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ABSTRACT 

NEURAL SUBSTRATES OF FEAR GENERALIZATION AND ITS ASSOCIATIONS 
WITH ANXIETY AND INTOLERANCE OF UNCERTAINTY 

 
by 

Ashley A. Huggins 
 

The University of Wisconsin-Milwaukee, 2021 
Under the Supervision of Professor Christine L. Larson, Ph.D. 

 
Fear generalization - the tendency to interpret ambiguous stimuli as threatening due to 

perceptual similarity to a learned threat – is an adaptive process. Overgeneralization, however, is 

maladaptive and has been implicated in a number of anxiety disorders. Neuroimaging research 

has indicated several regions sensitive to effects of generalization, including regions involved in 

fear excitation (e.g., amygdala, insula) and inhibition (e.g., ventromedial prefrontal cortex). 

Research has suggested several other small brain regions may play an important role in this 

process (e.g., hippocampal subfields, bed nucleus of the stria terminalis [BNST], habenula), but, 

to date, these regions have not been examined during fear generalization due to limited spatial 

resolution of standard human neuroimaging. To this end, the proposed project utilized high 

resolution spatial resolution of 7T fMRI to (1) characterize the neural circuits involved in threat 

discrimination and generalization, and (2) examine modulating effects of trait anxiety and 

intolerance of uncertainty on neural activation during threat generalization. In a sample of 31 

healthy undergraduate students, significant positive generalization effects (i.e., greater activation 

for stimuli with increasing perceptual similarity to a learned threat cue) were observed in the 

visual cortex, thalamus, habenula and BNST, while negative generalization effects were 

observed in the dentate gyrus, CA1, CA3, and basal nucleus of the amygdala. Associations with 

individual differences were limited, though greater generalization in the insula and primary 
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somatosensory cortex was correlated with self-reported anxiety. Overall, findings largely support 

previous neuroimaging work on fear generalization and provide additional insight into the 

contributions of several previously unexplored brain regions.  
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Neural Substrates of Fear Generalization and its Associations with  

Anxiety and Intolerance of Uncertainty 

Fear generalization is an adaptive process that enables an organism to respond 

appropriately to novel, possibly harmful, stimuli based on the presence of similar features to a 

learned threat. However, this process can prove maladaptive when individuals overgeneralize 

and exhibit fear responding to environmental cues that actually signal safety. Overgeneralization 

of fear has oft been neglected scientifically in human studies; however, it has profound clinical 

significance and is implicated in the pathophysiology of several psychiatric disorders, including 

anxiety and posttraumatic stress disorder (PTSD; Lissek et al., 2008; Lissek, et al., 2014b; 

Lissek, Rabin, & Heller, 2009; Morey et al., 2015). A better understanding of the complexities of 

fear generalization and the neural circuitry instantiating the behavior is likely to provide 

important insight into the pathophysiology of these disorders and potentially aid in the 

development of novel treatment targets. 

 Emerging research has shed light on the basic neural processes supporting fear 

generalization. Experimental paradigms typically utilize a Pavlovian conditioning design to 

condition participants to an initially neutral threat cue (conditioned stimulus; CS+) by presenting 

it with a naturally aversive stimulus (unconditioned stimulus; US), such as electric shock; after 

conditioning, a series of generalization stimuli (GSs) that parametrically vary in perceptual 

similarity to the CS+ are introduced (Dunsmoor, Mitroff, & LaBar, 2009; Lissek et al., 2008). 

Such designs allow for examination of the psychophysiological responses that follow a 

generalization gradient that tracks the degree of perceptual similarity to the threat cue. The slope 

of these generalization gradients can be examined to assess the degree of generalization across 

subjects. In healthy controls, gradients typically show most robust fear responding to the CS+, 
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with a fairly steep, quadratic decline in fear as the GSs decrease in similarity to the CS+, 

reflecting an appropriate balance of excitatory versus inhibitory processes (Asok, Kandel, & 

Rayman, 2019; Dunsmoor et al., 2009; Dunsmoor, Prince, Murty, Kragel, & LaBar, 2011; Lissek 

et al., 2014a). However, when overgeneralization occurs, these gradients assume a more linear or 

convex shape, indicating safe GSs are perceived as threatening (see Figure 1)  

Neuroimaging research has elucidated a number of brain regions sensitive to effects of 

generalization. For instance, regions implicated in fear excitation – including the insula, dorsal 

anterior cingulate cortex (dACC), thalamus, periaqueductal grey (PAG), caudate, and ventral 

tegmental area (VTA) – demonstrate positive generalization gradients, wherein neural activation 

increases with increasing similarity to threat. On the other hand, regions involved in fear 

inhibition – including the ventromedial prefrontal cortex (vmPFC) and precuneus – demonstrate 

negative generalization gradients, wherein activation decreases with increasing similarity to 

threat (Dunsmoor et al., 2009; Lissek et al., 2014b; Spalding, 2018). The hippocampus has also 

been established as a region important for generalization for its roles in both memory formation 

Figure 1. Example generalization findings. In healthy controls 
(left), generalization gradients typically depict most robust fear 
responding to the CS+, with a sharp, quadratic decline as stimuli 
decrease in similarity to the CS+. When overgeneralization occurs 
(right), gradients are more linear or convex in shape. 
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and pattern separation (Lissek et al., 2014a; Yassa & Stark, 2011), with hippocampal activation 

typically demonstrating negative generalization gradients (Lissek et al., 2014b). 

 However, many of the regions implicated in the process of fear generalization are 

heterogeneous in nature and relatively large in size; as such, there may be important structural 

and/or functional subdivisions that differentially contribute to threat generalization. Animal 

research, for instance, has provided substantial insight into different functional correlates of 

various anatomical regions – such as the hippocampus and amygdala - when segregated into 

more refined subregions (Fox, Oler, Tromp, Fudge, & Kalin, 2015; Strange, Fletcher, Henson, 

Friston, & Dolan, 1999; Zimmerman, Rabinak, McLachlan, & Maren, 2007). Such findings 

suggest that it may be vitally important to examine these subdivisions in humans in order to more 

finely characterize the neural circuitry supporting fear generalization. To this end, utilizing 

advantages afforded by ultra high field/high resolution neuroimaging may help to more reliably 

characterize the role of several regions -including the hippocampal subfields, amygdala 

subnuclei, bed nucleus of the stria terminalis, and habenula - during the process of fear 

generalization. 

Hippocampus 

 Extensive research has implicated the hippocampus as a critical site for the formation of 

new associative memories, underscoring its importance for learning threat contingencies 

(Izquierdo, Furini, & Myskiw, 2016; Sanders, Wiltgen, & Fanselow, 2003). Moreover, lesions of 

the hippocampus and its cortical inputs have been shown to increase threat generalization (Bucci, 

Saddoris, & Burwell, 2002; Solomon & Moore, 1975; Wild & Blampied, 1972). Neural models 

of generalization are largely grounded in the hippocampus (e.g., Lissek, 2012), based on 

hippocampal-dependent processes subserving stimulus discrimination via pattern separation and 
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completion (McHugh et al., 2007; Rolls, 2013; Yassa & Stark, 2011). Thus, in the context of 

incomplete or ambiguous sensory information, sufficient overlap between a novel stimulus and 

learned threat cue leads to pattern completion in the hippocampus and subsequent engagement of 

structures involved in fear excitation (e.g., amygdala, insula); however, if neural representations 

of these stimuli are more distinct, the hippocampus initiates pattern separation and recruits 

structures involved in fear inhibition (e.g., vmPFC; Lissek et al., 2012). 

