. This method 

divided the label range into ten equally spaced bins, sorted all the samples by label, and selected equal numbers of 

samples corresponding to each of the ten bins' speed range. This algorithm ensured that the total number of samples 

chosen required by that training run was correct. 

 

Training and testing the model 

 The trials documented here were performed using the time series from Deployment 2 as the training data, with a 

separate time series collected a few weeks later (Deployment 6) serving as the test.  This means, briefly, that the 

training phase used only Deployment 2 data to establish the calibration. The resulting trained network was then used 

to infer the current speed from the previously unseen data from Deployment 6. These results were then compared 

with the original tilt-calculated water current speed, and the error was evaluated. This process constitutes one training 

and testing run. 

Evaluation Design 
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 For all trials using the data from the 2018 deployments, an automated script repeated 5 sets of training and 

testing runs for each sample size of 500, 1000, 1500, 2000, 3000, 4000, 5000, 7500, and 10,000 samples. The model 

iteratively read through all samples and used the Adam optimizer (Kingma and Ba 2017), a very popular stochastic 

optimizer based on adaptive moment estimation.  The metrics used to evaluate the model's performance against the 

tilt-calculated speed are root-mean-square error, Pearson's r2, and the slope and Y-intercept of a simple linear 

regression performed on the model results. 

Data augmentation 

Data augmentation is a tool commonly found in the scientific literature applied to neural network models. 

(Ferreira et al. 2017; Rashid and Louis 2019). Recently published works specifically using augmented motion sensor 

data to improve model training data efficiency of vibrational motion include a study of the monitoring of building site 

construction equipment (Rashid and Louis 2019), and a very well documented study on using human-wearable 

motion sensors to monitor the symptoms of Parkinson's disease (Um et al. 2017). 

In the 2017 Parkinson's study, the authors list several commonly used data augmentation techniques.  They all 

involve transforming the data in space, time, or both, to enrich the domain of data available to train the model. This 

enrichment is accomplished by applying such transformations in ways that anticipate possible inputs that could have 

been encountered by the system without changing the labeling of the data. 

In the case of Parkinson's patients, there is sufficient variation in amplitude and frequency of such symptoms as 

tremor among the patients' population to allow transformations in both time and space domains to be applied without 

changing labels.  However, this study's labeling is by water current speed, a scalar value, and not a classification. As 

established by Strouhal, Von Karman, and Vonnegut (Strouhal 1878; Von Karman 1911; Vonnegut 1957), among 

others, one of the most important flow-induced phenomena driving the results—vortex shedding—varies in 

frequency with the water current speed. Therefore, the temporal transformations applied there were deemed not 

immediately applicable to this work. However, two important spatial transformations, reflection and rotation, have 

proven very useful. 

 For this immediate problem, recalling Figure 6, which depicts the commercial TCM unit's physical construction 

and sensor placement, note that its external shell is cylindrical and thus symmetric about its center axis. Also, note 

that the sensor is installed with its z-axis is parallel to the center axis of the float package.  In practice, this means two 

things.  First, the float will respond, for all practical purposes, identically to a water current regardless of the direction 
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the current is passing around the float.  Second, unless the package is carefully marked and deployed, it would not be 

easy to control the float's actual orientation with respect to a desired rotational frame of reference.  For example, the 

float at rest in still water might have the sensor package oriented with its x-axis pointing north for one deployment, 

southeast for the next, and so on.  The float may even move about slightly if the anchor is not quite heavy enough or 

if especially rough conditions are experienced. 

 Therefore, any piece of data recorded by this sensor system can be rotated about the z-axis mathematically and 

represent a set of readings that could have occurred, and still represent the same speed reading as the original raw 

data. 

 Similarly, the cylindrical package is also symmetric about the z-axis. So input can also be reflected or flipped 

about any axis perpendicular to the z-axis and be identically labeled as the untransformed raw data.  Please refer to 

Figure 14 for diagrams graphically depicting the two forms of data augmentation. 

 Reflection, which exploits the symmetry property, was performed first, as it is the simplest, both conceptually 

and computationally.  The scripts simply changed the sign of the sensor readings from the x-axis sensor to produce 

one additional set of augmented training inputs; and then similarly changed the sign of the y-axis sensor readings. 

This process tripled the number of data samples presented to the ANN for training without increasing the number of 

raw samples needed. 

 Following the application of reflection, the rotational symmetry was exploited as follows: for all original and 

symmetrically augmented samples, the system applied the following formula to obtain a series of samples rotated 

through a series of angles about the z-axis, which is the origin on the x-y plane. 

For each set of observations ( xi , yi , ui ) representing the accelerometer readings along the x and y axes 

respectively, labeled as representing the labeled water current speed u, an augmented training point ( x𝛉 i , y𝛉 i , ui  ) 

was created, where 

 

𝑥θ𝑖 = 𝑥𝑖𝑐𝑜𝑠(θ) − 𝑦𝑖𝑠𝑖𝑛(θ) 

𝑦θi = 𝑦𝑖cos(θ) + 𝑥𝑖sin(θ) Eqn. 6 

 

which represents the original point rotated about the origin (0, 0) by the angle 𝛉.  The rotational angle intervals 

used are shown in Table 3. 
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Rotational 

Scheme 

Enumeration of rotational angles applied Factor increase 

in samples 

rot(60) (60, 120, 180, 240, 300) 6x 

rot(40) (40, 80, 120, 160, 200, 240, 280, 320) 9x 

rot(20) (20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260, 280, 300, 320, 340) 18x 

Table 3.  Rotational angles are used to create "augmented" samples for ANN training. 

Analysis of Lab-Constructed Prototype Data 

 Compared with the 2018 data, the 2015 data is an almost unimaginably tiny dataset. Containing only 10,301 data 

points spanning only 85 minutes, it is only 0.0006 of the data points and only 0.0051 of the deployment time. 

 A review of the lab-constructed floats' construction reveals that it shares the cylindrical shape, and thus the 

reflective and rotational symmetry, of the commercial TCM system. 

 In contrast with the previous experiments, the x- and y-axis gyroscope data (not available on the commercial 

unit) was used instead of the x- and y-axis accelerometer values, simply because better results were obtained.  Also, 

due to the nature of the gyroscope data, which is recorded in degrees of rotation per second, no detrending of the data 

was required. 

 Another important difference is that all data labeling, and evaluation of results, was accomplished using readings 

from an acoustic doppler current profiler (a Nortek ADCP) deployed within a few meters of the floats., which 

recorded the data simultaneously during the deployments. 

