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ABSTRACT 

MACHINE-LEARNING-BASED SEPSIS PREDICTION USING VERTICAL CLINICAL TRIAL DATA: 
A NAÏVE APPROACH 

 

by 

 

Tyler Gaddis 

 

 

The University of Wisconsin – Milwaukee, 2020 

Under the Supervision of Jake Luo, PhD 

 

 

Sepsis is a potentially life-threatening condition characterized by a dysregulated, 

disproportionate immune response to infection by which the afflicted body attacks its own 

tissues, sometimes to the point of organ failure, and in the worst cases, death.  According to 

the Centers for Disease Control and Prevention (CDC) Sepsis is reported to kill upwards of 

270,000 Americans annually, though this figure may be greater given certain ambiguities in the 

current accepted diagnostic framework of the disease.  

This study attempted to first establish an understanding of past definitions of sepsis, 

and to then recommend use of machine learning as integral in an eventual amended disease 

definition. Longitudinal clinical trial data (ntrials=30,915) were vectorized into a machine-

readable format compatible with predictive modeling, selected and reduced in dimension, and 

used to predict incidences of sepsis via application of several machine learning models: logistic 

regression, support vector machines (SVM), naïve Bayes Classifier, decision trees, and random 

forests. The intent of the study was to identify possible predictive features for sepsis via 

comparative analysis of different machine learning models, and to recommend subsequent 

study of sepsis prediction using the training model on new data (non-clinical-trial-derived) in 



iii 

the same format. If the models can be generalized to new data, it stands to assume they could 

eventually become clinically useful. In referencing F1 scores and recall scores, the random 

forest classifier was the best performer among this cohort of models. 

  



iv 

© Copyright by Tyler Gaddis, 2020 

All Rights Reserved 



v 

 

 

 

 

 

 

 

 

 

 

To my wife, Drew: You are strong, and good, and true, and the reason I am who I’ve become. I 

love you. 

 

To Mom and Dad: I revel at your support, patience, love, forgiveness, and generosity. I can only 

hope I do the same. 

 

To Sarah and Roger: Thank you for your unequivocal belief in me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deyr fé, deyja frændr, deyr sjalfr it sama, 

en orðstirr deyr aldregi, hveim er sér góðan getr. 

 

Deyr fé, deyja frændr, deyr sjalfr it sama, 

ek veit einn, at aldrei deyr: dómr um dauðan hvern. 



vi 

TABLE OF CONTENTS 

ABSTRACT _________________________________________________________________________ ii 

DEDICATION _______________________________________________________________________ v 

LIST OF FIGURES __________________________________________________________________ viii 

LIST OF TABLES _____________________________________________________________________ x 

LIST OF ABBREVIATIONS _____________________________________________________________ xi 

CHAPTER 

1. INTRODUCTION ______________________________________________________________ 1 

1.1. Relevant Sepsis Statistics .................................................................................................... 2 

1.2. Sepsis: A Formal Definition ................................................................................................. 3 

1.2.1. Sepsis-1 ...................................................................................................................... 3 

1.2.2. Sepsis-2 ...................................................................................................................... 5 

1.2.3. Sepsis-3 ...................................................................................................................... 7 

1.3. A Critique of the 2016 Sepsis Definition  ............................................................................ 9 

2. METHODS __________________________________________________________________ 12 

2.1. Data Source ....................................................................................................................... 12 

2.2. Data Transformation and Preprocessing .......................................................................... 13 

2.3. Feature Selection .............................................................................................................. 18 

2.3.1. Variance-Based Feature Selection .............................................................................. 19 

2.3.2. Correlation-Based Feature Selection .......................................................................... 19 

2.4. Dimensionality Reduction ................................................................................................. 21 

2.4.1. Truncated SVD ............................................................................................................. 21 



vii 

2.5. Cross-Validation ................................................................................................................ 24 

2.6. Models ............................................................................................................................... 25 

2.6.1. Logistic Regression .................................................................................................. 26 

2.6.1.1. Regularization ................................................................................................ 28 

2.6.2. Support Vector Machine (SVM) .............................................................................. 30 

2.6.2.1. Linear Kernel .................................................................................................. 32 

2.6.2.2. Radial Basis Function Kernel .......................................................................... 33 

2.6.3.  Naïve Bayes ............................................................................................................ 33 

2.6.4. Decision Tree ........................................................................................................... 34 

2.6.5. Random Forest ........................................................................................................ 36 

3. OBJECTIVES ________________________________________________________________ 37 

4. RESULTS ___________________________________________________________________ 38 

4.1. Logistic Regression Sag Solver............................................................................................. 39 

4.2. Support Vector Machine: Linear Kernel .............................................................................. 41 

4.3. Naïve Bayes: Gaussian Classifier ......................................................................................... 43 

4.4. Decision Tree: Gini Impurity ................................................................................................ 45 

4.5. Random Forest: Gini Impurity ............................................................................................. 47 

5. DISCUSSION ________________________________________________________________ 49 

6. CONCLUSION _______________________________________________________________ 51 

 

REFERENCES ______________________________________________________________________ 53 

  



viii 

LIST OF FIGURES 

Figure 1. SIRS, Sepsis, and Infection Venn Diagram .................................................................... 4 

Figure 2. Raw Sparse Data ......................................................................................................... 14 
 
Figure 3. Feature Headers .......................................................................................................... 14  

Figure 4. Preparing the Data ................................................................................................. 15-17  

Figure 5. Pre-Feature-Selected Data .......................................................................................... 17 

Figure 6. Simplified linear algebra of the Truncated SVD algorithm ......................................... 22 

Figure 7. Simplified Truncated SVD Component Vector Addition ............................................. 23 

Figure 8. K-Fold Cross Validation ............................................................................................... 24  

Figure 9. Sigmoid Function ........................................................................................................ 26  

Figure 10. Kernel Trick for Hyperplane Identification ............................................................... 31 

Figure 11. Various SVM Kernel Applications on Iris Dataset ..................................................... 32  

Figure 12. Decision tree: Unpruned ........................................................................................... 35  

Figure 13. AUCROC For Logistic Regression Sag Solver ............................................................. 39 

Figure 14. Logistic Regression Sag Solver Confusion Matrix ..................................................... 39 

Figure 15. Normalized Confusion Matrix for Sag Solver  ........................................................... 40 

Figure 16. AUCROC for SVM.SVC Linear Kernel ......................................................................... 41 

Figure 17. SVM.SVC Linear Kernel Confusion Matrix ................................................................. 41 

Figure 18. Normalized SVM.SVC Linear Kernel Confusion Matrix ............................................. 42 

Figure 19. AUCROC For Naïve Bayes Gaussian Classifier ........................................................... 43 

Figure 20. Naïve Bayes Gaussian Classifier Confusion Matrix ................................................... 43 

Figure 21. Normalized Naïve Bayes Gaussian Classifier Confusion Matrix ............................... 44 



ix 

Figure 22. AUCROC for Gini Impurity Depth 10 Decision Tree .................................................. 45   

Figure 23. Gini Impurity Depth 10 Decision Tree Confusion Matrix .......................................... 45 

Figure 24. Normalized Gini Impurity Depth 10 Decision Tree Confusion Matrix ...................... 46 

Figure 25. AUROC for Random Forest Gini Impurity ................................................................. 47 

Figure 26. Random Forest Gini Impurity Confusion Matrix ....................................................... 47 

Figure 27. Normalized Random Forest Gini Impurity Confusion Matrix ................................... 48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