Importantly, pattern separation and completion processes are attributed to different 

subfields of the hippocampus. Animal research has pointed to the dentate gyrus as the site for 

pattern separation, with lesions of the dentate gyrus shown to impair separation-dependent 

memory (Amaral, Scharfman, & Lavenex, 2007). Interestingly, human neurogenesis has been 

identified in the dentate gyrus (Eriksson et al., 1998; Kempermann et al., 2018). Some animal 

research has suggested that newly formed neurons in the dentate gyrus support pattern separation 

(Clelland et al., 2009; Glover, Schoenfeld, Karlsson, Bannerman, & Cameron, 2017). For 

instance, rats with ablated neurogenesis demonstrate impairment in discriminating between 

stimuli close in space, despite intact associative learning and an ability to correctly discriminate 

when stimuli are more spatially dissimilar (Clelland et al., 2009). Although research examining 

dentate gyrus function in humans is relatively scarce – largely limited by difficulties in clearly 

defining spatial boundaries of hippocampal subfields - emerging research has demonstrated a 

bias toward pattern separation in the dentate gyrus/CA3 subfield, while the CA1 subfield is 

biased toward pattern completion (Bakker, Kirwan, Miller, & Stark, 2008; Dimsdale-Zucker et 

al., 2018; Lacy et al., 2011) . Given this research, treating the hippocampus as a homogenous 

region may not adequately characterize the complex, neural processes supporting stimulus 

generalization.  
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Amygdala and Bed Nucleus of the Stria Terminalis 

The amygdala has been less consistently implicated in fear generalization, despite a rich 

history of research that has well-documented the region’s role in the detection and regulation of 

threat responding (Davis, 1992; LeDoux, 2003). Within the amygdala, the lateral nucleus (LA) 

has been proposed as a key site of plasticity for fear learning and memory (Goosens & Maren, 

2001). Sensory information via thalamic inputs is received by the basolateral amygdala (BLA) 

where it is integrated with contextual information to establish threat contingencies. This 

information is then transmitted to the central amygdala (CeA) where it is forwarded to other 

regions, such as the striatum, to mediate behavior (e.g., fight-or-flight response; Janak & Tye, 

2015). The amygdala shares strong anatomical and functional connections with the bed nucleus 

of the stria terminalis (BNST; Avery et al., 2014; Torrisi et al., 2015), an understudied region 

also implicated in threat responding (Davis, Walker, Miles, & Grillon, 2010; Lebow & Chen, 

2016). Together with the CeA, the BNST is considered part of an anatomically defined 

macrostructure of several small, tightly interconnected regions referred to as the extended 

amygdala (Shackman & Fox, 2016; Tyszka & Pauli, 2016). While the CeA has been thought to 

mediate more immediate, phasic responding to an identifiable threat (i.e., ‘fear’), the amygdala’s 

lateral nuclei and BNST are thought to support more sustained apprehensive states (i.e., 

‘anxiety’; Davis et al., 2010; Klumpers, Kroes, Baas, & Fernández, 2017; Shackman & Fox, 

2016). 

 Insufficient spatial resolution has limited reliable characterization of the functional roles 

of these divisions of the amygdala and its neural neighbors. Animal work has provided some 

useful insight into how these regions may be implicated in generalization. For instance, 

following aversive conditioning, primates display altered tuning curves in the BLA that are 
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associated with reduced stimulus discrimination (Resnik & Paz, 2015). In rats, BLA activity is 

higher when stimulus features resemble a learned threat (Grosso, Santoni, Manassero, Renna, & 

Sacchetti, 2018), and defensive responding to ambiguous threat cues is modulated by BNST 

activation (Goode, Ressler, Acca, Miles, & Maren, 2019). Emerging human research has also 

begun to disentangle the BNST’s role in threat processing, demonstrating that the BNST is 

activated during anticipation of unpredictable threat (Alvarez, Chen, Bodurka, Kaplan, & 

Grillon, 2011) and tracks threat proximity (Somerville, Whalen, & Kelley, 2010). Functional 

connectivity studies – both at rest and during threat-based tasks – have shown overlapping and 

distinct functional connections of the BNST and CeA (Gorka, Torrisi, Shackman, Grillon, & 

Ernst, 2018; Tillman et al., 2018; Torrisi et al., 2015; 2018; Weis et al., 2019). No studies to date 

have examined how these circuits contribute to the process of fear generalization in humans. 

Although the role of the amygdala remains unclear within the larger body of generalization 

research, considering the broader amygdaloid complex and its subdivisions may help to provide 

clarification. Specifically, there may be differential contributions of amygdala subnuclei and/or 

the BNST to fear generalization that fail to be observed with a more homogenous functional 

perspective of the amygdala. For instance, ambiguity related to the perceptual similarity of a 

stimulus to a threat may drive BNST activation during generalization, while increased 

generalization may be observed uniquely in the BLA (rather than the CeA). Thus, utilizing the 

spatial resolution advantages offered by 7T ultra high-field resolution will be instrumental for 

delineating the precise neural processes within the amygdaloid complex during generalization.  

Habenula 

The habenula, a region proposed to play a pivotal role in enabling adaptive behavior 

related to both threat and reward, may also play a key role in generalization. The habenula serves 
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as an important interface between core affective regions and the brainstem (Boulos, Darcq, & 

Kieffer, 2017; Epstein, Hurley, & Taber, 2018), and has critical structural and functional 

connections with the medial prefrontal cortex, ACC, and hippocampus (Ely et al., 2016; Shelton, 

Becerra, & Borsook, 2012; Torrisi et al., 2017). Researchers have proposed the habenula’s core 

role is in signaling the occurrence of negative events and integrating information about internal 

states and external context, in order to modulate or adapt behavior (Boulos et al., 2017; Epstein 

et al., 2018; Salas, Baldwin, de Biasi, & Montague, 2010). Neuronal recordings in the habenula 

have demonstrated increased activity in response to behaviorally salient negative events, such as 

threat cues (Hikosaka, 2010; Matsumoto & Hikosaka, 2007). In humans, habenula activation is 

observed in response to conditioned threat cues (Hennigan, D'Ardenne, & McClure, 2015; 

Lawson et al., 2017). Thus, the habenula may play a role in integrating information about a 

learned threat in order to flexibly respond (i.e., by either generalizing or discriminating between 

stimuli). However, measuring only about 15-36 mm3 in volume in humans (Lawson, Drevets, & 

Roiser, 2013), most studies examining neural activity related to threat learning and prediction 

have largely ignored the habenula. In addition, in both human and animal research, no studies to 

date have examined the habenula during fear generalization.  

Clinical Relevance of Generalization 

 Therefore, utilizing ultra high-field 7T neuroimaging will likely provide important insight 

into the complex neural mechanisms implicated in fear generalization. Importantly, a better basic 

science understanding of this process may have substantial clinical implications. While fear 

generalization is an adaptive process - allowing individuals to flexibly respond to novel threat 

based on similarity to a previously learned threat - evidence suggests that this process goes awry 

in anxiety disorders and becomes maladaptive, such that individuals respond fearfully to cues 
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that actually confer safety (Dymond, Dunsmoor, Vervliet, Roche, & Hermans, 2015; Lissek, 

2012). Clinical observations clearly illustrate how this overexpression of fear in the context of 

safety can cause profound distress and impairment in an individual’s daily functioning. For 

example, an assaultive trauma survivor may experience an intense emotional and physiological 

reaction triggered by seeing someone who resembles their attacker. Overgeneralized fear may 

also contribute to avoidance of activities that provide positive reinforcement or are instrumental 

to daily living. For instance, an individual with panic disorder who has a single panic attack 

while driving may generalize their fear response from this event to novel situations, potentially 

leading them to avoid driving-related activities altogether, including driving or riding as a 

passenger in a motor vehicle. 

Experimental work has implicated overgeneralization of fear across a number of anxiety-

related pathologies, including panic (Lissek et al., 2009), generalized anxiety (Cha et al., 2014; 

Lissek et al., 2014b), social anxiety (Ahrens et al., 2016) and posttraumatic stress disorders 

(Lissek & van Meurs, 2015; Thome et al., 2018). Neuroimaging work with clinical samples is 

more rare. Recent work has demonstrated PTSD patients show increased generalization in the 

insula, hippocampus, vmPFC, and caudate (Kaczkurkin et al., 2017; Morey et al., 2015). 

Generalized anxiety disorder has been linked to aberrant functioning of the vmPFC and 

mesocorticolimbic system during fear generalization (Cha et al., 2014; Greenberg, Carlson, Cha, 

Hajcak, & Mujica-Parodi, 2013). 

More broadly, anxious pathology has been frequently associated with abnormalities in 

brain regions relevant to fear generalization. Meta-analyses, for instance, have implicated 

aberrancies within regions critical for fear excitation and inhibition, such as the insula, amygdala, 

and vmPFC, in anxiety disorders (Etkin & Wager, 2007). Decreased hippocampal volume has 
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been observed in PTSD and social anxiety disorder, with high-resolution data suggesting that this 

volume reduction may be localized to the DG and CA3 (Hayes et al., 2017; Wang et al., 2010). 

Given the role of the DG in pattern separation, this finding may relate to overgeneralization 

observed in these populations. Indeed, some have proposed that impairment in pattern separation 

– and deficient neurogenesis in the DG – as an endophenotype for anxiety disorders (Besnard & 

Sahay, 2016; Kheirbek, Klemenhagen, Sahay, & Hen, 2012). Anxiety, therefore, may be related 

to a bias for pattern completion, wherein anxious individuals overgeneralize new information to 

fit an existing representation of threat.  

