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ABSTRACT

REGIME-SWITCHING JUMP DIFFUSION PROCESSES WITH COUNTABLE
REGIMES: FELLER, STRONG FELLER, IRREDUCIBILITY AND EXPONENTIAL

ERGODICITY

by

Khwanchai Kunwai

The University of Wisconsin-Milwaukee, 2021
Under the Supervision of Professor Chao Zhu

This work is devoted to the study of regime-switching jump diffusion processes in which

the switching component has countably infinite regimes. Such processes can be used to

model complex hybrid systems in which both structural changes, small fluctuations as well

as big spikes coexist and are intertwined. Weak sufficient conditions for Feller and strong

Feller properties and irreducibility for such processes are derived; which further lead to

Foster-Lyapunov drift conditions for exponential ergodicity. Our results can be applied to

stochastic differential equations with non-Lipschitz coefficients. Finally, an application to

feedback control problems is presented.
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Chapter 1

Introduction

1.1 Motivation and Overview

A stochastic model is a tool used to estimate potential outcomes where randomness or

uncertainty is presented. Traditionally, stochastic models are constructed based on the

continuous dynamics of the outcomes over time. Let’s consider the following example of a

risky asset. Suppose the stock price St satisfies the stochastic differential equation

dSt = µStdt+ σStdWt

where µ represents the expected rate of return and σ denotes the market’s volatility. Because

these parameters are assumed to be constant, this model is good only for a relatively short

period of time. Moreover, the movement of an individual stock can be subject to the general

trends of the market; bull or bear market. That is; if the the overall market moves up, most

stocks go up and if the overall market goes down, most stocks follow. The market trend

has a bigger effect on the volatility of the individual stock. To incorporate the broad trend

of the stock market we need more realistic and more sophisticated models to capture such

complex evolution.

A regime-switching diffusion is a two-component stochastic process (X(t),Λ(t)) that con-
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tains an analog (or continuous state) component X(t) and a switching (or discrete event)

component Λ(t). Intuitively, the continuous component X(t) represents the state of phe-

nomenon while the discrete component Λ(t) refers to the structural changes of the system.

In the past decades, this class of processes has received growing attention due to its abil-

ity of modeling and analyzing complex systems in which both structural changes and small

fluctuations coexist and are intertwined. These processes are widely used in many areas

such as economy, financial engineering, risk management, biology, engineering, and etc. For

instance, a regime-switching Black-Scholes model is considered in Zhang (2001), in which

the continuous component X(t) models the price evolution of a risky asset and the switching

component Λ(t) delineates the overall economy state. For another example, Ferrari and Ro-

dosthenous (2019) study the optimal control of the debt-to-GDP ratio where X(t) models

the level of debt-to-GDP ratio while Λ(t) represents the state of macroeconomic conditions.

Regime-switching (jump) diffusions are also used in mathematical biology such as the recent

paper from Tuong et al. (2019) in which a stochastic SIRS model subject to both white and

color noises is analyzed.

Compared to the classical setting when there is no switching component, much care is

needed for regime-switching diffusions. This is due to the interactions between the continuous

and the switching components. For example, one can combine two stable (or unstable)

diffusions to produce an unstable (or stable) regime-switching diffusion; see, for example,

Yin and Zhu (2010) and Lawley et al. (2014). In general, a regime-switching diffusion can

possess a certain property even though some of its regimes do not. This feature is, of course,

not possible in the usual setting. One of the most important problems of great interest is

the asymptotic property of such processes. Taking this consideration into account, we will

study existence, uniqueness and the rate of convergence of an invariant measure.

Regime-switching diffusion processes with a finite switching state space have been rela-

tively well studied. We refer to Mao and Yuan (2006) and Yin and Zhu (2010) for extensive

discussions and applications on this class of processes. To be more precise, Mao and Yuan
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(2006) study state-independent regime-switching diffusions; that is, the switching component

is a continuous-time Markov chain independent of the continuous component. On the other

hand, Yin and Zhu (2010) focus on state-dependent regime-switching diffusions when the

switching component is a stochastic process taking values in a finite set and depend on the

continuous component. More investigations on this vein can be found in Cloez and Hairer

(2015), Nguyen et al. (2017), Shao (2015a), Shao and Xi (2014), Xi (2004, 2009), Zhu and

Yin (2009) and references therein. When the switching state space is infinite, this adds more

subtlety and difficulty to the analyses as we need to deal with infinite regimes. Moreover,

this makes the interactions between the continuous and discrete components much more

complicated. Recent developments on the countably infinite case can be found in Nguyen

and Yin (2018a,b,c), Shao (2015a,b), Xi and Zhu (2017), Xi et al. (2019).

Regime-switching diffusions become more interesting and challenging when jumps are

brought into consideration. This enhances the ability to model more complex and realistic

phenomena. We refer to Applebaum (2009) for extensive discussions on jump processes.

Continuing on the effort of studying regime-switching diffusions with countable regimes,

Xi and Zhu (2017) studied regime-switching diffusions with jumps and derived Feller and

strong Feller properties as well as exponential ergodicity of such processes. This paper

treats when the coefficients of the associated stochastic differential equations are (locally)

Lipschitz. While it is a convenient assumption, it is rather restrictive in many applications.

For example, the diffusion coefficients in the Feller branching diffusion and the Cox-Ingersoll-

Ross model are only Hölder continuous. For another example, many control and optimization

problems often require the handling of systems where the local Lipschitz condition is violated.

Recently, Xi et al. (2019) presented non-Lipschitz conditions for existence and uniqueness

of nonexplosive strong solution as well as for Feller and strong Feller properties for regime-

switching jump diffusion processes. However, with the broad settings in the later paper,

the ergodicity has not been investigated yet. So we want to fulfill the gap here as well as

improve the results on Feller and strong Feller properties in Xi et al. (2019). Moreover, the
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irreducibility of theses processes remains in question.

The series of papers Meyn and Tweedie (1992, 1993b,c) provide a powerful criterion for

exponential ergodicity of Markov processes. The criterion relies on the existence of a Foster-

Lyapunov function and the property that all compact subsets are small in some sense for

some skeleton chain. In view of Theorem 3.4 of Meyn and Tweedie (1992), the smallness

assumption can be verified by establishing Feller property and ϕ-irreducibility. Then the

existence of a Foster-Lyapunov function becomes the key to establishing exponential ergod-

icity. Indeed, this type of function plays a vital role in the study of stability and long-term

behaviors of stochastic systems; see, for example, Hairer et al. (2011), Khasminskii (2012),

Mao and Yuan (2006), Yin and Zhu (2010), to name just a few. However, in practice, it is

usually not easy to find such functions. For regime-switching (jump) diffusions with infinite

number of switching states, it is even harder to find an appropriate Foster-Lyapunov function

due to the interactions between the continuous and the discrete components. In this work

we provide weak sufficient conditions for such functions to exist.

In this dissertation, we study state-dependent regime-switching jump diffusion processes

with countable regimes and non-Lipschitz coefficients. The contributions of this dissertation

can be summarized as follows:

(i) Weak sufficient conditions for Feller and strong Feller properties, (open set) irreducibil-

ity, and exponential ergodicity are presented in terms of the coefficients of the associ-

ated SDEs and the transition rate matrix of the discrete component Λ.

(ii) Topological and probabilistic concepts of irreducibility are discussed for regime-switching

jump diffusions; namely, open set irreducibility and ϕ-irreducibility.

(iii) Sufficient conditions for the existence of a Foster-Lyapunov function for regime-switching

jump diffusions are presented.

(iv) As a result, we can answer three important questions on existence, uniqueness and the

rate of convergence to an invariant measure for regime-switching jump diffusions with
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countable regimes and non-Lipschitz coefficients.

(v) An application to feedback control problems is presented for the demonstration.

This work is organized as follows. In Chapter 2 we review some classical results on

stability of Markov processes studied in Meyn and Tweedie (1992, 1993b,c). Then we give

the formulation of regime-switching jump diffusion processes. Moreover, we discuss coupling

methods for regime-switching jump diffusions. In Chapter 3, Feller and strong Feller proper-

ties are investigated by using the coupling methods. Weak sufficient conditions for Feller and

strong Feller property are imposed on the coefficients of the associated stochastic differential

equations and spelled out in Theorems 3.1.6 and 3.2.8, respectively. In Chapter 4, open

set irreducibility is investigated. As an application, we present in Proposition 4.1.12 a set

of sufficient conditions under which a unique invariant measure for regime-switching jump

diffusions exists. After establishing Feller and strong Feller properties and irreducibility,

we derive in Chapter 5 the exponential ergodicity of regime-switching jump diffusions. We

construct a Foster-Lyapunov function in Theorem 5.2.4 by incorporating some nice proper-

ties of the generator Q(x) of the discrete component Λ. As a result, we can conclude that

a regime-switching jump diffusion process can be exponentially ergodic even though some

subsystems are not; see Remark 5.2.3. Finally, an application to feedback control problems

is present in Chapter 6. For the sake of completeness, some elementary computations are

given in Chapter 7.
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Chapter 2

Preliminaries and Classical Results

2.1 Mathematical Background

2.1.1 Markov Processes

In this section we briefly review the basic notions and terminology of Markov theory. For the

classical discussions we refer to Blumenthal and Getoor (1968), Ethier and Kurtz (1986),

Sharpe (1988), and others. Let (Ω,F ,P) be a probability space and let (E,B(E)) be a

measurable space where E is a locally compact separable metric space and B(E) is the Borel

σ-algebra of open subsets of E. Let Φ := {Φt : 0 ≤ t <∞} be a continuous time stochastic

process defined on (Ω,F ,P) and take values in the set E. For each t ≥ 0 we define the

sub-σ-algebra F Φ
t = σ(Φs : s ≤ t) of F . Then Φ is called a Markov process if

P{Φt+s ∈ A|F Φ
t } = P{Φt+s ∈ A|Φt} (2.1)

for all s, t ≥ 0 and A ∈ B(E). Condition (2.1) is called Markov property or memoryless

property. If {Ft}t≥0 is a filtration with F Φ
t ⊂ Ft, t ≥ 0, then Φ is a Markov process with

respect to {Ft}t≥0 if (2.1) holds with F Φ
t replaced by Ft. It is clear that if Φ is a Markov
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process with respect to {Ft}t≥0, then it is a Markov process. Note that (2.1) implies

E
[
f(Φt+s) ∈ A|F Φ

t

]
= E [f(Φt+s) ∈ A|Φt]

for all s, t ≥ 0 and bounded and measurable function f on E.

A function P (t, x, A) defined on [0,∞) × E × B(E) is a time-homogeneous transition

function if

• P (t, x, ·) is a probability measure on B(E) for all (t, x) ∈ [0,∞)× E,

• P (0, x, ·) = δx for all x ∈ E where δx is the unit mass at x,

• P (·, ·, A) is bounded and measurable function on [0,∞)× E for all A ∈ B(E),

• for all s, t ≥ 0, x ∈ E, A ∈ B(E)

P (t+ s, x, A) =

∫
P (s, y, A)P (t, x, dy). (2.2)

The relationship (2.2) is called Chapman-Kolmogorov equation. A transition function P (t, x, A)

is a transition function for a time homogeneous Markov process Φ if

P{Φt+s ∈ A|F Φ
t } = P (s,Φt, A) (2.3)

for all s, t ≥ 0, A ∈ B(E), or equivalently, if

E
[
f(Φt+s) ∈ A|F Φ

t

]
=

∫
f(y)P (s,Φt, dy) (2.4)

for all s, t ≥ 0 and bounded and measurable function f on E. The probability measure ν on

B(E) defined by ν(A) = P{Φ0 ∈ A} is called the initial distribution of Φ.

Suppose Φ is a Markov process with respect to a filtration {Ft}t≥0 such that Φ is {Ft}-

progressive in the sense that the restriction of Φ to [0, t] × Ω is B([0, t]) × Ft-measurable

7



for any t ≥ 0. Then Φ is called strong Markov process with respect to {Ft}t≥0 if, for any

{Ft}-stopping time τ with τ <∞ a.s.,

P{Φt+τ ∈ A|Fτ} = P (t,Φτ , A) (2.5)

for all t ≥ 0, A ∈ B(E), or equivalently, if

E [f(Φt+τ ) ∈ A|Fτ ] =

∫
f(y)P (t,Φτ , dy) (2.6)

for all t ≥ 0 and bounded and measurable function f on E. Here we denote Fτ = {A ∈ F :

∀t ≥ 0, {τ ≤ t} ∩ A ∈ Ft}.

Define the operator Pt which acts on a set of bounded functions f by

Ptf(x) := E [f(Φt)|Φ0 = x] =

∫
E

f(y)P (t, x, dy).

It follows from the Chapman-Kolmogorov property that the family {Pt : t ≥ 0} is a semigroup

in the sense that Pt+s = Pt ◦ Ps for all s, t ≥ 0. For a σ-finite measure µ on B(E) we define

µPt(A) :=

∫
E

P (t, x, A)µ(dx), ∀A ∈ B(E), t ≥ 0.

Next we define one of the most important tools in Markov theory. The infinitesimal

generator A of Φ is defined by

A f(x) := lim
t−→0

Ptf(x)− f(x)

t
(2.7)

provided that the limit exists. This generator measures the expected change of the function

f under the dynamic of the Markov process Φ in an infinitesimal time interval.
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2.1.2 Feller and Strong Feller Properties

The intuition behind the concepts of Feller and strong Feller Properties is that a slight

perturbation of the initial data should result in a small perturbation in the subsequent

movement. This is a natural condition in physical or social modeling. In addition, Feller and

strong Feller properties are intrinsically related to the existence and uniqueness of invariant

measures of the underlying process; see, for example, Meyn and Tweedie (1992, 1993b,c).

We denote by Bb(E) the class of bounded and Borel measurable functions on E and by

Cb(E) the class of bounded and continuous functions on E. Following Dynkin (1965), let us

state the following definition.

Definition 2.1.1. The semigroup {Pt : t ≥ 0} or the process Φ is said to have Feller property

if lim
t−→0

Ptf(x) = f(x) for all f ∈ Cb(E) and

Pt : Cb(E) −→ Cb(E) for all t ≥ 0

and strong Feller property if

Pt : Bb(E) −→ Cb(E) for all t > 0.

2.1.3 Irreducibility

Consider a continuous time Markov process Φ := {Φt : 0 ≤ t < ∞} taking values in the

state space (E,B(E)) with initial distribution ν(A) = P{Φ0 ∈ A}. The fundamental concept

of irreducibility is the idea that all parts of E can be reached by the Markov process. As

discussed in Tweedie (1994), connections between topological and probabilistic properties

involve irreducibility.

For any measurable set A ∈ B(E) we define the hitting time and the occupation time by

τA := inf{t ≥ 0 : Φt ∈ A} and ηA :=

∫ ∞
0

1A(Φt)dt,

9



respectively. Topological concepts of irreducibility are defined in terms of the ability of the

process to reach open sets, rather than sets of positive measure. To be more precise, Φ is

said to be open set irreducible if for every point y ∈ E and any open set A containing y we

have

Px{τA <∞} > 0 for all x ∈ E.

In this case the point y is called reachable. Hence Φ is open set irreducible if every point is

reachable.

The process Φ is said to be ϕ-irreducible if there exists a σ-finite measure ϕ on B(E)

such that for any x ∈ E we have

ϕ(A) > 0 =⇒ Ex [ηA] > 0.

The measure ϕ is called an irreducible measure. This is a concept of probabilistic irreducibil-

ity studied in the literature; see, for example, Meyn and Tweedie (1992, 1993b,c), Tweedie

(1994).

The connection between these two concepts of irreducibility was studied in Tweedie (1994)

for the class of T -process. It was shown in Theorem 3.2 of Tweedie (1994) that any open

set irreducible T -process is ϕ-irreducible. In particular, every open set irreducible Markov

chain with strong Feller property is ϕ-irreducible; see Proposition 6.1.6 of Meyn and Tweedie

(2009).

2.1.4 Petite Sets

The concept of petite sets is a generalization of the concept of small sets. It was studied

in Meyn and Tweedie (1992) to develop criteria for stability of Markov processes. For a

10



probability distribution a on R+ we define by

Ka(x,A) :=

∫
R+

a(dt)P (t, x, A)

the transition kernel corresponding to a. A set B ∈ B(E) and a non-trivial sub-probability

measure µ on B(E) are called petite if for some probability distribution a we have

µ(·) ≤ Ka(x, ·) ∀x ∈ B.

In the literature, we sometimes use the term µa-petite to indicate the sub-probability

measure µ and the probability distribution a. This class of petite sets plays a crucial role in

the study of stability of Markov processes in both discrete and continuous time cases; see,

Meyn and Tweedie (1992, 1993b,c). Furthermore, for discrete time Markov processes with

Feller property we have the following result.

Theorem 2.1.2 (Theorem 3.4, Meyn and Tweedie (1992)). Suppose that Φ := {Φn : n =

0, 1, 2, ...} is ϕ-irreducible. Then either of the following conditions implies that all compact

subsets of E are petite:

(i) Φ has the Feller property and there exists an open ϕ-positive petite set;

(ii) Φ has the Feller property and the support of ϕ has nonempty interior.

2.1.5 Invariant Measures and Ergodic Theory

To study a Markov process we usually raise questions concerning the existence and uniqueness

of an invariant measure. A σ-finite measure π on B(E) is called invariant if

π(A) = πPt(A) :=

∫
E

P (t, x, A)π(dx), ∀A ∈ B(E), t ≥ 0. (2.8)
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It is called subinvariant if we have π ≥ πP . It is well known that in finite state space case,

that is when E is finite, an invariant measure always exists. However, for infinite state space

case, there may be no invariant measures.

Let us recall the concept of Harris recurrence. A Markov process Φ is called Harris

recurrent if one of the following condition holds:

• there exists a σ-finite measure µ such that

µ(A) > 0 =⇒ Px{ηA =∞} = 1;

• there exists a σ-finite measure ϕ such that

ϕ(A) > 0 =⇒ Px{τA <∞} = 1.

These conditions are equivalent; see Theorem 1.1 of Meyn and Tweedie (1993a). It is clear

from the definition that Harris-recurrent processes are ϕ-irreducible. It is well known that

if Φ is ϕ-irreducible then a subinvariant measure exists. Moreover, if Φ is Harris recurrent

then a unique (up to constant multiples) invariant measure π exists; see, for example, Azéma

and Revuz (1991) and Getoor (1979). If the invariant measure π is finite then Φ is called

positive Harris recurrence. In this case π can be normalized to be a probability measure.

We conclude that

positive Harris recurrence⇒ Harris recurrence⇒ ϕ-irreducibility.

A criterion for positive Harris recurrence was given in Meyn and Tweedie (1993c) in terms

of a Foster-Lyapunov drift condition.

Assumption 2.1.3. There exist constants c, d > 0, a function f ≥ 1, a measurable set

12



C ⊂ E, and a function V ≥ 0 such that

A V (x) ≤ −cf(x) + d1C(x) (2.9)

for all x ∈ E.

The function V in (2.9) is called a Foster-Lyapunov function. We denote π(f) :=∫
E
f(x)π(dx). The following result can be proved by applying the Dynkin’s formula to

the process V (Φt) above.

Theorem 2.1.4 (Theorem 4.2, Meyn and Tweedie (1993c)). Suppose that Φ is a non-

explosive right process. If (2.9) holds for a closed petite set C ⊂ E and V is bounded on C

then Φ is positive Harris recurrence and π(f) <∞.

The following result shows that, for Feller processes, the existence of an invariant measure

can be obtained without assuming irreducibility.

Theorem 2.1.5 (Theorem 4.5, Meyn and Tweedie (1993c)). Suppose that Φ is a non-

explosive right process with Feller property. If (2.9) holds for some compact set C ⊂ E, then

an invariant probability measure exists, and π(f) ≤ d/c for any invariant probability π.

To study long-term behavior of Markov processes, we are interested in the rate of con-

vergence towards invariant measures. To this end, let us give some notations. For any

measurable function f : E −→ [1,∞) and any signed-measure µ on B(E), we set

||µ||f := sup{|µ(g)| : all measurable g with |g| ≤ f}

where µ(g) :=
∫
E
g(y)µ(dy). We note that the total variation norm ||µ||TV is the special case

of ||µ||f when f ≡ 1.

Following the terminology in Meyn and Tweedie (1993c) we say that the process Φ is
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ergodic if an invariant probability measure π exists and

lim
t→∞
||P (t, x, ·)− π(·)||TV = 0, for all x ∈ E.

Moreover, Φ is said to be f -exponentially ergodic if there exist a probability measure π(·), a

constant θ ∈ (0, 1) and a finite-valued function Θ(x) such that for all t ≥ 0 and all x ∈ E

we have

||P (t, x, ·)− π(·)||f ≤ Θ(x)θt.

Remark 2.1.6. In general, the concepts of positive Harris recurrence and ergodicity are not

equivalent. If Φ is ergodic then every h-skeleton chain {Φnh : n = 0, 1, ...} is also ergodic.

On the other hand, positive Harris recurrence processes do not have this property. A counter

example is a clock process; see Meyn and Tweedie (1993b).

The following theorem is comparable to Theorem 2.1.4.

Theorem 2.1.7 (Theorem 5.1, Meyn and Tweedie (1993c)). Suppose that Φ is a non-

explosive right process and that all compact sets are petite for some h-skeleton chain. If

(2.9) holds for some compact set C with V bounded on C, then Φ is ergodic.

To obtain criterion for exponential ergodicity we need a stronger version of condition

(2.9). Let us state the following assumption.

Assumption 2.1.8. There exist constants c > 0, d <∞ and a function V ≥ 0 such that

lim
||x||→∞

V (x) =∞ (norm-like) and A V (x) ≤ −cV (x) + d ∀x ∈ E. (2.10)

Theorem 2.1.9 (Theorem 6.1, Meyn and Tweedie (1993c)). Suppose that Φ is a right

process, and that all compact sets are petite for some h-skeleton chain {Φnh : n ∈ Z+}. If

(2.10) holds, then Φ is f -exponentially ergodic with f := 1 + V .
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We summarize the discussions in section 2.1 in Figure 2.1. For Feller processes, the exis-

tence of an appropriate Foster-Lyapunov function becomes the key for deriving the existence

and uniqueness as well as the convergence rate of invariant measures. In view of Theorem

2.1.5, the existence of an invariant measure π is guaranteed by condition (2.9). However,

the uniqueness and the convergence rate remain questionable. To determine the uniqueness

and the convergence rate we need the notion of petite sets. Thanks to Theorem 2.1.2, this

can be done if we can verify that the process is ϕ-irreducibility and if the measure ϕ has

nonempty interior. From Theorem 2.1.7 we obtain the convergence in total variation norm.

