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ABSTRACT 

DEVELOPMENT OF NOVEL COMPOUND CONTROLLERS TO REDUCE 

CHATTERING OF SLIDING MODE CONTROL  

 

by 

Mehran Rahmani 

 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision Professor Mohammad H. Rahman 

 

The robotics and dynamic systems constantly encountered with disturbances such as micro 

electro mechanical systems (MEMS) gyroscope under disturbances result in mechanical coupling 

terms between two axes, friction forces in exoskeleton robot joints, and unmodelled dynamics of 

robot manipulator. Sliding mode control (SMC) is a robust controller. The main drawback of the 

sliding mode controller is that it produces high-frequency control signals, which leads 

to chattering. The research objective is to reduce chattering, improve robustness, and increase 

trajectory tracking of  SMC. In this research, we developed controllers for three different dynamic 

systems: (i) MEMS, (ii) an Exoskeleton type robot, and (iii) a 2 DOF robot manipulator. We 

proposed three sliding mode control methods such as robust sliding mode control (RSMC), new 

sliding mode control (NSMC), and fractional sliding mode control (FSMC). These 

controllers were applied on MEMS gyroscope, Exoskeleton robot, and robot manipulator. The 

performance of the three proposed sliding mode controllers was compared with conventional 

sliding mode control (CSMC). The simulation results verified that FSMC exhibits better 

performance in chattering reduction, faster convergence, finite-time convergence, robustness, and 

trajectory tracking compared to RSMC, CSMC, and NSFC. Also, the tracking performance of 
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NSMC was compared with CSMC experimentally, which demonstrated better performance of the 

NSMC controller. 

Keywords: Chattering, Exoskeleton robot, MEMS, Robot manipulator, Sliding mode 

control, Trajectory Tracking.  
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Chapter 1 

1. Introduction 

In control theory, robust control is a method for controller design that is directly related to 

modeling uncertainty, and unknown disturbances. The goal of the robust control method is to 

design a controller to obtain robust performance and/or stability in the presence of bounded 

modeling errors [1, 2]. Sliding mode control (SMC) is a nonlinear control method used in control 

systems to change the behavior of a nonlinear dynamic system by applying a discontinuous control 

signal that causes the system to "slide" along a sliding surface. The state-feedback control law is 

not a continuous function of time.  

The main problem of the sliding mode control is that it creates chattering, which is responsible for 

damaging the structure of mechanical systems [3]. Scholars are designed different control 

approaches to reduce the chattering of SMC. For example, Kachroo and Tomizuka [4] used a 

boundary layer around the switching surface to eliminate chattering in the SMC. The novelty of 

designing sliding mode control depends on how to select sliding mode surface. 

In this research, three controllers that include robust sliding mode control (RSMC), new 

sliding mode control (NSMC), and  fractional sliding mode control (FSMC) based on sliding mode 

control are proposed. These control methods are applied on a MEMS gyroscope, an exoskeleton 

robot, and a 2DoFs robot manipulator. The simulation results demonstrated that FSMC shows 

better performance in chattering reduction, faster convergence, robustness, and trajectory tracking 

compared to three other controllers, CSMC, RSMC, and NSMC. The main contributions of this 

research are as follows: 
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• A novel FSMC was proposed to improve tracking performance 

• Experimental verification of the proposed NSMC on a 2DoFs robot manipulator 

showing better trajectory tracking performance compared to CSMC. 
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Chapter 2 

2. Overview 

 Literature Review 

In the literature review section, applications of different control methods on MEMS 

gyroscope, Exoskeleton robot, and robot manipulator are discussed. 

2.1.1 Control of MEMS gyroscope 

MEMS gyroscope devices, also referred to as angular rate sensors are widely used in control 

engineering to measure angular velocity without any fixed point of reference. The advantage of 

MEMS gyroscope is their small size, which makes them suitable for various applications, such as 

automotive and biomedical applications [5, 6]. MEMS gyroscope needs to be suitably controlled 

to perform its defined task, such as measuring angular velocity. Sliding mode control (SMC) is a 

conventional control system that has been used in various industrial MEMS applications [7-9]. 

Batur et al. [10] proposed an adaptive feedback controller using SMC to guarantee the stability of 

the MEMS gyroscope device. Fei and Yuan [11] proposed a dynamic SMC approach with a novel 

switching function for the state tracking of MEMS gyroscope. Simulation results verified that the 

proposed control method can improve the dynamic performance of the MEMS gyroscope. 

The chattering phenomenon [12], which is caused by the unmodelled dynamics system (the 

phenomenon that is affected by the controller and external perturbation that are not observable by 

the model), is the main drawback of the SMC. Chattering is a quick, sometimes noisy vibration 

with a fixed frequency and amplitude.  Generally, the chattering phenomenon can be eliminated 

by using a compound system. Chu and Fei [13] proposed an adaptive global SMC using a Radial 

Basis Function (RBF) neural network for the reduction of chattering and tracking of the MEMS 
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gyroscope. The proposed control method has suitable tracking performance, but high chattering in 

the control input is the main problem. Ren et al. [14] proposed an adaptive fuzzy finite time SMC 

on MEMS gyroscope to consider uncertainty and external disturbance. The stability of the 

proposed control system was verified by Lyapunov's theory. Wang and Fei [15] proposed a multi-

input multi-output Takagi-Sugeno fuzzy model designed to improve tracking performance. The 

proposed controller improved the tracking performance, but it has high control inputs. Xin and Fei 

[16] proposed an adaptive backstepping sliding mode control method to control the x-y movements 

of the MEMS gyroscope. An adaptive backstepping controller was designed and incorporated with 

the SMC to estimate systems uncertainties. By designing (Xin and Fei [16]) the adaptive 

backstepping sliding mode controller, the chattering phenomenon was considerably eliminated. 

Fei et al. [17] proposed an adaptive nonsingular terminal sliding mode tracking control method 

based on the backstepping approach for MEMS gyroscope vibratory control. The proposed control 

method guaranteed the asymptotical stability of the closed-loop system. Ghanbari and Moghanni-

Bavil-Olyaei [18] proposed a novel terminal sliding mode controller to control the MEMS z-axis 

gyroscope. However, using (Ghanbari and Moghanni-Bavil-Olyaei) an adaptive fuzzy terminal 

sliding mode controller, the chattering phenomenon was significantly reduced.  

Several recent publications focused on the application of neural networks and fuzzy control 

to improve SMC performance [19]. Pour Asad et al. [20] proposed a new fuzzy SMC to control a 

MEMS gyroscope. A supervisory compensator was applied to eliminate the effect of the estimation 

error. Simulation results demonstrated that the type-2 fuzzy system performs better than the 

adaptive neuro-fuzzy SMC inference system (ANFIS). Chu et al. [21] proposed a global 

proportional integral derivative (PID) SMC based on an adaptive radial basis function neural 

network. A neural network was implemented to ensure stability and robustness in the presence of 
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a lumped uncertainty for a MEMS gyroscope system. Moreover, dynamic global PID sliding mode 

control and adaptive laws guarantee the asymptotic stability of the close-loop system.  

Rahmani [22] suggested a novel hybrid fractional-order terminal sliding mode control and 

proportional-integral-derivative (PID) control to control a MEMS gyroscope. SMC is a robust 

control, and PID controller has high tracking performance. Therefore, both controllers use each 

other advantages. The differentiation and integration order of the operation can be defined as a real 

or complex number. The chattering problem in the fractional integral terminal sliding mode control 

was eliminated using a proportional-derivative (PD) controller. As the studies above have 

indicated, the chattering phenomenon in the SMC can be eliminated by choosing an appropriate 

control method. However, an optimal way of implementing the control method remains to be 

investigated. 

2.1.2 Control of Exoskeleton Type Robots 

An exoskeleton upper limb robot is one type of rehabilitation human-robot interaction, 

which has been widely studied by researchers all around the world. Sliding mode control has been 

widely used in robotics systems due to its high tracking performance and robustness against 

external disturbances [23-27]. Zhu et al. [28] proposed a new linear integral sliding mode control 

to enhance the tracking performance. Then, they applied a radial basis function (RBF) neural 

network to eliminate the chattering phenomenon created by the integral sliding mode controller. 

