University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

5-1-2021

Addressing Diversity, Equality, Inclusion and Discrimination By
Modeling, Selecting and Ordering Actions

Praneeth Keshav Madabhushi
University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

6‘ Part of the Computer Sciences Commons

Recommended Citation

Madabhushi, Praneeth Keshav, "Addressing Diversity, Equality, Inclusion and Discrimination By Modeling,
Selecting and Ordering Actions" (2021). Theses and Dissertations. 2696.

https://dc.uwm.edu/etd/2696

This Thesis is brought to you for free and open access by UWM Digital Commons. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more
information, please contact scholarlycommunicationteam-group@uwm.edu.

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2696&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=dc.uwm.edu%2Fetd%2F2696&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2696?utm_source=dc.uwm.edu%2Fetd%2F2696&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunicationteam-group@uwm.edu

ADDRESSING DIVERSITY, EQUALITY, INCLUSION AND DISCRIMINATION BY

MODELING, SELECTING AND ORDERING ACTIONS

by

Praneeth Keshav Madabhushi

A Thesis Submitted in
Partial Fulfillment of the

Requirement for the Degree of

Master of Science

in Computer Science

at
The University of Wisconsin-Milwaukee

May 2021

ABSTRACT

ADDRESSING DIVERSITY, EQUALITY, INCLUSION AND DISCRIMINATION BY
MODELING, SELECTING AND ORDERING ACTIONS

by
Praneeth Keshav Madabhushi

The University of Wisconsin-Milwaukee. 2021
Under the Supervision of Professor Amol D. Mali

In the current era, Diversity, Equality, and Inclusion (DEI) are often not sufficiently
addressed due to bias against certain people or unjust stereotypes or simply an inadequate
understanding of the value of DEI. Not addressing DEI sufficiently leads to multiple problems
including lawsuits, costly settlements, departure of valuable employees, reduced employee
productivity, shortage of qualified workforce, and unjust hiring, compensation, and work-
distribution practices. Initiatives to address DEI often fail or risk being ineffective. In this thesis,
Food Delivery and Software Company domains are introduced by modeling assignment of
drivers to customers who ordered food, and by modeling hiring and project assignment in
software industry, using Planning Domain Definition Language (PDDL). This thesis is the first
research work to address DEI using fully automated symbolic planning. The experimental
results obtained on multiple instances on the 2 domains show that it is possible to express DEI-
related objectives using PDDL, and get plans conforming to these objectives. Discrimination is
addressed indirectly by nine of the eleven versions of the two domains by enforcing DEI-related
objectives. This work can be extended or adapted for use in other domains involving planning or
scheduling, to address DEI and discrimination in multiple ways at multiple levels, and the
expressive power of PDDL and efficiency of domain-independent as well as domain-specific

planners can be exploited in the process.

TABLE OF CONTENTS

F N =S I ¥ O ST i
LIST OF TABLES ...t bbb bbbttt bbb b %
1. INTRODUCTION ...ttt sttt b bbbt b e e et e st e besbesbenneereas 1
. BACKGROUND ..ottt et b e bbbt e et st benbenbenne e 3
2.1 LITEIAtUIE SUIVEY ...oiiveiiiieite ettt ettt sttt e et e e be st e s aeesteenaeeseesteeneesaeesteeneannenreentens 3
2.2 Planning Domain Definition Language and Metric FF ... 4

. NEW SYMBOLIC PLANNING DOMAINS. ..ottt 6
3.1 Domain 1: FOOA DEIIVEIYooiiiiiiieieees e 7
3.1.1 FOOd DeliVery: VEISION L........cocviiiiiiicie ettt ta et sae e re e 7
3.1.2 FOOU DEIVEIY: VEISION 2.....ceiiiiiiiiiieieie ettt 8
3.1.3 FOOU DElIVEIY: VEISION 3.....ciiiiiiiiiiiiieieiiesie ettt 8
3.1.4 FOOA DEliVEry: VEISION 4.......ociuiiieiieecie ettt sttt re e eare e 9
3.1.5 FOOU DElIVEIY: VEISION 5.ttt 9

3.2 Domain 2: SOftWare COMPANY.......cuiiiiiierierierie ettt bbb 11
3.2.1 SOFtWArE: VEISION L ..ottt ettt be e 12
3.2.2 SOTIWAIE: VEISION 2 ..ottt ee sttt e ta et te e tesreesteeneesneesseenteaneesseeneeenee e 13
3.2.3 SOTIWAIE: VEISION 3 ...ttt te et e s e ste e ereesneenteaneesneeneenee e 16
3.2.4 SOTEWAIE: VEISION 4 ...ttt bbbttt nbenne e 17
3.2.5 SOMWArE: VEISION 5 ...ttt ettt nteaneenneeneenee e 17
3.2.6 SOTIWAIE: VEISION B ..ottt te e ee e steeeeeneesneenteaneesneeneeenee e 17
EXPERIMENTAL RESULTS. ..ottt 21
4.1 FOOU DEIIVEIY: .ottt e et e e e sabeanbeesrbeereea 21
4.2 SOTtWAIrE COMPANY: 1ouiiiiiieiie ettt ettt e et e e sae e e be e s teeebeesseeabeesreeereea 25
TFUTURE WORK ...ttt sttt nt et et st abeaneeneenes 37
. CONCLUSION ...ttt ettt ettt st e e b e e re et et e besbeabeabeereanes 38

T.REFERENGCES ... s 40

8. APPENDICESottt ettt et e aae et e re e ae e e e e nn 41
Appendix A: FOOd Delivery DOMAIN.........ccooviiiiieieiie e 41
RV T 157 o] I PSPPSR 41
RV £ 1] SRS 45
RN 1] T SRS 50

RV T 157 o] I PSPPSR 55
RV £ 10 T SRS SR 61
Appendix B: SOftWAre COMPANYccuiiieiieieiie et e e sre e eesreenee s 71
RV =T 157 o] I PSPPSR 71
RV £ 10 PSSR 84

BV T[] T OSSR 102

RV T €51 o] I SRRSO 110

BV T 1] T OSSR 130

BV T 110 T OSSR 148

LIST OF TABLES

Table 1 Summary of FOOd DeliVErY VEISIONSccviieiieiieie et 11
Table 2 Summary of Software COmMPaNY VEISIONScccceiuieieiieieeiesieseere e e sae e e sre e 20
Table 3 FOOA-DElIVEIY VEISION Lcc.cciiiieiiecie ettt sre e enee e 22
Table 4 FOOU-DElIVEINY VEISION 2c.ocieiieiiecie ettt te et nneeneenee e 22
Table 5 FOOA-DElIVENY VEISION 3cc.ecieiieiie ettt ettt et sreene e 23
Table 6 FOOA-DElIVEINY VEISION 4ocviiieeiee ettt ene e 24
Table 7 FOOA-DElIVEIY VEISION 5cvicieiicie ettt 25
Table 8 Software Company Version 1: Part 1cccocooiiiiiiiiiiieiesesesesesee e 25
Table 9 Software Company Version 1: Part 2 ..o s 26
Table 10 Software Company Version 2: PArt 1cccooeiiiiiiiieieiese s 27
Table 11 Software Company VErsion 2: PArt 2cccooeiiiiiiiiiie e 28
Table 12 Software Company Version 3: Part Lcccoeiiiiiiiiiieiese s 28
Table 13 Software Company Version 3: PArt 2cccooeiiiiiiiiiie e 29
Table 14 Software Company Version 4: PArt 1cccooeiiiiiiiiieieiesese s 30
Table 15 Software Company VErsion 4: PArt 2cccooeiiiiiiiiiie e 31
Table 16 Software Company Version 4: PArt 3cccooeiiiiiiiiie e 32
Table 17 Software Company Version 5: Part Lccccoeiiiiiiiiieiesesesese e 32
Table 18 Software Company Version 5: PArt 2cccoeiiiiiiiiie s 33
Table 19 Software Company Version 5: Part 3cccooeiiiiiiiiieiesesee e 34
Table 20 Software Company Version 6: Part Lccoceiiiiiiiiienesesesese e 34
Table 21 Software Company Version 6: PArt 2cccooeiiriiiiiiieese s 35

Table 22 Software Company Version 6: Part 3

Vi

1. INTRODUCTION

Business organizations which do not implement Diversity, Equality, and Inclusion (DEI), are
more likely to miss out the innovation and global perspective of employees. Most successful
corporate offices in today’s world have more prominence of DEI in the workplace. It is
important to notice the value of engaging and promoting diverse categories of employees as
these employees play a vital role in the reshaping of a company, along with its growth and

sustainability.

Diversity is important because if we look from a business perspective, the product which is
manufactured by a company would be greatly benefited and refined if the product is offered
different perspectives from different backgrounds of employees. For example, in the domain of
Online Education, if the teachers who are hired are from different countries and backgrounds,
then the material covered in their lecture would be more suitable to everyone as it brings a global
perspective in students. Another example is Gaming Industry domain, if the developers are from
diverse cultures, then their thoughts and ideas in gaming might reach a large crowd around the

globe.

Practicing equality in a company ensures that every employee gets access to equal number of
opportunities. If there is no equality, then some employees cannot get along because of overload.

Sometimes it may lead to shortage of people if they leave due to work pressure.

If inclusion is not present, then people will feel out of place in environments where they do not
see many people who look like them. So, this ends up being an obstacle for many people to enter

the industry itself, thereby decreasing the productivity on a large scale. Incorporating inclusion

1

would make every employee feel at ease and accepted by the company which is an important
factor for every organization. In the following chapters, we introduce 2 domains: Food delivery
and Software Company and show that it is possible to incorporate DEI by modelling the domains

using PDDL and evaluating them using Metric-FF planner.

2. BACKGROUND

2.1 Literature Survey

Addressing DEI issues is not a new trend in current organizations. Efforts have already been
made by tech giants. For example, Google has raised $2 million for Black founders to build a
more equitable future [1]. According to Rachael Palmer, Head of VC and Startup Partnerships,
EMEA “Racial disparity has an adverse effect on everyone and can no longer be ignored. Its
damaging effects continue to be reflected in such issues as housing disparities and physical and

mental health outcomes, with limited government resources provided to address the root causes.

[1]”

Not only in tech companies, but even education domains are also subject to having barriers in the
incorporation of DEI. A research study [2] has shown that faculty members have rated male
applicants more favorable than female applicants. It is concluded that the faculty participants
also selected a higher starting salary and offered more career mentoring to the male applicants

when compared to the female applicants selected.

An article on LGBTI [3] and inclusion in private sectors concluded that “Progress will have far-
reaching consequences that go beyond the workplace. Attention to employment is part of the
larger 2030 Agenda for Sustainable Development, as access to work is deeply intertwined with
socio-economic empowerment and the ability to participate in the public sphere. Addressing
inequality in the workplace will help to achieve other Sustainable Development Goals including
gender equality, decent work and economic growth, and reduced inequalities throughout

society.”

A research showed that due to a lack of female STEM students, the Information and
Communication Technology sector in Spain is experiencing a skill shortage in the workplace [4].
To these issues, Elizabeth Borneman [5] proposed Digital clinical simulations as a possible
solution to the problem of teaching about DEI problems in large-scale educational experiences

such as open online courses that are accessible to massive populations.

A survey [6] provided qualitative data on policies aimed at closing the gender gap in the United
Kingdom. They provided recommendations like creating programs that encourage female
students to pursue engineering at an early age, improving the exposure of women as role models
through various social media platforms such as Facebook, Twitter, and technology-related

forums.

According to a recent report [7] by American Bar Association, female lawyers reported that they
originated more work than some male colleagues but were paid less. The report also documented
troubling stories of discrimination that were faced by women working in law firms and claimed
thar “Both women who stayed and women who left practice spoke of blatantly unfair
compensation systems that are rife with gender bias.” These incidents give a motivation to

develop a working prototype that contributes towards DEI incorporation.

2.2 Planning Domain Definition Language and Metric FF

Planning Domain Definition Language (PDDL) is a general-purpose definition language that is
useful for designing and modelling a planning or scheduling problem [8]. It was first described
for the AIPS-98 planning competition and was later improvised and made efficient to solve more

complicated tasks that require expressing time constraints and has time-dependent effects [9].

Now we need a planning system that can find plans based on the instructions given in PDDL. For
that purpose, we choose Metric-FF planner. It was developed by Joerg Hoffmann [10] as an
extension of standard FF planner [11], that allows numerical state variables. So first we model

the problem in PDDL and then run the planner to find a plan that reaches our given goal state.
For modelling a problem, we need two types of files:

1. Domain file: This file describes the definitions of all the actions/operators required to
find a plan. We also define all the predicates and functions that are required for each
action. For a single domain file, there can be more than one problem file associated with
it. So, the domain file for a problem should remain independent of the problem files
related to it.

2. Problem file: This file consists of the initial state and goal state along with metric
constraints to be reflected in the resulting plan found by the planner. Initial state and goal
state are defined using the predicates (true or false variables) that are declared in

predicates section of the domain file.

3. NEW SYMBOLIC PLANNING DOMAINS

To address the issues related to DEI, in this Chapter, we introduce two innovative planning

models for the following two domains — Food Delivery and Software Company. Each domain is

modelled in 5 versions using PDDL. The Software Company domain is also modelled in one

extra version.

Version 1: This is the base version of each domain. This domain file does not consider
diversity or equality or inclusion. The planner simply finds a plan to achieve the goal
state.

Version 2: This version of the domain is concerned about diversity. The domain file is
designed in such a way that whenever a planner tries to find a plan, it is forced to
maximize diversity in the process of achieving the goal state.

Version 3: This version of the domain is more about ensuring equality in the plan to be
found.

Version 4: This version of the domain ensures diversity and equality in the resulting plan.
Extreme cases of version 2 are avoided in this version.

Version 5: This version of the domain ensures diversity, equality, and inclusion in the
resulting plan.

Version 6 (Software Domain) : This version is used to overshadow the limitations of
version 5 in handling edge cases. Description of each version in detailed in presented in

the following sections.

3.1 Domain 1: Food Delivery

In this domain, there are drivers for delivering food and customers who can place an order.
Drivers can be of different skin-colors (like black drivers and white drivers), similarly customers
can also belong to various skin-colors and race. Any driver can deliver food to any customer,
with one order at a time. In a single instance, one customer can place only one order, but one
driver can deliver for more than one customer in total. Actions related to this domain are about
assigning an order of a customer to a driver and delivering an order by a driver. The

implementation of these actions varies for each version (mentioned above).

If a food delivery company wants to train their drivers about handing over the order to a
customer, then such domain implementation would be of perfect use. If drivers are exposed to
delivering and handing over the orders to customers who come from several different
backgrounds, then definitely there will be an improvement in quality of service because drivers
will know how to approach people in a better way due to diversity exposure in their assigned

orders.

3.1.1 Food Delivery: Version 1

This is a basic version of food delivery which assigns orders from customers to drivers using 3

operators. Two operators are about assigning, and one is about delivering.

Both assigning actions assign a customer ‘d’ with driver ‘k’. If the customer-driver pair in the
resulting plan is diverse, then it should have been done using Assign-Enforce-diversity action,

else using Assign-without-diversity.

Deliver-Order action implicates using predicates that a driver ‘k’ has delivered for customer ‘d’
and makes the driver ‘k’ available for next order.

7

3.1.2 Food Delivery: Version 2

In this version, diversity in the customer-driver relationship is maximized for the resulting plan.
The presence of differences in the entities used in an action would give diversity. In this case, the
entities are drivers and customers. For example, if a plan has actions such that black drivers
deliver food to white customers and white drivers deliver food to black customers, then such

plans promote acceptance of diversity.
Along with deliver-Order action, to ensure maximum diversity, we have 2 operators:

1. Assign-order-without-diversity: This operator is for assigning an order of customer ‘d’ to a
driver ‘K’ if the < d, k > pair is not diverse, and there does not exists another driver ‘t” such that
‘t’ is waiting to be assigned and < d, t > is diverse. This condition makes sure that a non-diverse
pair is formed only when there is no diverse pair possible in that state. Now, whether a pair is
diverse or not depends on the skin-color of customer and driver. The effects of this operator

would set true value for respective predicates like assigned-driver-customer ?d ?k.

2. Assign-Enforce-diversity: This operator assigns an order from customer ‘d’ to driver ‘k’ if the

‘k’ is waiting to be assigned and < d, k > form a diverse pair.

3.1.3 Food Delivery: Version 3

This version makes sure that all orders from customers are assigned in balanced way such that
number of orders assigned for each driver is less than the ratio of total number of customers to
total number of drivers. To get the count for the number of customers given in the initial state,
we introduced an action that initializes the number of customers. Using this count, we can find
the ratio, and use this ratio in the preconditions of assignment operators such that any driver ‘t’

who is to be assigned to a customer ‘d’ should have their respective driver load less than the

8

ratio. This makes ensures equality in the resulting plan by choosing appropriate drivers who

satisfy the equality condition for a given action.