Furthermore, Theorem 2.1.9 gives the exponential rate of convergence.

Thm

Foster-Lyapunov

(2.10)

all compact

sets are petite

*some h-skeleton

Exponential

Ergodicity

Thm

ϕ-Irreducible

*int(suppϕ) 6= ∅

Open Set Irreducible

(T -process)

Foster-Lyapunov

(2.9)

Thm

Existence of π

Feller

Strong Feller

Figure 2.1: Overview of Ergodic Theory

15



2.2 Regime-Switching Jump Diffusion Processes

2.2.1 Formulation

Let d ≥ 1 be an integer and S = {1, 2, ...} be the switching state. Throughout this dis-

sertation, we consider an arbitrary filtered measure space (Ω,F , {Ft}t≥0,P) rich enough

to accommodate a standard d-dimensional Brownian motion W . We construct a regime-

switching jump diffusion as a continuous-time stochastic process (X,Λ) := {(X(t), Λ(t))}t≥0

where (X(t), Λ(t)) : Ω→ Rd × S is a random variable for all t ≥ 0. Let (U,U) be a measur-

able space and ν a σ-finite measure on U . Assume that b : Rd× S→ Rd, σ : Rd× S→ Rd×d

and c : Rd × S × U → Rd are Borel measurable functions. Suppose that (X,Λ) is a right

continuous strong Markov process with left-hand limits on Rd × S such that the continuous

component X satisfies the following stochastic differential equation (SDE),

dX(t) = b(X(t),Λ(t))dt+ σ(X(t), Λ(t))dW (t) +

∫
U

c(X(t−), Λ(t−), u)Ñ(dt, du), (2.11)

where N is a Poisson random measure on [0,∞) × U with intensity dt ν(du) and Ñ is the

associated compensated Poisson random measure. As in Nguyen and Yin (2018a,c), Xi and

Zhu (2017), and Xi et al. (2019) we suppose that the discrete component Λ is a continuous-

time stochastic process taking values in the set S and generated by the transition rate matrix

Q(x) := (qkl(x))k,l∈S. That is Λ satisfies

P{Λ(t+ ∆) = l|Λ(t) = k,X(t) = x} =


qkl(x)∆ + o(∆) if k 6= l

1 + qkl(x)∆ + o(∆) if k = l,

(2.12)

for all x ∈ Rd. We suppose further that Q(x) is stable and conservative in the sense that for

any x ∈ Rd

0 ≤ qkl(x) < +∞ for k 6= l
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Discrete state k

Discrete state j

Discrete state i

x

t0 = 0 t1 t2 t3

Figure 2.2: Sample Path of Regime-Switching Jump Diffusion

qk(x) := −qkk(x) < +∞ (stable)

qk(x) =
∑

l∈S\{k}

qkl(x) (conservative).

To obtain the structure of the process Λ, let consider the family of disjoint intervals {∆kl(x) :

k, l ∈ S} defined on the positive half of the real line as follows:

∆12(x) = [0, q12(x)),

∆13(x) = [q12(x), q12(x) + q13(x)),

...

∆21(x) = [q1(x), q1(x) + q21(x)),

∆23(x) = [q1(x) + q21(x), q1(x) + q21(x) + q23(x)),

...

∆31(x) = [q1(x) + q2(x), q1(x) + q2(x) + q31(x)),

...

where qk(x) :=
∑

l∈S\{k} qkl(x) and we set ∆kl(x) = ∅ in the case of qkl(x) = 0, k 6= l. We

note that {∆kl(x) : k, l ∈ S} are disjoint intervals and that the length of the interval ∆kl(x)
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is equal to qkl(x). Define a function h : Rd × S× R+ → R by

h(x, k, r) =
∑
l∈S

(l − k)1∆kl(x)(r). (2.13)

In other words, for each x ∈ Rd and k ∈ S, we set

h(x, k, r) =


l − k if r ∈ ∆kl(x)

0 otherwise.

As a result, the process Λ can be described as a solution to the following stochastic differential

equation

Λ(t) = Λ(0) +

∫ t

0

∫
R+

h(X(s−), Λ(s−), r)N1(ds, dr), (2.14)

where N1 is a Poisson random measure on [0,∞)× [0,∞) with characteristic measure m(dz),

the Lebesgue measure. We refer to Xi et al. (2019) for the existence and uniqueness of

non-explosive strong solution to the system of SDEs (2.11) and (2.14).

Denote by C2
c (Rd) the set of twice continuously differentiable functions with compact

support defined on Rd. Given a function f : Rd × S → R with f(·, k) ∈ C2
c (Rd) for each

k ∈ S. The infinitesimal generator of the regime-switching jump diffusion (X,Λ) is given by

A f(x, k) := Adf(x, k) + Ajf(x, k) +Q(x)f(x, k), (2.15)

where

Adf(x, k) :=
1

2
tr
(
a(x, k)∇2f(x, k)

)
+ 〈b(x, k),∇f(x, k)〉, (2.16)

Ajf(x, k) :=

∫
U

(f(x+ c(x, k, u), k)− f(x, k)− 〈∇f(x, k), c(x, k, u〉) ν(du), (2.17)

Q(x)f(x, k) :=
∑
l∈S

qkl(x) [f(x, l)− f(x, k)] . (2.18)
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In (2.16)–(2.17) and hereafter, we denote by ∇f(x, k) := ( ∂
∂x1
f(x, k), ..., ∂

∂xd
f(x, k))T the

gradient and by ∇2f(x, k) := [ ∂2

∂xi∂xj
f(x, k)]i,j the Hessian matrix of f with respect to x.

Moreover, we denote by 〈 , 〉 the ordinary inner product in Rd. For any square matrix

A we denote by tr(A) the trace and by AT the transpose of A, respectively. Then the

Hilbert–Schmidt norm of A is given by |A| :=
√
tr(AAT ).

We finish off this section by presenting some interesting examples of regime-switching dif-

fusion processes and their applications in mathematical finance, economy and public health.

Example 2.2.1. The regime-switching Black-Scholes model is studied in Zhang (2001). Let

α(·) be a Markov chain taking values in a finite set {1, 2, ..., N} and generated by the stable

and conservative transition rate matrix Q = (qkl)1≤k,l≤N . We regard α(·) as the market-

trend indicator process. We denote by S(t) the stock’s price at time t ≥ 0. Suppose that S(t)

satisfies


dS(t) = S(t)[µ(α(t))dt+ σ(α(t))dW (t)]

S(0) = S0

where S0 > 0 is the initial price, µ(·) is the expected return, σ(·) is the stock volatility, and

W is a one dimensional standard Brownian motion. Here we suppose that α is independent

of the Brownian motion W .

Example 2.2.2. Consider the following debt-to-GDP ratio model studied in Ferrari and

Rodosthenous (2019). Suppose W is a one dimensional standard Brownian motion and Λ is

a continuous-time Markov chain taking values in a finite set {1, 2, ..., N}. Suppose further

that Λ is independent of W , irreducible and generated by a stable and conservative transition

rate matrix Q := (qkl)1≤k,l≤N .

Assume that the nominal debt Dt grows at time t ≥ 0 at rate r + λΛt and satisfies

dDt = (r + λΛt)Dtdt
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where r > 0 is fixed interest rate on government debt and λΛt is the additional interest rate

the government has to pay when the macroeconomic conditions are in state Λt ∈ {1, 2, ..., N}.

Assume that the country’s GDP Ψt evolves the stochastic differential equation

dΨt = gΨtdt+ σΨtdWt

where g is the growth rate of the GDP. Then the Debt-to-GDP ratio X := D/Ψ satisfies the

stochastic differential equation

dXt = (r + λΛt − g + σ2)Xtdt+ σXtdWt.

One can show that the solution to this stochastic differential equation is given by

Xx,i
t = x exp

(r−g+ 1
2
σ2)t+

∫ t
0 λΛit

ds+σWt
, X0 = x,Λ0 = i.

Example 2.2.3. The following regime switching SIRS (Susceptible-Infected-Removed-Susceptible)

model is studied in Tuong et al. (2019). This is an epidemiological model which classi-

fies individuals into compartments of susceptible, infectious, removed with permanent ac-

quired immunity and susceptible due to the loss of immunity of the removed individuals. Let

ξ = {ξt : t ≥ 0} be a right continuous Markov chain taking values in {1, 2, ...,m}. Consider

the model

dS(t) = [−S(t)I(t)F1(S(t), I(t), ξt) + µ(ξt)(K − S(t)) + γ1(ξt)R(t)]dt

− S(t)I(t)F2(S(t), I(t), ξt)dW (t)

dI(t) = [S(t)I(t)F1(S(t), I(t), ξt)− (µ(ξt) + ρ(ξt) + γ2(ξt))I(t)]dt

+ S(t)I(t)F2(S(t), I(t), ξt)dW (t)

dR(t) = [γ2(ξt)I(t)− (µ(ξt) + γ1(ξt))R(t)]dt
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where W is a one dimensional standard Brownian motion, F1, F2 are positive and locally

Lipschitz functions on [0,∞)2 × {1, 2...,m} which represent incidence rates. The constant

K is a carrying capacity and the parameters µ, ρ, γ1, γ2 are the per capita disease-free death

rate, the excess per capita natural death rate of infective class, the per capita loss immunity

and return to the susceptible class of infective class, and the per capita recovery rate of the

infected individuals, respectively.

2.3 Coupling Methods

2.3.1 Classical Constructions of Couplings

Coupling method is a very powerful tool used to compare two stochastic processes. We will

use this method to derive Feller and Strong Feller properties of the regime-switching jump

diffusion process (X,Λ). We refer to Lindvall (1992) and Chen and Li (1989) for extensive

discussion on coupling method.

Given two processes Φ1 = {Φ1
t : 0 ≤ t <∞} and Φ2 = {Φ2

t , : 0 ≤ t <∞} taking values in

(E1,B1(E)) and (E2,B2(E)), respectively. Let P1 and P2 denote distributions for Φ1 and Φ2,

respectively. A process (Γ1,Γ2) := {(Γ1
t ,Γ

2
t ) : 0 ≤ t <∞} valued in (E1×E2,B1(E)⊗B2(E))

with distribution P̃ is called a coupling of Φ1 and Φ2 if

P̃{(Γ1
t ,Γ

2
t ) ∈ B1 × E2} = P1{Φ1

t ∈ B1} and P̃{(Γ1
t ,Γ

2
t ) ∈ E1 ×B2} = P2{Φ2

t ∈ B2}

for all t ≥ 0 and B1 ∈ B1(E), B2 ∈ B2(E). That is, P̃ has marginals P1 and P2. It is worth

noting that a coupling is not unique.

Let Φ1 and Φ2 be strong Markov processes defined on a probability space (Ω,F ,P) and

take values in a state space (E,B(E)). Suppose that (Γ1,Γ2) is a coupling process for Φ1
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and Φ2. A stopping T is called a coupling time if

Γ1
t = Γ2

t ∀t ≥ T.

If T is a coupling time then we obtain the following coupling inequality

||P{Φ2
t ∈ ·} − P{Φ1

t ∈ ·}||TV := sup
A∈F
|P{Φ2

t ∈ A} − P{Φ1
t ∈ A}| ≤ 2P{t < T}. (2.19)

Indeed, for any A ∈ F and t ≥ 0 we have

|P{Φ2
t ∈ A} − P{Φ1

t ∈ A}|

= |
(
P{Φ2

t ∈ A, t < T}+ P{Φ2
t ∈ A, t ≥ T}

)
−
(
P{Φ1

t ∈ A, t < T}+ P{Φ1
t ∈ A, t ≥ T}

)
|

= |
(
P{Γ2

t ∈ A, t < T}+ P{Γ2
t ∈ A, t ≥ T}

)
−
(
P{Γ1

t ∈ A, t < T}+ P{Γ1
t ∈ A, t ≥ T}

)
|

= |
(
P{Γ2

t ∈ A, t < T}+ P{Γ2
t ∈ A, t ≥ T}

)
−
(
P{Γ1

t ∈ A, t < T}+ P{Γ2
t ∈ A, t ≥ T}

)
|

= |P{Γ2
t ∈ A, t < T} − P{Γ1

t ∈ A, t < T}|

≤ 2P{t < T}.

By taking supremum over A ∈ F we obtain (2.19).

Consider a diffusion process X := {Xt : 0 ≤ t <∞} in Rd satisfying the SDE

dXt = b(Xt)dt+ σ(Xt)dWt

where b : Rd → Rd, σ : Rd → Rd×d are Borel measurable functions and W is a d-dimensional

Brownian motion. Assume further that X is a strong Markov process. For x, y ∈ Rd we

denote by Xx and Xy the processes X started at x and y, respectively. Then we can define

a coupling process for Xx and Xy as follows. Define the coupling time T by

T := inf{t ≥ 0 : Xx
t = Xy

t }
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and

X ′t =


Xx
t if t < T

Xy
t if t ≥ T.

(2.20)

Then (X ′, Xy) is a coupling process for Xx and Xy. This construction is known as basic

t

y Xy

x

Xx

T

Figure 2.3: Basic Coupling

coupling. Let a(x) := σ(x)σ(x)T . We denote the generator of X by

Lf(x) =
1

2
tr
(
a(x)∇2f(x)

)
+ 〈b(x),∇f(x)〉

where ∇f(x) := ( ∂
∂x1
f(x), ..., ∂

∂xd
f(x))T the gradient and by ∇2f(x) := [ ∂2

∂xi∂xj
f(x)]i,j the

Hessian matrix of f with respect to x. Then the coefficients of the basic coupling operator

are given by

a(x, y) =

 a(x) σ(x)σ(y)T

σ(y)σ(x)T a(y)

 , b(x, y) =

b(x)

b(y)

 .

To be more precise, the generator for the basic coupling is given by

Lf(x, y) =
1

2
tr
(
a(x, y)∇2f(x, y)

)
+ 〈b(x, y),∇f(x, y)〉. (2.21)
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Another useful coupling technique is coupling by reflection. We refer to Chen (2004),

Chen and Li (1989), Lindvall and Rogers (1986) for the discussions on this method. As in

Lindvall and Rogers (1986), given a diffusion process X satisfying the SDE

dXt = b(Xt)dt+ σ(Xt)dWt.

The idea is to construct another diffusion process Y with the same generator as X but

started at y 6= x and solve the SDE

dYt = b(Yt)dt+ σ(Yt)dW
′
t

where dW ′
t = g(x, y)dWt and g(x, y) = I − 2(x− y)(x− y)T/|x− y|2. The generator for the

coupling by reflection is the same as in (2.21) but with the following coefficients

a(x, y) =

 a(x) g(x, y)

g(x, y)T a(y)

 , b(x, y) =

b(x)

b(y)

 .

2.3.2 Coupling Methods for Regime-switching Jump Diffusions

Consider regime-switching diffusion (X,Λ) of the system of SDEs (2.11) and (2.14) and two

distinct initial conditions (x, i) and (y, j). We use the constructions discussed in the previous

section to construct a coupling process for (X(x,i), Λ(x,i)) and (X(y,j), Λ(y,j)).

We use basic coupling to derive Feller property. To this end, let us first construct a basic

coupling operator Ã for A . For f(x, i, y, j) ∈ C2
c (Rd × S× Rd × S), we define

Ã f(x, i, y, j) :=
[
Ω̃d + Ω̃j + Ω̃s

]
f(x, i, y, j), (2.22)

where Ω̃d, Ω̃j, and Ω̃s are defined as follows. For x, y ∈ Rd and i, j ∈ S, we set a(x, i) =
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σ(x, i)σ(x, i)T and

a(x, i, y, j) =

 a(x, i) σ(x, i)σ(y, j)T

σ(y, j)σ(x, i)T a(y, j)

 , b(x, i, y, j) =

b(x, i)
b(y, j)

 .

Then we define

Ω̃df(x, i, y, j) :=
1

2
tr
(
a(x, i, y, j)D2f(x, i, y, j)

)
+ 〈b(x, i, y, j), Df(x, i, y, j)〉, (2.23)

Ω̃jf(x, i, y, j) :=

∫
U

[
f(x+ c(x, i, u), i, z + c(y, j, u), j)− f(x, i, y, j)

− 〈Dxf(x, i, y, j), c(x, i, u)〉 − 〈Dyf(x, i, y, j), c(y, j, u)〉
]
ν(du),

(2.24)

where Df(x, i, y, j) = (Dxf(x, i, y, j), Dyf(x, i, y, j))T is the gradient and D2f(x, i, y, j) is

the Hessian matrix of f with respect to the variables x and y, and

Ω̃sf(x, i, y, j) :=
∑
l∈S

[qil(x)− qjl(y)]+(f(x, l, y, j)− f(x, i, y, j))

+
∑
l∈S

[qjl(y)− qil(x)]+(f(x, i, y, l)− f(x, i, y, j)) (2.25)

+
∑
l∈S

[qil(x) ∧ qjl(y)](f(x, l, y, l)− f(x, i, y, j)).

For any function f : Rd×Rd 7→ R, let f̃ : Rd× S×Rd× S 7→ R be defined by f̃(x, i, y, j) :=

f(x, y). Now we denote for each k ∈ S

L̃kf(x, y) = (Ω̃
(k)
d + Ω̃

(k)
j )f(x, y) := (Ω̃d + Ω̃j)f̃(x, k, y, k), ∀f ∈ C2

c (Rd × Rd).

To derive the strong Feller property we need another coupling method. Motivated by

Priola and Wang (2006) we construct the operator Â as follows. Let λR > 0 be a constant

depending on R > 0 and σλR be the unique symmetric nonnegative definite matrix-valued

function such that σ2
λR

(x, k) = a(x, k)− λRI. This will be determined more in Assumption
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(3.2.2); in particular, see condition (3.28). To this end, we let

â(x, i, y, j) :=

 a(x, i) ĝ(x, i, y, j)

ĝ(x, i, y, j)T a(y, j)

 and b(x, i, y, j) :=

b(x, i)
b(y, j)


where

ĝ(x, i, y, j) := λR(I − 2u(x, y)u(x, y)T ) + σλR(x, i)σλR(y, j)T ,

and u(x, y) := x−y
|x−y| . Then the coupling operator Â for (2.15) is given by

Â f(x, i, y, j) := [Ω̂d + Ω̃j + Ω̃s]f(x, i, y, j), f ∈ C2
c (Rd × S× Rd × S), (2.26)

where

Ω̂df(x, i, y, j) =
1

2
tr
(
â(x, i, y, j)D2f(x, i, y, j)

)
+ 〈b(x, i, y, j), Df(x, i, y, j)〉, (2.27)

and Ω̃j and Ω̃s are defined as in (2.24) and (2.25), respectively. In addition, for each k ∈ S

and any F ∈ C2
c (Rd × Rd), we write f(x, k, y, k) := F (x, y) and denote

L̂kF (x, y) = [Ω̂
(k)
d + Ω̃

(k)
j ]f(x, k, y, k) := Â f(x, k, y, k). (2.28)

Remark 2.3.1. We note that if σλR ≡ 0 then Â is the generator of the coupling by reflection

as discussed in the previous section.
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Chapter 3

Feller and Strong Feller Properties

We denote by Bb(Rd × S) the set of all bounded and Borel measurable functions on Rd × S

and by Cb(Rd × S) the set of all bounded and continuous functions on Rd × S. Suppose

(X,Λ) := {(X(t), Λ(t) : t ≥ 0} is a solution to the system (2.11) and (2.14). For any

t ≥ 0, x ∈ Rd and k ∈ S, define the operator

Ptf(x, k) := Ex,k [f(X(t), Λ(t))] = E [f(X(t), Λ(t))|(X(0), Λ(0)) = (x, k)] (3.1)

for f ∈ Bb(Rd×S). Note also that |Ptf(x, k)| = |Ex,k [Ptf(x, k)] | ≤ Ex,k [|Ptf(x, k)|] ≤ ||f ||∞

and hence ||Ptf ||∞ ≤ ||f ||∞. In other words, Pt is a bounded operator Pt : Bb(Rd ×

S)→ Bb(Rd × S) and the family {Pt}t≥0 forms a semigroup of bounded linear operators on

Bb(Rd×S). The semigroup {Pt}t≥0 or the corresponding process (X,Λ) is said to have Feller

property if Pt : Cb(Rd×S)→ Cb(Rd×S) and limt↓0 Ptf(x, k) = f(x, k) for all f ∈ Cb(Rd×S)

and (x, k) ∈ Rd × S and strong Feller property if Pt : Bb(Rd × S)→ Cb(Rd × S) for all t > 0.

In Xi et al. (2019), the authors study multidimensional regime-switching jump diffusion

processes with non-Lipschitz coefficients and countably many switching states. The authors

imposed Assumptions 2.1 and 2.2 in order to obtain the existence and the uniqueness of a

non-explosive strong solution to the system of SDEs (2.11) and (2.14). However, to derive

Feller property of such processes, the authors further imposed other assumptions. So, our
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goal aims to show that the Assumptions 2.1 and 2.2 imposed in Xi et al. (2019) are indeed

sufficient to obtain the Feller property of regime-switching jump diffusion processes.

To study Feller and strong Feller properties as well as irreducibility it is sufficient to

consider weak solutions of the system (2.11) and (2.14) instead of the strong ones. We make

the following standing assumption throughout this work:

Assumption 3.0.2. For any (x, k) ∈ Rd× S, the system of stochastic differential equations

(2.11) and (2.14) has a non-explosive weak solution (X(x,k), Λ(x,k)) with initial condition (x, k)

and the solution is unique in the sense of probability law.

3.1 Feller Property

In this section, we derive Feller property of (X,Λ). To begin let us state the following

assumptions.

Assumption 3.1.1. Assume the following conditions hold.

