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ABSTRACT 

 

RESTING STATE FUNCTIONAL CONNECTIVITY IN THE DEFAULT MODE NETWORK: 

RELATIONSHIPS BETWEEN CANNABIS USE, GENDER, AND COGNITION IN 

ADOLESCENTS AND YOUNG ADULTS 

by 

Megan M. Ritchay 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor Krista Lisdahl 

 

Introduction: Cannabis is the most commonly used illicit substance in the United States, 

and nearly 1 in 4 young adults are current cannabis users. The psychoactive component of 

cannabis, THC, is active at cannabinoid receptors, type 1, or CB1 receptors. CB1 receptors play a 

critical role in neural development, and chronic cannabis use causes desensitization and 

downregulation of these receptors. Chronic cannabis use is associated with changes in resting 

state functional connectivity (RSFC) in the default mode network (DMN) in adolescents and 

young adults, although results are somewhat inconsistent across studies, likely due to differing 

methodologies. Additionally, cannabis effects appear to be moderated by gender; while females 

appear to be more susceptible to receptor-level adverse effects of chronic THC exposure, effects 

of chronic cannabis use on cognition are inconsistent between males and females. Notably, no 

study to date has examined gender differences in the effects of cannabis on RSFC in the DMN in 

adolescents and young adults. Methods: Seventy-seven adolescent and young adult subjects 

underwent an MRI scan (including resting state scan), neuropsychological battery, toxicology 

screening, and drug use interview. Differences in DMN connectivity were examined between 

groups and with a group by gender interaction, using a left posterior cingulate cortex seed-based 

analysis conducted in AFNI. Results: Cannabis users demonstrated weaker connectivity than 

controls between the left PCC seed and various DMN nodes, including the left PCC/precuneus, 
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right lingual gyrus/precuneus, and right parahippocampal gyrus. Weaker connectivity was also 

seen in cannabis users between the left PCC and the right Rolandic operculum/Heschl’s gyrus. 

Stronger connectivity was seen in cannabis users between the left PCC and the left and right 

cerebellum, and the left supramarginal gyrus. The group by gender interaction was not 

significantly associated with any differences in connectivity between the left PCC and the rest of 

the brain. Stronger left PCC—cerebellum connectivity was associated with poorer performance 

on cognitive measures in cannabis users. In controls, intra-DMN connectivity was positively 

correlated with performance on a speeded selective/sustained attention measure. Discussion: 

Consistent with our hypotheses and other studies, cannabis users demonstrated weaker 

connectivity between the left PCC and other DMN nodes. Cannabis users had stronger 

connectivity with the cerebellum, inconsistent with other studies. In the present study, this was 

related to poorer performance on cognitive measures. One possible mechanism for these findings 

may be that chronic THC exposure may alter GABA and glutamate concentrations, which relate 

to altered communication between brain regions. Future studies should be conducted with a 

larger sample size, examining gender differences, using a longitudinal design, and examining the 

neurochemical mechanism by which these differences may arise. 
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1. Introduction  

1.1 Prevalence of Cannabis Use 

Cannabis is the most commonly used illicit substance in the United States (Johnston et 

al., 2019). In 2018, 22.2% of 12th graders (Johnston et al., 2019) and 24.1% of young adults 19-

28 (Schulenberg et al., 2019) reported using cannabis within the past 30 days, while 5.8% of 12th 

graders and 8.0% of young adults 19-28 reported using cannabis daily (Schulenberg et al., 2019). 

Given that adolescents and young adults are most vulnerable to initiating substance use (Miech et 

al., 2019), and the average age of initiation of cannabis use is in the teen years (X. Chen, Yu, 

Lasopa, & Cottler, 2017; T. T. Clark, Doyle, & Clincy, 2013; Richmond-Rakerd, Slutske, & 

Wood, 2017), understanding the effects of cannabis on the developing brain is imperative.   

1.2 Psychopharmacology of Cannabis 

The psychoactive component of cannabis is Δ9-tetrahyrdocannabinol (THC; Gaoni & 

Mechoulam, 1964, 1971; Howlett et al., 2002), which is active as a partial agonist (Howlett et 

al., 2002) on cannabinoid receptors, type 1, also known as CB1 receptors (Herkenham et al., 

1990; Sim-Selley, 2003). CB1 receptors are present on a variety of cell types, including 

pyramidal neurons, cholecystokinin (CCK)-expressing interneurons, and cerebellar granule 

neurons (E. L. Hill et al., 2007; Nogueron, Porgilsson, Schneider, Stucky, & Hillard, 2001; 

Piomelli, 2003). CB1 receptors are notably absent from parvalbumin (PV)-expressing 

interneurons (Caballero & Tseng, 2012; Katona et al., 1999; Marsicano & Lutz, 1999). CB1 

receptors are widely distributed in the cortex, especially in the cingulate gyrus and frontal, 

secondary somatosensory, secondary motor, and association cortices, and molecular layer of 

cerebellar cortex (Glass, Dragunow, & Faull, 1997; Herkenham et al., 1990; Mackie, 2005). CB1 

receptors are more concentrated in the neocortex of the left hemisphere compared to the right 
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(Glass et al., 1997). Additionally, CB1 receptors are strongly expressed in subcortical structures 

such as the hippocampus, dentate gyrus, amygdala, and basal ganglia (Glass et al., 1997; 

Herkenham et al., 1990; Mackie, 2005), while moderate distribution is seen in the periaqueductal 

gray (PAG), posterior hypothalamus, and ventral tegmental area (Burns et al., 2007). CB1 

receptors are often expressed in axon terminals (Mackie, 2005).  

Anandamide and 2-arachidonylglycerol (2-AG) are two endogenous ligands present in 

the endocannabinoid system that act as agonists of CB1 receptors (Devane et al., 1992; Sugiura et 

al., 1995; Wilson & Nicoll, 2002). By way of its endogenous ligands’ actions on CB1 receptors 

in the brain, the endocannabinoid system acts as a retrograde messenger system (Pertwee, 2008; 

Wilson & Nicoll, 2002) that modulates release of many neurotransmitters, such as glutamate and 

GABA (Pertwee, 2008).  

Exposure to THC can disrupt the normal modulatory activity of the endocannabinoid 

system, causing abnormal levels of endocannabinoids and major neurotransmitters (Ellgren et al., 

2008; Howlett et al., 2002; Pertwee, 2008; Renard, Rushlow, & Laviolette, 2018; Wilson & 

Nicoll, 2002). With chronic THC administration, CB1 receptors desensitize to THC and uncouple 

from G-proteins (Breivogel et al., 2003). Chronic THC exposure leads to sequestration (Sim-

Selley, 2003; Wilson & Nicoll, 2002), desensitization (Breivogel et al., 1999) and 

downregulation of CB1 receptors (Breivogel et al., 1999; Oviedo, Glowa, & Herkenham, 1993; 

Rodriguez de Fonseca, Gorriti, Fernandez-Ruiz, Palomo, & Ramos, 1994). Desensitization and 

downregulation can be region-specific, including profound decreases in receptor binding in the 

hippocampus (Breivogel et al., 1999).  

1.3 Adolescence/Young Adulthood 

1.3.1 Brain Development During Adolescence and Young Adulthood 
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Adolescence is a time of brain development and maturation, including grey matter 

pruning (Giedd et al., 1999; Giorgio et al., 2010; Giorgio et al., 2008; Sowell, Thompson, 

Tessner, & Toga, 2001; Yuan, Cross, Loughlin, & Leslie, 2015) and improvements in white 

matter microstructure (Giedd et al., 1999; Giorgio et al., 2010; Giorgio et al., 2008; Yuan et al., 

2015), which extend into young adulthood (Giedd et al., 1999; Giorgio et al., 2008; Lebel & 

Beaulieu, 2011; Simmonds, Hallquist, Asato, & Luna, 2014; Sowell et al., 2001). Functional 

brain networks continue to develop and mature across the lifespan (Betzel et al., 2014; Power, 

Fair, Schlaggar, & Petersen, 2010).  

The endocannabinoid system also undergoes development across the lifespan; CB1 

receptor densities vary by region and gender across developmental periods (Rodriguez de 

Fonseca, Ramos, Bonnin, & Fernandez-Ruiz, 1993). Cannabinoid receptors are present in the 

brain from before birth (X. Wang, Dow-Edwards, Keller, & Hurd, 2003), and in the fetal brain, 

activation of cannabinoid receptors is involved in signaling mechanisms, metabolic regulation, 

gene expression, and catecholaminergic neuron development (J. Fernandez-Ruiz, Berrendero, 

Hernandez, & Ramos, 2000; Jager & Ramsey, 2008). Indeed, various neurotransmitters 

(including dopamine, serotonin, GABA, and opioid peptides) and behaviors (including pain 

sensitivity, motor activity, stress response, etc.) are impacted by cannabinoid exposure in the 

perinatal period in rodents (J. Fernandez-Ruiz et al., 2000; J. J. Fernandez-Ruiz, Berrendero, 

Hernandez, Romero, & Ramos, 1999).  

In rats, CB1 receptor levels increase in adolescence before decreasing to adult levels 

(Rodriguez de Fonseca et al., 1993). Administration or use of THC and other cannabinoids 

during development can interfere with typical functioning of the endocannabinoid system (J. 