Evidence also exists to suggest that the functioning of regions including amygdala 

subnuclei, BNST, and habenula may be altered in individuals with anxiety disorders. For 

example, altered functional connectivity of the BLA, but not CEA, has been demonstrated to 

differentiate PTSD patients from trauma-exposed controls (Brown et al., 2014). Compared to 

healthy controls, patients with anxiety disorders (GAD) demonstrate increased BNST activation 

during conditions of uncertainty (Yassa, Hazlett, Stark, & Hoehn-Saric, 2012). Hyperactivation 

of the habenula has been related to anxiety and defensive responding in rats and zebrafish 

(Mathuru & Jesuthasan, 2013; Pobbe & Zangrossi, 2008); though limited, emerging human 

research suggests habenular dysfunction is observed in depression, which is highly comorbid 

with anxiety (Lawson et al., 2017; Yoshino et al., 2018). Together, these findings warrant further 

examination of how these regions are recruited during anxiety-relevant processes, such as fear 

generalization, in humans. 

It is also important to consider how non-clinical levels of anxiety may modulate fear 

generalization. Most research to date has focused on examining generalization between patient 

and control populations, rather than focusing on individual difference factors. Several studies 



 

 
 

10 

have examined generalization as related to trait anxiety, although findings have been somewhat 

inconsistent; some studies have suggested trait anxiety is related to overgeneralization (Haddad, 

Xu, Raeder, & Lau, 2013; Wong & Lovibond, 2018), while others have failed to find an 

association (Arnaudova, Krypotos, Effting, Kindt, & Beckers, 2017; Torrents-Rodas et al., 

2013).  

To this end, it may also be useful to examine anxiety-relevant transdiagnostic constructs 

that may more specifically encapsulate the cognitive processes playing into fear generalization, 

such as intolerance of uncertainty. Intolerance of uncertainty is an individual difference factor 

that captures the extent to which an individual experiences distress or anxiety in response to 

unpredictable or ambiguous information (Buhr & Dugas, 2002; Ladouceur, Gosselin, & Dugas, 

2000). Intolerance of uncertainty has been extensively implicated in the etiology and 

maintenance of anxiety (Correa, Liu, & Shankman, 2019; Dugas, Gagnon, Ladouceur, & 

Freeston, 1998; Osmanağaoğlu, Creswell, & Dodd, 2018; Shihata, McEvoy, Mullan, & Carleton, 

2016). When presented with ambiguous stimuli, those who are more intolerant of uncertainty 

may excessively worry about possible negative outcomes and exhibit a propensity to 

overgeneralize their threat response. Indeed, recent behavioral research has indicated a 

relationship between intolerance of uncertainty and fear generalization. Higher intolerance of 

uncertainty has been shown to be uniquely associated with threat generalization (Bauer et al., 

2020; Morriss, Macdonald, & van Reekum, 2016; Nelson, Weinberg, Pawluk, Gawlowska, & 

Proudfit, 2015). In addition, individuals with high intolerance of uncertainty are more likely to 

perceive ambiguous stimuli as threatening and engage in avoidance behavior to avoid the 

perceived threat (Hunt, Cooper, Hartnell, & Lissek, 2019). Notably, these effects appear driven 
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by stimuli in the middle of the CS+ to CS- generalization continuum, which are inherently the 

most ambiguous stimuli due to their equidistance to both threat and safety cues.  

While intolerance of uncertainty and trait anxiety are highly correlated (Sexton & Dugas, 

2009), intolerance of uncertainty may be particularly insightful in examining generalization, as 

the construct is theoretically well-aligned with the psychological and cognitive processes 

occurring while viewing generalized stimuli. No studies, to date, have examined how intolerance 

of uncertainty modulates neural responding during fear generalization. However, intolerance of 

uncertainty has been linked to aberrant responding in brain regions implicated in generalization, 

such as hyperactivation of the amygdala and insula during anticipation of uncertain threat 

(Sarinopoulos et al., 2010; Shankman et al., 2014; Tanovic, Gee, & Joormann, 2018). 

Hyperactivity of the BNST has also been proposed as a neural correlate of higher intolerance of 

uncertainty (Grupe & Nitschke, 2013; Tanovic et al., 2018).  

Aims: 

 In sum, research on the neural activity supporting fear generalization in humans has been 

sparsely studied despite its clinical relevance to anxious pathologies. Critically, from a basic 

science perspective, current understanding of fear generalization in humans has been limited by 

shortcomings of neuroimaging technology; specifically, the spatial resolution of standard fMRI 

acquisition has constrained the ability to delineate the unique contributions of small neural 

regions or subdivisions implicated in generalization and threat responding. While emerging work 

has demonstrated multiple anxiety disorders are marked by behavioral and neural aberrancies 

related to fear generalization, a better understanding of the precise neurobiological mechanisms 

involved in fear stimulus discrimination may ultimately help to inform novel, targeted 
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treatments. As such, the current study had several aims designed to understand the basic neural 

processes implicated in fear generalization, as well as their correlates with self-reported anxiety. 

Aim 1: Utilize the high spatial resolution of 7T fMRI to characterize the neural circuits 

supporting threat discrimination and generalization. 

Hypotheses: (1) GSs more similar to the CS+ will have increased activation of the 

hippocampal CA1 subfield; (2) GSs more similar to the CS- will have increased activation 

of the hippocampal dentate gyrus/CA3 subfield; (3) positive generalization gradients will 

be observed in the BNST, amygdala, habenula, dACC, thalamus, caudate (4) negative 

generalization gradients will be observed in prefrontal regions (vmPFC) and 

precuneus/posterior cingulate cortex. For functional connectivity analyses, we 

hypothesized that the dentate gyrus would demonstrate increased coactivation with 

inhibitory regions (e.g., vmPFC), while the CA1 would demonstrate increased functional 

connectivity with excitatory regions (e.g., amygdala, insula) for GSs more similar to the 

CS+.  

Aim 2: Examine the effects of trait anxiety and intolerance of uncertainty on neural activation to 

generalized threat stimuli. 

Hypotheses: Trait anxiety and intolerance of uncertainty will be associated with 

overgeneralization (i.e., less steep generalization gradient) of the conditioned threat cue 

in regions sensitive to generalization, including the BNST, habenula, and CA1.  

Method 

Participants 

 Forty-one undergraduate students were recruited from the University of Wisconsin – 

Milwaukee research subject pool. Participants were eligible for the study if they were between 



 

 
 

13 

the ages of 18 and 55, right-handed, and English-speaking. Exclusion criteria included 

contraindications to MRI (e.g., irremovable metal in body, pregnancy, claustrophobia), use of 

specific medications (antipsychotics, anticonvulsants, mood stabilizers), and history of head 

trauma, neurological conditions (e.g., epilepsy), psychosis, or bipolar disorder. One participant 

was excluded due to technical error (no shocks were administered during the task), and nine 

subjects failed the post-task contingency awareness test and were excluded from further analysis, 

resulting in a final analyzable N of 31. Sample characteristics are summarized in Table 1. 

 Mean (SD) / n (%) 
Sex  
     Female 20 (64.5%) 
    Male 11 (35.5%) 
Age 22.61 (3.95) 
Race/Ethnicity  
     White, non-Hispanic 21 (67.7%) 
     African-American 5 (16.1%) 
     Hispanic 3 (9.7%) 
     Asian/Pacific Islander 1 (3.2%) 
     Other/Unknown 1 (3.2%) 
STAI-T 37.68 (8.55) 
IUS 59.55 (16.21) 
     Factor 1 28.71 (6.98) 
     Factor 2 30.84 (8.51) 

Table 1. Sample characteristics (n=31). STAI-T, State-Trait Anxiety Inventory – Trait; IUS, 
Intolerance of Uncertainty Scale 
 
Procedure 

 Participants filled out an online prescreen through the research subject pool portal to 

assess for initial eligibility and provide a code to sign up for a study slot. After signing up, 

participants were contacted by study personnel to complete a phone screen to confirm MRI 

safety. Study participation included a series of functional and structural MRI scans, blood draw, 

and battery of self-report questionnaires. Participants were compensated with course credit and 

cash payment for their participation. Participants provided written informed consent. All study 
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procedures were approved by the University of Wisconsin-Milwaukee and Medical College of 

Wisconsin Institutional Review Boards. 

Shock Work-Up 

 Prior to completing the fMRI generalization task, participants completed a shock work-up 

to determine the level of electrical stimulation (i.e., shock) used for the task at an individually-

titrated aversive level. Shocks were delivered through a Psychlab system (Contact Precision 

Instruments, Cambridge, MA). Two electrodes were placed approximately two inches above the 

participant’s left ankle. Starting at a low level of electrical stimulation (~.6mA, 

duration=500ms), a series of shocks were delivered. After each individual shock, participants 

were asked to make a 0 to 10 rating (0 = “didn’t feel anything”’ 10 = “painful, but tolerable”). 

