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ABSTRACT 
 

A MACHINE LEARNING PIPELINE WITH SWITCHING ALGORITHMS TO 
PREDICT LUNG CANCER AND IDENTIFY TOP FEATURES 

 

by 

Anika Tasnim 

The University of Wisconsin-Milwaukee, 2021 

Under the Supervision of Professor Jake Luo and Professor Tian Zhao 

 

 

Lung cancer is the leading cause of cancer-related death around the world. Early 

detection is a critical factor for its effective treatment. To facilitate early-stage prediction, a 

Machine Learning (ML) pipeline has been built that uses inpatient admission data to train four 

ML models. The data is dynamically loaded into a database, cleaned, and passed through the 

SelectKBest selector to identify the top features influencing the prognosis, which are then fed 

into the pipeline and fitted to the ML models to make the forecast. Among the models used, 

Decision Tree provides the highest accuracy (97.09%), followed by Random Forest (94.07%). 

MLP and Logistic Regression reach an accuracy of 84.58% and 77.65% respectively. Some of 

the top 50 features include chronic obstructive pulmonary disease, pleural effusion, secondary 

and unspecified malignant neoplasm of intrathoracic lymph nodes, syndrome of inappropriate 

secretion of antidiuretic hormone, and neoplasm-related acute, chronic pain. 
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1. Introduction 

The human body is made up of trillions of cells, the growth of which is generally 

controlled by genetic factors. However, when there is uncontrolled abnormal cell growth, we 

have what is commonly referred to as cancerous growth. Lung cancer is a form of cancer in 

which such uncontrolled cell growth starts in the lungs. It is the 2nd most diagnosed cancer as 

well as the leading cause of cancer mortality for both men and women in America [1]. It is 

responsible for about 25% of all cancer-related deaths, killing more people than colon, prostate, 

and breast cancers combined [2].  

While the symptoms of lung cancer vary widely from person to person, some of the most 

common symptoms include cough (which worsens over time and does not go away), hoarseness, 

chronic chest pain, shortness of breath, repeated lung infections including bronchitis or 

pneumonia and hemoptysis (the coughing up of blood). Although symptoms may start 

developing from the early stages of cancerous cell formation, many people experience them only 

when cancer reaches an advanced stage [3]. 

There are two major types of lung cancer: Small Cell Lung Cancer (SCLC) and Non-

Small Cell Lung cancer (NSCLC). 80% to 85% of the lung cancer cases are identified as NSCLC 

[4]. NSCLC treatment uses surgery, radiation therapy, chemotherapy, targeted therapy, or a 

combination of the four. On the other hand, radiation therapy and chemotherapy are widely used 

for SCLC treatment. Over the last few decades, the percentage of new lung cancer cases among 

the total population in the USA has decreased. Nevertheless, Figure 1 suggests that the number 

of new lung cancer cases detected in America during the years 1999 to 2017 is still considerably 

high [5]. 
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Figure 1: Annual number of new lung cancer cases, USA, 1999-2017 [5].  

 

The dissertation titled “A Machine Learning pipeline with switching algorithms to predict 

lung cancer and identify top features” applies Machine Learning and Deep Learning techniques 

on healthcare data acquired from Nationwide Inpatient Sample (NIS) Dataset [6]. It uses models 

such as Decision Tree, Logistic Regression, Random Forest, and Multi-Layer Perceptron to 

predict lung cancer, and identify the top features contributing to the prognosis. The project is 

implemented in Python using the Scikit-Learn package. It utilizes the Jupyter Notebook platform 

as it provides an interactive development environment.  
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2. Background Study 

Zubi and Saad (2014) proposed a Computer-Aided Diagnosis (CAD) system which 

consisted of two fundamental steps: feature extraction from chest x-rays and employment of a 

Backward Propagating Neural Network (NN) classifier [7]. The classification accuracy for 

normal, benign, and malignant images were 100%, 95%, and 85% respectively.  