3.1.4 Food Delivery: Version 4

This version is a combination of 3.1.2 and 3.1.3. It has two variants of assignment operators as

the following:

1. Assign_Enforce_Equality: This action assigns the order of customer ‘d’ to driver ‘k’ if they do
not form a diverse pair ,and there does not exist another driver ‘t” such that < d,t > form a
diverse pair and number of orders assigned to driver ‘t’ is lesser than customer_count/
driver_count. This ensures that equality is enforced in the non-diverse pairs of assignments in

the plan which used this action.

2. Assign_Enforce Diversity Equality: This action assigns the order of customer ‘d’ to driver
‘k’ if they form a diverse pair, and the driver load for ‘k’ is less than customer_count/

driver_count.

3.1.5 Food Delivery: Version 5

A plan promotes inclusion if people with different identities are part of the action. Inclusion is
not a byproduct of diversity, in fact, having a diverse plan does not mean that it is inclusive as
well. If a plan has actions which makes sure that drivers belonging to minority are also included
in the assignment, then that plan is enforced with inclusion. So, in this version, we add a
predicate ‘belongs-to-majority’ to achieve this goal. It has the following variants of assigning

orders operators:

1. Assign-Enforce-D-E-I: If a plan includes this action, then the customer-driver pair is both
diverse and inclusive. This action also makes sure that equality is taken into consideration by
comparing driver load with the customer_count/driver_count. In the effects, diversity count

as well as inclusivity count functions are incremented.

2. Assign-Enforce-D-E: If a plan includes this action, then the customer-driver pair is diverse,
but not inclusive i.e., driver must belong to majority. Again, equality is enforced during the

driver assignment. The effect of the operator increases diversity count.

b

3. Assign-Enforce-I-E: This action assigns an order from customer ‘d’ to driver ‘k” when the
customer-driver pair is not diverse, but inclusive because driver ‘k’ does not belong to majority,
along with maintaining the equality constraint. The effects include increasing the inclusivity

count.

4. Assign-Enforce-Equality: This action is used when no action related to diversity and inclusion

is not possible to be enforced.

V1 Base version (DEI not enforced for the purpose of comparison with other versions)

V2 Diversity enforced.
Requiring the driver’s skin color to be different from the assigned customer’s skin

color in as many <customer, driver> pairs as possible.

V3 Equality enforced.
Requiring that number of customers assigned to each driver before assigning is less
than the ratio of total number of customers to the total number of drivers (upper

bound)

10

V4 DE enforced
Requiring the driver’s skin color to be different from the assigned customer’s skin
color in as many <customer, driver> pairs as possible along with maintaining an

upper bound for the number of customers assigned to each driver.

V5 DEI enforced

Requiring the driver’s skin color or race to be different from the assigned
customer’s skin color or race and driver belonging to minority in as many
<customer, driver> pairs as possible along with maintaining an upper bound for the

number of customers assigned to each driver.

Table 1 Summary of Food Delivery versions

3.2 Domain 2: Software Company

In this domain, there are applicants who are to be hired for given openings in a software
company, and there are projects that are to be assigned to the hired applicants. An applicant may
belong to different race, gender, color, etc. For every applicant, the number of years of
experience and the highest degree obtained by that applicant is used for hiring. Applicants are
considered based on the title for which they applied, and the minimum experience required to be
hired for that title. Each applicant can apply only for one title. The number of openings for each

title is given in the initial state, and the resulting plan should hire until all openings are filled.

If an applicant is hired, then that applicant can be assigned to various projects. The number of
projects along with number of people required for each title of that project is given in the initial

state of each problem file.

11

It is assumed that the number of qualifying applicants for a position is at least as that of the
number of openings for that positions, which means that all openings for a title must be filled.
Also, if a title requires an experience of ‘n’ years for a candidate with bachelors, then a candidate
with master’s degree for the same title would require n-2 years of experience, and a candidate

with a PhD would require n-5 years of experience.

3.2.1 Software: Version 1

In this version of Software domain, applicants are hired till all openings for every title is filled
using Hiring_Round operator and then assign the hired applicants to projects as required. Every
hiring operator hires for an applicant ‘d’ for title ‘t” only if the number of openings for that title
is greater than 0 and the applicants desired title is same as ‘t’. So, to achieve these, we used the

following operators:

1. Initialize: Before performing the Hiring action, functions that are related to number of
applicants, number of projects and the number of years of experience required for masters and
PhD are computed in the initialize operator. We also decide whether an applicant belongs to
minority or majority. If an applicant is white, straight, European-American-Non-Hispanic, and
not disabled then that applicant comes under majority. All other type of applicants come under

minority.

2. Hiring_Round: In this operator, an applicant ‘d’ is hired for title ‘t’ if the number of openings
for the title ‘t’ is greater than 0, applicant’s desired title is same as ‘t’, applicant experience is
greater than or equals to the minimum experience required for the title and the applicant is not
already hired. If these conditions are met, then the applicant is hired and the number of openings

for that title is decreased by 1 and the count of number of people hired is increased by 1.

12

3. Initialize-after-hiring: In this operator, when all openings for each title is filled, then for every

applicant who is hired, we initialize the number of projects assigned to that employee to 0.

4. Assign-projects: After initializing-after-hiring, the planner can apply Assign-projects operator
to achieve the goal of assigning projects to each of the hired employee till requirements are met.
An applicant ‘d’ is assigned to project ‘p’ if the applicant is hired, not previously assigned to the
project ‘p’, applicant’s desired title has an opening in that project, i.e., number of required

applicants for a project ‘p’ of title ‘t’ is greater than 0 and applicant’s desired title is also ‘t’.

5. Mark-completion-of-assigning: This operator is used to confirm whether all project

requirements are met by assigning required number of hired applicants for each title respectively

3.2.2 Software: Version 2

In this version, the hiring of applicants and assigning of projects is done diversely, i.e., the
resulting plan after running this domain is such that, from the given group of applicants who are
to be hired, every opening for a title is filled such that the applicant who is being hired makes a
maximum presence of difference in race, color when compared to the applicants who are already
hired for that title. For example, there are applicants D1 who is white, D2 who is white, and D3
who is black, and all of them are qualifying and apply for a title ‘t’ with 2 openings, then hiring
D1 and D3 or D2 and D3 would promote maximum diversity when compared to hiring of D1

and D2.

To achieve this, we implement the hiring as well assigning in two rounds. In Round 1 of Hiring,
all applicants for a title are hired such that they create maximum presence of difference (like
above example), and in Round 2, if there are still titles left to be hired after round 1, then

applicants are hired even though they do not make a difference in diversity. Similarly, in Round

13

1 of Assigning, every title of each project is hired such that it enforces maximum diversity, and

the remaining openings of each title for all projects are filled in round 2.

So, to achieve the above in the plan, this version of domain has the following variants of Hiring

and Assigning operators:

1. Hiring_Round_1_Diversity: This action hired an applicant ‘d’ for the title ‘t’ if the applicant is
qualifying, number of openings for that title is greater than 0 and the applicant should satisfy the
diverse condition, i.e., if applicant ‘d’ has to be hired, then there should not exists another
applicant ‘c’ such that ‘c’ is hired for the same position and race, skin-color of applicant ‘c’ is
same as that of applicant ‘d’. This ensures that in round 1, no two applicants are hired for a title
such that they have same race and skin-color. The effects include increasing diversity count and

decreasing number of openings for that title.

2. Preparing_for_Hiring_Round_2: This is an action that is used to indicate the planner whether
is time for round 2 of hiring or not. So, this an empty action which is only used for checking
purpose. The main intention of action is to hold to the planner from using Hiring_Round_2 till
the best possible diverse group of applicants is hired for a title in round 1. To do so, we use a

predicate named ‘qualified for hiring round 2’ for every qualifying and unhired applicant.

An applicant ‘d’ is qualified for hiring in round 2 only if the applicant is currently not hired and
there exists an applicant ‘c’ such that ‘¢’ is hired and applicant ‘c’, applicant ‘d’ does not form a
diverse pair, i.e., ‘¢’ and ‘d’ have same race and skin-color. Now, we can use the predicate
‘qualified for hiring round 2’ for determine if round 2 for a title is necessary or not. For a title

to be eligible for round 2, there should not exist an applicant who is not hired for that title and is

14

not qualified for hiring in round 2. In this way, we can force the planner to use

Hiring_for_Round_1 if it possible.

3. Hiring_ Round 2: This action is used by the planner to hire an applicant ‘d’ for a title ‘t’ if the
applicant is qualified for round 2 and the title ‘t’ requires a round 2 for hiring, along with

satisfying the applicant desired title and number of openings for that title constraints.

4. Mark-completion-of-hiring: When this operator is used, it indicates that all required applicants

are hired for a title ‘t’ i.e., number of openings for each title should be 0 after hiring.

5. Initialize-after-hiring: This action is invoked after Mark-completion-of-hiring as there is a
precondition to this operator that all openings must be filled. The effect in this operator includes

initializing the number of projects assigned to each applicant who is hired(employee) to 0.

6. Assign-projects-round-1-diversity: This operator should be used when hiring is completed. So,
initializing after hiring is a precondition for this action. This action assigns an application ‘d’ to a
project ‘p’ if ‘d’ is hired, number of applicants with title ‘t’ required is greater than 0, applicant is
previously not assigned to this project ‘p’, applicant’s desired title is ‘t” and there does not an

3 2 ()

applicant ‘c’ such that ‘c’ is already hired and assigned to project ‘p’, ‘c’ and ‘d’ have same race

b

and color. This ensures that applicant ‘d’ is assigned to ‘p’ only if assigning ‘d’ increases

diversity within the group of hired applicants who are already assigned to the project ‘p’.

7. Preparing_for_Assigning_Round_2: This action has similar functionality to that of
Preparing_for_Hiring_Round_2. But in this case, it checks whether a hired applicant is qualified
for round 2 assigning or not. A hired applicant ‘d’ is qualified for round 2 of assigning in a
project ‘p’ if there exists another hired applicant ‘c’ such that ‘c’ is assigned to project ‘p’ and

b

‘c’, ‘d’ pair has same race and color i.e., assigning ‘d’ to project ‘p’ does not increase the

15

diversity in the group of people assigned to project ‘p’. After checking for each applicant, we can
use that information to check whether a project ‘p’ needs round 2 or not for assigning. So, if
there does not exist an applicant ‘d’ such that ‘d’ is hired, not assigned to project ‘p’ and does not
qualify for round 2 of assigning, then project ‘p’ requires to go for round 2, that is represented

using the predicate ‘project for round 2’.

8. Assign-projects-round-2: This action is used by the planner to assign projects to hired
applicants in round -2 if there are still requirements for applicants in a project ‘p’ for a title ‘t’
after round 1. The fact that this action is used only after round 1 is guaranteed by the predicates
‘qualified for round 2 assigning” and ‘project for round 2° which are computed in

Preparing_for_Assigning_Round_2 action.

3.2.3 Software: Version 3

In this version, the focus of implementation is only on enforcing equality in number of projects
assigned to each applicant who is hired. So, in this case, the gender, race, skin-color, etc. does
not matter. The implementation logic for hiring part remains same as that of version 1, and

changes are needed for assigning operator.

We introduce an upper-bound on the number of projects that are to be assigned for a hired
applicant. Each hired applicant for title ‘t’ is assigned to a project ‘p” when that applicant is not
previously assigned to ‘p’, and ‘p’ still has a requirement for ‘t’. Along with that, we also check
the following upper bound for that applicant: number of projects assigned to an employee should
be less than the ratio of total number of required applicants for a title from each project to the
total number of applicants hired for that title. This ensures that an employee does not get unfair

advantage over others regarding the number of projects assigned.

16

In the Mark-completion-of-assigning operator, a lower bound condition is used to ensure that
each applicant can be assigned with a number of projects such that those number of projects is
greater than the ratio of total number of required applicants for a title from each project to the
total number of applicants hired for that title minus one. This ensures that every applicant who is
hired is assigned with a project whenever total number of required applicants for a title from

each project is greater than or equal to number of hired applicants for that title.

3.2.4 Software: Version 4

This version is a combination of version 2 and version 3. The upper bound and lower bound
conditions on the number of projects to be assigned for a hired applicant used in version 3 is used
in the assignment operators of version 2. This helps in achieving the goal of enforcing diversity

along with equality in the domain.

3.2.5 Software: Version 5

In this version, inclusion is incorporated along with diversity and equality. So, an applicant’s
gender, sexual-orientation and disabilities also matter in this version for hiring and assigning. We
take the count of number of people from minority and number of people from majority that are

hired for assessing the inclusion metric in this version.

3.2.6 Software: Version 6

One limitation of Version 4 and Version 5 is that in some cases it may return a biased plan. For
example, if 25 software engineers need to be hired and there are 25 black applicants and 25 white
applicants such that all of them have same race, skin-color, gender, sexual-orientation, and
disabilities, then the first round of hiring will hire 1 black applicant and one white applicant as it

enforces diversity, but the second round may hire 23 out of the remaining 24 white applicants.

17

So, the set of hired people includes just 1 black person and 24 white persons, there by creating a

bias in the resulting plan.

To address this issue, we introduce Recommended Minimum Acceptance Rates (RMAR) for
minority ‘k1’ and majority ‘k2’. The acceptance rates for minority and majority need not be
equal, since one will want to hire a higher fraction of minority applicants if there are very few of
them and hire a smaller fraction of applicants belonging to majority if there are many of them.
But we cannot create goal that is unsatisfiable. We cannot say that more people than needed

should be hired or keep openings unfilled.

Now we introduce the following implication that must be checked for title after every opening is

filled:

If (k1* MNA + k2 * MJA) <= (total no. of openings for the title) then,

(k1 * MNA - 1) <= MNH and (k2 * MJA - 1) <= MJH

where, MNA is the no. of minority applicants for a title, MJA is the no. of majority applicants for
the same title, MNH is the no. of minority applicants hired for the title and MJH is the no. of

majority applicants hired for the title found in the resulting.

The computations of MNA and MJA are done in count_minority _majority_applicants operator
whereas the checking of the above constraint is done using an operator named Mark-

Completion-of-Checking-acceptance.

18

V1

Base version (DEI not enforced for the purpose of comparison with other versions)

V2

Diversity enforced

Requiring that the applicants are hired for each title and assigned for each project
such that presence of difference is maximum.

In round 1 of hiring, an applicant is hired for a title if that applicant is qualifying and
adds to the diversity among the applicants who are already hired for that title.
Remaining applicants are hired in round 2 if required.

In round 1 of assigning, an applicant is assigned to a project if that applicant is hired
and adds to the diversity among existing applicants in that project. Remaining

applicants are assigned to projects in round 2 if required.

V3

Equality enforced

Requiring that the number of projects assigned to a hired applicant should be less
than the ratio of total number of required applicants for a title from each project to
the total number of applicants hired for that title (upper bound).

Also, there should not exist an applicant such that the number of projects assigned to
an applicant is not lees than the ratio of total number of required applicants for a title
from each project to the total number of applicants hired for that title minus one

(lower bound).

V4

DE enforced
Requiring applicants to be hired and assigned diversely based on race, skin color as
much as possible without violating the upper bound and lower bound on the number

of projects assigned.

V5

DEI enforced

19

Requiring applicants to be hired and assigned diversely based on race, skin color,
gender, disabilities, and sexual orientation with inclusion of minority applicants as
much as possible without violating the upper bound and lower bound on the number

of projects assigned.

V6

DEI enforced with control over hiring rates for majority and minority.
Given Recommended Minimum Acceptance Rates (RMAR) for minority ‘k1’ and
majority ‘k2’, it requires at least k1 percent of qualified minority applicants and k2

percent of qualified majority applicants to be hired.

Table 2 Summary of Software Company versions

20

4. EXPERIMENTAL RESULTS

Metric-FF-v2.1 planner was used to output the plans using domain and problem files. It is
installed on Ubuntu 20.04.2 LTS 64-bit Operating system, with Intel® Core™ i7-8565U CPU @

1.80GHz processor, and 12GB RAM.

In every table, DEI metrics should be observed to evaluate the results of each version. The
change of these metrics from version to version highlights the robustness and significance of

every version. All CPU times in the results are in seconds.