Participants were informed that the level set should be “painful, but tolerable” and would be used 

throughout the task. 

Generalization Task 

 The generalization task consisted of two phases: acquisition and generalization. During 

acquisition, participants were conditioned to the threat (CS+) and safety (CS-) cues. The 

acquisition phase consisted of a total of 20 trials (10 CS+, 10 CS-) in which the participant was 

presented with Gabor patch angled at either +15° or -15° offset from 0° (Figure 2). The stimulus 

established as the CS+ co-terminated with shock (100% reinforcement). Stimuli were 

counterbalanced such that for half of the participants, the +15° Gabor patch was the CS+, while 

for the other half the -15° stimulus was the CS+. Stimulus presentation was presented in a 

pseudorandomized order such that the same stimulus was presented a maximum of two 

consecutive trials. Stimuli appeared on the screen for 5000-ms. Participants viewed a fixation 

during inter-trial intervals (ITI) for 5000 to 9000-ms (average duration 7000-ms).  
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During the generalization phase, a series of 7 novel generalization stimuli (i.e., GSs) were 

introduced that varied in degree of similarity to the CS+ and CS-. GSs consisted of Gabor 

patches at -10°, -8°, -5°, 0°, +5°, +8°, and +10° offset from 0° (Figure 2). The generalization 

phase consisted of 168 trials spread across three task runs. During each run, participants were 

presented with 6 trials of each GS and CS for 5000-ms. To prevent extinction, an additional 2 

reinforced trials of the CS+ were included in each run. Thus, the generalization phase includes a 

total of 18 trials of each GS and the CS- and 24 trials of the CS+ (25% reinforcement). Stimuli 

were presented in a randomized order. ITI duration varied from 2000 to 5000-ms (average 

duration 3500-ms).  

Throughout both task phases, participants were instructed to make online behavioral 

ratings to evaluate perceived risk of the stimuli. For each trial, 1000-ms post-stimulus onset, 

participants were prompted with the text “Level of risk?” To make a 1-3 Likert rating (1 = “no 

risk”; 3 = “high risk”) on a button box about the likelihood of being shocked at the end of the 

trial. After responding, the number selected turned red on the screen; stimuli remained on the 

screen for the remainder of the 5000-ms stimulus presentation. The task design is depicted in 

Figure 3. In addition, following the final generalization run, participants were presented with 

both the CS+ and CS- side-by-side on the screen and asked to indicate by button press which 

stimulus predicted the shock.  

Figure 2. Generalization stimuli (GS). From left to right, Gabor patch angle of orientation at -10°, -8°, -5°, 0°, 
+5°, +8°, and +10° offset from 0°. The -15° and +15° degree stimuli were used as the CS+ and CS-, 
counterbalanced across participants.   

   CS+       GS1        GS2         GS3        GS4         GS5         GS6        GS7         CS- 
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Trait Anxiety  

 Trait anxiety was measured using the Trait version of the Spielberger State-Trait Anxiety 

Inventory (STAI; Spielberger, 1983). The STAI consists of 20 self-report items rated on a four-

point scale. The STAI has demonstrated good psychometric properties, including high test-retest 

reliability and internal consistency (Barnes, Harp, & Jung, 2002). 

 

 

Figure 3. Generalization task design. During acquisition (A), participants presented with 10 trials each of CS+ 
(co-terminated with shock on 100% of trials) and CS-. During generalization (B), participants presented with 18 
trials each of the CS+ (unreinforced), CS-, and 7 generalization stimuli (GSs) that vary in orientation from the 
CSs. An additional 6 trials of the reinforced CS+ were presented to prevent extinction. 
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Intolerance of Uncertainty 

 Intolerance of uncertainty was measured using the Intolerance of Uncertainty Scale (IUS; 

Freeston et al., 1994; Buhr & Dugas, 2002). The IUS consists of 27 self-report items rated on a 

five-point scale. The IUS measures the extent to which an individual is able to tolerate 

uncertainty in ambiguous situations, beliefs about the emotional and behavioral consequences of 

uncertainty, and attempts to control the future. The IUS has demonstrated good internal 

consistency, test-retest reliability, and convergent/divergent validity with measures of anxiety, 

depression, and worry (Buhr & Dugas, 2002). 

MRI data acquisition 

 Anatomical. Imaging data were collected on a 7.0 Tesla MR950 General Electric scanner 

(GE Healthcare, Waukesha, WI). Whole-brain high-resolution T1-weighted anatomical images 

were acquired using a BRAVO gradient echo sequence with the following parameters: TR/TE = 

8.012/3.784s; FOV: 220; flip angle = 5°; thickness = .8mm; matrix = 276 x 276; voxel size = 

0.43 x 0.43 x 0.80mm. A high-resolution, T2-weighted structural scan covering the hippocampus 

was collected in order to create regions-of-interest (ROIs) based on parcellation of the 

hippocampal subregions. For the hippocampus anatomical scan, oblique images were acquired 

coronally, angulated perpendicular to the long axis of the hippocampal formation: TR/TE = 

10000/30.66; FOV: 85; voxel size = 0.4297 x 0.4297 x 2mm. 

Functional. Partial-brain functional T2*-weighted EPI scans were acquired in an axial 

orientation with the following parameters: TR/TE = 2500ms/24ms; flip = 73°; FOV = 220; 

matrix = 224 x 224; thickness = 1.8mm; voxel size = 0.8594 x 08594 x 1.8mm. Partial-brain 

coverage was optimized to take advantage of the high resolution capabilities of the 7T scanner 

and prioritize a priori ROIs of the study aims, including the amygdala, BNST, hippocampus, and 
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insula.  Scan coverage was determined on an individual subject basis by placing the most inferior 

slice to cover the most ventral part of the hippocampus (Figure 4). An additional single-volume 

EPI scan with reverse phase encode polarity was collected after the task to correct for 

susceptibility-related distortion during image processing.  

                  

Preprocessing 

 Data were analyzed using Analysis of Functional Neural Images (AFNI) software (Cox, 

1996). In preprocessing, the first three volumes were removed to allow for scanner equilibration, 

and volumes with excessive motion (>.2mm) and/or outliers (>10% of voxels in the volume 

identified as outliers) were excluded from further analyses. Due to greater sensitivity to 

distortion at ultra-high field, remaining EPI volumes were distortion corrected by warping to a 

middle space with the reverse phase encode polarity scan. EPI volumes were co-registered to the 

first functional volume, aligned to the subject’s anatomy, and converted to percent signal change. 

A blur of 2mm FWHM was applied to the data. For whole brain group analyses, data were 

normalized to template (MNI152). Single subject BOLD responses were modeled with 

regressors for each condition type (acquisition: CS+, CS-; generalization: CS+, GS1, GS2, GS3, 

GS4, CS-) for each voxel in the functional dataset. Motion parameters were included as 

regressors of no interest. To examine generalization of threat – rather than safety - analysis of 

GSs focused on stimuli (GS1-3) expected to generalize to the threat stimulus based on their angle 

Figure 4. Example EPI 
partial coverage from a 
representative subject. 
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of orientation, along with GS4 (i.e, the vertical stimulus which was dissimilar from both the CS+ 

and CS-). 

ROI definition 

 Functional ROIs. The acquisition run was used to define functional ROIs sensitive to 

differential conditioning (e.g., Lissek et al., 2014). Data were preprocessed as described above; 

however, a 4mm –rather than 2mm – smoothing kernel was used to blur the data in order to 

produce more meaningful clusters. Whole brain analyses of the CS+ vs. CS- contrast were 

conducted using a voxelwise probability of p <.001 and cluster probability of p < .05. Estimated 

blur of the final EPI dataset was calculated using 3dFWHMx. Average auto-correlation function 

(ACF) parameters were entered into 3dClustSim to correct for multiple comparisons and 

estimate probability of obtaining clusters of a particular size (p<.05, k>217).  

 Hippocampal subfields. Subjects’ native space T1 and T2 weighted structural scans 

were entered into Automatic Segmentation of Hippocampal Subfields (ASHS) software for 

hippocampal parcellation. Segmentation was performed using the Magdeburg 7T young adult 

protocol (Berron et al., 2017). ASHS has been validated in 7T data where it has demonstrated 

comparable accuracy with manual segmentation (Giuliano et al., 2017). The segmentation 

protocol failed for one participant, who was subsequently excluded from hippocampal analyses. 

 Amygdala subnuclei. Freesurfer version 6.0 was used for automated segmentation of 

amygdala subnuclei (basal, lateral, and centromedial) from subjects’ native space T1 anatomical 

volume (Saygin et al., 2017). 