LIST OF TABLES 

Table 1. SIRS Criteria .................................................................................................................... 4 

Table 2. Sepsis-2 Criteria .............................................................................................................. 6 

Table 3. Features and F-Statistics .............................................................................................. 20 

Table 4. Optimized Model Results Table ................................................................................... 38 

  



xi 

LIST OF ABBREVIATIONS  

LR   Logistic Regression 

SVM   Support Vector Machine 

SVD  Singular Value Decomposition 

RBF  Radial Basis Function Kernel 

NB   Naïve Bayes  

DT   Decision Tree 

RF   Random Forest 

sklearn  Scikit-Learn Machine Learning Library 

XGB   XGBoost = Extreme Gradient Boosting/Boosted Trees 

ACCP-SCCM  American College of Chest Physicians-Society of Critical Care Medicine 

SIRS   Systemic Inflammatory Response Syndrome  

CDC   Centers for Disease Control and Prevention 

JAMA  The Journal of the American Medical Association  

SOFA  Sepsis-related Organ Failure Assessment  

qSOFA  quick Sepsis-related Organ Failure Assessment 

 

 

 

 

 

 



1 

1. INTRODUCTION 

Sepsis is a clinical syndrome of exaggerated and life-threatening systemic immune 

responses launched by the body against its own tissues on encountering an infection ultimately 

resulting in organ damage, organ failure, or death. It is a syndrome comprising myriad 

combinations of clinical symptoms in patients suffering from infection, rendering its precise 

pathophysiologic definition and subsequent treatment elusive and tenuous at best (Singer et 

al., 2016). No single system, pathogen, mediator, or pathway have been isolated as preeminent 

drivers of sepsis pathophysiology (Remick, 2007). Sepsis diagnosis is made ambiguous due to its 

shared symptoms with other comorbidity pathophysiologies, and modern pervasive use of 

antibiotics producing false negative culture results (Vincent, 2016).  

The urgency of sepsis and a valid sepsis diagnostic tool is underscored by several facts: that 

all of the body’s organ systems are susceptible to it; that the only requirement for sepsis onset 

is bacterial, viral, fungal, or parasitic infection; that its frequency is increasing due to an aging 

population long benefitting from chronic condition management (here it is hypothesized that 

the conditions being managed may be predictive factors for sepsis); that until a 2016 task force 

that redefined criteria for sepsis (Sepsis-3), the syndrome definition was over-reliant on 

inflammation as its baseline assessment criterion, and on a misguided spectrum model of 

disease (Singer et al., 2016); that up to and beyond this task force the definition lacked general 

consensus pertaining to its usefulness for clinical diagnosis versus prognosis; that a 

demonstrable heterogeneity of inflammatory response and cellular changes in organ tissues of 

septic patients exists (Remick, 2007), and thus, that sepsis can initially be clinically 

indistinguishable from systemic inflammation from non-infectious causes (Lopansri, Miller, & 
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Brandon, 2019); that survivors of sepsis remain susceptible to subsequent chronic physiological, 

psychological and cognitive ailments. 

Because sepsis represents a relatively common but acute and often lethal clinical syndrome, 

continued efforts must be leveraged to identify its precise etiology and pathophysiology. As a 

contribution to this effort, this case study attempts to identify predictors for sepsis from a large 

clinical trial dataset (n = 30,915) in the form of severe and less-severe adverse events, trial 

stage, preexisting conditions, and interventions used for trial health outcomes. If comorbidities 

of sepsis are isolated in a large enough sample size, it could be argued that sepsis ought to be 

treated according to site-specific biomarkers of, conditions of, and/or proximity to organ 

systems where the syndrome develops. 

 

1.1. RELEVANT SEPSIS STATISTICS 

Sepsis represents a significant tax on the American healthcare infrastructure and deserves a 

corresponding magnitude of attention. In 2013 alone, sepsis accounted for $24 billion of total 

US hospital costs (Paoli et al., 2018). One two-cohort study (Kaiser Permanente Northern 

California, n=482,828; Healthcare Cost and Utilization Project Nationwide Inpatient Sample, 

n=6,500,000) found that upwards of 50% of all hospital deaths are attributable to sepsis (Liu et 

al., 2014).  

According to the CDC (Centers for Disease Control and Prevention), 1.7 million American 

adults develop sepsis annually, 270,000 of whom die from the disease, amounting to a 

mortality rate of nearly 16% (Centers for Disease Control and Prevention, 2020). Sepsis is most 

commonly seen in adults aged 65 or older, immunocompromised and chronically ill patients, 
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and in infants. Signs and symptoms include tachycardia, disorientation/confusion, discomfort, 

fever or hypothermia, dyspnea, and perspiration.  

 

1.2. SEPSIS: A FORMAL DEFINITION 

Sepsis has been in the medical consciousness for millennia and has been formally defined 

several times. Louis Pasteur’s germ theory of disease attributed infection to harmful microbes, 

thus spurring the first science-derived, empirically driven pursuit of sepsis comprehension. The 

first modern definition of sepsis, posited by Hugo Schottmüller in 1914, was than more modern 

definitions:  

Sepsis is present if a focus has developed from which pathogenic bacteria, constantly or 
periodically, invade the blood stream in such a way that this causes subjective and objective 

symptoms. 
(Gyawali et al., 2019) 

 
 More specifically, its definition has evolved as the pathophysiology of the syndrome and 

pathobiology of affected tissues have enjoyed greater understanding. Subsequent official 

definitions followed Schottmüller’s, most notably Sepsis-1, Sepsis-2, and Sepsis-3. 

1.2.1. Sepsis-1 

In 1991 the first consensus definition of sepsis was established at an American College 

of Chest Physicians-Society of Critical Care Medicine (ACCP-SCCM) conference helmed by Roger 

Bone. Bone made an argument for the improved definition of sepsis, and the importance of 

precision of language in defining it (Bone, 1991). According to the proposed definition, sepsis 

was a spectrum of systemic responses to infection ranging from systemic inflammatory 

response syndrome (SIRS), to severe sepsis (sepsis complicated by organ dysfunction), to septic 

shock (“sepsis-induced hypotension persisting despite adequate fluid resuscitation”) (Bone et 
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al., 1992). SIRS was the first of these stages of sepsis and so a definition considering the host’s 

inflammatory response to infection as its foundational attribute followed. Sepsis-1 was ideally 

framed to treat sepsis and SIRS as non-disjoint systemic responses to environmental factors 

including but not limited to infection (Bone et al., 1992). 

 

Table 1. SIRS Criteria 

 
(Carneiro, Povoa, & Gomes, 2017) 

 
Figure 1. SIRS, Sepsis, and Infection Venn Diagram 

(Bone et al., 1992) 
 

Four SIRS criteria were established: tachycardia (resting heart rate of over 90 beats per 

minute), tachypnea (respiration rate of over 20 times per minute), body core temperature 

dysregulation (fever: core temperature above 38°C; hypothermia: core temperature below 
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36°C), and leukocytosis, leukopenia, or bandemia (leukocytes in greater concentrations than 

1200/mm3, leukocytes in lower concentrations than 4000/mm3, or bandemia of ≥10%m, 

respectively). The 1991 convention asserts that to be clinically diagnosed as SIRS-positive, 

patients must exhibit two or more of these criteria (Marik and Taeb, 2017).  