(i) If d = 1, then there exist a positive number δ0 and a nondecreasing and concave function

ρ : [0,∞)→ [0,∞) satisfying ∫
0+

dr

ρ(r)
=∞, (3.2)

such that for all k ∈ S, R > 0 and x, z ∈ R with |x| ∨ |z| ≤ R and |x− z| ≤ δ0,

sgn(x− z)(b(x, k)− b(z, k)) ≤ κRρ(|x− z|), (3.3)

|σ(x, k)− σ(z, k)|2 +

∫
U

|c(x, k, u)− c(z, k, u)|2ν(du) ≤ κR|x− z|, (3.4)

where κR is a positive constant and sgn(a) = 1{a>0} − 1{a≤0}. In addition, for each

k ∈ S, the function c satisfies that

the function x 7→ x+ c(x, k, u) is nondecreasing for all u ∈ U ; (3.5)
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or, there exists some β > 0 such that

|x− z + θ(c(x, k, u)− c(z, k, u))| ≥ β|x− z|,∀(x, z, u, θ) ∈ R× R× U × [0, 1]. (3.6)

(ii) If d ≥ 2, then there exist a positive number δ0 and a nondecreasing and concave function

ρ : [0,∞)→ [0,∞) satisfying

0 < ρ(r) ≤ (1 + r)2ρ(r/(1 + r)) for all r > 0, and

∫
0+

dr

ρ(r)
=∞, (3.7)

so that for all k ∈ S, R > 0 and x, z ∈ Rd with |x| ∨ |z| ≤ R and |x− z| ≤ δ0,

2〈x− z, b(x, k)− b(z, k)〉+ |σ(x, k)− σ(z, k)|2

+

∫
U

|c(x, k, u)− c(z, k, u)|2ν(du) ≤ κRρ(|x− z|2),
(3.8)

where κR is a positive constant.

Assumption 3.1.2. For each k ∈ S, there exists a concave function γk : R+ 7→ R+ with

γ(0) = 0 such that for all x, y ∈ Rd with |x| ∨ |y| ≤ R, there exists a positive constant κR

(which, without loss of generality, can be assumed to be the same positive constant as in (3.3)

and (3.4)) such that ∑
l∈S\{k}

|qkl(x)− qkl(y)| ≤ κRγk(|x− y|). (3.9)

Remark 3.1.3. We note that examples of functions that satisfy condition (3.2) or (3.7) in-

clude ρ(r) = r, ρ(r) = r log(1/r), ρ(r) = r log(log(1/r)), and ρ(r) = r log(1/r) log(log(1/r))

for r ∈ (0, δ0) with δ0 small enough. When ρ(r) = r Assumption 3.1.1 reduces to the usual

local Lipschitz condition. For other choices of ρ(r) Assumption 3.1.1 allows the coefficients of

(2.11) to be non-Lipschitz. This enables us to work with regime-switching (jump) diffusions

with non-Lipschitz coefficients. This is an important result in Xi et al. (2019) which provides

us the opportunity to explore a larger class of regime-switching (jump) diffusion processes.
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Note also that conditions (3.3), (3.4) and (3.8) require the coefficients to be continuous in a

small neighborhood of the diagonal line x = z in Rd ⊗Rd with |x| ∨ |z| ≤ R for each R > 0.

Remark 3.1.4. Assumption 3.1.1 is comparable to the corresponding assumption in Xi

et al. (2019), except that the non-local term in (3.4) and (3.8) only requires the regularity of∫
U
|c(x, k, u)−c(z, k, u)|2ν(du). In Xi et al. (2019), the corresponding term is

∫
U

[|c(x, k, u)−

c(z, k, u)|2 ∧ 4|x− z| · |c(x, k, u)− c(z, k, u)|]ν(du).

Moreover, Assumption 3.1.2 is weaker than that in Xi et al. (2019). Indeed, that paper

assumes that Q(x) = (qkl(x)) satisfies

∑
l∈S\{k}

|qkl(x)− qkl(y)| ≤ κR ρ

(
|x− y|

1 + |x− y|

)
, for each k ∈ S,

for all x, y ∈ Rd with |x| ∨ |y| ≤ R, in which κR > 0 and ρ is an increasing and concave

function satisfying (3.7). In contrast, the function γk in Assumption 3.1.2 may depend

on k, and is only required to be concave with γk(0) = 0. In particular, the non-integrability

condition
∫

0+
dr
ρ(r)

=∞ is dropped. This relaxation is significant and renders that the analyses

in Xi et al. (2019) are not applicable.

We introduce the following notations. Let (X(·), Λ(·), X̃(·), Λ̃(·)) denote the coupling

process corresponding to the operator Ã with initial condition (x, k, z, k), in which δ0 >

|x− z| > 0, and δ0 is the positive constant in Assumption 3.1.1. For any R > 0, let

τR := inf{t ≥ 0 : |X̃(t)| ∨ |X(t)| ∨ |Λ̃(t)| ∨ |Λ(t)| > R}. (3.10)

In view of Assumption 3.0.2, limR→∞ τR =∞ a.s. Also denote ∆t = X̃(t)−X(t) and

Sδ0 := inf{t ≥ 0 : |∆t| > δ0} = inf{t ≥ 0 : |X̃(t)−X(t)| > δ0}. (3.11)

In addition, let

ζ := inf{t ≥ 0 : Λ(t) 6= Λ̃(t)} (3.12)
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denote the first time when the switching components Λ and Λ̃ differ.

Lemma 3.1.5. Under Assumption 3.1.1, the following assertion holds:

lim
|x̃−x|→0

E[|∆t∧τR∧Sδ0∧ζ |] = 0, ∀t ≥ 0. (3.13)

Proof. We will prove the lemma separately for the cases d = 1 and d ≥ 2.

Case (i): d = 1. Let {an} be a strictly decreasing sequence of real numbers satisfying

a0 = 1, limn→∞ an = 0, and
∫ an−1

an
dr
r

= n for each n ≥ 1. For each n ≥ 1, let ρn be a

nonnegative continuous function with support on (an, an−1) so that

∫ an−1

an

ρn(r)dr = 1 and ρn(r) ≤ 2(nr)−1 for all r > 0.

For x ∈ R, define

ψn(x) =

∫ |x|
0

∫ y

0

ρn(z)dzdy. (3.14)

We can immediately verify that ψn is even and twice continuously differentiable, with

ψ′n(r) = sgn(r)

∫ |r|
0

ρn(z)dz = sgn(r)|ψ′n(r)|, (3.15)

and

|ψ′n(r)| ≤ 1, 0 ≤ |r|ψ′′n(r) = |r|ρn(|r|) ≤ 2

n
, and lim

n→∞
ψn(r) = |r| (3.16)

for r ∈ R. Furthermore, for each r > 0, the sequence {ψn(r)}n≥1 is nondecreasing. Note

also that for each n ∈ N, ψn, ψ′n, and ψ′′n all vanish on the interval (−an, an). Moreover the

classical arguments using Assumption 3.1.1 (i), (3.15) and (3.16) reveal that

L̃kψn(x− z) =
1

2
ψ′′n(x− z)|σ(x, k)− σ(z, k)|2 + ψ′n(x− z)(b(x, k)− b(z, k))

+

∫
U

[ψn(x− z + c(x, k, u)− c(z, k, u))

− ψn(x− z)− ψ′n(x− z)(c(x, k, u)− c(z, k, u))]ν(du)
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≤ K
κR
n

+ κR%(|x− z|), (3.17)

for all x, z with |x|∨|z| ≤ R and 0 < |x−z| ≤ δ0, where K is a positive constant independent

of R and n. Then it follows that

E[ψn(∆t∧Sδ0∧τR∧ζ)] = E[ψn(X̃(t ∧ Sδ0 ∧ τR ∧ ζ)−X(t ∧ Sδ0 ∧ τR ∧ ζ))]

= ψn(x̃− x) + E
[∫ t∧τR∧Sδ0∧ζ

0

L̃kψn(X̃(s)−X(s))ds

]
≤ ψn(|∆0|) + E

[∫ t∧τR∧Sδ0∧ζ

0

(
κR%(|∆s|) +K

κR
n

)
ds

]
≤ ψn(|∆0|) +K

κR
n
t+ κR

∫ t

0

ρ
(
E[|∆s∧τR∧Sδ0∧ζ |]

)
ds,

where the first inequality follows from (3.17) and the second inequality follows from the

concavity of ρ and Jensen’s inequality. Then we use the monotone convergence theorem and

(3.16) to derive

E[|∆t∧τR∧Sδ0∧ζ |] ≤ |∆0|+ κR

∫ t

0

ρ(E[|∆s∧τR∧Sδ0∧ζ |])ds.

Let u(t) := E[|∆t∧τR∧Sδ0∧ζ |]. Then u satisfies

0 ≤ u(t) ≤ v(t) := |∆0|+ κR

∫ t

0

ρ(u(s))ds.

Define the function Γ(r) :=
∫ r

1
ds
ρ(s)

for r > 0. Thanks to (3.2), we can verify that Γ is

nondecreasing and satisfies Γ(r) > −∞ for all r > 0 and limr→0 Γ(r) = −∞. Then we have

Γ(u(t)) ≤ Γ(v(t)) = Γ(|∆0|) +

∫ t

0

Γ′(v(s))v′(s)ds = Γ(|∆0|) + κR

∫ t

0

ρ(u(s))

ρ(v(s))
ds

≤ Γ(|∆0|) + κR

∫ t

0

1ds = Γ(|∆0|) + κRt,

where we use the assumption that ρ is nondecreasing to obtain the last inequality. Taking
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the limit |∆0| = |x̃ − x| → 0 we have Γ(u(t)) → −∞ since limr→0 Γ(r) = −∞. Moreover,

since Γ(r) > −∞ for all r > 0 we must have lim|x̃−x|→0 u(t) = 0. This gives (3.13) as desired.

Case (ii) d ≥ 2. Consider the function f(x, z) := |x − z|2. Then Assumption 3.1.1 (ii)

implies that

L̃kf(x, z) = 2〈x− z, b(x, k)− b(z, k)〉+ |σ(x, k)− σ(z, k)|2 +

∫
U

|c(x, k, u)− c(z, k, u)|2ν(du)

≤ κRρ(|x− z|2),

for all x, z ∈ Rd with |x| ∨ |z| ≤ R and |x− z| ≤ δ0. Consequently

E
[
|∆t∧τR∧Sδ0∧ζ |

2
]

= E[f(X̃(t ∧ τR ∧ Sδ0 ∧ ζ), X(t ∧ τR ∧ Sδ0 ∧ ζ))]

= f(x̃, x) + E
[ ∫ t∧τR∧Sδ0∧ζ

0

L̃kf(X̃(s), X(s))ds

]
≤ |∆0|+ E

[ ∫ t∧τR∧Sδ0∧ζ

0

κRρ(|X̃(s)−X(s)|2)ds

]
≤ |∆0|+ κR

∫ t

0

ρ(E[|∆s∧τR∧Sδ0∧ζ |
2])ds,

where the last inequality follows from the concavity of ρ and Jensen’s inequality. Using the

same argument as that in Case (i), we can show that lim|x̃−x|→0 E[|∆t∧τR∧Sδ0∧ζ |
2] = 0; which,

together with Hölder’s inequality, leads to (3.13).

Combining the two cases completes the proof.

Now we are ready to show that the process (X,Λ) has Feller property.

Theorem 3.1.6. Under Assumptions 3.1.1 and 3.1.2, the process (X,Λ) has Feller property.

Proof. We need to show that for each (x, k) ∈ Rd × S and each f ∈ Cb(Rd × S), the limit

(Ptf)(x̃, k̃) → (Ptf)(x, k) as (x̃, k̃) → (x, k) holds for all t ≥ 0. Since S = {1, 2, ...} has a

discrete topology, it is enough to consider only (x̃, k)→ (x, k). First, observe that

|(Ptf)(x̃, k̃)− (Ptf)(x, k)| = |E[f(X̃(t), Λ̃(t))]− E[f(X(t), Λ(t))]|
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≤ |E[f(X̃(t), Λ̃(t))]− E[f(X̃(t), Λ(t))]|

+ |E[f(X̃(t), Λ(t))]− E[f(X(t), Λ(t))]|

= |E[(f(X̃(t), Λ̃(t))− f(X̃(t), Λ(t)))1{ζ≤t}]|

+ |E[(f(X̃(t), Λ̃(t))− f(X̃(t), Λ(t)))1{ζ>t}]|

+ |E[f(X̃(t), Λ(t))]− E[f(X(t), Λ(t))]|

≤ 2||f ||∞P{ζ ≤ t}+ |E[f(X̃(t), Λ(t))]− E[f(X(t), Λ(t))]|.

(3.18)

We will show that both terms on the right-hand side of (3.18) converge to 0 as x̃→ x.

Consider the function Ξ(x, k, z, l) := 1{k 6=l}. It follows directly from the definition that

Ã Ξ(x, k, z, l) = Ω̃sΞ(x, k, z, l) ≤ 0, if k 6= l.

When k = l, we have from (3.9) that

Ã Ξ(x, k, z, l) = Ω̃sΞ(x, k, z, k)

=
∑
i∈S

[qki(x)− qki(z)]+(1{i 6=k} − 1{k 6=k}) +
∑
i∈S

[qki(z)− qki(x)]+(1{i 6=k} − 1{k 6=k})

≤
∑

i∈S,i 6=k

|qki(x)− qki(z)| ≤ κRγk(|x− y|).

Hence

Ã Ξ(x, k, z, l) ≤ κRγk(|x− y|) (3.19)

for all k, l ∈ S and x, z ∈ Rd with |x| ∨ |z| ≤ R. Note that ζ ≤ t ∧ τR ∧ Sδ0 if and only if

Λ̃(t ∧ τR ∧ Sδ0 ∧ ζ) 6= Λ(t ∧ τR ∧ Sδ0 ∧ ζ). Thus we can use (3.19) to compute

P{ζ ≤ t ∧ τR ∧ Sδ0}

= E[Ξ(X̃(t ∧ τR ∧ Sδ0 ∧ ζ), Λ̃(t ∧ τR ∧ Sδ0 ∧ ζ), X(t ∧ τR ∧ Sδ0 ∧ ζ),Λ(t ∧ τR ∧ Sδ0 ∧ ζ))]
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= Ξ(x̃, k, x, k) + E
[ ∫ t∧τR∧Sδ0∧ζ

0

Ã Ξ(X̃(s), Λ̃(s), X(s),Λ(s))ds

]
≤ κRE

[∫ t∧τR∧Sδ0∧ζ

0

γk(|X̃(s)−X(s)|)ds
]

≤ κR

∫ t

0

E[γk(|X̃(s ∧ τR ∧ Sδ0 ∧ ζ)−X(s ∧ τR ∧ Sδ0 ∧ ζ)|)]ds

≤ κR

∫ t

0

γk
(
E[|∆s∧τR∧Sδ0∧ζ |]

)
ds,

where the last inequality follows from the assumption that γk is concave. Then it follows

from (3.13), the assumption that γk(0) = 0, and the bounded convergence theorem that

lim
|x̃−x|→0

P{ζ ≤ t ∧ τR ∧ Sδ0} = 0. (3.20)

Note also that on the set {Sδ0 ≤ t ∧ ζ ∧ τR} we have δ0 ≤ |∆Sδ0∧t∧ζ∧τR |. This implies

δ0P{Sδ0 ≤ t ∧ ζ ∧ τR} ≤ E[|∆t∧Sδ0∧ζ∧τR |1{Sδ0≤t∧ζ∧τR}] ≤ E[|∆t∧Sδ0∧ζ∧τR |].

Therefore, it follows from (3.13) that

lim
|x̃−x|→0

P{Sδ0 ≤ t ∧ ζ ∧ τR} = 0. (3.21)

Fix an arbitrary positive number ε. From (3.13) we have

lim
|x̃−x|→0

P{|∆t∧Sδ0∧τR∧ζ | > ε} ≤ lim
|x̃−x|→0

E
[
|∆t∧Sδ0∧τR∧ζ |

]
ε

= 0 (3.22)

Since limR→∞ τR =∞ a.s., we can choose R sufficiently large so that

P{τR < t} < ε. (3.23)

35



Then

P{|∆t| > ε} = P{|∆t| > ε, τR < t}+ P{|∆t| > ε, τR ≥ t, ζ ≤ t ∧ Sδ0 ∧ τR}

+ P{|∆t| > ε, τR ≥ t, ζ > t ∧ Sδ0 ∧ τR, Sδ0 ≤ t ∧ τR ∧ ζ}

+ P{|∆t| > ε, τR ≥ t, ζ > t ∧ Sδ0 ∧ τR, Sδ0 > t ∧ τR ∧ ζ}

≤ ε+ P{ζ ≤ t ∧ Sδ0 ∧ τR}+ P{Sδ0 ≤ t ∧ τR ∧ ζ}+ P{|∆t| > ε, t ≤ Sδ0 ∧ τR ∧ ζ}

≤ ε+ P{ζ ≤ t ∧ Sδ0 ∧ τR}+ P{Sδ0 ≤ t ∧ τR ∧ ζ}+ P{|∆t∧Sδ0∧τR∧ζ | > ε}.

From (3.20)–(3.22) we have

lim
|x̃−x|→0

P{|∆t| > ε} ≤ ε.

Since ε is arbitrary, we conclude that lim|x̃−x|→0 P{|∆t| > ε} = 0. In other words, X̃(t) →

X(t) in probability as x̃ → x. With the metric d on Rd × S defined by d((x, i), (y, j)) :=

|x − y| + 1{i 6=j}, we see immediately that (X̃(t),Λ(t)) → (X(t),Λ(t)) in probability as x̃ →

x. Because the function f is continuous, we also have f(X̃(t),Λ(t)) → f(X(t),Λ(t)) in

probability as x̃→ x. Then the bounded convergence theorem implies

|E[f(X̃(t), Λ(t))]− E[f(X(t), Λ(t))]| → 0 as x̃→ x. (3.24)

Next, we show that limx̃→x P{ζ ≤ t} = 0 holds. Recall that R is chosen so that (3.23) holds.

Then we compute

P{ζ ≤ t} = P{ζ ≤ t, τR < t}+ P{ζ ≤ t, τR ≥ t}

≤ P{τR < t}+ P{ζ ≤ t, τR ≥ t, Sδ0 ≤ t ∧ ζ}+ P{ζ ≤ t, τR ≥ t, Sδ0 > t ∧ ζ}

≤ ε+ P{Sδ0 ≤ t ∧ ζ ∧ τR}+ P{ζ ≤ t ∧ τR ∧ Sδ0}.

It then follows from (3.20) and (3.21) that lim|x̃−x|→0 P{ζ ≤ t} ≤ ε. Again since ε is arbitrary,
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we conclude that

lim
|x̃−x|→0

P{ζ ≤ t} = 0. (3.25)

Finally we plug (3.24) and (3.25) into (3.18) to complete the proof.

3.2 Strong Feller Property

To facilitate future presentations, we introduce the following notations. For any x, y ∈ Rd

and i, j ∈ S, put

A(x, i, y, j) := a(x, i) + a(y, j)− 2ĝ(x, i, y, j),

Ā(x, i, y, j) :=
1

|x− y|2
〈x− y, A(x, i, y, j)(x− y)〉,

B(x, i, y, j) := 〈x− y, b(x, i)− b(y, j)〉.

We first obtain following lemma whose proof involves elementary and straightforward com-

putations; see section 7.1. Similar computations can be found in Chen and Li (1989) and

Priola and Wang (2006).

Lemma 3.2.1. For each x, y ∈ Rd and i, j ∈ S, we have

(i) â(x, i, y, j) is symmetric and uniformly positive definite,

(ii) trA(x, i, y, j) = |σλR(x, i)− σλR(y, j)|2 + 4λR, and

(iii) Ā(x, i, y, j) ≥ 4λR.

To derive the strong Feller property we need stronger conditions than those in Assumption

3.1.1.

Assumption 3.2.2. For every k ∈ S the following assertions hold:
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(i) For every R > 0 there exits a constant λR > 0 such that

〈ξ, a(x, k)ξ〉 ≥ λR|ξ|2, ξ ∈ Rd, (3.26)

for all x ∈ Rd with |x| ≤ R, where a(x, k) := σ(x, k)σ(x, k)T .

(ii) There exits a nonnegative function g ∈ C(0,∞) satisfying

∫ 1

0

g(r)dr <∞, (3.27)

and

2〈x− z, b(x, k)− b(z, k)〉+ |σλR(x, k)− σλR(z, k)|2

+

∫
U

|c(x, k, u)− c(z, k, u)|2ν(du) ≤ 2κR|x− z|g(|x− z|), (3.28)

for all x, z ∈ Rd with |x| ∨ |z| ≤ R and |x − z| ≤ δ0, where δ0 is a positive constant

and σλR the unique symmetric nonnegative definite matrix-valued function such that

σ2
λR

(x, k) = a(x, k)− λRI.

Remark 3.2.3. Note that 〈ξ, a(x, k)ξ〉 ≥ 0 for all ξ ∈ Rd. However, to obtain the strong

Feller property we need this to be strictly positive. So we require the elliptic condition (3.26).

If we set λR = 0 and g(r) = r then condition (3.28) reduces to condition (3.8) with ρ(r) = r.

In this case, the coefficients satisfy the usual local Lipschitz condition.

Assumption 3.2.2 improves significantly over those in the literature such as Shao (2015b),

Xi and Zhu (2017), which require Lipschitz condition for the coefficients of the associated

stochastic differential equations. By contrast, (3.28) places very mild conditions on the co-

efficients; it allows to treat for example the case of Hölder continuous coefficients by taking

g(r) = r−p for 0 ≤ p < 1; see Example 3.3.2.

Moreover, the condition (3.28) significantly weakens the requirement in Xi et al. (2019)
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as we do not require g to satisfy lim
r→0

g(r) = 0; see Lemma 4.4 of Xi et al. (2019). Therefore,

Theorem 3.2.8 improves Theorem 4.8 of Xi et al. (2019) on strong Feller property.

As in Section 3.1, we will use the coupling method to prove Theorem 3.2.8. Now, let

φ ∈ C2([0,∞)). As in Chen and Li (1989), for each k ∈ S and all x, z ∈ Rd with x 6= z, we

can verify that

Ω̂
(k)
d φ(|x− z|) =

φ′′(|x− z|)
2

Ā(x, k, z, k)

+
φ′(|x− z|)
2|x− z|

[trA(x, k, z, k)− Ā(x, k, z, k) + 2B(x, k, z, k)].
(3.29)

Moreover, we have

Ω̃
(k)
j φ(|x− z|) =

∫
U

(φ(|x+ c(x, k, u)− z − c(z, k, u)|)− φ(|x− z|)

− φ′(|x− z|)
|x− z|

〈x− z, c(x, k, u)− c(z, k, u)〉)ν(du).

(3.30)

Motivated by Priola and Wang (2006), we consider the function G given by

G(r) :=

∫ r

0

exp

{
−
∫ s

0

κR
2λR

g(w)dw

}∫ 1

s

exp

{∫ v

0

κR
2λR

g(u)du

}
dvds, r ∈ [0, 1]

where g is the function given in Assumption 3.2.2 (ii). Since g ≥ 0, we see that

G′(r) = e
−

∫ r
0

κR
2λR

g(w)dw
∫ 1

r

e
∫ v
0

κR
2λR

g(u)du
dv ≥ 0, and G′′(r) = −1− κR

2λR
g(r)G′(r) ≤ 0.