 BNST. The BNST ROI was defined in MNI space by the probabilistic segmentation 

mask constructed by Theiss and colleagues (2017). 
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 Habenula. Based on average coordinates from a meta-analysis of the human habenula 

(Lawson et al., 2013), spherical ROIs with a radius of 2mm were created in MNI space for the 

left (-2.8, -24.4, 2.3) and right (4.8, -24.1, 2.2) habenula. The left and right habenula ROIs were 

combined for a bilateral habenula mask. 

fMRI activation 

 Beta weights during the generalization phase were averaged across voxels within the 

functional and a priori ROIs and plotted across the conditioned (i.e., CS+, CS-) and 

generalization (i.e., GS1, GS2, GS3, GS4). A series of one-way ANOVAs with six levels (CS+, 

GS1, GS2, GS3, GS4, CS-) were conducted to examine generalization effects on threat stimulus 

processing and were followed by tests of linear and quadratic components, as appropriate. 

Statistical threshold was set at a = .05.  

Functional connectivity 

 To examine whether functional connectivity of the hippocampus varied as a function of 

condition, a generalized psychophysiological interaction (gPPI) was conducted. Preprocessing 

steps followed the same overall protocol as the activation analyses, with a blur of FWHM=4mm. 

Subject-specific dentate gyrus and CA1 ROIs were used as seeds. The time series of these seeds 

was extracted for each generalization run, detrended, and convolved with a gamma impulse 

response function. Resulting time series were used to create interaction regressors for each 

condition. Functional connectivity maps were created through deconvolution that included the 

original regressors (i.e., condition, motion) along with the second-order interaction regressors. 

For whole brain group analysis, beta values for interaction regressors of interest (i.e., CS+, GS1, 

GS2, GS3, GS4, CS-) were entered into 3dANOVA for each seed separately to examine whether 
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connectivity of the dentate gyrus and CA1 varied by condition, using a voxel-wise probability of 

p < .001 and cluster-wise probability of p < .05. 

Associations with individual differences in anxiety.  

Consistent with prior work in human fear generalization research (see van Meurs et al., 

2013, Kaczkurkin et al., 2017; Lange et al., 2019), linear departure scores (LDS) were calculated 

to correlate with individual difference factors (i.e., STAI-T and IUS). The LDS assesses the 

degree to which an individual subject’s generalization gradient deviates from linearity and is 

derived from the following equation: LDS = (GS1 + GS2 + GS3)/3 – (CS+ - GS4)/2. In this 

equation, the second expression refers to the theoretical midpoint if the gradient were perfectly 

linear, while the first expression represents the average response to the three generalized threat 

stimuli, which may fall above (positive departure), below (negative departure), or at (zero 

departure) the theoretical linear midpoint. In the current study, the GS4 (i.e., the vertical GS) was 

used in place of the CS-, as it represents a distinct, dissimilar stimulus from the CS+ and we did 

not expect a linear relationship to extend across the entire dimension of threat (GS1-3) and safety 

(GS5-7) generalization stimuli. As such, the LDS represents a single, quantifiable index of 

generalization. Positive LDS values represent shallow, convex gradients, while negative LDS 

values represent steep, concave gradients (see Figure 1), with positive and negative departures 

indicating stronger and weaker generalization, respectively. For each functional and a priori ROI, 

extracted averaged beta weights were used to generate a LDS for that ROI and were correlated 

with STAI-T and IUS scores.  

 Behavioral data. Levels of conditioning during acquisition and generalization were 

assessed with paired samples t-tests to compare risk ratings to the CS+ vs. CS-. Risk ratings 

during generalization were analyzed with a one-way, repeated measures ANOVA with six levels 
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(CS+, GS1, GS2, GS3, GS4, and CS-) and followed by tests of linear and quadratic components. 

An LDS was also calculated for perceived risk ratings during the generalization task and 

correlated with STAI-T and IUS scores. Statistical threshold was set at a = .05 for all tests. 

Sex differences. Sex differences related to fear generalization, anxiety, and relevant 

neurobiological structure and function have been reported. For instance, female rats demonstrate 

faster fear generalization (Lynch, Cullen, Jasnow, & Riccio, 2013), and prevalence of anxiety is 

consistently higher in females (Breslau, Davis, Andreski, Peterson, & Schultz, 1997; Kessler et 

al., 1994; McLean, Asnaani, Litz, & Hofmann, 2011). Structural neuroimaging has also indicated 

that the BNST is sexually dimorphic (Allen & Gorski, 1990), and hippocampal volume is 

associated with sex hormone levels (e.g., estrogen; Protopopescu et al., 2008; Woolley, 1998). 

Given these findings, it is reasonable to expect sex differences in proposed analyses. Additional 

analyses to examine whether neural responses underlying fear generalization differ between 

males and females were conducted; however, as the sample is primarily female (28 female, 13 

male), these tests are insufficiently powered and were exploratory in nature. 

Results 

Behavioral  

Acquisition. Paired samples t-tests demonstrated significantly higher perceived risk for 

the CS+ (M=2.75, SD=.37) compared to the CS- (M=1.34, SD=.49) during conditioning, 

t(30)=10.74, p<.001. There were no significant differences in reaction time between the 

conditioned stimuli (p=.36). STAI trait anxiety was significantly correlated with higher 

perceived risk of the CS- (r=.474, p=.007). There was a marginal positive association of CS- 

ratings with IUS (r=.332, p=.07). There were no significant correlations between STAI or IUS 

with CS+ ratings or reaction times for either stimulus. 
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 Generalization. Conditioned fear was maintained during the generalization runs, as 

evidenced by significantly higher perceived risk for the CS+ (M=1.80, SD=.61) compared to the 

CS- (M=1.15, SD=.25), t(30)=5.55, p<.001. A repeated measures ANOVA revealed significantly 

increased risk ratings from the CS- to GS4 to GS3 to GS2 to GS1 to CS+, F(5,26)=22.49, 

p<.001, indicating generalization of conditioned fear. Follow-up comparisons indicated both 

linear, F(1,30)=31.52, p<.001, and quadratic, F(1,30)=4.78, p=.03, components to the 

generalization gradient. There was also a significant effect of condition on reaction time, 

F(5,26)=2.96, p=.01, with a significant quadratic component, F(1,30)=4.95, p=.03, indicating 

increased reaction time for generalization stimuli in the middle of the generalization continuum 

(e.g., GS2, GS3).  

fMRI activation. 

fROIs. Using a voxel-wise p<.001 and cluster threshold of p<.05, 13 clusters emerged 

that demonstrated increased activation for the CS+ relative to the CS- (Table 2). No clusters 

emerged that demonstrated increased activation for the CS- relative to the CS+.  

 

Figure 5. Online ratings of perceived risk (1-3) to the conditioned threat (CS+) and safety (CS-) cues and 
generalization stimuli (GSs) during acquisition and generalization task phases. Error bars represent standard 
error of the mean. 
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   MNI coordinates  
 Region k x y z t 
1 Visual cortex/lingual gyrus 2142 0 -77 -4 4.91 
2 Visual cortex/lingual gyrus 1211 -16 -102 1 4.72 
3 R insula 1120 45 -7 11 5.64 
4 Cuneus 477 25 -96 31 4.82 
5 L insula 490 -34 -15 -4 4.12 
6 R inferior parietal lobule/somatosensory cortex 489 51 -30 18 4.57 

7 Somatosensory cortex/posterior insula 423 -51 -7 13 5.07 
8 L inferior parietal lobule/somatosensory cortex 331 -47 -35 28 4.33 
9 Somatosensory cortex 327 60 -3 14 4.60 
10 Fusiform gyrus 284 25 -63 -10 4.60 
11 Cuneus 245 17 -82 26 4.69 
12 R thalamus 236 13 -26 17 4.48 
13 L thalamus 218 -4 -16 2 5.13 

Table 2. Significant clusters for contrast CS+ > CS- during acquisition phase with voxel-wise 
threshold p < .001 and cluster size corrected threshold of p < .05.  
 