The proposed RBF neural network reduced chattering created by the integral sliding mode control. 

Long et al. [29] proposed a compound position control method, which combines a sliding mode 

control with a cerebellar model articulation controller neural network. To improve performance of 

sliding mode control, a genetic algorithm was applied to determine the optimal sliding surface and 

sliding control law. The simulation results demonstrated the effectiveness of the proposed control 
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that improved the trajectory tracking scheme on an exoskeleton robot. Wang et al. [30] proposed 

a sliding mode control of the electro-hydraulic servo system to track the desired trajectory tracking. 

It was observed that the electro-hydraulic servo system of the exoskeleton robot improved 

uncertainties and load disturbance by combining the sliding mode controller and RBF neural 

network. A control scheme tuned with a genetic algorithm applied for shoulder rehabilitation robot 

control improves tracking performance [31]. Mushage et al. [32] proposed a compound high-gain 

state observer and a fuzzy neural network for state vector and nonlinear dynamic estimation. 

The proposed control method was applied on a 5-DOFs upper limb exoskeleton robot, which 

can track the desired trajectory appropriately. However, the main limitation of the fuzzy control 

method is to select/choose fuzzy rules, which need to be selected appropriately for an exoskeleton 

robot. The main drawback of the proposed control method is the high control input. Ahmed et al. 

[33] proposed a fractional-order nonsingular fast terminal sliding mode control for the lower-limb 

robotic exoskeleton in the existence of external disturbances and uncertainties [34]. The main 

advantage of the proposed control method is that it can control the exoskeleton robot without 

relying on the accurate dynamic model of that robot. However, the proposed control method 

created high control input. Achili et al. [35] proposed an adaptive observer-based controller both 

on a Multi-layer perceptron neural network (MLPNN) and a sliding mode method for control of a 

wearable robot. The MLPNN, selected for its features of estimation, has been applied to identify 

the unknown dynamic. The proposed research validated the control method in terms of trajectory 

tracking both in simulation and experimentation. Han et al. [36] proposed model-free adaptive 

nonsingular fast terminal sliding mode control, which includes three parts: the intelligent PI 

controller, time delay estimation, and adaptive sliding compensator. By applying the proposed 

control method, tracking error converged to zero in finite time [37]. Mefoued [38] designed an 
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adaptive MLPNN which does not require the dynamic model of the system. Rahman et al. [39] 

applied a sliding mode control method on a 7-DOF exoskeleton robot. Experimental results 

verified that SMC effectively maneuvers an exoskeleton robot to track the desired trajectory. Later 

on, Brahim et al. [40] proposed a new control scheme based on human upper-limb inverse 

kinematics to improve the trajectory tracking performance in Cartesian space. All the works 

mentioned above, however, lack the essential control features such as robustness or convergence 

of trajectory tracking error to zero in finite time. Therefore, by observing these problems, we 

decided to design a novel control method that includes all the mentioned advantages. 

2.1.3 Control of robot manipulator 

SMC is a powerful controller for robustness and trajectory tracking [41-46]. Xiong et al. [47] 

introduced distributed SMC under the quantization process. To use digital communication, a 

quantizer is produced on the sensor system [48]. For the sensor system, an integral SMS is used 

on the basis of the filtered signal. Simulation results verified the improved trajectory tracking 

performance of the proposed controller. Herrera et al. [49] used the Alpeter method and SMC to 

produce a dynamic SMC. A comparison of the suggested method and SMC illustrated the 

advantages of the proposed control. The proposed controller reduced chattering. Yu et al. [50] 

proposed a new control scheme for the piezoelectric actuator to obtain suitable tracking 

performance. A particle swarm algorithm was used for the identification of nonlinear model 

parameters. The proposed structure, SMC, and feedforward methods are applied using the Bouc-

Wen inverse algorithm to improve the position tracking performance. Wang et al. [51] introduced 

incremental nonsingular SMC for nonlinear systems regarding sudden actuator fault, external 

perturbations, and model uncertainties. This scheme does not include singularity [52] because it is 

free from any negative fractional order. The simulation result illustrates that the proposed scheme 
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is robust against actuator faults compared to Li et al. [53] proposed a novel asynchronous dynamic 

output feedback SMC method for a singular markovian jump system and considered the problem 

of asynchronous output feedback SMC design.  

 Zheng et al. [54] introduced a fuzzy SMC approach to control the robot with perturbations. 

The complex dynamic model of the robot has been considered by using perturbations. New fuzzy 

SMC is proposed according to SMC and fuzzy control combination. A deep learning method is 

applied to achieve a precise dynamic model experimentally. Deep learning estimates the dynamic 

model perfectly. Experimental results on KUKA robot verified the performance of the intelligent 

fuzzy SMC approach in terms of tracking performance. Jing et al. [55] introduced a novel adaptive 

SMC to perturbation rejection method and applied it to the robotic manipulator. Some 

modifications based on tracking error were implemented by applying certain functions to 

guarantee the steady-state and the transient performance of robotic arms. First, a nonsingular SMS 

is implemented by applying the modified error. Then, to stabilize the system, a terminal SMC was 

used. Next, a new sliding mode observer was applied to suppress external disturbances and 

compensate for the uncertainties. An adaptive algorithm generated from equivalent control was 

proposed for considering lumped disturbance [55]. The adaptive SMC was designed by Jing et al. 

in a combination of nonsingular terminal SMC, adaptive algorithm, and sliding mode disturbance 

observer. The performance of the designed controller is verified by different simulations. Ferrara 

et al. [56] introduced a controller for an industrial robot manipulator by using a switching method. 

Two cases are proposed in this controller: inverse dynamic and decentralized methods. The first 

one is suitable for improving the velocity and acceleration performance, and the second one is 

convenient for suitable compensate external perturbations. Therefore, the integral SMC is applied 

to approximate the unmodeled dynamic and compensate matched perturbations by correction of 
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error value. Yi and Zhai [57] considered an adaptive second-order fast nonsingular terminal sliding 

mode control when inertia uncertainties and external perturbations are applied to a robotic 

manipulator. 

Chattering has been eliminated by using adaptive sliding mode control. A second-order fast 

nonsingular terminal SMC is applied to obtain desirable tracking and fast convergence and ensure 

robustness and system performance. It’s not required to use the upper bound by applying the 

adaptive algorithm. Xia et al. [58], to control uncertain systems with time delay, proposed robust 

SMC. The robust reaching control algorithm is used for sliding mode surface based on the linear 

matrix. Zhang and Yan [59], to control piezoelectric system, proposed an adaptive observer 

integral SMC. An adaptive observer is designed to suppress the noises by using a Dahl estimation 

approach. To achieve chattering elimination, fast convergence, and robustness, the parameter of 

the SMC is adaptively tuned. Che et al. [60] considered a singularity problem with input 

nonlinearity by proposing observer-based adaptive integral SMC and passivity analysis. Linear 

matrix inequalities problems were solved by using passivity conditions [60]. Then, a singular 

disturbance observer is implemented to estimate the design of adaptive law. 

Also, to obtain the controller parameters of integral SMC, a set of the matrix was used. 