Data from one of the deployments, Float 1, labeled with the ADCP data, was used to train a neural network of 

the identical design as used in the previous experiment.  The trained model then read the raw data produced by a 

second nearby but physically independent float (Float 2) to predict the current readings. These predictions are then 

compared to the original ADCP data.  The flow of information is depicted in Figure 15.  

As with the previous experiment, the data from one of the floats designated Float 1 was divided into a series of 

an increasing number of samples: 300, 500, 1000, 2000, 3000, and 4000.   Each data sample was 512 data points / 2 

Hz=  256 seconds or about 4.2 minutes.  The readings from the ADCP were smoothed over that same 512 datapoint 

window using a moving average Hann-weighted scheme identical to the previous experiment. 

 The calculations were performed using two rotational densities: 30 and 40 degrees. 

 

Rotational 

Scheme 

Enumeration of rotational angles applied 

for lab-built float 

Factor increase 

in samples 

rot(30) (30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330) 12x 

rot(40) (40, 80, 120, 160, 200, 240, 280, 320) 9x 

Table 4.  Rotational angles are used to create "augmented" samples for ANN training. 
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Results and Discussion 

 

Baseline performance without data augmentation 

 The results were very promising.  The model converged consistently and gave good results at higher numbers of 

samples (4,000 and higher), showed very inconsistent performance at 3000, displayed a clear inflection point across 

all chosen metrics, and failed to converge at 2,000 fewer samples. This shows that the data preparation paradigm used 

here had served as a realistic testbed to help identify calibration methods that may be generalizable to other, much 

more challenging applications. The results were as shown in Figure 16. 

 

Results using reflective data augmentation 

 These results (Figure 17) clearly show the benefits of data augmentation for this application. The previous set of 

training runs required 4000 raw data samples from the sensors to achieve consistent convergence and reasonable 

results.  By simply inverting the readings about each of the x- and y-axes in turn and supplying those transformed 

samples as additional inputs to the model training, the training efficiency has increased by nearly a factor of three: 

Instead of requiring 4000 samples to achieve meaningful calibration, training with data augmentation converges, and 

testing results quickly improve with only 1000 samples, a 4-fold reduction in the number of samples required.  Note 

that, to provide a better range of samples due to increased efficiency observed in these data-augmented trials, the 

model was trained using 5 repeated trials each at sample quantities of 100, 200, 300, and 400 samples in addition to 

the higher quantities already noted. 

 

Results with both reflective and rotational data augmentation applied 

 With these results, charted in Figure 18, consistent model behavior was observed when training with as few as 

300 original samples.  Compared to the requirement of at least 4000 samples when data augmentation is not used, this 

represents a 13-fold increase in training efficiency. 

 

Results from lab-constructed floats 

 With the considerable power of data augmentation having proved itself in the somewhat contrived testbed 

environment, the earlier 2015 deployment data were analyzed similarly.  Compared with the 2018 data, the 2015 data 
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is an almost unimaginably tiny dataset. Containing only 10,301 data points spanning only 85 minutes, it is only 

0.0006 of the data points and only 0.0051 of the deployment time. 

 The results metrics are shown in Figure 19. A demonstration of the model's performance is charted in a labeled 

scatterplot in Figure 20. A direct time-series plot of ADCP measurements overplotted with the model's output is 

shown in Figure 21.  The ANN model produced data that correlated with the actual ADCP measurements quite well.  

The final chart shows an r2 of .96 and an overall RMSe of 6.03 cm/s from a range of 40-140 cm/s.   

 

Discussion 

 The last experiment's results were computed using data from three completely physically separate and 

independent devices, using the same methodology as our initial proof-of-concept.  As compared with the new Lowell 

TCM device, these homemade floats were a less stable design, were much larger and had a bulkier form factor, 

recorded data at ⅛ the sampling rate, and were only deployed for 85 minutes.  Yet, given the data from a previously 

unseen device, in a slightly different location, and likely with variations in its construction due to its homemade 

nature, the ANN model produced data that correlated with the actual ADCP measurements quite well.  The final chart 

shows an r2 of .96, an overall RMSe of 6.03 cm/s from a range of 40-140 cm/s.   

I believe these results demonstrate that this general technique and approach can enable researchers to obtain 

meaningful current flow readings from even less expensive devices than are now available. 

 

 

 

Conclusions 

Major, firm discoveries 

 The methods described in this paper demonstrate a technique to extend the current speed measuring power of an 

ADCP with the deployment of very low-cost assemblies. This technique works well when similar assemblies are 

deployed in similar locations and may very well generalize to a wider variety of deployment locations, such as 

nearshore swash zones, very deep or shallow waters. 

 

Limitations 
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 What has not been thoroughly studied to date is whether a neural network model trained on the data from a 

particular subsurface float design can generalize to substantially different locations.  Even a difference in bottom 

character could potentially affect the results. A subsurface float deployed near a bottom covered in a large rocky 

substrate will likely experience a more turbulent boundary layer, affecting the nature and character of the flow-

induced vibrations experienced by the float assembly. 

 However, this limitation can be overcome by training a new neural network model at each deployment location. 

As long as the ADCP is deployed at each location long enough to capture a sufficient range of current speeds, a 

neural network model can be trained for each deployment. If each deployment only requires the ADCP to be in its 

vicinity for 10% of the deployment time to achieve good convergence of its corresponding network model, it would 

allow the current speed to be measured at 10 locations with only one ADCP.  Of course, it would require each site to 

be visited twice; however, these visits could safely be distributed throughout the study's time period. This is because a 

trained network model can infer the current from vibrational data collected before the training as well as after, as long 

as it is the same float in the same location. 

 

Interesting future research questions 

 The initial observations in this study lead to many interesting research questions moving forward. As noted in the 

introduction, to date, the designs of subsurface structures subject to water currents have been almost exclusively 

focused on controlling, limiting, or eliminating vortex shedding phenomena. Does purposely increasing the number 

of vortex-shedding modes exhibited by a body increase its efficacy in this new paradigm? Despite the ability of 

ANNs to make sense of such complexity, does a system that is limited in the number of vortexshedding modes it can 

exhibit always give better results than systems that exhibit more complex behavior? And finally, are these results 

generalizable to a larger variety of locations and instrument types than shown in these experiments? 
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List of Figures and Captions 

 

 

Figure 2. A schematic diagram demonstrating the principles of operation of the tilt current meter. The software 

included with the device first calculates the time-averaged tilt angle experienced by the unit. It then uses a calibration 

table to determine the speed of the ambient current.  Source: diagram drawn by the author from documentation 

provided by the manufacturer.  (Lowell Instruments LLC, North Falmouth, MA 2017) as well as background 

information from Figurski et al. (2011) 

 

 
Figure 3.  Diagram of custom-built float (not to scale)   

Designed and built by Matthew Smith, Ph.D., 2015. 
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Figure 4. Map of the deployment area. Map/imagery: Mapbox (left); Google Earth (right) 

 

 

 
Figure 5. The orientation of accelerometer and magnetometer sensor axes on the TCM instrumented float. Please note that this is a 

simplified schematic. Source: drawn by the author from direct observation and information in the TCM-1 manual (Lowell 

Instruments LLC, North Falmouth, MA 2017) 
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Figure 6. Map of the deployment area. Map/imagery: Mapbox (left); Google Earth (right) 

 

 
Figure 7. Example data from lab-constructed float assembly. 
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Figure 8. Depicted here are the raw time series readings from the accelerometer x, y, and z-axis sensors. (Note: signals from the x- 

and y-axes were sufficient to train the ANN; the z-axis data was not used in training.) 