Kohad and Ahire (2015) aimed to detect malignant nodules from lung computerized 

tomography (CT) scans and proposed a CAD system with 4 steps: preprocessing, feature 

extraction, feature selection, and classification [8]. To improve accuracy, the Ant colony 

optimization algorithm was utilized as a feature selection strategy. Support Vector Machine 

(SVM) and Artificial Neural Network (ANN) algorithms were used to categorize normal and 

abnormal lung images. Between the algorithms, SVM had a 93.2% accuracy, whereas ANN had 

a 98.4% accuracy. 

Hussein et al. (2019) used supervised and unsupervised ML techniques on a lung nodules 

dataset to characterize lung tumors [9]. For the supervised approach, a 3D Convolutional Neural 

Network (CNN) was used which provided an accuracy of 78.06%. The unsupervised approach 

achieved a 91.26% accuracy categorizing benign and malignant data using the SVM algorithm. 

Ganggayah et al. (2019) used a breast cancer dataset collected from hospitals containing 

8066 records and 23 features [10]. The natural language data was fed to ML models such as 

Decision Tree, Random Forest, Neural Networks, Extreme Boost, Logistic Regression, and SVM 

to predict the survival rate and top features of prognosis. Among these models, Decision Tree 

provided the lowest accuracy of 79.8% while Random Forest provided the highest accuracy of 
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82.7%. Some of the top features influencing the prediction were cancer stage, tumor size, and the 

number of axillary lymph nodes removed.   

A significant number of existing lung cancer predictive models work with CT scan 

images and use image processing as well as ML techniques to estimate the forecast. However, 

this dissertation focuses on natural language hospital inpatient admission data to predict lung 

cancer as inpatient data is more available, and accessible than CT scan images. Since the model 

is not dependent on any specific type of image, the disease condition may be switched from lung 

cancer to any other disease condition. The use of ML pipeline also enables changing ML models 

as well as parameters such as the size of selected data, the ratio of training and testing dataset 

sizes, and feature numbers without changing the main code.  

ML models such as Decision Tree, Logistic Regression, Random Forest, and MLP are 

employed as they are compatible with natural language data, and there exists a wide range of 

resources to provide ease of implementation. Models such as Linear Regression and Naive Bayes 

are not used since Linear Regression works with continuous data and Naive Bayes is known to 

be a bad estimator. Since Naive Bayes requires the predictors to be independent, the probability 

calculations are known to be less accurate [11]. Deep Learning models such as Long Short-Term 

Memory (LSTM), Convolutional Neural Network (CNN) were avoided as they would require 

more computational resources than MLP. 
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3. Data Description 

3.1. Data Source 

National (Nationwide) Inpatient Sample (NIS) database is a healthcare database that 

contains information about hospital inpatient admissions. Since 1988 the NIS database has been 

storing records for more than 7 million hospital stays each year. Sponsored by Agency for 

Healthcare Research and Quality (AHRQ) and developed by Healthcare Cost and Utilization 

Project (HCUP), the NIS database is one of the largest healthcare databases.  

This project uses the 2016 NIS dataset where over 7 million (7,135,090) records are 

included. Each entry consists of a total of 98 data elements including clinical data such as 

procedures, treatment types, diagnosis categories, diagnosis codes as well as non-clinical data 

such as patient demographics, admission date, total cost, zip code, hospital id, duration of stay. 

Patient demographics also include information such as age, sex, and race. 

One of the most important clinical elements used in this project is the set of 30 diagnosis 

codes. These codes are represented in ICD-10-CM format, which is elaborated to International 

Classification of Diseases, 10th revision, Clinical Modification. However, the database holds 

some ICD-9 format codes as well. These medical classification lists have been designed by the 

World Health Organization (WHO) [12]. ICD codes have a specific format, and they provide a 

unique code for all possible disease conditions, signs and symptoms, adverse observations, 

complaints, and external causes of death. Hence, health care personnel, insurance providers, and 

other services use these codes as a standard to identify health conditions.  

ICD-10 codes include 71,924 procedure codes (ICD-10-PCS) and 69,823 diagnosis codes 

(ICD-10-CM). ICD-10-CM codes are 3 to 7 characters long, where the 1st character is an 
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alphabet, the 2nd character is a number, and characters 3 to 7 may be alphanumeric [12]. Figure 2 

depicts some disease conditions along with their ICD-10-CM codes. 

