
University of Wisconsin Milwaukee University of Wisconsin Milwaukee 

UWM Digital Commons UWM Digital Commons 

Theses and Dissertations 

May 2022 

Spline Modeling and Localized Mutual Information Monitoring of Spline Modeling and Localized Mutual Information Monitoring of 

Pairwise Associations in Animal Movement Pairwise Associations in Animal Movement 

Andrew Benjamin Whetten 
University of Wisconsin-Milwaukee 

Follow this and additional works at: https://dc.uwm.edu/etd 

 Part of the Ecology and Evolutionary Biology Commons, Mathematics Commons, and the Statistics 

and Probability Commons 

Recommended Citation Recommended Citation 
Whetten, Andrew Benjamin, "Spline Modeling and Localized Mutual Information Monitoring of Pairwise 
Associations in Animal Movement" (2022). Theses and Dissertations. 2961. 
https://dc.uwm.edu/etd/2961 

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more 
information, please contact scholarlycommunicationteam-group@uwm.edu. 

https://dc.uwm.edu/
https://dc.uwm.edu/etd
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F2961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/14?utm_source=dc.uwm.edu%2Fetd%2F2961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=dc.uwm.edu%2Fetd%2F2961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=dc.uwm.edu%2Fetd%2F2961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/208?utm_source=dc.uwm.edu%2Fetd%2F2961&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/2961?utm_source=dc.uwm.edu%2Fetd%2F2961&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarlycommunicationteam-group@uwm.edu


SPLINE MODELING AND LOCALIZED MUTUAL

INFORMATION MONITORING OF PAIRWISE

ASSOCIATIONS IN ANIMAL MOVEMENT

by

Andrew Benjamin Whetten

A Dissertation Submitted in

Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

in Mathematics

at

The University of Wisconsin-Milwaukee

May 2022



ABSTRACT
SPLINE MODELING AND LOCALIZED MUTUAL INFORMATION MONITORING

OF PAIRWISE ASSOCIATIONS IN ANIMAL MOVEMENT

by

Andrew Whetten

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Vince Larson and Professor David Spade

Advances in Satellite Imaging and GPS tracking devices have given rise to a new era of

remote sensing and geospatial analysis. In environmental science and conservation ecology,

biotelemetric data recorded is often high-dimensional, spatially and/or temporally, and

functional in nature, meaning that there is an underlying continuity to the biological

process of interest. GPS-tracking of animal movement is commonly characterized by

irregular time-recording of animal position, and the movement relationships between

animals are prone to sudden change. In this dissertation, I propose a spline modeling

approach for exploring interactions and time-dependent correlation between the movement

of apex predators exhibiting territorial and territory-sharing behavior. A measure of

localized mutual information (LMI) is proposed to derive a correlation function for

monitoring changes in the pairwise association between animal movement trajectories. The

properties of the LMI measure are assessed analytically and by simulation under a variety

of circumstances. Advantages and disadvantages of the LMI measure are assessed and

alternate measures of LMI are proposed to handle potential disadvantages. The proposed

measure of LMI is shown to be an effective tool for detecting shifts in the correlation of

animal movements, and seasonal/phasal correlatory structure.
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2 Introduction

In the past two decades, the rapid increase in the quality of GPS-tracking technology has

revolutionized the field of movement ecology [1, 2]. The advancements in animal-tracking

systems have yielded high-precision and densely recorded datasets of wildlife behavior [3].

The current challenge in the field of movement ecology is the appropriate processing and

integration of large volumes of tracked animals and local environmental data into a unified

modeling process to improve the quality of population level inferences [4, 5, 6].

Many models have been proposed in recent years to improve animal trajectory estimation,

relationships of animal movements, and home-range and land use estimates for individual

animals [4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15]. However, in spite of the exceptional characteristics

of these models, there is minimal development of descriptive statistical tools [16, 17, 18, 19].

Descriptive/summary statistics include the widely familiar and elementary topics in statistics

and probability such as mean, median, variance, covariance, quantiles, and many others.

Additionally, there is rich literature on dissimilarity measures and distance metrics that have

paralleled the rise of machine learning modeling [20, 21, 22, 23]. Although a seemingly trivial

topic in modern animal movement modeling, these descriptive measures are the foundation

of any sound modeling process, and the appropriate construction and selection of a measure

inevitably provides increased insight into the process of interest [24, 25].

The correlation coefficient is a descriptive measure used widely across all branches of

statistics. A few household measures of correlation are listed here: Pearson, Spearman,

Kendall [26, 27]. In information theory, a common measure of association is referred to as

mutual information, which is a quantification of the amount of information obtained from

the distribution of a random variable by observing another random variable [28]. Although

correlation measures are often abused or “over-interpreted,” they can be thought of as a

measure of similarity/dissimilarity between observations or variables in a dataset [24, 29].

The use of information theoretic measures in movement ecology has modestly increased
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in recent years [30, 31, 32, 33, 34, 35, 36], and it is instructive to press forward in evaluating

the merits of information theory and its role in animal movement modeling. Single, global

estimations of correlation between animals are insufficient for modeling the complex rela-

tionships of animals over an extended time-period. Animals of the same or different species

can have changes in the relationships of their movement as a result of mating behavior and

critical resource allocation as well as seasonal and environmental changes in an ecosystem

such as urbanization, deforestation, or climate change [37].

In this work, we propose a bandwidth-derived correlation function that accomplishes the

following: (1) locally measures the correlation/association of the movement of two animals,

(2) changes in correlation are successfully detected, (3) the measure can successfully detect

complex relationships in a local domain, and (4) information about correlation in movement

over a larger time-domain can be successfully inferred. The proposed correlation function is a

measure of localized mutual information (LMI) using bivariate (longitudinal and latitudinal)

animal position data. There is modest work in recent years in defining localized mutual

information over a continuum, and the objective of this work is to construct a temporal

measure of localized mutual information, thoroughly assess its qualities, and discuss the

advantages and disadvantages of its implementation in movement ecology [38, 39].

We investigate the properties of the proposed LMI measure by proof and by simulation

where, for a simple example, we confirm the results of an analytical (i.e. by-hand) and

the implemented software solution. Several simulations are also shown afterwards to explore

more complicated movement relationships. The measure has been previously implemented in

a full statistical analysis of a collection of jaguars (Panthera onca) in the Pantanal Ecological

Station in Brazil [40]. The measure is shown to be an effective tool for detecting shifts

and spikes in animal association, and further, in the investigation of jaguar movement, the

measure provides evidence of detecting animals in the same behavioral state, such as two

male jaguars exhibiting similar movements in a mating season.

The simulation studies reveal several characteristics of the proposed measure of LMI

2



which are of important consideration for researchers who intend to study associations in

animal movement and behavior or use the measure for other telemetric, GPS tracking ap-

plications, such as military or citizen transportation movements, or relationships between

animals and human transportation [41]. In the Discussion Section, following the simulations,

we propose one alternative measure of LMI that addresses some of the disadvantages of the

currently implemented measure, and we mention other information theoretic measures that

have the potential to accomplish the same task as mutual information.

3 Background

In this section, we provide brief introductions to key concepts and techniques from informa-

tion theory, spline smoothing, and density estimation. The topics introduced from informa-

tion theory pertain to the main focus of this dissertation, and the latter methods pertain to

the application of the measure in application section of the paper.

3.1 Information Theoretic Measures

In the field of Information Theory, there are many measures that have been derived to

characterize properties of one or more random variables [28]. In this section, we list only the

most basic measures required to understand this work. Later in this work, we mention the

ideas of Relative Entropy and Total Correlation or Multiinformation. They are not described

in any mathematical detail, but they are relevant to future work with localized information

theoretic measures.

3.1.1 Entropy

The entropy of a random variableX is the average level of information or uncertainty inherent

to the potential outcomes of X. Widely referred to as Shannon’s entropy, the concept is, in

principle, analogous to the definition of entropy in thermodynamics [28].

3



Shannon’s entropy of X, denoted by H(X), is the expected value of the information

content I(X) of a variable expressed by

H(X) = E[I(X)] = E[−log(P (X)]. (3.1)

The information content I(X) = −logP (X) is an operator that assign a level of surprise

where high probability events that can be realized from X are assigned “low surprise” values

and low probability (rare) events are assigned “high surprise” values. If there are many low

probability events that are possible, we expect the average level of surprise in X to be higher.

Entropy can be written explicitly as

H(X) = −
n∑

i=1

P (xi)logbP (xi) (3.2)

where xi correspond to the possible values of a discrete random variable. It is common

practice for b = 2, e, or 10, and the choice of b only affects the units by which entropy is

measured. For a continuous random variable, Shannon’s entropy is expressed by

H(X) = E[−log(f(x))] = −
∫
X
f(x)log(f(x))dx (3.3)

where f(x) is the probability density function of the random variable X. Although some

variables are defined with underlying continuity, the computation of entropy is achieved us-

ing unsupervised discretization strategies in order to efficiently compute H(X) using Equa-

tion 3.2. This is discussed further when relevant in this work.
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3.1.2 Conditional and Joint Entropy

Conditional entropy is a quantification of the amount of information needed to explain the

outcome of a random variable Y given that another random variable X is known [28]. The

conditional entropy of Y given X is expressed by

H(Y |X) = −
∑

x∈X ,y∈Y

p(x, y)log

(
p(x, y)

p(x)

)
. (3.4)

If X and Y are independent, then H(Y |X) = H(Y ). Conversely, conditional entropy equals

zero only when the value of Y is perfectly explained/determined by the value of X.

Joint entropy is the measure of uncertainty associated with two or more variables. Also

referred to as the joint Shannon entropy, it can be expressed for two random variables X

and Y by

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)log(p(x, y)). (3.5)

There are many important properties of all measures of entropy that tie back to the

properties of information, I(p). For an event with probability p, I(p) has a domain of

p ∈ (0, 1]. The following properties hold:

1. I(p) monotonically decreases as the probability, p, occurring increases.

2. I(p) is non-negative.

3. If p = 1, then I(p) = 0. Certain events do not contain information.

4. Independent events, with p1 and p2 provide summative information. (I(p1 · p2) =

I(p1) + I(p2)).
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3.1.3 Mutual Information

Mutual information is a measure of mutual dependence or association between two random

variables X and Y , and it is a measure of the amount of information, measured in the

same units as entropy, obtained about one variable by observing another. Up until this

point, we have used I to denote the information content. However, in standard Information

Theory notation, mutual information is also defined with the symbol I; the only difference

that distinguishes the two is that mutual information is an operator that accepts two random

variable inputs as opposed to one. The mutual information, I, of two jointly discrete random

variables X and Y is expressed by

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y)log

(
p(X,Y )(x, y)

p(X)(x)p(Y )(y)

)
, (3.6)

where p(X,Y ) is the joint probability mass function (pmf) of X and Y and pX and pY are their

respective marginal distributions. Subscripts have been introduced on the all pmfs starting

in this section to ensure that the formula consisting of variables for differing pmf and the

joint pmf are clearly labeled. The intuition behind the construction of this measure rests in

the concept of the magnitude of independence/dependence between two random variables.