  

 

 

 
Figure 9. Schematic Diagram of experimental ANN used in this work. (Created by the author) 
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Figure 10. Dense Perceptron internal structure (drawing created by the author) 

 

 

 

 
Figure 11.  The design of the CNN sub-network (drawing by the author) 
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Figure 12. a. Original data from accelerometer x-axis sensor plotted as a time series signal; b. Partial spectrogram of the original 

signal; c. The original signal with a Savitsky-Golay filtered version subtracted; d. the spectrogram of (c); e. a very simple 

numerical differencing produced by applying the Python numpy.diff() function (see text) to the original data; f. the spectrogram of 

(e). 

 

 

 
Figure 13.  Each sample of w data points is associated with a single-speed calculation corresponding to the sample's midpoint.  
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Figure 14.  (left) graphically shows accelerometer readings reflected about the x and y axes; (right) showing accelerometer 

readings rotated by 40 degrees around the origin.  The data is rotated by 40, 80, 120, 160, 200, 240, 280, and 320 degrees.  The 80-

degree rotation is highlighted just to illustrate how the rotation works. 

 

 

 
Figure 15. Schematic of information flow 
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Figure 16. The initial set of baseline results evaluated by the following metrics: (a) Root-mean-squared error (RMSe), (b) 

Pearson's r2; (c) slope, and (d) Y-intercept. The markers and lines represent the evaluation metric's median values from 5 trial runs 

performed at each sample level for all four charts. The error bars represent the maximum and minimum values of the evaluation 

metric. 
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Figure 17. Results of model training on original samples plus the augmented reflected data samples. Once again, each data point 

represents the median of 5 complete training/testing cycles, with the error bars representing the minimum and maximum values of 

the corresponding metric. 
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Figure 18.  The results of rotating the original plus the reflected samples through 20, 40, and 60 degree series of angles through all 

360 degrees (with 0 and 360 omitted because they would be identical to the original). Each data point shown represents the median 

of 5 separate training/testing runs, and the error bars show the minimum and maximum results obtained for the metric. 
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Figure 19. The results of applying reflection and rotation data augmentation to the data from the lab-built floats.  Each point 

represents the median of 3 separate training/testing cycles; error bars represent the corresponding metric's maximum and minimum 

values. 

 

 

 
Figure 20. Scatterplot of the actual (ADCP-measured) current speed, plotted against the values calculated by the ANN after being 

trained on the data from a physically separate flow, deployed simultaneously near the same ADCP. 
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Figure 21.  Here are the ADCP readings plotted against the same model as used in Figure 19 as a demonstration of the model's 

performance. 
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INTRODUCTION 

A hand-held particle sensor based on Digital Inline Holographic Microscopy (DIHM) is under development.  The 

aim of the device is to record holographic images of environmental water samples in the field and perform rapid 

analyses of these samples to give timely information about the levels of contamination present. This was 

accomplished in the laboratory by uploading collected imagery over the Internet to network-connected computing 

resources to perform numerical reconstruction of sample volumes, perform analysis on the reconstructed volumes to 

characterize the particle populations of these samples, and to finally make a determination if there are bacteria or 

other pathogenic species present.  The device uses commercial off-the-shelf (COTS) parts, such as an inexpensive 

solid-state laser such as the type found in laser pointers, and a CMOS sensor commonly used in smartphone 

cameras.  These components are all mass-produced by the millions, and, due to the economies of scale are available 

very inexpensively.  Several experimental trials have been performed and recorded, and the preliminary results are 

reported here.  The potential advantages of this device are portability, low cost, and the purely optical nature of the 

detection process.  The sensor consumes no chemical or biological media or reagents in its operation—only 

replacement flow chamber slides and small amounts of tubing need be replaced periodically to maintain the device. 

PAPERS 

This  research effort has recently produced two peer-reviewed articles, published in the journal Sensing and Imaging 

in December of 2020. Rather than duplicate that text here, we direct the reader to Appendices X and Y for the full 

text of these papers, which detail the activities of this research program. 

Note on author’s contribution to the manuscripts:  For both papers, the author of this dissertation wrote the 

software, created the methods, and drew most of the figures.  The first-listed authors  were undergraduate students 

working under the direction of the author. 
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CHAPTER 3 

 

TECHNICAL BRIEF: COLLECTING REAL-TIME BATHYMETRY ABOARD A 

RESEARCH VESSEL 
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INTRODUCTION 

The author has had a data 

collection and logging platform 

running continuously aboard the R/V 

Neeskay since 2007.  It was originally 

created simply to log vital cruise data 

such as depth, temperature, and GPS 

coordinates as reported by the ship’s 

navigational and sonar systems. 

However, the infrastructure was soon 

expanded to allow rendering of bathymetry maps from the data. 

This chapter is based of the content of several oral presentations given by the author, which is herein transcribed 

in written form. 

 

TECHNICAL NOTES AND METHODS 

 The data collection, storage, indexing, retrieval, and map rendering runs on a shipboard Linux workstation.  All 

software was constructed using open-source tools.  These tools include Kermit (Cruz and Gianone 1996), R (R Core 

Team 2017), Python (Van Rossum and Drake 2009), MySQL, and others. 

Why Open Source 

 Using open source tools helps to keep down the cost of constructing and maintaning the system.  It also allows 

the free exchange of code with other academic and governmental institutions without legal or financial 

encumberances. 

 

 

Figure 22. Detailed rendering of bathymetry obtained with single-beam sonar 

aboard the R/V Neeskay (inset). 
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Data collection 

 The data collection script is one of the key components of the system. Most shipboard navigation systems are 

capable of outputting a stream of data in computer-readable format. The set of standards by which such data is 

generated is called NMEA (Krile et al. n.d.), established by the National Marine Electronics Association. This data 

stream is read and parsed by a Kermit script.  Kermit was chosen for this project because of its ability to interoperate 

with a large number of different protocols and systems.  The data collected from the NMEA stream includes the 

parameters listed in Table 5. 