Generalization effects. 

 fROIs. Full results of the within-subjects generalization tests for all fROIs and a priori 

ROIs are presented in Table 3. During the generalization phase, activation within several fROIs 

demonstrated positive generalization gradients, with strongest activation to the CS+ with 

gradually decreasing activation to the GS1, GS2, GS3, GS4, and CS- as stimuli were 

increasingly dissimilar to the CS+ (see Figure 6). Specifically this pattern was noted in both of 

the visual cortex fROIs (cluster 1: F(3.382, 26) = 3.516, p = .014; cluster 2: F(3.397, 26) = 2.97, 

p =.03) and thalamus fROIs (cluster 12: F(3.796, 26) = 4.7, p = .002; cluster 13: F(5,26) =  

3.855, p = .003). Follow-up tests of linear and quadratic components of these effects indicated 

significant linear, but not quadratic, effects in the more posterior visual cortex cluster (2), 

F(1,30) = 6.139, p = .019, right thalamus, F(1,30) = 16.134, p  < .001, and left thalamus, F(1,30) 
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= 15.817, p < .001. For the other cluster in the visual cortex (1), both linear, F(1,30) = 7.054, p = 

.013, and quadratic, F(1,30) =5.039, p = .032, were significant.  

 Hippocampal subfields. Negative generalization gradients, with strongest activation to 

the CS- with gradually decreasing activation to the GS4, GS3, GS2, GS1, and CS+ as stimuli 

were increasingly similar to the CS+, were observed in the dentate gyrus, F(5,25) = 2.919, p = 

.015, CA3, F(5,25) = 2.778, p = .02, and CA1, F(5,25) = 2.46, p = .036 (Figure 7). For all 

subfields, follow-up tests indicated significant linear, but not quadratic effects in these regions 

Figure 6. Functional regions-of-interest (fROIs) demonstrating significant effects during threat generalization. 
Numbers in parentheses correspond to the cluster numbers presented in Table 2. Parameter estimates represent 
signal averaged across the fROIs for the conditioned threat (CS+) and safety (CS-) cues, along with generalization 
stimuli (GSs). Error bars represent standard error of the mean. 
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(dentate gyrus: F(1,29) = 8.868, p = .006; CA3: F(1,29) = 6.422, p = .017; CA1: F(1,29) = 

11.756, p = .002).  

Amygdala subnuclei. There was a marginally significant negative generalization 

gradient observed in the basal nucleus of the amygdala, F(3.809, 25) = 2.301, p = .066, with a 

Figure 7. Hippocampal segmentation of a representative subject presented on T2-weighted anatomical scan. 
Significant negative generalization effects were observed in the dentate gyrus CA3, and CA1. Parameter 
estimates represent signal averaged across the hippocampal subfields for the conditioned threat (CS+) and safety 
(CS-) cues, along with generalization stimuli (GSs). Error bars represent standard error of the mean. 

Figure 8. Segmentation of amygdala subnuclei for a representative subject presented on T2-
weighted anatomical scan. Marginally significant (p = .066) negative generalization effects were 
observed in the basal nucleus. Parameter estimates represent signal averaged across the 
hippocampal subfields for the conditioned threat (CS+) and safety (CS-) cues, along with 
generalization stimuli (GSs). Error bars represent standard error of the mean. 
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significant linear, but not quadratic, component, F(1,29) = 8.94, p = .006 (Figure 8). There were 

no significant generalization effects observed in the lateral or centromedial subnuclei.  

 BNST. Significant generalization was observed in the BNST, F(5,26) = 2.963, p = .014; 

however, follow-up tests revealed that activation within the BNST was neither linear (p = .082) 

nor quadratic (p = .208) in nature (Figure 9).  

 Habenula. A significant positive generalization gradient was observed in the habenula, 

F(5,26) = 3.926, p =.002, with a significant linear component to this effect, F(1,30) = 8.465, p = 

Figure 9. Bed nucleus of the stria terminalis (BNST) ROI defined in MNI space using 
probabilistic segmentation mask (Theiss et al., 2017). Parameter estimates represent 
signal averaged across the BNST for the conditioned threat (CS+) and safety (CS-) 
cues, along with generalization stimuli (GSs). Error bars represent standard error of 
the mean. 

Figure 10. Bilateral habenula ROI defined in MNI space as spheres with 2mm radius 
around coordinates for the left (-2.8, -24.4, 2.3) and right (4.8, -24.1, 2.2) habenula 
(Lawson et al., 2013). There was a significant positive linear effect of generalization. 
Parameter estimates represent signal averaged across the mask for the conditioned 
threat (CS+) and safety (CS-) cues, along with generalization stimuli (GSs). Error 
bars represent standard error of the mean. 
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.007 (Figure 10). The quadratic component was marginally significant, F(1,30) = 3.109, p = 

.088.  

 Sex differences. There was a marginally significant stimulus X sex interaction on 

activation of the right thalamus, F(3.741,26) = 2.183, p = .08. No other regions demonstrated 

significant stimulus X sex interactions.  

ROI F p 
fROIs 
Visual cortex/lingual gyrus (1) 3.516 0.014 
Visual cortex/lingual gyrus (2) 2.97 0.03 
Cuneus (4) 0.686 0.566 
Cuneus (11) 1.4 0.227 
Fusiform gyrus (10) 1.189 0.319 
R insula (3) 0.525 0.757 
L insula (5) 0.367 0.871 
R inferior parietal lobule/somatosensory cortex (6) 0.345 0.754 
L inferior parietal lobule/somatosensory cortex (8) 1.333 0.264 
Somatosensory cortex/posterior insula (7) 0.903 0.481 
Somatosensory cortex (9) 1.229 0.303 
R thalamus (12) 4.7 0.002 
L thalamus (13) 3.855 0.003 
Hippocampal subfields 
Dentate gyrus 2.919 0.015 
CA1 2.46 0.036 
CA3 2.778 0.02 
Amygdala, BNST, & Habenula 
Basal amygdala 2.301 0.066 
Lateral amygdala 1.329 0.255 
Centromedial nucleus 1.511 0.19 
BNST 2.963 0.014 
Habenula 3.926 0.002 

Table 3. Results of repeated measures ANOVAs for functional (fROIs) and a priori regions of 
interest. Results are clustered by region with fROI cluster numbers in parentheses corresponding 
to those denoted in Table 2. 
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Functional connectivity.  

 Results of the whole brain 3dANOVAs for the dentate gyrus and CA1 revealed no 

significant effect of condition on functional connectivity of the seeds with the rest of the brain. 

Exploratory examination of individual contrasts between stimuli revealed stronger connectivity 

between the CA1 and left middle temporal gyrus (-61, -31, 4; k = 84 & -68, -37, 2; k =47) and 

right amygdala (24, 5, -26; k = 71) for the CS+ relative to all GSs. More specifically, there was 

greater CA1 to right amygdala connectivity when presented with the CS+ vs the GS3 (24, 5, -26; 

k = 43) and GS4 (25, 5, -26; k = 47). There was also greater connectivity between the CA1 and 

left anterior cingulate cortex (-5, 50, -1; k =79) and thalamus (1, -12, 13; k = 41) for the GS1 vs. 

the GS4. None of these clusters survived cluster-level corrections. 

Associations with individual differences.  

 Trait anxiety. Significant associations with individual differences are presented in 

Figure 11.  Higher STAI trait anxiety was positively correlated with linear departure scores (i.e., 

greater generalization) in the primary somatosensory cortex, r = .39, p = .03 (cluster 9). STAI 

scores were not correlated with any other ROIs. 

Figure 11. Scatterplots depict significant associations of self-reported trait anxiety (STAI) and intolerance of uncertainty 
(IUS) with linear departure scores (LDS) for regions-of-interest. The LDS was calculated by extracting averaged beta 
weights for each ROI and condition and entering them in the formula: LDS = (GS1+GS2+GS3)/3 – (CS+ - GS4)/2. 
Positive and negative LDS values represent stronger and weaker generalization, respectively. STAI and IUS scores were 
positively correlated with generalization in the primary somatosensory cortex (60, -3, 14; cluster 9). IUS was also 
positively correlated with generalization in the right insula (45, -7, 11; cluster 3). 

Primary Somatosensory Cortex (9) Right Insula (3) 
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 Intolerance of uncertainty. Total IUS was positively correlated with linear departure 

scores in the right insula (cluster 3; r = .379, p = .036) and primary somatosensory cortex (cluster 

9; r  = .373, p = .039). IUS scores were not correlated with any other ROIs. 

Discussion 

 In a sample of healthy young adults, the current study sought to characterize the neural 

processes contributing to the generalization of conditioned fear. Supporting prior work, neural 

signal tracked along gradients for a conditioned threat stimulus and perceptually similar stimuli 

in several key brain regions (e.g., thalamus, hippocampus). Moreover, the novel use of high-

resolution 7T fMRI provided improved spatial resolution that highlighted the importance of 

previously uninvestigated small neural regions (e.g., habenula) during threat stimulus 

generalization.  