If X and Y are perfectly independent, then observing either X or Y does not provide any

information about the other variable. In Equation 3.6, if X and Y are independent, then

equation becomes

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y)log

(
p(X)(x)p(Y )(y)

p(X)(x)p(Y )(y)

)
=
∑
y∈Y

∑
x∈X

p(X,Y )(x, y)log(1) = 0. (3.7)

Mutual information can be shown to be nonnegative and symmetric measure (I(X, Y ) ≥

0, and I(X, Y ) = I(Y,X)) [28]. Mutual information is directly related to joint and con-

ditional entropy, and it is practical to use this relationship to study properties of mutual

information. Mutual information is the amount of entropy remaining in a variable, X, after
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subtraction that amount of entropy from the same variable given that another variable, Y ,

was known. By symmetry of the measure and the properties of entropy, mutual information

can be expressed in a number of useful forms given in the next steps of work:

I(X, Y ) = H(X)−H(X|Y ) (3.8)

I(X, Y ) = H(Y )−H(Y |X) (3.9)

I(X, Y ) = H(X) +H(Y )−H(Y,X) (3.10)

3.2 Smoothing Splines

In the environmental sciences, among many other applications, many processes are observed

which are continuous spatially or evolve/change over time in a continous manner. Many of

these processes may also have an underlying smoothness which is theorhetically understood,

but when empirically measured, the smoothness is lost to (white) noise, random variation,

instrumentation error/insensitivity, and gaps in spatial or temporal domain measurements.

All of these natural outcomes from empirical data collection can potentially obscure the

underlying process which is of interest to study.

Smoothing splines are estimated functions, denoted generally by f̂(t), are obtained from

empirical (discretely and often non-uniformly measured) observations yi where t the spatial

or temporal grid on which observations are measured/recorded. They are used to estimate a

target f(ti). Cubic (polynomial) splines are a common choice for many smoothing problems.

We briefly outline the general smoothing problem objective function here. More details of

the implemented smoothing spline procedure can be found in the Smoothing Splines of Apex

Predator Movement chapter of this dissertation.

Let (ti, yi) with i = 1, . . . , n be a set of observations which are realization from a random

variable Y on a temporal or spatial grid T . These observations are assumed to be modeled

by yi = f(ti)+ ϵi where f is the continuous, differentiable function we are trying to estimate
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and ϵi are an unknown, independent error term that is “concealing” the process that we are

observing only by the raw data, yi. Generally, it is assumed that ϵi has an expected value of

zero and has constant variance. This could be violated in cases where some instrumentation

is known to have error which has substantial bias or is know to have larger error under some

regularly or irregularly occurring conditions while the process is observed.

The cubic smoothing spline estimate f̂ of the function f is defined to be the minimizer

of

n∑
i=1

{yi − f̂(ti)}2 + λ

∫
f̂ ′′(ti)

2dx, (3.11)

where f̂ is assumed to be twice differentiable, λ ≥ 0 is a smoothing parameter that penalizes

the roughness of the estimated function [42, 43]. As λ → ∞, all roughness is eliminated

from f̂ and the estimate converges to a linear least squares estimate through the data yi.

As λ → 0, f̂ converges to an exact spline interpolation of the raw data. Clearly, in a

smoothing application, neither of these are ideal scenarios since a strict interpolation will

yield extremely noisy functions with poor differential properties, and linear functions “wash

out” all functional features such as local maximia, minima, periodicity, non-monotonicity

etc. There are multiple strategies for defining and optimizing a smoothing spline, and we

largely follow Ramsay and Silverman’s outline of roughness-penalty smoothing spline opti-

mization [42, 43, 45, 44, 46].

3.3 Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric method used to acquire an estimate of

a probability density function of a random variable. The fundamental objective of KDE is

interrelated/inseparable from those found in smoothing splines problems since the estimation

of a probability density function required the estimation of a smoothed pdf from finitely (and

possibly noisy) sampled data.
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Let {ti|i = 1, . . . , n} be independent and identically distributed samples, given by points

ti, drawn from a univariate distribution with an unknown density, f . The shape of the

distribution, denoted by f , has a KDE expressed by

f̂(t) =
1

n

n∑
i=1

Kh(t− ti) =
1

nh

n∑
i=1

K

(
t− ti
h

)
, (3.12)

where K is the kernel which is a non-negative function, Kh is referred to as the scaled kernel

defined Kh = 1/hK(x/h) [62]. Similar to smoothing splines, h > 0 is a smoothing parameter

called the bandwidth. Many kernel functions can provide appropriate estimates of f but the

Gaussian/normal kernel K(t) = Φ(t) is most often used. Ultimately, KDE is the sum of

several (generally identical) functions (kernels) that are each localized around a respective

ti, and the “width of influence” of each function is restricted by h.

4 Author’s Note

Prior to the drafting of this dissertation, the application section of this paper entitled Smooth-

ing Splines of Apex Predator Movement: Functional Modeling Strategies for Exploring An-

imal Behavior and Social Interactions has been published [40]. Although improvements to

the measure implemented in this paper are proposed later in this work, it is instructive to

verify properties of the original measure.

In this work, we add some additional details to the application section, specifically a

sensitivity assessment justifying the automatic density-based knot placement technique used

to smooth jaguar trajectories.

5 Localized Mutual Information

Consider bivariate vectors X = (X1, X2) and Y = (Y1, Y2) which define the movement paths,

X and Y , of two animals. The pair of variables (X, Y ) have values over the space X × Y

where X1 and Y1 are vectors corresponding to the longitudinal position of the animals on
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a unified time grid, and X2 and Y2 correspond similarly for the latitudinal position. In

this section, we construct the definition of LMI from the respective latitude and longitude

components.

The components of LMI, ILi
(Xj, Yj|λ) with j = 1, 2, are a measure of localized mutual

information for the jth directional component defined by

ILi
(Xj, Yj|λ) =

∑∑
x∈XjLi

y∈YjLi

p(Xj ,Yj)(x, y) log
p(Xj ,Yj)(x, y)

pXj
(x)pYj

(y)
dxdy for j = 1, 2.

The restriction of the mutual information to the localized neighborhood is given by the

space XjLi
×YjLi

. This is a restriction of the domain of X, Y to their respective probability

density functions on the time domain defined by Li. In our work, we define Li = {t|t ∈

[ti−λ, ti+λ], where Li is a collection of time points, {t}, that mark the timing of observations

of X and Y . The value λ, also referred to as the bandwidth (bw), is an integer value that

defines the local collection time points {t} that surround the ith time point, ti.

A joint measure of mutual information, ILi
, can be constructed from the directional

components as follows:

ILi
(X, Y |λ) =

√
ILi

(X1, Y1|λ)2 + ILi
(X2, Y2|λ)2

.

To construct the final LMI measure, we compute the mutual information, ILi
, at every

available time point ti for the local neighborhood defined by t ∈ [ti−λ, ti+λ]. The bandwidth,

chosen by the user, must be considered with knowledge of the application of interest. The

proposed measure of LMI is then defined by

I(t;λ) = ILi
(X, Y |λ) with Li = {t|t ∈ [ti−λ, ti+λ]}.
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5.1 General Properties

The LMI measure I(t;λ) is expected to carry many of the properties of a global measure

of mutual information. Namely, in this section, we verify the non-negativity of the measure

and the monotonicity of the relationship between LMI and a correlation coefficient ρ. Ulti-

mately, it is of interest to ensure that any derived measure of association is on a scale that

is comparable to a standard correlation coefficient, and further that the measure behaves

similarly on such as scale.

Property 1: I(t;λ) is nonnegative (i.e. I(t;λ) ≥ 0).

Since the mutual information of any collection of realizations is positive, it follows that

ILi
(X, Y ) ≥ 0. More importantly, for any a, b ∈ R, it follows that

√
a2 + b2 ≥ 0. Therefore,

it is clear that I(t;λ) = ILi
(X, Y |λ) ≥ 0.

Proposition 1: I(t;λ) is symmetric.

It is sufficient to show that ILi
(X, Y |λ) = ILi

(Y,X|λ). Since ILi
(X1, Y1|λ) = ILi

(Y1, X1|λ)

and ILi
(X2, Y2|λ) = ILi

(Y2, X2|λ) for any Li, it is clear that
√

ILi
(X1, Y1|λ)2 + ILi

(X2, Y2|λ)2 =√
ILi

(Y1, X1|λ)2 + ILi
(Y2, X2|λ)2. Therefore, ILi

(X, Y |λ) = ILi
(Y,X|λ), and I(t;λ) is sym-

metric ∀Li. □

Proposition 2: As the linear correlation coefficient of normally distributed X and Y

increases, then I(t;λ) increases (↑).

Proof: It is sufficient to show that the proposition holds for any Li in the time domain

T. In other words, for any Li, it must be shown that as the correlation coefficients for either

directional component increase then ILi
(X, Y ) ↑.

It is known that the mutual information between two vectors X and Y on an interval Li

can be expressed by ILi
(X, Y ) = HLi

(X) +HLi
(Y )−HLi

(X, Y ). For a continuous random

variable, X, subsetted to the realizations on the domain Li = {t|t ∈ [ti−λ, ti+λ]}, Shannon’s

entropy is defined by HLi
(X) = −

∫
XL⟩

f(x)lnf(x)dx [28]. Assume that X ∼ N(0, 1) and

Y ∼ N(0, 1). We define association here as an increase in the linear correlation coefficient ρ
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Figure 5.1: The relationship between mutual information and the correlation coefficient, ρ,
for normally distributed X, Y using a 300 equally spaced values of ρ ∈ (−1, 1)

between two random variables. Then it follows that


HLi

(X) = 1
2
log2πe

HLi
(Y ) = 1

2
log2πe

HLi
(X, Y ) = 1

2
log((2πe)2(1− ρ2)

,

where ρ is the correlation coefficient between X and Y [28, 47]. It follows that

ILi
(X, Y ) = 1

2
log2πe+ 1

2
log2πe− 1

2
log((2πe)2(1− ρ2))

ILi
(X, Y ) = −1

2
log(1− ρ2).

Refer to Figure 5.1 for a visual of the relationship between ρ and mutual information. It
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is clear that lim
ρ→1

− 1
2
log(1− ρ2) = +∞, lim

ρ→−1
− 1

2
log(1− ρ2) = +∞, and

lim
ρ→0

− 1
2
log((1− ρ)2) = −1

2
log(1) = 0.