(3.31)

Note also that G is concave and limr→0G(r) = 0. Since G′(0) ≥ 1 and G(0) = 0, there exists

a constant α ∈ (0, 1) so that

r ≤ G(r) for all r ∈ [0, α]. (3.32)

Lemma 3.2.4. Suppose Assumptions 3.2.2 holds. Then for any R > 0 and k ∈ S there exits
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a positive constant βR > 0 such that

L̂kG(|x− z|) ≤ −βR (3.33)

for all x, z ∈ Rd with |z| ∨ |x| ≤ R and 0 < |x− z| ≤ α ∧ δ0, where α > 0 is given in (3.32).

Proof. In view of (3.29), it follows from (3.31) that

Ω̂
(k)
d G(|x− z|)

=
G′′(|x− z|)

2
Ā(x, k, z, k) +

G′(|x− z|)
2|x− z|

[trA(x, k, z, k)− Ā(x, k, z, k) + 2B(x, k, z, k)]

≤ G′′(|x− z|)
2

4λR +
G′(|x− z|)

2|x− z|
[|σλR(x, k)− σλR(z, k)|2 + 2B(x, k, z, k)]

= 2λR

(
−1− κR

2λR
g(|x− z|)F ′(|x− z|)

)
+
G′(|x− z|)

2|x− z|
[|σλR(x, k)− σλR(z, k)|2 + 2B(x, k, z, k)]

= −2λR +

(
−κRg(|x− z|) +

|σλR(x, k)− σλR(z, k)|2 + 2B(x, k, z, k)

2|x− z|

)
G′(|x− z|).

(3.34)

Since the function G is concave, we have G(r1) − G(r0) ≤ G′(r0)(r1 − r0) for all r0, r1 ≥ 0.

Take r0 = |x− z| and r1 = |x+ c(x, k, u)− z − c(z, k, u)| to obtain

G(|x+ c(x, k, u)− z − c(z, k, u)|)−G(|x− z|)− G′(|x− z|)
|x− z|

〈x− z, c(x, k, u)− c(z, k, u)〉

≤ G′(|x− z|)
(
|x+ c(x, k, u)− z − c(z, k, u)| − |x− z| − 〈x− z, c(x, k, u)− c(z, k, u)〉

|x− z|

)
.

Furthermore, with a := x− z and b := c(x, k, u)− c(z, k, u), we can verify directly that

|a+ b| − |a| − 〈a, b〉
|a|

=
−(|a+ b| − |a|)2 + |b|2

2|a|
≤ |b|

2

2|a|
.
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Hence it follows that

G(|x+ c(x, k, u)− z − c(z, k, u)|)−G(|x− z|)− G′(|x− z|)
|x− z|

〈x− z, c(x, k, u)− c(z, k, u)〉

≤
(
|c(x, k, u)− c(z, k, u)|2

2|x− z|

)
G′(|x− z|).

Then we have

Ω̃
(k)
j G(|x− z|) ≤ G′(|x− z|)

∫
U

|c(x, k, u)− c(z, k, u)|2

2|x− z|
ν(du). (3.35)

From (3.34) and (3.35), we see that

L̂kG(|x− z|) = [Ω̂
(k)
d + Ω̃

(k)
j ]G(|x− z|)

≤ −2λR +G′(|x− z|)
(
− κRg(|x− z|) +

|σλR(x, i)− σλR(z, j)|2 + 2B(x, k, z, k)

2|x− z|

+

∫
U

|c(x, k, u)− c(z, k, u)|2

2|x− z|
ν(du)

)
≤ −2λR.

The proof is complete.

Throughout the rest of the section, we use the following notations. For any x, x̃ ∈ Rd and

k ∈ S, denote by (X(·), Λ(·), X̃(·), Λ̃(·)) the process corresponding to the coupling operator

Â with initial condition (x, k, x̃, k). As in Section 3.1, ∆t := X̃(t)−X(t), t ≥ 0. Let τR, Sδ0 ,

and ζ be defined as in (3.10), (3.11), and (3.12), respectively. In addition, for each n ∈ N,

we define

Tn := inf

{
t ≥ 0 : |X(t)− X̃(t)| < 1

n

}
. (3.36)

Then limn→∞ Tn = T , where T is the coupling time given by

T := inf{t ≥ 0 : X(t) = X̃(t)}. (3.37)
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Lemma 3.2.5. Suppose Assumption 3.2.2 holds. Then the following assertions hold for

every t ≥ 0:

lim
|x̃−x|→0

E[G(|∆t∧τR∧Sδ̄∧ζ |)] = 0. (3.38)

lim
|x̃−x|→0

E[G(|∆t∧τR∧Sδ̄∧ζ−|)] = 0. (3.39)

In particular,

lim
|x̃−x|→0

E[|∆t∧τR∧Sδ̄∧ζ−|] = 0, (3.40)

where δ̄ := δ0 ∧ α, δ0 is the constant given in Assumption 3.2.2 (ii), and α ∈ (0, 1) is the

constant given in (3.32).

Proof. Assume without loss of generality that δ̄ ≥ |x − x̃| > 0. We apply Itô’s formula to

the process G(|X̃(·)−X(·)|) = G(|∆·|):

E[G(|∆t∧τR∧Sδ̄∧ζ |)] = G(|∆0|) + E
[ ∫ t∧τR∧Sδ̄∧ζ

0

L̂G(|∆s|)ds
]

≤ G(|∆0|)− βRE[t ∧ τR ∧ Sδ̄ ∧ ζ],

where the last inequality follows from (3.33). Hence

E[G(|∆t∧τR∧Sδ̄∧ζ |)] + βRE[t ∧ τR ∧ Sδ̄ ∧ ζ] ≤ G(|∆0|) = G(|x− x̃|).

Since limr→0G(r) = 0, then we obtain (3.38). The same argument implies (3.39). Since

|∆t∧τR∧Sδ̄∧ζ− | ≤ δ̄ ≤ α, it follows from (3.32) that

|∆t∧τR∧Sδ̄∧ζ−| ≤ G(|∆t∧τR∧Sδ̄∧ζ−|)

and therefore (3.40) follows.
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Lemma 3.2.6. Suppose Assumptions 3.1.2 and 3.2.2 hold. Then for any t ≥ 0 we have

lim
|x̃−x|→0

P{ζ ≤ t} = 0. (3.41)

Proof. Given ε > 0. Choose R sufficiently large so that P{τR ≤ t} < ε. Observe that

P{ζ ≤ t} = P{ζ ≤ t, τR < t}+ P{ζ ≤ t, τR ≥ t}

≤ P{τR < t}+ P{ζ ≤ t, τR ≥ t, Sδ̄ ≤ t ∧ ζ}+ P{ζ ≤ t, τR ≥ t, Sδ̄ > t ∧ ζ}

≤ ε+ P{ζ ≤ t, τR ≥ t, Sδ̄ ≤ t ∧ ζ}+ P{ζ ≤ t, τR ≥ t, Sδ̄ > t ∧ ζ}

≤ ε+ P{Sδ̄ ≤ t ∧ ζ ∧ τR}+ P{ζ ≤ t ∧ τR ∧ Sδ̄}. (3.42)

As in the proof of Theorem 3.1.6, condition (3.9) enables us to derive

P{ζ ≤ t ∧ τR ∧ Sδ̄} ≤ κR

∫ t

0

γk(E[|∆s∧τR∧Sδ̄∧ζ−|])ds.

Furthermore, the limit in (3.40) implies

lim
|x̃−x|→0

P{ζ ≤ t ∧ τR ∧ Sδ̄} = 0. (3.43)

Note that on the set {Sδ̄ ≤ t ∧ ζ ∧ τR} we have δ̄ ≤ |∆Sδ̄∧t∧ζ∧τR |. Since G is increasing, we

obtain

0 < G(δ̄) ≤ G(|∆t∧Sδ̄∧ζ∧τR |).

Thus

G(δ̄)P{Sδ̄ ≤ t ∧ ζ ∧ τR} ≤ E[G(|∆t∧Sδ̄∧ζ∧τR |)1{Sδ̄≤t∧ζ∧τR}] ≤ E[G(|∆t∧Sδ̄∧ζ∧τR |)].
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This, together with (3.38), implies that

lim
|x̃−x|→0

P{Sδ̄ ≤ t ∧ ζ ∧ τR} = 0. (3.44)

In view of (3.42), it follows from (3.43) and (3.44) that lim|x̃−x|→0 P{ζ ≤ t} ≤ ε. Since ε is

arbitrary we obtain (3.41).

Lemma 3.2.7. Suppose Assumptions 3.1.2 and 3.2.2 hold. Then for every t ≥ 0 we have

lim
|x̃−x|→0

P{t < T} = 0. (3.45)

Proof. We may assume without loss of generality that δ̄ ≥ |x− x̃| > 1
n0
> 0 for some n0 ∈ N.

Let ε > 0 and choose a sufficiently large R so that P{τR ≤ t} < ε. For each n ≥ n0, we

define Tn and T as in (3.36) and (3.37), respectively. We first observe that

P{t < T} = P{t < T, τR < t}+ P{t < T, τR ≥ t}

≤ P{τR < t}+ P{t < T, τR ≥ t, Sδ̄ < t}+ P{t < T, τR ≥ t, Sδ̄ ≥ t}

≤ ε+ P{Sδ̄ ≤ t ∧ T ∧ τR}+ P{t ≤ T ∧ τR ∧ Sδ̄}

= ε+ P{Sδ̄ ≤ t ∧ T ∧ τR, Sδ̄ ≤ ζ}+ P{Sδ̄ ≤ t ∧ T ∧ τR, Sδ̄ > ζ}

+ P{t ≤ T ∧ τR ∧ Sδ̄, t < ζ}+ P{t ≤ T ∧ τR ∧ Sδ̄, t ≥ ζ}

≤ ε+ P{Sδ̄ ≤ t ∧ T ∧ τR ∧ ζ}+ P{ζ < Sδ̄ ∧ t ∧ T ∧ τR}

+ P{t ≤ T ∧ τR ∧ Sδ̄ ∧ ζ}+ P{ζ ≤ t}

≤ ε+ P{Sδ̄ ≤ t ∧ T ∧ τR ∧ ζ}+ P{ζ ≤ t}+ P{t ≤ T ∧ τR ∧ Sδ̄ ∧ ζ}+ P{ζ ≤ t}

= ε+ P{Sδ̄ ≤ t ∧ T ∧ τR ∧ ζ}+ P{t ≤ T ∧ τR ∧ Sδ̄ ∧ ζ}+ 2P{ζ ≤ t}

≤ ε+ P{Sδ̄ ≤ T ∧ τR ∧ ζ}+
E[T ∧ τR ∧ Sδ̄ ∧ ζ]

t
+ 2P{ζ ≤ t}. (3.46)

Note that on the set {Sδ̄ ≤ Tn ∧ τR ∧ ζ} we have δ̄ ≤ |∆Sδ̄∧Tn∧τR∧ζ |. Since G is increasing,
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we have 0 < G(δ̄) ≤ G(|∆Sδ̄∧Tn∧τR∧ζ |). Thus

G(δ̄)P{Sδ̄ ≤ Tn ∧ τR ∧ ζ} ≤ E[G(|∆Sδ̄∧Tn∧τR∧ζ |)1{Sδ̄≤Tn∧τR∧ζ}] ≤ E[G(|∆Sδ̄∧Tn∧τR∧ζ |)]

= G(|x− x̃|) + E
[ ∫ Sδ̄∧Tn∧τR∧ζ

0

L̂kG(|∆s|)ds
]

≤ G(|x− x̃|)− βRE[Tn ∧ τR ∧ Sδ̄ ∧ ζ],

where that last inequality follows from (3.33). Hence

G(δ̄)P{Sδ̄ ≤ Tn ∧ τR ∧ ζ}+ βRE[Tn ∧ τR ∧ Sδ̄ ∧ ζ] ≤ G(|x− x̃|).

Passing to the limit as n→∞, we obtain

G(δ̄)P{Sδ̄ ≤ T ∧ τR ∧ ζ}+ βRE[T ∧ τR ∧ Sδ̄ ∧ ζ] ≤ G(|x− x̃|).

In view of (3.46), we see that

P{t < T} ≤ ε+ P{Sδ̄ ≤ T ∧ τR ∧ ζ}+
E[T ∧ τR ∧ Sδ̄ ∧ ζ]

t
+ 2P{ζ ≤ t}

≤ ε+
G(|x− x̃|)
G(δ̄)

+
G(|x− x̃|)

tβ
+ 2P{ζ ≤ t}.

From (3.41) and the fact that lim|x̃−x|→0G(|x − x̃|) = 0, we have lim|x̃−x|→0 P{t < T} ≤ ε.

Since ε was arbitrary we obtain (3.45).

Now we are ready to present the proof of the main theorem of this section.

Theorem 3.2.8. Suppose Assumptions 3.1.2 and 3.2.2 hold. Then the process (X,Λ) has

strong Feller property.

Proof. Given x ∈ Rd and k ∈ S. We want to show that for every bounded Borel measurable

function f on Rd the limit (Ptf)(x̃, k̃) → (Ptf)(x, k) as (x̃, k̃) → (x, k) holds for all t > 0.

Since S = {1, 2, ...} has a discrete topology, we may consider only when (x̃, k)→ (x, k); that
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is, when k̃ = k.

For any given ε > 0 we can choose a sufficiently large R so that P{τR ≤ t} < ε. Let x̃ ∈ Rd

be such that δ̄ ≥ |x− x̃| > 0, where δ̄ := δ0 ∧ α. Denote the coupling process corresponding

to the coupling operator L̃ with initial condition (x, k, x̃, k) by (X(t), Λ(t), X̃(t), Λ̃(t)). Let

T̃ := inf{t ≥ 0 : (X(t), Λ(t)) = (X̃(t), Λ̃(t))} (3.47)

be the coupling time of (X(t), Λ(t)) and (X̃(t), Λ̃(t)). Recall the stopping time T defined in

(3.37). We make the following observations:

(i) T ≤ T̃ , and

(ii) T < ζ implies T = T̃ .

Then we have

1{t<T̃} = 1{t<T} + 1{T≤t<T̃}

= 1{t<T} + 1{T≤t<T̃ ,ζ≤t} + 1{T≤t<T̃ ,ζ>t}

≤ 1{t<T} + 1{ζ≤t} + 1{T≤t,t<ζ,t<T̃}

≤ 1{t<T} + 1{ζ≤t} + 1{T<ζ,t<T̃}

≤ 1{t<T} + 1{ζ≤t} + 1{T=T̃ ,t<T̃}

≤ 1{t<T} + 1{ζ≤t} + 1{t<T}

= 2 · 1{t<T} + 1{ζ≤t}.

It follows that

|(Ptf)(x̃, k̃)− (Ptf)(x, k)| = |E[f(X̃(t), Λ̃(t))]− E[f(X(t), Λ(t))]|

≤ E[|f(X̃(t), Λ̃(t))− f(X(t), Λ(t))|1{t<T̃}]

+ E[|f(X̃(t), Λ̃(t))− f(X(t), Λ(t))|1{t≥T̃}]
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= E[|f(X̃(t), Λ̃(t))− f(X(t), Λ(t))|1{t<T̃}]

≤ 2||f ||∞E[1{t<T̃}]

≤ 2||f ||∞E[2 · 1{t<T} + 1{ζ≤t}]

= 4||f ||∞P{t < T}+ 2||f ||∞P{ζ ≤ t}.

A combination of (3.41) and (3.45) then gives

lim
|x̃−x|→0

|(Ptf)(x̃, k̃)− (Ptf)(x, k)| = 0.

This establishes the strong Feller property and completes the proof.

3.3 Examples

Example 3.3.1. Consider the following SDE

dX(t) = b(X(t),Λ(t))dt+ σ(X(t), Λ(t))dW (t) +

∫
U

c(X(t−), Λ(t−), u)Ñ(dt, du),

X(0) = x ∈ R2,

(3.48)

where W is a standard 2-dimensional Brownian motion, Ñ is the associated compensated

Poisson random measure on [0,∞)× U with intensity dtν(du) in which U = {u ∈ R2 : 0 <

|u| < 1} and ν(du) := du
|u|2+δ for some δ ∈ (0, 2). The coefficients of (3.48) are given by

σ(x, k) = (|x|+ 1)I, b(x, k) = −kx, c(x, k, u) = γ
√
k|u|x
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where γ > 0 is a constant so that γ2
∫
U
|u|2ν(du) = 2. The component Λ is the continuous-

time stochastic process taking values in S = {1, 2, . . . } generated by Q(x) = (qkl(x)) where

qkl(x) =


k

2l+k
1

(1+l|x|2)
if k 6= l

−
∑

l 6=k qkl(x) otherwise.

We make the following observations.

(i) Assumption 3.0.2 is satisfied. In deed, the coefficients satisfy all assumptions in The-

orem 2.5 of Xi et al. (2019) with ζ(r) = 1 and ρ(r) = r. So a unique non-explosive

strong solution exists.

(ii) To verify Assumption 3.1.2 we compute

∑
l∈S\{k}

|qkl(x)− qkl(y)| =
∑

l∈S\{k}

∣∣∣∣ k

2l+k
1

(1 + l|x|2)
− k

2l+k
1

(1 + l|y|2)

∣∣∣∣
≤
∑
l∈S

l

2l
||y|2 − |x|2|

(1 + l|x|2)(1 + l|y|2)

=
∑
l∈S

l

2l
(|y|+ |x|)||y| − |x||
(1 + l|x|2)(1 + l|y|2)

≤
∑
l∈S

l

2l
|y − x|

= |x− y|,

where the last inequality follows from the triangle inequality ||y| − |x|| ≤ |x − y| and

the observation that

|y|+ |x|
(1 + l|x|2)(1 + l|y|2)

≤ |y|
1 + l|y|2

+
|x|

1 + l|x|2
≤ |y|

1 + |y|2
+

|x|
1 + |x|2

≤ 1

2
+

1

2
= 1.

(iii) Assumption 3.2.2 also holds. Indeed, since a(x, k) = σ(x, k)σT (x, k) = (|x|+ 1)2I, for

each R > 0, we can take λR = 1 and σλR(x, k) = ((|x|+1)2−1)
1
2 for all (x, k) ∈ R×S.
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Then

〈ξ, a(x, k)ξ〉 = 〈ξ, (|x|+ 1)2Iξ〉 = (|x|+ 1)2I|ξ|2 ≥ λR|ξ|2, ξ ∈ R.

This implies condition (3.26). Moreover, for all x, z ∈ R with |x| ∨ |z| ≤ R and k ∈ S

we have

|σλR(x, k)− σλR(z, k)|2 + 2〈x− z, b(x, k)− b(z, k)〉+

∫
U

|c(x, k, u)− c(z, k, u)|2ν(du)

= 2(
√

(|x|+ 1)2 − 1−
√

(|z|+ 1)2 − 1)2 − 2k|x− z|2 + k|x− z|2γ2

∫
U

|u|2ν(du)

= 2(
√

(|x|+ 1)2 − 1−
√

(|z|+ 1)2 − 1)2

≤ 4|(|x|+ 1)2 − (|z|+ 1)2|

= 4||x|2 + 2|x| − |z|2 − 2|z||

≤ 4||x|2 − |z|2|+ 8||x| − |z||

= 4(|x|+ |z|)||x| − |z||+ 8||x| − |z||

≤ 8(R + 1)|x− z|

= 2κR|x− z|g(|x− z|)

where the first inequality follows from the inequality |
√
a−
√
b|2 ≤ 2|a− b| and we take

κR = 4(R + 1) and g(r) = 1.

Therefore, the process (X,Λ) given by (3.48) is strong Feller continuous by Theorem 3.2.8.

Example 3.3.2. Consider the following SDE

dX(t) = b(X(t),Λ(t))dt+ σ(X(t), Λ(t))dW (t) +

∫
U

c(X(t−), Λ(t−), u)Ñ(dt, du), (3.49)

X(0) = x ∈ R where W is a standard 1-dimensional Brownian motion, Ñ is the associated

compensated Poisson random measure on [0,∞) × U with intensity dtν(du) in which U =

49



{u ∈ R : 0 < |u| < 1} and ν(du) := du
|u|2 . Note that ν is a σ-finite measure on U with

ν(U) =∞. Suppose that the coefficients of (3.49) are given by

σ(x, k) = x
2
3 + 1, b(x, k) = − x

2k2
, c(x, k, u) =

γ

k
ux, (x, k) ∈ R× S,

where γ = 1√
2
. The component Λ is the continuous-time stochastic process taking values in

S = {1, 2, . . . } generated by Q(x) = (qkl(x)) where

qkl(x) =


k

3l+k
1

(1+l|x|2)
if k 6= l

−
∑

l 6=k qkl(x) otherwise.

We make the following observations.

(i) As in Example 3.3.1 we can show that the coefficients satisfy all conditions of Theorem

2.5 of Xi et al. (2019) and hence Assumption 3.0.2 is verified.

(ii) Similarly, we verify Assumption 3.1.2 by computing

∑
l∈S\{k}

|qkl(x)− qkl(y)| =
∑

l∈S\{k}

∣∣∣∣ k

3l+k
1

(1 + l|x|2)
− k

3l+k
1

(1 + l|y|2)

∣∣∣∣
=

k

3k

∑
l∈S\{k}

1

3l

∣∣∣∣ 1

1 + l|x|2
− 1

1 + l|y|2

∣∣∣∣
≤
∑
l∈S

l

3l
||y|2 − |x|2|

(1 + l|x|2)(1 + l|y|2)

=
∑
l∈S

l

3l
(|y|+ |x|)||y| − |x||
(1 + l|x|2)(1 + l|y|2)

≤
∑
l∈S

l

3l
|y − x|

=
3

4
|x− y|.

(iii) Assumption 3.2.2 also holds. Indeed, since a(x, k) = σ2(x, k) = x
4
3 + 2x

2
3 + 1, for each
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R > 0, we can take λR = 1 and σλR(x, k) = (x
4
3 + 2x

2
3 )

1
2 for all (x, k) ∈ R× S. Hence

〈ξ, a(x, k)ξ〉 = ξ(x
4
3 + 2x

2
3 + 1)ξ ≥ λR|ξ|2, ξ ∈ Rd.