 

Figure 2: ICD-10-CM codes and disease conditions. 

 

 Once the data is collected, it is dynamically loaded into a database. Then the data goes 

through some preprocessing and feature engineering techniques to identify the top features 

contributing to the prognosis. Afterward, the ML pipeline is built, and the top features are passed 

to the pipeline. Using a custom transformer, the data is transformed and then fitted to the 

appropriate ML model to calculate the predictions. After the results are generated, some of the 

top features and the performance of the models are analyzed. Finally, some saturation curves are 

compared, and a conclusion is drawn from the results. 
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3.2. Data Pre-processing  

3.2.1. Loading into Database  

The 2016 dataset has a size of 15GB and is split into 3 ASCII files: “Core File”, 

“Hospital Weights File” and “Severity Measures File”. Figure 3 reveals the “File Specification” 

file describing how data is represented in the “Core File”. It lists the database name, discharge 

year, file name, data element number, data element name, the starting and ending position of 

each data element in ASCII file, data element type, and data element label. 

 

Figure 3: File specification of Core File data. 

A PostgreSQL database named “NIS_2016_Core” is created using a dataset parsed from 

the “Core File” following the information from “File Specification”. The parsed data is then 

dynamically loaded into the database.  
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3.2.2. Handling invalid and missing values 

Each column of the “NIS_2016_Core” database represents a specific type of data and has 

its definition of what constitutes valid data. Table 1 provides some of the columns and their 

consecutive definitions of valid data. The database holds a large amount of invalid and missing 

values. To produce good results using the ML models these invalid and missing values need to 

be ignored or transformed into valid data. This process is known as data cleaning. The most 

time-consuming part of using ML data is cleaning the dataset or developing an error-free dataset. 

Data cleaning includes procedures such as filling in missing information, deleting rows, and 

lowering data size [13].  

Table 1: Column names and expected values [6]. 
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The non-ICD columns are expected to have only positive numeric values. The missing, 

incomplete, invalid, and negative values are replaced with 0. Figure 4 shows a part of the 

original dataset before handling missing values and Figure 5 shows the same dataset after 

handling invalid and missing values. 

 

Figure 4: Dataset before data cleaning. 
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Figure 5: Dataset after data cleaning. 

Columns such as “HOSP_NIS” (NIS hospital number) and “HOSP_DIVISION” (Census 

Division of the hospital) have a direct correlation with the identification of lung cancer. On the 

other hand, the “YEAR” column holding the same value for all patients has no impact on the 

identification. Hence, these columns are dropped. 
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3.2.3. Indexing ICD codes 

30 columns are storing ICD-10-CM codes in the database. These columns may hold up to 

69,823 possible codes. At each iteration, a subset of the dataset is randomly selected and fed to 

the model. The selected subset holds a portion of the possible codes. The ICD codes present in 

the subset are inserted into a sorted set. Each of the alphanumeric ICD codes is then indexed to 

consecutive integers and an ICD dictionary is built. The ICD code for lung cancer is C34 which 

is not inserted into the dictionary. Figure 6 denotes a part of the ICD dictionary. There exists a 

small size of numeric ICD codes which are represented in ICD-9 format. 

 

Figure 6: ICD dictionary. 

While feeding the data to the model each of the ICD codes is treated as a distinct feature. 

So, the initial 30 columns transform into X number of columns where X represents the number 

of unique ICD codes present in the selected dataset. These columns store binary values (0/1) 

depending on if the patient has any record of a specific ICD code’s disease condition.  
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3.3 . Feature Engineering 

After generating the ICD dictionary, around 70,000 unique ICD codes may be extracted. 

Each of the codes needs to be treated as a feature. However, many of these features may be 

irrelevant to predicting lung cancer. For example, someone may have a history of breaking a leg 

that has no relation to lung cancer. So, the relevant features need to be identified.  

Selecting important features provides advantages such as reduced overfitting (less 

redundant data results in the lower possibility of making decisions based upon redundant data or 

noise), improved accuracy (fewer misleading data enhances modeling accuracy), and reduced 

training time (a lesser amount of data reduces algorithm complexity and helps the models train 

faster) [14].  