In the remainder of the proof, we do not address what happens to ILi
if ρ1 or ρ2 decreases

while the other increases. There is clearly a competing effect on ILi
and since the process of

interest is 2 dimensional, it is not clear that there is a increase in overall correlation across

all directional components unless the correlation of both or at least one increases while the

other is fixed.

Since ILi
is monotonic on [−1, 0) and ILi

is monotonic on (0, 1], it follows that as |ρ| ↑,

then ILi
↑. If X = (X1, X2) and Y = (Y1, Y2), then

ILi
(X, Y |λ) =

√
ILi

(X1, Y1)2 + ILi
(X2, Y2)2 =

√
(−1

2
log(1− ρ21))

2 + (−1
2
log(1− ρ22))

2.

Then if |ρ1| ↑ or |ρ2| ↑ while the other remains fixed, then ILi
(X, Y |λ) ↑. Since Li is an

arbitrary window within T, then this holds for any Li as defined by the pair (ti,Li). □

Although not examined in the proof of Proposition 3, it is important to emphasize that

X ∼ N(0, 1), Y ∼ N(0, 1), and the integration of their respective pdfs assumes continuity

when in the actual estimation pdf’s empirically, this is computed by discretizing each pdf to

a pmf.

Boundary Value Condition:

The most apparent concern with the boundary cases for a bandwidth derived measure is

the decreasing size of available samples of position with the bandwidth Li. If no boundary

condition is coerced on I(t|λ), then at t0, Li = {t|t ∈ [t0, ti+λ]} and at tf , Li = {t|t ∈

[ti−λ, tf ]} where t0 and tf correspond to the first and last position of an animal detected

or estimated. In this work, we set Li for all near boundary ti according to the following

condition. If ti−λ < t0, then Li = {t|t ∈ [t0, t0+2λ]}. If ti+λ > tf , then Li = {t|t ∈ [tf−2λ, tf ]}.

This boundary condition coerces every time point ti to have equal size Li, where any of

the near boundary ti all have the same LMI. This is done to ensure that the boundaries of

the time domain are well-behaved. A reduction in the sample of observed times will have a

direct effect on the computed LMI which is not of direct interest.
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For many GPS-derived animal movement applications the sampled locations of an animal

are densely recorded over extended time periods, and the number of ti that this affects is

minimal for most considered bandwidths, λ.

Violation of the Distance Metric Properties:

With any measure of dissimilarity, it is important to assess if the measure meets the

requirements to be classified as a distance metric. It is known that mutual information is

not a distance metric as it violates the triangle inequality I(X,Z) ≤ I(X, Y ) + I(Y, Z) [28].

However, more simply, a distance metric d must satisfy d(X, Y ) = 0 when X = Y . For

mutual information this is clearly violated since I(X, Y ) ̸= 0 when X = Y . (In simpler

terms, LMI is not equal to zero for two animals when they are the same animal.)

As I(X, Y ) unbounded in the positive direction, it would be natural to consider inverting

a scaled version of the measure so that a measure of zero identifies two objects that are

close and a measure of 1 identifies objects that are far apart. It can also be shown with

a few steps of mathematics that taking a measure defined by d(X, Y ) = 1 − I∗(X, Y ) is

not a distance metric (where I∗ is the mutual information between X and Y scaled by the

maximum possible mutual information defined by I∗(X, Y ) = I(X,Y )
I(X,X)

). Here it is now clear

that d(X, Y ) = 0 when X = Y , but we show the violation of the triangle inequality in

Appendix A1 7.1.

If the properties of a distance metric are desired, an alternative information theoretic

measure of association, referred to as relative entropy can be implemented. It does not

violate the triangle inequality [28], and as such the entirety of work could be defined and

assessed similarly using relative entropy. Going forward, we continue to refer to mutual

information as a measure of dissimilarity as opposed to a measure of distance (i.e. a distance

metric).
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5.2 Simulation Studies

In order to investigate the advantages and disadvantages of the proposed measure, it is

instructive to generate simulations with known global mutual information and/or known

associative structure over periods of constant behavior and report the LMI computed over

these regions and those of transitioning behavior. More specifically, the sensitivity of the

measure to the choice of bandwidth, λ, the number of bins (or simply bins) used to discretize

a pmf for the movement paths over any Li, and the signal-to-noise ratio are the parameters

of primary interest. The distance between the position of animals is of secondary interest,

but is implicitly investigated here as well.

In the construction of simple movement simulations, we consider scenarios where LMI is

both ideal and non-ideal, and a discussion of how to handle the non-ideal scenarios follows.

Six simulation scenarios are investigated:

1. Simulation 1: A “Dead or Alive” movement model where mutual information is feasibly

derived by hand for verification of measure.

2. Simulation 2: A “Shift-Sensitivity” model where global mutual information is known

for a period of strong association and a period of lower association.

3. Simulation 3: “Cross-directional Relationship” detection where one animal’s latitudinal

movement has a strong relationship with the other animal’s longitudinal movement

while a weak relationship exists between their matching directional movements.

4. Simulation 4: Delayed Onset/Following Behaviors where one animal follows the move-

ment of the other.

5. Simulation 5: “Resolution Challenges” where the bandwidth and pdf discretization

parameter sensitivity are examined in the presence of Brownian movement, and low

versus high temporal resolution.
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6. Simulation 6: A random walk simulation of male-female jaguar relationships [40].

In all simulations, the choice of bandwidth, λ, will be investigated, and in the other

simulations, bins, and the signal-to-noise ratio will be examined at an array of values. The

relevance of each of the movement behaviors is discussed in more detail in each of the

following sections.

5.2.1 Template code for Simulations

All simulations use the same generic format outlined in this section. In the simplest terms,

the simulations are performed by generating a uniform time vector and then selecting a

function or set of functions for the latitudinal and longitudinal components of each animals

movement. Figure 5.2 shows the general pseudo code template used for all simulations. In

some of the later simulations minor deviations from this procedure were implemented to

induce more complicated attributes such as autocorrelated random errors to induce random

walk movement trajectories.

5.2.2 Simulation 1: Analytical Verification of LMI

The objective of our preliminary simulation is to verify and provide further insight into the

mechanics of the proposed LMI measure. In this simulation T1, T2, and T3 mark the start,

middle, and end of the simulation. In a 2-dimensional space, two of the simplest scenarios

that can be examined are when two animals have identical linear movement, or when one

animal moves constantly while the other animal is stationary. The sudden halting movement

behavior could characterize a resting, critically injured, or deceased animal. The transition

in the behavior on one animal will occur at T2. The simulation visualized and evaluated

in this section combines both of these simple scenarios into one to explore the transition

properties of LMI.

In Figure 5.3, we outline the analytical checks visually that are performed on LMI for
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Figure 5.2: Code outline for the simulation generation procedure.
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Figure 5.3: Summary of Analytical Verification of LMI Measure. The verification consists
of measuring standard/global measure of mutual information from (T1, T2) and (T2, T3) re-
spectively. LMI is also confirmed for localized regions completely contained with (T1, T2)
and (T2, T3) and also for a localized region containing T2 where there is at least 1 point on
a uniform time grid in both (T1, T2) and (T2, T3). The trajectories of the animals in (T1, T2)
are identical/parallel linear movements, and in (T2, T3) animal 2 is stationary while the other
continues as before.

this simulation. First, we confirm the global/standard mutual information (GMI) for each of

the two states of the simulation. Then we compute LMI analytically for three time points:

(1) ti1 = ti with (ti−λ, ti+λ) ⊂ (T1, T2), (2) ti2 = ti with T2 ∈ (ti−λ, ti+λ), and (3) ti3 = ti with

(ti−λ, ti+λ) ⊂ (T2, T3).

After manually computing these values for LMI and GMI, we overlay these results with

the implemented code of the measure, and discuss why subtle or substantial differences exist.

This simulation model for the first animal is defined by


x(ti) = ti − 0.05 + ϵti ti ∈ [0, 1]

y(ti) = ti + ϵti

,

and for the second animal
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

x(ti) = ti + 0.05 + ϵti ti ∈ [0, 0.5)

y(ti) = ti + ϵti

x(ti) = 0 + x(ti = 0.5) + ϵti ti ∈ (0.5, 1.0]

y(ti) = 0 + y(ti = 0.5) + ϵti

.

To increase the simplicity of this model for analytical verification, the random error term

is set to 0. In most simulations following this section, the error term is assumed to be

independent and identically distributed. Intuitively, it is expected that if two animals move

with the exact same behavior with no noise induced into the process, a perfect association in

their movements will be detected. It also follows intuition that there should be no association

in the movement of two animals if one animal is motionless and the other is moving with a

clearly defined functional behavior.

Computing GMI and LMI

Recall from Equation 3.8 that

I(X1, X2) = H(X1) +H(X2)−H(X1, X2). (5.1)

Until defined otherwise in this section, X1 and X2 denote only the latitudinal move-

ment. Since any LMI component measure with a local neighborhood completely contained

in (T1, T2) or (T2, T3) is identical to the GMI on these intervals (with a subset of points), we

only need to compute I(X1, X2) at (T1, T2), (T2, T3) to verify the LMI in these regions. We

compute LMI at Ti2 by determining the proportion of points in the window [ti−λ, ti+λ] on

either side of T2.

Computing LMI, which is ultimately a combination of latitudinal and longitudinal move-

ment, is done by each component respectively. Until the end of this section, we only show

latitudinal calculations. The combination of latitudinal and longitudinal calculations are
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shown as the final step. Since the movement of each animal is constant or stationary, the

discretized densities (pmfs) are uniformly distributed across each “bin.” Bins, where N is

used to denote the number of bins, are the terms used to describe the discretization or

“binning” of locations into groups based on proximity. The pmfs are defined by

(T1, T2) → pX1(x1) = pX2(x2) = 1/N, pX1,X2(x1, x2) = 1/N (5.2)

(T2, T3) → pX1(x1) = 1/N, pX2(x2) = 1, pX1,X2(x1, x2) = 1/N (5.3)

The simplicity of the marginal and joint pmfs listed above is visualized in Figure 5.4 which

illustrates the discretization process of this movement model. In Figure 5.4, blue and red

squares identify the discretized location of animal 1 and animal 2 respectively, and the yellow

circles mark the starting and end locations for each animal as well as the location where the

shift in animal association occurs. The latitudinal behavior modeled here is identical to

the constructed models where animal 1’s position is uniformly distributed within each blue

square and animal 2’s position is likewise, but all red squares from t ∈ [T2, T3] are stacked

in the same region. When computing the GMI for the time periods [T1, T2] and [T2, T3], the

summation of the pmf’s in the entropy components of the equation for mutual information

consist of summing N = 5 squares (since 5 squares fall in each time period). Since the

locations are uniformly distributed into each of the 5 bins shown in this visual, then it is

clear that pX1(x1) = pX2(x2) = 1/N for (T1, T2). On (T2, T3), it is clear for Animal 2 that all

locations are in the same bin, so the pmf is singular pX2(x2) = 1.