Erenturk [61] used two control systems, SMC and an optimized PID controller, to control a two-

mass structure. A grey estimator is applied to optimize the proposed controller. Experimental 

results suitably verified the applied controller performance in terms of trajectory tracking. Jie et 

al. [62] proposed a novel SMC approach with terminal SMC and sliding disturbance observer for 

controlling a hydraulic robot manipulator. To converge the tracking error to zero, a terminal SMS 

is applied, which exhibits a faster speed than conventional SMC. The proposed control compared 

with SMC; however, no results on resultant control effort is given. The mentioned works in this 
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section mainly considered the four important phenomena by using SMC or compound control 

methods: high tracking performance, robustness, convergence to zero in finite time, and chattering 

reduction. 
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Chapter 3 

3. Control of MEMS gyroscope 

 Dynamics of MEMS gyroscope 

A schematic of a typical z-axis MEMS gyroscope is presented in Figure 3.1. The traditional 

MEMS vibratory gyroscope design involves sensing mechanisms, a proof mass suspended by 

springs, and an electrostatic actuation system for forcing an oscillatory motion and sensing the 

position and velocity of the proof mass [63]. The proof mass is mounted on a frame, which moves 

with a constant linear velocity, while the gyroscope rotates at a slowly changing angular velocity 

z. The centrifugal forces 𝑚𝛺𝑧
2𝑥 and 𝑚𝛺𝑧

2𝑦 are supposed to be negligible due to small 

displacements x and y. The Coriolis forces, 2𝑚𝛺𝑧
∗𝑦̇  and 2𝑚𝛺𝑧

∗𝑥̇  are generated in a direction 

perpendicular to the drive and rotational axes [63]. 

 

Figure 3.1 Schematic of MEMS gyroscope 

The dynamics of the gyroscope is then governed by the following system of equations [63]: 

𝑚𝑥̈ + 𝑑𝑥𝑥
∗ 𝑥̇ + 𝑑𝑥𝑦

∗ 𝑦̇ + 𝑘𝑥𝑥
∗ 𝑥 + 𝑘𝑥𝑦

∗ 𝑦 = 𝑢𝑥
∗ + 2𝑚𝛺𝑧

∗𝑦̇ (3.1) 
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𝑚𝑦̈ + 𝑑𝑥𝑦
∗ 𝑦̇ + 𝑑𝑦𝑦

∗ 𝑦̇ + 𝑘𝑥𝑦
∗ 𝑥 + 𝑘𝑦𝑦

∗ 𝑦 = 𝑢𝑦
∗ − 2𝑚𝛺𝑧

∗𝑥̇ (3.2) 

In Eqs 1-2, x and y are coordinates with the origin at the center of the proof mass when no 

external force is applied. The coefficients 𝑘𝑥𝑦
∗ and 𝑑𝑥𝑦

∗   are the asymmetric spring and damping 

coefficients, respectively.  

The spring constants of springs acting in the x- and y-directions, 𝑘𝑥𝑥
∗ ,  𝑘𝑦𝑦

∗ ,

and damping rates 𝑑𝑥𝑥
∗ and 𝑑𝑦𝑦

∗ are often known; however, they may have small unknown 

variations from their nominal values [63], 𝑢𝑥
∗ and 𝑢𝑦

∗  are the control forces in the x and y-direction. 

The value of the proof mass m can be determined with high accuracy. 

Eqs. (3.1), and (3.2) can be presented in the vector form as: 

𝑞̈∗

𝑞0
+

𝐷∗

𝑚𝜔0

𝑞̇∗

𝑞0
+

𝐾𝑎

𝑚𝜔0
2

𝑞∗

𝑞0
=

𝑢∗

𝑚𝜔0
2𝑞0

− 2
𝛺∗

𝜔0

𝑞̇∗

𝑞0
 

(3.3) 

where 

 𝑞∗ = [
𝑥∗

𝑦∗] ,  𝑢 = [
𝑢𝑥

∗

𝑢𝑦
∗ ] ,  𝛺 ∗= [

0 −𝛺𝑧
∗

𝛺𝑧
∗ 0

] , 𝐷∗ = [
𝑑𝑥𝑥

∗ 𝑑𝑥𝑦
∗

𝑑𝑥𝑦
∗ 𝑑𝑦𝑦

∗ ] ,  𝐾𝑎 = [
𝑘𝑥𝑥

∗ 𝑘𝑥𝑦
∗

𝑘𝑥𝑦
∗ 𝑘𝑦𝑦

∗ ] and  

non-dimensional parameters [63]as follows:   

𝑞 =
𝑞∗

𝑞0
,  𝑑𝑥𝑦 =

𝑑𝑥𝑦
∗

𝑚𝜔0
,  𝛺𝑧 =

𝛺𝑧
∗

𝜔0
 

(3.4) 

𝑢 =
𝑢𝑥

∗

𝑚𝜔0
2𝑞0

,  𝑢𝑦 =
𝑢𝑦

∗

𝑚𝜔0
2𝑞0

 
(3.5) 
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𝜔𝑥 = √
𝑘𝑥𝑥

𝑚𝜔0
2 ,  𝜔𝑦 = √

𝑘𝑦𝑦

𝑚𝜔0
2 ,  𝜔𝑥𝑦 =

𝑘𝑥𝑦

𝑚𝜔0
2 

(3.6) 

where q0 is the reference length and ɷ0 is the natural frequency of each axis. Finally, the 

dynamic equations for a MEMS gyroscope are- 

𝑞̈ = −(𝐷 + 2𝛺)𝑞̇ − 𝐾𝑏𝑞 + 𝑢 + 𝐸 (3.7) 

Where E(N) is an external disturbance, which dynamic model can be presented as- 

𝑞̈ = −𝑌𝑞̇ − 𝑃𝑞 + 𝑢 + 𝐸 (3.8) 

Where Y=(D+2) and P=Kb. Y and P determine some uncertainties of parameter 

variations. Thus, Eq. (3.8) can be denoted as: 

Where, 

𝑞 = [
𝑥
𝑦] ,  𝑢 = [

𝑢𝑥

𝑢𝑦
] ,  𝛺 = [

0 −𝛺𝑧

𝛺𝑧 0
] 

 

𝐷 = [
𝑑𝑥𝑥 𝑑𝑥𝑦

𝑑𝑥𝑦 𝑑𝑦𝑦
] ,  𝐾𝑏 = [

𝜔𝑥
2 𝜔𝑥𝑦

𝜔𝑥𝑦 𝜔𝑦
2 ] 

we obtain,  

𝑞̈ = −(𝑌 + 𝛥𝑌)𝑞̇ − (𝑃 + 𝛥𝑃)𝑞 + 𝑢(𝑡) + 𝐸 (3.9) 

The Eq. (9) can be shown as: 

𝑞̈ = −𝑌𝑞̇ − 𝑃𝑞 + 𝑢(𝑡) + 𝐷(𝑡) (3.10) 

where D(t) is as follows: 
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𝐷(𝑡) = −𝛥𝑌𝑞̇ − 𝛥𝑃𝑞 + 𝐸 (3.11) 

 Robust sliding mode control 

Defining the tracking error as e(t)=qd(t)-q(t), qd is the desired trajectory tracking; one can 

write the sliding mode surface as  

𝑠(𝑡) = 𝑒̇(𝑡) + 𝛾 ∫ (𝑠𝑖𝑛( 𝑒(𝜏)) + 𝑒𝛽(𝜏))𝑑𝜏
𝑡

0

 
(3.12) 

where   is a positive constant and β is a positive integer.    