This verifies (3.26). Moreover, for all x, z ∈ R with |x| ∨ |z| ≤ R and k ∈ S we have

|σλR(x, k)− σλR(z, k)|2 + 2〈x− z, b(x, k)− b(z, k)〉+

∫
U

|c(x, k, u)− c(z, k, u)|2ν(du)

≤ 2(z
2
3 + x

2
3 + 2)(z

2
3 − x

2
3 )− 1

k2
|x− z|2 +

1

2k2
|x− z|2

≤ 4(R
2
3 + 1)|x− z|

2
3

= 4(R
2
3 + 1)|x− z|g(|x− z|),

where g(r) = r−
1
3 . Note that the function g satisfies (3.27).

In view of Theorem 3.2.8, the process (X,Λ) has strong Feller property. Moreover, this exam-

ple shows that our results can be applied to stochastic differential equations with non-Lipschitz

coefficients. As discussed in Remark 3.1.4, we only requires the regularity of
∫
U
|c(x, k, u)−

c(z, k, u)|2ν(du) not
∫
U

[|c(x, k, u) − c(z, k, u)|2 ∧ |x − z| · |c(x, k, u) − c(z, k, u)|]ν(du). Note

also that the function g does not satisfy lim
r→0

g(r) = 0. So the result in Xi et al. (2019) can not

be applied to this particular example. This shows that Theorem 3.2.8 makes a tremendous

improvement over many existing results in the literature.
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Chapter 4

Irreducibility

In this chapter we aim to answer the questions on existence and uniqueness of an invariant

measure. Irreducibility plays an important role in establishing the uniqueness of an invariant

measure; see, for example, Cerrai (2001) and Hairer (2016). Unfortunately, irreducibility of

regime-switching jump diffusions has not been systematically investigated in the literature

yet. In this work, we derive the irreducibility for regime-switching jump diffusions (Theorem

4.1.10) by using an important identity concerning the transition probability of such processes.

An intermediate step, which is interesting in its own right, is to show that the sub-systems

consisting of jump diffusions are irreducible under weaker conditions than those in the recent

papers such as Qiao (2014) and Xi and Zhu (2019). We present in Proposition 4.1.12 a set

of sufficient conditions under which a unique invariant measure for regime-switching jump

diffusions exists. Finally, we show that the process (X,Λ) is ϕ-irreducible and proceed further

to obtain the property that all compact subsets of Rd × S are petite for every h-skeleton

chain {(X(nh), Λ(nh)) : n = 0, 1, . . . } of (X,Λ).
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4.1 Open Set Irreducibility

4.1.1 Open Set Irreducibility

Denote the transition probability of the process (X,Λ) by

P (t, (x, k), B × {l}) := Pt1B×{l}(x, k) = P{(X(t), Λ(t)) ∈ B × {l}|(X(0), Λ(0)) = (x, k)},

for B ∈ B(Rd) and l ∈ S. The process (X,Λ) or the semigroup {Pt}t≥0 of (3.1) is said to be

open set irreducible or irreducible if for any t > 0 and (x, k) ∈ Rd × S

P (t, (x, k), B × {l}) > 0

for all l ∈ S and all nonempty open sets B ∈ B(Rd).

We make the following assumptions:

Assumption 4.1.1. For each k ∈ S and x ∈ Rd, the stochastic differential equation

X(k)(t) = x+

∫ t

0

b(X(k)(s), k)ds+

∫ t

0

σ(X(k)(s), k)dW (s)

+

∫ t

0

∫
U

c(X(k)(s−), k, u)Ñ(ds, du)

(4.1)

has a non-explosive weak solution X(k) with initial condition x and the solution is unique in

the sense of probability law.

Assumption 4.1.2. For any x ∈ Rd and k ∈ S, we have

2〈x, b(x, k)〉 ≤ κ
(
|x|2 + 1

)
, |σ(x, k)|2 +

∫
U

|c(x, k, u)|2ν(du) ≤ κ
(
|x|2 + 1

)
. (4.2)

Assumption 4.1.3. (i) There exists positive constant λ such that for each x ∈ Rd and
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k ∈ S, we have

〈ξ, a(x, k)ξ〉 ≥ λ|ξ|2, ξ ∈ Rd. (4.3)

(ii) There exits a nonnegative function g ∈ C(0,∞) satisfying

∫ 1

0

g(r)dr <∞, (4.4)

and

2〈x− z, b(x, k)− b(z, k)〉+ |σλ(x, k)− σλ(z, k)|2

+

∫
U

|c(x, k, u)− c(z, k, u)|2v(du) ≤ 2κ|x− z|g(|x− z|), (4.5)

for all x, z ∈ Rd with |x − z| ≤ δ0, where δ0 is a positive constant and σλ the unique

symmetric nonnegative definite matrix-valued function such that σ2
λ(x, k) = a(x, k) −

λI.

Assumption 4.1.4. (i) There exists a positive constant κ0 > 0 such that

0 ≤ qkl(x) ≤ κ0l3
−l (4.6)

for all x ∈ Rd and k 6= l ∈ S.

(ii) For any k, l ∈ S, there exist k0, k1, ..., kn ∈ S with ki 6= ki+1, k0 = k, and kn = l

such that the set {x ∈ Rd : qkiki+1
(x) > 0} has positive Lebesgue measure for all

i = 0, 1, . . . , n− 1.

Remark 4.1.5. We note that Assumption 4.1.3 is comparable to Assumption 3.2.2 in which

we require the constant λ to be uniform for all x, z ∈ Rd.

Condition (4.6) is imposed to facilitate the technical analyses as we need to express the
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transition probability P (t, (x, k), ·) in a suitable form; see the proof of Theorem 4.8 of Xi

et al. (2019).

In order to obtain the irreducibility of the process (X,Λ) we first show that, for any given

k ∈ S, the process X(k) of (4.1) is strong Feller and irreducible. Then we use a result in Xi

et al. (2019) to write P (t, (x, k), B × {l}) as a convergent series in terms of sub-transition

probabilities of the killed processes X̃(j), j ∈ S and the transition rates qjl(x). Denote the

transition probability of the process X(k) by

P (k)(t, x, B) := P{X(k)(t) ∈ B|X(k)(0) = x}, B ∈ B(Rd).

The corresponding semigroup {P (k)
t }t≥0 is said to be irreducible if P (k)(t, x, B) > 0 for all

nonempty open set B ⊂ Rd. We next kill the process X(k) with killing rate qk(·) and denote

the killed process by X̃(k), that is, we define

X̃(k)(t) =


X(k)(t) if t < τ,

∂ if t ≥ τ,

where τ := inf{t ≥ 0 : Λ(t) 6= Λ(0)} and ∂ is a cemetery point added to Rd. Then the

semigroup of the killed process X̃(k) is given by

P̃
(k)
t f(x) := Ex[f(X̃(k)(t))] = E

[
f(X(k)(t)) exp

{∫ t

0

qkk(X
(k)(s))ds

}
|X(k)(0) = x

]
,

where f ∈ Bb(Rd). We also denote its sub-transition probability by

P̃ (k)(t, x, B) := Ex[1B(X̃(k)(t))] = P{X̃(k)(t) ∈ B|X̃(k)(0) = x}, B ∈ B(Rd).

We first obtain the following lemma. It is worth mentioning that this lemma still holds

when we replace Assumption 4.1.3 by Assumption 3.2.2.
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Lemma 4.1.6. Under Assumptions 4.1.1 and 4.1.3, the semigroup {P (k)
t }t≥0 is strong Feller.

Proof. Let (X̃(k), X(k)) be the coupling process corresponding to L̂k of (2.28) with initial

condition (x̃, x). Suppose without loss of generality that 0 < |x̃ − x| < δ0, where δ0 is the

positive constant in Assumption 3.2.2. Define T := inf{t ≥ 0 : X̃(t) = X(t)}. Using very

similar calculations as those in the proof of Lemma 3.2.7, we can show that lim|x̃−x|→0 P{t <

T} = 0. Then it follows that for any f ∈ Bb(Rd) and t > 0, we have

|(P (k)
t f)(x̃)− (P

(k)
t f)(x)| = |E[f(X̃(k)(t))]− E[f(X(k)(t))]| ≤ 2||f ||∞P{t < T} → 0,

as x̃ − x → 0. This implies that P
(k)
t f is a continuous function and hence completes the

proof.

Lemma 4.1.7. Suppose that Assumptions 4.1.2 and 4.1.3 (i) hold. Then for every T > 0

there exists a constant K := K(T,X(0)) > 0 so that

E[|X(t)|2] ≤ K (4.7)

for all t ∈ [0, T ].

Proof. For any R > 0, we set τR := inf{t ≥ 0 : |X(t)| > R}. Also note that lim
R→∞

τR = ∞

a.s. By Ito’s formula and mean theorem we see that

E[|X(t ∧ τR)|2]

= |X(0)|2 + E
[∫ t∧τR

0

2〈Xs, b(X(s), k)〉ds
]

+ E
[∫ t∧τR

0

||σ(X(s), k)||2ds
]

+E
[∫ t∧τR

0

∫
U

(
|X(s) + c(X(s), k, u)|2 − |Xs|2 − 2〈X(s), c(X(s), k, u)〉

)
ν(du)ds

]
= |X(0)|2 + E

[∫ t∧τR

0

2〈Xs, b(X(s), k)〉ds
]

+ E
[∫ t∧τR

0

||σ(X(s), k)||2ds
]

+E
[∫ t∧τR

0

∫
U

|c(X(s), k, u)|2ν(du)ds

]
≤ |X(0)|2 + E

[∫ t∧τR

0

κ
(
|X(s)|2 + 1

)
ds

]
.
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where we use (4.2) to obtain the inequality. Then

E[1 + |X(t ∧ τR)|2] ≤ 1 + |X(0)|2 + κE
[ ∫ t∧τR

0

(1 + |X(s)|2)ds

]
.

Now letting R → ∞ and using Fatou’s lemma and the monotone convergence theorem to

obtain

E[1 + |X(t)|2] ≤ 1 + |X(0)|2 + κ

∫ t

0

E
[
(1 + |X(s)|2)

]
ds.

So we can use Gronwall’s inequality to obtain

E[1 + |X(t)|2] ≤ [1 + |X(0)|2]eκt

≤ [1 + |X(0)|2]eκT .

Therefore,

E[|X(t)|2] ≤ [1 + |X(0)|2]eκT − 1.

To derive irreducibility for the semigroup {P (k)
t }t≥0, we consider the function F given by

F (r) :=

∫ r
1+r

0

e−
∫ s
0 g(w)dwds, r ∈ [0,∞) (4.8)

where g is the function given in Assumption 3.2.2(ii). Since g ≥ 0, we see that

0 ≤ F (r) ≤ r

1 + r
≤ 1 (4.9)

0 ≤ F ′(r) =
1

(1 + r)2
e−

∫ r
1+r

0 g(w)dw ≤ 1

(1 + r)2
≤ 1 (4.10)

0 ≥ F ′′(r) = − 2

(1 + r)3
e−

∫ r
1+r

0 g(w)dw −
g( r

1+r
)

(1 + r)4
e−

∫ r
1+r

0 g(w)dw = −
[

2

1 + r
+

g( r
1+r

)

(1 + r)2

]
F ′(r).

(4.11)
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In addition, for any x ∈ Rd, we have

∇F (|x|2) = 2F ′(|x|2)x, ∇2F (|x|2) = 4F ′′(|x|2)xxT + 2F ′(|x|2)I.

Lemma 4.1.8. Under Assumptions 4.1.2 and 4.1.3, the semigroup {P (k)
t }t≥0 is irreducible.

Proof. Let T > 0, r > 0 and x, a ∈ Rd be arbitrary but fixed. We will show that

P (k)(T, x,B(a; r)) = P{|X(k)(T )− a| < r|X(k)(0) = x} > 0,

or equivalently, P{|X(k)(T )− a| ≥ r|X(k)(0) = x} < 1. Let us choose some t0 ∈ (0, T ). For

any n ∈ N, we set X
(k)
n (t0) := X(k)(t0)1{|X(k)(t0)|≤n}. Since limr→0 F (r) = 0 and 0 ≤ F ≤ 1,

the bounded convergence implies that

lim
n→∞

E[F (|X(k)
n (t0)−X(k)(t0)|2)] = 0. (4.12)

For t ∈ [t0, T ], define

Jn(t) :=
T − t
T − t0

X(k)
n (t0) +

t− t0
T − t0

a, and hn(t) :=
a−X(k)

n (t0)

T − t0
− b(Jn(t), k).

We see that Jn(t0) = X
(k)
n (t0) and Jn(T ) = a. In addition, Jn satisfies the following

stochastic differential equation

Jn(t) = X(k)
n (t0) +

∫ t

t0

b(Jn(s), k)ds+

∫ t

t0

hn(s)ds, t ∈ [t0, T ].

Consider the stochastic differential equation

Y (t) = X(k)(t0) +

∫ t

t0

[b(Y (s), k) + hn(s)]ds+

∫ t

t0

σ(Y (s), k)dW (s)

+

∫ t

t0

∫
U

c(Y (s), k, u)Ñ(ds, du), t ∈ [t0, T ].

(4.13)
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Also denote ∆t := Y (t) − Jn(t) for t ∈ [t0, T ]. Note that ∆t0 = X(k)(t0) − X
(k)
n (t0) and

∆T = Y (T )− a. In addition, ∆t satisfies the stochastic differential equation

∆t = ∆t0 +

∫ t

t0

[b(Y (s), k)− b(Jn(s), k)]ds+

∫ t

t0

σ(Y (s), k)dW (s)

+

∫ t

t0

∫
U

c(Y (s), k, u)Ñ(ds, du).

Consequently the generator of the process ∆t is given by

Lf(x) = Ldf(x) + Ljf(x)

: =
1

2
tr
(
σ(Y (s), k)σ(Y (s), k)T∇2f(x)

)
+ 〈b(Y (s), k)− b(Jn(s), k),∇f(x)〉

+

∫
U

(f(x+ c(Y (s), k, u))− f(x)− 〈∇f(x), c(Y (s), k, u〉) ν(du), f ∈ C2
c (Rd).

We compute

LdF (|∆s|2) =
1

2
tr
(
σ(Y (s), k)σ(Y (s), k)T∇2F (|∆s|2)

)
+ 〈b(Y (s), k)− b(Jn(s), k),∇F (|∆s|2)〉

=
1

2
tr
(
σ(Y (s), k)σ(Y (s), k)T

[
4F ′′(|∆s|2)∆s∆

T
s + 2F ′(|∆s|2)I

])
+ 〈b(Y (s), k)− b(Jn(s), k), 2F ′(|∆s|)∆s〉

= 2F ′′(|∆s|2)|∆T
s σ(Y (s), k)|2 + F ′(|∆s|)|σ(Y (s), k)|2

+ 2F ′(|∆s|2)〈b(Y (s), k)− b(Jn(s), k),∆s〉

≤ F ′(|∆s|)
[
|σ(Y (s), k)|2 + 2〈b(Y (s), k)− b(Jn(s), k),∆s〉

]
≤ |σ(Y (s), k)|2 + 2〈b(Y (s), k)− b(Jn(s), k),∆s〉,

where the inequalities follow from (4.10) and (4.11). Likewise, the concavity of F leads to

LjF (|∆s|2) =

∫
U

(
F (|∆s + c(Y (s), k, u)|2)− F (|∆s|2)− 〈∇F (|∆s|2), c(Y (s), k, u〉

)
ν(du)

≤
∫
U

[
F ′(|∆s|2)[|∆s + c(Y (s), k, u)|2 − |∆s|2]− 2F ′(|∆s|2)〈∆s, c(Y (s), k, u〉

]
ν(du)
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=

∫
U

F ′(|∆s|2)|c(Y (s), k, u)|2ν(du)

≤
∫
U

|c(Y (s), k, u)|2ν(du).

Therefore by adding the above two inequalities, we have

LF (|∆s|2) ≤ |σ(Y (s), k)|2 + 2〈b(Y (s), k)− b(Jn(s), k),∆s〉+

∫
U

|c(Y (s), k, u)|2ν(du).

Furthermore, when |Y (s)| ≤ R, |Jn(s)| ≤ R and |∆s| ≤ δ0, we can use (4.2) and (3.28) to

obtain

LF (|∆s|2) ≤ κ(|Y (s)|2 + 1) + 2κ|∆s|g(|∆s|) ≤ K0 + κ|Y (s)|2,

where K0 = κ + 2κmaxr∈[0,δ0]{rg(r)} < ∞. In view of (4.2) and (4.7), we can use the

standard arguments to show that E[supt0≤s≤T |Y (s)|2] ≤ K, where K is a positive constant

independent of t0. For any R > 0, we define τR := inf{t ≥ t0 : |Y (t)| ∨ |Jn(t)| > R} ∧ T and

Sδ0 := inf{t ≥ t0 : |Y (t)− Jn(t)| ≥ δ0} ∧ T . Then we can compute

E[F (|∆T∧τR∧Sδ0 |
2)] = E[F (|∆t0|2)] + E

[∫ T∧τR∧Sδ0

t0

LF (|∆s−|2)ds

]
≤ E[F (|∆t0|2)] + E

[∫ T∧τR∧Sδ0

t0

(KR + κ|Y (s−)|2)ds

]
≤ E[F (|∆t0|2)] +K0(T − t0) + E

[ ∫ T

t0

κ|Y (s)|2ds
]

≤ E[F (|∆t0|2)] + (K0 +K)(T − t0). (4.14)

Next we show that

E[F (|∆T |2)] ≤ 1

F (δ2
0)
E[F (|∆T∧Sδ0 |

2)]. (4.15)

Indeed, we observe that |∆T∧Sδ0∧τR | ≥ δ0 on the set {Sδ0 < T ∧τR}. Since F is increasing, we
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have F (δ2
0) ≤ F (|∆T∧Sδ0 |

2). This together with the fact that 0 ≤ F ≤ 1 give the following

E[F (|∆T∧τR∧Sδ0 |
2)]

F (δ2
0)

− E[F (|∆T∧τR |2)]

=
E[F (|∆T∧τR∧Sδ0 |

2)1{T∧τR≤Sδ0}] + E[F (|∆T∧τR∧Sδ0 |
2)1{T∧τR>Sδ0}]

F (δ2
0)

− E[F (|∆T∧τR |2)]

≥
E[F (|∆T∧τR |2)1{T∧τR≤Sδ0}] + F (δ2

0)P{T ∧ τR > Sδ0}
F (δ2

0)
− E[F (|∆T∧τR |2)]

≥ P{T ∧ τR > Sδ0}+ E[F (|∆T∧τR |2)1{T∧τR≤Sδ0}]− E[F (|∆T∧τR |2)]

= P{T ∧ τR > Sδ0} − E[F (|∆T∧τR |2)1{T∧τR>Sδ0}]

≥ P{T ∧ τR > Sδ0} − E[1 · 1{T∧τR>Sδ0}] = 0.

Consequently we have E[F (|∆T∧τR |2)] ≤
E[F (|∆T∧τR∧Sδ0

|2)]

F (δ2
0)

. Since limR→∞ τR = ∞ a.s. and

0 ≤ F ≤ 1, the bounded convergence theorem gives (4.15).

Recall that Y satisfies the stochastic differential equation (4.13) for t ∈ [t0, T ]. For

t ∈ [0, t0], we define Y (t) := X(k)(t) and X(k)(t) is the weak solution to (4.1) with initial

condition x. Then the process Y satisfies the following stochastic differential equation:

Y (t) = x+

∫ t

0

[b(Y (s), k) + hn(s)1{s>t0}]ds+

∫ t

0

σ(Y (s), k)dW (s) +

∫ t

0

∫
U

c(Y (s), k, u)Ñ(ds, du)

for t ∈ [0, T ]. Next we set

H(t) := 1{t>t0}σ
−1(Y (t), k)hn(t),

M(t) := exp

{∫ t

0

〈H(s), dW (s)〉 − 1

2

∫ t

0

|H(s)|2ds
}
.

As argued in Qiao (2014), it follows from (4.3) that |H(t)|2 is bounded and hence M is a

martingale under P by Novikov’s criteria. Moreover, E[M(T )] = 1. Define

Q(B) := E[M(T )1{B}], B ∈ FT
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W̃ (t) := W (t) +

∫ t

0

H(s)ds.

It follows from Theorem 132 of Situ (2005) that Q is a probability measure, W̃ is a Q-

Brownian motion and Ñ(dt, du) is a Q-compensated Poisson random measure with com-

pensator dtν(du). Furthermore, under the measure Q, Y solves the following stochastic

differential equation

Y (t) = x+

∫ t

0

b(Y (s), k)ds+

∫ t

0

σ(Y (s), k)dW̃ (s) +

∫ t

0

∫
U

c(Y (s), k, u)Ñ(ds, du)

for t ∈ [0, T ]. By the uniqueness in law of the solution to the SDE, we have that the law

of {X(k)(t) : t ∈ [0, T ]} under P is the same as the law of {Y (t) : t ∈ [0, T ]} under Q. In

particular, we have P{|X(k)(T )− a| ≥ r|X(k)(0) = x} = Q{|Y (T )− a| ≥ r|Y (0) = x}. Since

P and Q are equivalent, the desired assertion P{|X(k)(T )−a| ≥ r|X(k)(0) = x} = Q{|Y (T )−

a| ≥ r|Y (0) = x} < 1 will follow if we can show that P{|Y (T ) − a| ≥ r|Y (0) = x} < 1. To

this end, for any ε > 0, we first choose an R > 0 sufficiently large so that P{τR < T} < ε.

Next we use the facts that the function F is bounded and increasing, (4.15) and (4.14) to

compute

P{|Y (T )− a| ≥ r|Y (0) = x} = P{|Y (T )− a|2 ≥ r2|Y (0) = x}

= P{F (|Y (T )− a|2) ≥ F (r2)|Y (0) = x}

≤ E[F (|Y (T )− a|2)]

F (r2)
=

E[F (|∆T |2)]

F (r2)

≤
E[F (|∆T∧Sδ0 |

2)]

F (r2)F (δ2
0)

=
E[F (|∆T∧Sδ0∧τR |

2)1{τR≥T∧Sδ0}] + E[F (|∆T∧Sδ0 |
2)1{τR<T∧Sδ0}]

F (r2)F (δ2
0)

≤ E[F (|∆t0|2)] + (K0 +K)(T − t0) + P{τR < T}
F (r2)F (δ2

0)

≤ E[F (|∆t0|2)] + (K0 +K)(T − t0) + ε

F (r2)F (δ2
0)

.
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Note that by virtue of (4.12), E[F (|∆t0|2)] → 0 as n → ∞. Therefore we can choose n

sufficiently large and t0 close enough to T to make the last term less than 1 as desired.