Fernandez-Ruiz et al., 2000; Jager & Ramsey, 2008; Viveros, Llorente, Moreno, & Marco, 
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2005). While the adolescent literature is more sparse (Viveros et al., 2005), research in humans 

suggests that use of cannabinoids in adolescence is associated with interference in development 

of GABAergic neurons in the PFC (Renard et al., 2018) and changes in glutamate and n-acetyl 

aspartate levels in the anterior cingulate cortex (Prescot, Locatelli, Renshaw, & Yurgelun-Todd, 

2011).  

1.3.2 Effects of Cannabis in the Adolescent/Young Adult Brain 

Given the neurodevelopment that is occurring, the adolescent brain appears particularly 

vulnerable to the effects of chronic THC exposure (Adriani & Laviola, 2004), as preclinical 

evidence suggests chronic cannabinoid exposure in adolescence produces long-term changes in 

neural functions (Viveros et al., 2005). Use of cannabis in adolescence and young adulthood is 

associated with a variety of poorer outcomes. For example, chronic cannabis use is associated 

with gray matter (Filbey et al., 2014; Gilman et al., 2014), white matter (Filbey et al., 2014; 

Medina, Nagel, Park, McQueeny, & Tapert, 2007), and subcortical structural (Cousijn et al., 

2012; Maple, Thomas, Kangiser, & Lisdahl, 2019) abnormalities in adolescent and young adult 

users (Batalla et al., 2013; Lisdahl, Shollenbarger, Sagar, & Gruber, 2018), including in areas 

rich in CB1 receptors (Mackie, 2005). Early use of cannabis is also associated with greater 

incidence of psychiatric problems (Chadwick, Miller, & Hurd, 2013) as well as later drug use 

and dependence (Fergusson, Boden, & Horwood, 2006; Lynskey et al., 2003). Further, regular 

cannabis use is related to poorer cognitive functioning in this age group, including lower IQ and 

deficits in processing speed, attention, executive functioning, and memory (Lisdahl, Gilbart, 

Wright, & Shollenbarger, 2013; Lisdahl et al., 2018; Lisdahl, Wright, Kirchner-Medina, Maple, 

& Shollenbarger, 2014). However, relatively few studies have examined the impact of chronic 

cannabis exposure on brain connectivity.  
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1.4 Default Mode Network 

Brain connectivity—or the temporal correlation between measurements (in this case, 

BOLD responses) in separate parts of the brain (Bijsterbosch, Smith, & Beckmann, 2017)—can 

be measured with functional MRI (fMRI). Connectivity within and between brain networks can 

also be examined when at rest (i.e., when not completing a task), termed resting state functional 

connectivity (RSFC; Biswal, Van Kylen, & Hyde, 1997). The default mode network (DMN) is 

very active when the brain is at rest (Greicius, Krasnow, Reiss, & Menon, 2003) and may be 

disrupted by chronic cannabis use during development. The DMN is a functional brain network 

that matures across the lifespan (Betzel et al., 2014; Power et al., 2010). A “proto-default-mode 

network” comprised of the precuneus and bilateral parietal cortex is evident in the infant brain 

(Fransson et al., 2007). When it has largely finished its development by late adolescence (Bluhm 

et al., 2008), the DMN is composed of the posterior cingulate cortex (PCC), the hippocampal 

formation, lateral temporal cortex, medial and lateral parietal cortex, precuneus, and medial 

prefrontal cortex (mPFC; Buckner, Andrews-Hanna, & Schacter, 2008; Fox et al., 2005; Greicius 

et al., 2003; Raichle et al., 2001). While DMN regions appear to be similar between children and 

adults, connectivity between these regions is weaker in childhood but strengthens over time (Fair 

et al., 2008), although there is some inconsistency across studies (Power et al., 2010).  

The DMN is associated with stimulus-independent (i.e. “mind wandering,” Mason et al., 

2007) and self-referential (Gusnard, Akbudak, Shulman, & Raichle, 2001; Harrison et al., 2008) 

thought. The PCC specifically is suggested to be involved in attention and monitoring for 

environmental change (Leech, Braga, & Sharp, 2012). Activation in the DMN is anticorrelated 

with activation in the task-positive network (Fox et al., 2005; Fransson, 2005). Sonuga-Barke 

and Castellanos (2007) posit the “default-mode interference hypothesis,” which states that 
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despite its anticorrelation with the task-positive network, the DMN can intrude upon the task-

positive network and thus create instances of attentional lapses and performance deficits. Indeed, 

poorer deactivation of the DMN is associated with momentary lapses in attention (Weissman, 

Roberts, Visscher, & Woldorff, 2006) and reaction time variability (Whelan et al., 2012). 

Additionally, failure to deactivate the default mode network is associated with poorer cognitive 

functioning, including executive functioning (Bossong et al., 2013) and reaction time during a 

vigilance task (Drummond et al., 2005), and in disorders such as ADHD (Fassbender et al., 

2009) and schizophrenia (Pomarol-Clotet et al., 2008), among others (Broyd et al., 2009). The 

DMN has also been implicated in attentional control (Small et al., 2003). Moreover, stronger 

intra-DMN connectivity is associated with better working memory task performance (Sala-

Llonch et al., 2012; Sambataro et al., 2010). In individuals with schizophrenia and co-morbid 

cannabis use disorder, acute THC administration reduces hyperconnectivity within the DMN, 

and stronger anticorrelation between the DMN and executive control network is positively 

associated with working memory performance (Whitfield-Gabrieli et al., 2018). Given that the 

DMN develops during adolescence (Bluhm et al., 2008), the adolescent brain is particularly 

sensitive to substance use, including cannabis use (Adriani & Laviola, 2004), and areas of the 

DMN overlap with areas rich in CB1 receptors (Buckner et al., 2008; Fox et al., 2005; Glass et 

al., 1997; Greicius et al., 2003; Mackie, 2005; Raichle et al., 2001), it is important to examine 

how chronic cannabis use in this age group relates to RSFC in the DMN, and potential 

downstream effects of these relationships. 

1.4.1 Cannabis and Resting State Functional Connectivity in the Default Mode Network in 

Adolescence and Young Adulthood 
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To date, four studies have been conducted examining the relationship between chronic 

cannabis use and DMN connectivity in adolescents and young adults (Filbey, Gohel, Prashad, & 

Biswal, 2018; Osuch et al., 2016; Pujol et al., 2014; Wetherill et al., 2015), and one examined 

time course power spectra in incarcerated male adolescents with a history of cannabis use 

(Thijssen et al., 2017). Results of these studies are inconsistent, perhaps due to differing 

methodologies. In a study of 28 chronic cannabis-using young adult males, Pujol et al. (2014) 

reported that compared to male controls, cannabis users showed greater RSFC between a right 

PCC seed and the bilateral ventral PCC, and weaker connectivity between the seed and the left 

and right dorsal PCC/precuneus. The latter was associated with poorer verbal recall in cannabis 

users. These RSFC alterations persisted after 1 month of abstinence, although were lower in 

magnitude. Filbey et al. (2018) examined the effects of isolated and combined nicotine and 

cannabis use on an adult/young adult sample of 137 participants (53 cannabis users [71.6% male] 

and 30 controls [46.7% male]). After 3 days of abstinence from cannabis, the cannabis group 

demonstrated lower RSFC in the posterior cingulate gyrus compared to controls. In a similar 

study in young adults and adults, Wetherill et al. (2015) found lower RSFC in the DMN between 

the PCC and temporal cortex, medial PFC, cerebellum, and parahippocampus, and higher RSFC 

between the PCC and right anterior insula, in non-abstinent cannabis users (N=19, 53% male) 

compared to controls (N=21, 67% male).  

Two other studies examined DMN connectivity in cannabis users with comorbid 

psychiatric disorders. In a sample of 16-23 year old participants, Osuch et al. (2016) compared 

RSFC in the DMN between controls (N=20, 40% male) and presumably non-abstinent cannabis 

users (N=20, 60% male), and individuals with depression. Cannabis use was associated with 

lower RSFC in the right medial PFC (BA6), and higher RSFC in the right 



 

 8 

caudal/temporal/parahippocampal area (BA30), compared to controls. Additionally, higher 

RSFC in parts of the DMN was seen in early-onset cannabis users compared to late-onset/non-

cannabis users. Early-onset cannabis use was associated with lower total IQ and lower verbal IQ 

(Osuch et al., 2016). Lastly, in a sample of 180 incarcerated (and thus abstinent) adolescent 

males, Thijssen et al. (2017) found that longer duration of cannabis use was associated with 

lower amplitude in lower frequencies (0.00-0.05), which may indicate rapid connectivity and/or 

poorer connection between the DMN and other networks. Indeed, lower network connectivity 

was also found between the DMN and the fronto-partietal network (Thijssen et al., 2017). 

However, while a valuable contribution to the literature, the cannabis-specific effects on time 

course power spectra would be difficult to disentangle due to possible comorbid psychiatric 

problems, lack of quantification of substance use, and no information on length of abstinence in 

the sample.  