The joint pmfs for longitude can also be visually understood from Figure 5.4. The image

is simplified in Figure 5.5 to avoid ambiguity. Although there are N2 potential bins for the

locations to be distributed across, the positions in this simulation fall into only N bins on

each time window so the probability of the observing both animals in a single bin is 1/N .

By Equation 3.8 and following the notation from the Background Section, we compute

each of the entropy components at the same time, and then combine the results afterwards
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Figure 5.4: Longitudinal Movement of Both Animals discretized on a 0.1 resolution. Yellow
circles denote the start and end time locations of the simulation as well as the time of the
shift in behavior association.
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Figure 5.5: Joint Distribution Longitudinal Movement of Both Animals discretized on a 0.1
resolution with N = 5. In both time windows, the longitude is uniformly distributed across
5 bins. For simplicity, the vertical axis is not labeled here.

to report mutual information.

(T1, T2) H(X2) = −
∑

pX2(x2)log pX2(x2) = −
N∑
i=1

1/N log(1/N) = log(N) (5.4)

(T2, T3) H(X2) = −
N∑
i=1

1 log(1) = 0 (5.5)

ti2 H(X2) = −

(
q∗N∑
i=1

1/N log(1/N) +
N∑

q∗N+1

1log(1)

)
= q log(N), (5.6)

where q is the proportion of time points that are in the time period (T1, T2).
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Similarly,

(T1, T2) H(X1) = −
∑

pX1(x1)log pX1(x1) = −
N∑
i=1

1/N log(1/N) = log(N) (5.7)

(T2, T3) H(X1) = −
N∑
i=1

1/N log(1/N) = log(N) (5.8)

ti2 H(X1) = −
N∑
i=1

1/N log(1/N) = log(N) (5.9)

Recall that joint entropy of X1 and X2 is expressed by

H(X1, X2) = −
∑
x1∈X1

∑
X2∈X2

pX1,X2(x1, x2)log(pX1,X2(x1, x2). (5.10)

It follows from Figure 5.5, that half of the bins (of equal width) would be characterized

with a joint pmf similar to the left hand image and the other half would be similar to the

right hand image. This is shown in Figure 5.6 . It is clear that the joint pmf for a local

domain in this region is still pX1,X2(x1, x2) = 1/N . Therefore, the double summation can be

simplified to a single summation for each time expressed by

(T1, T2) H(X1, X2) = −
N∑
i=1

1/Nlog(1/N) = log(N) (5.11)

(T2, T3) H(X1, X2) = −
N∑
i=1

1/N log(1/N) = log(N) (5.12)

ti2 H(X1, X2) = −
N∑
i=1

1/N log(1/N) = log(N) (5.13)

Finally, combining all the entropy calculations, we have the following calculations for
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Figure 5.6: Joint Distribution Longitudinal Movement of Both Animals discretized on an un-
defined resolution with N = 6. In both time windows, the longitude is uniformly distributed
across 5 bins. For simplicity, the vertical axis is not labeled here, and only the transition
time T2 is labeled on the horizontal axis. The scale of the horizontal axis is dependent on
the size of λ.
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GMI and LMI:

(t1, t2) I(XLat1, XLat2) = log(N) + log(N)− log(N) = log(N) (5.14)

(t2, t3) I(XLat1, XLat2) = log(N) + 0− log(N) = 0 (5.15)

ti2 ILi
(XLat1, XLat2) = log(N) + q ∗ log(N)− log(N) = q log(N), (5.16)

where XLat1 and XLat2 replace X1 and X2 as a reminder that this work is only for

the latitudinal dimension. Recall that because of the homogeniety of (t1, t2) and (t2, t3),

I(XLat1, XLat2) = ILi
(XLat1, XLat2) in both intervals.

These analytical results identify that identical movement is equivalent to the entropy of

the shared movement vector. This is clearly the maximum attainable mutual information.

It follows our intuition that linear and stationary movement have zero-valued association

(as measured by mutual information), and, at the exact value of the shift from linear to

stationary movement for animal 2, the LMI is equal to half of the maximum attainable

mutual information. A small modification to the prior work reveals that ILi
(XLat1, XLat2) =

1/2 log(N) at exactly T2 since q = 1/2 at this location.

Note that as shown in these equations, mutual information is theoretically unbounded as

the number of bins, N, increases. However, the gains in mutual information by increasing N in

our simulation are penalized logarithmically, and the interpretability of mutual information

is jeopardized as N approaches and surpasses the number of sampling points in the movement

vectors. Increasing N to equaling or surpassing the number of sampling points defeats the

purpose of discretization.

In Figure 5.7, the latitude-longitude movement trajectories from this simulation are

shown as a reference for the remainder of this section. In Figure 5.8, the analytical calcula-

tions for the latitude component are plotted over the computed localized mutual information

using several combinations of bandwidth (bw) and bins. An arbitrary time domain of [0, 1] is

used. The upper and central plots of Figure 5.8 provide largely harmonious results with a few
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nuances regarding boundary/end-point precision and the binning procedure implemented in

the code. In the implemented code, we use a computationally faster binning procedure re-

ferred to as equal frequency binning as opposed to uniform or equal width binning. The equal

frequency binning procedure reduces the number of bins input if it is not possible to assign

a value to every bin. The details of this procedure and end-point binning decision rules

are not the primary focus in this work, and more information can be found in the following

source [48]. For the bottom-left plots of Figure 5.8, the large discrepancies are a result of the

mentioned binning-reduction which lowers the log(N) to log(N −m) where m is the amount

of bins removed. In the bottom-right plots of Figure 5.8, the large discrepancies are caused

by the large bandwidth relative to grid-resolution choice and the end-point LMI condition

chosen in the General Properties Section of this work. In brief, as the bandwidth increases

to spanning the full time grid, LMI simply converges to the GMI from (t1, t3) which has a

value of 1/2 log(N). The work to show this is identical to our calculation for LMI at t2, and

is therefore not shown. For the lowest row of plots in Figure 5.8, with bw = 32, we have not

evaluated the full analytic solution since the extremely large bandwidth requires additional

boundary condition considerations that are not the main focus of this section.

The binning procedure implemented computationally in this sections and all remaining

section has several differences which are dominantly attributed to equal frequency binning, as

opposed to equal width binning, and the machine learning bin reduction strategies have been

studied further in [48]. These differences result in discrepancies in the grouping/discretizing

of locations which account for differences in the timing of the drop in LMI, the maximum

potential LMI Equal width binning is shown in Appendix 7.2

Now, we bring together the longitudinal and latitudinal LMI components to derive the

final LMI measure plots. Recall that ILi
=
√
ILi

(XLon1, XLon2)2 + ILi
(XLat1, XLat2)2. Then

it follows that
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Figure 5.7: Simulated animals move in unison until the terminal halt of the second animal
marked by a denser colored dot.

(T1, T2) ILi
=
√

(log(N))2 + (log(N))2 =
√
2 log(N) (5.17)

(T2, T3) ILi
=

√
02 + 02 = 0 (5.18)

ti2 ILi
=
√
q2(log(N))2 + q2(log(N))2 = q

√
2 log(N). (5.19)

For ti2 = T2, it can be shown that ILi
=

√
2/2 log(N) which is half of the LMI on the interval

(T1, T2).

In Figure 5.9, the final analytical LMI calculations are plotted over the computed LMI

function. The same observations made for a single component (as in Figure 5.8) can be

said here. We add to our comments from before by stating that it is advisable to have a

bandwidth that is at least double the number of bins. This is examined further in later

sections. Additionally, this simulation oversimplifies the reality of movement trajectories

by assuming that movements of a given behavior are perfectly homogeneous. In reality, the
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Figure 5.8: The localized mutual information latitude component based on the movement in
Figure 5.7. The golden lines represent the LMI latitudinal component computed analytically
disregarding the cases where the LMI window crosses the behavior transition. The upper line
in at ln(N) (which is the logarithm used in the implemented code) where N is the number
of bins. The golden dot is the LMI analytically evaluated at T2 which was shown to be
1/2 log(N). The vertical axis is labeled as “LMI,” but for this plot is only the longitudinal
component of LMI. Note that for plots with bins > bw, the large difference between the
analytical and the computed LMI values is a result of the use of a more efficient binning
procedure which drops excessive bins which lowers the maximum measurable entropy. Refer
to Appendix 7.2 for an example of a more similar binning procedure [48]. Note that for
bw = 32, we have not evaluated the full analytic solution since the extremely large bandwidth
requires additional boundary condition considerations that are not the main focus of this
section. Instead, we have only plotted the LMI latitude component at ti2 = T2, and we have
plotted the maximum and minimum potential LMI as reference lines.
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entropy of a movement trajectory can be subject to variation which, as shown in this section,

is directly related to the maximum value for mutual information. Various strategies can be

proposed to appropriately visual LMI. Going forward in this work, we scale every value of

LMI by the maximum attainable LMI in its localized window of time. This is expressed by

I∗Li
=

ILi
(X1, X2)

ILi
(X1, X1)

,

where the denominator represents the maximum mutual information for a given window Li

which is simply the mutual information of one of the animal’s movement with respect to

itself.

In Figure 5.10, the scaled LMI is shown for four considered bandwidths. It is noted here

that the largest bandwidth considered overlaps the behavior transition for almost all time

points on the defined time grid. In these first simulations, random measurement error/noise

is not induced into the process since the purpose of this simulation was to confirm agreeing

LMI results from the analytic solution and the simulation.

In all cases the drop in association is clearly detected, and all of them contain valid

information about the shift in association. Given the prior knowledge of the abruptness of

the shift in behavior association, some researchers may prefer the upward and leftward plots

of Figure 5.10 that show a steep drop in LMI to reflect the true nature of this correlatory shift.