 Analysis of the initial conditioning run revealed a diffuse network of regions – including 

the insula, inferior parietal lobule, and somatosensory cortices - that exhibited greater activation 

for the threat versus safety cue; however, when novel generalization stimuli were introduced, 

only regions within the visual cortex and thalamus exhibited significant generalization, with the 

BOLD response tracking along degree of similarity to the CS+. While many view the amygdala 

as the brain’s fear center, supporting arousal in response to threatening stimuli (Davis, 1992; 

LeDoux, 2003), sensory input (e.g., a visual cue) is transmitted to the amygdala along thalamic 

mediated paths (Das et al., 2005; Shi & Davis, 2001). As such, early perceptual processing plays 

an important role in fear generalization. Psychophysiological studies have demonstrated 

enhanced visuocortical activation for stimuli associated with threat (Armony & Dolan, 2001; 

Miskovic & Keil, 2013; Vuilleumier & Driver, 2007). The current findings suggest a possible 
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tuning effect, where this enhanced visual processing is perhaps weighted depending on degree of 

similarity to the learned threat cue.  

Notably, in the current study, we also found a significant effect of generalization in the 

basal nucleus of the amygdala. The basolateral nucleus receives visual input from higher-order 

visual association cortices (Pessoa & Adolphs, 2010; Shi & Davis, 2001) and is thought to be a 

convergence zone for affective modulation of sensory information (Shi & Davis, 2001). In 

addition, feedback loops between the lateral and basal nuclei of the amygdala may modulate 

visual processing (Freese & Amaral, 2005; Pessoa & Adolphs, 2010). Interestingly, in contrast to 

hypotheses, the effect of generalization in the basal amygdala was negative, such that there was 

less activation as stimuli were increasingly similar to the CS+. Previous work has found similar 

negative generalization gradients in the amygdala/hippocampus (Kaczkurkin et al, 2017). 

Together with the generalization findings in the earlier parts of the processing stream (i.e., visual 

cortex, thalamus), it is possible that the amygdala is less necessary for further processing as the 

response has already been modulated by more basic sensory regions. Despite its prevalence in 

models of fear and anxiety (Davis, 1992; Etkin & Wager, 2007), the role of the amygdala has not 

been clearly delineated in fear generalization; neuroimaging studies have mostly failed to reveal 

generalization gradients within the amygdala (Greenberg et al., 2013; Lange et al., 2019), though 

altered functional connectivity of the amygdala (including with visual areas) may be important 

(Morey et al., 2015; Dunsmoor et al., 2011; Lissek et al., 2014).  

 The current study provides further support for the importance of the hippocampus during 

fear generalization. The hippocampus has been proposed as the heart of neural models of fear 

generalization (Lissek et al., 2014). Specifically, sensory information is relayed via the thalamus 

and higher order visual cortices to the hippocampus, where – depending on the degree of overlap 
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between a novel, ambiguous stimulus and learned threat cue – a pattern completion or separation 

process occurs that facilitates invocation or inhibition of the fear response. Consistent with 

hypotheses, the dentate gyrus and CA3 (implicated in pattern separation; Clelland et al., 2009; 

McHugh et al., 2007; Rolls, 2013; Yassa & Stark, 2011) both demonstrated significant negative 

generalization effects, such that there was increased activation within these subfields as stimuli 

were increasingly dissimilar from the CS+, suggesting pattern separation was occurring. In the 

context of fear generalization, these findings suggest that the dentate gyrus and CA3 play an 

active role in discriminating between stimuli that are perceptually similar to a learned threat cue. 

On the other hand, contrary to hypotheses, a similar negative effect was also observed in 

the CA1. Functional studies of the hippocampal subfields in humans are limited, though 

evidence has suggested that the CA1 is biased towards pattern completion (Bakker et al., 2008; 

Lacy et al., 2011; Dimsdale-Zucker et al., 2018). Although in the current study, functional 

connectivity of the DG and CA1 did not significantly vary as an effect of condition, examination 

of individual contrasts provide some hints that the CA1 is perhaps engaging in pattern 

completion; the CA1 demonstrated stronger coactivation with the amygdala for the CS+ 

compared to more dissimilar GSs (i.e., GS3 and GS4), as well as with the thalamus and ACC for 

the GS1 vs. GS4. These effects were small and did not survive corrections, but do fit with the 

theory that the CA1’s pattern completion process facilitates engagement of fear excitatory 

structures to produce anxious arousal. That said, it is unclear why the activation of the CA1 was 

less robust as stimuli were more similar to the CS+. Rodent models propose a complex picture of 

hippocampal subfield function, suggesting that the CA3 may facilitate both pattern completion 

and separation depending on the degree of overlap between a novel stimulus and its existing 

neural schema (Guzowski et al., 2004). As the CA3 outputs to the CA1, the consequences of 
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dynamic competition within the CA3 may have additional downstream effects on computations 

within the CA1 that may (or may not) lead to pattern completion. Recent evidence has also 

shown that lesions of the CA1 impair pattern separation in humans (Hanert, Pedersen, & Bartsch, 

2019). Thus, the CA1 may also have a dynamic function and support both matching and 

discrimination, and this role may be influenced by the input it receives from the CA3. Few 

neuroimaging studies, though, have examined pattern separation and completion in humans with 

sufficient spatial resolution to reliably distinguish between subfields. In addition, other studies 

have found study of this process to be even more complex given an inherent association of these 

mechanisms with memory processes of encoding and recall (Aimone, Deng, & Gage, 2011; 

Hunsaker and Kesner, 2013). Suggesting that the CA1 is primed for pattern completion may, 

therefore, be an overly simplistic representation of its function. Future work would benefit from 

probing the unique and shared functions within and between human hippocampal subfields and 

downstream structures; a clearer model of these mechanisms is essential for understanding how 

things may go awry in pathological anxiety.  

 Significant generalization of the conditioned threat stimulus was also observed in the 

bilateral habenula. The habenula is thought to play an important role in signaling the occurrence 

of salient negative events in order to modulate behavior adaptively (Boulos et al., 2017; Epstein 

et al., 2018; Salas et al., 2010). While prior research in humans has demonstrated activation of 

the habenula in response to conditioned threat cues (Hennigan et al., 2015; Lawson et al., 2017), 

this study is the first to show that this activation generalizes to perceptually-similar cues in a 

linear fashion. The current findings suggest that, as stimuli become more similar to a learned 

threat, habenular response increases. Given that the habenula is thought to modulate experience-

dependent emotional behavior (Boulos et al., 2017; Epstein et al., 2018; Salas et al., 2010), this 
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may have important implications (e.g., by influencing approach-avoidance behaviors to 

perceived threats). This has important clinical relevance, as avoidance is a key behavioral feature 

of anxiety disorders. Abnormal activation of the habenula may perhaps reflect errors in threat 

prediction that subsequently contribute to maladaptive behavioral and emotional response (e.g., 

avoidance, fear). The habenula is part of a complex, diffuse network that includes prefrontal (Ely 

et al., 2016; Shelton et al., 2012; Torrisi et al., 2017) and brainstem (Boulos et al., 2017; Epstein 

et al., 2018) regions that may give rise to these responses. Although in the current study we did 

not observe modulation of the habenula based on individual differences in anxious traits, future 

studies would benefit from consideration of the habenula in psychopathology to better 

understand its role. 

 Clarifying the effects of anxiety on BNST activity may also be critical. In the current 

study, although there was a main effect of stimulus, it was difficult to interpret the meaning of 

this effect given that it was neither linear nor quadratic in nature. The BNST is thought to be 

particularly related to sustained threat-related arousal, i.e., anxiety (Davis et al., 2010; Klumpers 

et al., 2017; Shackman & Fox, 2016). Indeed, greater activation was observed for stimuli most 

similar to the CS+, suggestive of apprehension about the threat cue. More robust activation was 

also noted for the GS4. Given that the vertical orientation of the GS4 was dissimilar from both 

the conditioned threat and safety cues, it is possible that it was perceived as more ambiguous; 

therefore, increased BNST activation for this stimulus may be consistent with increased anxious 

apprehension during uncertain threat (Alvarez et al., 2011).  

 Surprisingly, effects of individual differences in anxiety on fear generalization within the 

brain were sparse. Overgeneralization of fear has been observed across a number of anxiety 

disorders (Ahrens et al., 2016; Cha et al., 2014; Lissek et al., 2009; Lissek et al., 2014b; Thome 
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et al., 2018). Moreover, emerging research has suggested that this overgeneralization is also 

reflected in the brain regions supporting this process (Cha et al., 2014; Greenberg et al., 2013; 

Kaczkurkin et al., 2017; Morey et al., 2020). In the current study, trait anxiety was related only 

to greater generalization (as defined by LDS) in the primary somatosensory cortex, while 

intolerance of uncertainty was related to greater generalization within the right insula and 

primary somatosensory cortex. These findings are, however, consistent with prior work in 

clinical populations. Cha and colleagues (2014) observed less discrimination within 

somatosensory areas in GAD patients compared to controls, possibly reflecting violations of 

shock expectancy under uncertainty, while PTSD symptoms are associated with increased 

generalization in the insula (Kaczkurkin et al., 2017; Morey et al., 2020). 