The SelectKBest selector is used to identify the top features that affect the prediction. 

Each model is run with different feature numbers. Initially, the model is trained with 5 features 

and the feature number is gradually increased to up to 50. Table 2 lists the top 50 features 

impacting lung cancer prognosis arranged in descending order of importance. Some of these top 

features are analyzed in section 6.1 Important Features. 

No. Feature Feature Definition 

1 HCUP_ED HCUP Emergency Department service indicator 

(0) Record does not meet any HCUP Emergency Department criteria, (1) 

Emergency Department revenue code on the record, (2) Positive Emergency 

Department charge (when revenue center codes are not available), (3) 

Emergency Department CPT procedure code on record, (4) Admission source 

of ED, (5) State-defined ED record; no ED charges available 

2 RACE Race 

(1) white, (2) black, (3) Hispanic, (4) Asian or Pacific Islander, (5) Native 

American, (6) other 
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3 MDC_NOPOA Major Diagnostic Category in use on the discharge date, calculated without 

Present on Admission indicators 

4 DRGVER Diagnosis-Related Group version used on the discharge date 

5 DQTR Discharge quarter 

(1) 1st quarter, Jan - Mar, (2) 2nd quarter, Apr - Jun, (3) 3rd quarter, Jul - Sep, 

(4) 4th quarter, Oct - Dec 

6 ZIPINC_QRTL Median household income national quartile for patient 

(1) $1 - $42,999; (2) $43,000 - $53,999; (3) $54,000 - 70,999; and (4) 

$71,000 or more. 

7 090  Congenital syphilis  

8 DISCWT NIS discharge weight 

9 LOS Length of stay 

10 MDC Major Diagnostic Category in effect on the discharge date 

11 C7931 Secondary malignant neoplasm of brain 

12 C7951 Secondary malignant neoplasm of bone 

13 011  Pulmonary tuberculosis 

14 012  Other respiratory tuberculosis 

15 091  Early syphilis symptomatic 

16 C787 Secondary malignant neoplasm of liver and intrahepatic bile duct 

17 J910 Malignant pleural effusion 

18 FEMALE Indicator of sex 

19 J449 Chronic obstructive pulmonary disease, unspecified 

20 Z515 Encounter for palliative care 

21 031  Diseases due to other mycobacteria 

22 092  Early syphilis latent 

23 J189 Pneumonia, unspecified organism 

24 Z66 Do not resuscitate 

25 032  Diphtheria 

26 Z87891 Personal history of nicotine dependence 

27 Z923 Personal history of irradiation 

28 Z9221 Personal history of antineoplastic chemotherapy     

29 C771 Secondary and unspecified malignant neoplasm of intrathoracic lymph nodes 

30 G893 Neoplasm-related pain (acute) (chronic) 

http://www.icd9data.com/2015/Volume1/001-139/090-099/090/090.htm
http://www.icd9data.com/2014/Volume1/001-139/010-018/011/011.htm
http://www.icd9data.com/2014/Volume1/001-139/010-018/012/012.htm
http://www.icd9data.com/2012/Volume1/001-139/090-099/091/091.htm
http://www.icd9data.com/2012/Volume1/001-139/030-041/031/031.htm
http://www.icd9data.com/2015/Volume1/001-139/090-099/092/092.htm
http://www.icd9data.com/2015/Volume1/001-139/030-041/032/032.htm
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31 T451X5A Adverse effect of antineoplastic and immunosuppressive drugs, initial 

encounter 

32 AWEEKEND Admission day is a weekend 

33 J90 Pleural effusion, not elsewhere classified 

34 AGE Age in years at admission 

35 J441 Chronic obstructive pulmonary disease with (acute) exacerbation 

36 Z370 Single live birth 

37 G936 Cerebral edema 

38 D6481 Anemia due to antineoplastic chemotherapy 

39 D61810 Antineoplastic chemotherapy induced pancytopenia 

40 D630 Anemia in neoplastic disease 

41 J95811 Postprocedural pneumothorax 

42 C7989 Secondary malignant neoplasm of other specified sites 

43 R64 Cachexia 

44 002 Typhoid and paratyphoid fevers 

45 Z681 Body mass index (BMI) 19.9 or less, adult 

46 Z9981    Dependence on supplemental oxygen 

47 E222 Syndrome of inappropriate secretion of antidiuretic hormone 

48 Z902 Acquired absence of lung [part of] 

49 Z3800 Single liveborn infant, delivered vaginally 

50 J9621 Acute and chronic respiratory failure with hypoxia 

Table 2: Top 50 features identifying lung cancer. 
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4. Machine Learning and Deep Learning Models 