But the SIRS criteria proved to be far too general. If any two of the four SIRS criteria 

were observed in patients, SIRS criteria were theoretically met, and thus the first “stage” of 

sepsis would have been recorded as observed in such patients. For example, on average, up to 

90% of intensive care unit (ICU) patients exhibit symptoms meeting SIRS criteria, to the extent 

that they are eligible for sepsis diagnosis according to the Sepsis-1-SIRS criteria (Sprung et al., 

2006). Given that most infections induce some form of SIRS criteria (for example, tachycardia, 

fever, high leukocyte counts) yet such infections less often result in actual recorded incidence 

of sepsis (in the most relevant definition’s sense of the word), Sepsis-1 and its heavy reliance on 

SIRS criteria represents a mischaracterization of infection and inflammation as sepsis. A new 

definition was need. 

1.2.2. Sepsis-2 

In 2001, a task force met to address the limitations of the Sepsis-1 definition, and in so 

doing attempted a reformed definition of sepsis, later coined “Sepsis-2” by the Journal of the 

American Medical Association in 2016. The task force at the 2001 consensus conference sought 

a more precise definition of sepsis via a thorough consideration of all clinical factors associated 

with it. But what was intended as a conference to reform the definition of sepsis as a condition 

commensurate with a few comorbidities resulted in loss of specificity and clarity as to what 

constituted the condition. The Sepsis-2 baseline criterium was infection, included the four SIRS 
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criteria from Sepsis-1, and several coinciding SIRS-related symptoms. These other symptoms 

were grouped by “general parameters”, “inflammatory parameters”, “hemodynamic 

parameters”, “tissue perfusion parameters”, and “organ dysfunction parameters”, and are 

summarized in the following table:  

 

Table 2. Sepsis-2 Criteria 

   

(Carneiro, Povoa, & Gomes, 2017) 

Though intended as a comprehensive reference for indicators of sepsis, many of the 

criteria from this list were consistent with normal immune responses to infection. Despite its 

intention for specificity, it broadened the scope of symptoms and subsequently was in danger 

of identifying infection paired with any of the listed comorbidities as proxies for sepsis. To that 

end, the conference was considered a failure, and Sepsis-1 persisted as the most relevant 

definition for sepsis (Vincent, et al., 2013). Between 2001 and 2016 (Sepsis-3), advances in 
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understanding of sepsis pathophysiology, etiology, pathobiology, and immunology were made, 

which merited a new definition for the condition.  

 

1.2.3. Sepsis-3 

In 2016 the Journal of the American Medical Association (JAMA) proposed a third definition 

of Sepsis that abandoned an argued overreliance on SIRS/inflammation, and instead opted to 

treat the syndrome not as a continuum, but as a “life-threatening organ dysfunction caused by 

a dysregulated host response to infection” (Singer et al., 2016). More specifically this definition 

attempts to discriminate between past notions of sepsis and non-sepsis-related infection, to 

account for pro- and anti-inflammatory responses associated with sepsis (which otherwise 

would have been confounding, given previous definition’s reliance on inflammation/SIRS 

criteria), and to establish the “primacy of the nonhomeostatic host response to infection, the 

potential lethality that is considerably in excess of a straightforward infection, and the need for 

urgent recognition” (Singer et al., 2016). This definition is argued to be the most and accurate 

and practical addendum to AMA-sanctioned formal sepsis definitions because it accounts for 

modern conventional wisdom while yielding that less understood influences (e.g. genetic or 

cellular influences) could yet impact sepsis pathophysiology and pathobiology. In addition, the 

definition was designed to address severe variations in sepsis incidence and mortality 

attributed to a lack of standardized definitions for sepsis and septic shock. (Singer et al., 2016) 

By restructuring and reforming the existing sepsis framework to instead focus on infection, 

host response, and organ dysfunction, JAMA cited an improved understanding of pathobiology 
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(“organ function, morphology, cell biology, biochemistry, immunology and circulation”) as the 

chief impetus for its revision (Singer et al., 2016). 

Because this definition rejected the limited emphasis on inflammation placed by the Sepsis-

1 and Sepsis-2 definitions, new criteria constituting sepsis and septic shock were required.  

Given that sepsis phenotypes differ across patient populations manifesting a range of 

different comorbidities, interventions, and infections, a broader understanding of sepsis was 

pursued. In response to this need, the 2016 task force suggested largely abandoning SIRS 

criteria in favor of the Sepsis-related Organ Failure Assessment (SrOFA), renamed the 

Sequential Organ Failure Assessment (SOFA) as primary criteria for diagnosis. SOFA criteria 

were designed to identify signs of all previously identified sepsis symptoms, namely “infection, 

host response, and organ dysfunction”. Under these guidelines, if a patient presents with a 

SOFA score greater than 2, they are immediately assigned a 10% mortality risk to emphasize the 

need for expedient treatment (even if symptom acuity has yet to manifest/rise). (Singer et al., 

2016) 

A bedside SOFA inventory for patients already presenting with more acute symptoms 

consistent with sepsis was also created. This quick SOFA survey, or qSOFA, has three criteria: 

altered mental status, systolic blood pressure ≥ 100 mmHg, and respiratory rate ≥ 22 per 

minute. Using qSOFA, patients meeting any two of these three criteria yielded a predictive 

validity of 55% in accurately identifying sepsis. For this reason, qSOFA is suggested by Singer 

and colleagues as an adequate tool for establishing whether subsequent investigation of 

patient symptoms perhaps consistent with sepsis is necessary.  Moreover, qSOFA requires no 



9 

lab analyses, making it an expedient, cheap, abridged alternative to an initial, more invasive, 

and expensive SOFA assessment. (Singer et al., 2016) 

Despite the shift to SOFA/qSOFA, a noncontroversial consensus definition for sepsis remains 

unfulfilled. The 2016 conference conceded that a consolidated, simple definition of sepsis was a 

lofty goal, given the understanding of etiologic-specific pathophysiology and pathobiology of 

individual sepsis incidences. The task force charged with pursuing this goal instead offered a 

prognostic tool for subsequent testing if either a. a patient presented with infection and was 

already suspected sepsis-positive, or b., a patient exhibited any two of the three qSOFA criteria 

indicating significant likelihood of mortality absent a health intervention. 

 

1.3 A Critique of the 2016 Sepsis Definition  
 
Though the authors’ intentions behind establishing tools for outcome prediction associated 

with sepsis were good, and though the SOFA/qSOFA scoring systems proved useful tools in a 

prognostic sense, the authors failed to propose a new and valid sepsis diagnostic tool and 

definition. In the authors’ own words: 

The agreement between potential clinical criteria (construct validity) and the ability of the 
criteria to predict outcomes typical of sepsis, such as need for intensive care unit (ICU) 
admission or death (predictive validity, a form of criterion validity), were then tested. 

 
(Singer et al., 2017) 

 
This statement suggests that the aim of the qSOFA/SOFA tools was for outcome prediction on 

encountering symptoms consistent with sepsis. The proposed diagnostic framework was less of 

a valid proposal for establishing a systematic diagnostic decision algorithm, and more a critique 
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of a past overreliance on inflammation as a valid metric for sepsis. Semantics were modified to 

eliminate “severe sepsis” as clinically distinguishable from “sepsis”. 

 The reason that this is a substantive argument against the current Sepsis-3 framework 

(and for an alternative model) is because clinicians in the intensive care unit (ICU) are tasked 

with maximizing healthcare outcomes of unstable, acutely sick patients population. This, in 

contrast with emergency department (ED) clinicians’ responsibilities for health diagnoses and 

treatment, represents a discrepancy in the intended changes proposed by the Sepsis-3 

framework from its predecessors. Moreover, qSOFA and SOFA are recorded as having been 

validated in an ICU-environment; but sepsis is not limited to the ICU. Prognosis cannot be 

equated with diagnosis. Effect does not equal cause. 