4.1 Food Delivery:

Each domain file is run with 10 problem instances. The insights from each plan are tabulated

below:
Name of <Customers, Number of actions | CPU time needed | Diversity
Problem file Drivers > in the plan found | to find the plan Metric
P1 <6,3> 12 0.01 2
P2 <5,2> 10 0.00 2
P3 <10,4> 20 0.00 7
P4 <5,6> 10 0.00 3
P5 <14,7> 28 0.00 10
P6 <16,4> 32 0.00 10
P7 <15,4> 30 0.00 10
P8 <9,5> 18 0.00 6

21

P9 <6,2> 12 0.00
P10 <12,6> 24 0.00
Table 3: Food-Delivery Version 1
Name of Problem | <Customers, Number of actions | CPU time needed | Diversity
file Drivers > in the plan found to find the plan Metric
P1 <6,3> 12 0.01 6
P2 <5,2> 10 0.00 5
P3 <10,4> 20 0.00 10
P4 <5,6> 10 0.00 5
PS5 <14,7> 28 0.01 14
P6 <16,4> 32 0.00 16
P7 <15,4> 30 0.00 15
P8 <9,5> 18 0.00 9
P9 <6,2> 12 0.00 6
P10 <12,6> 24 0.00 12

Table 4: Food-Delivery Version 2

22

Name of <Customers, | Number of CPU time Minimum no. | Maximum
problem file | Drivers> actions in needed of customers | no. of
plan found per driver in | customers
the plan per driver in
found the plan
found

P1 <6,3> 14 0.02 2 2

P2 <5,2> 12 0.00 2 3

P3 <10,4> 22 21.97 2 3

P4 <5,6> 12 0.00 0 1

PS5 <14,7> 29 0.00 2 2

P6 <16,4> 33 0.00 4 4

P7 <15,4> 31 0.03 3 4

P8 <9,5> 19 0.00 1 2

P9 <6,2> 13 0.00 3 3

P10 <12,6> 25 0.01 2 2

Table 5: Food-Delivery Version 3
Name of <Customers, | Number of | CPUtime | Minimum Maximum Diversit
problem Drivers> actions in needed no. of no. of y
file plan found customers customers metric
per driver per driver

P1 <6,3> 13 0.00 2 2 6

23

P2 <5,2> 11 0.00 2 5
P3 <10,4> 21 0.00 1 10
P4 <5,6> 11 0.00 0 5
P5 <14,7> 29 0.00 2 14
P6 <16,4> 33 0.00 4 16
P7 <15,4> 32 0.00 3 15
P8 <9,5> 18 0.00 1 9
P9 <6,2> 12 0.00 2 6
P10 <12,6> 24 0.00 1 12
Table 6: Food-Delivery Version 4

Name <Customers, | Number | CPU Minimum Maximum | Diversity | Inclusivity
of Drivers> of time no. of no. of metric metric
instance actions | needed | customers customers
file in plan per driver in | per driver

found the plan in the plan

found found

P1 <6,3> 13 0.00 2 2 5 2
P2 <5,2> 12 0.00 2 3 4 3
P3 <10,4> 21 0.01 1 3 4 9
P4 <5,6> 11 0.01 0 1 4 4
P5 <14,7> 29 0.07 2 2 12 10
P6 <16,4> 33 0.01 4 4 13 12

24

P7 <15,4> 31 0.00 3 4 13 11
P8 <9,5> 19 0.00 1 2 7 7
P9 <6,2> 13 0.00 3 3 6 3
P10 <12,6> 25 0.00 2 2 11 6
Table 7: Food-Delivery Version 5
4.2 Software Company:
Name of the | No. of No. of No. of No. of
instance file minority majority minority majority
applicants applicants applicants applicants
hired as SE hired as SE hired as hired as
Manager Manager
P1 1 1 1 0
P2 2 2 2 0
P3 2 1 0 1
P4 4 0 1 1
P5 5 0 2 0
P6 2 1 1 0
P7 2 1 1 0
P8 3 0 1 1
P9 1 2 1 0
P10 2 2 2 0

Table 8 Software Company Version 1: Part 1

25

Name of the No. of No. of No. of actions | CPU time Diversity
instance file minority majority in the plan needed to find | metric

applicants applicants found the plan

hired as Senior | hired as Senior

Manager Manager
P1 n/a n/a 15 0.00 2
P2 n/a n/a 17 0.00 4
P3 n/a n/a 17 0.00 3
P4 n/a n/a 18 0.00 4
P5 n/a n/a 19 0.00 4
P6 1 0 16 0.00 4
P7 0 1 18 0.00 3
P8 0 1 21 0.00 3
P9 n/a n/a 13 0.00 3
P10 n/a n/a 17 0.00 4

Table 9 Software Company Version 1: Part 2

Name of the | No. of No. of No. of No. of
instance file minority majority minority majority

applicants applicants applicants applicants

hired as SE hired as SE hired as hired as

Manager Manager

P1 2 1 1 0

26

P2 3 1 2 0
P3 2 1 1 0
P4 3 1 0 2
P5 4 1 2 0
P6 3 0 1 0
P7 2 1 1 0
P9 2 1 1 0
P10 3 1 2 0
Table 10 Software Company Version 2: Part 1

Name of the No. of No. of No. of actions | CPU time Diversity
instance file minority majority in the plan needed to find | Metric

applicants applicants found the plan

hired as Senior | hired as Senior

Manager Manager
P1 n/a n/a 15 0.63 4
P2 n/a n/a 17 3.81 6
P3 n/a n/a 19 0.65 4
P4 n/a n/a 20 54.58 5
P5 n/a n/a 21 908.59 5
P6 0 1 16 9.28 5
P7 0 1 18 107.50 5
P9 n/a n/a 13 0.52 4

27

P10 n/a n/a 17 5.53 6
Table 11 Software Company Version 2: Part 2
Name of the | No. of people | No. of people | No. of people | Min. no. of Max. no. of
instance file hired as hired as hired as projects per projects per
Software managers senior software software
engineers managers engineer in engineer in
the plan the plan
found found
P1 3 1 n/a 1 2
P2 4 2 n/a 1 2
P3 3 1 n/a 2 2
P4 4 2 n/a 1 2
PS 5 2 n/a 1 2
P6 3 1 1 1 2
P7 3 1 1 2 3
P8 3 2 1 2 3
P9 3 1 n/a 1 2
P10 4 2 n/a 1 2

Table 12 Software Company Version 3: Part 1

28

Name of Min. no. of | Max. no. of | Min. no. of | Max. no. of | No. of CPU

the instance | projects per | projects per | projects per | projects per | actions in time

file manager in | manager in | senior senior the plan needed to
the plan the plan manager in | manager in | found find the
found found the plan the plan plan

found found

P1 2 2 n/a n/a 15 0.01

P2 1 1 n/a n/a 17 0.02

P3 2 2 n/a n/a 17 0.01

P4 1 1 n/a n/a 18 0.04

PS 1 1 n/a n/a 19 0.17

P6 1 1 1 1 16 0.01

P7 1 1 1 1 18 0.21

P8 1 1 2 2 21 1.06

P9 1 1 n/a n/a 13 0.00

P10 1 1 n/a n/a 17 0.02

Table 13 Software Company Version 3: Part 2

29

Name of | No. of No. of No. of No. of No. of No. of majority
instance | minority majority minority majority minority applicants hired
file applicants | applicants | applicants | applicants | applicants | as Senior
hired of SE | hired as hired as hired as hired as Manager
SE Manager Manager | Senior
Manager
P1 2 1 0 n/a n/a
P2 3 2 0 n/a n/a
P3 2 0 1 n/a n/a
P4 2 1 1 n/a n/a
P5 2 1 1 n/a n/a
P6 2 1 0 1 0
P7 2 1 0 0 1
P9 2 1 0 n/a n/a
P10 3 2 0 n/a n/a
Table 14 Software Company Version 4: Part 1

Name of Min. no. of | Max. no. of | Min. no. of | Max. no. of | Min. no. of | Max. no. of
instance projects per | projects per | projects per | projects per | projects per | projects per
file software software manager in | manager in | senior senior

engineer in | engineer in | the plan the plan manager in | manager in

the plan the plan found found the plan the plan

found found found found

30

P1 1 2 2 n/a n/a
P2 1 1 1 n/a n/a
P3 1 2 2 n/a n/a
P4 1 1 1 n/a n/a
P5 1 1 1 n/a n/a
P6 2 1 1 1 1

P7 2 1 1 1 1

P9 1 1 1 n/a n/a
P10 1 1 1 n/a n/a

Table 15 Software Company Version 4: Part 2

Name of instance file | No. of actions in the | CPU time needed to | Diversity count
plan found find the plan
P1 15 0.95 4
P2 17 4.69 6
P3 19 0.56 4
P4 20 46.66 4
P5 18 805.27 5
P6 16 8.95 5
P7 18 88.04 5
P9 13 0.49 4

31

P10 17 3.77 6
Table 16 Software Company Version 4: Part 3

Name No. of | No. of | No. of No. of | No. of | No. of

of minority | majority | women, minority | majority | women,

instance | applicants | applicants | transgender, | applicants | applicants | transgender,

file hired of | hired as | disabled, or | hired as | hired as | disabled, or

SE SE gay people | Manager | Manager | gay people
hired as SE hired as
Manager

P1 2 1 2 1 0 1

P2 3 1 2 2 0 1

P3 2 1 2 0 1 1

P4 1 2 2 1 1 1

P5 4 1 4 1 1 0

P6 2 1 3 1 0 0

P7 1 2 1 1 0 1

P9 2 1 3 1 0 1

P10 3 1 3 2 0 0

Table 17 Software Company Version 5:

32

Part 1

Name | No. of | No. of | No. of women, | Min. no. of | Max. no. of
of minority | majority | transgender, projects per | projects per SE in
instance | applicants | applicants | disabled, or gay | SE in the | the plan found
file hired as | hired as | people hired as | plan found
Senior Senior Senior Manager
Manager | Manager
P1 n/a n/a n/a 1 2
P2 n/a n/a n/a 1 2
P3 n/a n/a n/a 2 3
P4 n/a n/a n/a 1 2
P5 n/a n/a n/a 1 2
P6 1 0 1 1 2
P7 0 1 0 2 3
P9 n/a n/a n/a 1 2
P10 n/a n/a n/a 1 2
Table 18 Software Company Version 5: Part 2
Name of Min. no. Max. no. Min. no. Max. no. No. of CPU Diversity
instance of projects | of projects | of projects | of projects | actions | time count
file per per per senior | per senior | in the needed
manager manager manager manager plan to find
the plan
P1 2 2 n/a n/a 15 0.74 4

33

P2 1 1 n/a n/a 17 3.83 6
P3 2 2 n/a n/a 17 0.82 4
P4 1 1 n/a n/a 16 41.09 5
PS 1 1 n/a n/a 19 841.67 |7
P6 1 1 1 1 16 8.31 5}
P7 1 1 1 1 18 84.87 5}
P9 1 1 n/a n/a 13 0.54 4
P10 1 1 n/a n/a 17 7.48 6
Table 19 Software Company Version 5: Part 3
Name |K1,K2 |No. of |No. of | No.of No. of | No. of | No.of
of minority | majority | women, minority | majority | women,
instance applicants | applicants | transgender, | applicants | applicants | transgender,
file hired of | hired as | disabled, or | hired as | hired as | disabled, or
SE SE gay people | Manager | Manager | gay people
hired as SE hired as
Manager
P1 0503 |1 1 1 1 1 1
P2 06,02 |3 2 3 n/a n/a n/a
P3 07,02 |1 1 1 0 1 0
P4 05,06 |0 2 0 0 1 0

Table 20 Software Company Version 6: Part 1

34

Name | No. of | No. of | No. of women, | Min. no. of | Max. no. of
of minority | majority | transgender, projects per | projects per SE in
instance | applicants | applicants | disabled, or gay | SE in the | the plan found
file hired as | hired as | people hired as | plan found
Senior Senior Senior Manager
Manager | Manager
P1 n/a n/a n/a 1 2
P2 n/a n/a n/a 1 2
P3 0 1 0 1 2
P4 0 1 0 1 2
Table 21 Software Company Version 6: Part 2
Name of Min. no. Max. no. Min. no. Max. no. No. of CPU Diversity
instance of projects | of projects | of projects | of projects | actions | time count
file per per per senior | per senior | in the needed
manager manager manager manager plan to find
found the plan
P1 1 1 n/a n/a 15 5.83 4
P2 n/a n/a n/a n/a 17 5.75 5
P3 1 1 1 1 15 6.08 4
P4 1 1 1 1 17 72.59 4

Table 22 Software Company Version 6: Part 3

35

Observation: It is to be noted that all the applicants who have same attributes are chosen based
on the order in which they are defined in the problem. But still, that does not effect the counts of
the experiment as it does not matter which applicant it chooses if they have same abilities and

properties.

36

5. FUTURE WORK

A lot of empirical research at the intersection of DEI, discrimination, and planning is possible.
Our domains can be modified, or new domains can be developed to include more factors to
address DEI and discrimination, including but not limited to political affiliation, age, marital
status, immigration status, nationality, religion, height, and specifics of disability. It is possible to
address equality by taking into account more factors, including but not limited to details of the
work assigned, annual salary, number of promotions, time between promotions, hourly wage,
bonus, raises, other benefits including leave allowed, parking options, options for working
remotely, locations for working in-person, payment for overtime, and frequency of transfers
between physical locations or departments, frequency of job-related travel, screening procedures,
disciplinary actions, and flexibility in spreading work hours like 10 hours/day for 4 days/week

instead of 8 hours/day for 5 days/week.

Addressing equality thoroughly will also help in preventing discrimination. Addressing DEI and
discrimination broadly and deeply is also useful for finding if current versions of PDDL allow a
domain designer to represent and verify relevant information in a reasonable time or new
versions of PDDL are needed. Addressing DEI and discrimination deeply and broadly using
symbolic planning will also help in designing multi-module architectures for addressing DEI and
discrimination such that symbolic planning is a module in these architectures such that
reasoning, search, other computation, information-gathering, and execution are distributed
among the modules for satisfying various criteria including but not limited to efficiency, ease of
verification or evaluation of soundness, completeness, optimality, coverage, and cost-

effectiveness.

37

6. CONCLUSION

Most of the past research at the intersection of DEI, discrimination, and Al is on the role of
machine learning, automated natural-language processing, and probabilistic reasoning in DEI
and discrimination. Automated planning is an extremely important area of Al with an
international conference (ICAPS (International Conference on Automated Planning and
Scheduling)) dedicated to it. This thesis is the first research work to address DEI using symbolic
planning. The experimental results obtained on multiple instances from four of the five versions
of Food Delivery domain and five of the six versions of Software Company domain show that it
is possible to soundly express DEI-related objectives using PDDL, and get plans conforming to
these objectives. Discrimination is addressed indirectly by nine of the eleven versions of the two
domains by enforcing DEl-related objectives. Metric FF is a domain-independent planner.

Larger instances proved to be challenging to Metric FF.

General lessons learnt that are relevant to other domains are as follows:

(a) DEI can be enforced by carefully defining preconditions and effects of operators

(b) Extra operators may be needed to enforce DEI and the sole purpose of some of the
extra operators, preconditions, and effects may be just enforcement of order over other

meaningful operators.

(c) Some DEl-related objectives may have to be embedded in operator definitions if the format

of goal does not allow them in the goal of the planning instance.

38

Exploitation of domain-specific knowledge, separation of planning and scheduling components
of a domain, and development of representations, preprocessing techniques, and heuristics have
helped in speeding up automated plan synthesis by orders of magnitude since 1995. They all
have potential to help in solving large instances from complex domains addressing DEI and
discrimination very fast. The work in this thesis can be extended or adapted for use in other
domains involving planning or scheduling, to address DEI and discrimination in multiple ways at
multiple levels, and the expressive power of PDDL and efficiency of domain-independent as

well as domain-specific planners can be exploited in the process.

39

7. REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

G. f. S. team, Google, 1 Octobor 2020. [Online]. Available: https://blog.google/outreach-
initiatives/diversity/2-million-black-founders-equitable-future/. [Accessed 3 May 2021].

"Science faculty’s subtle gender biases favor male students," in Proceedings of the national
Academy of Sciences of the United States of America, 2012.

E. S. Gigi Chao, "The Economist,” [Online]. Available:
https://prideandprejudice.economist.com/three-ways-private-sector-can-advance-lgbti-
rights-inclusion/. [Accessed 2 May 2021].

I. A. Benede, "Encouraging the Role of Women in the ICT Sector,” IEEE, Vols. 978-1-
7281-0303-7, no. 19, pp. 1832-1835, 2019.

E. Borneman, "Developing Digital Clinical Simulations for Large-Scale,” ACM, Vols. 978-
1-4503-7951-9, no. 20/08, pp. 373-376, 2020.

A. Bennaceur, "Issues in Gender Diversity and Equality in the UK,” ACM/IEEE 1st
International Workshop on Gender Equality in Software Engineering, Vols. 978-1-4503-
5738-8, no. 18/05, pp. 5-9, 2018.

L. C. Joyce Sterling, "In their Own Words," American Bar Association, 2021.

M. Ghallab, "PDDL - The Planning Domain Definition Language Version 1.2," Yale Center
for Computational Vision and Control, 1998.