Machine Learning is a subfield of Artificial Intelligence that allows machines to learn 

like human beings through the utilization of data and algorithms. It also provides the ability to 

learn from the machines’ prior experience and consequently improve the accuracy without 

having to be explicitly programmed [15, 16]. The ML models used in the project are briefly 

described below. 

4.1. Decision Tree 

Decision Trees are a type of supervised Machine Learning in which data is continually 

separated based on a specific parameter. Two entities: decision nodes, and leaves, can be used to 

explain the tree. The decisions or results are represented by the leaves as shown in Figure 7. The 

data is separated at the decision nodes. Decision Trees can handle categorical as well as 

continuous input and output variables [17].  

 

Figure 7: Decision Tree architecture [18]. 
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4.2. Logistic Regression 

Logistic Regression is a Supervised Learning Classification algorithm that calculates an 

estimation of distinct binary values (true/false, yes/no, 0/1) from a group of independent 

variables. It fits data to a logit function to forecast the probability of an event occurring as 

illustrated in Figure 8. As a result, Logistic Regression is also called Logit Regression. Its output 

falls in the range [0,1] because it forecasts probability [17]. 

 

Figure 8: Logistic Regression [19]. 

4.3. Random Forest 

Random Forest or Random Decision Forest is a Supervised Learning algorithm that 

creates a "forest" out of an ensemble of Decision Trees, which are commonly trained using the 

"bagging" method. The bagging method's basic premise is that combining several learning 

models improves the overall output. In simple terms, a Random Forest combines many Decision 

Trees to produce a more accurate and stable prediction [20]. This model may be used for both 

classification and regression. Figure 9 illustrates a Random Forest model architecture. 
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Figure 9: Random Forest architecture [21]. 

 

4.4. Multi-Layer Perceptron 

The Multi-Layer Perceptron (MLP) is a Deep Learning model. It is a Feed-Forward 

Neural Network that consists of three types of layers: input layer, output layer, and hidden layer. 

The input signal that needs to be processed is received by the input layer. While the output layer 

is responsible for tasks such as prediction and classification, the hidden layers perform the main 

computation [22]. Figure 10 depicts how data flows from the input to the output layer in the 

forward direction. The Back-Propagation Learning algorithm is used to train the neurons in the 

MLP. Pattern categorization, recognition, prediction, and approximation are some of MLP's most 

common applications [22]. 
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Figure 10: MLP model architecture.  
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5. Machine Learning Pipeline 

A Machine Learning Pipeline is a method that allows automation of the steps required for 

creating an ML model. ML pipelines are made up of a series of steps that handle everything 

including data extraction, preprocessing, model training, model testing, and deployment [23]. 

The behavior of each step within the pipeline can be generalized, and every step can be built as a 

reusable component. The sequence in which the components are executed, as well as how inputs 

and outputs flow through the pipeline can be defined [23]. The pipeline makes the code flexible 

to work with various selectors, ML models, and estimators. Figure 11 represents the flow of an 

ML pipeline. 

 

Figure 11: Machine Learning Pipeline [24]. 

After cleaning the data and identifying the top features, the dataset is passed to the 

Machine Learning pipeline, where it is split into training and testing datasets. 75% of the data is 

chosen for the training set and the remaining 25% is used for the testing set. Afterward, a custom 

Fetch Data
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Evaluate 
Model
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Production

Monitor & 
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transformer is used on both the training and testing sets. The non-ICD features are indexed to 

integer values, just like the ICD dictionary. The transformer converts the dataset containing the 

top features into the LIBSVM format. Since the dataset contains many zeros (specifically the 

ICD columns), converting the dataset to the LIBSVM format makes better use of memory and 

makes the data easier to read.  