 Because medically applied machine learning models and clinical decision support tools 

are becoming increasingly ubiquitous in the clinical space and given the heavy burden that  

sepsis represents to the American healthcare system, integration of relevant machine learning 

models with existing and legacy sepsis diagnostic models deserves serious and immediate 

attention. Rather than using solely Sepsis-3, clinician gestalt, and electronic health record (EHR) 

maintained patient health history, the current sepsis diagnostic framework deserves an update. 

Machine learning can be leveraged to augment the current model of sepsis via comorbidity 

identification, and ideally, to offer organ-system-specific/context-specific sepsis ‘strain’ 

diagnosis.  

Where symptom-non-disjointness can make sepsis diagnosis convoluted and intangible, 

machine learning can rectify this issue. Machine learning can augment conventional wisdom via 

robust calculation of probabilities of disease given the presence or absence of specific features. 
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Such features are limitless: age, sex, weight, blood pressure, health history, family health 

history, active comorbidities, living situations, active medications, etcetera. Machine learning 

thus represents a modern tool capable of delivering the intended outcomes of evidence-based 

medicine.  

This argument is admittedly neither radical nor new. However, the reform of a 

consensus definition with one that integrates machine learning into its methodology is less 

common. Existing predictive analyses for sepsis are predicated on conventional wisdom 

established by criteria outlined in any one of the three modern definitions for sepsis. To the 

author’s knowledge, all machine-learning applications of sepsis prediction suffer from non-

generalizable outcomes given limited scope in data sourcing. Populations are often limited to a 

specific, sometimes predisposed subset of patients whose incidences of disease represent a 

frequency greater than that of the general public. One study by Calvert and colleagues sought 

to establish a generalizable machine learning diagnostic tool for sepsis, conceding the same in 

their methodology (Calvert, Saber, Hoffman, & Das, 2019). An improved understanding that 

there exist heterogenous manifestations of sepsis has meant that the simple, clear-cut 

definition as conceived by past consensus conferences may not be attainable. Consequently, 

machine learning-based approaches are the next logical step in the process. 
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2. METHODS 

 The data used for this study were procured from an online repository of clinical trial 

data and required preprocessing and feature selection prior to predictive modeling. 

 

2.1 DATA SOURCE 

The investigation and efficacy of new medical interventions is logged and evaluated by 

execution of randomized clinical trials, the results of which are added to a repository of clinical 

trial data in clinicaltrials.gov on completion. Because clinical trials represent new and 

exploratory analyses on the viability of specific medical interventions there exists an element of 

risk in their execution. Such risk often manifests in the form of adverse events.  

To assess the frequency of target adverse events across multiple clinical trials and to 

leverage machine learning capability to the data, reformatting into a standardized, numerically 

indexed scale was required. The LibSVM format is a vectorized representation of data assigning 

discrete index keys to unique features, and integer, float, or Boolean values representing those 

features. It is this standardization that potentiates subsequent cross-trial study, given the 

machine-readable format that it creates. Thanks to this format standardization executed by 

Tong and colleagues, 30,915 clinical trials were compared with 128,799 unique features 

between them (Tong et al., 2019). Said features belonged to six separate categories: participant 

information (discrete values), trial phase (discrete values), serious adverse event 

(binary/Boolean), other adverse event (binary/Boolean), preexisting condition 

(binary/Boolean), and interventions (binary/Boolean).  
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2.2 DATA TRANSFORMATION AND PREPROCESSING 

Prior to employment of any machine learning methods, the vectorized data required 

significant cleaning and preprocessing. Though standardized across multiple clinical trials, the 

data required further attention for several reasons.  

First, all features involving sepsis required removal from the feature space of the data to 

properly generate target labels denoted by the presence (1) or absence (0) of sepsis outcomes 

from that clinical trial. A corresponding dataset of feature headers was used to produce a list of 

sepsis feature headers whose index numbers were referenced and removed while parsing the 

data.  

Second, extraneous features required removal; said features included the clinical trial 

ID, number of participants, participant median age, total serious adverse events (n=30915), and 

total, other adverse events (n=30915). The former three features were continuous; the aim of 

the study was to consider binary/Boolean “presence” or “absence” of features as predictors. 

The latter two features existed in every clinical trial; the information gained from their inclusion 

was zero, due to zero variance within each respective feature. None of these features would be 

useful since the aim of this study was to determine predictive power of factors for sepsis events 

in a clinical trial context.  

Third, prior to model-fitting, the dataset was a textbook case of the so-called “curse of 

dimensionality” due to its large feature space volume and large ratio of features to rows. Such 

quantity of features almost certainly makes for model overfitting, rendering outcomes devoid 

of any clinical significance or meaning. A few methods were investigated and used to lower 
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chances of over- and under-fitting, namely methods belonging to the families of feature 

selection, and feature dimensionality reduction alongside regularization. 

Below are the raw data as they were received following normalization into this sparse 

vector format: 

 

Figure 2. Raw Sparse Data 

A separate table mapping each clinical trial feature to a key/index was referenced to search the 

raw data for features related to sepsis, but excluding “aseptic”:  

 

 

Figure 3. Feature Headers 
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The following figure is the Python code used to reformat the raw data by excluding sepsis 

events from the feature space and adding a binary class field indicating presence or absence of 

sepsis: 
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Figure 4. Preparing the Data  

 

 

 
 

Figure 5. Pre-Feature-Selected Data 
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2.3. FEATURE SELECTION 

Feature selection was important in the case of this study because of the high 

dimensionality of the feature space (n=128,799) with respect to the number of clinical trials 

(n=30,915). To that end, filter feature selection methods were used. Wrapper methods were 

considered, but high feature dimensionality can often render wrapper methods subject to 

overfitting (Ciortan, 2019). In addition, filter methods were selected as an attempt at pre-

modelling data standardization; performance could be based solely on the model, and not on 

any embedded feature selection parameters within each model. Feature selection helps 

mitigate issues of overfitting and underfitting the data. Absent feature selection, models may 

learn the variability in the data too well and consequently overoptimize parameters to fit with 

the training data only, thus overfitting the model. Conversely, models may be vulnerable to 

underfitting the data (as is the case with features with low variance). This give-and-take 

between balancing underfitting (low variance, high bias) and overfitting (high variance, low 

bias) is the root conflict of the bias-variance-tradeoff. 

It should be added that prior to feature selection data are often normalized when the 

numeric scales between each of the feature columns differ. Data normalization is useful when 

dealing with continuous features, each with their own distinct numeric ranges. Because all 

features in the selected feature space were binary (either 0, indicative of “absent”, or 1, 

indicative of “present”), no such normalization was necessary (Jaitley, 2019).  
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2.3.1 Variance-Based Feature Selection: 

The removal of features with low variance is a necessary step in cleaning the data for 

successful modeling results. Intuitively, if there exists low variance in features, there exists high 

similarity among the instances of said features. If a single feature has the same value across 

many clinical trial instances, the model will learn from these features, to the extent that it 

underfits the model. The scikit-learn feature_selection module and its 

VarianceThreshold method were used to remove all features with zero variance. This 

method uses a default of 0; thus all features that appeared the same across all 30915 clinical 

trials were removed. Subsequent retroactive selection of variance thresholds was performed 

following model execution, and a minimum threshold of variance = 0.01, or 1% (preserving 99% 

of all variance of the dataset), was ultimately selected. This narrowed the feature space from 

128,799 to 754.  