In summary, results of studies examining RSFC in the DMN between cannabis users and 

controls to date are inconsistent. In studies with older samples and that excluded (Wetherill et al., 

2015) or allowed very light (Filbey et al., 2018) nicotine use in their cannabis groups, RSFC in 

the DMN is generally lower in cannabis users compared to controls. Studies with younger 

samples find higher or lower connectivity depending on the DMN region. Importantly, these 

studies demonstrate heterogeneity in their methodologies. For example, there appears to be 

heterogeneity between the studies in terms of their sample ages, e.g. including exclusively 

adolescents/young adults (Osuch et al., 2016; Pujol et al., 2014), as opposed to adult samples that 

have average ages in the young adult years (Filbey et al., 2018; Wetherill et al., 2015). While 

Wetherill et al. (2015) and Filbey et al. (2018) excluded nicotine use in their cannabis groups, 

Pujol et al. (2014) did not appear to measure nicotine use; Osuch et al. (2016) measured nicotine 
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use days, which were broadly low but significantly higher in cannabis users than controls. One 

study (Pujol et al., 2014) had exclusively males in its cannabis-using group, and no study to date 

has examined gender as a potential moderator of the relationship between cannabis use and 

RSFC in the DMN. Some studies excluded for psychiatric disorders (Pujol et al., 2014; Wetherill 

et al., 2015), while others did not (Filbey et al., 2018; Osuch et al., 2016). Given that sex (Bluhm 

et al., 2008; Hjelmervik, Hausmann, Osnes, Westerhausen, & Specht, 2014), nicotine use (Filbey 

et al., 2018; Hahn et al., 2007; Wetherill et al., 2015), psychiatric disorders (Broyd et al., 2009; 

Fassbender et al., 2009; Pomarol-Clotet et al., 2008), and age (Grady, Springer, Hongwanishkul, 

McIntosh, & Winocur, 2006; Lustig et al., 2003; Sambataro et al., 2010) are associated with 

differences in DMN connectivity, it is important that these factors are measured and accounted 

for when examining the relationship between cannabis use and RSFC in the DMN. 

1.5 Gender 

1.5.1 Cannabis and Gender 

While males are more likely to begin using cannabis in late adolescence relative to 

females (X. Chen et al., 2017), females, particularly during adolescence, appear to be more 

susceptible to receptor-level adverse effects of chronic THC exposure. Adolescent female rats 

display greater desensitization of CB1 receptors in the prefrontal cortex (PFC), PAG, ventral 

midbrain, striatum (Burston, Wiley, Craig, Selley, & Sim-Selley, 2010), and hippocampus 

(Burston et al., 2010; Silva et al., 2015) compared to adolescent male rats. Additionally, in the 

hippocampus, CB1 receptor downregulation is more widespread and persistent in adolescent 

female rats (Silva et al., 2015). These sex-specific patterns of desensitization are also present in 

adult rats (Farquhar et al., 2019). Moreover, adolescent females exhibit greater desensitization 

compared to adult females in the PFC, PAG, hippocampus, and ventral midbrain, while 
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adolescent males show lesser desensitization than adult males in the PFC, PAG, and HC 

(Burston et al., 2010). Taken together, these results suggest that adolescent female rats are 

particularly susceptible to the CB1 receptor-desensitizing effects of chronic THC exposure. 

 While sex differences in receptor-level responses to chronic THC administration are 

consistent, sex differences in cognition after chronic THC exposure in adolescence and young 

adulthood are less clear, both in rodents and humans, and may differ across cognitive domain. 

(See Crane, Schuster, Fusar-Poli, and Gonzalez (2013) for review.) Studies find poorer memory 

after chronic administration of cannabinoid agonist CP 55,940 exposure in adolescent male 

(novel object recognition) or female (object location) rodents (Mateos et al., 2011), but poorer 

memory after chronic THC exposure in female humans (Crane, Schuster, & Gonzalez, 2013; 

Crane, Schuster, Mermelstein, & Gonzalez, 2015). With chronic CP 55,940 exposure in young 

adulthood, male (but not female) rats exhibit poorer working memory (O'Shea, McGregor, & 

Mallet, 2006; O'Shea, Singh, McGregor, & Mallet, 2004). Male humans broadly appear to have 

poorer psychomotor speed with chronic cannabis use (King et al., 2011; Lisdahl & Price, 2012). 

Sex differences in the effects of cannabinoids on visuospatial skills (King et al., 2011; Pope, 

Jacobs, Mialet, Yurgelun-Todd, & Gruber, 1997) and decision making (L. Clark, Roiser, 

Robbins, & Sahakian, 2009; Crane, Schuster, & Gonzalez, 2013) are inconsistent across studies, 

and still other studies find no gender differences in adolescent (Solowij et al., 2011) or young 

adult (Pope et al., 1997; Tait, Mackinnon, & Christensen, 2011) cannabis users’ cognition. To 

our knowledge, no study to date has examined differences in resting state functional connectivity 

between male and female chronic cannabis users and controls, in any network. 

1.5.2 Gender Differences in Resting State Functional Connectivity 
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 Regardless of cannabis use, subtle gender differences exist between males and females in 

connectivity in various parts of the DMN. Adolescent females show stronger functional 

connectivity between the medial PFC and right posterior cerebellum than males (Alarcon, 

Pfeifer, Fair, & Nagel, 2018). Adult females show higher functional connectivity in parts of the 

DMN, including prefrontal areas, anterior fronto-parietal network (Hjelmervik et al., 2014), and 

between PCC/precuneus and bilateral medial frontal cortex (Bluhm et al., 2008). Notably, DMN 

connectivity does not vary with menstrual cycle phase (Hjelmervik et al., 2014). 

1.6 Study Aims 

 The aims of the present study were to examine whether there were differences in resting 

state functional connectivity between cannabis users and controls using a left PCC seed, and to 

examine if gender moderated any findings. Additionally, given the relationship between chronic 

cannabis use and cognitive deficits in young adults (e.g. Lisdahl et al., 2014), we sought to 

examine relationships among connectivity between the left PCC and significant clusters and 

performance on select neuropsychological measures in the cannabis users and controls (or by 

gender and substance use group) in order to further interpret brain-behavior relationships. 

Although there are heterogenous methodologies between existing studies of RSFC in the DMN 

in cannabis users and controls, most studies with limited nicotine use find lower RSFC in the 

DMN in cannabis users. Thus, given the relatively low nicotine use in our sample, we 

hypothesized that cannabis users will exhibit lower RSFC between the left PCC and other DMN 

nodes. While females in this age group generally show higher RSFC in parts of the DMN 

compared to males, it is difficult to hypothesize whether males or females will exhibit higher or 

lower RSFC between the left PCC and DMN nodes with chronic cannabis use because there is 

no extant literature addressing this topic. Thus, we hypothesized that there would be a difference 
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in DMN RSFC between male and female cannabis users, without hypothesizing a direction for 

either gender. We additionally hypothesized that RSFC would be related to neuropsychological 

functioning, with stronger connectivity between the left PCC and DMN nodes related to better 

performance on measures of selective and sustained attention, working memory, inhibition, and 

verbal memory, or, alternatively, stronger connectivity between the left PCC and areas that are 

typically anti-correlated with the DMN related to poorer performance on these measures.   

2. Methods 

2.1 Participants 

 Participants include 77 young adults (35 female, 42 male) aged 16-26 from a larger 

neuroimaging study (PI: Lisdahl, R01DA030354). The Institutional Review Boards at the 

University of Wisconsin-Milwaukee and the Medical College of Wisconsin approved all 

protocols. Inclusion criteria included: age 16-26, right-handedness, willingness to maintain 

abstinence from substances for the duration of the study; for the cannabis group: >40 past year 

cannabis uses or significant lifetime history of cannabis use (500+ lifetime uses) with at least 

monthly current use; and for the control group: ≤ 20 lifetime uses of cannabis and <5 past year 

uses. Exclusion criteria included MRI contraindications, pregnancy, left-handedness, birth 

complications or premature birth (<33 weeks gestation), major medical or neurologic disorders, 

diabetes, hypertension, hyperlipidemia, hearing or vision impairment, learning or intellectual 

disability, head injury with loss of consciousness >2 minutes, DSM-IV-TR Axis I disorders 

independent of substance use, current use of psychotropic medication, heavy other drug use (>25 

lifetime uses of substances other than cannabis), use of >10 cigarettes per day, failure to maintain 

abstinence at session 4 or on the day of MRI scanning (blood alcohol concentration of >.000, 

positive or increasing continuous sweat patch testing and/or urine toxicology), and WRAT-4 
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Reading t-score < 80. Eligible participants were divided into cannabis users (n=37, 13 female) 

and controls (n=40, 22 female).  

2.2 Procedure 

Individuals were recruited through flyers and advertisements posted in the community. 

After receiving verbal consent from the participants (or, if under 18, verbal assent from the 

participant and verbal consent from their parents), interested potential participants were screened 

by phone for basic eligibility criteria. Potential participants who remained eligible were mailed a 

written consent form (or an assent form for those under 18, as well as parent consent) prior to a 

detailed phone screen. The detailed screening included the Customary Drinking and Drug Use 

Record (CDDR; Brown et al., 1998; Stewart & Brown, 1995) for all participants to assess 

comprehensive lifetime substance use. For participants aged 18 or older, the detailed screen also 

included the Mini International Neuropsychiatric Interview (MINI; Sheehan et al., 1998) to 

assess the psychiatric history of the participant. With participants’ consent, the MINI was also 

administered to the participant’s parent or guardian to assess the participant’s psychiatric history. 

For participants under age 18 and their parents or guardians, the MINI-Kid (Sheehan et al., 2010) 

assessed psychiatric history of the participants. For further detail, see Wallace, Wade, and 

Lisdahl (2020) and Sullivan, Wallace, Wade, Swartz, and Lisdahl (2020). 

After obtaining informed consent, all participants (cannabis users and non-users) 

underwent a minimum of 3 weeks (including 5 in-person sessions) of monitored abstinence via 

breath samples, urine toxicology, and continuous sweat patch testing. At weekly sessions 1-3, 

participants completed toxicology testing and a brief neuropsychological and mood battery. One 

week after session 3, session 4 was conducted in which participants completed toxicology 

testing, a longer neuropsychological battery, psychological questionnaires, and VO2 max 
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treadmill testing. At session 5, which occurred within 24-48 hours of session 4, participants 

again underwent toxicology testing, a brain MRI scan, and completed questionnaires. 