Database Column Desription 

recdate Date/time recorded 

gpslat Latitude 

gpslng Longitude 

depthm Depth (m) 

tempc Temperature (degrees C) 

gpsfixquality Fix Quality 

gpsnsats Number of GPS satellites 

gpshdop GPS Horizontal Dilution of Precision 

gpsalt GPS Altitude 

gpsttmg GPS True Track Make Good 

gpsmtmg GPS Magnetic Track Made Good 

gpssogn GPS Speed Over Ground (knots) 

gpssogk GPS Speed Over Ground (km/h) 

gpsmagvar Magnetic variation from true north 

Table 5. A listing of data values logged onboard the R/V Neeskay at a rate of 1 Hz. 

These pieces of data are recorded at a rate of 1 Hz whenever the ship is underway. 

Map Rendering 

 The map rendering component runs independently from the data collection.  The latest version in use is written 

in Python (Van Rossum and Drake 2009) the interface is entirely web-based.  A duplicate of the shipboard map 

rendering software is used by land-based servers to facilitate access to a mirrored copy of the data recorded by the 

ship.  Typically the land and ship databases are synchronized while the ship is in dock, when data transfer speed is 

highest and the least costly. 
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Data increases in value over time 

As this data collection platform has been allowed 

to run over many years’ worth of cruises, the data has 

become more valuable, particularly over more well-

trafficked areas of Lake Michigan. In some areas such 

as the Mid-Lake Reef Complex (Houghton et al. 2010) 

the map appears virtually blanketed with data points. 

Dock soundings offer calibration opportunity 

 It is of course well known that lake levels are not 

stable, but vary quite substantially from year to year, 

month to month, sometimes even daily. So, even if 

you have the same boat running the same equipment, 

the data collected will develop errors over time. In the 

case of the R/V Neeskay, there is a USGS lake level 

gauge nearby. 

 

 

 

 

 

 

 

 

 

Figure 23. Some heavily-visited areas have a lot of data 

recorded over many cruises. 

Figure 24. The dock location can provide a ground-truth 

for depth measurements. 

Figure 25. Soundings from R/V Neeskay at various 

locations plotted against the USGS gauge readings 

— USGS Gauge Height 
— R/V Neeskay Depth at Dock 
— Spot at Junction 
— Spot in Harbor 
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 In Figure 25 we plotted the reading from the USGS lake level guage against soundings from the R/V Neeskay 

and the result showed the expected corrrelation of readings. 

FUTURE WORK 

 There are of course many potential uses for this data and software platform that have heretofore gone 

unexplored.  

Develop a biotope map 

Develop a biotope model of the area of interest. Use 

statistical techniques inspired by Elvenes et. al. 2013 to 

produce a biotic map of the interest area. (Elvenes et 

al. 2013) 

 

Produce a hydrodynamic model 

 Overlay a hydrodynamic model over the interest area to evaluate how it can improve predictions made by the 

biotope model. Thee author did  preliminary investigation into using the Gerris flow solver, and produced the graph 

shown in Figure 27. 

 

  

 

 

 

 

 

  

Figure 27. A preliminary demonstration of a hydrodynamic 

model over the Mid-Lake Reef Complex created by the author 

using the Gerris CFD. (Popinet 2003) 

 

Figure 26. Bathymetry of Hansen Point in the Lake Michigan 

Mid-Lake Reef Complex, as plotted with this system. 
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A Highly Interactive Computational Fluid Dynamics Model: 

Details of the technology and its implementation 

Thomas F. Hansen, School of Freshwater Sciences, University of Wisconsin-Milwaukee 

tomh@uwm.edu 

Abstract 

 A highly interactive computational fluid dynamics (CFD) model is described. In its basic form, the model flow 

is visualized and projected on a wall.  Users then place objects, or themselves, between the projector and the wall, 

and the shadows cast are detected by a digital video camera.  The images of the shadows are then used to compute 

immersed boundaries in the path of the flow.  The net effect is that the shadow appears as an object obstructing the 

flow, and the visualized flow reacts immediately to the changed boundaries.  This allows the user to experiment with 

different arrangements and orientations of objects, or the user can simply stand in the flow field and reorient their 

limbs and posture, and see the results immediately reflected in the flow patterns. Early demonstrations to date have 

proven very popular with people of all ages and backgrounds, from very small children to seasoned professionals in 

a wide range of fields.  The CFD model itself is based on the increasingly popular Lattice Boltzmann method 

(LBM).  The system is implemented using OpenGL and the bulk of the model calculations are performed on a 

massively paralleraphical Processing Unit (GPU) using vertex and fragment shaders coded in the GLSL language. 

The principles of the LBM are discussed, including specific add-ons and stabilizations incorporated to accommodate 

the features and challenges of this implementation. Details of the system are described, including descriptions of 

visualization techniques employed.  The model is verified by experiment.   Finally, some preliminary field test 

results are depicted. 

 

  

Figure 28. The author’s nephew Max Hansen interacts with the CFD model. 
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I. INTRODUCTION AND MOTIVATION 

 A highly interactive computational fluid dynamics (CFD) model has been created by the author. Originally 

intended as a simple demonstration of the data visualization capabilities of the new facilities at UWM's School of 

Freshwater Sciences, it was immediately recognized as possessing significant potential as an educational tool.  It 

creates dynamic flow visualizations which can be altered interactively by simply casting a shadow onto the 

projected visualization.  This enables users, even very small children, to meaningfully interact with the simulated 

fluid flow field, and experience flow phenomena such as Bernoulli effects, Karman vortex streets, and so on by 

simply raising a hand, arm, hand-held objects, or even their whole bodies into the flow projection.   

Figure 1 is a simple schematic 

which depicts the overall design 

conception.  In short, the fluid flow 

simulation is projected onto a 

screen.  Participants then cast 

shadows onto the projected flow 

field. A camera pointed at the screen 

detects the shadows and feeds their 

presence back into the model as 

boundaries to the flow. 

This work was heavily inspired 

and motivated by the work of Snibbe 

and Raffle (2009) who have been working in the field of what they describe as "Social Immersive Media" since 

1998. The work of these artists highlights the benefits of such a paradigm in outreach and education – perhaps best 

summarized by the saying they cite, "I hear and I forget. I see and I remember. I do and I understand" (Snibbe and 

Raffle 2009). 

 While all their exhibits feature interactivity with users by the use of projected imagery and shadows, with some 

of them even featuring water themes, none have used fluid dynamics as an interactive component (Snibbe and Raffle 

2009). 