Differentiating the sliding mode surface concerning time and using Eq. (3.10) yields 

𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)) 

    = 𝑌 𝑞̇ + 𝑃𝑞 − 𝑢(𝑡) − 𝐷(𝑡) + 𝑞̈𝑑 + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)) 

 

(3.13) 

The control effort is derived as the solution of 𝑠̇(𝑡) = 0 to achieve the desired performance 

under the nominal model. The equivalent control effort is defined as  

𝑢𝑒𝑞(𝑡) = −𝑞̈𝑑 − 𝑌𝑞̇ − 𝑃𝑞 + 𝐷(𝑡) − 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)) (3.14) 

If unpredictable perturbations from the external disturbance or parameter variations occur, 

the equivalent control effort cannot guarantee favorable control performance. Thus, by designing 

an auxiliary control effort, the effect of unpredictable perturbations can be eliminated. For this 

purpose, stability analysis is performed. The Lyapunov function is defined as 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡) 

(3.15) 

A sufficient stability condition for the control method is given by the requirement that the 
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Lyapunov function decreases at any time 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0 ,  𝑠(𝑡) ≠ 0 (3.16) 

Substitute Eq. (3.13) into Eq. (3.16) generates 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑌 𝑞̇ + 𝑃𝑞 − 𝑢(𝑡) − 𝐷(𝑡) + 𝑞̈𝑑 + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))) (3.17) 

The control input can be defined as: 

𝑢(𝑡) = 𝑢𝑅𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡) (3.18) 

Substitute Eq. (3.18) into Eq. (3.17) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑌 𝑞̇ + 𝑃𝑞 − 𝑢𝑒𝑞(𝑡) − 𝑢𝑠(𝑡) − 𝐷(𝑡) + 𝑞̈𝑑

+ 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))) 

(3.19) 

Substitute Eq. (3.14) into Eq. (3.19) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(+𝑌 𝑞̇ + 𝑃𝑞 − 𝑞̈𝑑 − 𝑌𝑞̇ − 𝑃𝑞 + 𝐷(𝑡) − 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))

− 𝑢𝑠(𝑡) − 𝐷(𝑡) + 𝑞̈𝑑 + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))) 

(3.20) 

Simplify Eq. (3.20) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(−𝑢𝑠(𝑡)) (3.21) 

The us(t) can be defined as follows: 

𝑢𝑠(𝑡) = 𝐾𝑠𝑠(𝑡) (3.22) 

Where Ks=diag[Ks1, Ks2,…….., Ksn] is positive detfinite matrix and demonstrates reaching 

control gain. 
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By substituting Eq. (3.22) into Eq. (3.21), 𝑉̇(𝑡) < 0 will be observed. 

 New sliding mode control 

It is well established that the essential and the most crucial part of SMC design is how to 

select SMS, which is provided to respond to desired control performance.  

𝑠(𝑡) = 𝑒̇(𝑡) + ∫ (𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(
𝑡

0

𝑒̇(𝑡)))  𝑑𝜏

𝑤ℎ𝑒𝑟𝑒
𝑠𝑖𝑔(e(𝑡)) = |e(𝑡)|𝑠𝑖𝑔𝑛(e(𝑡))

𝑠𝑖𝑔(𝑒̇(𝑡)) = |𝑒̇(𝑡)|𝑠𝑖𝑔𝑛(𝑒̇(𝑡))

 

(3.23) 

The SMC includes two crucial cases: equivalent control and reaching control law. 

To obtain the equivalent controller, the SMS should be enforced to zero (𝑠̇(𝑡) = 0) as: 

𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) = 0 (3.24) 

Substitute 𝑒̈(𝑡) = 𝑞̈𝑑 − 𝑞̈ in Eq. (3.24) generates 

𝑞̈𝑑 − 𝑞̈ + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) = 0 (3.25) 

Substitute Eq. (3.10) into Eq. (3.25) produces 

𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑢(𝑡) − 𝐷(𝑡) + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) = 0 (3.26) 

The equivalent control will be defined as: 

𝑢𝑒𝑞(𝑡) = 𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝐷(𝑡) + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) (3.27) 

When external perturbations apply to the system, the equivalent control is enabled to 

suppress those noises. Thus, a second control law should be defined to be robust against external 

perturbations. The conventional reaching control law, which has been used in several types of 
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research [64, 65], will be selected according to Eq. (3.28). Note that the reaching control is 

implemented in most cases due to its robustness and high tracking performance. 

𝑢𝑠(𝑡) = 𝐾𝑠𝑠(𝑡) (3.28) 

Where 𝐾𝑠is the positive constant. The proposed control input shows as: 

𝑢𝑁𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡) (3.29) 

The Lyapunov theory is a strong tool for proving the stability of the proposed controller as: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡) 

(3.30) 

Take derivative from Eq. (3.30) generates 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0 ,  𝑠(𝑡) ≠ 0 (3.31) 

When Eq. (3.31) satisfy, the control system will be stable. Substitute Eq. (3.24) into Eq. 

(3.31) produces: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑒̈(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) (3.32) 

The Eq. (3.32) arranges as: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 − 𝑞̈ + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) (3.33) 

Substitute Eq. (3.10) into Eq. (3.33) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑢(𝑡) − 𝐷(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) (3.34) 

Substitute Eq. (3.29) into Eq. (3.34) generates 
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𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑢𝑒𝑞(𝑡) − 𝑢𝑠(𝑡) − 𝐷(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡))

+ 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) 

(3.35) 

Substitute Eq. (3.27) and Eq. (3.28) into Eq. (3.35) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑞̈𝑑 − 𝑌𝑞̇ − 𝑃𝑞 + 𝐷(𝑡) − 𝑘1𝑠𝑖𝑔(e(𝑡))

− 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) − 𝐾𝑠𝑠(𝑡) − 𝐷(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) 

(3.36) 

Simplify Eq. (3.36) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(−𝐾𝑠𝑠(𝑡)) (3.37) 

The Eq. (3.37) denotes as: 

𝑉̇(𝑡) = −𝐾𝑠𝑠(𝑡)2 (3.38) 

The Eq. (3.38) satisfies 𝑉̇(𝑡) < 0. Therefore, the proposed control method is stable. 

 Fractional sliding mode control 

FSMC is popular because of its robustness against external disturbances. The fractional-

order sliding mode surface can be defined as follows: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝜆𝑒(𝑡) + 𝛼𝐷𝜇𝑒(𝑡)                                                                                                          (3.39) 

where 𝛼 is a positive constant and 𝜇 is a fractional order operator [66].  

Theorem 1: The derivation of fractional function [66]: 

𝑑

𝑑𝑡
 (𝐷𝜇𝑒(𝑡)) = 𝐷1𝐷𝜇𝑒(𝑡) = 𝐷𝜇+1𝑒(𝑡) = 𝐷𝜇𝑒̇(𝑡) 
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The control system engineering can be considered as an important application of fractional 

order calculus. There are many definitions of fractional calculus, and they are used in various areas. 

The Grunwald-Letnikov fractional operator is well-known due to its myriad application in control 

system engineering. 

The Grunwald-Letnikov fractional operator can be defined as follows [66]: 

𝐷𝑎 𝑡
𝜇

= lim
ℎ→0

1

ℎ𝜇
∑ (−1)𝑟 (

𝑛
𝑟

) 𝑓(𝑡 − 𝑟ℎ)

[
𝑡−𝑎

ℎ
]

𝑟=0

 

          

   (3.40) 

Where a and t are the limits of the operator and [t-a/h] is the integer part. n is the integer 

value that satisfies the condition n-1<<n. 

The value of the binomial coefficient is shown by 

(
𝑛
𝑟

) =
𝛤(𝑛 + 1)

𝛤(𝑟 + 1)𝛤(𝑛 − 𝑟 + 1)
 

          

(3.41) 

The Gamma function utilized in Eq. (3.41) can be defined as follows: 

𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡, 
∞

0

𝑅(𝑧) > 0 
          

(3.42) 

This definition is significantly appropriate in obtaining a numerical solution of fractional 

differential equations. 

The equivalent FSMC is obtained by taking derivative of Eq. (3.39) as follows: 

𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡) = 𝑞̈𝑑 − 𝑞̈ + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)                                                (3.43) 
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Substitute Eq. (3.10) into Eq. (3.43) produces 

𝑠̇(𝑡) = 𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑢(𝑡) − 𝐷(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)                                         (3.44) 

Therefore, the equivalent control can be defined (𝑠̇(𝑡) = 0): 

𝑢𝑒𝑞(𝑡) = 𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝐷(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)                                                 (3.45) 

When external disturbances apply to a system, the equivalent control cannot ensure the 

effectiveness of the control performance. As a result of this, an auxiliary control effort needs to be 

designed in order to compensate for the effect of the external disturbances. The Lyapunov function 

can be chosen for this task as follows: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡)                                                                                                                  (3.46) 

To guarantee the stability of the control method, an appropriate condition should be selected 

as follows: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0,  𝑠(𝑡) ≠ 0                                                                                          (3.47) 

To satisfy the reaching condition, the equivalent control ueq(t) given in Eq. (3.45) is 

completed by a control term. 