However, the gradual decline in LMI in the downward and rightward plots of Figure 5.10

which are using larger bandwidths indicates a constantly increasing number of time points

that are in the zero-association region of the time domain. The larger bandwidth, however,

do not depict the perfect association as well since they are unable to avoid spanning the

region of the behavior shift for animal 2.
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Figure 5.9: The localized mutual information based on the movement in Figure 5.7. The
golden lines represent the LMI longitudinal component computed analytically disregarding
the cases where the LMI window crosses the behavior transition. The upper line in at√
2 ln(N) (which is the logarithm used in the implemented code) where N is the number

of bins. The golden dot is the LMI analytically evaluated at t2 which was shown to be√
2/2 log(N). Note that for plots with bins > bw, the large difference between the analytical

and the computed LMI values is a result of the use of a more efficient binning procedure which
drops excessive bins which lowers the maximum measurable entropy. Refer to Appendix7.2
for an example of a more similar binning procedure [48]. Note that for bw = 32, we have not
evaluated the full analytic solution since the extremely large bandwidth requires additional
boundary condition considerations that are not the main focus of this section. Instead, we
have only plotted the LMI at ti2 = t2, and we have plotted the maximum and minimum
potential LMI as reference lines.
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Figure 5.10: The localized mutual information functions for an array of bandwidths for the
simulation show in Figure 5.7. Note that using too many bins with too few sample points
(as determined by bw) is discouraged. It is clear that a good discretization should involve
trying to reduce the behavior found in the sampled points into fewer bins than there are
points. The intial dip in LMI in the lower left plots is a results of the unnecessarily large
choice of bins and the bin reduction procedure for the longitudinal component. More details
about the binning and bin reduction prodcedure can be found in the following source [48]
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5.2.3 Simulation 2: Association Shift Sensitivity

Similar to the first simulation, where in the first half of the time domain both animals move

linearly at the same speed, another simulation is constructed to assess the measure’s ability

to detect shifts in movement association that are similar functionally, but marked by a clear

change in the relationship of two animals. The linear movement characterizing the animals

in the first half of the time domains would be similar to herd/pack behavior or cooperative

hunting in the case of solitary apex predators if the animals are close in proximity. If they

are far apart from each other, this could characterize migratory movement induced by a

similar climate dependent or seasonal shift in behavior.

The generation of independent and identically distributed noise with no propagated/auto-

correlated error is important as a part of this simulation in order to ensure that the underlying

movement generated is preserved, but at the same time partially confounded. Error defined

in this way characterizes standard instrumentation error for GPS tracking devices where

measurement error of some magnitude is inherent, and it is important that the LMI measure

can still detect a shift in behavior in a simple movement scenario.

The generated movement of the first animal is defined by


x(ti) = ti + ax1 + ϵti ti ∈ [0, 30]

y(ti) = ti + ay1 + ϵti

,

and for the second animal

x(ti) = ti + ax2 + ϵti ti ∈ [0, 15)

y(ti) = ti + ay2 + ϵti

x(ti) = bx2(ti − 15)2 + x(ti = 15) + ϵti ti ∈ (15, 30]

y(ti) = −by2 ∗ (ti − 15) + y(ti = 15) + ϵti

,
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In our simulation, the coefficients are selected with an effort to generate movement where

one animal returns to the same region as the beginning of the simulation (ax1 = −1, ay1 =

0, ax2 = 1, ay2 = 1, bx2 = −1/15, by2 = −1.15). The time domain is scaled to give an example

when position is monitored hourly for a 30 day period, with a shift in behavior occurring at

Day 15. The generated process characterizes perfectly associated movement from ti ∈ [0, 15],

as shown in the prior simulation, with a subsequent drop in movement association as the

second animal turns sharply and moves with a different relationship between latitudinal and

longitudinal movement. It has been confirmed that the scaled global mutual information

from t ∈ [0, 15] is perfect/maximized (rel GMI = 1.00), and the global mutual information

from t ∈ (15, 30] drops notably with the shift in behavior (rel GMI = 0.93).

The challenge of interest is that the shift in movement association is stark, but the

movement trajectories in the second time window are only subtly different. In brief, quadratic

and linear functions are similar functionally, especially in small monotonic regions of the time

domain for quadratic functions. As a result, the relatively high association between the two

animals in the latter time window is expected since the strictly linear movement of Animal

1 can still sufficiently explain the quadratic movement of Animal 2. It is our objective in

this first simulation to assess if the LMI measure proposed successfully detects this shift and

when it fails to effectively do so.

In Figure 5.11, the first round of simulations is performed with 4 different bandwidths,

and zero error induced into the generated movement model. In this case, all bandwidths

successfully detect the drop in movement association between the two animals, but smaller

and larger bandwidths are detecting different but equally interesting features. The lower

bandwidths of bw = 2, 4, identify the largest drop in association on the [0, 1] scale for LMI,

but the larger bandwidth clearly mark the lowest point of association at the exact location

of the shift. The reason for this is because time windows (centered on some ti) that overlap

the behavior shift are more disparate than time windows that don’t overlap the transition.

More specifically Animal 2’s movement is not monotonic in the neighborhood surrounding
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Figure 5.11: Simulation 2 movement with ϵti = 1.0. (Lower) LMI functions with various
bandwidths (bw) and number of bins (bins) set to 4 for the discretized estimation of the pmf
for each time window surrounding ti.
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Figure 5.12: (Upper) Simulation 2 movement with ϵti = 0. (Lower) LMI functions with
various bandwidths (bw) and number of bins (bins) set to 4 for the discretized estimation of
the pmf for each time window surrounding ti.

the behavior shift, and LMI will record higher associations for regions where both animals

have monotonic movement.

In this movement scenario another two rounds of simulations are performed in which

the iid error is increased from ϵ ∼ N(0, 0) to ϵ ∼ N(0, 1.00). In Figure 5.12, the each set

of simulations are shown with the same bandwidth parameters considers previously. All

bandwidths satisfactorily detect a shift to lower association where the smaller bandwidths

identify the shift as a stepwise/abrupt behavior shift. Bandwidth selection is studied in

more detail in the Simulation 5 Section. It is apparent that substantial increases to noise do

not inhibit the LMI measure’s ability to detect shifts in behavior association, although the

induced error prevents the model from detecting perfect association in the first half of the

time domain. Three important conclusions from this simulation are summarized:

1. Increasing random measurement error (which is assumed to be iid for each time point)
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marginally decreases the LMI measure’s ability to detect an underlying process and associa-

tion of animal movements. Any increase in the independence of a process will, by definition,

lower the mutual information between two animals. If the errors have related/autocorrelated

error terms then this issue would be clearly reduced. This is not shown since it is not the

primary focus here, but the autocorrelation of error is possible if both animals are moving

in a same region with poorer GPS signal. However, even in the presence of high iid error at

each time, the measure still detects the shift and preserves the clear decline in association

surrounding the time of the behavior shift.

2. Because of 1., it is important to note that it is advisable to smooth a process prior to

using the proposed LMI measure. Smoothing splines, as an example, can be used to filter

noise out of process that is known to be continuous, and the process is then represented by

a Fourier or B-spline (polynomial) model which both have exceptional properties (such as

differentiability) [44, 45, 46]. This was done in prior work with the LMI measure [40].

3. The proposed measure is highly sensitive to transition-states between behaviors. The

LMI measure in all cases indicates that the time of lowest association between animals is

in the direct neighborhood of the behavior shift as opposed to the entire last half of the

time domain. This is attributed to the inability of linear movement to adequately contain

information about an abrupt turning motion. As such, LMI shows evidence of being an

exceptional measure for shift detection in the association of animal movements.

5.2.4 Simulation 3: Cross-dimensional/Cross-directional Movement

Association

In this simulation, we highlight a nuance of LMI, as defined in this work, that can be

addressed when necessary, with a modification to the LMI measure. It has already been

shown in Simulation 1 that, at any time ti, if one animal is not moving while the other

is moving, then we expect I(t = ti;λ) = 0. In the first simulation, this was true in the

case where one animal was simulated to be stationary in both the latitude and longitude
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Figure 5.13: (Upper) Simulation 3 movement paths for strict cardinal movement generated
with ϵti = 0 and 0.05 respectively. (Lower) The LMI Functions for the corresponding
movement paths from the upper plots.

directions.

We propose another simple movement model where one animal moves due north, and the

other animal moves due east. Animal 1 and Animal 2’s movements are defined by


x(ti) = ti + ax + ϵti ti ∈ [0, 1]

y(ti) = 0 + ay + ϵti

,

and 
x(ti) = 0 + ax + ϵti ti ∈ [0, 1]

y(ti) = ti + ay + ϵti

.

Figure 5.13 presents the resulting LMI from t ∈ [0, 1], and we only consider zero random

error and some arbitrarily induced random error ϵ ∼ N(0, 0.05). Although perhaps a nuance,

the results of this simulation indicate a clear weakness in the proposed measure of LMI. Since

37



Figure 5.14: (Upper) Simulation 3 movement paths generated with ϵti = 0 and 0.05 respec-
tively with rotation off the cardinal axes. (Lower) The LMI Functions for the corresponding
movement paths from the upper plots.

the joint (latitudinal and longitudinal) LMI measures only sums the association of a pair

of animal movements by matching directional components, the measure is not detecting the

strong cross-directional association. Ironically, in this extreme situation, inducing error

into the process marks the animal movement behaviors as highly associative, although not

perfectly associated as would be desirable.

Another similar movement model is proposed where the same movement is rotated off-

parallel with the Longitude and Latitude axes. We now define Animal 1 and Animal 2’s

movements by


x(ti) = ti + ax + ϵti ti ∈ [0, 1]

y(ti) = −0.20 ∗ ti + ay + ϵti

,
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and 
x(ti) = ti + ax + ϵti ti ∈ [0, 1]

y(ti) = 5 ∗ ti + ay + ϵti

.

These movement path’s are perpendicular in R2 since both animals move at the same speed

in the longitude-direction while Animal 1 and Animal 2’s latitudes changes at a rate of -0.20

and +5 the rate of change in longitude. In Figure 5.14, the LMI measure is assessed with

the same bandwidths and error terms.

The rotation of movement yields a strong association which in comparison to the prior

simulation marks an interpretation challenge for our measure of LMI that must be addressed.

In Figure 5.14, the LMI measure is assessed with the same bandwidths and error terms.

This is shown in Figure 5.14. For empirically observed or estimated movement trajectories,

it is clear that witnessing a two animals movement exactly parallel to lines longitude and

latitude is unrealistic, and so this measure is robust for most animal movement modeling

problems.

However, this simulation still identifies an intriguing issue that stems from the defini-

tion of our current measure of LMI, which does not account for cross-directional movement

association. We propose examples of where a better measure of LMI should be considered:

1. Landscape structure at two distant sites: Consider two animals of the same species

that reside along two different rivers. The first river runs approximately north-south and the

second river runs approximately east-west. If the animals both move similarly along these

rivers then the strongest relationship in their movement is expected to be cross-directional.

This would be realistic for jaguars that hunt along similar waterways and may be located in

disjoint habitats.

2. The example laid out in (1) would also hold for other land features. In Figure 5.15,

an elevation map of the San Francisco Peaks of Northern Arizona is depicted. In this image,

it is clear that the highest ridge is geographically curved, almost completing a full circle. If

animals in this ecosystem have a tendency to move on the steep slopes of this range in the
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Figure 5.15: Topographic Map of the San Fransico Peaks and the surrounding section of the
Coconino National Forest near Flagstaff, Arizona. The intent of presenting this figure is to
draw attention to the natural C-shaped or bowl-shaped curvature of this mountain range.

same way, then it is expected that two animals could have strong cross-directional association

in their movements. Although, it would be highly unlikely to observe zero LMI (as in our

simulation), if their movement associations are largely cross-directional, then a lower LMI

would be reported than if they were on identically oriented terrain.