 

Figure 29. Simplified schematic drawing of the design and organization of the 

system. (From the author’s provisional patent application, filed in March, 2015. 

See Appendix) 
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II. DESIGN AND METHODS 

A. Background on the Lattice Boltzmann method (LBM) 

The computational fluid dynamic model used in this system is based on the Lattice Boltzmann method (LBM) 

(Higuera and Jiménez 1989).  This method is quite new; the first papers describing the method began to appear less 

than 30 years ago (Huang et al. 2015, p. 2). The LBM is derived from the concept of cellular automata as explored 

by computer science pioneer John von Neumann and others starting in the 1940s (Von Neumann 1951; Wolfram 

1983). 

 

A.1. Origins of the LBM 

 As von Neumann (1951) described, a cellular automaton is a collection of conceptual units called cells, most 

usefully arranged in a regular geometric pattern, or lattice, to represent a line, surface, or volume.  Each cell carries a 

finite number of attributes that together comprise the state of the cell.   Discrete time steps, most usefully regularly 

spaced in time, are defined, and each cell's state is computed at each time step as a function of the state of the 

automaton at the previous time step.  In this way, the automaton's overall state thus evolves over time, based on the 

choice of attributes and the choice of functions that are used to compute the values of those attributes from each time 

step to the next.  This paradigm can be useful for creating a model of physical phenomena. For example, heat 

propagating across a surface could be simulated by dividing the surface into a grid of cells and assigning each cell a 

temperature. Each cell's temperature could then be calculated for each consecutive time step using a relatively 

simple heat transfer equation, using only each cell's temperature and that of its adjacent cells.  

The Lattice Boltzmann Method (LBM) was originally developed for computing gas flows 

(Higuera and Jiménez 1989). However, researchers recognized that the LBM results are 

valid for fluids in general as well, particularly at low Mach numbers—at speeds small 

compared to the speed of sound in the medium (Higuera and Succi 1989).  It is 

straightforward to show that the well-known Navier-Stokes equations of fluid dynamics can 

be derived from the LBM equations (Chen et al. 1992; He and Luo 1997, p. 6813). 

 

 

 

Figure 30. The nine 

basis vectors used for 

2-D LBM (a.k.a. 

D2Q9) 
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A.2. Details of the method 

 The LBM is implemented as a von Neumann cellular automaton: it divides a line, plane, or volume into 

regularly spaced cells, and the state of the fluid at each time step is completely computed from the previous state.  

The state of the fluid in each cell, to be completely accurate, comprises the position and velocity of each molecule 

within the boundaries of the cell. The actual state for all practical purposes is incomputable. The LBM approximates 

each cell's fluid state by choosing a finite number of unit basis vectors and assigning a numeric coefficient to each 

basis vector. Each coefficient then represents the relative quantity of hypothetical fluid particles moving in the 

direction of that vector. (Heubes 2010)  

 The macroscopic properties of the fluid, such as velocity and pressure, are computed from the individual 

velocity distributions.  Velocity is computed as the vector sum of each velocity distribution value multiplied by its 

corresponding basis vector. The pressure is recovered by taking the arithmetic sum of the magnitudes of each 

velocity distribution. 

 The computation for each time-step of the Lattice Boltzmann method consists of two fundamental sub-steps, 

which are both carried out, one after the other, when computing each time step.  One sub-step is generally called the 

streaming step. It computes the position of the particle distributions from one step to the next.  To simplify this step 

almost to the point of triviality, the basis vectors are chosen such that each basis vector points exactly towards the 

center of a neighboring cell (usually including one for stationary particles) and is proportional to the displacement 

between the cells.  If we assume a grid size of 1, and a time step of 1, streaming simply calls for all velocity 

distributions to be moved to the adjacent cell in the direction of the vector: up, down, left, right, diagonally, or, in 

the case of e0 (the stationary particles) to stay where it is. (Tian et al. 2011)  The process could be likened to moving 

many checkers on a checkerboard simultaneously, each checker representing a distribution of particles going in a 

particular direction. 

 The other sub-step is called the collision step, and it takes into account the physical interaction, or colliding, of 

the particles within each cell.  It is in this step that a derivation of the Maxwell-Boltzmann distribution function is 

used to determine the new velocity distributions (Higuera and Jiménez 1989). To extend the checker analogy, it 

basically takes all the directions and values of the incoming checkers that have all landed on the same square, and 

reallocates their distributions for the next move, or time step.  The commonly employed Bhatnagar, Gross, and 

Krook, (Bhatnagar et al. 1954) or BGK, collision model is used here. 
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A.3. Boundary Conditions 

In its simplest form, boundary conditions 

involving fixed, no-slip boundaries are computed 

using what is termed a "bounce-back" scheme, in 

which the streaming step is modified so that particles 

which are destined to penetrate a boundary are 

instead effectively "bounced", or reflected, back into 

the fluid by propagating their values back into the 

original source cell, but pointing in the opposite 

direction.  These are also the precise velocities which 

would otherwise be left empty, because fixed 

boundaries do not themselves produce particles.  

 

 

B. Advantages of the LBM for interactive applications 

B.1.  Parallelizable  

 A very important aspect of the Lattice Boltzmann method, which was recognized in its earliest published 

descriptions (Higuera and Jiménez 1989, p. 663; Higuera and Succi 1989, p. 517), is that for each step in the 

computation, the values for each lattice cell can be completely computed using only its own values and those of its 

immediate neighbors from the previous time step.  This property of locality in the computations makes the method 

highly parallelizable, easily computed in parallel by divvying up the computational task among multiple processing 

units operating simultaneously.  In particular, modern graphics cards' designs are particularly amenable to this type 

of parallel computation  (Zhao 2008). Modern cards are based on graphics processor units, or GPUs, which contain 

hundreds – even thousands -- of individual processing cores operating simultaneously ("Compare and Buy GPUs | 

GeForce" n.d.) 

 

 

 

Figure 31. Illustration of the LBM "bounce-back" scheme 
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B.2.  Able to jump complex flows in a single bound(ary condition) 

 Another very important advantage of the Lattice Boltzmann method is the ease of specifying complex and 

arbitrary boundaries (Wei et al. 2004). 

 There are also relatively simple methods for implementing true immersed boundary (IB) conditions, which are 

important for the system's future enhancement. True immersed boundary conditions allow such things as accurate 

calculations of flow around moving boundaries, calculation of net drag, lift, and buoyancy forces on immersed 

objects, and simulating the interface between differing fluids (Dupuis et al. 2008; Seo and Mittal 2011; Tian et al. 