𝑢(𝑡) = 𝑢𝐹𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡)                                                                               (3.48) 

The Lyapunov theory is a strong tool for proving the stability of the proposed controller as: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡) 

(3.49) 

Take derivative from Eq. (3.49) generates 
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𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0 ,  𝑠(𝑡) ≠ 0 (3.50) 

When the Eq. (3.50) satisfy, the control system will be stable. Substitute Eq. (3.44) into Eq. 

(3.50) produces: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑢(𝑡) − 𝐷(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)) (3.51) 

Substitute Eq. (3.48) into Eq. (3.51) generates 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑢𝑒𝑞(𝑡) − 𝑢𝑠(𝑡) − 𝐷(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)) (3.52) 

Substitute Eq. (3.28) and Eq. (3.45) into Eq. (3.52) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑞̈𝑑 + 𝑌𝑞̇ + 𝑃𝑞 − 𝑞̈𝑑 − 𝑌𝑞̇ − 𝑃𝑞 + 𝐷(𝑡) − 𝜆𝑒̇(𝑡) − 𝛼𝐷𝜇+1𝑒(𝑡)

− 𝐾𝑠𝑠(𝑡) − 𝐷(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)) 

(3.53) 

Simplify Eq. (3.53) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(−𝐾𝑠𝑠(𝑡)) (3.54) 

The Eq. (3.54) denotes as: 

𝑉̇(𝑡) = −𝐾𝑠𝑠(𝑡)2 (3.55) 

The Eq. (3.55) satisfies 𝑉̇(𝑡) < 0. Therefore, the proposed control method is stable. 

 Simulation results 
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Figure 3.2 Position tracking of x-axis and y-axis under CSMC, RSMC, NSMC, and FSMC. 

 

Numerical simulations were performed to demonstrate the performance of the proposed 

controllers. The RSMC, NSMC, and FSMC parameters are chosen as =5, β=4, K1=10, K2=10,  
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Figure 3.3 Position tracking error of x-axis and y-axis under CSMC, RSMC, NSMC, and FSMC. 

 

λ=10, α=50, and μ=0.5 by trial and error to obtain suitable results. The sliding surface is 

selected as Ks=diag(10,10). The desired motion trajectory is determined by qd1=sin (4.17t), and 
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qd2=1.2sin(5.11t). The initial values of the system are selected as 𝑞1(0) = 0.4, 𝑞2(0) =

0.6, 𝑞̇1(0) = 0 𝑎𝑛𝑑 𝑞̇2(0) = 0. The initial parameters are selected by trial and error to improve 

tracking performance of the proposed control method in the x and y directions. 

The parameters of the MEMS gyroscope are selected as [67]:  

𝑚 = 1.8 × 10−7𝑘𝑔   𝑘𝑥𝑦 = 12.779𝑁/𝑚   𝑑𝑥𝑦 = 3.6 × 10−7𝑁𝑠/𝑚 

𝑘𝑥𝑥 = 63.955𝑁/𝑚  𝑑𝑥𝑥 = 1.8 × 10−6𝑁𝑠/𝑚 

𝑘𝑦𝑦 = 95.92𝑁/𝑚    𝑑𝑦𝑦 = 1.8 × 10−6𝑁𝑠/𝑚 

When the displacement range of the MEMS gyroscope in each axis is in the sub-micrometer 

level, it is convenient to choose q0=1 m as the reference length [63]. When the 0 is selected as 

1 kHz, the common natural frequency of each axis of a MEMS gyroscope is in the kHz range. The 

unknown angular velocity is assumed as z=100 rad/s [63]. Therefore, the nondimensional values 

of the MEMS gyroscope parameters are chosen as [63]:  

𝜔𝑥
2 = 355.3, 𝜔𝑦

2 = 532.9, 𝜔𝑥𝑦 = 70.99, 𝑑𝑥𝑥 = 0.01, 𝑑𝑦𝑦 = 0.01, 𝑑𝑥𝑦 = 0.002, 𝛺𝑧 = 0.1 

Figure 3.2 illustrates the MEMS gyroscope motion along the x and y axes. The trajectory 

tracking was performed using a CSMC, an RSMC, an NSMC, and an FSMC. It can be observed 

that the actual motion trajectory of the MEMS gyroscope is consistent with the desired reference 

trajectory, showing that the tracking performance of FSMC is better in comparison with CSMC, 

RSMC, and NSMC. The tracking errors corresponding to the trajectory tracking shown in Figure 

3.2 are plotted in Figure 3.3. The results in Figure 3.3 also show that FSMC effectively reduces 

oscillation which was observed in CSMC. Moreover, the FSMC results in faster convergence (see 

Figure 3.3).  
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Figure 3.4. Velocity in x-axis and y-axis under CSMC, RSMC, NSMC and FSMC. 

 

 



26 

 

 

 

Figure 3.5. Control effort using CSMC, RSMC, NSMC and FSMC. 

 

The velocities along x and y-axes corresponding to the trajectory shown in Figure 3.2 are 

illustrated in Figure 3.4, whereas, Figure 3.5 demonstrates the control efforts of CSMC, RSMC, 
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NSMC, and FSMC, which the FSMC is smoother than CSMC and RSMC. Therefore, the 

oscillation phenomenon has been reduced in FSMC. 

3.5.1 Robustness testing: random noise suppression 

A robust controller is expected to suppress the external disturbances . In the simulation, we applied 

random noise (as an external disturbance, 𝐷(𝑡) = 0.5 𝑟𝑎𝑛𝑑𝑛(1,1)) with a standard deviation of 

0.05 to test the noise suppression ability of the proposed controller. Figure 3.6 shows the 

simulation results, where it is evident that FSMC can suppress the external disturbances.  
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Figure 3.6 Robustness verification of FSMC under random noise application. 
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Chapter 4 

4. Control of an Exoskeleton Robot 

and a 2 DoFs Robot Manipulator 

4.1 Dynamic model of an exoskeleton robot 

The robot, as shown in Figure 4.1 is an exoskeleton type robot designed to be worn on the 

lateral side of the human upper limb. Mass and inertia properties of this robot are given in 

Appendix B. 

 
Table 4.1 Workspace ETS-Marse [68] 

Joints Motion Range of Motion 

1 Shoulder joint horizontal flexion/extension 0°/180° 

2 Shoulder joint vertical flexion/extension 180°/0° 

3 Shoulder joint internal/external rotation 90°/90° 

4 Elbow joint flexion/extension 145°/0° 

5 Forearm joint pronation/supination 90°/90° 

6 Wrist joint 

ulnar/radial deviation 

30°/20° 

7 Wrist joint flexion/extension 60°/50° 

 

 

Figure 4.1 Reference frames of exoskeleton robot [68]. 
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The key design features of exoskeleton robot include convenient power/weight ratio, easy 

fitting and removal, low weight, and capability of compensating for gravity.  DH-parameters and  

Table 4.2. DH parameters [68]. 

Joint 

(i) 

Joint Name αi-1 

 (Link twist) 

ai-1 

(Link length) 

di 

(Link offset) 

qi 

(Joint variable) 

1 Abduction/ 

adduction 
0 0 L0 q1 

2 Vertical 

Flexion/extension 
/2 0 0 q2 + /2  

3 Internal/external rotation /2 0 L2 q3 

4 Elbow Flexion/extension -/2 0 0 q4 

5 Pronation/ 

Supination 
/2 0 L4 q5 

6 Wrist Radial/ulnar 

deviation 
-/2 0 0 q6 - /2 

7 Wrist Flexion/Extension -/2 0 0 q7 

 

workspace is shown in Table 4.1 and Table 4.2, respectively.  