3. Transportation data. Although not tied as closely to the field of movement ecology, the

movement of planes, passenger vehicles, and trains etc. may be marked by cross-directionally

related behavior, since the behavior of human transportation is largely more predictable.

As an example, cars and trains will almost always follow roadways, railways, and air-routes,

and many examples could be contrived to justify the presence of cross-directional association
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similar to (1) and (2). However, the integration of human and animal telemetry data has

been considered in recent years which may mark an important future integrating human

and animal movement and the detection of associations between such movements [41]. In

the Discussion section, we propose a simple modification to our current measure of LMI to

handle cross-directional association.

Another alternative would be to consider a different information theoretic measure. Total

Correlation, also referred to as the Multiinformation is an extension of mutual information

to quantify the dependency among a set of n random variables [48]. This measure is a logical

and simple approach to addressing this issue, but there may be reason for still considering

an component-wise measure of association as defined in this work. As an example, a re-

searcher may be primarily interested in latitudinal association, and the approach considered

in this work retrieves this information directly. Although no definition of Localized Total

Correlation (LTC) is considered, the R code provided in the coding LMI section could be

quickly reconstructed for the user to choose between computing LMI and LTC. The R code

is provided in Appendix 7.4.

5.2.5 Simulation 4: Delayed Onset/Tracking Movement Association

In the first two simulations, animals that traveled alongside each other with the same be-

havior were shown to have perfect association as measured by the LMI measure. It becomes

instructive to identify if the LMI measure identifies perfect association between animals that

exhibit the same behavior but not at the same time. There are multiple scenarios where

this would be important to consider in animal movement applications: Broadly, examples

of this behavior would include, hunting/tracking behavior, scat/scent marking, commensal-

ism (such as bison plowing paths in deep snow for pronghorns), scavenging, herd behavior,

mating behaviour, and migratory behavior. In each of these cases, it would be of interest

to researchers to identify how much time in a week, month, or season is marked by strong

association between a subjects within predator and prey populations in an ecosystem. Two
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examples are elaborated on further. Delayed regional migration of birds, such as arctic terns,

could also be characterized in this manner. Recent literature has provided evidence that arc-

tic tern colonies across the Northern Hemisphere share common migratory routes, and as

such, the movements of some colonies along similar routes may be delayed by several days

or weeks [49]. Although not explored in this work, in the neotropical apex predator applica-

tion that follows, jaguars, like many large cats, use scent and scrape marking strategies to

passively communicate with each other [50, 51]. If predators are following similar routes to

marked sites, then this could classified as a type of following behavior. The same may apply

for males that are in search of females during a mating season.

In this simulation, the movement pattern complexity is increased to explore nonlinear

movement. A simple example using “line drill/gym suicides” motion is shown first. I model

Animal 1’s and 2’s movements by


x(ti) = axjsin(ti) + ϵtix

y(ti) = ayjsin(ti) + ϵty,

and 
x(ti) = axjsin(ti − φ) + ϵtix

y(ti) = ayjsin(ti − φ) + ϵtiy.

For both animals, this movement is characterized by path retracing where additional time

is spent at the ends of the path. In Figure 5.16, their movement is modeled to be identical

except for a phase shift of φ = π/2. We consider two scenarios with ϵ = 0, 0.2. Although

clearly simplified, this movement characterizes a simple staggered migration between two

locations, where an animal (such as a migratory bird) spends more time at the far ends of

the route, and less time at any given position in between destinations.

In both cases, the LMI identifies perfect association in the animal movement paths with

short periodic drops in their association, occurring at t = π/2, π, 3π/2. Over the domain of

t ∈ [0, 2π], these are the locations where the animals are briefly at points where one animal
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Figure 5.16: Simulation 4 Linear Tracing Movement Paths. (A) [Upper] plot show the
induced temporal phase shift of φ = π/2 for the Longitudinal component. [Center] The
generated movement paths in R2 with ϵ = 0, 0.2. [Lower] The LMI functions for each of the
respective errors. (B) Same as detailed for (A) but with φ = π/4.
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is either at an inflection point or a critical values on the sine function while the other animal

is at the opposite. The magnitude of the drop in LMI computed during these short windows

is dependent on the bandwidth, and the number of bins used in the discretization process

although this is not shown in these simulations. The strong association is also well-captured

in the presence of iid error.

In the second scenario, we consider the exact same movement behavior, but with a phase

shift of φ = π/4. In the right column of plots in Figure 5.16, the periodicity of the drop from

perfect association in LMI changes to t = π/2, 3π/4, 3π/2, 7π/4. At t = π/2, 3π/2, animal

1 is experiencing a direction change while the other animal continues to move in the same

direction. At 3π/2, 7π/4, animal 2 is experiencing the same (but delayed) direction change.

In both scenarios shown in Figure 5.16, the change in direction of either animal marks

the dip in LMI. In essence, this is an identical phenomena to the drop in LMI shown at the

behavioral shift in the Simulation 2 section; at an inflection point, the temporal neighbor-

hood is monotonic, and at the critical values, the temporal neighborhood is not monotonic.

More specifically, on a small window surrounding a direction change at a critical value, the

surrounding time points characterized an even function (symmetric about ti; f(t) = −f(t)).

On a small time window at any other location, the surrounding time points characterize

either an odd function (f(t) = f(−t)) in the case where the other animal is at an inflection

point on the sine curve or the function is neither even nor odd.

Two more scenarios are considered for a more complicated moving pattern where two

animals follow each other in a circle with some phase shift. Animal 1 and 2’s movements are

modeled by 
x(ti) = axjsin(ti) + ϵtix

y(ti) = ayjcos(ti) + ϵty,

and 
x(ti) = axjsin(ti − φ) + ϵtix

y(ti) = ayjcos(ti − φ) + ϵtiy.
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Figure 5.17: Simulation 4 Circular Tracing Movement Paths. (A) [Upper] plot show the
induced temporal phase shift of φ = π/2 for the Longitudinal component. [Center] The
generated movement paths in R2 with ϵ = 0, 0.2. [Lower] The LMI functions for each of the
respective errors. (B) Same as detailed for (A) but with φ = π/4.
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In these two scenarios, shown in the Figure 5.17, φ = π/12 and φ = π/2 respectively.

The same conclusions from the prior scenarios are achieved here, where perfect association

is detected except for at critical values in position for either animal, and in the presence of

substantial iid random error, the same association is clearly detected. It is clear from the

simulations in this section that proposed LMI measure is an exceptional tool for detecting

following/tracking behavior. In order to eliminate the dips in LMI that would occur when

either animal changes direction while the other continues along a monotonic trajectory, curve

registration or warping would be required to align the curves. However, in many scenarios

it is clear that this small dip may not occur biologically since tracing patterns may not

resemble those shown in these simple simulations. Further, the instances where one animal

changes direction while the other remains on a steady course may be important landmark

features that should not be filtered out. As a result, this measure does not explicitly require

curve alignment models to detect strong by delayed associative movements.

5.2.6 Simulation 5: Implications of Parameter Selection for Bandwidth

and Bins

In the Simulation 1 and Simulation 2 sections, there are clear (asymptotic) trends in the shape

of the computed LMI function as the bandwidth and the number of bins used to construct

the pmfs for each animal increases. There is also the question of what time resolution is

required to uphold the integrity of the LMI measure. In the two sets of simulations in this

section, I examine two distinct types of movement in a unit square. The first movement

model simulates Brownian particle movement for both animals, and the second simulates

identical but phase shifted cyclic movement for both animals similar to prior simulations in

this work.
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The Brownian movement models are both defined by


x(ti) = ϵtix t ∈ [0, 1]

y(ti) = ϵtiy

ϵtix, ϵtiy ∼ Unif(0, 1).

For this movement model, characterized by jittered/random movement in the square

[0, 1]× [0, 1], it is expected that no association should exist in the movements of two animals

generated by this process. We measure LMI for a time resolution of 2, 4, 8, 16, 64, and

512 time points (including boundary times). We also consider bandwidths ranging from

bw ∈ [1, 8] and number of bins ranging of 2, 3, and 4. The large collections of simulations

described here are depicted in Figure 5.18.

For a small number of points, high and moderately-high LMI is detected at most or all

time points, and in the case of only having two points for each animal, the LMI measure

always reports perfect association. As the time resolution (number of points) increases, the

LMI is gradually driven to zero. Further, increasing the number of bins increases the LMI

measure for all simulations where the time resolution permitted for an increase in bins. As

an example, it would not make sense to discretize a movement path with only 4 observed

locations using 8 bins, and the same concept applies for a local time window. The increases

in LMI for increasing number of bins can be offset by increasing the bandwidth parameter.

This is shown clearly in the final two rows of 5.18.

The second set of simulations are intended to juxtapose the Brownian particle motion

simulation. Animal 1 and 2 have movement defined by


x(ti) = axjsin(ti) + ϵtix

y(ti) = ayjsin(ti) + ϵtiy,
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Figure 5.18: LMI Sensitivity to low temporal resolution for Brownian particle movement.
The first column is the animal movement path in R2, and the remaining columns are the
computed LMI functions for an array of bandwidths and bins.
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and 
x(ti) = axjsin(ti − ϵφ) + ϵtix

y(ti) = ayjsin(ti − ϵφ) + ϵtiy.

On the unit square, ϵtix, ϵtiy ∼ N(0, 0.025), and ϵφ ∼ N(0, π/12). The random phase

shift, ϵφ, allows for the animal to follow farther or closer that a fixed phase shift as shown

in previous simulations.

In Figure 5.19, the same parameters for bandwidth and number of bins are examined, and

it is clear that the same problem exists for extremely low temporal resolutions where perfect

or near perfect association is computed. However, as the temporal resolution increases the

association between the animals stabilizes with clearer structure that is not trending towards

zero like the Brownian motion simulation. This section motivates guidelines for the use of

this measure pertaining to required temporal resolution and tuning the bandwidth, and

number of bins parameters. These guidelines are provided in the Discussion Section.

5.2.7 Simulation 6: Simulating Male-female Neotropical Predator

Movement Association

The final set of simulations are motivated by the first implementation of this measure on

monitoring male-female and male-male jaguar movement associations [40]. In one case de-

tailed in this work, a male jaguar (Jaguar 18) relocated to the same region as a similar aged

female (Jaguar 12). There were several periods of high co-occurrence potential which were

finally followed by Jaguar 12 removing herself by approximately 30km before returning to

the same location two months later. At the end of the time window of high co-occurrence

potential, the proposed LMI measure detected a sharp decline to nearly zero using a band-

width of 48 hours (or 4 days) [40]. This section aims to explore this specific behavior in a

controlled simulation.