 

2.3.2 Correlation-Based Feature Selection: 

 Correlation-based feature selection operates on the assumption that “a good feature 

subset is one that contains features highly correlated with (predictive of) the class, yet 

uncorrelated with (not predictive of) each other” (Hall, 1999). The challenge with a dataset 

containing semantically different but conceptually similar features (for example, “lesion”, 

“cancer”, “tumor”, “malignant lesion”, etcetera) is to not limit the number of features 

represented in the final model at the expense of feature uniqueness. For this reason, 

correlation-based feature selection was used to further select features in the top 20% of f-

statistics derived from the ANOVA F-test, implemented by the scikit-learn f_classif method 
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from the ‘feature_selection’ module. This method returns features’ respective F-Statistics and 

p-values, or the probability that the null hypothesis is true. In other words, p-values are used to 

determine if mean feature values across positive and negative classes are equal, or, that a 

feature’s presence is independent of the target class. On running the f_classif method on 

the 754 variance-selected features, 306 had p-values of zero. It should be mentioned, however, 

that all but 13 features had p-values greater than 1%; thus exclusive reliance on p-values for 

feature importance measurement would have been fallacious.  On identifying an f statistic 

threshold of 20% the correlation-based method selected the final 151 features to be used in 

model training. These final 151 features were most correlated with sepsis, in that they had the 

highest ANOVA F-test statistics among the features. Below are the top 10 features as ranked by 

their f-statistics: 

Table 3. Features and F-Statistics 

Name F-Statistic 

Phase 2/3 11828.65 

Pyrexia 9821.41 

Pneumonia 9665.61 

Myocardial Infarction 8926.04 

Cellulitis 8876.59 

Atrial Fibrillation 8605.05 

Chest Pain 8215.73 

Dehydration 7857.79 

Back Pain 7687.53 

Anemia 7634.04 
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2.4 DIMENSIONALITY REDUCTION 

It should be mentioned that feature selection and dimensionality reduction, though 

both filtering down the number of features, are two distinct operations. Whereas feature 

selection excludes selected features from models without changing those features, 

dimensionality reduction transforms features into a lower dimensional space, by which feature 

selection automatically follows.   

 

2.4.1 Truncated SVD: 

 Truncated Singular Value Decomposition (SVD) were initially pursued as an attempt at 

dimensionality reduction. However, given that the objective of this study was to examine and 

evaluate discrete clinical trial features as individual predictors of sepsis, and given that 

truncated SVD consolidates related feature vectors into a summed eigenvector, an implicit loss 

in granularity of features would have occurred. Moreover, since truncated SVD outputs a 

predetermined number of vectors, all of which represent generalized eigenvalues of clinical 

categories, the clinical usefulness of such an output would be difficult to argue in the context of 

this study. Clinicians are already aware of broad domain-specific covariates of sepsis. The aim 

here, was to attempt to identify more specific outputs/features.  

The output of truncated SVD is graphically represented in a generic, oversimplified form 

for four model principal components. To note, superscripts indicate correlation with the base 

feature (such that AE and EA communicate some degree of similarity between features A and E). 

In this simplified diagram, red vectors represent the sum (a principal component) of two 

vectors found to have high collinearity.  
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Figure 6. Simplified linear algebra of the Truncated SVD algorithm 

 

Truncated SVD operates on the principle that, in a vector space, a linear map (or a 

matrix) is a combination of rotated, reflected, scaled, and killed (scaling by 0) vectors. This holds 

so long as the axes defining that vector space are valid. SVD is a technique leveraging matrix 

factorization by synthesizing three child matrices from a matrix. (Charan, 2020) 

More specifically, if A is a matrix, or linear map, from an n-dimensional vector space V to 

an m-dimensional vector space W, then A can be considered a product of 3 other matrices, R, 

D, and S. Here S is an “n x n” rotational matrix with source and target both V; D is an “m x n” 

diagonal matrix with source V and target W: only non-zero entries are on the diagonal; R is an 

“m x m” rotational matrix with source W and target W.  

First vectors in space V are rotated using S. Second those same vectors are scaled by 

some constant, and inputted into W by using axes from the map, A. Finally, those output 

vectors are rotated in W using the R rotational matrix. (Charan, 2020) 
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A = [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 ⋯ 𝑎𝑚𝑛

] 

Vdim=n                  Wdim=m 

A = R*D*S 

𝐴 =  𝑆: [
𝑠1 𝑠2
𝑠3 𝑠4

] ∗ 𝐷: [
𝑑1 𝑑2
𝑑3 𝑑4
𝑑5 𝑑6

] ∗ 𝑅: [
𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6
𝑟7 𝑟8 𝑟9

] 

Figure 7. Simplified Truncated SVD Component Vector Addition 

(Charan, 2020) 

The SVD technique is similar to another dimensionality reduction technique called 

Principal Component Analysis (PCA); however, the former operates on raw data matrices, while 

the latter operates on a covariance matrix (Avila & Hauck, 2017). The incompatibility of PCA 

with sparse data stems from the fact that it requires operation on an entire matrix (via 

calculation of a covariance matrix), whereas SVD does not. 

Truncated SVD could be useful in subsequent studies to determine organ-system-

specific predictors for different pathobiologies of sepsis. However, for the purposes of this 

study, it is reiterated that truncated SD was abandoned in favor of feature granularity. 
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2.5 CROSS VALIDATION 

 Cross validation is typically most useful for datasets with limited numbers of 

observations (Avila & Hauck, 2017). One type of cross validation called k-fold cross validation 

splits training data into a selected number of equally distributed parts, or folds, assigning one of 

the folds as a holdout, or test set; the remaining k – 1 folds are used to train the model. For 

example, a k-fold cross-validation where k = 100 is a 100-fold cross validation. The model will be 

iteratively trained using each of the 99 training folds and will test the accuracy of the model by 

feeding it the hold-out set. Outputted from a 100-fold cross validation model evaluation are 

100 k scores, which are averaged, and represent the mean model performance. (Kelleher, 

Namee, & D’Arcy, 2015) 

 

Figure 8. K-fold Cross-Validation 

(Kong, 2017) 

Given the size of the dataset and given the low computational cost of using the built-in 

train_test_split method of the model_selection module, cross validation was 
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considered but not pursued. This module randomly partitions arrays and/or matrices into 

training and testing folds of the original dataset. In the case of both the logistic regression 

baseline model (nfeatures = 128,799) and the feature-selected logistic regression model 

(nfeatures=151), 10-fold cross validation was performed on the dataset. In comparing cross-

validated performance with train_test_split performance, no statistically significant 

advantage in the form of better performance was observed in using the former over the latter.  

 

2.6 MODELS 

There is a phrase in data science and machine learning that there is “no free lunch when 

it comes to model selection”; there is no single model that unilaterally performs better across 

all instances (said instances being data inputs and desired outputs) (Fermin, 2019). Because of 

this, a number of models were chosen to determine the predictive power of the cleaned clinical 

trial data. These included logistic regression, support vector machines (SVM) with using linear, 

polynomial, sigmoidal, and radial basis function (RBF) kernels, naïve Bayes classifier, decision 

trees, and ensembles of decision trees called random forests. classes.  