Remark 4.1.9. While irreducibility for jump diffusions has been considered in the literature

such as Qiao (2014), Xi and Zhu (2019), it is worth pointing out that Assumption 3.2.2(ii)

is much weaker than Assumptions (H′1) and (H′f) of Qiao (2014) and Assumption 2.5 of

Xi and Zhu (2019). In particular, as we mentioned in Remark 3.2.3, Assumption 4.1.3(ii)

allows to treat SDEs with merely Hölder continuous coefficients. The relaxations make the

analyses more involved and subtle than those in the literature.

Theorem 4.1.10. Suppose that Assumptions 4.1.1, 4.1.2, 4.1.3, and 4.1.4 hold. Then the

semigroup {Pt}t≥0 of (3.1) is irreducible.

Proof. Given t > 0 and (x, k) ∈ Rd × S. We want to show that P (t, (x, k), B × {l}) > 0 for

all l ∈ S and all open sets B ∈ B(Rd) with positive Lebesgue measure. Under Assumption

4.1.4 and from Lemma 4.1.6, as in the proof of Theorem 4.8 of Xi et al. (2019), we can write

P (t, (x, k), B × {l})

= δklP̃
(k)(t, x, B) +

∞∑
m=1

∫
· · ·
∫

0<t1<···<tm<t

∑
l0,l1,l2,...,lm∈S

li 6=li+1,l0=k,lm=l

∫
Rd

· · ·
∫
Rd

P̃ (l0)(t1, x, dy1)ql0l1(y1)

× P̃ (l1)(t2 − t1, y1, dy2) · · · qlm−1lm(ym)P̃ (lm)(t− tm, ym, B)dt1dt2 · · · dtm,

(4.16)

where δkl is the Kronecker symbol. From Assumption 4.1.4 (ii), we know that the set

{y ∈ Rd : qlili+1
(y) > 0} has positive Lebesgue measure. Then it suffices to show that

P̃ (k)(s, y, B) > 0 for all k ∈ S, s > 0 and all open sets B ∈ B(Rd) with positive Lebesgue

measure. We calculate

P̃ (k)(s, y, B) = P{X̃(k)
y (s) ∈ B}

= Ek
[
1B(X(k)

y (s)) exp

(
−
∫ s

0

qk(X
(k)
y (r))dr

)]
≥ Ek

[
1B(X(k)

y (s))e−M
]
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≥ e−MP{X(k)
y (s) ∈ B}

= e−MP (k)(s, y, B).

From Lemma 4.1.8, the semigroup associated with the process X(k) is irreducible and there-

fore P (k)(s, y, B) > 0. This completes the proof.

4.1.2 Existence and Uniqueness of Invariant Measures

In this section we study existence and uniqueness of an invariant measure of the semigroup

{Pt}t≥0. We first obtain the following result which can be proved in the same manner as in

Proposition 6.1 of Xi and Zhu (2017). Similar result for the finite regimes case can also be

found in Theorem 3.3 of Xi (2004).

Proposition 4.1.11. Suppose Assumptions 3.1.1 and 3.1.2 hold. In addition, assume there

exist constants α, β > 0, a compact subset C ⊂ Rd, a compact subset N ⊂ S, a measurable

function f : Rd × S→ [1,∞), and a twice continuously differentiable function V : Rd × S→

[0,∞) such that

A V (x, k) ≤ −αf(x, k) + β1C×N(x, k), ∀(x, k) ∈ Rd × S. (4.17)

Then the semigroup {Pt}t≥0 of (3.1) has an invariant probability measure π.

Proof. Thanks to Theorem 3.1.6, under Assumptions 3.1.1 and 3.1.2, the semigroup Pt pos-

sesses Feller property. From (4.17) we observe that

0 ≤ E(x,k) [V (X(t ∧ τR),Λ(t ∧ τR))]

= V (x, k) + E(x,k)

[∫ t∧τR

0

A V (X(s),Λ(s))ds

]
≤ V (x, k) + E(x,k)

[∫ t∧τR

0

(−αf(X(s),Λ(s)) + βIC×N(X(s),Λ(s))) ds

]
= V (x, k)− αE(x,k)

[∫ t∧τR

0

f(X(s),Λ(s))ds

]
+ βE(x,k)

[∫ t∧τR

0

IC×N(X(s),Λ(s))ds

]
.
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Since f ≥ 1 we have

αE(x,k) [t ∧ τR] ≤ αE(x,k)

[∫ t∧τR

0

f(X(s),Λ(s))ds

]
≤ V (x, k) + β

∫ t∧τR

0

E(x,k) [IC×N(X(s),Λ(s))] ds

≤ V (x, k) + β

∫ t

0

P (s, (x, k), C ×N)ds.

Letting R −→∞ we obtain

αt ≤ V (x, k) + β

∫ t

0

P (s, (x, k), C ×N)ds

and hence

α

β
≤ V (x, k)

βt
+

1

t

∫ t

0

P (s, (x, k), C ×N)ds.

This implies that

α

β
≤ lim inf

t−→∞

1

t

∫ t

0

P (s, (x, k), C ×N)ds. (4.18)

As in the proof of Theorem 4.5 of Meyn and Tweedie (1993c), the author states the following

result from Foguel (1969) and Stettner (1986). For any Feller process, there are two mutually

exclusive possibilities: either an invariant probability measure exists, or

lim
t−→∞

sup
µ

1

t

∫ t

0

∫
P (s, (x, k), C ×N)µ(dx, dk)ds = 0 (4.19)

for any compact set C×N ⊂ Rd×S, where the supremum is taken over all initial distributions

µ on the state space Rd×S. From (4.18), we know that (4.19) is impossible, then an invariant

probability measure π exists.

Proposition 4.1.12. Suppose Assumptions 3.1.2, 4.1.1, 4.1.2, 4.1.3, and 4.1.4 hold. If
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there exists a twice continuously differentiable function V : Rd×S→ [0,∞) such that (4.17)

holds, then the the semigroup {Pt}t≥0 of (3.1) has a unique invariant measure.

Proof. The existence follows from Proposition 4.1.11. The semigroup {Pt}t≥0 is strong Feller

and irreducible by Theorems 3.2.8 and 4.1.10, respectively. From the classical result; see,

for example, Cerrai (2001) and Hairer (2016), if a semigroup {Pt}t≥0 is irreducible with

strong Feller property then it can admit at most one invariant measure. This completes the

proof.

4.2 ϕ-Irreducibility and Petite Sets

Let h > 0 be a constant and consider the h-skeleton chain {(X(nh), Λ(nh)) : n = 0, 1, . . . }.

It is worth notice that the transition kernel of the embedded chain is given by P (h, (x, k), A).

As in Meyn and Tweedie (1992, 1993b) we say that the h-skeleton chain {(X(nh), Λ(nh)) :

n = 0, 1, . . . } is ϕ-irreducible if ϕ is a σ-finite measure on B(Rd × S) and

ϕ(A) > 0⇒
∞∑
n=1

P (nh, (x, k), A) > 0 for all (x, k) ∈ Rd × S.

We obtain the following result as a direct consequence of Propositions 6.1.5 and 6.1.6 of

Meyn and Tweedie (2009). For the sake of completeness we give the proof here.

Proposition 4.2.1. Suppose that Assumptions 3.1.2, 4.1.1, 4.1.2, 4.1.3, and 4.1.4 hold.

Then the h-skeleton chain {(X(nh), Λ(nh)) : n = 0, 1, . . . } is ϕ-irreducible where ϕ =

P (h, (x, k), ·).

Proof. Thanks to Theorem 3.2.8 the process (X,Λ) has strong Feller property and so does

the chain {(X(nh), Λ(nh)) : n = 0, 1, . . . }. Then P (h, ·, A) is lower semicontinuous for

every A ∈ B(Rd × S); see, for example, Proposition 6.1.1 of Meyn and Tweedie (2009).

Given a measurable set A ∈ B(Rd × S) with P (h, (x, k), A) > 0. Since P (h, ·, A) is lower

semicontinuous then there exists a neighborhood U of (x, k) such that P (h, (z, j), A) > 0
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for all (z, j) ∈ U . From Theorem 4.1.10, the semigroup (Pt) is open set irreducible and

hence every point in Rd × S is reachable. In particular, the (x, k) is reachable. For any

(y, i) ∈ Rd × S there exists n ≥ 1 such that P (nh, (y, i), U) > 0. Then we have

P ((n+ 1)h, (y, i), A) ≥
∫
U
P (nh, (y, i), dz × dj)P (h, (z, j), A) > 0.

Summing this up gives
∑∞

n=1 P (nh, (y, i), A) > 0. This completes the proof.

As in Meyn and Tweedie (1992, 1993b), a set B ∈ B(Rd × S) and a sub-probability

measure ϕ on B(Rd × S) are called petite for the h-skeleton chain {(X(nh), Λ(nh)) : n =

0, 1, . . . } if for some probability a on Z+, we have

Ka((x, k), ·) :=
∞∑
n=1

a(n)P (nh, (x, k), ·) ≥ ϕ(·) for all (x, k) ∈ B.

According to Theorem 2.1.2 (ii), if the semigroup (Pt) is ϕ-irreducible with Feller property

and if the support suppϕ has non-empty interior, then all compact subsets of Rd × S are

petite. Then we obtain the following result.

Proposition 4.2.2. Suppose that Assumptions 3.1.2, 4.1.1, 4.1.2, 4.1.3, and 4.1.4 hold.

Then all compact sets of Rd × S are petite for any h-skeleton chain of (X,Λ).

Proof. The h-skeleton chain {(X(nh), Λ(nh)) : n = 0, 1, . . . } has strong Feller property by

Theorem 3.2.8. Moreover, it is ϕ-irreducible where ϕ = P (h, (x, k), ·) by Proposition 4.2.1.

Theorem 4.1.10 ensures that this chain is open set irreducible and hence every point in Rd×S

is reachable. Then we have supp(ϕ) = Rd×S; see Lemma 6.1.4 of Meyn and Tweedie (2009).

Therefore, every compact subset of Rd × S is petite by Theorem 2.1.2 (ii).
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4.3 Examples

Example 4.3.1. Consider the following SDE

dX(t) = b(X(t),Λ(t))dt+ σ(X(t), Λ(t))dW (t) +

∫
U

c(X(t−), Λ(t−), u)Ñ(dt, du),

X(0) = x ∈ R2,

(4.20)

where W is a standard 2-dimensional Brownian motion, Ñ is the associated compensated

Poisson random measure on [0,∞)× U with intensity dtν(du) in which U = {u ∈ R2 : 0 <

|u| < 1} and ν(du) := du
|u|2+δ for some δ ∈ (0, 2). The coefficients of (4.20) are given by

σ(x, k) =

1 0

0 1

 , b(x, k) = −2kx, c(x, k, u) = γ
√
k|u|x

where γ is a positive constant so that γ2
∫
U
|u|2ν(du) = 2. The component Λ is the continuous-

time stochastic process taking values in S = {1, 2, . . . } generated by Q(x) = (qkl(x))

qkl(x) =


k

3l+k
1

(1+l|x|2)
if k 6= l

−
∑

l 6=k qkl(x) otherwise.

Detailed calculations reveal that (4.20) has a unique non-explosive weak solution. Moreover,

all assumption in Proposition 4.1.12 are satisfied; that is the solution is strong Feller con-

tinuous and irreducible. Next we verify that V (x, k) := 1 + k|x|2 satisfies (4.17) and hence a

unique invariant measure exists.

Observe that ∇V (x, k) = 2kx and ∇2V (x, k) = 2kI. Then we compute

A V (x, k) :=
1

2
tr
(
a(x, k)∇2V (x, k)

)
+ 〈b(x, k),∇V (x, k)〉+

∑
l∈S

qkl(x) [V (x, l)− V (x, k)]

+

∫
U

(V (x+ c(x, k, u), k)− V (x, k)− 〈∇V (x, k), c(x, k, u)〉) ν(du)
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≤ 1

2
tr
(
(|x|+ 1)2I

)
+ 〈−2kx, 2kx〉+

∑
l∈S

qkl(x)V (x, l)

+

∫
U

(
[1 + k|x+ γ

√
k|u|x|2]− [1 + k|x|2]− 〈2kx, γ

√
k|u|x〉

)
ν(du)

= (|x|2 + 2|x|+ 1)− 4k2|x|2 +
∑
l∈S

k

3k+l

1

1 + l|x|2
[1 + l|x|2]

+

∫
U

(
k(1 + γ

√
k|u|)2|x|2 − k|x|2 − 2γk

√
k|u||x|2

)
ν(du)

≤ (|x|2 + 2|x|+ 1)− 4k2|x|2 + 1

+

∫
U

(
k(1 + 2γ

√
k|u|+ γ2k|u|2)|x|2 − k|x|2 − 2γk

√
k|u||x|2

)
ν(du)

≤ k(|x|2 + 2|x|+ 1)− 4k|x|2 + 1 + k|x|2γ2

∫
U

|u|2ν(du)

= k[1 + 2|x| − 2|x|2] + 1

=
k[1 + 2|x| − 2|x|2] + 1

1 + k|x|2
V (x, k).

Note that there exists some positive real number r0 such that for all |x| > r0, we have

1 + 2|x| ≤ |x|2. Thus it follows that

A V (x, k) ≤
(
− k|x|2

1 + k|x|2
+

1

1 + k|x|2

)
V (x, k), ∀(x, k) ∈ {x ∈ Rd : |x| ≥ r0} × S.

Moreover, for all k ∈ S and |x| ≥ r0, we have k|x|2
1+k|x|2 ≥

|x|2
1+|x|2 ≥

r2
0

1+r2
0

=: 2α > 0. Also notice

that there exists some r1 > 0 such that for all |x| ≥ r1 and k ∈ S, we have 1
1+k|x|2 ≤

1
1+|x|2 ≤ α.

Consequently it follows that for some sufficiently large β > 1, we have

A V (x, k) ≤ −αV (x, k) + β1C×N(x, k), ∀(x, k) ∈ Rd × S,

where C := {x ∈ Rd : |x| ≤ r0 ∨ r1} and N := {1}. This implies condition (4.17). Thanks

to Proposition 4.1.12 there exists a unique invariant probability measure π.
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Chapter 5

Exponential Ergodicity

The existence and uniqueness of an invariant measure π for regime-switching diffusion were

established in Propositions 4.1.11 and 4.1.12, respectively. In this chapter we study the

convergence rate of the transition probability P (t, (x, k), ·) to π(·). Recall that a σ-finite

measure π(·) on the Borel σ-algebra B(Rd × S) is called invariant for the semigroup (Pt) if

π(A) = πPt(A) :=

∫
Rd×S

P (t, (x, k), A)π(dx, dk) ∀A ∈ B(Rd × S) and t ≥ 0.

For any function f : Rd × S −→ [1,∞) and any signed measure µ on B(Rd × S), we set

‖µ‖f := sup{|µ(g)| : all measurable g(x, k) with |g| ≤ f},

where µ(g) :=
∫
Rd×S g(x, k)µ(dx, dk). Using the terminology in Meyn and Tweedie (1993c),

we say that the process (X,Λ) is f -exponentially ergodic if there exist an invariant measure

π(·), a constant θ in (0, 1), and a finite-valued function Θ(x, k) such that

‖P (t, (x, k), ·)− π(·)‖f ≤ Θ(x, k)θt, (5.1)

for all t ≥ 0 and all (x, k) ∈ Rd × S.
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5.1 Exponential Ergodicity of Regime-Switching Jump

Diffusions

We obtain the following result as a direct consequence of Theorem 2.1.9. Similar results

can be found in Theorem 6.3 of Xi (2009) and Theorem 6.3 of Xi and Zhu (2017) when the

switching state S is finite and infinite, respectively.

Theorem 5.1.1. Suppose that all compact subsets of Rd × S are petite for some skeleton

chain of (X(t), Λ(t)). If there exists a Foster-Lyapunov function U : Rd × S → [0,∞); that

is, U satisfies

(i) U(x, k)→∞ as |x| ∨ k →∞,

(ii) A U(x, k) ≤ −αU(x, k) + β for all x ∈ Rd, k ∈ S,

where α, β > 0 are constants, then the process (X,Λ) is f -exponentially ergodic with f(x, k) :=

U(x, k) + 1 and Θ(x, k) = B(U(x, k) + 1) where B is a finite constant.

In order to obtain the exponential ergodicity, we still need to determine the existence

of a Foster-Lyapunov function. And this will be investigated in the next section under

Assumptions 5.2.1 and 5.2.2. However, to keep the flow of the paper let us now state and

prove our main result in this section as follows.

Theorem 5.1.2. Suppose that Assumptions 3.1.2, 4.1.1, 4.1.2, 4.1.3, 4.1.4, 5.2.1, and 5.2.2

hold, then the process (X,Λ) is f -exponentially ergodic.

Proof. Thanks to Proposition 4.2.2, under Assumptions 3.1.2, 4.1.1, 4.1.2, 4.1.3, and 4.1.4,

all compact sets of Rd×S are petite for some h-skeleton chain. Under Assumptions 5.2.1 and

5.2.2 a Foster-Lyapunov function U exists by Theorem 5.2.4. Then the desired f -exponential

ergodicity follows from Theorem 5.1.1 where f(x, k) := U(x, k) + 1.
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5.2 Existence of Foster-Lyapunov Functions

Having established sufficient conditions for petite compact subsets of Rd × S, it remains

to find an appropriate Foster-Lyapunov function. In practice, it is not easy to find the

right Foster-Lyapunov function for an underlying regime-switching jump diffusion especially

when dealing with countably many regimes. Motivated by the recent paper Nguyen and Yin

(2018c) in which the stability of regime-switching diffusion was investigated, we develop a

novel approach to construct a Foster-Lyapunov function for regime-switching jump diffusions.

Let us briefly sketch the idea here. Suppose that there exists a common “nice” function

V : Rd 7→ R+ so that

LkV (x) ≤ αkV (x) + βk, for all (x, k) ∈ Rd × S,

where αk and βk are real numbers. Suppose also that the generator Q(x) of the discrete

component is “close” to a strongly exponentially ergodic (see Definition 7.2.3) constant q-

matrix in the neighborhood of ∞. Then, under some additional assumptions, we construct

a Foster-Lyapunov function for the process (X,Λ).

To proceed, we make the following assumptions.

Assumption 5.2.1. (a) There exists an increasing function φ : S → [0,∞) such that

limk→∞ φ(k) =∞ and

∑
j∈S

qkj(x) [φ(j)− φ(k)] ≤ C1 − C2φ(k) for all k ∈ S, x ∈ Rd, (5.2)

where C1 ≥ 0 and C2 > 0 are constants.

(b) There exists a bounded and x-independent q-matrix Q̂ = (q̂ij)i,j∈S which is strongly
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exponentially ergodic with invariant measure ν = (ν1, ν2, ...) such that

sup
k∈S

∑
j∈S

|qkj(x)− q̂kj| → 0 as x→∞. (5.3)

Assumption 5.2.2. There exists a twice continuously differentiable and norm-like function

V : Rd → [1,∞) such that for each k ∈ S

LkV (x) ≤ αkV (x) + βk for all x ∈ Rd, (5.4)

where {αk}k∈S and {βk}k∈S are bounded sequences of real numbers such that βk ≥ 0 and

∑
k∈S

αkνk < 0. (5.5)

Remark 5.2.3. It is worth noticing that if αk < 0 in (5.4) then V (x) is a Foster-Lyapunov

function for the corresponding subsystem X(k) defined in (4.1). However, to obtain the

existence of a Foster-Lyapunov function for the process (X,Λ) we only require (5.5) to be

satisfied. In other words, we can still obtain exponential ergodicity of the process (X,Λ) as

long as “most”of the subsystems X(k) are nice in some sense; for example, in this case, the

“average”in (5.5) is satisfied.

Theorem 5.2.4. Suppose that Assumptions 5.2.1 and 5.2.2 hold. Then there exists a Foster-

Lyapunov function U : Rd × S 7→ R+ satisfying the following properties

(i) U(x, k)→∞ as |x| ∨ k →∞,

(ii) A U(x, k) ≤ −αU(x, k) + β for all x ∈ Rd, k ∈ S,

where α, β > 0 are constants.

Proof. Let γ := −
∑

k∈S αkνk > 0. Since {αk}k∈S is bounded and
∑

k∈S νk = 1 then the series
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∑∞
k=1(αk + γ)νk is absolutely convergent and hence

∞∑
k=1

(αk + γ)νk =
∞∑
k=1

αkνk +
∞∑
k=1

γνk = 0.

Since Q̂ = (q̂ij)i,j∈S is strongly exponentially ergodic, it follows from Lemma 7.2.6 that there

exits a bounded sequence of real numbers {γk : k ∈ S} such that

∑
j∈S

q̂kjγj = αk + γ for all k ∈ S. (5.6)

Next we choose p ∈ (0, 1) so that

p|γk| ≤ 0.5 (5.7)

and

p|γkαk| ≤ 0.5γ. (5.8)

Define a function U : Rd × S→ [0,∞) by

U(x, k) := (1− pγk)V p(x) + φ(k). (5.9)

From (5.7), we see that U(x, k) is nonnegative and satisfies lim|x|∨k→∞ U(x, k) =∞.

The rest of the proof is to verify that condition (ii) holds. To proceed, we compute and

estimate each term of the generator

A U(x, k) = AdU(x, k) + AjU(x, k) +Q(x)U(x, k).
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First, observe that

∇U(x, k) = p(1− pγk)V p−1(x)∇V (x)

and

∇2U(x, k) = p(1− pγk)V p−1(x)∇2V (x)− p(1− p)(1− pγk)V p−2(x)∇V (x)∇V (x)T .

Then

AdU(x, k) = p(1− pγk)V p−1(x)
1

2
tr
(
a(x, k)∇2V (x)

)
−p(1− p)(1− pγk)V p−2(x)

1

2
tr
(
a(x, k)∇V (x)∇V (x)T

)
+p(1− pγk)V p−1(x)〈b(x, k),∇V (x)〉

= p(1− pγk)V p−1(x)

[
1

2
tr
(
a(x, k)∇2V (x)

)
+ 〈b(x, k),∇V (x)〉

]
−p(1− p)(1− pγk)V p−2(x)

1

2
|∇V (x)Tσ(x, k)|2

≤ p(1− pγk)V p−1(x)

[
1

2
tr
(
a(x, k)∇2V (x)

)
+ 〈b(x, k),∇V (x)〉

]
. (5.10)

To estimate the second term we note that the function f(r) = rp for r > 0 is concave since

0 < p < 1. Hence bp− ap ≤ pap−1 [b− a] for all a, b > 0. By taking b = V (x+ c(x, k, u)) and

a = V (x), we have

U(x+ c(x, k, u), k))− U(x, k)− 〈∇U(x, k), c(x, k, u)〉

= (1− pγk)V p(x+ c(x, k, u))− (1− pγk)V p(x)− p(1− pγk)V p−1(x)〈∇V (x), c(x, k, u)〉

≤ p(1− pγk)V p−1(x) [V (x+ c(x, k, u))− V (x)− 〈∇V (x), c(x, k, u)〉] .
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Hence

AjU(x, k) ≤ p(1− pγk)V p−1(x)

∫
U

[V (x+ c(x, k, u))− V (x)− 〈∇V (x), c(x, k, u)〉] ν(du).