2011) 

 

C. Stabilizing the Model 

 An important consideration when designing interactive flow simulations is the stability of the model. This is 

because the user's actions cannot be predicted yet must be accommodated in real-time to avoid undesirable "blow 

ups" in the model (Stam 1999).  For the lattice Boltzmann method, there are several published methods (Almalowi 

2014; Brownlee et al. 2013) for increasing the stability of the model.  These vary from simple entropy limiters that 

smooth out spikes in physical values and gradients to complex multi-relaxation-time methods involving large 

matrices and much-increased computation time. 

 The Brownlee (2013) paper contains a thorough comparison of several stabilization and regularization methods. 

The performance of the various methods were compared with each other under a variety of conditions and Reynolds 

numbers. Of particular note was this result: "For the final two Reynolds numbers we use, 7500 and 10000, only the 

BGK system with the Ehrenfest limiter completes the simulation" (Brownlee et al. 2013, p. 45).  Although the most 

likely applications of this system will not experience Reynolds numbers approaching 7500 or 10000, the 

demonstrated stability of the "Ehrenfest limiter" makes it an attractive choice. 

 Fortuitously, the Ehrenfest limiter turned out to be one of the simplest to implement and inexpensive in terms of 

computational cost.  As described in Brownlee (2013), implementation of the method involves calculating the 

change in entropy in a lattice cell from one time step to the next.  If the change exceeds a given threshold value, the 

cell is simply taken to equilibrium; in effect, setting the local viscosity to zero for that one time step. 

Calculating the change in entropy Δ𝑆 for each cell, in quadratic approximation, is (Brownlee et al. 2013, p. 36) 



53 

 

Δ𝑆 = ∑
(𝑓𝑖 − 𝑓𝑖

𝑒𝑞
)

𝑓𝑖
𝑒𝑞

𝑖

 

where 𝑓𝑖 is the velocity distribution function and 𝑓𝑖
𝑒𝑞

 is the equilibrium distribution function.  When the change in 

entropy exceeds a pre-determined value 𝛿, the limiter is invoked, and the cell is set to equilibrium by assigning 𝑓𝑖 =

𝑓𝑖
𝑒𝑞

 for all distribution functions 𝑓𝑖 .  

 If the value 𝛿 is chosen carefully, the Ehrenfest limiter provides, as described by Brownlee, "rare, intense, and 

localized corrections." As of this writing, the value of 𝛿 has been chosen empirically in order that the limiter exhibits 

this behavior.  More robust methods of selecting sites for correction do exist (Brownlee et al. 2013, p. 37) but would 

result in increased computational demand. 

 

D. Interactivity  

 The concept of interactivity with a projected image using shadows is not by any means unique to this system.  

As mentioned in the introduction, the author is familiar with the work of Scott Snibbe, who has experimented with 

many different and varied forms of shadow-projector interaction (Snibbe and Raffle 2009). 

 To accomplish the required interactivity, the author incorporated the OpenCV open-source computer vision 

library, which implements over 500 algorithms including image processing, background subtraction, and object 

tracking  (Bradski 2000). 

The use of OpenCV for this application, while ultimately rather straightforward, involves using many of the 

tools in unusual ways.  For example, typically, shadow detection is accomplished in OpenCV for the purposes of 

removing said shadows from an image (Sanin et al. 

2010).  For this project, however, the requirement 

is to isolate the shadow and eliminate everything 

else.  

A particularly challenging aspect of this 

system to implement is the precise alignment 

which must be accomplished between the camera and the projection screen so that the software can take the position 

of the shadow as seen by the camera, and accurately calculate where the shadow falls in the model.  This is crucial 

to the interactivity, as it is important that the computed solid barriers always coincide with the shadows in real time. 

Figure 32. Using a projected chessboard pattern to adjust the 

camera image (left) to match the flow model (right). 
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However, images projected onto flat surfaces are very often subject to rhombus-shaped distortions, commonly 

referred to as "keystoning" effects.  Similarly, images taken by cameras of images on a flat surface usually exhibit 

similar distortions (Moreno and Taubin 2012). 

 Fortunately, the OpenCV library contains a camera calibration facility which is designed to counteract these 

effects.   While ostensibly created to compensate for the distortions introduced by off-angle camera alignment, it 

works equally well if the image being recorded by the camera is itself similarly distorted. This is because both 

distortions are examples of linear transformations of a coordinate space, and the composition of two or more linear 

transformations is itself a linear transformation (Moreno and Taubin 2012). 

 In order to place this method in context, the author also reviewed the work of several other researchers, which 

included complex examples of 3-D object detection (Sadlo et al. 2005), and other techniques much more closely 

related to the camera-projector problem (Fiala and Shu 2007; Zhang 2000).  All involved chessboard or chessboard-

like images to calibrate use of cameras to acquire images projected onto surfaces, with good results. 

 For now, the system herein described is only equipped to compensate for linear distortions. 
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E.  Visualizations Implemented 

 The following visualizations have been implemented in this system.  All examples depict flow around a 

cylinder at Re ≈    .  For all visualizations, the macroscopic values are obtained using bilateral interpolation of the 

underlying lattice. 

E.1.  Simulated Injected Dye Advection Overlay (can overlay/coexist with all other visualizations) 

 

 This is a very simplistic implementation in which each output frame is computed from the previous by applying 

this formula for each pixel 𝑝 at location 𝒙⃗⃗  in the domain, and the corresponding fluid velocity 𝒖⃗⃗ (𝒙⃗⃗ )  at those points: 

 

𝑝(𝒙⃗⃗ , 𝑡 + Δ𝑡) = 𝑝(𝒙⃗⃗ − 𝒖⃗⃗ (𝒙⃗⃗ )Δ𝑡, 𝑡) 

 

 So for each pixel, this formula simply "looks back" to where the fluid that pixel represents must have been at 

the time 𝑡 and places that value in the current pixel for time 𝑡 + Δ𝑡. 

Figure 33. Simulated Injected Dye Advection Overlay 
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 This is a slight simplification, because in reality a Runge-Kutta fourth order approximation is done to improve 

the accuracy of the advection.  See reference (Weisstein n.d.) for more information on the Runge-Kutta fourth order 

approximation. 

E.2. Lagrangian Particles overlay (can overlay/coexist with all other visualizations) 

 

 These are simply particles that behave as massless points embedded in the flow.  Their position 𝒑⃗⃗ 𝑡 is updated as 

follows: 

𝒑⃗⃗ 𝑡+Δ𝑡 = 𝒑⃗⃗ 𝑡 + 𝒖⃗⃗ (𝒑⃗⃗ ) 

Again, in practice the Runge-Kutta method (Weisstein n.d.) is used for better accuracy. 

Note: all other visualizations are akin to "backgrounds," and cannot coexist with any of the other backgrounds. They 

may have either of the above overlays applied to them, however. 