The exoskeleton robot can perform passive therapeutic motion (i.e., completely hold and 

support the subject's upper limb provide therapeutic motion), active assistive motion (where 

subject actively participates in the therapeutic sessions and the robot assist the subject when it 

needs). The characteristics of the exoskeleton robot and its dynamic model are completely outlined 

in [69-72], which can be summarized as: 

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇)𝜃̇ + 𝐺(𝜃) + 𝐹(𝜃, 𝜃̇) = 𝜏                                                                          (4.1) 

Where 𝑞, 𝑞̇, 𝑞̈ ∈ 𝑅7×1 illustrates the position, velocity, and acceleration of the joints, 

respectively. Also, in the dynamic model of the 7DoFs robot manipulator, 𝑀(𝑞) ∈

𝑅7×7represented as the inertia matrix, 𝐶(𝑞, 𝑞̇) ∈ 𝑅7×1  known as the vector of centrifugal and 
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Coriolis forces, 𝐺(𝑞) ∈ 𝑅7×1 is a gravitational vector, and 𝜏 ∈ 𝑅7×1the joint torques. 

Eq. (4.1) can be shown as: 

𝜃̈ = −𝑃𝜃̇ − 𝑄𝐺 − 𝑄𝐹 + 𝑢(𝑡)                                                                                                (4.2) 

Where, 𝑃 = 𝑀−1(𝜃)𝐶(𝜃, 𝜃̇), = 𝑀−1(𝜃), and 𝑢(𝑡) = 𝑄𝜏. 

4.2 Dynamic model of a 2 DoFs robot manipulator 

Robotics manipulator is widely applicable in different fields such as industrial robots, 

biorobotics, and aerospace robots. The mechanism of the proposed two degrees of freedom (2 

DoFs) robot manipulator is illustrated in Figure 4.2.  

Figure 4.3 shows the schematic of the robotic manipulator. The dynamic modeling of a 

2DoFs robot arm is as follows [76]:  

𝑀(𝑞)𝑞̈ + 𝑁(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝜏 (4.3) 

Where 𝑞, 𝑞̇, 𝑞̈ ∈ 𝑅2×1 illustrates the position, velocity, and acceleration of the joints, 

respectively. Also, in the dynamic model of the 2DoFs robot manipulator, 𝑀(𝑞) ∈

𝑅2×2represented as the inertia matrix, 𝑁(𝑞, 𝑞̇) ∈ 𝑅2×1 known as the vector of centrifugal and 

Coriolis forces, 𝐺(𝑞) ∈ 𝑅2×1  is a gravitational vector, and 𝜏 ∈ 𝑅2×1 the joint torques. 

𝑀(𝑞), 𝑁(𝑞, 𝑞̇), 𝐺(𝑞)and are provided in Appendix A. 
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Figure 4.2 Robot manipulator. 

 

Figure 4.3 Structure of robot manipulator. 

Eq. (4.3) can be shown as: 

𝜃̈ = −𝑃𝜃̇ − 𝑄𝐺 − 𝑄𝐹 + 𝑢(𝑡)                                                                                                (4.4) 

Where,𝑃 = 𝑀−1(𝜃)𝑁(𝜃, 𝜃̇), = 𝑀−1(𝜃), and 𝑢(𝑡) = 𝑄𝜏. 
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4.3 Control of an Exoskeleton robot and a 2 DoFs robot manipulator 

4.3.1 Robust sliding mode control (RSMC) 

Complex systems always need a stable control system to compensate unmodeled dynamic 

uncertainties and robust against external disturbances. By using a sliding mode controller (SMC), 

the system states can be guaranteed to reach a sliding mode switching surface in finite-time and 

converge to the origin in finite time.  

The proposed robust sliding mode switching function can be defined as follows: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝛾 ∫ (𝑠𝑖𝑛( 𝑒(𝜏)) + 𝑒𝛽(𝜏))𝑑𝜏
𝑡

0
                                                                        (4.5) 

By using a robust sliding mode switching function, the tracking error converges to zero in 

finite time. 

The gain parameters of RSMC are known as γ and β is the fractional order operator. The 

tracking error can be shown as: 

𝑒(𝑡) = 𝜃𝑑 − 𝜃                                                                                                                            (4.6) 

where θd is the desired trajectory. The equivalent control can be obtained as: 

𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)) = θ̈𝑑 − θ̈ + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))                      (4.7) 

The Eq. (4.8) can be obtained by substituting Eq. (4.2) into Eq. (4.7) 

𝑠̇(𝑡) = 𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢(𝑡) + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))                                        (4.8) 

The control effort is derived as the solution of 𝑠̇(𝑡) = 0. 

The control effort can be obtained as: 
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𝑢𝑒𝑞(𝑡) = 𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡))                                                 (4.9) 

The equivalent control effort cannot guarantee the desired performance because 

unpredictable perturbations from external disturbances or parameter variations occur. 

Consequently, a second controller should be added to suppress the effect of external disturbances. 

The Lyapunov function can be selected for this issue as: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡)                                                                                                                          (4.10) 

Stability condition can be defined as [73-75]: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0, 𝑠(𝑡) ≠ 0                                                                                                (4.11) 

The control scheme can be defined as: 

𝑢(𝑡) = 𝑢𝑅𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡)                                                                                                         (4.12) 

To obtain the reaching control law us(t) [75], Eq. (4.11) is shown as follows: 

𝑉̇(𝑡) = 𝑠𝑇(θ̈𝑑 − θ̈ + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)))                                                                   (4.13) 

Substitute Eq. (4.2) into Eq. (4.13) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢(𝑡) + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)))                               (4.14) 

By substituting Eq. (4.8) into Eq. (4.14), it can be shown as: 

𝑉̇(𝑡) = 𝑠𝑇(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢𝑒𝑞(𝑡) − 𝑢𝑠(𝑡) + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)))                (4.15) 

By substituting Eq. (4.9) into Eq. (4.15), it can be shown as 

𝑉̇(𝑡) = 𝑠𝑇(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝜃̈𝑑 − 𝑃𝜃̇ − 𝑄𝐺 − 𝑄𝐹 
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−𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)) − 𝑢𝑠(𝑡) + 𝛾(𝑠𝑖𝑛( 𝑒(𝑡)) + 𝑒𝛽(𝑡)))                                                            (4.16) 

Simplify Eq. (4.16) generates 

𝑉̇(𝑡) = 𝑠𝑇(−𝑢𝑠(𝑡))                                                                                                            (4.17) 

The reaching control can be chosen as: 

𝑢𝑠(𝑡) = 𝐾𝑠𝑠(𝑡)                                                                                                                (4.18) 

Where Ks is a positive constant. Substitute Eq. (4.18) into Eq. (4.17) produces 

𝑉̇(𝑡) = 𝑠𝑇(−𝐾𝑠𝑠(𝑡)) = −𝐾𝑠𝑠2(𝑡) < 0                                                                            (4.19) 

Consequently, it can be observed from Eq. (4.19) that 𝑉̇(𝑡) < 0. 

4.3.2 New sliding mode control 

The sliding mode surface can be defined as:.  

𝑠(𝑡) = 𝑒̇(𝑡) + ∫ (𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(
𝑡

0

𝑒̇(𝑡)))  𝑑𝜏

𝑤ℎ𝑒𝑟𝑒
𝑠𝑖𝑔(e(𝑡)) = |e(𝑡)|𝑠𝑖𝑔𝑛(e(𝑡))

𝑠𝑖𝑔(𝑒̇(𝑡)) = |𝑒̇(𝑡)|𝑠𝑖𝑔𝑛(𝑒̇(𝑡))

 

(4.20) 

The SMC contains two parts: equivalent control and reaching control law. 

The SMS should be enforced to zero (𝑠̇(𝑡) = 0) to obtain the equivalent controller as: 

𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) = 0 (4.21) 

Substitute 𝑒̈(𝑡) = 𝜃̈𝑑 − 𝜃̈ in Eq. (4.21) generates 
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𝜃̈𝑑 − 𝜃̈ + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) = 0 (4.22) 

Substitute Eq. (4.2) into Eq. (4.22) produces 

𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢(𝑡) + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) = 0 (4.23) 

The equivalent control will be defined as: 

𝑢𝑒𝑞(𝑡) = 𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 + 𝑘1𝑠𝑖𝑔(e(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) (4.24) 

When external perturbations apply to the system, the equivalent control is enabled to 

suppress those noises. Thus, a second control law should be defined to be robust against external 

perturbations. The conventional reaching control law, which has been used in several types of 

research, will be selected according to Eq. (4.25). The reasons why reaching control is 

implemented in most cases are its robustness and high tracking performance. 