(5.11)

Finally, we estimate the last term Q(x)U(x, k). Note that qkj(x) ≥ 0 for all k 6= j. Since φ

is increasing and satisfies φ(k)→∞ as k →∞, then (5.2) asserts that

∑
j∈S

qkj(x)|φ(j)− φ(k)| =
∑
j<k

qkj(x)|φ(j)− φ(k)|+
∑
j>k

qkj(x) [φ(j)− φ(k)]

≤ −
∑
j<k

qkj(x) [φ(j)− φ(k)] + C1 − C2φ(k)−
∑
j<k

qkj(x) [φ(j)− φ(k)]

= C1 − C2φ(k)− 2
∑
j<k

qkj(x) [φ(j)− φ(k)]

<∞.

Then
∑

j∈S qkj(x) [φ(j)− φ(k)] is absolutely convergent for each k ∈ S. Since {γk}k∈S is a

bounded sequence, we have

∑
j∈S

|qkj(x)[pV p(x)(γk − γj)]| = pV p(x)
∑
j 6=k

qkj(x)|γk − γj| ≤ 2pV p(x) sup
j∈S
{|γj|}qk(x) <∞.

Hence
∑

j∈S qkj(x) [pV p(x)(γk − γj)] is also absolutely convergent. Then we can compute

∑
j∈S

qkj(x) [pV p(x)(γk − γj)] = pV p(x)γk
∑
j∈S

qkj(x)− pV p(x)
∑
j∈S

qkj(x)γj

= 0− pV p(x)
∑
j∈S

qkj(x)γj

= −pV p(x)
∑
j∈S

qkj(x)γj.
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The absolute convergences allow us to rearrange the summands of Q(x)U(x, k) as follows

Q(x)U(x, k) =
∑
j∈S

qkj(x) [U(x, j)− U(x, k)]

=
∑
j∈S

qkj(x) [(1− pγj)V p(x) + φ(j)− (1− pγk)V p(x)− φ(k)]

=
∑
j∈S

qkj(x) [pV p(x)(γk − γj) + φ(j)− φ(k)]

=
∑
j∈S

qkj(x) [pV p(x)(γk − γj)] +
∑
j∈S

qkj(x) [φ(j)− φ(k)]

= −pV p(x)
∑
j∈S

qkj(x)γj +
∑
j∈S

qkj(x) [φ(j)− φ(k)]

≤ −pV p(x)
∑
j∈S

qkj(x)γj + C1 − C2φ(k),

where we use (5.2) to obtain the inequality. Furthermore, since
∑

j∈S qkj(x)γj and
∑

j∈S q̂kjγj

are also absolutely convergent, we have

Q(x)U(x, k) ≤ −pV p(x)
∑
j∈S

qkj(x)γj + C1 − C2φ(k)

= −pV p(x)
∑
j∈S

(qkj(x)− q̂kj) γj − pV p(x)
∑
j∈S

q̂kjγj + C1 − C2φ(k)

≤ pV p(x) sup
j∈S
|γj|

∑
j∈S

|qkj(x)− q̂kj| − pV p(x)
∑
j∈S

q̂kjγj + C1 − C2φ(k)

= pV p(x) sup
j∈S
|γj|

∑
j∈S

|qkj(x)− q̂kj| − pV p(x)(αk + γ) + C1 − C2φ(k), (5.12)

where we use (5.6) to obtain the last equality. It follows from (5.10)–(5.12) that

A U(x, k)

≤ p(1− pγk)V p−1(x)

[
1

2
tr
(
a(x, k)∇2V (x)

)
+ 〈b(x, k),∇V (x)〉

]
+ p(1− pγk)V p−1(x)

∫
U

[V (x+ c(x, k, u))− V (x)− 〈∇V (x), c(x, k, u)〉] ν(du)
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+ pV p(x) sup
j∈S
|γj|

∑
j∈S

|qkj(x)− q̂kj| − pV p(x)(αk + γ) + C1 − C2φ(k)

= p(1− pγk)V p−1(x) [LkV (x)] + pV p(x) sup
j∈S
|γj|

∑
j∈S

|qkj(x)− q̂kj|

− pV p(x)(αk + γ) + C1 − C2φ(k)

≤ p(1− pγk)V p−1(x) [αkV (x) + βk] + pV p(x) sup
j∈S
|γj|

∑
j∈S

|qkj(x)− q̂kj|

− pV p(x)(αk + γ) + C1 − C2φ(k)

= p(1− pγk)V p(x)

[
βk
V (x)

− pαkγk + γ

1− pγk
+

supj∈S |γj|
∑

j∈S |qkj(x)− q̂kj|
1− pγk

]
+ C1 − C2φ(k),

(5.13)

where the last inequality follows from (5.4). Thanks to (5.7), we have 1 − pγk > 0 and it

is bounded. Let δ := 1 ∧ 0.5γ
1−pγk

∧ 2C2

p
. Note that 0 < δ ≤ 0.5γ

1−pγk
. From (5.8), we see that

−(pγkαk + γ) ≤ −0.5γ. Hence

−pγkαk + γ

1− pγk
≤ −0.5γ

1− pγk
≤ −δ(1− pγk)

1− pγk
= −δ. (5.14)

On the other hand, since V is norm-like and {βk}k∈S is bounded, there exists an M1 > 0

such that

βk
V (x)

≤ 0.25δ for all |x| ≥M1 and k ∈ S. (5.15)

Similarly, we can use (5.3) and (5.7) to find an M2 > 0 such that

supj∈S |γj|
∑

j∈S |qkj(x)− q̂kj|
1− pγk

≤ 2 sup
j∈S
|γj|

∑
j∈S

|qkj(x)− q̂kj| ≤ 0.25δ (5.16)

for all |x| ≥M2 and k ∈ S. Now plugging (5.14)–(5.16) into (5.13) yields

A U(x, k) ≤ p(1− pγk)V p(x)[0.25δ − δ + 0.25δ] + C1 − C2φ(k)
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= −0.5δp(1− pγk)V p(x) + C1 − C2φ(k)

= −0.5δp [(1− pγk)V p(x) + φ(k)] + 0.5δpφ(k) + C1 − C2φ(k)

≤ −0.5δpU(x, k) + C1,

for all |x| ≥ M1 ∨M2 and k ∈ S. Note that we used the fact that 0.5δp ≤ C2 to derive the

last inequality. To complete the proof, we choose α, β > 0 so that

A U(x, k) ≤ −αU(x, k) + β

holds for all x ∈ Rd and k ∈ S. This completes the proof.

Corollary 5.2.4.1. Suppose that the q-matrix Q(x) = (qkl) is constant, irreducible, and

strongly exponentially ergodic with invariant measure π = (π1, π2, . . . ). Then under As-

sumptions 5.2.1 (a) and 5.2.2, a Foster-Lyapunov function exists.

5.3 Examples

The strongly exponentially ergodic q-matrix Q̂ in Assumption 5.2.1 (b) plays a very crucial

role in the proof of Theorem 5.2.4 as it allows us, by Lemma 7.2.6, to find a bounded

sequence {γk : k ∈ S} satisfying equality (5.6). To demonstrate our results, let us first give

some examples of such matrices.

Given a positive constant θ > 0. Consider the q-matrix Q̂ = (q̂ij) given by

q̂ij :=



−1
2
θ if j = 1, i = 1

1
2
θ if j = 1, i 6= j

1
3j−1 θ if j > 1, i 6= j

−3j−1−1
3j−1 θ if j > 1, i = j,
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that is

Q̂ = θ



−1
2

1
3

1
32 · · ·

1
2
−2

3
1
32 · · ·

1
2

1
3
− 8

32 · · ·
...

...
...


.

It is clear that ν = (1
2
, 1

3
, 1

32 , ...) solves the equation νQ̂ = 0 and ν1 = 1. Then ν is an

invariant probability measure. Solving the Kolmogorov backward equation P̂ ′(t) = Q̂P̂ (t)

gives

P̂ij(t) =



1
2

+ 1
2
e−θt if j = 1, i = 1

1
2
− 1

2
e−θt if j = 1, i 6= j

1
3j−1 − 1

3j−1 e
−θt if j > 1, i 6= j

1
3j−1 + 3j−1−1

3j−1 e−θt if j > 1, i = j,

that is

P̂ (t) =



1
2

+ 1
2
e−θt 1

3
− 1

3
e−θt 1

32 − 1
32 e
−θt · · ·

1
2
− 1

2
e−θt 1

3
+ 2

3
e−θt 1

32 − 1
32 e
−θt · · ·

1
2
− 1

2
e−θt 1

3
− 1

3
e−θt 1

32 + 8
32 e
−θt · · ·

...
...

...


.

For each i ∈ S and t ≥ 0, we see that

∞∑
j=1

|P̂ij(t)− νj| =
1

2
e−θt +

∑
j>1,j 6=i

1

3j−1
e−θt + |3

i−1 − 1

3i−1
e−θt| ≤ 1

2
e−θt +

∞∑
j=1

1

3j
e−θt + e−θt = 2e−θt.

Then, for arbitrary but fixed θ > 0, any Markov chain generated by Q̂ is strongly exponen-

tially ergodic.
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Example 5.3.1. Consider the following SDE

dX(t) = b(X(t), Λ(t))dt+ σ(X(t), Λ(t))dW (t) +

∫
U

c(X(t−), Λ(t−), u)Ñ(dt, du), (5.17)

where W is a standard 2-dimensional Brownian motion, Ñ is the compensated Poisson ran-

dom measure on [0,∞)×U with intensity dtν(du) in which U = {u ∈ R2 : 0 < |u| < 1} and

ν(du) := du
|u|2+δ for some δ ∈ (0, 2). The coefficients of (5.17) are given by

σ(x, k) =

1 0

0 1

 , b(x, k) =


−x if k = 1

1
4k
x if k ≥ 2

, and c(x, k, u) = γ
1√
2k
|u|x,

where γ is a positive constant so that γ2
∫
U
|u|2ν(du) = 1. The Λ component takes value in

S := {1, 2, ...} and is generated by Q(x) = (qkj(x)) given by

qkj(x) :=



1
2

k

k+e−|x|2
if j = 1, k 6= j,

1
3j−1

k

k+e−|x|2
if j > 1, k 6= j

−
∑

j 6=k qkj(x) if k = j.

Apparently, (5.17) possesses a unique strong solution (X,Λ) = {(X(t), Λ(t)), 0 ≤ t <∞}

(see Theorem 2.5 of Xi et al. (2019)). Assumptions 4.1.1, 4.1.2, and 4.1.4 are trivially

satisfied. Next we verify Assumptions 5.2.1 and 5.2.2. To this end, we show that the function

φ(k) = k satisfies (5.2). Indeed, we have

∞∑
j=1

qkj(x)[φ(j)− φ(k)] =
1

2

k

k + e−|x|2
[1− k] +

∑
j>1

1

3j−1

k

k + e−|x|2
[j − k]

≤ 1

2
− 1

2
· 1

2
k +

1

3
· k

k + e−|x|2

[∑
j>1

j

3j
− k

∑
j>1

1

3j

]

=
1

2
− 1

4
k +

1

3
· k

k + e−|x|2

[
(
3

4
− 1

3
)− k(

1

2
− 1

3
)

]
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=
1

2
− 1

4
k +

1

3
· k

k + e−|x|2

[
5

12
− 1

6
k

]
≤ 1

2
− 1

4
k +

1

3
· 5

12
− 1

3
· 1

2
· 1

6
k

≤ 2− 5

18
φ(k).

To show (5.3) we consider the following. Let Λ̂ be a continuous-time Markov chain with

state space S and generated by Q̂ = {q̂kj}, where

q̂ij :=



−1
2

if j = 1, i = 1

1
2

if j = 1, i 6= j

1
3j−1 if j > 1, i 6= j

−3j−1−1
3j−1 if j > 1, i = j.

As shown above, with θ = 1, Λ̂ is strongly exponentially ergodic with invariant measure

ν = (1
2
, 1

3
, 1

32 , . . . ). We see that

∑
j∈S

∣∣qkj(x)− q̂kj
∣∣ =

∑
j 6=k

∣∣qkj(x)− q̂kj
∣∣+
∣∣qkk(x)− q̂kk

∣∣
=

∑
j 6=k

∣∣∣∣qkj(x)− q̂kj
∣∣∣∣+

∣∣∣∣−∑
j 6=k

qkj(x) +
∑
j 6=k

q̂kj(x)

∣∣∣∣
≤

∑
j 6=k

∣∣∣∣qkj(x)− q̂kj
∣∣∣∣+
∑
j 6=k

∣∣∣∣qkj(x)− q̂kj
∣∣∣∣

= 2
∑
j 6=k

∣∣∣∣qkj(x)− q̂kj
∣∣∣∣

= 2

∣∣∣∣12 k

k + e−|x|2
− 1

2

∣∣∣∣+ 2
∑

j>1,j 6=k

∣∣∣∣ 1

3j−1

k

k + e−|x|2
− 1

3j−1

∣∣∣∣
≤

∣∣∣∣ k

k + e−|x|2
− 1

∣∣∣∣+ 2
∑
j≥1

1

3j

∣∣∣∣ k

k + e−|x|2
− 1

∣∣∣∣
= 2

[
1− k

k + e−|x|2

]
≤ 2e−|x|

2

.
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This implies that

sup
k∈S

∑
j∈S

|qkj(x)− q̂kj| → 0 as x→∞

and thus establishing (5.3). As a result, Assumption 5.2.1 is verified.

To verify Assumption 5.2.2 we consider function V (x) := |x|2 and observe that ∇V (x) =

2x and ∇2V (x) = 2I. We compute

LkV (x) =
1

2
tr
(
a(x, k)∇2V (x)

)
+ 〈b(x, k),∇V (x, k)〉

+

∫
U

(V (x+ c(x, k, u))− V (x)− 〈∇V (x), c(x, k, u〉) ν(du)

= 2 + 2〈b(x, k), x〉+

∫
U

(
|x+ c(x, k, u)|2 − |x|2 − 2〈x, c(x, k, u〉

)
ν(du)

= 2 + 2〈b(x, k), x〉+
|x|2

2k

=


2− 3

2
|x|2 if k = 1,

2 + |x|2
k

if k ≥ 2.

Then βk = 2 for all k ∈ S and

αk =


−3

2
if k = 1

1
k

if k ≥ 2.

We also see that

∞∑
k=1

αkνk = −3

2
· 1

2
+
∞∑
k=2

1

k

1

3k−1
= −3

4
+ 3[log(

3

2
)− 1

3
] < 0.

Then Theorem 5.2.4 ensures the existence of a Foster-Lyapunov function U(x, k). Moreover,

the process (X,Λ) is exponential ergodic by Theorem 5.1.2.
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Chapter 6

Application to Feedback Controls

6.1 Problem Formulation

In this section we illustrate an application of Theorem 5.1.2. To proceed, we start with the

following system of SDEs


dX(t) = b(X(t), Λ(t))dt+ σ(X(t), Λ(t))dW (t) +

∫
U
c(X(t−), Λ(t−), u)Ñ(dt, du)

Λ(t) = Λ(0) +
∫ t

0

∫
R+
h(X(s−), Λ(s−), r)N1(ds, dr)

(6.1)

where b, σ and c are appropriate measurable functions.

Recall that feedback control is any control that depends on the current state of the

underlying process. Motivated by the study of feedback controls for weak stabilization

studied in Zhu and Yin (2009), we raise and try to answer the following question: If a regime-

switching jump diffusion is not exponentially ergodic or even not ergodic, can we find a

suitable control so that the controlled regime-switching jump diffusion becomes exponentially

ergodic? To this end, we consider the following SDE

dX(t) = b(X(t), Λ(t))dt+ ξ(X(t), Λ(t))dt+ σ(X(t), Λ(t))dW (t)

+

∫
U

c(X(t−), Λ(t−), u)Ñ(dt, du),
(6.2)
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where ξ : Rd × S→ Rd denotes the feedback control which will be determined later on. We

denote by (X̃, Λ̃) the solution to the following system of SDEs


dX̃(t) = b(X̃(t), Λ̃(t))dt+ ξ(X̃(t), Λ̃(t))dt+ σ(X̃(t), Λ̃(t))dW (t)

+
∫
U
c(X̃(t−), Λ̃(t−), u)Ñ(dt, du),

Λ̃(t) = Λ̃(0) +
∫ t

0

∫
R+
h̃(X̃(s−), Λ̃(s−), r)N1(ds, dr)

(6.3)

where h̃ can be defined in a similar way to (2.13). In other words, if Λ is determined by the

probability rate matrix Q(x) then Λ̃ will be determined by the matrix Q(x̃).

In practice, we usually decompose the switching state space S into the union of two

disjoint subsets, namely S = Sint ∪ Sab. To be more precise, Sab consists of states with an

absence of intervention while Sint consists of those states when any intervention can take

place. It is reasonable and easy to consider the feedback controls of the form

ξ(X̃(t), Λ̃(t)) = −L(Λ̃(t))X̃(t), (6.4)

where L(k) ∈ Rd×d is a constant matrix for k ∈ Sint. Of course, we take L(k) = 0 for each

k ∈ Sab. For simplicity, we set b̃(y, k) := b(y, k)− L(k)y. Then (6.3) becomes


dX̃(t) = b̃(X̃(t), Λ̃(t))dt+ σ(X̃(t), Λ̃(t))dW (t) +

∫
U
c(X̃(t−), Λ̃(t−), u)Ñ(dt, du),

Λ̃(t) = Λ̃(0) +
∫ t

0

∫
R+
h̃(X̃(s−), Λ̃(s−), r)N1(ds, dr).

(6.5)

We denote by X̃(k) a non-explosive solution of the subsystem

X̃(k)(t) = x+

∫ t

0

b̃(X̃(k)(s), k)ds+

∫ t

0

σ(X̃(k)(s), k)dW (s)

+

∫ t

0

∫
U

c(X̃(k)(s−), k, u)Ñ(ds, du).

(6.6)
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6.2 Exponential Ergodicity of the Controlled Process

In this section we show how to apply Theorem 5.1.2 to the feedback control problems. Before

we proceed one may ask whether the control process ξ in (6.4) is admissible or not. That is,

whether the system (6.3) or equivalently (6.5) has a unique non-explosive strong solution.

To tackle this issue we need Assumption 3.1.1.

Theorem 6.2.1. Suppose that Assumptions 3.1.1, 3.1.2, 4.1.2, 4.1.3, 4.1.4, and 5.2.1 hold.

Given a constant matrix L(k) for each k ∈ Sint. If there exists a bounded sequence of real

numbers {αk} such that ∑
k∈S

αkνk < 0 (6.7)

and

(κ− αk)|x|2 ≤ 〈x, L(k)x〉 for all x ∈ Rd, k ∈ Sint ∪ Sab, (6.8)

where κ is the positive constant given in (4.2), then the controlled process (X̃, Λ̃) is exponen-

tially ergodic.

Proof. In view of Theorem 5.1.2, we proceed as follows. Since the control process ξ defined

in (6.4) is linear in the x variable, it is clear that if (6.1) satisfies Assumptions 3.1.1–5.2.1

then so does (6.5). Thanks to Lemma 2.4, Xi et al. (2019), under Assumption 3.1.1 and

(4.2), there exists a unique non-explosive strong solution X̃(k) to the SDE (6.6).

We observe that (4.2), (3.9), (4.6), and (5.2) constitute Assumption 2.1 of Xi et al. (2019)

with relaxed condition (3.9). Moreover, Theorem 2.5 of Xi et al. (2019) is still valid under

this relaxation. This ensures the existence and uniqueness of a non-explosive strong solution

(X̃, Λ̃) to (6.5).

Next, we only need to verify (5.4) for X̃. Consider function V (x) := |x|2. Thanks to
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(4.2) and (6.8), we verify that

LkV (x) =
1

2
tr
(
a(x, k)∇2V (x)

)
+ 〈b̃(x, k),∇V (x)〉

+

∫
U

(V (x+ c(x, k, u))− V (x)− 〈∇V (x), c(x, k, u〉) ν(du)

= |σ(x, k)|2 + 2〈x, b(x, k)〉+

∫
U

|c(x, k, u)|2ν(du)− 2〈x, L(k)x〉

≤ 2κ(|x|2 + 1)− 2〈x, L(k)x〉

≤ 2αk|x|2 + 2κ

= 2αkV (x) + 2κ.

This, together with (6.7), implies that (X̃, Λ̃) satisfies Assumption 5.2.2. It follows directly

from Theorem 5.1.2 that the controlled process (X̃, Λ̃) is exponentially ergodic.

As in Zhu and Yin (2009), one of the simplest example of feedback controls is of the

following form

ξ(x, k) = −θ(k)Ix,

where θ(k) is a non-negative constant and I is the d× d identity matrix. That is L(k) takes

the form

L(k) = θ(k)I.

Since κ is a fixed constant and {αk} is bounded, then (6.8) is immediate if we choose θ(k)

large enough; that is, θ(k) ≥ κ − αk. To summarize this discussion, we state the following

corollary.

Corollary 6.2.1.1. Suppose that Assumptions 3.1.1, 3.1.2, 4.1.2, 4.1.3, 4.1.4, and 5.2.1

hold. Assume further that
∑

k∈Sint νk > 0. Then there exists a feedback control ξ so that the

controlled process (X̃, Λ̃) is exponentially ergodic.
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Proof. We take αk = κ for all k ∈ Sab and αk = −2κ/
∑

k∈Sint νk for all k ∈ Sint. Then∑
k∈S αkνk < 0. Choose θ(k) big enough so that θ(k) ≥ κ− αk for k ∈ Sint and θ(k) = 0 for

k ∈ Sab. So ξ(x, k) := −θ(k)Ix is the desired feedback control.

6.3 Examples

Example 6.3.1. Consider the following SDE

dX(t) = σ(X(t), Λ(t))dW (t), (6.9)

where W is the standard 1-dimensional Brownian motion and σ(x, k) = 1 for all (x, k) ∈

R×S. Suppose that Λ takes value in S = {1, 2, ...} and is generated by Q(x) = (qkj(x)) given

by

qkj(x) :=



1
2

k

k+e−|x|2
if j = 1, k 6= j,

1
3j−1

k

k+e−|x|2
if j > 1, k 6= j

−
∑

j 6=k qkj(x) if k = j.