D. L. Maria Fox, "PddI2.1 : An Extension to pddl for Expressing Temporal," Journal of
Artificial Intelligence Research 20 (2003) , pp. 61-124, 2003.

[10]J. Hoffmann, "Homepage of Metric-FF," [Online]. Awvailable: https://fai.cs.uni-

saarland.de/hoffmann/metric-ff.html. [Accessed 17 March 2021].

[11] J. Hoffmann, "Homepage of Fast-Forward,” [Online]. Awvailable: https://fai.cs.uni-

saarland.de/hoffmann/ff.html. [Accessed 17 March 2021].

40

8. APPENDICES

Appendix A: Food Delivery Domain

Version 1:

Domain definition:
(define (domain V1_food_delivery)
(:types

driver customer skin-color

(:predicates

(waiting-to-be-assigned ?d - driver)

(customer-color ?d - customer ?cl - skin-color)
(driver-color ?d - driver ?c2 - skin-color)

(orderfor ?d - customer)

(assigned-driver-customer ?x -customer ?y - driver)

(delivered-to ?k - customer)

(zaction Assign-Enforce-diversity

41

:parameters (?cl - skin-color ?d -customer ?k - driver)

:precondition (and

(customer-color ?d ?c1)(not(driver-color ?k ?c1))

(orderfor ?d)

(waiting-to-be-assigned ?k)

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

(assigned-driver-customer ?2d ?K)

(:action Assign-without-diversity

:parameters (?cl - skin-color ?d -customer ?K - driver)

‘precondition (and

(customer-color ?2d ?cl)

(driver-color ?k ?c1)

42

(orderfor ?d)

(waiting-to-be-assigned ?k)

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

(assigned-driver-customer ?2d ?K)

(:action deliver-order

:parameters (?d - customer ?Kk - driver)

:precondition (and (assigned-driver-customer ?d ?K))

-effect (and

(waiting-to-be-assigned ?k)

(not(assigned-driver-customer ?d ?k))

(delivered-to ?d)

43

Sample problem instance:

(define (problem P6) (:domain VV1_food_delivery)

(:objects

clc2c3cdc5c6c7c8c9cl0cllcl?2cl3cld cl5 cl6 - customer

d1 d2 d3 d4 - driver

white black brown - skin-color

(Ginit

(customer-color c1 white) (customer-color c2 white) (customer-color ¢3 black)

(customer-color ¢4 brown) (customer-color c5 brown) (customer-color c6 black)

(customer-color ¢7 brown) (customer-color c8 black) (customer-color c9 black)

(customer-color c10 brown) (customer-color c11 white) (customer-color c12 brown)

(customer-color ¢13 white) (customer-color c14 white) (customer-color ¢15 white)

(customer-color ¢16 black)

(driver-color d1 black) (driver-color d2 brown) (driver-color d3 white)

44

(driver-color d4 black)

(orderfor c1) (orderfor c2) (orderfor c3) (orderfor c4) (orderfor c5)

(orderfor c6) (orderfor c7) (orderfor c8) (orderfor c9) (orderfor c10)

(orderfor c11) (orderfor c12) (orderfor c13) (orderfor c14) (orderfor c15)

(orderfor c16)

(waiting-to-be-assigned d1) (waiting-to-be-assigned d2) (waiting-to-be-assigned d3)

(waiting-to-be-assigned d4)

(:goal (and

(forall (?x -customer)(delivered-to ?x))

))

Version 2:

Domain definition:

(define (domain V2_food_delivery)

(:types

driver customer skin-color

45

(:predicates

(waiting-to-be-assigned ?d - driver)

(customer-color ?d - customer ?c - skin-color)

(driver-color ?d - driver ?c - skin-color)

(orderfor ?d - customer)

(assigned-driver-customer ?x -customer ?y - driver)

(delivered-to ?k - customer)

(:functions

(diversity_count)

(:action Assign-order-without-diversity

:parameters (?c - skin-color ?d -customer ?k - driver)

:precondition (and

(orderfor ?d)

(waiting-to-be-assigned ?k)

(customer-color ?d ?c)(driver-color ?k ?c)

46

(not(exists (?t - driver)(not(driver-color ?t ?c))))

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor 2d))

(assigned-driver-customer ?d ?K)

(action Assign-Enforce-diversity

:parameters (?c - skin-color ?d -customer ?k - driver)

:precondition (and

(orderfor ?d)

(waiting-to-be-assigned ?k)

(customer-color ?d ?c)(not(driver-color ?k ?c))

-effect (and

(not (waiting-to-be-assigned 7k))

47

(not(orderfor ?d))

(increase (diversity count) 1)

(assigned-driver-customer ?2d ?K)

(zaction deliver-order

:parameters (?d - customer ?Kk - driver)

:precondition (and (assigned-driver-customer ?d ?K))

-effect (and

(waiting-to-be-assigned ?k)

(not(assigned-driver-customer ?d ?k))

(delivered-to ?d)

))

Sample problem instance:

(define (problem P6) (:domain diverse_food_delivery)

(:objects

48

clc2c3cdc5coc7c8c9cl0cllcl?2cl3cld cl5 clb - customer

d1 d2 d3 d4 - driver

white black brown - skin-color

Ginit

(=(diversity_count) 0)

(customer-color c1 white)(customer-color c2 white)(customer-color ¢3 black)

(customer-color ¢4 brown)(customer-color ¢5 brown)(customer-color ¢6 black)

(customer-color ¢7 brown)(customer-color c8 black)(customer-color c9 black)

(customer-color ¢10 brown)(customer-color c11 white)(customer-color ¢12 brown)

(customer-color c13 white)(customer-color c14 white)(customer-color ¢15 white)

(customer-color c16 black)(driver-color d1 black)(driver-color d2 brown)

(driver-color d3 white)(driver-color d4 black)(orderfor c1)

(orderfor c2)(orderfor c3)(orderfor c4)(orderfor c5)(orderfor c6)

(orderfor c7)(orderfor c8)(orderfor c9)(orderfor c10)(orderfor c12)

(orderfor c13)(orderfor c14)(orderfor c15)(orderfor c16)

(waiting-to-be-assigned d1)(waiting-to-be-assigned d2)

49

(waiting-to-be-assigned d3)(waiting-to-be-assigned d4)

(:goal (and

(forall (?x -customer)(delivered-to ?x))

))

Version 3:

Domain definition:

(define (domain VV3_food_delivery)

(:types

driver customer

(:predicates

(orderfor ?d - customer)

(waiting-to-be-assigned ?t - driver)

(assigned-driver-customer ?d - customer ?t - driver)

(delivered-to ?d - customer)

(customers_counted)

50

(:functions

(driver_load ?t - driver)

(customer_driver_ratio)

(customer_count)

(driver_count)

(:action count_customers

‘parameters ()

:precondition (and)

-effect (and

(forall (?d - customer) (increase (customer_count) 1))

(forall (?t - driver) (assign (driver_load ?t) 0))

(customers_counted)

(:action Assign-Enforce-equality

:parameters (?d - customer ?t - driver)

51

:precondition (and

(customers_counted)

(orderfor ?d)

(waiting-to-be-assigned ?t)

(<(driver_load ?t) (/ (customer_count) (driver_count)))

-effect (and

(assigned-driver-customer ?d ?t)

(not (waiting-to-be-assigned ?t))

(not (orderfor ?d))

(increase (driver_load ?t) 1)

(zaction deliver-order

-parameters (?d - customer ?t - driver)

‘precondition (and

(assigned-driver-customer ?d ?t)

52

-effect (and

(delivered-to ?d)

(waiting-to-be-assigned ?t)

))

Note: It is possible to count the number of drivers from the initial state for computing customer-
driver ratio, but the count for number of drivers was given manually in the initial state because
Metric-FF planner does not support non-linear tasks on the functions whose values have been
changed due to increment or decrement operators used on it i.e., suppose if we initialize a
function named driver_count to 0 in initial state, and in the domain file we increment it by 1 for
every driver to get the count, then we cannot perform customer_count/driver_count because
drivers_count has been incremented and used in the denominator of the ratio, whereas, if we
initialized it in the initial state directly with the number of drivers, then the computation of the

ratio is supported in metric-ff.

Sample problem instance:

(define (problem P6) (:domain VV3_food_delivery)

(:objects

clc2c3cdc5¢c6c7c8c9cl0cllcl?2cl3cld cl5 cl6 - customer

53

d1 d2 d3 d4 - driver

Ginit

(orderfor c1)(orderfor c2)(orderfor c3)

(orderfor c4)(orderfor c5)(orderfor c6)

(orderfor c7)(orderfor c8)(orderfor c9)

(orderfor c10)(orderfor c11)(orderfor c12)

(orderfor c13)(orderfor c14)(orderfor c15)

(orderfor c16)

(waiting-to-be-assigned d1)

(waiting-to-be-assigned d2)

(waiting-to-be-assigned d3)

(waiting-to-be-assigned d4)

(=(customer_count) 0)

(=(driver_count) 4)

(:goal (and

54

(forall (?x -customer)(delivered-to ?x))

)

Version 4:

Domain definition:

(define (domain V4 _food_delivery)

(:types

driver customer skin-color

(:predicates

(waiting-to-be-assigned ?d - driver)

(customer-color ?d - customer ?c - skin-color)

(driver-color ?d - driver ?c - skin-color)

(orderfor ?d - customer)

(initialized)

(assigned-driver-customer ?x -customer ?y - driver)

(delivered-to ?k - customer)

55

(:functions

(diversity_count)

(driver_count)

(customer_count)

(driver_load ?d - driver)

(:action initialize-driver-loads

‘parameters ()

:precondition (and

-effect (and

(forall (?d - driver) (assign (driver_load ?d) 0))

(forall (?c - customer) (increase (customer_count) 1))

(initialized)

(:action Assign_Enforce_Equality

56

:parameters (?c - skin-color ?d -customer ?Kk - driver)

:precondition (and

(initialized)

(orderfor ?d)

(waiting-to-be-assigned ?k)

(customer-color ?d ?c)(driver-color ?k ?c)

(not(exists (?t - driver)(and(not(driver-color ?t ?c))(<(driver_load ?t)

(/(customer_count)(driver_count))))))

(<(driver_load ?k) (/(customer_count)(driver_count)))

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

(increase (driver_load ?k) 1)

(assigned-driver-customer ?d ?K)

(:action Assign_Enforce_Diversity_Equality

57

:parameters (?c - skin-color ?d -customer ?Kk - driver)

:precondition (and

(initialized)

(orderfor ?d)

(waiting-to-be-assigned ?k)

(customer-color ?d ?c)(not(driver-color ?k ?c))

(<(driver_load ?k) (/(customer_count)(driver_count)))

-effect (and

(not (waiting-to-be-assigned ?k))

(not(orderfor ?d))

(increase (diversity _count) 1)

(increase (driver_load ?k) 1)

(assigned-driver-customer ?d ?K)

(zaction deliver-order

58

:parameters (?d - customer ?Kk - driver)

:precondition (and (assigned-driver-customer ?d ?K))

-effect (and

(waiting-to-be-assigned ?k)

(not(assigned-driver-customer ?d ?k))

(delivered-to ?d)

))

Sample problem instance:

(define (problem P6) (:domain V4 _food_delivery)

(:objects

clc2c3cdc5¢c6c7c8c9cl0cllcl?2cl3cld cl5 clb - customer

d1 d2 d3 d4 - driver

white black brown - skin-color

CGinit

(=(diversity_count) 0)(=(customer_count) 0)(=(driver_count) 4)

59

(customer-color c1 white)(customer-color c2 white)

(customer-color ¢3 black)(customer-color ¢4 brown)

(customer-color ¢5 brown)(customer-color c6 black)

(customer-color ¢7 brown)(customer-color ¢8 black)

(customer-color ¢9 black)(customer-color ¢10 brown)

(customer-color c11 white)(customer-color c12 brown)

(customer-color c13 white)(customer-color c14 white)

(customer-color c15 white)(customer-color c16 black)

(driver-color d1 black)(driver-color d2 brown)

(driver-color d3 white)(driver-color d4 black)

(orderfor c1)(orderfor c2)(orderfor c3)(orderfor c4)

(orderfor c5)(orderfor c6)(orderfor c7)(orderfor c8)

(orderfor c9)(orderfor c10)(orderfor c11)(orderfor c12)

(orderfor c13)(orderfor c14)(orderfor c15)(orderfor c16)

(waiting-to-be-assigned d1)(waiting-to-be-assigned d2)

(waiting-to-be-assigned d3)(waiting-to-be-assigned d4)

60

(:goal (and

(forall (?x -customer)(delivered-to ?x))

)

Version 5:

Domain definition:

(define (domain VV5_food_delivery)

(:types

driver customer skin-color race)

(:predicates

(waiting-to-be-assigned ?d - driver)

(customer-color-race ?d - customer ?c1 - skin-color ?rl - race)

(driver-color-race ?d - driver ?c2 - skin-color ?r2 - race)

(orderfor ?d - customer)

(initialized)

(assigned-driver-customer ?x -customer ?y - driver)

(delivered-to ?k - customer)

(belongs-to-majority ?d - driver)

61

(:functions

(diversity_count)

(inclusivity_count)

(driver_count)

(customer_count)

(driver_load ?d - driver)

(zaction initialize-driver-loads

‘parameters ()

:precondition (and

-effect (and

(forall (?d - driver) (assign (driver_load ?d) 0))

(forall (?c - customer) (increase (customer_count) 1))

(initialized)

62

(:action Assign-Enforce-D-E-I

:parameters (?cl - skin-color ?rl - race ?d -customer ?K - driver)

:precondition (and

(initialized)

(orderfor ?d)

(waiting-to-be-assigned ?k)

(not(belongs-to-majority ?k))

(customer-color-race ?d ?c1 ?rl)(not(driver-color-race ?k ?cl ?rl))

(<(driver_load ?k) (/(customer_count)(driver_count)))

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

(increase (driver_load ?k) 1)

(assigned-driver-customer 2d ?k)

(increase (diversity _count) 1)

(increase (inclusivity_count) 1)

63

(:action Assign-Enforce-D-E

:parameters (?cl - skin-color ?rl - race ?d -customer ?k - driver)

:precondition (and

(initialized)

(orderfor ?d)

(belongs-to-majority ?Kk)

(waiting-to-be-assigned ?k)

(customer-color-race ?d ?c1 ?rl)(not(driver-color-race ?k ?cl ?rl))

(<(driver_load ?k) (/(customer_count)(driver_count)))

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

(increase (driver_load ?k) 1)

(increase (diversity_count) 1)

64

(assigned-driver-customer ?2d ?K)

(:action Assign-Enforce-1-E

:parameters (?cl - skin-color ?rl - race ?d -customer ?K - driver)

:precondition (and

(initialized)

(orderfor ?d)

(not(belongs-to-majority ?k))

(waiting-to-be-assigned ?k)

(customer-color-race ?d ?c1 ?rl)(driver-color-race ?k ?cl ?rl)

(<(driver_load ?k) (/(customer_count)(driver_count)))

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

(increase (driver_load ?k) 1)

65

(increase (inclusivity_count) 1)

(assigned-driver-customer ?d ?K)

(:action Assign-Enforce-Equality

:parameters (?cl - skin-color ?rl - race ?d -customer ?K - driver)

:precondition (and

(initialized)

(orderfor ?d)

(waiting-to-be-assigned ?k)

(customer-color-race ?d ?c1 ?rl)

(<(driver_load ?k) (/(customer_count)(driver_count)))

(not(exists (?t - driver)(and(or (not(driver-color-race ?t ?cl ?rl))(not(belongs-to-majority ?t)))

(<(driver_load ?t) (/(customer_count)(driver_count))))))

-effect (and

(not(waiting-to-be-assigned ?k))

(not(orderfor ?d))

66

(increase (driver_load ?k) 1)

(assigned-driver-customer ?d ?K)

(action deliver-order

:parameters (?d - customer ?k - driver)

:precondition (and (assigned-driver-customer ?d ?K))

-effect (and

(waiting-to-be-assigned ?k)

(not(assigned-driver-customer ?d ?k))

(delivered-to ?d)

))

Sample problem instance:

(define (problem P6) (:domain V5_food_delivery)

(:objects

clc2c3cdc5¢c6c7c8c9cl0cllcl?2cl3cls clb cl6 - customer

67

d1 d2 d3 d4 - driver

white black brown - skin-color

Asian African-American European-American-Non-Hispanic American-Indian - race

Ginit

(=(diversity_count) 0)(=(customer_count) 0)

(=(driver_count) 4)(=(inclusivity _count) 0)

(customer-color-race c1 white European-American-Non-Hispanic)

(customer-color-race c2 white European-American-Non-Hispanic)

(customer-color-race ¢3 black African-American)

(customer-color-race c4 brown American-Indian)

(customer-color-race c5 brown American-Indian)

(customer-color-race c6 black African-American)

(customer-color-race c7 brown American-Indian)