In the LIBSVM format, each entry is represented by a line that starts with a label 

corresponding to the value of the target (in this case 0 or 1 depending on if the patient has lung 

cancer) followed by the index, value pairs separated by a colon. The index represents the feature 

number (indexed integer equivalent of the feature), and the value represents the nonzero value 

the feature holds. Features containing zero are omitted in the line. An example of a LIBSVM 

format entry is noted below: 

<label> <index1>:<value1> <index2>:<value2> ... 

The LIBSVM data is converted into a sparse matrix named “X_transformed”, which 

holds all the feature information, and a matrix “Y” which holds the target. The pipeline provides 

an option to switch among ML models. Depending on which model is passed to the pipeline, the 

transformed dataset is fitted into the appropriate model where predictions and accuracy are both 

calculated. The pipeline also keeps track of the training time for each iteration of the model. The 

pipeline makes the code flexible and generic as different disease prediction conditions, data size, 

and ML models can be used without having to change the main code. 
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6. Results 

6.1. Important features 

 The database holds records of a total of 7,135,090 patients among which there exist 

79,096 lung cancer patients. In this section, the lung cancer patient data is investigated and a 

combination of ICD features and non-ICD features including age, gender, and race are analyzed. 

6.1.1. Age 

The age of the lung cancer patients in the dataset lies between 0 to 90. The patients are 

divided into 5 age groups and the percentage of patients falling under each age group is depicted 

in Figure 12. Only a minority of the patients (4.20%) are below 50 years. On the other hand, the 

highest number of patients (about one-third) belong to the age group 61 to 70, followed closely 

by the age group 71 to 80 at 30.94%. These results match with the statistics reported by the 

American Cancer Society that most lung cancer patients are 65 years old or above [2]. 

 

Figure 12: Lung cancer patient’s age. 

 

4.20%

18.19%

32.24%

30.94%

14.43%

Lung cancer patient's age

[0,50] [51,60] [61,70] [71,80] [81,90]
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6.1.2. Gender 

 Figure 13 reveals that more than half of the lung cancer patients (51.46%) are male and 

the remaining 48.54% of patients are female. The total population consists of about 43% men 

and 57% women. 1.34% of the male population and 0.96% of the female population suffer from 

lung cancer. This indicates that men are at a slightly higher risk of developing lung cancer.  

 

Figure 13: Lung cancer patient’s gender 

6.1.2. Race 

 The NIS database categorizes race into the following 6: White, Black, Hispanic, Asian, 

Native American, and others. Figure 14 illustrates the distribution of lung cancer patients 

belonging to each of these racial groups. While 3/4th of the positive cases belong to the White 

population, they also account for a larger group among the total sample size. Due to the uneven 

racial makeup of the sample population, a more significant data indication may be the individual 

positive case percentage within each racial group. 

51.46%
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Figure 14: Lung cancer patient’s race. 

Figure 15 charts the percentage of lung cancer cases within each racial group. The data 

shows the highest rate of lung cancer cases (1.34%) among the white population. In contrast, the 

Hispanic population has the lowest rate of positive cases (0.42%). For Blacks and Asians, the 

rate of positive cases is somewhat similar (0.93% and 0.97% respectively) while Native 

Americans have a slightly lower rate of 0.62%.  

 

Figure 15: Lung cancer case percentage among racial groups.  
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6.1.4. Disease Conditions 

  In this section, some disease conditions are analyzed to find how these diseases influence 

lung cancer positive and negative patients. Figure 16 indicates that Chronic Obstructive 

Pulmonary Disease (J449) affects 8.05% of the negative patients and 32.01% of the positive 

patients, which is roughly a 4 times higher rate than the negative rate. Secondary Malignant 

Neoplasm of Bone (C7951) is reported in 18.05% of the positive cases but just 0.63% in negative 

cases, which represents a major difference between the two groups. Pleural Effusion (J90) and 

BMI less than 20 in adults (Z681) have similar frequency where it is found in roughly 8.5% and 

7% of the positive cases respectively and a little over 1.5% of the negative cases. 