Following model prediction on subsets of testing data, cross-model performance was 

evaluated to ultimately select the best-performing model. It should also be added that each of 

these models belonged to the family of supervised machine-learning classifiers: supervised 

because the features and classes were labeled; classifiers because the object is to determine 

predictive power of datasets with feature labels, and subsequently evaluate and classify the 

predictive power of each feature.   
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2.6.1 Logistic Regression 

 Logistic regression (LR) is a binary classification algorithm that assigns a class to a 

categorical feature via application of a 50% probability (Geron, 2019). LR calculates the 

weighted sum of the entire input feature space and outputs its biased logistic, scaled between 0 

and 1, where an output greater than 0.50 indicates positive association with the target variable, 

and an outcome less than 0.50 indicates a negative association with the target variable. More 

specifically, LR applies the sigmoid function [0,1]: 

σ(x) = 
1

(1+𝑒−𝑋)
 

or graphically represented: 

 

Figure 9. Sigmoid Function 

(sklearn.linear_model.LogisticRegression, 2020) 

Within this scale [0.0, 1.0], all logistic regression models estimate probabilities that some 

feature/instance belongs to a class, or that: 
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𝑝̂ = ℎ𝜃(x) 

Where 𝑝̂ equals the calculated probability that the instance, x, belongs to the category, ℎ𝜃. In 

the context of this case study: 

𝑦̂ = {
0 𝑖𝑓 𝑝̂  < 0.5
1 𝑖𝑓 𝑝̂  ≥ 0.5

 that a feature is consistent with sepsis 

   

where 𝑦̂ is the classification produced by the model. Thus it stands to reason that if an 

estimated probability that a feature belongs to the sepsis class equals 0.6, there is a 60% 

chance that a feature will predict sepsis. 

 Though logistic regression produces such probabilities according to this non-linear 

sigmoidal function, it is still considered a linear model because on solving σ(x) = 
1

(1+𝑒−𝑥)
 for x, 

where the sigmoid, σ(x), equals p (or the probability that an observation belongs to the 

response variable/class): 

𝑝 = 
1

(1+𝑒−𝑋)
  (𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝑒−𝑋  =  
1

𝑝
 

𝑒−𝑋 =  
1

𝑝
− 1  

𝑒−𝑋 =
1−𝑝

𝑝
  

𝑒𝑋 =
𝑝

1−𝑝
 ↔ 

𝑝

𝑞
 

𝑋 =  log 
𝑝

𝑞
  (𝑙𝑜𝑔𝑖𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

(Klosterman, 2019) 
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the resulting equation for the log odds, or odds ratio, represents a probability given a linear 

combination of all features in the feature space. Thus, because X, or the aggregate linear 

combination of features when the response variable equals the logit function, logistic 

regression is a linear model. In other words, given a feature space of size n: 

𝑝 =
1

(1+𝑒−(𝜃0+𝜃1𝑋1+𝜃2𝑋2+⋯𝜃𝑛𝑋𝑛))
    (sigmoidal logistic regression) 

𝜃0 + 𝜃1𝑋1 + 𝜃2𝑋2 + ⋯ 𝜃𝑛𝑋𝑛 = log 
𝑝

𝑞
 (log odds logistic regression) 

Because the sigmoid equation can be unilaterally generalized with such a transformation into 

the logit function, or, into a 𝑦 = 𝑚𝑥 + 𝑏 form, it is proven that logistic regression is linear. 

(Klosterman, 2019) 

2.6.1.1 REGULARIZATION 

Lasso and Ridge regularization methods are two methods that assign penalty, or cost, 

for having larger coefficients in a fitted model. In short, these methods assign cost, or penalties 

for predicting values incorrectly, and in doing so are integral in parameter optimization for 

returning the least “costly” model. By doing this, the model learns from an inputted training set 

of data for model fitting that can generalize to new data on being asked to predict outcomes.  

The log-loss function is one such cost function used in scikit-learn for penalty assignment and 

model fitting in a number of models, but most notably logistic regression: 

log 𝑙𝑜𝑠𝑠 = 𝐻𝑝 (𝑞) =
1

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

∙ log(𝑝𝑖)) + (1 − 𝑦𝑖) ∙  log (1 − 𝑝(𝑦𝑖)) 

(Klosterman, 2019) 
 
where n is equal to the number of samples, 𝑦𝑖 is equal to the actual label of a sample of index, I, 

and 𝑝𝑖 is the probability that a sample at index I belongs to the target class (or 𝑝(𝑦𝑖) = 1). By 
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optimizing model parameters, the response variable log odds and individual features’ log odds 

are calibrated to the other to minimize the cost function. Log loss is also called the cross-

entropy function, or simply the “difference between two probability distributions for a given 

random variable or set of events” (Brownlee, 2019). 

 Two extrapolations on the log loss function are lasso (L1) and ridge (L2) regularization 

methods. Both methods leverage the log loss function, but each use a different term to 

minimize the cost function. The L1 regularization appends the log loss with the 1-norm: 

lasso penalty log loss = ∑|𝜎𝑗|

𝑚

𝑗=1

+  
𝐶

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

∙ log(𝑝𝑖)) + (1 − 𝑦𝑖) ∙ log(1 − 𝑝(𝑦𝑖)) 

 
 

and the L2 regularization appends the log loss with the 2-norm. 

ridge penalty log loss = ∑ 𝜎𝑗
2

𝑚

𝑗=1

+ 
𝐶

𝑛
∑(𝑦𝑖

𝑛

𝑖=1

∙ log(𝑝𝑖)) + (1 − 𝑦𝑖) ∙ log(1 − 𝑝(𝑦𝑖)) 

(Klosterman, 2019) 
 

Except for the operations performed by the first term, the two regularization models are 

identical. The key difference is that L1 includes the sum of absolute values of coefficients 

between m different features, whereas L2 includes the sum of squares. With respect to 

performance, L1 can be used as a feature selection method if given a coefficient equal to 

exactly zero, as this assignment eliminates the feature. L2 penalties do not eliminate features 

given a coefficient value of zero. 

In the case of this study, binary logistic regression was used, given that the response 

variable accounted for two possible outcomes: sepsis, and not sepsis. Within the 

LogisticRegression method, cost penalties L1 or L2 are specified. 
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2.6.1.2. Solvers 

The LogisticRegression method also accepts a solver parameter. Solvers find 

parameter weights for further minimizing the cost function, previously specified. Used in this 

study were liblinear, sag, and saga solvers. 

The liblinear solver minimizes the cost function from a single direction at a time; given 

this detail, logistic regression with this solver performed noticeably slower than the same 

models using gradient descent. Sag, or the stochastic average gradient descent solver, 

abbreviates parameter calculation by randomly sampling in-cache gradient values, but is limited 

to L2 regularization. Saga is a variant of Sag, but instead is compatible with L1 regularization, 

which allows for input of sparse data. Both the sag and saga solvers are optimized for larger 

datasets. (sklearn.linear_model.LogisticRegression, 2020) 

 

2.6.2 Support Vector Machine (SVM) 

 Support vector machines (SVM) are another form of classification algorithm but do not 

require linearity for classification. SVMs determine and optimize two-, three-, or multi-

dimensional hyperplanes as modes of classification, as well as decision boundaries in cases 

where data points are not unilaterally/linearly separable. Ultimately SVM aims to separate 

datapoints by some maximum distance from a hyperplane called a margin (Kelleher, Namee, & 

D’Arcy, 2015). The support vectors are those datapoints.  