(customer-color-race c8 black African-American)

(customer-color-race c9 black African-American)

(customer-color-race c10 brown American-Indian)

68

(customer-color-race c11 white European-American-Non-Hispanic)

(customer-color-race c12 brown American-Indian)

(customer-color-race c13 white European-American-Non-Hispanic)

(customer-color-race c14 white European-American-Non-Hispanic)

(customer-color-race c15 white European-American-Non-Hispanic)

(customer-color-race c16 black African-American)

(driver-color-race d1 black African-American)

(driver-color-race d2 brown American-Indian)

(driver-color-race d3 white European-American-Non-Hispanic)

(driver-color-race d4 black African-American)

(orderfor c1)(orderfor c2)(orderfor c3)

(orderfor c4)(orderfor c5)(orderfor c6)

(orderfor c7)(orderfor c8)(orderfor c9)

(orderfor c10)(orderfor c11)(orderfor c12)

(orderfor c13)(orderfor c14)(orderfor c15)

(orderfor c16)

(waiting-to-be-assigned d1)(waiting-to-be-assigned d2)

69

(waiting-to-be-assigned d3)(waiting-to-be-assigned d4)

(belongs-to-majority d3)

(:goal (and

(forall (?x -customer)(delivered-to ?x))

)

70

Appendix B: Software Company

Version 1:

Domain definition:

(define (domain V1_Software)
(:types

applicant title project

gender race sexual-orientation

disabilities color

(:predicates

(IsHired ?d - applicant)

(applicant_for _title ?d - applicant ?t - title)
(hasBachelors ?d - applicant)

(hasMasters ?d - applicant)

(hasPhD ?d - applicant)

(initialized)

assigned_applicant_to_project ?d - applicant ?p - project)

(hiring_filled_all_titles)

71

(employee_project_counts_initialized)

(all-assigned)

(isWhite ?d - applicant)

(isTransgender ?d - applicant)

(isEuropean-American-Non-Hispanic ?d - applicant)

(isStraight ?d - applicant)

(isDisabled ?d - applicant)

(belongs-to-majority ?d - applicant)

(belongs-to-minority ?d - applicant)

(applicant-race ?d - applicant ?r - race)

(applicant-gender ?d - applicant ?g - gender)

(applicant-color ?d - applicant ?c - color)

(applicant-so ?d - applicant ?so - sexual-orientation)

(applicant-disabilities ?d - applicant ?ds - disabilities)

(isNotstraight ?d - applicant)

(:functions

72

(applicants_count)

(applicant_experience ?d - applicant)

(minimum_experience_required_for_title ?t - title)

(number_of_openings_per _title ?t - title)

(projects_count)

(titles_per_project ?t - title ?p - project) ; how many SE, Managers per project

(number_of projects_assigned_to_employee ?d - applicant)

(Hired_count)

(number_of titles_for_hiring ?t - title)

(minority_applicant_count)

(majority_applicant_count)

(minority_applicants_hired)

(majority_applicants_hired)

:define actions here

;Masters should apply for titles with experience_required > 2 and PHd with > 5

(zaction Initialize

73

:parameters ()

:precondition (and

(not(initialized))

-effect (and

(forall (?c - applicant) (and(increase (applicants_count) 1)))

(forall (?c - applicant) (when (hasMasters ?c) (increase (applicant_experience ?c) 2)))

(forall (?c - applicant) (when (hasPhD ?c) (increase (applicant_experience ?c) 5)))

(forall (?p - project) (and (increase (projects_count) 1)))

(forall (?d - applicant) (when (and (isWhite ?d)(not(isNotStraight ?d))(not(isTransgender

?d))(isEuropean-American-Non-Hispanic ?d)(not (isDisabled ?d)))

(and (belongs-to-majority ?d)(increase (majority_applicant_count) 1))

(forall (?d - applicant) (when (or(isNotStraight ?d)(isDisabled ?d)(isTransgender

?d)(not(and(isWhite ?d)(isEuropean-American-Non-Hispanic ?d)))) ; Asians can be white

(and (belongs-to-minority ?d)(increase (minority_applicant_count) 1)))

74

(initialized)

(:action Hiring_Round

‘parameters (?2d - applicant ?t - title)

:precondition (and

(initialized)

(>(number_of_openings_per _title ?t) 0)

(applicant_for_title ?d ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

-effect (and

(IsHired ?d)

(decrease (number_of openings_per _title ?t) 1)

(increase (Hired_count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

75

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1))

(:action Mark-completion-of-hiring

‘parameters ()

:precondition (and

(initialized)

(not(hiring_filled_all_titles))

-effect (and

(when (forall (?t - title) (and (=(number_of_openings_per_title ?t) 0))) (hiring_filled_all_titles)))

(:action Initialize-after-hiring

‘parameters ()

‘precondition (and

(hiring_filled_all_titles)

(not(employee_project_counts_initialized))

76

-effect (and

(forall (?d - applicant) (when(isHired ?d) (assign (number_of _projects_assigned_to_employee

2d) 0))

) (employee_project_counts_initialized))

(:action Assign-projects

:parameters (?2d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(isHired 2d)

(not(assigned_applicant_to_project 2d ?p))

(applicant_for _title 2d ?t)

(>(titles_per_project ?t ?p) 0)

-effect (and

(assigned_applicant_to_project 2d ?p)

(increase(number_of _projects_assigned _to_employee ?d) 1)

77

(decrease(titles_per_project ?t ?p) 1)

))

(:action Mark-completion-of-assigning

:parameters ()

:precondition (and

(not(all-assigned))

-effect (and

;when every project is assigned with required count of titles

(when (forall(?t - title ?p - project)(and(=(titles_per_project ?t ?p)0))) (all-assigned)))

Sample problem instance:

(define (problem P8) (:domain VV1_software)

(:objects

al a2 a3 a4 aba6 a7 a8 a9 all all - applicant

SE Manager Senior-Manager - title

78

pl p2 p3 p4 - project

Asian European-American-Non-Hispanic African-American American-Indian - race

white black brown - color

male female transgender - gender

straight gay - sexual-orientation

disabled none - disabilities

Ginit

(applicant-race a1l American-Indian)(applicant-so al straight)

(applicant-gender al female)(applicant-disabilities al none)

(applicant-color al brown)

(applicant-race a2 African-American)(applicant-so a2 straight)

(applicant-gender a2 male)(applicant-disabilities a2 none)

(applicant-color a2 black)

(applicant-race a3 African-American)(applicant-so a3 gay)

(applicant-gender a3 male)(applicant-disabilities a3 none)

(applicant-color a3 black)

79

(applicant-race a4 Asian)(applicant-so a4 straight)

(applicant-gender a4 male)(applicant-disabilities a4 none)

(applicant-color a4 brown)

(applicant-race a5 European-American-Non-Hispanic)(applicant-so a5 straight)

(applicant-gender a5 female)(applicant-disabilities a5 none)

(applicant-color a5 white)(applicant-race a6 African-American)

(applicant-so a6 straight)(applicant-gender a6 female)

(applicant-disabilities a6 disabled)(applicant-color a6 black)

(applicant-race a7 European-American-Non-Hispanic)(applicant-so a7 straight)

(applicant-gender a7 female)(applicant-disabilities a7 none)

(applicant-color a7 white)(applicant-race a8 European-American-Non-Hispanic)

(applicant-so a8 straight)(applicant-gender a8 male)

(applicant-disabilities a8 none)(applicant-color a8 white)

(applicant-race a9 African-American)(applicant-so a9 straight)

(applicant-gender a9 transgender)(applicant-disabilities a9 none)

(applicant-color a9 black)(applicant-race al0 European-American-Non-Hispanic)

(applicant-so al10 straight)(applicant-gender a10 female)

80

(applicant-disabilities a10 none)(applicant-color al0 white)

(applicant-race all European-American-Non-Hispanic)

(applicant-so al1 straight)(applicant-gender a1l male)

(applicant-disabilities al1 none)(applicant-color all white)

(isWhite a5)(isWhite a7)(isWhite a8)(isWhite al10)(isWhite all)

(isEuropean-American-Non-Hispanic a5)

(isEuropean-American-Non-Hispanic a7)(isEuropean-American-Non-Hispanic a8)(isEuropean-

American-Non-Hispanic al0)

(isEuropean-American-Non-Hispanic all)

(isDisabled a6)(isNotstraight a3)(isTransgender a9)

(=(applicants_count) 0)(=(projects_count) 0)

(=(minority_applicant_count) 0)(=(majority_applicant_count)0)

(=(minority_applicants_hired)0)(=(majority_applicants_hired)0)

(=(Hired_count)0)

(=(titles_per_project SE pl) 2)

(=(titles_per_project SE p2) 3)

(=(titles_per_project SE p3) 0)

(=(titles_per_project SE p4) 2)

81

(=(titles_per_project Manager p1) 0)

(=(titles_per_project Manager p2) 1)

(=(titles_per_project Manager p3) 1)

(=(titles_per_project Manager p4) 0)

(=(titles_per_project Senior-Manager p1) 1)

(=(titles_per_project Senior-Manager p2) 0)

(=(titles_per_project Senior-Manager p3) 0)

(=(titles_per_project Senior-Manager p4) 1)

(=(number_of_openings_per _title SE) 3)

(=(number_of openings_per _title Manager) 2)

(=(number_of _openings_per _title Senior-Manager) 1)

(=(minimum_experience_required_for _title SE) 3)

(=(minimum_experience_required_for_title Manager) 7)

(=(minimum_experience_required_for _title Senior-Manager) 11)

(=(number_of titles_for_hiring SE) 3)

(=(number_of titles_for_hiring Manager) 2)

(=(number_of _titles_for_hiring Senior-Manager) 1)

82

(=(applicant_experience al) 2)(=(applicant_experience a2) 4)

(=(applicant_experience a3) 3)(=(applicant_experience a4) 3)

(=(applicant_experience a5) 10)(=(applicant_experience a6) 5)

(=(applicant_experience a7) 3)(=(applicant_experience a8) 9)

(=(applicant_experience a9) 7)(=(applicant_experience al0) 3)

(=(applicant_experience all) 8)

(applicant_for _title al SE)(hasMasters al)

(applicant_for _title a2 SE)(hasBachelors a2)

(applicant_for _title a3 SE)(hasMasters a3)

(applicant_for _title a4 Manager)(hasMasters a4)

(applicant_for _title a5 Senior-Manager)(hasPhD a5)

(applicant_for _title a6 SE)(hasBachelors a6)

(applicant_for_title a7 Manager)(hasBachelors a7)

(applicant_for _title a8 Senior-Manager)(hasPhD a8)

(applicant_for_title a9 Manager)(hasPhD a9)

(applicant_for _title a10 SE)(hasMasters al10)

(applicant_for_title al1 Manager)(hasMasters all)

83

(:goal (and (all-assigned))))

Version 2:

Domain definition:

(define (domain VV2_Software)

(:requirements :typing :fluents :negative-preconditions :conditional-effects :disjunctive-

preconditions)

(:types

applicant title project

gender race sexual-orientation

disabilities color

(:predicates

(initialized)(all-assigned)

(hiring_filled_all_titles)(employee_project_counts_initialized)

(IsHired ?d - applicant)(applicant_for_title ?d - applicant ?t - title)

(hasBachelors ?d - applicant)(hasMasters ?d - applicant)

(hasPhD ?d - applicant)(isWhite ?d - applicant)

84

(isTransgender ?d - applicant)(isEuropean-American-Non-Hispanic ?d - applicant)

(isNotStraight ?d - applicant)(isDisabled ?d - applicant)

(isNotstraight ?d - applicant)

(applicant-race ?d - applicant ?r - race)

(applicant-gender ?d - applicant ?g - gender)

(applicant-color ?d - applicant ?c - color)

(applicant-so ?d - applicant ?so - sexual-orientation)

(applicant-disabilities ?d - applicant ?ds - disabilities)

(qualified_for_round_2_assigning ?d - applicant ?p - project)

(project_for_round_2 ?p - project)(qualified_for_hiring_round_2 ?d - applicant)

(can_hire_in_round_2 ?t - title)

(belongs-to-majority ?d - applicant)

(belongs-to-minority ?d - applicant)

(assigned_employee_to_project ?d - applicant ?p - project)

(:functions

(applicants_count)

85

(applicant_experience ?d - applicant)

(minimum_experience_required_for_title ?t - title)

(number_of_openings_per _title ?t - title)

(projects_count)

(titles_per_project ?t - title ?p - project) ; how many SE, Managers per project

(number_of _projects_assigned_to_employee ?d - applicant)

(Hired_count)

(number_of titles_for_hiring ?t - title)

(minority_applicant_count)

(majority_applicant_count)

(minority_applicants_hired)

(majority_applicants_hired)

(projects_diversity _count)

(hired_for_diversity _count)

(:action Initialize

:parameters ()

86

:precondition (and

(not(initialized))

-effect (and

(forall (?c - applicant) (and(increase (applicants_count) 1)))

(forall (?c - applicant) (when (hasMasters ?c) (increase (applicant_experience ?c) 2)))

(forall (?c - applicant) (when (hasPhD ?c) (increase (applicant_experience ?¢c) 5)))

(forall (?p - project) (and (increase (projects_count) 1)))

(forall (?d - applicant) (when (and (isWhite ?d)(not(isNotStraight ?d))(not(isTransgender

?d))(isEuropean-American-Non-Hispanic ?d)(not (isDisabled ?d)))

(and (belongs-to-majority ?d)(increase (majority_applicant_count) 1))

))

(forall (?d - applicant) (when (or(isNotStraight ?d)(isDisabled ?d)(isTransgender

?d)(not(and(isWhite ?d)(isEuropean-American-Non-Hispanic ?d)))) ; Asians can be white

(and (belongs-to-minority ?d)(increase (minority_applicant_count) 1))

))

(initialized))

87

(:action Hiring_Round_1_Diversity

‘parameters (?2d - applicant ?t - title)

:precondition (and

(initialized)

(>(number_of_openings_per _title ?t) 0)

(applicant_for _title ?d ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

(not(exists (?c - applicant)

(and

(IsHired ?c)

(applicant_for _title ?c ?t)

(>=(applicant_experience ?c)(minimum_experience_required_for_title ?t))

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?Kk)))

))

))

88

-effect (and

(IsHired ?d)

(decrease (number_of_openings_per _title ?t) 1)

(increase (Hired_count) 1)

(increase (hired_for_diversity count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1))

(:action Preparing_for_Hiring_Round_2

‘parameters ()

:precondition (and

(initialized)

-effect (and

(forall (?d - applicant)

(when (and

89

(not (IsHired 7d))

(not(qualified_for_hiring_round_2 ?d))

(exists (?c - applicant)

(and

(IsHired ?c)

(or

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?k)))

)))

(and

(qualified_for_hiring_round_2 ?d)

)))

(forall (?t - title)

(when (‘and

(not (exists (?d - applicant)

(and

90

(applicant_for _title 2d ?t)

(not(IsHired ?d))

(not(qualified_for_hiring_round_2 ?d))

)))

(and

(can_hire_in_round_2 ?t)

)

(action Hiring_Round_2

:parameters (?d - applicant ?t - title)

:precondition (and

(qualified_for_hiring_round_2 ?d)

(>(number_of _openings_per title ?t) 0)

(applicant_for _title ?d ?t)

(can_hire_in_round_2 ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

91

-effect (and

(IsHired ?d)

(decrease (number_of _openings_per _title ?t) 1)

(increase (Hired_count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1)))

(:action Mark-completion-of-hiring

:parameters ()

:precondition (and

(initialized)

(not(hiring_filled_all_titles))

-effect (and

(when (forall (?t - title) (and (=(number_of _openings_per _title ?t) 0))) (hiring_filled_all_titles)))

92

(:action Initialize-after-hiring

‘parameters ()

:precondition (and

(hiring_filled_all_titles)

(not(employee_project_counts_initialized))

-effect (and

(forall (?d - applicant) (when(isHired ?d) (assign (number_of projects_assigned_to_employee

2d) 0)))

(employee_project_counts_initialized))

(action Assign-projects-round-1-diversity

:parameters (?d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(>(titles_per_project 2t ?p) 0)

(isHired ?d)

(applicant_for _title ?d ?t)

93

(not(assigned_employee_to_project ?d ?p))

(not(exists (?c - applicant)

(and

(assigned_employee_to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?k)))

)))

-effect (and

(assigned_employee_to_project ?2d ?p)

(increase (projects_diversity_count) 1)

(increase(number_of projects_assigned to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

(:action Preparing_for_Assigning_Round_2

:parameters (?p - project)

94

:precondition (and (employee_project_counts_initialized)

-effect (and

(forall (d - applicant)

(when (and

(isHired 2d)

(not(qualified_for_round_2_assigning ?d ?p))

(not (assigned_employee_to_project ?d ?p))

(exists (?c - applicant)