2.3 Measures 

2.3.1 Toxicology and Pregnancy Testing 

At each study visit, participants provided a urine sample which was examined for 

adulterants (Specimen Validity Test; DrugTestStrips, Greenville, SC) and tested for cotinine 

level (a nicotine metabolite; NicAlert strips, Nymox Pharmaceutical Corporation, Hasbrouck 

Heights, NJ) and recent drug use (One Step Drug Screen Test Dip Card Panel; Innovacon, Inc., 

San Diego, CA), including amphetamines, barbiturates, benzodiazepines, cocaine, ecstasy, 

methadone, methamphetamines, opiates, phencyclidine (PCP), THC, and THC-COOH (a THC 

metabolite). Female participants were administered a urine pregnancy test (HGC Pregnancy Test 

Card; DrugTestStrips, Greenville, SC). All participants completed a breath alcohol test (Alco-

Sensor IV; Intoximeters Inc., St. Louis, MO). Beginning at Session 1, participants also wore a 

PharmCheck sweat patch that was changed at each weekly visit (discontinued at session 4). The 

sweat patch was used to monitor substance use between weekly visits that may not be found in 

weekly urinalysis; substances quantified included 6-monoacetylmorphine (a heroin metabolite), 

amphetamines, benzoylecgonine (a cocaine metabolite), cocaine, codeine, heroin, 

methamphetamine, morphine, and THC. If a participant presented to session 2 or 3 with a 

positive urine screen or breath alcohol sample, or increased levels of THC-COOH on sweat 

patch testing, they were asked to reschedule their session after 1 week of abstinence. At session 4 

or 5, participants were required to have a negative urine and breath alcohol screen, and/or 

decreasing THC-COOH levels measured via sweat patch testing, in order to participate (Sullivan 

et al., 2020). 
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2.3.2 Drug Use 

Past year substance use was measured with the Timeline Follow Back (TLFB; Sobell, 

Maisto, Sobell, & Cooper, 1979). The TLFB is a semi-structured measure in which participants 

are asked to recall their use of substances week-by-week over the past year using a calendar. 

They may use days of personal significance as reminders or cues. Substances were measured 

using standard units (e.g. cannabis in joints, alcohol in standard drinks, cigarettes in number of 

cigarettes). Lifetime and past 3-month substance use, including assessment of DSM-IV-TR 

substance abuse and dependence criteria, was measured with the CDDR (Brown et al., 1998; 

Stewart & Brown, 1995). 

2.4 Neuropsychological Assessments 

Estimated verbal intelligence and quality of education were assessed for group 

comparison using the Wide Range Achievement Test-4th Edition (WRAT-4; Wilkinson, 2006) 

Reading subtest age-scaled score variable. Participants underwent a neuropsychological battery 

as part of the larger study. Four neuropsychological tests are used in the present study. Selective 

and sustained attention were measured with the Ruff 2 & 7 Total Speed and Total Accuracy raw 

scores (Ruff & Allen, 1996). Working memory and sustained attention were assessed with the 

Paced Auditory Serial Addition Test (PASAT; Gronwall, 1977); total correct score was used. 

The D-KEFS Color-Word Interference test Condition 3 (Inhibition) was used to assess inhibitory 

control; total completion time was used (Delis, Kaplan, & Kramer, 2001). Verbal learning and 

memory was assessed with the California Verbal Learning Test, 2nd Edition (CVLT-II); Trial 1, 

Total Learning (Trials 1-5), and Long Delay Free Recall (LDFR) raw scores were used (Delis, 

Kramer, Kaplan, & Ober, 2000).  

2.5 Neuroimaging 
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2.5.1 Acquisition Parameters 

Participants were scanned on a 3T MR scanner (GE Healthcare, Waukesha, WI) at 

Medical College of Wisconsin. 3-dimensional, T-1 weighted anatomical images were obtained 

using a spoiled gradient-recalled at steady-state (SPGR) pulse sequence (TE = 3.4s, TR = 8.2s, 

TI = 450ms, flip angle= 12, FOV = 240mm, resolution = 256x256mm, slice thickness = 1mm, 

150 sagittal slices). An 8-minute resting state fMRI scan was conducted with the following 

parameters: TE = 25ms, TR = 2s, flip angle = 77, FOV = 240mm, matrix = 64x64, slice 

thickness = 3.7mm, 40 sagittal slices, 240 repetitions. During the resting state scan, participants 

were instructed to lie awake with their eyes closed.  

2.5.2 Processing 

Structural images underwent pre-processing using scripts from the 1000 Functional 

Connectomes Project (Fcon1000; Biswal et al., 2010), which call upon programs from, 

primarily, Analysis of Functional NeuroImages (AFNI: Cox, 1996, 2012), and FMRIB Software 

Library (FSL: Woolrich et al., 2009) software. Pre-processing steps included deobliquing 

(3drefit: Cox, 2009), reorientation (3dresample: Reynolds, 2014), skull stripping (3dSkullStrip: 

Saad, 2020; 3dcalc: Cox, 2020), segmentation into white and gray matter structures (fast: Zhang, 

Brady, & Smith, 2001; flirt: Greve & Fischl, 2009; Jenkinson, Bannister, Brady, & Smith, 2002; 

Jenkinson & Smith, 2001; fslmaths: Woolrich et al., 2009), registration to MNI space (flirt: 

Greve & Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001), and white matter 

segmentation (flirt: Greve & Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001; 

fslmaths: Woolrich et al., 2009).  

Raw functional images were pre-processed using Fcon1000 scripts (Biswal et al., 2010) 

including dropping the first 4 TRs (3dcalc: Cox, 2020), deobliquing (3drefit: Cox, 2009), 
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reorientation (3dresample: Reynolds, 2014), motion correction to average of the time series 

(3dTstat: Hammett & Cox, 2020; 3dvolreg: "AFNI program: 3dvolreg," 2020), skull stripping 

(3dAutomask: "AFNI program: 3dAutomask," 2020; 3dcalc: Cox, 2020), registration within 

each subject (3dcalc: Cox, 2020), registration to the anatomical image and to MNI space (flirt: 

Greve & Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001), spatial smoothing with 

a 6mm FWHM Gaussian kernel (fslmaths: Woolrich et al., 2009), grand-mean scaling (fslmaths: 

Woolrich et al., 2009), band-pass filtering (high pass cutoff = 0.005Hz, low pass cutoff = 0.1 Hz; 

3dFourier: Ross & Heimerl, 1999), linear and quadratic detrending (3dTstat: Hammett & Cox, 

2020; 3dDetrend: "AFNI program: 3dDetrend," 2020; 3dcalc: Cox, 2020), and regression of 

nuisance variables (including 6 motion parameters, global signal, white matter, and CSF; 

3dmaskave: "AFNI program: 3dmaskave," 2020; 3dTstat: Hammett & Cox, 2020; 3dcalc: Cox, 

2020; flirt: Greve & Fischl, 2009; Jenkinson et al., 2002; Jenkinson & Smith, 2001, FEAT: 

Woolrich, Ripley, Brady, & Smith, 2001).  

2.6 Data Analysis 

 ANOVAs and Chi-squares were conducted in SPSS v.25 to examine potential group 

differences on demographic and other substance use variables between male and female cannabis 

users and controls. Past year alcohol drinks and Session 5 cotinine (reflecting recent nicotine 

exposure) were included as covariates in the general linear model (GLM) in AFNI as they 

differed significantly by group (see Table 1). A seed-based correlation analysis was conducted. 

A 3mm spherical seed placed in the left PCC at MNI (x,y,z) coordinates (-3, -50, 36; Ernst et al., 

2019) was created using AFNI’s 3dcalc (Cox, 2020); this region was selected to be consistent 

with other studies of the DMN (Ernst et al., 2019; Fox et al., 2005; Pujol et al., 2014). Using an 

Fcon1000 script (Biswal et al., 2010) which called upon specific AFNI programs, the BOLD 
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timeseries was extracted from the PCC for each subject using 3dROIstats ("AFNI program: 

3dROIstats," 2020). The seed timeseries were then correlated with each voxel in the brain using 

3dfim+ (B. D. Ward, 2020); these correlations were transformed to Z-scores. The resultant seed-

based connectivity maps for each subject were subsequently used in comparison of cannabis vs 

control groups using a GLM (Bijsterbosch et al., 2017). Thresholding to correct for multiple 

comparisons was conducted using 10,000 Monte Carlo simulations within AFNI’s 3dClustSim 

("AFNI program: 3dClustSim," 2020), with individual voxels labeled significant at p<.001, 

corrected for Family-Wise Error (FWE) at cluster thresholds of p<.05. These thresholds have 

been shown to adequately control false-positive rates (Cox, Chen, Glen, Reynolds, & Taylor, 

2017; Slotnick, 2017) and replicate, or are more stringent than, thresholding in similar studies 

using a seed-based analysis (Pujol et al., 2014; Wetherill et al., 2015). The minimum cluster size 

to meet these thresholds was 8 voxels.  

AFNI’s 3dMVM (G. Chen, Adleman, Saad, Leibenluft, & Cox, 2014) was used for the group 

analysis, identifying clusters significantly correlated with the left PCC seed by group and in a 

group*gender interaction. Data from significant clusters from the cannabis group analysis or 

cannabis*gender analysis were extracted using AFNI’s 3dROIstats ("AFNI program: 

3dROIstats," 2020) and, using SPSS v.25, correlated with performance on selected 

neuropsychological measures in order to explore downstream cognitive effects of DMN 

connectivity differences.  