In the construction of an appropriate advanced animal movement simulation, it is best

49



Figure 5.19: LMI Sensitivity to low temporal resolution for cyclical movement association.
The first column is the animal movement path in R⊭, and the remaining columns are the
computed LMI functions for an array of bandwidths and bins.
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to consider 3 primary objectives: (1) the simulated movement must mimic the complexity

of animal movement in residential/courtship and migratory states, (2) the simulated move-

ment should also be simplified to a single transition period to clearly illustrate shifts in the

implemented LMI measure, and (3) the proximity of the male-female pairs must be reason-

ably captured in the residential/courtship and migratory state. For the residential/courtship

state, the following random walk model is proposed for both male and female jaguars:



x(ti) = sin(ti) + ϵtix t ∈ [0, 30)

y(ti) = cos(ti) + ϵty

ϵtix = ϵti−1x + ωtix

ϵtiy = ϵti−1y + ωtiy

ωtix and ωtiy ∼
iid

N(0, σ2)

where x(ti) and y(ti) are the longitudinal and latitudinal position of the animal at time i,

and ϵ is an autocorrelated error term associated with an animals movement at time i and

i− 1.

This is a simplification of the solitary, but often related, non-stationary movements of

male and female jaguars during courtship. This period of time is marked by frequent periods

of high co-occurrence potential with regular periods of separation. The modeled movement is

circular by definition, but “drifting” movement is induced through the autocorrelated error

terms ϵti which is an important consideration in modeling animal movement since deviations

in foraging behavior may result in temporary or permanent shifts in movement trajectories.

The initial condition/position of each jaguar is randomly instantiated within some arbitrary

distance of the origin. As the movements of two jaguars under this simulated process will be

marked by similar characteristics, the measure of LMI over this section of the time domain

is expected to be high regardless of proximity.

In the following female migration state, the male jaguar will be set to continue his pre-
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scribed territorial movement as detailed previously. The female’s movement behavior, how-

ever, will immediately transition to a migratory state modeled by



xf (ti) = xf (ti−1) + αϵtix + β|xm(ti)|+ ξtix t ∈ [30, 60]

xf (ti) = yf (ti−1) + αϵtiy + β|ym(ti)|+ ξtiy

ϵtix = ϵti−1x + ωtix

ϵtiy = ϵti−1y + ωtiy

ωtix and ωtiy ∼
iid

N(0, σ2)

ξtix and ξtiy ∼
iid

N(0, σ2)

where xf and yf are the female’s longitudinal and lateral position, and xm and ym are

the male’s longitudinal and lateral position which was generated from the first simulation

model. This migratory model induces a repelling dependency between the male and female

pair where the movement of the female is propelled based on the position of the male. The

terms α, β = 0.01 are scalars used to weight the value of the autocorrelated error term and

the male position term to provide a realistic migration of the female that is not strictly linear

since resource distribution and land cover may cause deviations from a direct straight-line

migration away from her previous home range shared by the male. The initial condition

for the female in this second time window, t0, is set equal to the final position from the

simulation generated for the first time window for the female to ensure that the generated

path is a piecewise continuous process.

In Figure 5.20, the generated male and female movement models are shown in the three

rightmost plots, and the autocorrelated error term progression is shown in the 2 leftmost

plots. Both the male and female jaguar move in “drifting circles”, and then the behavior

transition of the female is stark and enduring for the remainder of the time domain. In

the 60 day time period simulated, positions are generated every hour which yields 1440

points on the resulting time grid. In Figure 5.21, the LMI for their movement vectors
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Figure 5.20: Simulated movement path for male (blue) and female (orange) jaguars with a
behavior shift induced into the females movement at t = 30
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Figure 5.21: LMI function computed for an array of bandwidths and number of bins. The
overlaid magenta line in each plot is a LOESS trend line.
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is computed with bw = 10, 50, 100, and bins = 2, 6, 10. Recall that at any given time

point ti the maximum attainable LMI is computed, and then the joint LMI measure is then

scaled with respect to the maximum potential LMI, where LMI(ti) = 0.00 identifies that no

information about the movement of one jaguar is detectable from the other, and LMI(ti) =

1.00 identifies that all information contained in one jaguar’s movement is detectable from

the other. The final LMI functions have 1440 points which are all depicted with a locally

estimated scatterplot smoothing (LOESS) overlay to discern trends in cases where over-

plotting of points in apparent.

For all combinations of bandwidths and number of bins, the LMI measure successfully

identifies strong association between the male-female pair during the time where both are

in a residential state even though they are both subject to independently autocorrelated

error terms. The LMI measure also successfully detects the shift in movement association.

The detected shift in behavior is most apparent when increasing bandwidth and number

bins, and the functional structure of the computed LMI functions is refined/de-noised. Of

particular interest is the upper-right plot with bw = 100 and bins = 2. In this scenario, the

drop in LMI is abrupt and bottoms out at exactly t = 30, where there is a “cusp-like” shift

in behavior. With our prior knowledge of the abruptness of the induced shift in behavior,

the LMI measure, with this choice of parameters, does an exceptional job at locating the

sharp drop in movement association. As a reminder, bw = 100 indicates that the time

window for each local measure of LMI is 200 hours, equivalently 8.3 days. All of the plots

in the right most column shown declining association in 200 hour window LMI measures.

There is a peculiar spike in LMI shown in these plots which can be attributed to the similar

latitudinal behavior of both animals for approximately t ∈ [40, 50]. This can be seen in the

bottom-center plot of Figure 5.20, where both the male and female have repeated instances

where their latitudinal position is increasing in unison.
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5.3 Summary of LMI Measure Characteristics

This work details a rigorous process of evaluating a new measure of association between GPS

detected movement paths or estimated trajectories. I summarize the important details of

this work with commentary when necessary.

1. Non-negativity, Symmetry: the LMI measure is shown by proof to be semi-positive

definite and symmetric.

2. Monotonic relationship with ρ. Although shown for only normally distributed random

variables, it is shown that increases in correlation between two variables also indicates

an increase in the LMI measure. This would need to be shown for other distribu-

tions more generally in future work to confirm that this is true for a wider range of

distributions from the exponential family.

3. Shift Detection: The LMI measure is an effective tool for detecting a shift in the

association of animal movements even if the shift is functionally subtle. Shifts from

monotonic to non-monotonic movement for only one of the animals yield large drops

in movement association in the neighborhood surrounding such behavior.

4. Cross-directional association: Perhaps the primary disadvantage of the presently evalu-

ated measure of LMI is the absence of cross-directional association detection. I propose

a simple modification to the current measure that would address this disadvantage. The

new measure is expressed by



I(t;λ) = ILi
(X, Y |λ) with Li = {t|t ∈ [ti − λ, ti + λ]},

where ILi
(X, Y ) = νi × (ILi

(X1, Y1) + ILi
(X2, Y2)) + (1− νi)(ILi

(X1, Y2) + ILi
(X2, Y1)),

νi ∈ [0, 1]

I(Xj, Yj) =
∫ ∫
X×Y

p(X,Y )log
p(X,Y )

pX(x)pY (y)
dxdy for j = 1, 2.
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The terms in this model are not squared or square-rooted as in the measure of LMI

defined in this project, which is not necessarily needed since the mutual information

components used to compute LMI are shown to be non-negative. The critical modifica-

tions in this proposed measure are the incorporation of two additional cross-directional

measures of mutual information for the relationship between animal 1 and animal 2’s

longitude and latitude respectively and vice versa. An important question of the value

of cross-directional versus standard mutual information on a time window Li is more

important to detect and visual in the final outputted LMI function visualizations. The

parameter ν could be defined uniformly across the full time domain to value cross-

directional and standard LMI equally with ν = 0.5 or with ν = 0, 1 the standard

or cross-directional LMI would be completely disregarded. The νi, corresponding to

a specific time window Li, could be specifically set for certain portions of the time

domain to up-weight cross-directional mutual information when (as an example) the

aspect of the slope that two animals are on are estimated to be near perpendicular.

5. Delayed Onset tracking movement: The LMI measure is an appropriate tool for de-

tecting following or path-tracing/tracking behavior. This attribute of the measure

will have practical uses in monitoring larger volumes of animal migration data and

predator-prey dynamics, as well as human-animal interaction applications in cases,

where human movement/transportation can be tracked over the same time period.

6. Tuning Parameters: Giving the user parameters to subjectively tune could be consid-

ered a disadvantage, but we argue against this notion as it is an opportunity for the

researchers, implementing such a measure, to use field expertise to adjust the measure

to the application or behavior of interest. A researcher may be particularly interested

in short-time correlations (correlations measured over a few days or weeks) or long-time

correlations (perhaps measured over months, seasons, or even years). Our approach

allows researchers to consider either with minor adjustments to the input parameters
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for the measure The parameters are not abstract: bandwidth controls the size of the

temporal neighborhood used to measure correlation between animals at a given time,

and number of bins controls the complexity of discretized movement over that same

neighborhood. As mention in (4), locally adaptive parameters would be an interesting

extensions of this measure.

As a whole, this work justifies the use of bandwidth derived correlation functions. Mutual

information is a highly flexible measure of association that can handle violations of mono-

tonicity that challenge the use of Pearson and Spearman correlation measures. I return to our

ultimate proposed question: What does correlation mean in animal movement? Correlation

is ultimately a measure of dissimilarity of two processes or observational units. In move-

ment ecology, any characteristics that make the movements of animals more similar should

be detectable by some dissimilarity metric. Correlation in movement paths or trajectories

should be a flexible idea, and there should be several types of movement behaviors that are

identifiable prior to a full statistical modeling process. In any standard regression analysis

it is common practice to examine a correlation matrix of predictor and response variables

and the variance inflation factor. We should model this process in movement ecology by

considering metrics that detect association between movement trajectories of all animals in

the study. I emphasize that this notion of dissimilarity is a means as opposed to an end

objective. Dissimilarity measures are a vital tool in modern statistical modeling, especially

unsupervised machine learning and spatial statistics.

I encourage the prescribed use of this measure, and more importantly, I encourage others

to challenge the understanding of movement association in telemetric data analysis laid out

in this work.
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6 Smoothing Splines of Apex Predator Movement: Functional Modeling

Strategies for Exploring Animal Behavior and Social Interactions

The work in this section has largely been published in Ecology and Evolution, and ideally

the work in this section should be referenced using the following citation:

Whetten A.B. (2021). Smoothing Splines of Apex Predator Movement: Functional Modeling

Strategies for Exploring Animal Behavior and Social Interactions. Ecology and Evolution.