(and

(IsHired ?c)

(assigned_employee_to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?2d ?k)))

)

(and

95

(qualified_for_round_2_assigning ?d ?p)

)

(when (and

(not (exists (?d - applicant)

(and

(IsHired ?d)

(not(assigned_employee_to_project ?d ?p))

(not(qualified_for_round_2_assigning ?d ?p))

)))

(and

(project_for_round_2 ?p)

))

))
(:action Assign-projects-round-2

:parameters (2d - applicant ?t - title ?p - project)

96

:precondition (and

(employee_project_counts_initialized)

(isHired ?d)

(not(assigned_employee_to_project ?d ?p))

(applicant_for_title ?d ?t)

(>(titles_per_project ?t ?p) 0)

(qualified_for_round_2_assigning ?d ?p)

(project_for_round_2 ?p)

-effect (and

(assigned_employee_to_project ?2d ?p)

(increase(number_of projects_assigned to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

))

(:action Mark-completion-of-assigning

‘parameters ()

:precondition (and

97

(employee_project_counts_initialized)

(not(all-assigned))

-effect (and

;when every project is assigned with required count of titles

(when (forall(?t - title ?p - project)(and(=(titles_per_project ?t ?p)0))) (all-assigned))

))

Sample problem instance:

(define (problem P5) (:domain VV2_software)

(:objects

al a2 a3 a4 a5 a6 a7 a8 a9 al0 - applicant

SE Manager - title

pl p2 - project

Asian European-American-Non-Hispanic African-American American-Indian - race

white black brown - color

male female transgender - gender

98

straight gay - sexual-orientation

disabled none - disabilities

Cinit

(applicant-race al Asian)(applicant-so al straight)

(applicant-gender al female)(applicant-disabilities al none)

(applicant-color al white)(applicant-race a2 Asian)

(applicant-so a2 straight)(applicant-gender a2 female)

(applicant-disabilities a2 none)(applicant-color a2 white)

(applicant-race a3 Asian)(applicant-so a3 straight)

(applicant-gender a3 male)(applicant-disabilities a3 disabled)

(applicant-color a3 white)(applicant-race a4 African-American)

(applicant-so a4 straight)(applicant-gender a4 male)

(applicant-disabilities a4 none)(applicant-color a4 black)

(applicant-race a5 American-Indian)(applicant-so a5 straight)

(applicant-gender a5 male)(applicant-disabilities a5 none)

(applicant-color a5 brown)(applicant-race a6 African-American)

99

(applicant-so a6 straight)(applicant-gender a6 female)

(applicant-disabilities a6 none)(applicant-color a6 black)

(applicant-race a7 European-American-Non-Hispanic)(applicant-so a7 straight)

(applicant-gender a7 female)(applicant-disabilities a7 none)

(applicant-color a7 white)(applicant-race a8 European-American-Non-Hispanic)

(applicant-so a8 straight)(applicant-gender a8 male)

(applicant-disabilities a8 disabled)(applicant-color a8 white)

(applicant-race a9 Asian)(applicant-so a9 straight)

(applicant-gender a9 male)(applicant-disabilities a9 none)

(applicant-color a9 white)(applicant-race al0 European-American-Non-Hispanic)

(applicant-so al10 straight)(applicant-gender a10 male)

(applicant-disabilities a10 none)(applicant-color a1l0 white)

(=(applicants_count) 0)(=(projects_count) 0)

(=(minority_applicant_count) 0)(=(majority_applicant_count)0)

(=(minority_applicants_hired)0)(=(majority_applicants_hired)0)

(=(Hired_count)0)(=(hired_for_diversity_count) 0)

(=(projects_diversity_count) 0)

100

(=(titles_per_project SE p1) 3)(=(titles_per_project SE p2) 3)

(=(titles_per_project Manager p1) 1)(=(titles_per_project Manager p2) 1)

(=(number_of_openings_per _title SE) 5)(=(number_of _openings_per_title Manager) 2)

(=(minimum_experience_required_for _title SE) 3)

(=(minimum_experience_required_for_title Manager) 10)

(=(applicant_experience al) 2)(=(applicant_experience a2) 4)

(=(applicant_experience a3) 3)(=(applicant_experience a4) 3)

(=(applicant_experience a5) 5)(=(applicant_experience a6) 5)

(=(applicant_experience a7) 3)(=(applicant_experience a8) 6)

(=(applicant_experience a9) 6)(=(applicant_experience al0) 6)

(applicant_for_title al SE)(hasMasters al)

(applicant_for _title a2 SE)(hasBachelors a2)

(applicant_for _title a3 SE)(hasMasters a3)

(applicant_for _title a4 SE)(hasPhD a4)

(applicant_for _title a5 Manager)(hasPhD ab5)

(applicant_for _title a6 SE)(hasMasters a6)

(applicant_for _title a7 SE)(hasBachelors a7)

101

(applicant_for_title a8 Manager)(hasPhD a8)

(applicant_for_title a9 Manager)(hasPhD a9)

(applicant_for_title a10 Manager)(hasPhD al0)

(:goal(and (all-assigned)))

Version 3:

Domain definition:

(define (domain V3_Software)

(:requirements :adl :typing :fluents :negative-preconditions :strips)

(:types

applicant title project

(:predicates

(IsHired ?d - applicant)

(applicant_for _title ?d - applicant ?t - title)

(hasBachelors ?d - applicant)

(hasMasters ?d - applicant)
102

(hasPhD ?d - applicant)

(initialized)

(assigned_employee_to_project ?d - applicant ?p - project)

(hiring_filled_all_titles)

(employee_project_counts_initialized)

all-assigned)

(:functions

(applicants_count)

(applicant_experience ?d - applicant)

(minimum_experience_required_for_title ?t - title)

(number_of_openings_per _title ?t - title)

(total_per _title_from_each_project ?t - title) ;total _per_title_from_each project

(projects_count)

(titles_per_project ?t - title ?p - project) ; how many SE, Managers per project

(number_of _projects_assigned_to_employee ?d - applicant)

(Hired_count)

103

(number_of titles_for_hiring ?t - title)

:define actions here

(:action Initialize

‘parameters ()

:precondition (and

(not(initialized))

-effect (and

(forall (?c - applicant) (and(increase (applicants_count) 1)))

(forall (?c - applicant) (when (hasMasters ?c) (increase (applicant_experience ?c) 2)))

forall (?c - applicant) (when (hasPhD ?c) (increase (applicant_experience ?c) 5)))

(forall (?p - project) (and (increase (projects_count) 1)))

(forall (?t - title) (and(assign (total_per _title_from_each_project ?t) 0)))

(initialized)

))

(zaction Hiring

104

:parameters (?2d - applicant ?t - title)

:precondition (and

(initialized)

(applicant_for _title ?d ?t)

(>(number_of_openings_per _title ?t) 0)

(not(IsHired ?d))

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

-effect (and

(IsHired ?d)

(decrease (number_of_openings_per _title ?t) 1)

(increase (Hired_count) 1)

(:action Mark-completion-of-hiring

‘parameters ()

:precondition (and

105

(initialized)

(not(hiring_filled_all_titles))

-effect (and

(when (forall (?t - title) (and (=(number_of_openings_per _title ?t) 0))) (hiring_filled_all_titles))

(zaction Initialize-after-hiring

‘parameters ()

:precondition (and

(hiring_filled_all_titles)

(not(employee_project_counts_initialized))

-effect (and

(forall (?d - applicant) (when(isHired ?d) (assign (number_of projects_assigned_to_employee

2d) 0))

106

(forall (?p - project ?t - title) (and(increase (total_per _title from_each_project ?t)

(titles_per_project ?t ?p))))

(employee_project_counts_initialized)

))

(:action Assign-projects

parameters (?d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(isHired 2d)

(not(assigned_employee _to_project ?d ?p))

(applicant_for _title 2d ?t)

(>(titles_per_project 2t ?p) 0)

(<(number_of projects_assigned_to_employee ?d) (/(total_per _title_from_each_project ?t

)(number_of titles_for_hiring ?t)))

-effect (and

(assigned_employee _to_project ?d ?p)

(increase(number_of projects_assigned_to_employee ?d) 1)

107

(decrease(titles_per_project ?t ?p) 1)

(:action Mark-completion-of-assigning

‘parameters ()

:precondition (and

(not(all-assigned))

(forall (?t - title) (not (exists (?d -applicant)(and(applicant_for _title ?d ?t)(isHired ?d)
(<(number_of _projects_assigned_to_employee ?d) (-(/(total_per_title_from_each_project ?t

)(number_of _titles_for_hiring ?t))1))))))

-effect (and

;when every project is assigned with required count of titles

when (forall(?t - title ?p - project)(and(=(titles_per_project ?t ?p)0))) (all-assigned))

)))

Sample problem instance:

(define (problem P5) (:domain VV3_software)

(:objects

108

al a2 a3 a4 a5 a6 a7 a8 a9 al0 - applicant

SE Manager - title

pl p2 - project

Ginit

(=(Hired_count)0)(=(applicants_count) 0)

(=(projects_count) 0)(=(titles_per_project SE p1) 3)

(=(titles_per_project SE p2) 3)(=(titles_per_project Manager p1) 1)

(=(titles_per_project Manager p2) 1)(=(number_of_openings_per _title SE) 5)

(=(number_of _openings_per _title Manager) 2)(=(minimum_experience_required_for _title SE)

3)

(=(minimum_experience_required_for_title Manager) 10)

(=(number_of titles_for_hiring SE) 5)(=(number_of titles for_hiring Manager) 2)

(=(applicant_experience al) 2)(=(applicant_experience a2) 4)

(=(applicant_experience a3) 3)(=(applicant_experience a4) 3)

(=(applicant_experience a5) 5)(=(applicant_experience a6) 5)

(=(applicant_experience a7) 3)(=(applicant_experience a8) 6)

(=(applicant_experience a9) 6)(=(applicant_experience al0) 6)

109

(applicant_for _title al SE)(hasMasters al)

(applicant_for _title a2 SE)(hasBachelors a2)

(applicant_for_title a3 SE)(hasMasters a3)

(applicant_for _title a4 SE)(hasPhD a4)

(applicant_for_title a5 Manager)(hasPhD a5)

(applicant_for _title a6 SE)(hasMasters a6)

(applicant_for _title a7 SE)(hasBachelors a7)

(applicant_for_title a8 Manager)(hasPhD a8)

(applicant_for_title a9 Manager)(hasPhD a9)

(applicant_for _title a10 Manager)(hasPhD al0)

(:goal (and(all-assigned))

))

Version 4:

Domain definition:

(define (domain V4 _Software)

(:types

applicant title project

110

gender race sexual-orientation

disabilities color

(:predicates

(IsHired ?d - applicant)

(applicant_for _title ?d - applicant ?t - title)

(hasBachelors ?d - applicant)

(hasMasters ?d - applicant)

(hasPhD ?d - applicant)

(hiring_filled_all_titles)

(initialized)

(isWhite ?d - applicant)

(isTransgender ?d - applicant)

(isEuropean-American-Non-Hispanic ?d - applicant)

(isNotStraight ?d - applicant)

(isDisabled ?d - applicant)

(belongs-to-majority ?d - applicant)

111

(belongs-to-minority ?d - applicant)

(applicant-race ?d - applicant ?r - race)

(applicant-gender ?d - applicant ?g - gender)

(applicant-color ?d - applicant ?c - color)

(applicant-so ?d - applicant ?so - sexual-orientation)

(applicant-disabilities ?d - applicant ?ds - disabilities)

(qualified_for_hiring_round_2 ?d - applicant)

(can_hire_in_round_2 ?t - title)

(employee_project_counts_initialized)

(assigned_employee_to_project ?d - applicant ?p - project)

(all-assigned)

(qualified_for_round_2_assigning ?d - applicant ?p - project)

(project_for_round_2 ?p - project)

(:functions

(projects_diversity _count)

(number_of titles_for_hiring ?t - title)

112

(titles_per_project ?t - title ?p - project)

(number_of_projects_assigned_to_employee ?d - applicant)

(hired_for_diversity_count)

(applicants_count)

(applicant_experience ?d - applicant)

(minimum_experience_required_for_title ?t - title)

(number_of _openings_per _title ?t - title)

(projects_count)

(Hired_count)

(total_per _title_from_each_project ?t - title)

(minority_applicant_count)

(majority_applicant_count)

(minority_applicants_hired)

(majority_applicants_hired)

(:action Initialize

:parameters ()

113

:precondition (and

(not(initialized))

-effect (and

(forall (?c - applicant) (and(increase (applicants_count) 1)))

(forall (?c - applicant) (when (hasMasters ?c) (increase (applicant_experience ?c) 2)))

(forall (?c - applicant) (when (hasPhD ?c) (increase (applicant_experience ?¢c) 5)))

(forall (?p - project) (and (increase (projects_count) 1)))

(forall (?t - title) (and(assign (total_per _title_from_each_project ?t) 0)))

(forall (?d - applicant) (when (and (isWhite ?d)(not(isNotStraight ?d))(not(isTransgender

?d))(isEuropean-American-Non-Hispanic ?d)(not (isDisabled ?d)))

(and (belongs-to-majority ?d)(increase (majority_applicant_count) 1))

(forall (?d - applicant) (when (or(isNotStraight ?d)(isDisabled ?d)(isTransgender

?d)(not(and(isWhite ?d)(isEuropean-American-Non-Hispanic ?d)))) ; Asians can be white

(and (belongs-to-minority ?d)(increase (minority_applicant_count) 1))

))

114

(initialized)

))

(:action Hiring_Round_1_Diversity

:parameters (?2d - applicant ?t - title)

:precondition (and

(initialized)

(>(number_of _openings_per title ?t) 0)

(applicant_for_title ?d ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

(not(exists (?c - applicant)

(and

(IsHired ?c)

(applicant_for _title ?c ?t)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?Kk)))

)))

115

-effect (and

(IsHired ?d)

(decrease (number_of _openings_per _title ?t) 1)

(increase (Hired_count) 1)

(increase (hired_for_diversity _count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1))

))

(:action Preparing_for_Hiring_Round_2

‘parameters ()

:precondition (and

(initialized)

-effect (and

(forall (?d - applicant)

(when (and

116

(not (IsHired 7d))

(not(qualified_for_hiring_round_2 ?d))

(exists (?c - applicant)

(and

(IsHired ?c)

(not(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r))))

(not(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d 7k))))

)))

(and

(qualified_for_hiring_round_2 ?d)

)))

(forall (?t - title)

(when (and

(not (exists (?d - applicant)

(and

(applicant_for _title 2d ?t)

(not(IsHired ?d))

117

(not(qualified_for_hiring_round_2 ?d))

)))

(and

(can_hire_in_round_2 ?t)

))))

(action Hiring_Round_2

:parameters (?d - applicant ?t - title)

:precondition (and

(qualified_for_hiring_round_2 ?d)

(>(number_of _openings_per _title ?t) 0)

(applicant_for _title ?d ?t)

(can_hire_in_round_2 ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

118

-effect (and

(IsHired ?d)

(decrease (number_of_openings_per _title ?t) 1)

(increase (Hired_count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1))

(:action Mark-completion-of-hiring

:parameters ()

:precondition (and

(initialized)

(not(hiring_filled_all_titles))

-effect (and

(when (forall (?t - title) (and (=(number_of _openings_per _title ?t) 0))) (hiring_filled_all_titles))

(forall (?p - project ?t - title) (and(increase (total_per _title_from_each_project ?t)
(titles_per_project ?t ?p))))

119

(:action Initialize-after-hiring

:parameters ()

:precondition (and

(hiring_filled_all_titles)

(not(employee_project_counts_initialized))

-effect (and

(forall (?d - applicant) (when(isHired ?d) (assign (number_of projects_assigned to_employee

2d) 0))

)(employee_project_counts_initialized))

(:action Assign-projects-round-1-diversity

:parameters (2d - applicant ?t - title ?p - project)

‘precondition (and

(employee_project_counts_initialized)

(>(titles_per_project ?t ?p) 0)

120

(isHired 2d)

(applicant_for_title ?d ?t)

(not(assigned_employee_to_project ?d ?p))

(<(number_of projects_assigned_to_employee ?d) (/(total_per _title_from_each_project ?t

)(number_of titles_for_hiring ?t)))

(not(exists (?c - applicant)

(and

(assigned_employee_to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?k)))

)))

-effect (and

(assigned_employee_to_project ?2d ?p)

(increase (projects_diversity _count) 1)

(increase(number_of projects_assigned_to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

121

(:action Preparing_for_Assigning_Round_2

:parameters (?p - project)

:precondition (and (employee_project_counts_initialized)

-effect (and

(forall (?d - applicant)

(when (and

(isHired 7d)

(not(qualified_for_round_2_assigning ?d ?p))

(not (assigned_employee_to_project ?d ?p))

(exists (?c - applicant)