3. Results 

Demographic and drug use variables were examined using Chi-squares and ANOVAs 

with Tukey’s HSD post-hoc tests, after dividing participants into male cannabis users (n=24), 

female cannabis users (n=13), male controls (n=18), and female controls (n=22).  
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3.1 Demographic and Mood Information  

 Demographic and drug use information is summarized in Table 1. Groups significantly 

differed in the Beck Depression Inventory-II (BDI-II) score (F[3,73]=3.69, p=.02). Female 

cannabis users had significantly higher BDI-II scores than female controls (p=.02). Male 

cannabis users had marginally higher BDI-II scores compared to female controls (p=.09). 

Ethnicity was marginally different between groups (68% Caucasian, 2(18)=26.19, p=.10). 

Groups did not differ in age (F[3,73]=0.50, p=.69), years of education (F[3, 73]=0.12, p=.95), 

WRAT-4 Reading score (F[3,77]=1.99, p=.12), or state anxiety at Session 1 (F[3, 73]=1.72, 

p=.17) or Session 4 (F[3, 73]=0.04, p=.99). 

3.2 Drug Use 

 Groups significantly differed in past year cannabis use (F[3,73]=12.40, p<.001), lifetime 

cannabis use (F[3,73]=12.51, p<.001), past year cigarettes (F[3,73]=3.41, p=.02), past year 

alcohol use (F[3,73]=6.15, p=.001), age of first cannabis use (F[3,48]=7.56, p<.001), and 

cotinine level at Session 5 (F[3,73]=3.28, p=.03). Post-hoc analysis found that male cannabis 

users had significantly higher past year cannabis use than male (p<.001) and female (p<.001) 

controls. Female cannabis users had marginally higher past year cannabis use than male (p=.10) 

and female (p=.08) controls. Male cannabis users had significantly higher lifetime cannabis use 

than male (p<.001) and female (p<.001) controls. Female cannabis users had marginally higher 

lifetime cannabis use than male (p=.07) and female (p=.054) controls. Male and female cannabis 

users first initiated cannabis use at significantly younger ages than male (p<.01 compared to 

cannabis-using males; p<.01 compared to cannabis-using females) and female (p=.02 compared 

to cannabis-using males; p=.03 compared to cannabis-using females) controls who had tried 

cannabis. Between male and female cannabis users, there was no difference in age of first 
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cannabis use (p=.99), nor in age of onset of regular cannabis use (F[1,35]=0.24, p=.63). The 

average length of abstinence from cannabis at the scan day was 37.00 days for male cannabis 

users, 29.54 days for female cannabis users, 151.20 days for male controls, and 260 days for the 

one female control who had previously used cannabis. 

Male cannabis users consumed significantly more cigarettes in the past year compared to 

male (p=.04) controls and consumed marginally more cigarettes in the past year compared to 

female (p=.053) controls. At session 5, male cannabis users displayed significantly higher 

cotinine compared to male controls (p=.04), and marginally higher cotinine compared to female 

controls (p=.08). (Of note, one male cannabis user was not administered toxicology testing at 

Session 5. His Session 5 cotinine level was estimated [6] and included in this analysis, as he 

smoked cigarettes regularly and had a cotinine level of 6 at each session prior.) Male cannabis 

users consumed significantly more past year alcohol drinks compared to male (p=.04) and female 

(p<.001) controls. Male cannabis users consumed significantly more past year other substances 

compared to male (p=.03) and female (p<.01) controls.  

3.3 Primary Findings 

 DMN Seed Validity Check: In both the CAN and CTL groups, the PCC seed recognized 

the main nodes of the DMN, including the PCC, precuneus, mPFC, lateral temporal cortex, 

parahippocampal gyrus, and parietal cortex/angular gyrus. 

3.3.1 Main Effect of Group 

 The coordinates and size of all significant clusters are listed in Table 2. Controlling for 

recent cotinine and past year alcohol drinks, cannabis users displayed weaker connectivity 

compared to controls between the left PCC and the right lingual gyrus/right precuneus, left 

PCC/precuneus, right Rolandic operculum and Heschl’s gyrus, and left parahippocampal gyrus. 
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Cannabis users displayed stronger connectivity between the left PCC and the left and right 

cerebellum, specifically in the right cerebellum VII/Crus II, left cerebellum Crus I and Crus II, 

and left cerebellum VIII. Cannabis users also displayed stronger connectivity between the left 

PCC and the left supramarginal gyrus. See Figures 1 and 2 for images of these clusters. 

3.3.2 Group by Gender Interaction 

 The cannabis group*gender interaction was not significantly associated with any 

differences in connectivity between the left PCC and the rest of the brain. 

3.3.3 Main Effect of Gender 

 Regardless of cannabis group status, male participants exhibited stronger connectivity 

between the left PCC and the right temporal pole. 

3.3.4 Covariate Findings 

 Greater cotinine level at Session 5 was associated with weaker connectivity between the 

left PCC and the right cerebellum (Crus I). Past year alcohol consumption was associated with 

stronger connectivity between the left PCC and the right precuneus.   

3.4 Brain-Behavior Relationships 

Connectivity measurements from clusters that were significantly different between 

cannabis users and controls were correlated with performance on selected neuropsychological 

measures. In cannabis users, connectivity between the left PCC and the left cerebellum Crus I 

was significantly negatively correlated with PASAT total correct raw score (p=.04). 

Additionally, left PCC—left cerebellum VIII connectivity was significantly negatively 

associated with the CVLT-II Total Learning (Trials 1-5) raw score (p=.04). This means that 

stronger connectivity between the left PCC and left cerebellum Crus I, and between the left PCC 

and the left cerebellum VIII, was associated with poorer PASAT and CVLT-II Total Learning 
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performance, respectively. In controls, connectivity between the left PCC and the left PCC/left 

precuneus was significantly positively correlated with performance on the Ruff 2 & 7 Total 

Speed raw score (p=.03), meaning that stronger connectivity between the left PCC seed and the 

left PCC/precuneus was associated with better speed on this measure. Results are detailed in 

Table 3 for cannabis users and Table 4 for controls. 

4. Discussion 

4.1 Discussion of Findings 

 The aims of the present study were to describe potential differences in resting state 

functional connectivity in the default mode network, utilizing a seed-based approach, between 

adolescent and young adult cannabis users and controls and to examine if gender moderated any 

findings. Additionally, we sought to examine relationships between DMN connectivity in 

clusters that significantly differed by group or group*gender and performance on select 

neuropsychological measures in order to further interpret these findings. We found that cannabis 

users demonstrated weaker connectivity between the left posterior cingulate cortex (PCC) and 

the right lingual gyrus/right precuneus, left PCC/precuneus, right Rolandic operculum and 

Heschl’s gyrus, and left parahippocampal gyrus, and stronger connectivity with the left 

supramarginal gyrus, and portions of the left and right cerebellum, compared to controls. There 

were no significant interactions between group and gender in predicting left PCC connectivity in 

this study. In cannabis users, stronger connectivity between the left PCC and the cerebellum was 

correlated with poorer performance on sustained attention/working memory and verbal learning 

measures. In controls, stronger connectivity between the left PCC and the left PCC/precuneus 

was correlated with better speed on a selective and sustained attention measure. 
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Compared to controls, cannabis users exhibited weaker connectivity between the left 

PCC and left PCC/left precuneus, left parahippocampal gyrus, right lingual gyrus/right 

precuneus, and right Rolandic operculum/right Heschl’s gyrus. Lesser intra-network connectivity 

(i.e. PCC, precuneus, parahippocampal gyrus) is consistent with our hypothesis and with results 

from similar studies, which find lower connectivity in the PCC (Filbey et al., 2018) or dorsal 

PCC/precuneus (Pujol et al., 2014) in cannabis users compared to controls, lower connectivity in 

the posterior DMN, cuneus, and precuneus in cannabis users compared to cannabis/tobacco co-

users (Filbey et al., 2018), and lower connectivity between the PCC and parahippocampal gyrus 

in cannabis users (Wetherill et al., 2015). However, one study found greater connectivity 

between the PCC and the right caudate/temporal/parahippocampal regions (BA30; Osuch et al., 

2016); the authors suggested that connectivity between these regions should typically be very 

low, so the greater connectivity seen in their findings may actually represent lesser 

anticorrelation between these areas (Osuch et al., 2016). Nevertheless, structural connections 

exist between the parahippocampal gyrus and the DMN (Lavenex & Amaral, 2000; A. M. Ward 

et al., 2014), and the parahippocampal gyrus mediates connectivity between the PCC and the 

hippocampus (A. M. Ward et al., 2014). These areas are rich with CB1 receptors (Glass et al., 

1997; Herkenham et al., 1990; Howlett et al., 2002), and it is possible that repeated activation of 

these receptors by THC during adolescence and young adulthood may alter PCC—DMN 

connectivity. In controls, connectivity within the DMN (between the left PCC and the left 

PCC/left precuneus) was significantly positively correlated with performance a measure of speed 

within a selective and sustained attention measure. With a similar direction of findings, Pujol et 

al. (2014) found that weaker connectivity between the right PCC and left and right dorsal 

PCC/precuneus in cannabis users was associated with poorer verbal recall. Stronger intra-DMN 
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connectivity is associated with better working memory task performance (Sala-Llonch et al., 

2012; Sambataro et al., 2010), and regular cannabis use is associated with poorer memory, 

executive functioning, processing speed, and attention in this age group (Lisdahl et al., 2013; 

Lisdahl et al., 2018; Lisdahl et al., 2014). 