 

 

 

 

Figure 34. Lagrangian particles overlay 
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E.3) Speed 

 

 

This is simply a plot of the speed, or the magnitude of the velocity, at each pixel. 

  

Figure 35. Speed 
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E.4. Vorticity 

 

 

Vorticity is a measure of the rotational moment of a fluid.  The vorticity at each point is calculated using the well-

known discrete vorticity formula 

𝑢𝑦(𝑥 − ℎ, 𝑦) − 𝑢𝑦(𝑥 + ℎ, 𝑦) + 𝑢𝑥(𝑥, 𝑦 + ℎ) − 𝑢𝑥(𝑥, 𝑦 − ℎ)

ℎ
 

Where ℎ is the distance between cells, 𝑢𝑥(𝑥, 𝑦) is the component of the fluid velocity parallel to the x-axis at that 

point, and 𝑢𝑦(𝑥, 𝑦) is the component of the fluid velocity parallel to the y-axis. 

  

Figure 36. Vorticity 
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E.5.  Line Integral Convolution (LIC) 

 

 The LIC method allows for the easy recognition of many important characteristics of fluid flow (Liu et al. 

2012). It is created by starting with a field of random noise, and, for each pixel in the output, integrating along the 

streamline intersecting that pixel for a short distance.  This has the effect of stretching the original noise pixels along 

the streamlines, giving the effect of stirring a multicolored fluid, or pulling taffy.  In many cases it is more effective 

when combined with another visualization method.  The next two visualizations incorporate LIC. 

  

Figure 37. LIC 
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E.6.  LIC+Speed 

 

This is a composition of the speed visualization and the LIC visualization.   

 

 

 

 

 

 

 

 

 

  

Figure 38. LIC+Speed 
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E.7. LIC+Vorticity 

 

This is a composition of the vorticity visualization and the LIC visualization. 

 

 

  

Figure 39. LIC+Vorticity 
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E.8. Pressure 

 

This visualization depicts pressure variations from "gauge pressure" which is unity in this non-dimensional model.  

Black is gauge pressure; increasing shades of blue represent pressures lower than gauge, and increasing shades of 

red indicate pressures exceeding gauge pressure. 

 

 

 

 

 

  

Figure 40. Pressure 
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III. EXPERIMENTAL RESULTS 

 Experimental trials were run in order to verify that the model behaves as expected in standard tests at relevant 

Reynolds numbers.  These tests demonstrate if the crucial calculations of relaxation time in the BGK model from a 

given viscosity are correct. 

 Note that these tests are partially qualitative, because as of this writing, the model does not output numerical 

data directly.  This is because the numerical model is run entirely on the GPU, with all results being displayed 

graphically on screen.  (Note that this is not a technical problem. Eventually the code will be added to extract 

numerical results, it simply has not been a priority to date.) 

 

These experiments followed the initial conditions of Higuera and Succi (1989), simulating the abrupt introduction of 

a cylinder into a uniform flow.   

 Higuera and Succi (1989), describe that the behavior of their model displayed three phases.  The first, 

immediately after the cylinder is introduced, consists of acoustic waves which reverberate around the domain for a 

short time.  The second phase consists of the vortex pair behind the cylinder forming and growing, and the third 

phase is either the steady state (for low Reynolds numbers) or the unsteady vortex shedding mode (for high 

Reynolds numbers). 

Figure 41. Sudden introduction of cylinder into flow 
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 Careful examination of the behavior of the author's model showed that its behavior is consistent with the 

description given by Higuera and Succi (1989) in this regard. The accopanying figure shows the expanding pressure 

front as it quickly approaches the right-hand outflow edge of the domain, using the Pressure visualization. 

 

A. Simulating Flow around a cylinder at various Reynolds numbers to determine Rec 

 As a first test, flow around a cylinder was simulated at a series of Reynolds numbers to determine 

approximately the value of the critical Reynolds number Rec, below which flow reaches a steady state, and above 

which flow is unsteady (Higuera and Succi 1989; Kumar and Mittal 2006). 

 

A.1.  Reynolds number ≈ 20 

 

At a Reynolds number of 20, vortices quickly formed in the wake of the cylinder and remained stable. 

 

 

 

 

Figure 42. Cylinder at Reynolds number ≈    
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A.2) Reynolds number ≈ 30 

 

 

At Reynolds number of 30, the vortices took a bit longer to stabilize, however the simulation did arrive at steady 

state. 

  

Figure 43. Cylinder at Reynolds number ≈ 30 
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A.3. Reynolds number ≈ 40 

 

Here we had for the first time a significant wait before the vortices stabilized.  The author estimated approximately 

4-5 residence times (horizontal velocity divided by domain width) before steady state was achieved. 

 

 

  

Figure 44. Cylinder at Reynolds number ≈ 40 
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A.4. Reynolds number ≈ 50 

Figure 45. Cylinder at Reynolds number ≈ 50 

 

At this Reynolds number, the model was allowed to run for a very long time, and the flow never fully stabilized.  

The vortices continued to slowly oscillate, and the boundary between them continued to move for up to an hour—

after which the simulation was ended. 
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A.5) Reynolds number ≈ 60 

Figure 46. Cylinder at Reynolds number ≈ 60 

 

Here the flow was clearly unsteady, and vortices began shedding after a short time. 

  



69 

 

A.6. Conclusion from first test 

 It is evident from these tests that the Rec which marks the critical point of transition between steady and 

unsteady flow, is less than 60 and greater than 40, and very likely near 50.  This is consistent with the published 

results of several studies (Table 6). 

 

Critical Reynolds Number Study 

Rec ≈ 48 (Rajani et al. 2009) 

Rec ≈ 46 (Higuera and Succi 1989) 

Rec ≈ 46.877, 47.3 8 (Kumar and Mittal 2006) 

Table 6. Critical Reynolds numbers from various studies 

 

 Kumar & Mittal (2006, p. 6047), in addition to sharing the results from their own numerical model, published a 

table of values of Rec obtained from a wide variety of sources, including results from both physical experiment and 

numerical calculations.  All values of Rec listed were in the range of 39 – 50, with most of them (8 out of 13) in the 

range of 45 – 48. 

 These results strongly indicate that the numerical model constructed for this system is numerically sound, and 

that the calculations for viscosity and Reynolds number are within a useful range of accuracy. 
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IV. FIELD RESULTS 

The model has been field tested at a public exhibit, the Milwaukee Maker Faire 2015.  The reception was 

outstanding, and much interest was generated. 

 

 

Figure 47. Children interacting with the display at Milwaukee Maker Faire 2015 

 

V. Updates as of January 2021 

The previous sections of this chapter were originally written in 2015. There have been many significant 

developments since then. 