In cases where separability is indeed not linear, additional functions called kernels are 

applied for decision function specification. Kernels ultimately act as operators that apply some 

weight to the data, transforming the distances between datapoints in the aggregate so a 
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hyperplane is more easily found. Weights may be unilaterally applied (linear) or nonlinear, 

depending on the kernel function. This is simplified for the sake of exposition below, where a 

two-dimensional feature space (where data are non-linearly separable via hyperplane) is 

kernelized, or projected, into a three-dimensional feature space (where data are linearly 

separable via a hyperplane with maximum margin): 

(Fletcher, 2009) 

Figure 10. Kernel Trick for Hyperplane Identification 

Kernels provided by sklearn include a linear, polynomial, radial basis function (RBF), or 

sigmoid (similar to logistic regression). Below is the famous Iris dataset, operated on by multiple 

SVMs-based kernels: 
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Figure 11. Various SVM Kernel Applications on Iris Dataset 

(sklearn.svm.LinearSVC, 2020) 

2.6.2.1 Linear Kernel 

 The linear kernel in a support vector machine is used when data is linearly separable. 

This kernel is most typically used when the data have many features and two classes, making 

this kernel ideal for the dimensions of the dataset. A linear hyperplane can be a line in two 

dimensions, or a plane in three dimensions, and can be represented in a standard 𝑦 = 𝑚𝑥 + 𝑏 

format, with dimensions as parameters: 

𝛽 0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑛𝑋𝑛 = 0 
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2.6.2.2. Radial Basis Function Kernel  

 The Radial Basis Function (RBF) kernel is a kernel used under similar circumstances to 

the linear kernel, but instead takes Euclidean distance between data points into account. The 

RBF Gaussian kernel is as follows: 

𝑘𝐺(𝑥, 𝑥′) = exp (−
𝑑(𝑥, 𝑥′)2

2𝜎2
) 

where σ equals a parameter, and d is the Euclidean Distance (or direct-line distance) between 

the two data points x and x’ (Vert, Tsuda, & Schölkopf, 2004). 

 

2.6.3 Naïve Bayes 

 Naïve Bayes classification is another classification algorithm that naively assumes 

feature independence in class prediction. Below, the simplified Bayes’ Theorem: 

𝑃(𝐴|𝐵) =
(𝑃(𝐵|𝐴) ∗ 𝑃(𝐴))

(𝑃|𝐵)
 

As an example applied to the context of this study, if sepsis is related to blood pressure, then, 

using Bayes’ theorem, a person's blood pressure can be used to more accurately assess the 

probability that they have sepsis than can be done without knowledge of the person’s blood 

pressure.  

 A Naïve Bayes assumption states that features are conditionally independent of each 

other given some response variable. Or: 

𝑃(𝑋1|𝑋2, 𝑌) = 𝑃(𝑋1|𝑌) 

or in the case of the 151 features from the dataset: 
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P(Sepsis|X1,X2,…,X151) 

and applied to Bayes’ Theorem: 

𝑃(𝑠𝑒𝑝𝑠𝑖𝑠|𝑋1, … , 𝑋151) =
𝑃(𝑋1|𝑠𝑒𝑝𝑠𝑖𝑠)𝑃(𝑋2|𝑠𝑒𝑝𝑠𝑖𝑠) …  𝑃(𝑋151|𝑠𝑒𝑝𝑠𝑖𝑠)𝑃(𝑠𝑒𝑝𝑠𝑖𝑠)

𝑃(𝑋1)𝑃(𝑋2) … 𝑃(𝑋151)
 

The denominator remains unchanged and can thus be eliminated when determining class 

outcome: 

𝑃(𝑠𝑒𝑝𝑠𝑖𝑠|𝑋1, … , 𝑋151)  ∝  𝑃(𝑋1|𝑠𝑒𝑝𝑠𝑖𝑠)𝑃(𝑋2|𝑠𝑒𝑝𝑠𝑖𝑠) …  𝑃(𝑋151|𝑠𝑒𝑝𝑠𝑖𝑠)𝑃(𝑠𝑒𝑝𝑠𝑖𝑠) 

Then, given predictors, Sepsis can be identified: 

𝑠𝑒𝑝𝑠𝑖𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑠𝑒𝑝𝑠𝑖𝑠𝑃(𝑠𝑒𝑝𝑠𝑖𝑠) ∏ 𝑃(
151

𝑖=1
𝑋𝑖|𝑠𝑒𝑝𝑠𝑖𝑠)  

Naïve Bayes classifiers uses maximum likelihood estimation for parameter estimation, taking 

into account conditional probability and prior probability. There exist multiple types of Naïve 

Bayes classifier. The two used in this study included Bernoulli and Gaussian Naïve Bayes. The 

former uses Boolean features for class prediction (0 and 1), and the latter uses continuous 

features. 

 

2.6.4 Decision Tree 

 Decision trees are recursive decision structures that seek to maximize quantifiable 

information gain by identifying the most informative feature for each node and applying 

subsequent decision splits to each subsequent feature. These algorithms are instantiated at an 

aggregate “bin” of all possible features, called a root node, representative of the population 

being sorted. Each subsequent decision point below the root node is called a node, and final 

decisions where no further splits are necessary are called terminal nodes.  
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(Datacamp, 2019) 

Figure 12. Decision tree: unpruned 

Decision trees are among the most popular machine learning algorithms because they 

are almost immediately interpretable both in rationale and practice; the issue of the machine 

learning “black-box” is less likely to apply to decision trees. Additionally, they are capable of 

both regression and classification tasks (predicated on whether the machine learning problem 

is concerned with continuous or categorical features), making them versatile and good baseline 

models against which to compare other non-tree-based models or ensemble tree models.  

Decision splits are determined by a number of different decision rules, but in the case of  

this study were Entropy and Gini rules. The former determines the variety of possibilities, or 

disorder, of a target variable. The latter is a measure of the impurity, or the rate at which a 

randomly chosen feature predicts the wrong class. 

A few popular decision trees algorithms include the Iterative Dichotomizer 3 (ID3), CART 

(Classification and Regression Trees), CHAID (Chi-squared Automatic Interaction Detection for 

classification tasks). A number of derivative machine learning algorithms have come from 
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decision tree classifiers including fast and frugal trees (minimally deep/maximally shallow 

decision trees designed to aid decision flows in professional spaces where the bulk of decision-

making can be distilled down to a few crucial steps), and extrapolative bootstrapping models 

like random forests and gradient boosted decision trees. 

Decision trees are at a disadvantage when used on their own or when working with data 

of high dimensionality. If not for the feature selection and engineering methods employed, the 

high variance of the data would have caused a non-generalizable model. Despite this, a decision 

tree model was applied to the dataset for the sake of exposition re: the continuum of tree-

based classifiers ranging from decision trees to random forest classifiers (and perhaps in 

subsequent study, gradient boosted tree algorithms) and its clear representation of knowledge.   

 

2.6.5. Random Forests 

Random forests bagging ensembles, or collections/forests of decision trees that have 

been bootstrapped. Bootstrapping is the process of resampling the training dataset in parallel 

with model fitting and replacing poorly performing samples. Bootstrapping aggregates all these 

inputs via a number of different techniques, but sklearn compiles a list of all predicted 

probabilities for each feature, selecting the feature with the highest probability as an output. 

On generating some specified number of decision trees with the n_estimators parameter, 

trees are averaged, and a prediction is outputted (sklearn, 2020).  