 In cannabis users, weaker connectivity was also seen between the left PCC and the right 

lingual gyrus, as well as the right Rolandic operculum/Heschl’s gyrus. These areas are known to 

be associated with sensory/perceptual abilities such as visual processing (lingual gyrus; Mechelli, 

Humphreys, Mayall, Olson, & Price, 2000), hearing and pitch perception (Heschl’s gyrus; e.g. 

Krumbholz, Patterson, Seither-Preisler, Lammertmann, & Lutkenhoner, 2003), and body self-

consciousness (Rolandic operculum; Blefari et al., 2017). Thus, the present findings may suggest 

that cannabis users demonstrate abnormal connectivity between the PCC and sensory/perceptual 

associative areas. Acute THC administration induces altered perception (D'Souza et al., 2004); it 

is possible that with chronic THC exposure, CB1 receptors in these regions underwent 

downregulation (Breivogel et al., 1999; Oviedo et al., 1993). Indeed, chronic cannabis use is 

associated with abnormalities in these areas in regular cannabis users, including smaller lingual 

gyrus and Rolandic operculum volumes (S. Y. Hill, Sharma, & Jones, 2016), and impaired 

sensory gaiting (Broyd et al., 2013). Interestingly, the generation of the event-related potential 

associated with sensory gaiting has been localized to Heschl’s gyrus (Broyd et al., 2013). 

Alternatively, it is possible that some of the differences in connectivity seen in these areas may 

be due to averaging error from connectivity differences in closely related anatomical areas (e.g. 

the right precuneus for the Heschl’s gyrus cluster).  

 Contrary to other studies which found weaker connectivity between the PCC and the 

bilateral cerebellum Crus I and II (Wetherill et al., 2015), or between the cerebellum and the 
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DMN (Sweigert et al., 2019) in cannabis users, we found that cannabis users demonstrated 

stronger connectivity between the left PCC and the left and right cerebellum, specifically in the 

right cerebellum VII/Crus II, left cerebellum Crus I and Crus II, and left cerebellum VIII. Studies 

have shown intrinsic connectivity between the DMN and Crus I, Crus II, and Lobule IX (Bernard 

et al., 2012; Krienen & Buckner, 2009; L. Wang et al., 2014). However, Crus I and II have also 

demonstrated functional connectivity with areas that are traditionally not considered part of the 

DMN, such as the dlPFC (Fox et al., 2005; Krienen & Buckner, 2009). In one study (Habas et 

al., 2009), Crus I and II participated in activation with areas of the left and right executive 

control network, and, to a lesser extent, the salience network, but not with the DMN. Cerebellar 

activations were generally distinct (i.e. nonoverlapping) between networks (Habas et al., 2009). 

The executive control network and the salience network, considered two parts of the “task-

positive network” (Di & Biswal, 2014), are generally anticorrelated with the DMN (Fox et al., 

2005; Greicius et al., 2003; Sridharan, Levitin, & Menon, 2008; Whitfield-Gabrieli et al., 2018; 

Whitfield-Gabrieli & Ford, 2012), so it is possible that greater connectivity between the left PCC 

and cerebellar areas seen in cannabis users in the present study is due to reduced anticorrelation 

between these networks. It is also possible that this stronger connectivity is a compensatory 

mechanism (Wall et al., 2019) due to downregulation of the CB1 receptors (Breivogel et al., 

1999; Sim-Selley, 2003; Sim-Selley & Martin, 2002) expressed in the cerebellum (Glass et al., 

1997; Herkenham et al., 1990; Mackie, 2005; Nogueron et al., 2001). In any case, chronic 

cannabis use appears to be associated with differences in connectivity from what is “typical” 

between the DMN and the cerebellum. Indeed, the posterior portion of the cerebellum has 

increasingly been shown to be involved in cognition (Bernard et al., 2012; Stoodley & 

Schmahmann, 2009; Stoodley, Valera, & Schmahmann, 2012); presently, stronger connectivity 
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between the left PCC and the cerebellum was negatively correlated with performance on 

measures of sustained attention/working memory and verbal learning in cannabis users only, 

suggesting that stronger connectivity between these regions may have negative performance 

implications. 

 Cannabis users also displayed stronger connectivity between the left PCC and the left 

supramarginal gyrus. This finding was not seen in other studies similar to ours (Filbey et al., 

2018; Osuch et al., 2016; Pujol et al., 2014; Wetherill et al., 2015). The supramarginal gyrus is 

negatively correlated with the PCC/precuneus in a small sample of healthy controls (Fransson, 

2005), and, as part of the inferior parietal lobule, could perhaps be considered a part of the task-

positive network (Fox et al., 2005). The supramarginal gyrus may contribute modulatory activity 

between the DMN and the dorsal attention network (Di & Biswal, 2014). Thus, as with the 

cerebellum, it is possible that the higher connectivity seen here in cannabis users between the left 

PCC and the left supramarginal gyrus may indicate lesser anticorrelation between the DMN and 

task-positive/attentional networks.   

The lack of significant differences in left PCC connectivity within the group*gender 

interaction was contrary to our hypothesis. Rodent literature suggests that female rats, especially 

adolescents, are particularly sensitive to THC at the receptor level (Burston et al., 2010; Farquhar 

et al., 2019; Silva et al., 2015). Additionally, subtle sex differences do exist regarding functional 

connectivity in the DMN in healthy controls (Alarcon et al., 2018; Bluhm et al., 2008; 

Hjelmervik et al., 2014). While it is certainly possible that adolescent and young adult male and 

female cannabis users and controls simply do not display differences in functional connectivity 

from the left PCC, it is likely that our study was underpowered to detect these effects given our 

small sample size. Indeed, in exploratory analyses, male cannabis users had weaker connectivity 
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between the left PCC and the left caudate nucleus compared to female cannabis users, while 

male controls displayed significantly stronger connectivity between the left PCC and the right 

medial temporal pole, and weaker connectivity with the left cerebellum (IV-V), compared to 

female controls. Future studies should examine potential connectivity differences between male 

and female cannabis users and controls using a larger sample with more equivalently sized 

subgroups. 

4.2 Possible Mechanism 

One possible mechanism by which chronic cannabis use is associated with differences in 

RSFC between the left PCC and DMN and other brain regions may be by way of THC disrupting 

the normal modulatory activity of the endocannabinoid system. The endocannabinoid system 

likely plays a role in brain development (J. Fernandez-Ruiz et al., 2000; Viveros et al., 2005) and 

undergoes changes throughout adolescence (Ellgren et al., 2008). GABA and glutamate are 

important neurotransmitters in adolescent brain development and “cortical remodeling” (Crews, 

He, & Hodge, 2007). GABAergic function in the PFC increases in adolescence (Caballero & 

Tseng, 2016) but, at least in rodents, can be disrupted in the PFC by a CB1 agonist (Cass et al., 

2014). Through its action at CB1 receptors, THC can change CB1-mediated release of 

endocannabinoids (Ellgren et al., 2008) and neurotransmitters such as GABA and glutamate 

(Howlett et al., 2002; Pertwee, 2008; Wilson & Nicoll, 2002). Thus, chronic THC administration 

during adolescence may disrupt the optimal balance of excitatory and inhibitory 

neurotransmitters (i.e. glutamate and GABA; Renard et al., 2018).  

Disruption of this excitatory/inhibitory balance by chronic THC exposure may relate to 

communication between brain regions by way of disruption of neural oscillations (see Caballero 

and Tseng (2012) for review). Importantly, synchronization of neural oscillations is primarily 
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mediated by GABAergic interneurons (Skosnik, Cortes-Briones, & Hajos, 2016), which exhibit 

and are modulated by CB1 receptors (Pertwee, 2008; Piomelli, 2003; Skosnik et al., 2016; 

Wilson & Nicoll, 2002). Acute administration of CB1 agonists is known to affect neural 

oscillations, particularly in the theta and gamma bands in both humans and rats (Cortes-Briones 

et al., 2015; Hajos, Hoffmann, & Kocsis, 2008; Ilan, Smith, & Gevins, 2004; Robbe et al., 2006; 

Skosnik et al., 2012), including in the mPFC (Kucewicz, Tricklebank, Bogacz, & Jones, 2011). 

Chronic use has also been associated with lower power in the gamma and beta bands (Edwards, 

Skosnik, Steinmetz, O'Donnell, & Hetrick, 2009; Skosnik et al., 2012). It makes sense that these 

bands in particular would be affected, as CB1 receptors are paired with neurons with fast 

kinetics, which are thought to facilitate oscillations in the gamma range (20-80Hz; Wilson, 

Kunos, & Nicoll, 2001; Wilson & Nicoll, 2002). Both CCK- and PV-expressing interneurons 

may play a role in disruption of oscillations (Caballero & Tseng, 2012; Sherif, Cortes-Briones, 

Ranganathan, & Skosnik, 2018). Interestingly, while PV-expressing interneurons are broadly 

devoid of CB1 receptors (Caballero & Tseng, 2012; Katona et al., 1999; Marsicano & Lutz, 

1999), PV- and CCK-expressing interneurons are coupled at least in the hippocampus 

(Armstrong & Soltesz, 2012, as cited in Caballero & Tseng, 2012). Excitation of PV-expressing 

interneurons may be decreased by CB1-mediated reduction of glutamate release by THC, while 

activation of CB1 receptors on CCK-expressing interneurons may reduce GABA release, causing 

disinhibition of glutamatergic pyramidal cells (Sherif et al., 2018). 