The solution to (6.9) is trivially given by X(t) = W (t). It is well known that the Brownian

motion is not ergodic. So, the process (X,Λ) is not exponential ergodic. However, all of the

Assumptions 3.1.1, 3.1.2, 4.1.2, 4.1.3, 4.1.4, and 5.2.1 are trivially satisfied. By Corollary

6.2.1.1, there exists a feedback control ξ so that the controlled process (X̃, Λ̃) is exponentially

ergodic. Indeed, the feed back control ξ is given by ξ(x, k) = −θ(k)x where θ(k) is a constant

large enough. Then the controlled process is given by

dX(t) = −θ(Λ(t))X(t)dt+ dW (t).

This is an Ornstein–Uhlenbeck process which is Gaussian. Moreover, one can show that this

process is exponentially ergodic.
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Example 6.3.2. Consider the following SDE

dX(t) = b(X(t), Λ(t))dt+ σ(X(t), Λ(t))dW (t), (6.10)

where W is the standard 2-dimensional Brownian motion. Suppose that Λ takes values in

the set S := {1, 2} and is generated by the constant rate matrix

Q(x) =

−3
2

3
2

3
2
−3

2

 .

Define the coefficients in (6.10) as follows:

σ(x, k) =

1 0

0 1

 , b(x, 1) =

2 −1

1 1

x, b(x, 2) =

 2 2

−2 3

x.

For any matrix A, we denote by λmin(A) the minimal of the eigenvalues of A. We verify

that

λmin


2 −1

1 1

+

2 −1

1 1


T = 2 > 0

and

λmin


 2 2

−2 3

+

 2 2

−2 3


T = 4 > 0.

In view of Theorem 4.13 of Zhu and Yin (2009), we conclude that the process (X,Λ) is

transient and hence it is not ergodic. One can show that Assumptions 3.1.1, 3.1.2, 4.1.2,

4.1.3, 4.1.4, and 5.2.1 are satisfied. In particular, the matrix Q itself is strongly exponentially
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ergodic with invariant measure ν = (1/2, 1/2) and transition matrix

P (t) =

 1
2

+ e−3t 1
2
− e−3t

1
2
− e−3t 1

2
+ e−3t

 .

It follows from Corollary 6.2.1.1 that there exists a feedback control ξ for which the controlled

process (X̃, Λ̃) is exponentially ergodic.
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Chapter 7

Appendix

7.1 Elementary Properties of Coupling Operators

In this section we give the detailed proof of Lemma 3.2.1.

Proof of Lemma 3.2.1. i) It is clear that a(x, i) = a(x, i)T and a(y, j) = a(y, j)T . Then we

have

a(x, i, y, j)T =

 a(x, i) ĝ(x, i, y, j)

ĝ(x, i, y, j)T a(y, j)


T

=

 a(x, i)T (ĝ(x, i, y, j)T )T

ĝ(x, i, y, j)T a(y, j)T


=

 a(x, i) ĝ(x, i, y, j)

ĝ(x, i, y, j)T a(y, j)


= a(x, i, y, j)

So a(x, i, y, j) is symmetric. To show a(x, i, y, j) is uniformly positive definite, we observe
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that (I − 2u(x, y)u(x, y)T )2 = I. Let

ξ
η

 = (ξ, η)T = (ξ1, ..., ξd, η1, ..., ηd)
T ∈ R2d. Then

ξ
η


T

a(x, i, y, j)

ξ
η


=

ξ
η


T  a(x, i) ĝ(x, i, y, j)

ĝ(x, i, y, j)T a(y, j)


ξ
η


= ξTa(x, i)ξ + ξT ĝ(x, i, y, j)η + ηTa(y, j)η + ηT ĝ(x, i, y, j)T ξ

= ξTa(x, i)ξ + ξT (λR(I − 2u(x, y)u(x, y)T ) + σλR(x, i)σλR(y, j)T )η

+ηTa(y, j)η + ηT (λR(I − 2u(x, y)u(x, y)T ) + σλR(y, j)σλR(x, i)T )ξ

= ξTσλR(x, i)2ξ + λRξ
T ξ + λRξ

T (I − 2u(x, y)u(x, y)T )η + ξTσλR(x, i)σλR(y, j)Tη

+ηTσλR(y, j)2η + λRη
Tη + λRη

T (I − 2u(x, y)u(x, y)T )ξ + ηTσλR(y, j)σλR(x, i)T ξ

= ξTσλR(x, i)2ξ + ηTσλR(y, j)2η + ξTσλR(x, i)σλR(y, j)Tη + ηTσλR(y, j)σλR(x, i)T ξ

+λR
(
ξT ξ + ηTη + ξT (I − 2u(x, y)u(x, y)T )η + ηT (I − 2u(x, y)u(x, y)T )ξ

)
= |σλR(x, i)2ξ + σλR(y, j)2η|2 + λR[ξT (I − 2u(x, y)u(x, y)T )(I − 2u(x, y)u(x, y)T )ξ

+ξT (I − 2u(x, y)u(x, y)T )η + ηT (I − 2u(x, y)u(x, y)T )ξ + ηTη]

= |σλR(x, i)2ξ + σλR(y, j)2η|2 +

λR〈(I − 2u(x, y)u(x, y)T )ξ + η, (I − 2u(x, y)u(x, y)T )ξ + η〉

= |σλR(x, i)2ξ + σλR(y, j)2η|2 + λR|(I − 2u(x, y)u(x, y)T )ξ + η|2

≥ 0.

ii) Note that for any matricesA andB we have tr(AB) = tr(BA). Then tr(u(x, y)u(x, y)T ) =

tr(u(x, y)Tu(x, y)) = 1. We obtain

trA(x, i, y, j) = tr(a(x, i)) + tr(a(y, j))− 2tr(ĝ(x, i, y, j)
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= tr(σλR(x, i)2 + λRI) + tr(σλR(y, j)2 + λRI)

−2tr(λRI − 2λRu(x, y)u(x, y)T + σλR(x, i)σλR(y, j)T )

= 2λRd+ tr(σλR(x, i)2) + tr(σλR(y, j)2)

−2λRd+ 4λRtr(u(x, y)u(x, y)T ) + 2tr(σλR(x, i)σλR(y, j)T )

= tr(σλR(x, i)2 + σλR(y, j)2 − 2σλR(x, i)σλR(y, j)T ) + 4λR

= tr((σλR(x, i)− σλR(y, j))2) + 4λR

= |σλR(x, i)− σλR(y, j)|2 + 4λR

iii) Note that a d × d-matrix M is symmetric if and only if 〈Mx, y〉 = 〈x,My〉 for all

x, y ∈ Rd. Since σλR is symmetric, we observe that

〈x− y, σλR(x, i)σλR(y, j)(x− y)〉 = 〈σλR(x, i)(x− y), σλR(y, j)(x− y)〉

= 〈σλR(y, j)(x− y), σλR(x, i)(x− y)〉

= 〈x− y, σλR(y, j)σλR(x, i)(x− y)〉.

Note that σλR(x, i)− σλR(y, j) is also symmetric. This implies

|(σλR(x, i)− σλR(y, j))(x− y)|2

= 〈(σλR(x, i)− σλR(y, j))(x− y), (σλR(x, i)− σλR(y, j))(x− y)〉

= 〈x− y, (σλR(x, i)− σλR(y, j))(σλR(x, i)− σλR(y, j))(x− y)〉

= 〈x− y, (σλR(x, i)2 + σλR(y, j)2 − σλR(x, i)σλR(y, j)− σλR(y, j)σλR(x, i))(x− y)〉

= 〈x− y, (σλR(x, i)2 + σλR(y, j)2 − 2σλR(x, i)σλR(y, j))(x− y)〉.

We then obtain

Ā(x, i, y, j)|x− y|2

= 〈x− y, A(x, i, y, j)(x− y)〉
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= 〈(x− y, (a(x, i) + a(y, j)− 2g(x, i, y, j))(x− y)〉

= 〈(x− y, (a(x, i) + a(y, j)− 2(λR(I − 2u(x, y)u(x, y)T ) + σλR(x, i)σλR(y, j)T ))(x− y)〉

= 〈x− y, (σλR(x, i)2 + σλR(y, j)2 − 2σλR(x, i)σλR(y, j)))(x− y))〉+

4λR〈x− y, u(x, y)u(x, y)T (x− y)〉

= |(σλR(x, i)− σλR(y, j))(x− y)|2 + 4λR〈x− y,
(x− y)

|x− y|
(x− y)T

|x− y|
(x− y)〉

= |(σλR(x, i)− σλR(y, j))(x− y)|2 +
4λR
|x− y|2

〈x− y, (x− y)(x− y)T (x− y)〉

= |(σλR(x, i)− σλR(y, j))(x− y)|2 +
4λR
|x− y|2

|x− y|2〈x− y, x− y〉

= |(σλR(x, i)− σλR(y, j))(x− y)|2 + 4λR|x− y|2

≥ 4λR|x− y|2.

Hence

Ā(x, i, y, j) ≥ 4λR.

7.2 Strong Exponential Ergodicity of Λ̂

Definition 7.2.1. Suppose that a Markov process Λ̂ is generated by a bounded generator

Q(0) = {qij}i,j∈S (0 ≤ qij <∞, i 6= j) which is totally stable and conservative, that is,

qi := −qii <∞ and
∑
j 6=i

qij = qi (7.1)

If the matrix Q(0) is totally stable and conservative, it is sometimes called regular as in Chen

(2004).

Let us state the following classical result for continuous-time Markov processes with

countable state spaces.
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Lemma 7.2.2 (Lemma 4.36, Chen (2004)). Let Q(0) = {qij}i,j∈S be a regular irreducible

Q-matrix. Then the limit

lim
t−→∞

Pij(t) =: πj (7.2)

exists for all i, j ∈ S and the limit is independent of i. Moreover, we have either
∑

j∈S πj = 1

or
∑

j∈S πj = 0.

In Nguyen and Yin (2018c), the stability of regime-switching diffusion processes (X(t), α(t))

was investigated where the second component α(t) takes values in a countable state space.

The argument used to obtain the result is based on the existence of a continuous-time Markov

chain α̂ which posses a certain property called strongly exponential ergodicity.

Definition 7.2.3 (Definition 2.5, Nguyen and Yin (2018c)). Let α̂(t) be a Markov chain

generated by a bounded generator Q(0) = {q̂ij}i,j∈S and transition function p̂ij(t). Then

α̂(t) is said to be strongly exponentially ergodic if it has an invariant probability measure

π = (π1, π2, ...) such that for some constants C, λ > 0, we have

∑
j∈S

|p̂ij(t)− πj| ≤ Ce−λt for all i ∈ S and all t ≥ 0. (7.3)

Then we obtain the following lemma as a direct consequence of Theorem 6.1 of Meyn

and Tweedie (1993b). Also, a similar result was given in Theorem 7.1 of Meyn and Tweedie

(1993b).

Lemma 7.2.4. Suppose that the Markov process Λ is irreducible. Assume there exists a

function φ : S −→ [0,∞) with φ(k) −→∞ as k −→∞ such that

Qφ(k) :=
∑
j∈S

qkj [φ(j)− φ(k)] ≤ C − φ(k) for all k ∈ S,

where C is a constant and Q is the infinitesimal generator of Λ. Then there exist β < 1 and
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B <∞ such that

||P t(k, ·)− π||f ≤ Bf(k)βt, t ≥ 0, k ∈ S

where f = φ+ 1.

Remark 7.2.5. We note that φ is a Foster-Lyapunov function for the discrete component

Λ. Also, this lemma says that Λ is f -exponential ergodic where f = φ + 1. For measurable

functions f, g ≥ 1, if f ≥ g then it is clear from the definition that || · ||f ≥ || · ||g. In

particular, this lemma implies ||P t(k, ·)−π||1 ≤ Bf(k)βt. However, this result may not give

the strong exponential ergodicity of Λ.

The following lemma plays an important role in the proof of Theorem 5.2.4. It was

introduced in Nguyen and Yin (2018c) and was the main tool used to obtain the stability

result in Theorem 3.1 of Nguyen and Yin (2018c). For the sake of completeness, let us state

and give the detailed proof of this lemma.

Lemma 7.2.6 (Lemma A.1, Nguyen and Yin (2018c)). Suppose that the Markov chain

α̂(t) is strongly exponentially ergodic which is generated by a bounded and regular generator

Q(0) = {q̂ij}i,j∈S and invariant probability measure π = (π1, π2, ...). If b = (b1, b2, ...)
T is

bounded satisfying πb =
∑

j∈S πjbj = 0, then there exists a bounded vector c = (c1, c2, ...)
T

such that bi =
∑

j∈S q̂ijcj for all i ∈ S.

Proof. Denote P̂ (t) := [p̂ij(t)]i,j the transition matrix. First, let us state the following

properties of P̂ (t). We know that

0 ≤ p̂ij(t) ≤ 1 for all t ≥ 0 and all i, j ∈ S (7.4)
∞∑
j=1

p̂ij(t) = 1 for all t ≥ 0 and all i ∈ S. (7.5)
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From Kolmogorov backward equations, we have QP̂ (t) = P̂ ′(t), that is,

p̂′ik =
∞∑
j=0

q̂ij p̂jk(t) for all i, k ∈ S. (7.6)

To prove this lemma, we will need to apply the Bounded Convergence Theorem. So, for any

0 < T < ∞, we consider the finite measure space ([0, T ],B([0, T ]), d) where d denotes the

Lebesgue measure. Define c(T ) := −
∫ T

0
P̂ (t)bdt, that is,

ci(T ) := −
∫ T

0

∑
k∈S

p̂ik(t)bkdt, i ∈ S.

First, we show that c(T ) is bounded for all 0 < T <∞. We observe

∑
j∈S

|πjbj| ≤ sup
j∈S
|bj|
∑
j∈S

|πj| ≤ sup
j∈S
|bj| <∞

and from (7.3) we have

∑
j∈S

| (p̂ij(t)− πj) bj| ≤ sup
j∈S
|bj|
∑
j∈S

|p̂ij(t)− πj| ≤ sup
j∈S
|bj|Ce−λt <∞.

These imply that

∑
j∈S

[p̂ij(t)bj] =
∑
j∈S

[(p̂ij(t)− πj) bj + πjbj]

=
∑
j∈S

(p̂ij(t)− πj) bj +
∑
j∈S

πjbj

=
∑
j∈S

(p̂ij(t)− πj) bj.

Then

|ci(T )| = | −
∫ T

0

∑
j∈S

p̂ij(t)bjdt|
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= |
∫ T

0

∑
j∈S

(p̂ij(t)− πj) bjdt|

≤
∫ T

0

∑
j∈S

|p̂ij(t)− πj||bj|dt

≤ sup
j∈S
|bj|
∫ T

0

∑
j∈S

|p̂ij(t)− πj|dt

≤ sup
j∈S
|bj|
∫ T

0

Ce−λtdt

= sup
j∈S
|bj|

C

λ
[1− e−λT ]

≤ sup
j∈S
|bj|

C

λ
. (7.7)

Next, we determine the matrix Qc(T ) for each 0 < T <∞. We will do this componentwise.

Let i ∈ S be arbitrary but fixed. Define fn(t) :=
n∑
j=1

q̂ij

(
∞∑
k=1

p̂jk(t)bk

)
. From (7.4) and (7.5),

we see that

|fn(t)| = |
n∑
j=1

q̂ij

(
∞∑
k=1

p̂jk(t)bk

)
|

=
n∑
j=1

|q̂ij|

(
∞∑
k=1

|p̂jk(t)||bk|

)

≤ sup
k∈S
|bk|

n∑
j=1

|q̂ij|

(
∞∑
k=1

|p̂jk(t)|

)

≤ sup
k∈S
|bk|

n∑
j=1

|q̂ij|

≤ sup
k∈S
|bk|

∞∑
j=1

|q̂ij|

≤ sup
k∈S
|bk|(2q̂i).

The Bounded Convergence Theorem implies that

∞∑
j=1

q̂ijcj(T ) =
∞∑
j=1

q̂ij

[
−
∫ T

0

∞∑
k=1

p̂jk(t)bkdt

]
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= −
∞∑
j=1

[∫ T

0

q̂ij

∞∑
k=1

p̂jk(t)bkdt

]

= − lim
n−→∞

n∑
j=1

[∫ T

0

q̂ij

∞∑
k=1

p̂jk(t)bkdt

]

= − lim
n−→∞

∫ T

0

[
n∑
j=1

q̂ij

∞∑
k=1

p̂jk(t)bk

]
dt

= − lim
n−→∞

∫ T

0

[fn(t)] dt

= −
∫ T

0

[
lim
n−→∞

fn(t)
]
dt

= −
∫ T

0

[
∞∑
j=1

q̂ij

(
∞∑
k=1

p̂jk(t)bk

)]
dt. (7.8)

We claim that we can interchange the summation
∞∑
j=1

∞∑
k=1

q̂ij p̂jk(t)bk =
∞∑
k=1

∞∑
j=1

q̂ij p̂jk(t)bk.

From (7.4) and (7.5), we observe that

∞∑
j=1

∞∑
k=1

|q̂ij p̂jk(t)bk| ≤ sup
k∈S
|bk|

∞∑
j=1

∞∑
k=1

|q̂ij||p̂jk(t)|

≤ sup
k∈S
|bk|

∞∑
j=1

|q̂ij|
∞∑
k=1

p̂jk(t)

≤ sup
k∈S
|bk|

∞∑
j=1

|q̂ij|

≤ sup
k∈S
|bk|(2q̂i)

< ∞.

Therefore,
∞∑
j=1

∞∑
k=1

q̂ij p̂jk(t)bk is absolutely convergence and then

∞∑
j=1

∞∑
k=1

q̂ij p̂jk(t)bk =
∞∑
k=1

∞∑
j=1

q̂ij p̂jk(t)bk.
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In view of (7.8), we have from (7.6) that

∞∑
j=1

q̂ijcj(T ) = −
∫ T

0

[
∞∑
j=1

∞∑
k=1

q̂ij p̂jk(t)bk

]
dt

= −
∫ T

0

[
∞∑
k=1

∞∑
j=1

q̂ij p̂jk(t)bk

]
dt

= −
∫ T

0

[
∞∑
k=1

bk

(
∞∑
j=1

q̂ij p̂jk(t)

)]
dt

= −
∫ T

0

[
∞∑
k=1

bkp̂
′
ik(t)

]
dt. (7.9)

Now, let gn(t) :=
n∑
k=1

bkp̂
′
ik(t). Observe that

|gn(t)| = |
n∑
k=1

bkp̂
′
ik(t)|

≤
n∑
k=1

|bkp̂′ik(t)|

≤ sup
k∈S
|bk|

n∑
k=1

|p̂′ik(t)|

= sup
k∈S
|bk|

n∑
k=1

|

(
∞∑
j=1

q̂ij p̂jk(t)

)
|

≤ sup
k∈S
|bk|

n∑
k=1

∞∑
j=1

|q̂ij p̂jk(t)|

= sup
k∈S
|bk|

∞∑
j=1

n∑
k=1

|q̂ij p̂jk(t)|

= sup
k∈S
|bk|

∞∑
j=1

(
|q̂ij|

n∑
k=1

|p̂jk(t)|

)

≤ sup
k∈S
|bk|

∞∑
j=1

|q̂ij|

≤ sup
k∈S
|bk|(2q̂i).
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Then, in (7.9), the Bounded Convergence Theorem implies that

∞∑
j=1

q̂ijcj(T ) = −
∫ T

0

[
∞∑
k=1

bkp̂
′
ik(t)

]
dt

= −
∫ T

0

[
lim
n−→∞

gn(t)
]
dt

= − lim
n−→∞

∫ T

0

[
n∑
k=1

bkp̂
′
ik(t)

]
dt

= − lim
n−→∞

n∑
k=1

∫ T

0

[bkp̂
′
ik(t)] dt

= −
∞∑
k=1

bk

∫ T

0

[p̂′ik(t)] dt

=
∞∑
k=1

bk [p̂ik(0)− p̂ik(T )]

=
∞∑
k=1

bk [δik − p̂ik(T )] . (7.10)

Note that

∞∑
k=1

|bkδik| = |bi| <∞

and

∞∑
k=1

|bkp̂ik(T )| ≤ sup
k∈S
|bk|

∞∑
k=1

|p̂ik(T )| ≤ sup
k∈S
|bk| [1] < ∞.

Hence
∞∑
k=1

bk [δik − p̂ik(T )] =
∞∑
k=1

bkδik −
∞∑
k=1

bkp̂ik(T ). Then, in (7.10), we have

∞∑
j=1

q̂ijcj(T ) =
∞∑
k=1

bk [δik − p̂ik(T )]

=
∞∑
k=1

bk [δik]−
∞∑
k=1

bk [p̂ik(T )]
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= bi −
∞∑
k=1

bk [p̂ik(T )] . (7.11)

We claim that the functions
∞∑
j=1

q̂ijcj(t) and
∞∑
k=1

bk [p̂ik(t)] are continuous on [0, T ]. It is done

if one of them is continuous. Since p̂ik(t) is continuous, then so is the function

hn(t) :=
n∑
k=1

bkp̂ik(t), t ∈ [0, T ].

We want so show that hn(t) −→
∞∑
k=1

bk [p̂ik(t)] as n −→∞ uniformly on [0, T ]. Note that

∞∑
k=1

|bkp̂ik(t)| ≤ sup
k∈S
|bk|

∞∑
k=1

|p̂ik(t)| ≤ sup
k∈S
|bk| <∞.

This implies that hn(t) converges to
∞∑
k=1

bk [p̂ik(t)] on [0, T ]. Since [0, T ] is compact, then the

convergence is uniform. Therefor,
∞∑
k=1

bk [p̂ik(t)] is continuous on [0, T ] for all T > 0.

In view of (7.7), the limit lim
T−→∞

cj(T ) exists (see, for example, Theorem 10.33 Apostol

(1974)). Let cj := lim
T−→∞

cj(T ). It follows from (7.7) that cj is bounded.

In view of (7.11), we have from (7.2) that

∞∑
j=1

q̂ijcj = lim
T−→∞

[
∞∑
j=1

q̂ijcj(T )

]

= lim
T−→∞

[
bi −

∞∑
k=1

bk [p̂ik(T )]

]

= bi − lim
T−→∞

[
∞∑
k=1

bk [p̂ik(T )]

]

= bi −
∞∑
k=1

bkπk

= bi.

This completes the proof.
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