It is possible that individual difference findings were limited in the current study due to 

having a relatively healthy sample; overgeneralization may be more robust in samples with 

clinical anxiety (Stegmann et al., 2019). Indeed, studies examining whether anxiety traits are 

associated with overgeneralization are mixed, with some studies demonstrating it is (Haddad, 

Xu, Raeder, & Lau, 2013; Wong & Lovibond, 2018), while others have failed to find an effect 

(Arnaudova, Krypotos, Effting, Kindt, & Beckers, 2017; Torrents-Rodas et al., 2013; Zaman et 

al., 2019). A recent meta-analysis found that there is a small positive effect of anxious traits on 

generalization (Sep, Steenmeijer, & Kennis, 2019). Although a useful metric that has validated 

clinical correlates (Lange et al., 2019; van Meurs et al., 2014), the linear departure score is also a 

somewhat crude measure that may not adequately characterize potentially meaningful 

intraindividual patterns of responding (e.g., poor differentiation between conditioned threat and 

safety cues). Notably, recent work has utilized data-driven clusterizing approaches to 

characterize individual patterns of behavioral fear generalization (Stegmann et al., 2019). 
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Diverging from classic perspectives on fear generalization (which typically distinguish between 

linear and quadratic generalization gradients), this study found five distinct response patterns 

characterizing generalization; importantly, a pattern defined by a linear gradient with high 

arousal and low CS-differentiation had the highest levels of self-reported anxiety. In our sample, 

trait anxiety was highly correlated with greater perceived risk of the CS-, consistent with the 

notion that pathologic anxiety may be characterized by elevated fear responding to safety cues 

(Duits et al., 2015; Gazendam, Kamphuis, & Kindt, 2013). Utilizing data-driven approaches to 

define more nuanced patterns of responding during generalization, therefore, may be important 

for understanding how anxiety traits relate to behavioral and neural fear generalization, and 

whether a distinct “at risk” group exists.   

 Taken together, these findings provide further support for extant work suggesting 

important roles of regions such as the hippocampus and thalamus in fear generalization, while 

also shedding light on several regions (such as the habenula) which were previously unexplored. 

That said, the current findings diverge from prior work in several notable ways. The functionally 

derived ROIs in the current study were similar to those identified in other fear generalization and 

conditioning neuroimaging studies (Dunsmoor et al., 2011; Lissek et al., 2014). These studies, 

however, have found substantially more of the regions identified to be sensitive to effects of 

generalization (e.g., insula, inferior parietal lobule; Lissek et al., 2014; Kaczkurkin et al., 2017), 

whereas our findings observed generalization effects only within the visual cortex and thalamus. 

In the current study, the threat cue was reinforced on 100% of CS+ trials. It is possible, therefore, 

that some of the identified ROIs relate to sensory/perceptual processing that is less relevant to 

the generalization test. Other studies have utilized reinforcement rates ranging from 62.5 

(Dunsmoor et al., 2011) to 80% (Lissek et al., 2014), allowing trials where the BOLD signal is 
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contaminated by electrical stimulation to be discarded. Of course, introducing variable 

reinforcement schedules adds another layer of uncertainty to the paradigm; underlying 

theoretical models and prior work in fear conditioning suggest that threat reinforcement rates 

have profound effects on learning and recall of threat contingencies (Grady et al., 2016; Wagner, 

Siegel, & Fein, 1967) and may be moderated by individual differences in anxiety (Chin et al., 

2014; Lonsdorf & Merz, 2017). Given that uncertainty may be a key mechanism contributing to 

fear generalization (Hunt et al., 2019; Morriss et al., 2016; Nelson et al., 2015), it is important to 

understand the implications of initial threat predictability when later introducing ambiguous 

stimuli.  

 Further diverging from prior work, results of the current study revealed consistently 

linear – rather than quadratic – generalization effects. In both animal (Honig & Urcuioli, 1981) 

and human (Lissek et al., 2008) samples, quadratic gradients generally reflect an adaptive degree 

of generalization. Linear gradients, on the other hand, are typically observed in clinical samples 

(Kaczkurkin et al., 2017; Lissek et al., 2010; Lissek et al., 2014), consistent with behavioral 

phenotypes suggestive of overgeneralized threat responding in anxious pathologies (Dymond et 

al., 2015; Lissek et al., 2008; Lissek, 2012). The current sample comprised healthy young adults, 

yet generalization gradients were more similar to those previously found in clinical samples. The 

reason for this is unclear. One possibility relates to the stimuli used; previous studies have 

typically utilized simple geometric shapes (e.g., circles [Lissek et al., 2014; van Meurs et al., 

2014], rectangles [Cha et al., 2014; Greenberg et al., 2013]) faces (Dunsmoor et al., 2011), and 

conceptual categories (e.g., animals/tools; Morey et al., 2020). Gabor patches have been used 

infrequently in other aversive stimulus generalization paradigms (Koban et al., 2017; McTeague 

et al., 2015). In the current paradigm, stimuli varied an average of 3.33 degrees from the next 
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most similar stimulus; this narrow difference may have made the task quite challenging 

compared to alternative stimuli (e.g., circles [Lissek et al., 2014; van Meurs et al., 2014]) or 

similar stimuli with greater steps between stimuli (e.g., ± 10 degrees [McTeague et al., 2015]). 

Interestingly, a study by Koban and colleagues (2017) found a similar linear generalization effect 

for conditioned pain modulation using similar stimuli (i.e., Gabor patches varying by ± 4 

degrees). It is possible that smaller steps in perceptual change between conditioned and 

generalization stimuli biases generalization gradients towards different shapes; future work 

examining this idea in a systematic fashion would be beneficial, as it may influence how we 

conceptualize quadratic and linear gradients as adaptive and (potentially) pathologic, 

respectively.   

 The current study is limited in several aspects. First, the sample comprises relatively 

healthy, young adults. While this has allowed us to contribute to the growing literature about the 

neural bases of fear generalization, it has limited generalizability to other populations. In 

particular, given the proposed clinical relevance of threat generalization in psychiatric disorders 

(Dunsmoor & Paz, 2015; Dymond et al., 2015; Lissek, 2012), future translational work is 

critical, as there may be important clinical implications (e.g., prediction of psychopathology 

onset, potential treatment target). Additionally, while partial coverage scans allowed us to 

optimize high spatial resolution for our small a priori regions of interest (e.g., hippocampal 

subfields, habenula), we were unable to examine regions previously implicated in fear 

generalization (e.g., dorsomedial prefrontal cortex [Lissek et al., 2014; Kaczkurkin et al, 2017]) 

as they were outside of the functional scan coverage. Finally, individuals vary in their low-level 

perceptual discrimination abilities (Ward et al., 2017). Although research suggests that 

generalization effects cannot be fully explained by individual differences in perceptual 
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discriminability (Guttman & Kalish, 1956; Onat & Buchel, 2015), there may still be important 

effects on generalization (Dunsmoor & Paz, 2015; Struyf et al., 2015; Zaman et al., 2020). 

Indeed, studies have found generalization is related to perceptual errors (i.e., misclassification of 

generalization stimuli as the CS+; Zaman et al., 2019), though it remains unclear whether such 

errors are effects of true perceptual differences or reflect higher-order cognitive processes (e.g., 

memory biases; Mitte, 2008).  As such, future studies would benefit from additional procedures 

(e.g., discrimination threshold testing) that allow for consideration of these differences in 

analyses.  

 Overall, these findings largely support previous work on the neurobiological bases of fear 

generalization and make a compelling case for further examination of regions (e.g., habenula, 

hippocampal subfields) that have been poorly studied due to technological restraints of standard 

neuroimaging parameters. Key differences (e.g., linear shaped gradients), however, suggest that 

our current understanding of fear generalization and its neural substrates is incomplete. Fear 

generalization, therefore, remains a promising area of study. Further work is certainly warranted 

in order to disentangle the complexities of this process, particularly given generalization’s strong 

clinical relevance. In fact, emerging work has shown that perceptual discrimination training can 

reduce avoidance behavior and decrease arousal in anxious populations (Ginat-Frolich et al., 

2019; Lommen et al., 2017), suggesting generalization may be a useful, modifiable treatment 

target. Being able to better link behavioral and clinical phenotypes to the brain’s function is 

certain to provide further insight that will aid in developing and optimizing effective treatments.  
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