Random forests are greater than the sum of their parts, in that their strength lies in the 

numbers of their constituents. Outputs are committee-based and represent a collective 

“agreement” among the group. 
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3. OBJECTIVES 

 

 The objectives of the study were three-fold. First, the study was a practice in data 

manipulation and reformatting, which required in-depth understanding of data structures and 

data types. Before the data were ready for machine learning, there existed multiple indexed 

sepsis events that required removal from the feature space, but whose presence or absence 

required denoting. 

Second, this thesis represented an introduction to medically applied machine learning as 

well as feature and model selection.  

Third, this thesis aimed to contribute to two conversations. The first, that the 

continued/further integration of machine learning applications into the clinical space could 

supplement modern evidence-based medicine best-practices for disease diagnosis, prediction, 

and prevention/intervention, thus potentiating maximal health outcomes. The second, that a  

new sepsis definition should be pursued, ought to incorporate machine learning into its 

underlying framework, and should require explicit diagnostic criteria including covariates of 

disease, rather than settling on ED/ICU-gathered prognosis outcomes self-described as markers 

for diagnosis. It is reiterated that use of prognostics as diagnostics for sepsis is dangerous, 

especially when the most dire prognoses are accepted as criteria for sepsis to begin with.  
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4. RESULTS 

 

Table 4. Optimized Model Results Table 

 

Algorithm Tags 
Feature Selected Model 

Precision Recall F1-Score  AUROC Accuracy 

Logit 
No Sepsis 0.94 0.97 0.95 

0.79 0.92 
Sepsis 0.77 0.61 0.68 

SVM 
No Sepsis 0.94 0.97 0.95 

0.78 0.92 
Sepsis 0.78 0.58 0.67 

Naïve Bayes 
No Sepsis 0.95 0.91 0.93 

0.83 0.86 
Sepsis 0.56 0.71 0.62 

Decision Tree 
No Sepsis 0.92 0.97 0.94 

0.73 0.91 
Sepsis 0.71 0.51 0.59 

Random 
Forest 

No Sepsis 0.93 0.97 0.95 
0.78 0.92 

Sepsis 0.76 0.72 0.74 

 

  

 TP = True Positive 

 TN = True Negatives  

 FP = False Positive 

 FN = False Negative 

 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 or 

𝑇𝑃

𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 Recall = 

𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑜𝑟 

𝑇𝑃

𝐴𝑐𝑡𝑢𝑎𝑙 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
    

 

 F1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 The results table includes precision, recall and f1 scores for each of the feature-selected 

selected models. The random forest model performed best and identified phase 2/phase 3, 

phase 3/phase 4, sleep apnea syndrome, deep vein thrombosis, dyspnea, atrial Fibrillation, 

chronic obstructive pulmonary disease, cancer pain, acute cholecystitis, peritonsillar abscess as 

the top ten most predictive features.  

 The best performing models are summarized with the following AURCOCs, and 

normalized/non-normalized confusion matrices. 
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4.1. Logistic Regression: Sag Solver 

 
Figure 13. AUCROC For Logistic Regression Sag Solver  

 
 Figure 14. Logistic Regression Sag Solver Confusion Matrix 
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Figure 15. Normalized Confusion Matrix for Sag Solver
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4.2. Support Vector Machines: Linear Kernel 

 
 Figure 16. AUCROC for SVM.SVC Linear Kernel 

 
 Figure 17. SVM.SVC Linear Kernel Confusion Matrix 
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 Figure 18. Normalized SVM.SVC Linear Kernel Confusion Matrix 
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4.3. Naïve Bayes Classifier: Gaussian Classifier 

 
 Figure 19. AUCROC For Naïve Bayes Gaussian Classifier 

 

 
 Figure 20. Naïve Bayes Gaussian Classifier Confusion Matrix 
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 Figure 21. Normalized Naïve Bayes Gaussian Classifier Confusion Matrix 
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4.4 Decision Tree: Gini Depth 10 

 
 Figure 22. AURCOC for Gini Impurity Depth 10 Decision Tree 

 
 Figure 23. Gini Impurity Depth 10 Decision Tree Confusion Matrix 
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 Figure 24. Normalized Gini Impurity Depth 10 Decision Tree Confusion Matrix 
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4.5. Random Forest: Gini Impurity 

 
 Figure 25. AUROC for Random Forest Gini Impurity  

 
 Figure 26. Random Forest Gini Impurity Confusion Matrix 
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 Figure 27. Normalized Random Forest Gini Impurity Confusion Matrix 
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5. DISCUSSION 

 

Given that only 4,367 of the 30,915 (14%) of clinical trials reported any incidences of 

sepsis, the issue of class imbalance was significant. In machine learning, the most accurate 

models are those trained on data with classes that are near equal in distribution. In the case of 

binary response variables (0 for no sepsis, 1 for sepsis), this optimal distribution would have 

had 15,458 incidences each of sepsis and no sepsis. 

Accuracy scores were likely bloated due to class imbalance as well. Moreover, an over-

reliance on accuracy as a robust assessment of the models’ performances in the instance of this 

dataset would be misleading. Because models predict both sepsis-related (1) and non-sepsis-

related (0) events, and because the ratio of non-sepsis:sepsis in the data is roughly 7:1, 

accuracy figures are too heavily influenced by the models’ specificities (true negative rate). The 

same weight is being given to specificity as sensitivity, despite the class imbalance.  

A subsequent study could work to further improve preprocessing steps to target a 1:1 

ratio class events using a technique called the Synthetic Minority Over-sampling Technique, or 

SMOTE (Chawla, Bowyer, Hall, & Kegelmeyer, 2002). This method synthetically generates new 

samples consistent with the minority class distribution and is available in the 

imbalanced_learn library’s SMOTE class. Further investigation into boosted ensemble 

classifiers like gradient boosted trees/models, Adaboost, or XGBoost could be a means of 

applying the subject matter of this study to more relevant and modern models.  

Finally, as the title suggests, the approach to sepsis classification is naïve, in that sepsis 

events are lumped into a single feature. Given that that modern understanding of the 

pathobiology and pathophysiology of sepsis suggests its mechanism may be organ-system 
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specific, the follow-up study could assign nominal or ordinal categories to different sepsis 

categories. 
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6. CONCLUSION 

 

The healthcare industry is experiencing a paradigm shift in how it identifies, describes, 

predicts, intervenes, and prevents major adverse health outcomes thanks in large part to 

machine learning models. Constant revision of modern machine learning techniques guarantees 

improved results. When applied to healthcare, such improved results are assumedly countless.  

It is difficult to conceive of a future where machine learning will not continue to impact 

healthcare, if not already doing so. Machine learning is becoming increasingly common in the 

healthcare data space including but not limited to: clinical decision support tools; health vitals 

analytics and prediction made possible by data generation and aggregation from wearable 

health devices, electronic health record data, and insurance health claims data; image 

processing of medical images for early detection of disease; pharmaceutical development and 

design via machine learning aided discovery of prognostic biomarkers (Vamathevan et al., 

2019); and this list continues to grow.   

In this study a suite of models was used to identify predictors of sepsis from 128,799 

features distributed among 30,915 unique clinical trials. Thanks to the open-source nature of 

machine learning libraries like scikit-learn, and a readiness by the data science and machine 

learning community for knowledge transfer, this project has been an illuminating practice in 

machine learning applications and platforms for discourse. Though there is no turnkey solution 

for health outcome maximization, artificial intelligence and machine learning represent a 

tinkerer’s paradise for iterative learning and hypothesis testing that can only make a future 

with fewer chronic illnesses more likely. 
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