While these alterations in neural oscillations are seen at much faster frequencies than 

those examined in BOLD signals using RSFC (Britz, Van De Ville, & Michel, 2010; Fox et al., 

2005), differences in GABA and glutamate concentrations have recently been found to relate to 

RSFC using proton magnetic resonance spectroscopy. In healthy subjects, glutamate and the 
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glutamate/GABA ratio were positively correlated with intrinsic functional connectivity in the 

DMN in healthy men, while GABA alone was negatively correlated with this connectivity 

(Kapogiannis, Reiter, Willette, & Mattson, 2013). Additionally, higher glutamate concentration 

is associated with stronger RSFC between the mPFC and certain subcortical structures (Duncan 

et al., 2013). Task-based studies of GABA and/or glutamate concentrations within the DMN also 

find that strength of BOLD responses (Enzi et al., 2012; Falkenberg, Westerhausen, Specht, & 

Hugdahl, 2012; Northoff et al., 2007) and DMN deactivation (Hu, Chen, Gu, & Yang, 2013) 

often related to concentration of these neurotransmitters.  

While GABA and glutamate concentrations relate to RSFC within the DMN in healthy 

controls, far fewer studies exist in cannabis users relating concentrations of these 

neurotransmitters to RSFC. With chronic cannabis use, lower GABA, glutamate, and 

neurometabolites are seen in the anterior cingulate cortices of adolescent cannabis users relative 

to healthy controls (Prescot et al., 2011; Prescot, Renshaw, & Yurgelun-Todd, 2013). Lower 

glutamate is seen in the basal ganglia of adult users (Chang, Cloak, Yakupov, & Ernst, 2006), 

and in the dorsal striatum of female (but not male) young adult cannabis users (Muetzel et al., 

2013). Monthly cannabis use and dorsal ACC glutamate levels predict dorsal ACC--right nucleus 

accumbens connectivity in young adults (Newman et al., 2019). To our knowledge, no study to 

date has directly examined the relationship between GABA concentrations and RSFC in young 

adult cannabis users.  

In summary, it is possible that chronic cannabis use disrupts CB1 receptors’ modulatory 

activity of neurotransmitters such as GABA and glutamate (Howlett et al., 2002; Pertwee, 2008; 

Wilson & Nicoll, 2002), and this disruption may cause a change in communication between 

brain regions and networks (Caballero & Tseng, 2012). However, this mechanism is solely 
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hypothesis, and much further study needs to be conducted to examine and clarify the 

relationships between chronic THC exposure, the endocannabinoid system, neurotransmitters, 

neural oscillations, and RSFC in adolescents and young adults. 

While some recovery of cognitive function is seen with abstinence from cannabis in this 

age group (Lisdahl et al., 2013; Wallace et al., 2020), it appears that subtle differences in 

communication between brain regions may persist in cannabis users even with 3 weeks of 

abstinence from cannabis use. In cannabis users, these subtle communication differences are 

associated with downstream differences in cognition. Given that brain development is still 

occurring in this age group (Giedd et al., 1999), the adolescent brain is particularly sensitive to 

the effects of THC (Adriani & Laviola, 2004). Research has repeatedly suggested that earlier 

exposure to substances is associated with even poorer outcomes in cognition than typically seen 

in later-onset cannabis users. Thus, encouraging our youth to minimize, eliminate, or delay their 

onset substance use until after age 18 may reduce some of the exaggerated difficulties seen in 

early-onset users (Lisdahl et al., 2013). Interventions such as personalized feedback, 

psychoeducation, and physical activity may help youth delay their onset of substance use, and/or 

ameliorate some of the cognitive abnormalities seen in adolescent and young adult chronic 

substance users (Lisdahl et al., 2013).  

4.3 Limitations 

 The present study includes several limitations. The design is cross-sectional in nature and 

thus precludes discussion of causality. Additionally, the sample size is relatively small, 

particularly of female cannabis users. Prospective large-scale longitudinal studies such as the 

Adolescent Brain and Cognitive Development (ABCD) Study™ can address these concerns. The 

cannabis users present in this sample, on average, used cannabis a few times weekly to roughly 
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daily. Our goal was to capture the regular, recreational user, and thus the effects seen in the 

present study may not generalize to lighter or heavier users. These data were collected prior to 

recent trends of vaping cannabis. Inhalation of cannabis vapor may be safer for the user than 

inhalation of cannabis smoke from combustion (Giroud et al., 2015; Loflin & Earleywine, 2015), 

and it is possible that, similar to nicotine cigarettes (Yang & Liu, 2003), compounds in cannabis 

smoke separate from THC itself may cause damage. As vaping of cannabis is on the rise in youth 

(National Institute on Drug Abuse, 2019), future studies should examine effects of smoked and 

vaped cannabis on resting state functional connectivity in the DMN. Lastly, the resting state scan 

length in the present study was 8 minutes. While this is slightly longer than average (Birn et al., 

2013), and while the DMN can consistently be identified in resting-state scans (Damoiseaux et 

al., 2006), reliability of data would likely improve with greater scan time (Anderson, Ferguson, 

Lopez-Larson, & Yurgelun-Todd, 2011; Birn et al., 2013). Indeed, deeper examination of 

individual differences requires a minimum of 25 minutes of scan time (Anderson et al., 2011). 

4.4 Conclusions  

 In summary, cannabis users demonstrated weaker resting state functional connectivity 

between the left PCC and various DMN nodes, and stronger connectivity between the left PCC 

and the supramarginal gyrus and various cerebellar clusters. Stronger connectivity between the 

left PCC and the left cerebellum was associated with poorer attention and working memory in 

cannabis users. While the group by gender interaction was not significant, this was potentially 

due to a small sample size for interaction effects. These differences in connectivity may be due 

to chronic THC’s interaction with GABAergic and glutamatergic neurons, as GABA and 

glutamate concentrations relate to strength of RSFC (Duncan et al., 2013; Enzi et al., 2012; 

Falkenberg et al., 2012; Hu et al., 2013; Kapogiannis et al., 2013; Northoff et al., 2007), 
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including in cannabis users (Newman et al., 2019). These findings suggest that even after 3 

weeks of monitored abstinence, brain communication remains abnormal in chronic cannabis 

users. Future studies should include a larger sample size and examination of mechanisms by 

which chronic cannabis use is associated with differences in RSFC in the DMN. 
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Figure 1. Weaker connectivity (in blue) between the left PCC seed and A) left PCC/precuneus, B) right lingual gyrus/right precuneus, 

C) left parahippocampal gyrus and right Rolandic operculum/Heschl’s gyrus observed in cannabis users compared to controls.  
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Figure 1A. Weaker connectivity is 

seen between the left PCC and the 

left PCC/precuneus. 

Figure 1B. Weaker connectivity is 

seen between the left PCC and the 

right lingual gyrus/right precuneus. 

 

Stronger connectivity is seen between 

left PCC and right cerebellum 

VII/Crus II (pictured in orange, 

elaborated upon in Figure 2) 

Figure 1C. Weaker connectivity 

is seen between the left PCC and 

the left parahippocampal gyrus 

(left), and the right Rolandic 

operculum/Heschl’s gyrus (right). 
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Figure 2. Stronger connectivity (in orange) between the left PCC seed and A) the left cerebellum Crus II and right cerebellum 

VII/Crus II, B) left cerebellum Crus I, C) left cerebellum VIII, and D) left supramarginal gyrus observed in cannabis users compared 

to controls. 

 

2A.     2B.    2C.     2D. 

  

Figure 2A. Stronger 

connectivity is seen between 

the left PCC and the left 

cerebellum Crus II (left) and 

the right cerebellum VII/Crus 

II (right). 

Figure 2B. Stronger 

connectivity is seen 

between the left PCC and 

the left cerebellum Crus I 

(left), and Crus II (right, 

see Figure 2A). 

Figure 2C. Stronger 

connectivity is seen 

between the left PCC and 

the left cerebellum VIII 

(left) and right 

cerebellum VII/Crus II 

(right, see Figure 2A).  