(and

(IsHired ?c)

(assigned_employee _to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?2d ?k)))

122

)

(and

(qualified_for_round_2_assigning ?d ?p)

))

(when (and

(not (exists (?d - applicant)

(and

(IsHired ?d)

(not(assigned_employee_to_project ?d ?p))

(not(qualified_for_round_2_assigning ?d ?p))

))

))

(and

(project_for_round_2 ?p)

123

)))

(:action Assign-projects-round-2

:parameters (2d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(isHired 2d)

(not(assigned_employee _to_project ?d ?p))

(applicant_for_title ?d ?t)

(>(titles_per_project 2t ?p) 0)

(<(number_of projects_assigned_to_employee ?d) (/(total_per _title_from_each_project 7t

)(number_of titles_for_hiring ?t)))

(qualified_for_round_2_assigning ?d ?p)

(project_for_round_2 ?p)

-effect (and

(assigned_employee _to_project ?d ?p)

(increase(number_of projects_assigned_to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

124

(:action Mark-completion-of-assigning

:parameters ()

:precondition (and

(employee_project_counts_initialized)

(not(all-assigned))

(forall (?t - title) (not (exists (?d -applicant)(and(applicant_for _title ?d ?t)(isHired ?d)
(<(number_of _projects_assigned_to_employee ?d) (-(/(total_per_title_from_each_project ?t

)(number_of _titles_for_hiring ?t))1))))))

-effect (and

(when (forall(?t - title ?p - project)(and(=(titles_per_project ?t ?p)0))) (all-assigned))

)))

Sample problem instance:

(define (problem P4) (:domain V4_software)

(:objects

al a2 a3 a4 a5 a6 a7 a8 a9 - applicant

125

SE Manager - title

pl p2 - project

Asian European-American-Non-Hispanic African-American American-Indian - race

white black brown - color

male female transgender - gender

straight gay - sexual-orientation

disabled none - disabilities

Ginit

(applicant-race al Asian)(applicant-so al straight)

(applicant-gender al female)(applicant-disabilities al none)

(applicant-color al brown)(applicant-race a2 Asian)

(applicant-so a2 straight)(applicant-gender a2 female)

(applicant-disabilities a2 none)(applicant-color a2 white)

(applicant-race a3 Asian)(applicant-so a3 straight)

(applicant-gender a3 female)(applicant-disabilities a3 none)

(applicant-color a3 white)(applicant-race a4 African-American)

126

(applicant-so a4 straight)(applicant-gender a4 male)

(applicant-disabilities a4 none)(applicant-color a4 black)

(applicant-race a5 European-American-Non-Hispanic)

(applicant-so a5 straight)(applicant-gender a5 male)

(applicant-disabilities a5 none)(applicant-color a5 white)

(applicant-race a6 European-American-Non-Hispanic)

(applicant-so a6 straight)(applicant-gender a6 male)

(applicant-disabilities a6 none)(applicant-color a6 white)

(applicant-race a7 European-American-Non-Hispanic)

(applicant-so a7 straight)(applicant-gender a7 female)

(applicant-disabilities a7 none)(applicant-color a7 white)

(applicant-race a8 European-American-Non-Hispanic)

(applicant-so a8 straight)(applicant-gender a8 male)

(applicant-disabilities a8 disabled)(applicant-color a8 white)

(applicant-race a9 European-American-Non-Hispanic)

(applicant-so a9 straight)(applicant-gender a9 male)

(applicant-disabilities a9 none)(applicant-color a9 white)

127

(isWhite a2)(isWhite a3)(isWhite a5)(isWhite a7)(isWhite a6)(isWhite a8)(isWhite a9)

(isEuropean-American-Non-Hispanic a2) (isEuropean-American-Non-Hispanic a3)(isEuropean-

American-Non-Hispanic a5)(isEuropean-American-Non-Hispanic a6)

(isEuropean-American-Non-Hispanic a7)(isEuropean-American-Non-Hispanic a8)(isEuropean-

American-Non-Hispanic a9)

(isDisabled a8)

(=(hired_for_diversity_count) 0)(=(projects_diversity_count) 0)

(=(applicants_count) 0)(=(projects_count) 0)

(=(minority_applicant_count) 0)(=(majority_applicant_count)0)

(=(minority_applicants_hired)0)(=(majority_applicants_hired)0)

(=(Hired_count)0)(=(titles_per_project SE p1) 2)

(=(titles_per_project SE p2) 3)(=(titles_per_project Manager p1) 1)

(=(titles_per_project Manager p2) 1)(=(number_of_openings_per _title SE) 3)

(=(number_of _openings_per _title Manager) 2)(=(minimum_experience_required_for _title SE)

3)

(=(minimum_experience_required_for_title Manager) 10)

(=(number_of _titles_for_hiring SE) 3)

(=(number_of titles_for_hiring Manager) 2)

128

(=(applicant_experience al) 2)(=(applicant_experience a2) 4)

(=(applicant_experience a3) 3)(=(applicant_experience a4) 3)

(=(applicant_experience a5) 5)(=(applicant_experience a6) 5)

(=(applicant_experience a7) 3)(=(applicant_experience a8) 6)

(=(applicant_experience a9) 6)

(applicant_for_title al SE)(hasMasters al)

(applicant_for _title a2 SE)(hasBachelors a2)

(applicant_for _title a3 SE)(hasMasters a3)

(applicant_for _title a4 SE)(hasPhD a4)

(applicant_for _title a5 Manager)(hasPhD a5)

(applicant_for _title a6 SE)(hasMasters a6)

(applicant_for _title a7 SE)(hasBachelors a7)

(applicant_for _title a8 Manager)(hasPhD a8)

(applicant_for_title a9 Manager)(hasPhD a9)

(:goal (and(all-assigned)))

129

Version 5:

Domain definition:

(define (domain V5_Software)

(:types

applicant title project gender

race sexual-orientation disabilities color

(:predicates

(IsHired ?d - applicant) (applicant_for _title ?d - applicant ?t - title)

(hasBachelors ?d — applicant)(hasMasters ?d - applicant)

(hasPhD ?d — applicant) (hiring_filled_all_titles)

(initialized) (isWhite ?d - applicant) (isTransgender ?d - applicant)

(isEuropean-American-Non-Hispanic ?d - applicant)

(isNotStraight ?d - applicant) (isDisabled ?d - applicant)

(belongs-to-majority ?d - applicant) (belongs-to-minority ?d - applicant)

(applicant-race ?d - applicant ?r - race) (applicant-gender ?d - applicant ?g - gender)

(applicant-color ?d - applicant ?c - color) (applicant-so ?d - applicant ?so - sexual-orientation)

130

(applicant-disabilities ?d - applicant ?ds - disabilities) (qualified_for_hiring_round 2 ?d -

applicant)(can_hire_in_round_2 ?t - title) (employee_project_counts_initialized)

(assigned_employee_to_project ?d - applicant ?p - project) (all-assigned)

(qualified_for_round_2_assigning ?d - applicant ?p - project) (project_for_round_2 ?p - project)

(:functions

(projects_diversity_count) (number_of _titles_for_hiring ?t - title)

(titles_per_project ?t - title ?p - project)

(number_of _projects_assigned_to_employee ?d - applicant)

(hired_for_diversity _count) (applicants_count)

(applicant_experience ?d - applicant)

(minimum_experience_required_for_title ?t - title)

(number_of_openings_per _title ?t - title)

(projects_count) (Hired_count)

(total_per _title_from_each_project ?t - title)

(minority_applicant_count) (majority_applicant_count)

(minority_applicants_hired) (majority_applicants_hired)

131

(:action Initialize

‘parameters ()

:precondition (and

(not(initialized))

-effect (and

(forall (?c - applicant) (and(increase (applicants_count) 1)))

(forall (?c - applicant) (when (hasMasters ?c) (increase (applicant_experience ?c) 2)))

(forall (?c - applicant) (when (hasPhD ?c) (increase (applicant_experience ?c) 5)))

(forall (?p - project) (and (increase (projects_count) 1)))

(forall (?t - title) (and(assign (total_per _title_from_each_project ?t) 0)))

(forall (?d - applicant) (when (and (isWhite ?d)(not(isNotStraight ?d))(not(isTransgender

?d))(isEuropean-American-Non-Hispanic ?d)(not (isDisabled ?d)))

(and (belongs-to-majority ?d)(increase (majority_applicant_count) 1))

))

(forall (?d - applicant) (when (or(isNotStraight ?d)(isDisabled ?d)(isTransgender

?d)(not(and(isWhite ?d)(isEuropean-American-Non-Hispanic ?d)))) ; Asians can be white

(and (belongs-to-minority ?d)(increase (minority_applicant_count) 1))

132

))

(initialized)

))

(:action Hiring_Round_1_Diversity

‘parameters (?2d - applicant ?t - title)

:precondition (and

(initialized)

(>(number_of_openings_per _title ?t) 0)

(applicant_for_title ?d ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

(not(exists (?c - applicant)

(and

(IsHired ?c)

(applicant_for _title ?c ?t)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?2d ?k)))

133

(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d ?g)))

(exists (?x - sexual-orientation)(and(applicant-so ?c ?x)(applicant-so ?d ?x)))

(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y)))

))))

-effect (and

(IsHired 7d)

(decrease (number_of _openings_per _title ?t) 1)

(increase (Hired_count) 1)

(increase (hired_for_diversity count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1))

))

(:action Preparing_for_Hiring_Round_2

‘parameters ()

‘precondition (and

(initialized)

134

-effect (and

(forall (?d - applicant)

(when (and

(not (IsHired 7d))

(not(qualified_for_hiring_round_2 ?d))

(exists (?c - applicant)

(and

(IsHired ?c)

(not(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r))))

(not(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d 7k))))

(not(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d 7g))))

(not(exists (?x - sexual-orientation)(and(applicant-so ?c ?x)(applicant-so ?d ?x))))

(not(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y))))

)))

(and

(qualified_for_hiring_round_2 ?d)

)))

135

(forall (?t - title)

(when (and

(not (exists (?d - applicant)

(and

(applicant_for_title ?d ?t)

(not(IsHired ?d))

(not(qualified_for_hiring_round_2 ?d))

)))

(and

(can_hire_in_round_2 ?t)

))))

(zaction Hiring_Round_2

‘parameters (?d - applicant ?t - title)

‘precondition (and

(qualified_for_hiring_round_2 ?d)

136

(>(number_of _openings_per _title ?t) 0)

(applicant_for_title ?d ?t)

(can_hire_in_round_2 ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

;there does not exist an applicant who is qualifying,not hired, and has different race or color to

that of ?D

-effect (and

(IsHired ?d)

(decrease (number_of _openings_per _title ?t) 1)

(increase (Hired_count) 1)

(when (belongs-to-minority ?d) (increase (minority_applicants_hired) 1))

(when (belongs-to-majority ?d) (increase (majority_applicants_hired) 1))

(:action Mark-completion-of-hiring

‘parameters ()

137

:precondition (and

(initialized)

(not(hiring_filled_all_titles))

-effect (and

(when (forall (?t - title) (and (=(number_of _openings_per _title ?t) 0))) (hiring_filled_all_titles))

(forall (?p - project ?t - title) (and(increase (total_per_title_from_each_project ?t)

(titles_per_project ?t ?p))))

(:action Initialize-after-hiring

‘parameters ()

:precondition (and

(hiring_filled_all_titles)

(not(employee_project_counts_initialized))

-effect (and

138

(forall (?d - applicant) (when(isHired ?d) (assign (number_of projects_assigned to_employee

2d) 0))

(employee_project_counts_initialized))

(action Assign-projects-round-1-diversity

:parameters (?2d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(>(titles_per_project ?t ?p) 0)

(isHired 2d)

(applicant_for_title ?d ?t)

(not(assigned_employee to_project ?d ?p))

(<(number_of projects_assigned_to_employee ?d) (/(total_per _title_from_each_project ?t

)(number_of titles for_hiring ?t)))

(not(exists (?c - applicant)

(and

(assigned_employee_to_project ?c ?p)

139

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?k)))

(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d ?g)))

(exists (?x - sexual-orientation)(and(applicant-so ?c ?x)(applicant-so ?d ?x)))

(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y)))

))

-effect (and

(assigned_employee_to_project ?2d ?p)

(increase (projects_diversity count) 1)

(increase(number_of _projects_assigned _to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

(:action Preparing_for_Assigning_Round_2

‘parameters (?p - project)

:precondition (and (employee_project_counts_initialized)

140

-effect (and

(forall (?d - applicant)

(when (and

(isHired ?d)

(not(qualified_for_round_2_assigning ?d ?p))

(not (assigned_employee to_project ?d ?p))

(exists (?c - applicant)

(and

(IsHired ?c)

(assigned_employee_to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?2d ?k)))

(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d ?g)))

(exists (?x - sexual-orientation)(and(applicant-so ?c¢ ?x)(applicant-so ?d ?x)))

(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y)))

))

141

(and

(qualified_for_round_2_assigning ?d ?p)

)))

(when (and

(not (exists (?d - applicant)

(and

(IsHired 7d)

(not(assigned_employee_to_project ?d ?p))

(not(qualified_for_round_2_assigning ?d ?p))

)

(and

(project_for_round_2 ?p))

(:action Assign-projects-round-2

142

:parameters (?2d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(isHired 2d)

(not(assigned_employee_to_project ?d ?p))

(applicant_for _title ?d ?t)

(>(titles_per_project ?t ?p) 0)

(<(number_of _projects_assigned_to_employee ?d) (/(total_per_title_from_each_project ?t

)(number_of _titles_for_hiring ?t)))

(qualified_for_round_2_assigning ?d ?p)

(project_for_round_2 ?p)

-effect (and

(assigned_employee_to_project ?2d ?p)

(increase(number_of _projects_assigned _to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

143

(:action Mark-completion-of-assigning

‘parameters ()

:precondition (and

(employee_project_counts_initialized)

(not(all-assigned))

(forall (?t - title) (not (exists (?d -applicant)(and(applicant_for _title ?d ?t)(isHired ?d)
(<(number_of _projects_assigned_to_employee ?d) (-(/(total_per_title_from_each_project ?t

)(number_of titles_for_hiring ?t))1))))))

-effect (and

;when every project is assigned with required count of titles

(when (forall(?t - title ?p - project)(and(=(titles_per_project ?t ?p)0))) (all-assigned))

)

Sample problem instance:

(define (problem P4) (:domain V5_software)

(:objects

al a2 a3 a4 a5 a6 a7 a8 a9 - applicant

SE Manager - title

144

pl p2 - project

Asian European-American-Non-Hispanic African-American American-Indian - race

white black brown - color

male female transgender - gender

straight gay - sexual-orientation

disabled none - disabilities

Ginit

(applicant-race al Asian)(applicant-so al straight)

(applicant-gender al female)(applicant-disabilities al none)

(applicant-color al brown)(applicant-race a2 Asian)

(applicant-so a2 straight)(applicant-gender a2 female)

(applicant-disabilities a2 none)(applicant-color a2 white)

(applicant-race a3 Asian)(applicant-so a3 straight)

(applicant-gender a3 female)(applicant-disabilities a3 none)

(applicant-color a3 white)(applicant-race a4 African-American)

(applicant-so a4 straight)(applicant-gender a4 male)

145

(applicant-disabilities a4 none)(applicant-color a4 black)

(applicant-race a5 European-American-Non-Hispanic)

(applicant-so a5 straight)(applicant-gender a5 male)

(applicant-disabilities a5 none)(applicant-color a5 white)

(applicant-race a6 European-American-Non-Hispanic)

(applicant-so a6 straight)(applicant-gender a6 male)

(applicant-disabilities a6 none)(applicant-color a6 white)

(applicant-race a7 European-American-Non-Hispanic)

(applicant-so a7 straight)(applicant-gender a7 female)

(applicant-disabilities a7 none)(applicant-color a7 white)

(applicant-race a8 European-American-Non-Hispanic)

(applicant-so a8 straight)(applicant-gender a8 male)

(applicant-disabilities a8 disabled)(applicant-color a8 white)

(applicant-race a9 European-American-Non-Hispanic)

(applicant-so a9 straight)(applicant-gender a9 male)

(applicant-disabilities a9 none)(applicant-color a9 white)

(isWhite a2)(isWhite a3)(isWhite a5)(isWhite a7)(isWhite a6)(isWhite a8)(isWhite a9)

146

(isEuropean-American-Non-Hispanic a2) (isEuropean-American-Non-Hispanic a3)(isEuropean-

American-Non-Hispanic a5)(isEuropean-American-Non-Hispanic a6)

(isEuropean-American-Non-Hispanic a7)(isEuropean-American-Non-Hispanic a8)(isEuropean-

American-Non-Hispanic a9)

(isDisabled a8)

(=(hired_for_diversity_count) 0)(=(projects_diversity _count) 0)

(=(applicants_count) 0)(=(projects_count) 0)