𝑢𝑠(𝑡) = 𝐾𝑠𝑠(𝑡) (4.25) 

Where 𝐾𝑠 is a positive constant. The proposed control input shows as: 

𝑢𝑁𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡) (4.26) 

The Lyapunov theory is a strong tool for proving the stability of the proposed controller as: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡) 

(4.27) 

Take derivative from Eq. (4.27) generates (stability condition) 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0 ,  𝑠(𝑡) ≠ 0 (4.28) 

When the Eq. (4.28) satisfy, the control system will be stable. Substitute Eq. (4.21) into Eq. 
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(4.28) produces: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝑒̈(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) (4.29) 

The Eq. (4.29) arranges as: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 − 𝜃̈ + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) (4.30) 

Substitute Eq. (4.2) into Eq. (4.30) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) (4.31) 

Substitute Eq. (4.26) into Eq. (4.31) generates 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢𝑒𝑞(𝑡) − 𝑢𝑠(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡))

+ 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) 

(4.32) 

Substitute Eq. (4.24) and Eq. (4.25) into Eq. (4.32) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝜃̈𝑑 − 𝑃𝜃̇ − 𝑄𝐺 − 𝑄𝐹 − 𝑘1𝑠𝑖𝑔(e(𝑡))

− 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡)) − 𝐾𝑠𝑠(𝑡) + 𝑘1𝑠𝑖𝑔(𝑒(𝑡)) + 𝑘2𝑠𝑖𝑔(𝑒̇(𝑡))) 

(4.33) 

Simplify Eq. (4.33) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(−𝐾𝑠𝑠(𝑡)) (4.34) 

The Eq. (4.34) denotes as: 

𝑉̇(𝑡) = −𝐾𝑠𝑠(𝑡)2 (4.35) 

The Eq. (4.35) satisfies 𝑉̇(𝑡) < 0. Therefore, the proposed control method is stable. 
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4.3.3 Fractional sliding mode control 

FSMC is popular because of its robustness against external disturbances. The fractional-

order sliding mode surface can be defined as follows: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝜆𝑒(𝑡) + 𝛼𝐷𝜇𝑒(𝑡)                                                                                                          (4.36) 

where 𝛼 is a positive constant and 𝜇 is a fractional order operator [66].  

Theorem 1: The derivation of fractional function [66]: 

𝑑

𝑑𝑡
 (𝐷𝜇𝑒(𝑡)) = 𝐷1𝐷𝜇𝑒(𝑡) = 𝐷𝜇+1𝑒(𝑡) = 𝐷𝜇𝑒̇(𝑡) 

The control system engineering can be considered as an important application of fractional 

order calculus.  

There are many definitions of fractional calculus, and each of them has mostly been used in 

some specific area. The Grunwald-Letnikov fractional operator is well-known due to its myriad 

application in control system engineering. 

The Grunwald-Letnikov fractional operator can be defined as follows [66]: 

𝐷𝑎 𝑡
𝜇

= lim
ℎ→0

1

ℎ𝜇
∑ (−1)𝑟 (

𝑛
𝑟

) 𝑓(𝑡 − 𝑟ℎ)

[
𝑡−𝑎

ℎ
]

𝑟=0

 

          

   (4.37) 

Where a and t are the limits of operator and [t-a/h] is the integer part. n is the integer value 

which satisfies the condition n-1<<n. 

The value of the binomial coefficient is shown by 
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(
𝑛
𝑟

) =
𝛤(𝑛 + 1)

𝛤(𝑟 + 1)𝛤(𝑛 − 𝑟 + 1)
 

          

(4.38) 

The Gamma function utilized in Eq. (4.38) can be defined as follows: 

𝛤(𝑥) = ∫ 𝑡𝑥−1𝑒−𝑡𝑑𝑡, 
∞

0

𝑅(𝑧) > 0 
          

(4.39) 

This definition is significantly appropriate in obtaining a numerical solution of fractional 

differential equations. 

The equivalent FSMC is obtained by taking derivative of Eq. (4.36) as follows: 

𝑠̇(𝑡) = 𝑒̈(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡) = 𝜃̈𝑑 − 𝜃̈ + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)                                                (4.40) 

Substitute Eq. (4.2) into Eq. (4.40) produces 

𝑠̇(𝑡) = 𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)                                                     (4.41) 

Therefore, the equivalent control can be defined (𝑠̇(𝑡) = 0): 

𝑢𝑒𝑞(𝑡) = 𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)                                                 (4.42) 

When external disturbances apply on a system, the equivalent control cannot ensure the 

effectiveness of the control performance. As a result of this, auxiliary control effort needs to be 

designed in order to compensate for the effect of the external disturbances. The Lyapunov function 

can be chosen for this task as follows: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡)                                                                                                                  (4.43) 

In order to guarantee the stability of the control method, an appropriate condition should be 
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selected as follows: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0,  𝑠(𝑡) ≠ 0                                                                                          (4.44) 

In order to satisfy the reaching condition, the equivalent control ueq(t) given in Eq. (4.42) is 

completed by a control term. 

𝑢(𝑡) = 𝑢𝐹𝑆𝑀𝐶(𝑡) = 𝑢𝑒𝑞(𝑡) + 𝑢𝑠(𝑡)                                                                                                         (4.45) 

The Lyapunov theory is a strong tool for proving the stability of the proposed controller as: 

𝑉(𝑡) =
1

2
𝑠𝑇(𝑡)𝑠(𝑡) 

(4.46) 

Take derivative from Eq. (4.46) generates 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)𝑠̇(𝑡) < 0 ,  𝑠(𝑡) ≠ 0 (4.47) 

When the Eq. (4.47) satisfy, the control system will be stable. Substitute Eq. (4.41) into Eq. 

(4.47) produces: 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)) (4.48) 

Substitute Eq. (4.45) into Eq. (4.48) generates 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝑢𝑒𝑞(𝑡) − 𝑢𝑠(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)) (4.49) 

Substitute Eq. (4.25) and Eq. (4.42) into Eq. (4.49) produces 

𝑉̇(𝑡) = 𝑠𝑇(𝑡)(𝜃̈𝑑 + 𝑃𝜃̇ + 𝑄𝐺 + 𝑄𝐹 − 𝜃̈𝑑 − 𝑃𝜃̇ − 𝑄𝐺 − 𝑄𝐹 − 𝜆𝑒̇(𝑡)

− 𝛼𝐷𝜇+1𝑒(𝑡) − 𝐾𝑠𝑠(𝑡) + 𝜆𝑒̇(𝑡) + 𝛼𝐷𝜇+1𝑒(𝑡)) 

(4.50) 

Simplify Eq. (4.50) produces 
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𝑉̇(𝑡) = 𝑠𝑇(𝑡)(−𝐾𝑠𝑠(𝑡)) (4.51) 

The Eq. (4.51) denotes as: 

𝑉̇(𝑡) = −𝐾𝑠𝑠(𝑡)2 (4.52) 

The Eq. (4.52) satisfies 𝑉̇(𝑡) < 0. Therefore, the proposed control method is stable. 

4.4 Simulation results 

4.4.1 Exoskeleton robot 

The MATLAB software was used to simulate the proposed control methods (solver used: ode45). 

Simulation Parameters:  

The NSMC parameters are: K1=1000 and K2=1000, 

The FSMC parameters are:  λ=10, α=15, and μ=0.5, and Ks =40. 

The parameters are chosen by trial and error to obtain suitable results.  

Figure 4.4 illustrates the trajectory tracking of the robot joints under CSMC, NSMC, and FSMC. 