Figure 2D: Stronger 

connectivity is seen between 

the left PCC and the left 

supramarginal gyrus.  
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Table 1. Demographic and Drug Use Information 
PY = Past Year 

M (SD) [Range] 

 

Male Cannabis Users 

(n=24) 

Female Cannabis Users 

(n=13) 

Male Controls (n=18) Female Controls (n=22) p 

Age 21.71 (2.27) [17-26] 21.62 (2.26) [19-25] 20.89 (2.91) [16-25] 21.09 (2.49) [16-25] .69 

Ethnicity (% Caucasian) 66.67% 53.85% 72.22% 72.73% .10 

Years of Education 14.04 (1.71) [11-18] 14.31 (1.49) [12-17] 14.39 (2.77) [9-19] 14.32 (1.91) [11-18] .95 

WRAT-4 Reading Score 109.25 (13.93) [80-133] 100.77 (7.00) [93-120] 107.89 (8.58) [92-126] 104.64 (10.68) [87-133] .12 

BDI-II Score 5.04 (4.47) [0-19] 6.38 (5.11) [1-18] 3.39 (3.90) [0-10] 2.23 (2.45) [0-8] .02a 

Session 1 STAI-State Score 28.58 (5.75) [21-44] 31.23 (7.14) [20-45] 25.78 (6.45) [20-46] 28.32 (7.38) [20-51] .17 

Session 4 STAI-State Score 26.13 (4.78) [20-36] 26.69 (7.72) [20-43] 26.72 (5.37) [20-39] 26.41 (7.35) [20-42] .99 

PY Cannabis Use (Joints + 

Conc) 

475.95 (511.07) [24-2306] 260.60 (257.32) [13-879]  0.82 (1.62) [0-5] 0.05 (0.21) [0-1] <.001b 

Lifetime Cannabis Use 

(Joints) 

1433.50 (1581.92) [125-

6000] 

837.23 (583.33) [101-2314] 2.33 (4.97) [0-20] 2.52 (5.11) [0-20] <.001b 

Length of Abstinence from 

Cannabis at MRI Scan 

37.00 (28.69) [18-151] 29.54 (10.53) [20-58] 151.20 (139.66) [32-332] 260.00 (--) [260-260] 

(N=1) 

<.001 

Age Cannabis Use Onset 15.88 (2.15) [12-20] 15.62 (2.22) [13-21] 19.50 (1.76) [18-22] 18.33 (2.12) [15-22] <.001c 

Age of Onset Regular 

Cannabis Use 

17.31 (1.90) [14-21] 17.62 (1.56) [15-21] ---- ---- .63 

 

PY Cigarettes 253.81 (553.12) [0-1867] 42.37 (68.35) [0-232] 0.28 (0.46) [0-1] 0.80 (2.64) [0-12] .02d 

Session 5 Cotinine Level 2.17 (2.16) [0-6] 1.23 (0.83) [0-3] 1.00 (0.69) [0-3] 1.18 (0.73) [0-3] .03e 

PY Alcohol Use (drinks) 353.70 (304.29) [24-1120] 221.58 (242.63) [37-883] 158.08 (224.83) [0-698] 68.43 (97.89) [0-450] .001b 

PY Other Drug Use 5.73 (8.58) [0-37] 4.74 (7.85) [0-27] 0.56 (2.12) [0-9] 0.05 (0.21) [0-1] <.01b 

a Female Cannabis Users significantly higher than Female Controls. 

b Male Cannabis Users significantly higher than Male and Female Controls.  

c Male and Female Cannabis Users significantly higher than Male and Female Controls. 

d Male Cannabis Users significantly higher than Female Controls. (Marginally higher than male controls, p=.053) 

e Male Cannabis Users significantly higher than Male Controls. 
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Table 2. Significant Left PCC Connectivity Clusters 

 

 Location # Voxels MNI Coordinates 

(x,y,z) 

Maximum t 

Main Effect of Group (CAN < CTL) R Precuneus/R Lingual Gyrus 33 12, -51, 6 -4.08 

 L PCC/L Precuneus 21 -9, -51, 33 -4.30 

 R Rolandic Operculum/R Heschl’s Gyrus 14 48, -18, 12 -3.84 

 L Parahippocampal Gyrus 12 -21, -15, -24 -3.72 

Main Effect of Group (CAN > CTL) R Cerebellum VII/Crus II 51 24, -74, -45 4.17 

 L Cerebellum Crus I 27 -45, -51, -30 4.84 

 L Cerebellum VIII 13 -12, -63, -39 4.09 

 L Supramarginal Gyrus 11 -66, -42, 30 3.92 

 L Cerebellum Crus II 9 -3, -75, -33 3.84 

Main Effect of Gender (M > F) R Temporal Pole 10 54, 9, -18 3.73 

Session 5 Cotinine R Cerebellum Crus I 11 48, -72, -21 -4.19 

Past Year Alcohol Drinks R Precuneus 9 21, -51, 24 4.03 

L = Left, R = Right 
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Table 3. Correlations Between Significant Clusters and Performance on Selected Neuropsychological Measures in Cannabis Users 

  

R 

Crblm 

VII 

R Lingual 

Gyr/R 

Precuneus 

L Crblm 

(Crus I) 

L PCC/L 

Precuneus 

R RO/R 

Heschl’s 

Gyr 

L 

Crblm 

VIII 

L 

paraHC 

Gyr 

L Supra-

marginal 

Gyr 

L Crblm 

(Crus II) 

PASAT Total Correct Raw 

Score 

Pearson 

Correlation 

-0.051 0.091 -.346* 0.001 -0.068 0.016 -0.104 -0.095 0.019 

Sig. (2-

tailed) 

0.764 0.593 0.036 0.994 0.691 0.926 0.539 0.577 0.912 

DKEFS Color-Word 

Interference Inhibition 

Condition Completion Time 

Raw Score 

Pearson 

Correlation 

0.087 -0.178 -0.082 0.258 -0.072 0.072 0.146 0.025 0.042 

Sig. (2-

tailed) 

0.607 0.292 0.627 0.123 0.671 0.671 0.388 0.885 0.803 

CVLT-II Trial 1 Raw Score Pearson 

Correlation 

-0.225 0.124 -0.112 0.088 0.059 -0.299 -0.154 -0.278 -0.156 

Sig. (2-

tailed) 

0.180 0.464 0.510 0.605 0.731 0.073 0.364 0.096 0.356 

CVLT-II Total Correct (Trials 

1-5) Raw Score 

Pearson 

Correlation 

-0.236 0.039 -0.097 0.156 0.055 -.345* -0.005 -0.127 -0.315 

Sig. (2-

tailed) 

0.159 0.819 0.567 0.356 0.744 0.036 0.979 0.455 0.057 

CVLT-II Long Delay Free 

Recall Raw Score 

Pearson 

Correlation 

-0.133 -0.050 0.247 0.129 -0.108 -0.143 -0.082 -0.135 -0.283 

Sig. (2-

tailed) 

0.433 0.768 0.140 0.447 0.526 0.399 0.628 0.426 0.090 

Ruff 2 & 7 Total Speed Raw 

Score 

Pearson 

Correlation 

-0.229 -0.006 -0.053 0.009 -0.221 -0.298 0.140 -0.170 -0.321 

Sig. (2-

tailed) 

0.172 0.972 0.756 0.958 0.189 0.074 0.409 0.316 0.052 

Ruff 2 & 7 Total Accuracy Raw 

Score 

Pearson 

Correlation 

0.027 0.074 0.220 0.102 0.055 0.047 -0.120 -0.039 0.185 

Sig. (2-

tailed) 

0.873 0.663 0.191 0.547 0.747 0.782 0.479 0.819 0.272 

*. Correlation is significant at the 0.05 level (2-tailed). 
 

Abbreviations: Crblm = Cerebellum, Gyr = Gyrus, L = Left, R = Right, paraHC = parahippocampal, RO = Rolandic operculum
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Table 4. Correlations Between Significant Clusters and Performance on Selected Neuropsychological Measures in Controls 

  

R 

Crblm 

VII 

R Lingual 

Gyr/R 

Precuneus 

L Crblm 

(Crus I) 

L PCC/L 

Precuneus 

R RO/R 

Heschl’s 

Gyr 

L 

Crblm 

VIII 

L 

paraHC 

Gyr 

L Supra-

marginal 

Gyr 

L Crblm 

(Crus II) 

PASAT Total Correct Raw 

Score 

Pearson 

Correlation 

-0.119 -0.101 0.013 -0.003 -0.152 0.133 -0.176 -0.026 0.027 

Sig. (2-

tailed) 

0.466 0.536 0.938 0.984 0.351 0.415 0.277 0.872 0.868 

DKEFS Color-Word 

Interference Inhibition 

Condition Completion Time 

Raw Score 

Pearson 

Correlation 

-0.033 0.028 0.052 -0.009 0.283 0.020 0.117 0.102 -0.217 

Sig. (2-

tailed) 

0.842 0.862 0.748 0.956 0.077 0.901 0.472 0.533 0.179 

CVLT-II Trial 1 Raw Score Pearson 

Correlation 

0.147 0.047 0.116 0.109 0.101 0.304 0.215 -0.054 -0.106 

Sig. (2-

tailed) 

0.365 0.772 0.477 0.504 0.536 0.056 0.183 0.738 0.514 

CVLT-II Total Correct (Trials 1-

5) Raw Score 

Pearson 

Correlation 

0.041 -0.006 -0.166 0.005 0.097 0.066 0.033 -0.094 -0.039 

Sig. (2-

tailed) 

0.803 0.969 0.305 0.974 0.553 0.684 0.842 0.564 0.812 

CVLT-II Long Delay Free 

Recall Raw Score 

Pearson 

Correlation 

0.065 -0.071 -0.157 0.081 0.034 0.046 0.190 0.002 0.051 

Sig. (2-

tailed) 

0.689 0.663 0.334 0.618 0.833 0.776 0.241 0.988 0.754 

Ruff 2 & 7 Total Speed Raw 

Score 

Pearson 

Correlation 

-0.140 -0.137 -0.184 .342* -0.086 -0.087 0.000 -0.100 -0.089 

Sig. (2-

tailed) 

0.389 0.401 0.255 0.031 0.596 0.595 0.999 0.541 0.585 

Ruff 2 & 7 Total Accuracy Raw 

Score 

Pearson 

Correlation 

-0.089 0.033 0.042 -0.243 -0.238 -0.039 -0.242 -0.276 0.046 

Sig. (2-

tailed) 

0.584 0.841 0.797 0.130 0.138 0.813 0.132 0.085 0.780 

*. Correlation is significant at the 0.05 level (2-tailed). 
 

Abbreviations: Crblm = Cerebellum, Gyr = Gyrus, L = Left, R = Right, paraHC = parahippocampal, RO = Rolandic operculum 
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