 

Figure 16: Analysis of disease conditions. 
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Lung cancer patients have about 18 times higher rate of suffering from acute and chronic 

Neoplasm-related pain (G893) compared to the negative patients. Secondary and unspecified 

Malignant Neoplasm of Intrathoracic Lymph Nodes (C771) is one of the few diseases that affects 

4.70% of the positive patients but no negative patients. Lastly, the syndrome of inappropriate 

Secretion of Antidiuretic Hormone is recorded in 3.54% of the lung cancer patients compared to 

0.33% of the negative patients. 

Lung cancer patients are found to have a significantly higher probability of suffering 

from each of these 7 disease conditions in comparison to the negative patients. Hence, they are 

selected as important features contributing to lung cancer prediction.  
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6.2. Comparison among ML models 

6.2.1. Accuracy 

A portion of the original dataset is employed to calculate the accuracy of the four 

Machine Learning models. 10 iterations are performed for each model. In each iteration, about 

320,000 records are chosen at random. Then about 80,000 records are chosen for the testing, 

while the remainder is used for training. Table 3 lists the accuracy of the following models: 

Decision Tree, Logistic Regression, Random Forest, and Multi-Layer Perceptron with feature 

numbers varying from 5 to 50. The accuracy achieved with each feature number is taken by 

calculating the mean accuracy of 10 iterations.  

Feature 

Number 

Decision Tree 

Accuracy (%) 

Logistic Regression 

Accuracy (%) 

Random Forest 

Accuracy (%) 

MLP 

Accuracy (%) 

5 83.07 76.26 83.28 82.87 

10 83.16 77.65 83.72 84.58 

15 89.37 76.49 87.19 80.73 

20 92.29 75.43 89.56 79.31 

25 92.29 75.03 89.60 79.31 

30 97.01 75.03 91.88 78.31 

35 97.09 75.03 93.73 77.54 

40 97.09 75.03 93.93 77.33 

45 97.09 75.03 93.95 79.66 

50 97.09 75.03 94.07 79.99 

Best 

Accuracy 
97.09 77.65 94.07 84.58 

Table 3: Comparison among the Machine Learning models’ accuracy. 

The performance of Logistic Regression and MLP starts deteriorating as feature numbers 

increase from 10. This will be discussed in detail in section 6.2.3 Feature Saturation Curve. 

Figure 17 compares the best accuracy achieved by each of the models. 
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Figure 17: Best accuracy among models. 

 Among the four models, Decision Tree provides the best accuracy of 97.09%, followed 

by Random Forest having a 94.07% accuracy. MLP is 84.58% accurate whereas, Logistic 

Regression makes the least accurate forecast with an accuracy of 77.65%.  

  

97.09

77.65

94.07

84.58

0

20

40

60

80

100

A
cc

u
ra

cy

Best accuracy among models

Decision Tree Logistic Regression Random Forest Multi-Layer Perceptron



28 
 

6.2.2. Training Time 

Figure 18 provides a visual comparison of the training time for each model with different 

feature numbers while Table 4 records the exact training time values.    

 

Figure 18: Training time among models. 

Feature 

Number 

Decision Tree 

Training Time (s) 

Logistic 

Regression 

Training Time (s) 

Random Forest 

Training Time 

(s) 

MLP 

Training Time (s) 

5 28.63 32.11 153.07 2357.99 

10 34.83 41.64 858.35 3487.70 

15 36.13 43.57 752.04 2211.19 

20 38.83 41.74 784.22 1619.45 

25 39.89 41.97 762.57 1311.03 

30 40.98 43.14 741.17 1769.07 

35 45.08 45.05 714.74 971.77 

40   46.72 55.14 742.81 984.97 

45 47.84 53.20 733.19 903.68 

50 50.98 55.23 747.62 908.20 

Table 4: Comparison among the Machine Learning models’ training time. 