The tracking errors of joints corresponding to the trajectories shown in Fig.4.4 are plotted in Figure 

4.5.  
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Figure 4.4 Position tracking of joints under CSMC, NSMC, and FSMC. 
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Figure 4.5 Position tracking error of joints under CSMC, NSMC, and FSMC.
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Figure 4.6 Velocity of joints under CSMC, NSMC, and FSMC.
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Figure 4.7 Control effort using CSMC, NSMC, and FSMC. 
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Figure 4.8 Robustness verification of FSMC. 
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Figure 4.6 illustrates the joints velocities corresponding to the trajectories shown in Figure 

4.4. Simulation results in Figure 4.5 demonstrated better trajectory tracking performance of FSMC 

compared to other controllers. To check the robustness of the FSMC, joint resistance to motion in 

the form of 10 percent of joint torque, 20 percent of joint torque, and 30 percent of joint torque are 

applied (Figure 4.8) to the exoskeleton robot. The simulation results are plotted in Figure 4.8, 

where it is observed that the FSMC can effectively overcome that artificially induced joint 

resistance.  

4.4.2  A 2DoFs robot manipulator 

Simulation Parameters: 

For simulation, the robot structure (Figure 4.3) properties are chosen as L1=320mm, L2=360mm, 

m1=386 gr, and m2=722 gr.  

The NSMC parameters are K1=10000 and K2=10000, and  

The FSMC parameters are chosen as λ=100, α=15, and μ=0.5, and Ks =50 

The control parameters are selected by trial and error to obtain suitable results.  

When a robot encounters chattering, it makes the robot unstable.  
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Figure 4.9 Trajectory tracking of a 2DoFs robotic manipulator under CSMC, NSMC, and FSMC. 

 

Figure 4.9 illustrates the trajectory tracking of the robot joints under CSMC, NSMC, and FSMC. 

The tracking errors of joints corresponding to the trajectories shown in Figure 4.9 are plotted in 

Figure 4.10.  Figure 4.11 illustrates the joints velocities corresponding to the trajectories shown in 

Figure 4.9, whereas Figure 4.12 presents the control efforts. Simulation results in Figure 4.10 

demonstrated better trajectory tracking performance of FSMC compared to other controllers. To 

check the robustness of the FSMC, joint resistance to motion in the form of 10 percent of joint 

torque, 20 percent of joint torque, and 30 percent of joint torque are applied (Figure 4.13) to the 

robot. The simulation results are plotted in Figure 4.13, where it is observed that the FSMC can 

effectively overcome that artificially induced joint resistance.  
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Figure 4.10 Tracking error of joints under CSMC, NSMC and FSMC. 

 

  

Figure 4.11 Velocity of joints under CSMC, NSMC and FSMC. 
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Figure 4.12 Control effort of CSMC, NSMC and FSMC. 
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Figure 4.13 Robustness verification of FSMC. 

 

4.5  Experimental Results with New sliding mode control (NSMC). 

 In this research, only the proposed NSMC was implemented on a 2 DoFs robot manipulator.. 

4.5.1 Experimental Setup 

The experimental setup used to implement the proposed NSMC on a 2 DoF robot manipulator is shown 

in Figure 4.14.  

 

 

Figure 4.14 Experimental setup 

The 2DoFs robot used in this research was powered by two Maxon motors (EC45) integrated with 
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harmonic drive. Figure 4.15 illustrates the control architecture of the system. The proposed controller runs 

in NI-PXIe (Figure 4.15, the sampling rate of 1.25 ms). As also seen in Figure 4.15, a low-level Proportional 

Integral (PI) controller to control the desired current runs at 50μs (Figure 4.15) inside the FPGA.   

 

 

 

 

Figure 4.15 Control architecture 
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Figure 4.16 Hardware of the 2 DoFs robot 

The feedback current signals measured from the motor drivers (at a sampling rate a1ms) are 

also filtered with a second-order filter (sampling parameters: ζ=0.90, and ω0=3000 rad/s) prior to 

being sent to the PI controller. Figure 4.16 shows the hardware of the 2 DoF robot. 

4.5.2 Results 

The robot structure properties are chosen as L1=320mm, L2=360mm, m1=386 gr, and 

m2=722 gr. The controller parameters are selected as 1 {580,580}=k diag , 2 {50,50}=k diag ,

{30,30}=rK diag , 1 {40,40}= diag , and 2 {40,40}= diag .  

Figure 4.17 shows the results of trajectory tracking under the CSMC and NSMC, and Figure 

4.18 illustrates the corresponding tracking errors. It is evident from Fig. 4.18 that the proposed 

NSMC controller shows better tracking performance compared to CSMC. Figure 4.19 shows the 

control input signals under SMC and NSMC, where it is observed that NSMC exhibits no/very 

low chattering. 
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Figure 4.17 Trajectory Tracking of a 2DoFs Robot under SMC and NSMC 
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Figure 4.18 Tracking error of joints under SMC, and NSMC. 
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Figure 4.19 Control input signals under SMC and NSMC. 
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Chapter 5 

5. Conclusion and Future Works 

5.1 Conclusion 

This research proposed three robust nonlinear controllers based on sliding mode control to reduce 

chattering, improve robustness, decrease trajectory tracking error, and accelerate faster 

convergence. The results are summarized below: 

• The proposed sliding mode controllers, namely robust sliding mode control, new sliding 

mode control, and fractional sliding mode control, were applied on three different dynamic 

systems that include a MEMS gyroscope, an Exoskeleton robot, and a 2DoFs robot 

manipulator.  

• Simulation results demonstrated that fractional sliding mode control performance (i.e., 

finite-time convergence, robustness, chattering reduction, and dynamic trajectory tracking) 

was better than the conventional sliding mode control, robust sliding mode control, and 

new sliding mode control. 

•  In the dynamic simulation, to simulate the external disturbance, random noises were 

applied on the MEMS gyroscope, whereas 10% to 30% joint torques were applied on the 

exoskeleton robot and the 2 DoFs robot manipulator. The simulation was carried out with 

the proposed fractional sliding mode control. Results demonstrated that fractional sliding 

mode control is robust against external disturbances. 

•  The fractional sliding mode control shows the convergence of error to zero in finite time 

in all three dynamic systems. For instance, in the case of the 2 DoF robot manipulator, the 

error was wholly converged to zero after 2 sec under fractional sliding mode control.  



63 

 

• Simulation results evidence that the proposed fractional sliding mode control significantly 

reduced the chattering compared to the other three controllers.  

• The experiment was conducted with the proposed NSMC on a 2DoFs robot manipulator. 

The results show better tracking performance of the NSMC compared with CSMC.  

 

5.2 Future Works 

The future research works include experimentation validation of all the proposed controllers on 

different dynamic systems that includes but are not limited to MEMS, exoskeleton robots, and 

other robotic manipulators in different operating conditions. 

 

 

 

 

 

 

 

 

 

 



64 

 

Appendix A 

            𝑞 = [
𝜃1

𝜃2
]  

 𝑀(𝑞) = [
(𝑀1 + 𝑀2)𝐿1

2 + 𝑀2𝐿2
2 + 2𝑀2𝐿1𝐿2cos𝜃2 𝑀2𝐿2

2 + 𝑀2𝐿1𝐿2cos𝜃2

𝑀2𝐿2
2 + 𝑀2𝐿1𝐿2cos𝜃2 𝑀2𝐿2

2 ]  

 𝑁(𝑞, 𝑞̇) = [
−𝑀2𝐿1𝐿2sin𝜃2(2𝜃̇1𝜃̇2 + 𝜃̇2

2

−𝑀2𝐿1𝐿2sin𝜃2𝜃̇1𝜃̇2

]  

 𝐺(𝑞) = [
−(𝑀1 + 𝑀2)𝑔𝐿1sin𝜃1 − 𝑀2𝑔𝐿2sin(𝜃1 + 𝜃2)

−𝑀2𝑔𝐿2sin(𝜃1 + 𝜃2)
]  

 𝜏 = [
𝜏1

𝜏2
] 
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Appendix B 

 

 

Figure 5.1 Reference frames of exoskeleton robot [68]. 
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