(=(minority_applicant_count) 0)(=(majority_applicant_count)0)

(=(minority_applicants_hired)0)(=(majority_applicants_hired)0)

(=(Hired_count)0)(=(titles_per_project SE p1) 2)

(=(titles_per_project SE p2) 3)(=(titles_per_project Manager p1) 1)

(=(titles_per_project Manager p2) 1)(=(number_of _openings_per _title SE) 3)

(=(number_of_openings_per_title Manager) 2)(=(minimum_experience_required_for _title SE)

3)

(=(minimum_experience_required_for_title Manager) 10)

(=(number_of titles_for_hiring SE) 3)

(=(number_of _titles_for_hiring Manager) 2)

(=(applicant_experience al) 2)(=(applicant_experience a2) 4)

147

(=(applicant_experience a3) 3)(=(applicant_experience a4) 3)

(=(applicant_experience a5) 5)(=(applicant_experience a6) 5)

(=(applicant_experience a7) 3)(=(applicant_experience a8) 6)

(=(applicant_experience a9) 6)

(applicant_for_title al SE)(hasMasters al)

(applicant_for_title a2 SE)(hasBachelors a2)

(applicant_for _title a3 SE)(hasMasters a3)

(applicant_for _title a4 SE)(hasPhD a4)

(applicant_for_title a5 Manager)(hasPhD a5)

(applicant_for _title a6 SE)(hasMasters a6)

(applicant_for _title a7 SE)(hasBachelors a7)

(applicant_for _title a8 Manager)(hasPhD a8)

(applicant_for_title a9 Manager)(hasPhD a9)

(:goal (and(all-assigned)))

(:metric maximize (+(diversity_count)(inclusivity _count))))

Version 6:

Domain definition:

148

(define (domain V6_Software)

(:requirements :adl :typing :fluents :negative-preconditions :strips)

(:types

applicant title project gender

race sexual-orientation disabilities

color

(:predicates

(IsHired ?d - applicant) (applicant_for _title ?d - applicant ?t - title)

(hasBachelors ?d - applicant) (hasMasters ?d - applicant)

(hasPhD ?d - applicant) (hiring_filled_all_titles)

(initialized) (isWhite ?d - applicant)

(isTransgender ?d - applicant) (isEuropean-American-Non-Hispanic ?d - applicant)

(isNotStraight ?d - applicant) (isDisabled ?d - applicant)

(belongs-to-majority ?d - applicant) (belongs-to-minority ?d - applicant)

(applicant-race ?d - applicant ?r - race) (applicant-gender ?d - applicant ?g - gender)

(applicant-color ?d - applicant ?c - color) (applicant-so ?d - applicant ?so - sexual-orientation)

149

(applicant-disabilities ?d - applicant ?ds - disabilities)

(qualified_for_hiring_round_2 ?d - applicant) (can_hire_in_round_2 ?t - title)

(employee_project_counts_initialized)

(assigned_employee_to_project ?d - applicant ?p - project)

(all-assigned) (qualified_for_assigning_round_2 ?d - applicant ?p - project)

(project_for_round_2 ?p - project) (counted)

(accepted)

(:functions

(k1)

(k2)

(minority_applicants_for_title ?t - title)(majority_applicants_for _title ?t - title)

(hired_minority_applicants_for_title ?t - title)

(hired_majority_applicants_for _title ?t - title)(projects_diversity_count)

(number_of titles for_hiring ?t - title)(titles_per_project ?t - title ?p - project)

(number_of _projects_assigned_to_employee ?d - applicant)

(hired_for_diversity_count)(applicants_count)

150

(applicant_experience ?d - applicant)(minimum_experience_required_for _title ?t - title)

(number_of_openings_per _title ?t - title)(projects_count)(Hired_count)

(total_per _title_from_each_project ?t - title)

(minority_applicant_count)(majority_applicant_count)

(minority_applicants_hired)(majority_applicants_hired)

(:action Initialize

‘parameters ()

:precondition (and

(not(initialized))

-effect (and

(forall (?c - applicant) (and(increase (applicants_count) 1)))

(forall (?c - applicant) (when (hasMasters ?c) (increase (applicant_experience ?c) 2)))

(forall (?c - applicant) (when (hasPhD ?c) (increase (applicant_experience ?c) 5)))

(forall (?p - project) (and (increase (projects_count) 1)))

(forall (?t - title) (and

151

(assign (total_per_title_from_each_project ?t) 0)

(assign (hired_majority_applicants_for_title ?t) 0)

(assign (hired_minority_applicants_for _title ?t) 0)

)

(forall (?d - applicant) (when (and (isWhite ?d)(isEuropean-American-Non-Hispanic ?d)(not(or

(isTransgender ?d) (isDisabled ?d))))

(and (belongs-to-majority ?d)(increase (majority_applicant_count) 1))

(forall (?d - applicant) (when (or (isDisabled ?d)(isTransgender ?d)(not(and(isWhite

?d)(isEuropean-American-Non-Hispanic ?d)))) ; Asians can be white

(and (belongs-to-minority ?d)(increase (minority_applicant_count) 1))

))

(initialized)

))

(:action count_minority_majority_applicants

‘parameters ()

‘precondition (and

152

(initialized)

(not(counted))

-effect (and

(forall (?d - applicant ?t - title) (when (and (belongs-to-minority ?d)(applicant_for_title ?d

?t)(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t)))

(and (increase (minority_applicants_for_title ?t) 1))

(forall (?d - applicant ?t - title) (when (and (belongs-to-majority ?d)(applicant_for_title ?d

?t)(>=(applicant_experience ?d)(minimum_experience_required_for_title ?t)))

(and (increase (majority_applicants_for _title ?t) 1))

))

(counted))

(:action Hiring_Round_1_Diversity

:parameters (2d - applicant ?t - title)

‘precondition (and

153

(counted)

(>(number_of_openings_per _title ?t) 0)

(applicant_for_title ?d ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

(not(IsHired ?d))

(not(exists (?c - applicant)

(and

(IsHired ?c)

(applicant_for _title ?c ?t)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?2d ?k)))

(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d ?g)))

(exists (?x - sexual-orientation)(and(applicant-so ?c ?x)(applicant-so ?d ?x)))

(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y)))

))))

-effect (and

(IsHired ?d)

154

(decrease (number_of _openings_per _title ?t) 1)

(increase (Hired_count) 1)

(increase (hired_for_diversity count) 1)

(when (belongs-to-minority ?d) (and (increase (hired_minority applicants_for_title ?t)

1)(increase (minority_applicants_hired) 1)))

(when (belongs-to-majority ?d) (and (increase (hired_majority_applicants_for_title ?t)

1)(increase (majority_applicants_hired) 1)))

)

(:action Preparing_for_Hiring_Round_2

‘parameters ()

:precondition (and

(initialized)

(counted)

-effect (and

(forall (d - applicant)

(when (‘and

(not (IsHired ?d))

155

(not(qualified_for_hiring_round_2 ?d))

(exists (?c - applicant)

(and

(IsHired ?c)

(or

(not(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r))))

(not(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d 7k))))

(not(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d 7g))))

(not(exists (?x - sexual-orientation)(and(applicant-so ?c ?x)(applicant-so ?d ?x))))

(not(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y))))

))))

(and

(qualified_for_hiring_round_2 ?d)

)))

(forall (7t - title)

(when (‘and

(not (exists (?d - applicant)

156

(and

(applicant_for_title ?d ?t)

(not(IsHired ?d))

(not(qualified_for_hiring_round_2 ?d))

))))

(and

(can_hire_in_round_2 ?t)

))))

(:action Hiring_Round_2

:parameters (?d - applicant ?t - title)

:precondition (and

(qualified_for_hiring_round_2 ?d)

(>(number_of_openings_per _title ?t) 0)

(applicant_for _title 2d ?t)

(can_hire_in_round_2 ?t)

(>=(applicant_experience ?d)(minimum_experience_required_for _title ?t))

157

(not(IsHired ?d))

;there does not exist an applicant who is qualifying,not hired, and has different race or color to

that of ?D

-effect (and

(IsHired 7d)

(decrease (number_of _openings_per _title ?t) 1)

(increase (Hired_count) 1)

(when (belongs-to-minority ?d) (and (increase (hired_minority_applicants_for_title ?t)

1)(increase (minority_applicants_hired) 1)))

(when (belongs-to-majority ?d) (and (increase (hired_majority _applicants_for _title ?t)

1)(increase (majority_applicants_hired) 1)))

(:action Mark-completion-of-hiring

‘parameters ()

:precondition (and

(initialized)

158

(not(hiring_filled_all_titles))

-effect (and

(when (forall (?t - title) (and (=(number_of _openings_per _title ?t) 0))) (hiring_filled_all_titles))

(forall (?p - project ?t - title) (and(increase (total_per _title_from_each_project ?t)

(titles_per_project ?t ?p))))

(:action Mark-completion-of-Checking-Acceptance

:parameters ()

:precondition (and

(not(accepted))

(hiring_filled_all_titles)

(not (exists (?t - title) (and

(<= (+ (*(k1)(minority_applicants_for_title ?t)) (*(k2)(majority_applicants_for _title

?t)))(number_of titles_for_hiring ?t))

(or

(>(- (*(k1)(minority_applicants_for_title ?t)) 1)(hired_minority _applicants_for _title ?t))

159

(>(- (*(k2)(majority_applicants_for _title ?t)) 1)(hired_majority_applicants_for _title ?t))

))

-effect (and

(accepted)

))

(:action Initialize-after-hiring

‘parameters ()

:precondition (and

(accepted)

(not(employee_project_counts_initialized))

-effect (and

(forall (?d - applicant) (when(isHired ?d) (assign (number_of projects_assigned_to_employee

2d) 0))

) (employee_project_counts_initialized)

))

(:action Assign-projects-round-1-diversity

160

:parameters (?2d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(>(titles_per_project ?t ?p) 0)

(isHired ?d)

(applicant_for _title ?d ?t)

(not(assigned_employee _to_project ?d ?p))

(<(number_of _projects_assigned_to_employee ?d) (/(total_per title_from_each_project 2t

)(number_of _titles_for_hiring ?t)))

(not(exists (?c - applicant)

(and

(assigned_employee_to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?k)))

(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d ?g)))

(exists (?x - sexual-orientation)(and(applicant-so ?c¢ ?x)(applicant-so ?d ?x)))

(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y)))

))))
161

-effect (and

(assigned_employee_to_project ?d ?p)

(increase (projects_diversity_count) 1)

(increase(number_of projects_assigned to_employee ?d) 1)

(decrease(titles_per_project ?t ?7p) 1)

))

(:action Preparing_for_Assigning_Round_2

:parameters (?p - project)

:precondition (and (employee_project_counts_initialized)

-effect (and

(forall (?d - applicant)

(when (and

(isHired 2d)

(not(qualified_for_assigning_round_2 ?d ?p))

(not (assigned_employee to_project ?d ?p))

(exists (?c - applicant)

162

(and

(IsHired ?c)

(assigned_employee_to_project ?c ?p)

(exists (?r - race)(and(applicant-race ?c ?r)(applicant-race ?d ?r)))

(exists (?k - color)(and(applicant-color ?c ?k)(applicant-color ?d ?k)))

(exists (?g - gender)(and(applicant-gender ?c ?g)(applicant-gender ?d ?g)))

(exists (?x - sexual-orientation)(and(applicant-so ?c ?x)(applicant-so ?d ?x)))

(exists (?y - disabilities)(and(applicant-disabilities ?c ?y)(applicant-disabilities ?d ?y)))

)

(and

(qualified_for_assigning_round_2 ?d ?p))))

(when (and

(not (exists (?d - applicant)

(and

(IsHired ?d)

(not(assigned_employee _to_project ?d ?p))

(not(qualified_for_assigning_round_2 ?d ?p))))))

163

(and

(project_for_round_27p)) 1)))

(:action Assign-projects-round-2

:parameters (2d - applicant ?t - title ?p - project)

:precondition (and

(employee_project_counts_initialized)

(isHired 2d)

(not(assigned_employee_to_project ?d ?p))

(applicant_for_title ?d ?t)

(>(titles_per_project ?t ?p) 0)

(<(number_of _projects_assigned_to_employee ?d) (/(total_per_title_from_each_project ?t

)(number_of _titles_for_hiring ?t)))

(project_for_round_2 ?p)

-effect (and

(assigned_employee _to_project ?d ?p)

(increase(number_of projects_assigned_to_employee ?d) 1)

(decrease(titles_per_project ?t ?p) 1)

164

))

(:action Mark-completion-of-assigning

‘parameters ()

:precondition (and

(employee_project_counts_initialized)

(not(all-assigned))

(forall (?t - title) (not (exists (?d -applicant)(and(applicant_for _title ?d ?t)(isHired ?d)
(<(number_of projects_assigned_to_employee ?d) (-(/(total_per_title_from_each_project ?t

)(number_of titles_for_hiring ?t))1))))))

-effect (and

:when every project is assigned with required count of titles

(when (forall(?t - title ?p - project)(and(=(titles_per_project ?t ?p)0))) (all-assigned))

)))

Sample problem instance:

(define (problem P4) (:domain VV6_software)

(:objects

al a2 a3 a4 a5 a6 a7 a8 - applicant

165

SE Manager - position

pl p2 p3 - project

male female transgender - gender

Asian European-American-Non-Hispanic African-American American-Indian - race

straight gay - sexual-orientation

disabled none - disabilities

white black brown - color

Ginit

(applicant-race al Asian)(applicant-so al straight)

(applicant-gender al male)(applicant-disabilities al none)

(applicant-color al white)(applicant-race a2 Asian)

(applicant-so a2 straight)(applicant-gender a2 male)

(applicant-disabilities a2 none)(applicant-color a2 white)

(applicant-race a3 Asian)(applicant-so a3 straight)

(applicant-gender a3 male)(applicant-disabilities a3 none)

(applicant-color a3 white)(applicant-race a4 African-American)

166

(applicant-so a4 gay)(applicant-gender a4 male)

(applicant-disabilities a4 none)(applicant-color a4 black)

(applicant-race a5 European-American-Non-Hispanic)

(applicant-so a5 straight)(applicant-gender a5 male)

(applicant-disabilities a5 none)(applicant-color a5 white)

(applicant-race a7 European-American-Non-Hispanic)

(applicant-so a7 straight)(applicant-gender a7 male)

(applicant-disabilities a7 none)(applicant-color a7 white)

(applicant-race a8 European-American-Non-Hispanic)

(applicant-so a8 straight)(applicant-gender a8 male)

(applicant-disabilities a8 none)(applicant-color a8 white)

(isWhite a8)(isWhite a7)(isWhite a2)(isWhite al)(isWhite a3)

(isTransgender a8) (isEuropean-American-Non-Hispanic a8) (isEuropean-American-Non-

Hispanic a7)

(isDisabled a5)

(=(applicants_count) 0)(=(projects_count) 0)

(=(hiring_diversity_count) 0)(=(projects_diversity count) 0)

(=(positions_per_project SE p1) 4)(=(positions_per_project SE p2) 4)

167

(=(positions_per_project SE p3) 4)(=(positions_per_project Manager pl) 1)

(=(positions_per_project Manager p2) 1)(=(positions_per_project Manager p3) 1)

(=(Hired_count)0)

(=(minority_applicant_count) 0)(=(majority_applicant_count) 0)

(=(minority_applicants_hired) 0)(=(majority_applicants_hired) 0)

(=(number_of_openings_per_title SE) 6)(=(number_of_openings_per_title Manager) 2)

(=(minimum_experience_required_for _title SE) 3)(=(minimum_experience_required_for _title

Manager) 10)

(=(number_of_positions_for_hiring SE) 6)(=(number_of_positions_for_hiring Manager) 2)

(=(total_per_position_from_each_project SE) 12)(=(total_per_position_from_each_project

Manager) 3)

(=(applicant_experience al) 2)(=(applicant_experience a2) 4)

(=(applicant_experience a3) 3)(=(applicant_experience a4) 3)

(=(applicant_experience a5) 5)(=(applicant_experience a6) 5)

(=(applicant_experience a7) 3)(=(applicant_experience a8) 6)

(applicant_for _title al SE)(hasMasters al)

(applicant_for _title a2 SE)(hasBachelors a2)

(applicant_for _title a3 SE)(hasMasters a3)

168

(applicant_for _title a4 SE)(hasPhD a4)

(applicant_for_title a5 Manager)(hasPhD a5)

(applicant_for_title a6 SE)(hasMasters a6)

(applicant_for _title a7 SE)(hasBachelors a7)

(applicant_for_title a8 Manager)(hasPhD a8)

(:goal (and(all-assigned)))

169

	Addressing Diversity, Equality, Inclusion and Discrimination By Modeling, Selecting and Ordering Actions
	Recommended Citation

	tmp.1630354682.pdf.yPBBo