 Decision Tree and Logistic Regression are the two fastest models. Random Forest is quite 

slower than the previous two, but it is considerably faster than the most time-consuming MLP. 
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6.2.3. Feature Saturation Curve 

 As the feature number is changed the performance of each model varies as well. A 

feature saturation curve is drawn to visualize the change of accuracy with respect to the feature 

numbers. The goal is to identify the feature number which produces the highest accuracy for a 

model. Figure 19 denotes the accuracy of Decision Tree saturates with 30 features. Logistic 

Regression provides the best accuracy with 10 features as identified from Figure 20. The 

accuracy undergoes a slow fall from feature number 10 to 25 and stays constant afterward.  

 

Figure 19: Decision Tree saturation curve. 

 

Figure 20: Logistic Regression saturation curve. 
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 As shown in Figure 21 Random Forest performs the best when the feature number is 

around 50. The exact saturating feature number could not be pinpointed as there is an upwards 

trend of accuracy even at feature number 50. 

 

Figure 21: Random Forest saturation curve. 

 MLP’s accuracy initially increases with the feature number. A downward trend of 

accuracy is detected as the feature number increases from 10 to 40. After 40 features, there is a 

gradual rise in the accuracy. The best performance is observed with 10 features as illustrated in 

Figure 22. 

 

Figure 22: MLP saturation curve. 
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 Figure 23 compares the results of the four ML models. Logistic Regression and MLP 

perform best with 10 features, where their performance comes up short against the other models. 

On the other hand, Decision Tree, and Random Forest saturate with 30, and 50 features, 

respectively. 

 

Figure 23: Saturation curve comparison. 
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6.3. Limitations and Future Work 
 

Shortcomings of this project include the inferior performance of Logistic Regression and 

Multi-Layer Perceptron models. However, these models can be stabilized to produce better 

forecasts by fine-tuning the parameters such as dataset size, number of iterations, training time, 

training to testing ratio, and feature number. Many of these parameters are kept constant to 

ensure the four models’ results are comparable.  

Training Deep Learning models are generally resource-exhausting as they require a huge 

amount of computational power. Hence, parallel computing is essential to train models such as 

MLP. Due to resource limitations, MLP could not be explored thoroughly in this project. 

Tweaking MLP architecture by adding more hidden layers and increasing the layer size may 

result in alleviating the model. 

In addition, some of the top features such as Anemia due to antineoplastic chemotherapy 

(D6481) are directly related to cancer treatment. The important disease conditions need to be 

analyzed comprehensively to understand the medical cause of the disease, and consequences 

they may have on a lung cancer patient. Diseases directly correlated to lung cancer treatment 

should be identified and removed from existing disease conditions to prepare the model for more 

realistic scenarios.  

Future work may focus on these aspects to overcome the shortcomings. Also preparing a 

report that explains the reasoning behind the prediction would make the project more useful as 

physicians can use the reasoning to investigate further.  
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Conclusion 

Lung cancer is responsible for most of the cancer-related deaths around the globe. This is 

partly because specific forms of lung cancer have significantly high metastasis (the development 

of secondary malignant growths at a distance from a primary site of cancer) rates, making early 

detection critical for its successful treatment. It is in the interest of expediting early-stage lung 

cancer prediction, that a Machine Learning pipeline is constructed that also identifies important 

features influencing the prediction. Admission level healthcare data has been used to train four 

ML models such as Decision Tree, Logistic Regression, Random Forest, and Multi-Layer 

Perceptron. These models have been chosen for their compatibility with natural language data, 

reliable predicting capability, and ease of implementation due to widely available resources. 

The 10 most important features contributing to the lung cancer forecast include (1) 

HCUP Emergency Department service indicator, (2) race, (3) Major Diagnostic Category in use 

on the discharge date, calculated without Present on Admission indicators, (4) Diagnosis-Related 

Group version used on the discharge date, (5) Discharge quarter, (6) Median household income 

national quartile for patient, (7) Congenital syphilis, (8) NIS discharge weight, (9) Length of 

stay, and (10) Major Diagnostic Category in effect on the discharge date. 

Decision Tree predicted lung cancer with the highest accuracy of 97.09% and the least 

training time among the four models used. Random Forest is the 2nd most precise (94.07%) 

although it is slower than Decision Tree and Logistic Regression. MLP is the slowest model 

which produces 84.58% accurate predictions. Logistic Regression is the 2nd fastest model, yet it 

has the least accuracy of 77.65%.  
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