A. Technology Licensed 

 The technology was licensed by the UWM Research Foundation in 2016 to Science Kinetics, a Columbus, OH 

based company. The author's technology is featured on the company's web site ("Science Kinetics | Augmented 

Reality Wall" n.d.).The first royalty-generating sale by Science Kinetics, in 2017, was to the Virgin Islands 

Children's Museum in St. Thomas. ("The Virgin Islands Children's Museum" n.d.) There have been several other 
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installations purchased to date, including most notably the Great Lakes Science Center in Clevelend, OH. ("Great 

Lakes Science Center" n.d.)  Approximately $4000 in royalties have been generated to date. 

B. Grants and Awards 

• NSF iCorps  The author was chosen to participate in the NSF iCorps program in summer of 2017 that 

included a $2400 award. 

• UWM Research Foundation 2016 Annual Report  The Immersive Fluid Flow Experience was featured 

as the basis of the cover art for the UWM Research Foundation 2017 Annual Report and was prominently 

featured in a story. 

 
Figure 48. Technology featured in UWM Research Foundation Annual Report 2016 

 

• UWM Research Foundation 2017 Annual Report  The author and this work were featured in the UWM 

Research Foundation's 2017 Annual Report. 

 

           Figure 48. Technology featured in UWM Research Foundation Annual Report 2017 
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INVENTION DISCLOSURE: 

 

IP-1353: DEVELOPMENT OF A PORTABLE DEVICE FOR CHARACTERIZATION, 

IDENTIFICATION, AND QUANTIFICATION OF BACTERIA IN AQUEOUS 

SYSTEMS AS WELL AS DIFFERENTIATION FROM PARTICLES AND OTHER 

BACTERIA USING DIGITAL HOLOGRAPHY 
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INVENTION DISCLOSURE 

 

IP-1417: LIVE INTERACTIVE FLUID DYNAMICS INSTALLATION USING 

PROJECTED DISPLAY AND SHADOWS 
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INVENTION DISCLOSURE: 

 

IP-1422: A LOW-COST DEVICE FOR QUANTIFYING WATER CURRENTS AND 

WAVE HEIGHTS 
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INVENTION DISCLOSURE: 

 

IP-1668: NOVEL METHOD OF MEASURING WATER CURRENT ON OPEN 

ENVIRONMENTAL IN-SITU SENSORS VIA ANALYSIS OF VORTEX 

SHEDDINGAND TURBULENCE-INDUCED VIBRATIONS OF A BLUFF BODY USING 

A TRAINED DEEP NEURAL NETWORK 
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INVENTION DISCLOSURE: 

 

IP-1711: NOVEL DEEP LEARNING-BASED IMAGE-BIO-NANOTECHNOLOGY 

SENSOR FOR RAPID DIAGNOSIS TEST OF VIRUS USING SALIVA 
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APPENDIX B 

 

 

PUBLISHED MANUSCRIPT ON HAND-HELD HOLOGRAPHIC SENSOR: 

 

 

OPTICALLY BASED BACTERIA HAND-HELD SENSOR: FROM FUNDAMENTALS 

TO PROOF OF CONCEPT 
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APPENDIX C 

 

 

PUBLISHED MANUSCRIPT ON HAND-HELD HOLOGRAPHIC SENSOR: 

 

 

OPTICALLY BASED HANDHELD SENSOR FOR VISUALIZATION AND 

QUANTIFICATION OF CRYPTOSPORIDIUM PARVUM 
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APPENDIX D 

 

 

 

 

PROVISIONAL PATENT APPLICATION: 

 

FLOW SIMULATION AND VISUALIZATION  

 

WITH REAL-TIME VIDEO INTERACTIVITY 
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1991 
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Sciences. Expected graduation: Spring 2021. 

 

APPOINTMENTS 

 

• Senior Information Processing Consultant, Indefinite Appointment, UWM School of 

Freshwater Sciences, 2011–Present 

• Senior Information Processing Consultant, Probationary Appointment, Great Lakes 

WATER Institute and School of Freshwater Sciences, University of Wisconsin—

Milwaukee, 2005–2011 

• Senior Information Processing Consultant, Fixed-Term Appointment, Great Lakes 

WATER Institute, University of Wisconsin—Milwaukee,  2002–2005 

• IT Consultant, Database Administrator, and Webmaster, Dentalworkers, Inc.,  2000–2004 

• Senior Web Developer, Software Engineer, Database Administrator, and Interactive 

Media Producer, Cybertoons Corporation, Milwaukee, Wisconsin, 1999–2002 

• Software Developer, Consultant, and Webmaster, Real Easy Real Estate Software and 

Executive Systems, Ltd., 1987–1999 

• Freelance web developer, various clients, 1997–present 

 

 

SYNERGISTIC ACTIVITIES 

 

Web Site Development 

• I created the WATER Institute’s first comprehensive web site virtually from scratch in 

2003.  This included spearheading the design of a new logo for the Institute, as well as 

interviewing virtually all WATER researchers and scientists to develop the content.  I 

single-handedly acted as web developer, graphic designer, science writer, and computer 

programmer to accomplish this task. 

• In 2005 I created an automated time-lapse webcam system depicting the Milwaukee inner 

harbor. It is very popular with the general public, and its imagery is regularly used by the 

National Weather Service to help in reporting visibility status for the harbor, as well as by 

other agencies. It is, as of October 2015, in use by local TV stations in their weather 

forecasts. 

 

Database and Data Management 

• Milwaukee Harbor WiFi: I worked with the IT staff of Pier Wisconsin/Discovery World 

in 2005 to install an 802.11 (“Wi Fi”) access point on Cudahy Tower on the Milwaukee 
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lakefront.  This installation has provided wireless data connectivity in support of a variety 

of very important programs on the local, state, and federal levels, including Discovery 

World’s schooner S/V Denis Sullivan and UWM’s R/V Neeskay, the NOAA GLERL 

Milwaukee weather station, and the UWM GLUCOS buoy sensor array. 

• Marine Database: Created a shipboard data collection and database system for the R/V 

Neeskay which records depth, water temperature and GPS data in real time, and supports 

additional sensors as well. This system has provided very valuable support for numerous 

research programs. 

• Funded Research: Received grant funding in 2005 from the UWM Center for Water 

Security (CWS) for a project entitled “Engineering Intelligence for Remote Data 

Acquisition Systems.” I documented this work in detail as part of the Center’s quarterly 

reports to its funding agency, the U.S. Defense Advanced Research Program Agency 

(DARPA).  The results of my DARPA-funded CWS work were applied to the creation of 

a CO2 data acquisition system that collected data for almost two years. 
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