Vol 20 (Issue 11). DOI: 10.1002/ece3.8294

6.1 Summary/Abstract

The collection of animal position data via GPS tracking devices has increased in quality and

usage in recent years. Animal position and movement, although measured discretely, follows

the same principles of kinematic motion, and as such, the process is inherently continuous

and differentiable. I demonstrate the functionality and visual elegance of smoothing spline

models. I discuss the challenges and benefits of implementing such an approach, and I

provide an analysis of movement and social interaction of seven jaguars inhabiting the Taiamã

Ecological Station, Pantanal, Brazil, a region with the highest known density of jaguars.

In the analysis, I derive measures for pairwise distance, co-occurrence, and spatiotemporal

association between jaguars, borrowing ideas from density estimation and information theory.

These measures are feasible as a result of spline model estimation, and they provide a critical

tool for a deeper investigation of co-occurrence duration, frequency, and localized spatio-

temporal relationships between animals. In this work, I characterize a variety of interactive

relationships between pairs of jaguars, and I particularly emphasize the relationships in

movement of two male-female and two male-male jaguar pairs exhibiting highly associative

relationships.
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6.2 Introduction

Technological advancements in remote sensing of animal movement, referred to as animal

telemetry, have revolutionized the discipline of movement ecology. Animal movement data

provides critical information about ecological processes, and it can be a vital asset to conser-

vation efforts of species and ecosystems. The increased feasibility of tracking and collecting

animal movement information has yielded large reservoirs of fine-scale spatio-temporal data,

and the challenges of meaningfully modeling animal behavior have resulted in the expansion

of holistic machine learning methodology that appropriately considers animal psychology

and cognition [7, 5, 2].

The analysis of animal telemetry data has a number of challenges. (1) Spatial and

temporal density of measurements is subject to extreme variation. Animal behaviors may

shift phenologically between migratory and residency states, and even for non-migratory

species, this problem can present itself in a smaller scale region as animals shift between

resting, foraging, or transit states. Temporal density variation may be caused by loss of

connection, malfunctioning, and damage of the device over time. (2) Even with advancements

in precision and reliability of animal tracking, the datasets are inherently discrete, and any

analysis of such data requires a conscious choice between modeling such processes discretely

or attempting to model them continuously. (3) Animal behavior cannot be univariately

characterized. Animal movement is characterized by position, rate of change of position,

and co-occurrence with other animals, all of which may suddenly shift under interactions

with an array of environmental factors that alter the allocation of critical resources for

survival [5, 2].

Discrete time methods have had steady use in the field [8, 9, 10, 11], but recent litera-

ture has provided significant progress in continuous-time modeling [12, 13, 14, 15]. Animal

movement is explicitly continuous, like any kinematic process, and continuous-time models

celebrate and take advantage of this continuity in the modeling process. These models are
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exceptional and flexible tools for modeling the complexity of animal movement. However, I

emphasize that we should more fully embrace animal movement as a kinematic process. We

must acknowledge that projectile movement in a real space Rd is smooth, and I propose that

we further consider modeling strategies and methodological developments that account for

the 1st and 2nd order differentiation of a animal movement processes.

I present a philosophically different approach for analyzing animal telemetry in which

the unit of analysis is a curve (or function) as opposed to single site measurements. This

approach, widely referred to as functional data analysis (FDA) roots in the assumption

that measurements vary over some continuum such as space or time, and that there is an

underlying smoothness inherent to the process of interest [44, 45, 52]. The assembly of an

entire smooth curve of an animal’s movement is accomplished using linear combinations basis

functions which are the foundation of smoothing spline models. They are widely acclaimed

for their ability to model complex and noisy data [44].

Animal movement is a visual spectacle, and the statistical visualization of animal move-

ment is greatly aided using smoothing splines. FDA methods provide a viable and accessible

option for examining an estimated complete path and the speed and acceleration (and de-

celeration) along this path, which are vital in the classification of various types of animal

behavior. There have been recent basis function models proposed to model animal move-

ment [7, 53, 54, 55, 56], but there is great need to incorporate a wide array of strategies for

an appropriate and application-specific exploration using smoothed spline models.

In this project, I analyze and visualize the movement of seven Jaguars inhabiting the

Taiamã Ecological Station, Pantanal, Brazil and the associative and co-occurrence relation-

ships between them. Fine-scale movement of jaguars in this region has recently been explored

using association rule mining algorithms to study their behavior and social interaction. Iden-

tifying behavioral changes and social interactions are crucial aspects of species ecology, and

this recent work has added to literature of jaguar territory sharing [19]. Jaguars are gener-

ally solitary and territorial apex predators, but in areas with high primary productivity, the
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overlap of territory and its effects on mating, cooperation, and competition yield a complex

system of interdependent subjects that can directly or passively interact [19, 57, 58].

I construct smoothing spline models to continuously and differentiably characterize the

movement, resting, and migratory behavior of these 7 jaguars. These smoothing spline

models provide exceptional fit, and they provide the means to feasibly measure animal

association using a measure of mutual information from the discipline of information theory.

Further, I introduce the concept of a Co-occurrence Potential Plots which are smooth density

functions derived from the distance between pairs of jaguars on the refined and unified grid.

The refinement and unification of the time-grid is an inherent and advantageous by-product

of spline models.

In efforts to improve upon the previous work in Fontes et. al., this analysis accomplishes

two primary objectives: (1) An estimation of co-occurrence potential which has a conserva-

tive theoretical standing in the presence of measurement error for lower raw time resolution

and allows for inferences to be made between observations on the raw time grid, (2) A

derivation of a correlation function based on animal movement, which captures shifts in the

associations between individuals. In (1), the conservative theoretical nature of this measure

refers to the difference between co-occurrence potential and co-occurrence frequency, where

co-occurrence frequency is a count of the amount of times that two animals occur within a

certain spatial and temporal radius, and co-occurrence potential is a measure of the density

of time values on a time grid where two animals are within a radius where there is high

probability of co-occurrence based on the ability of the animals to interact in between time

observations. The use of a density measure, such as co-occurrence potential, can be more

conservative since the constructed probability density function identifies time periods where

interaction is more likely as opposed to a simple count of time points. This application of

FDA methods to animal movement showcases the plausibility of studying animal movement

with the theoretical backing of the laws of kinematic motion, and most importantly, the ap-

proach provides an increased set of tools to improve the study animal movement in relation
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to dynamic social and environmental factors.

In this project, it is important to acknowledge that measurement error is not considered

since this attribute was not recorded in the public version of the data product. The exact

specifications of the utilized GPS tracking devices and a disclaimer regarding the data quality

are detailed in the following section. FDA methods exists to address measurement error for

various disciplines [7, 59, 60], and I leave this important and interesting aspect of animal

telemetry to future work.

6.3 Methods

Fitting smoothed spline models, provides a number of advantages for irregularly and sparsely

measured data that is known to vary over some continuum, but it is important to note that

some sacrifice of position is made in a model that aims to smooth a function through a

series of measurements [44]. More specifically, smoothing spline models differ from interpo-

lation models since the objective of interpolation is to fit a function that crosses through all

recorded measurements of a process with an error of zero, where as for smoothing splines,

the objective is to fit a simpler function that captures the main features of the process while

minimizes the error between the optimal function and the recorded measurements. Gen-

erally, smoothing splines are more informative as they prevent over-fitting to noise in the

raw data which can obscure critical features of a process. Since GPS positioning systems

have known measurement error (even though measurement error is not reported in this data

product), I aim to show that this sacrifice is worth the benefits of this approach, and further

that modifications to the model can be instated to adapt and improve this approach.

6.3.1 Fitting Smoothed Spline Models to Jaguar Movement

For a collection of raw hourly recordings of a single jaguar’s position, denoted by Ylat =

[ylat 1 . . . ylat n] and Ylon = [ylon 1 . . . ylon n], I estimate x̂lat(t) =
∑K

k=1 clat kϕk(t) and x̂lon(t) =
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∑K
k=1 clon kϕk(t) subject to a roughness penalty on the second derivative of the basis expan-

sion Φ = [ϕ1(t) . . . ϕK(t)] where ck are the coefficients of the terms of the basis expansion

denoted by ϕk, which in this project is constructed using a B-spline basis expansion [44, 46].

Both latitude and longitudinal movement can be individually expressed as an unconstrained

minimization defined by

min−→c
∥−→y − Φ−→c ∥2 + λcTRc for λ ≥ 0, (6.1)

where Rjk =
∑M

l=1 ϕ
′′
j (t̃l)ϕ

′′

k(t̃l)h for h = t̃l − t̃l−1 and the value M is the number or time

points on a fine time grid t1, . . . , tM . [44].

We select an appropriate value for λ using the optimal lambda for a single site determined

by the generalized cross-validation criteria, GCV = MSE(λ)

(1− dfλ
M

)
where dfλ = trace(S). The GCV

criterion is derived from the mean-squared error penalization criterion for the spline model

defined by

MSE(λ) =
∥−→y − Φ−→c ∥2

M − dfλ
(6.2)

For jaguar movement, I have fitted the spline models with low or negligible roughness

penalization, since the precision of movement is of high priority. The roughness of the

movement can also be restricted by latitude and longitude separately which may be on

interest if we seek to model movement with substantial differences in between latitudinal

and longitudinal behavior (such as long distance ungulate or bird migration), but for this

work the roughness is penalized equally for both dimensions. The resulting smoothed jaguar

movement curves have the form

x̂lat = Φ(ΦTΦ + λlatR)−1ΦT−→y = Slat
−→y lat. (6.3)

x̂lon = Φ(ΦTΦ + λlonR)−1ΦT−→y = Slon
−→y lon. (6.4)
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The jaguar’s 2-dimensional movement is then characterized by coordinates on the path

(x̂lon(t), x̂lat(t)) which has been done similarly in recent work [7, 61]. I note that Equations

(2) and (3) jointly characterize a two-parameter search for λlat and λlon. In all cases, although

an optimal GCV criterion can be detected, some additional tuning by visual inspection was

performed, and this is a common practice when constructing spline models to ensure that

critical shifts in animal position are being correctly captured by the model. With a GPS

tracking device of sufficient resolution, critical shifts in behavior should be discernible in the

presence of measurement error, and because of this it is important to not rely solely on an

optimization criteria when fitting such a model. Over-fitting permits too much roughness

in the model which ascribes measurement error to ecological behavior, and under-fitting

ascribes actual movement to measurement error.

In order to meaningfully estimate jaguar position across highly disparate densities of raw

time recordings, careful placement of knots is advised. Let (t1, . . . , tn) be independently

and identically distributed time samples from an unknown distribution fh. We estimate

the density of sampled times for a given jaguar using kernel density estimation defined by

f̂h(t) =
1
nh

∑n
i=1 K( t−ti

h
), whereK is gaussian kernel function and h is a smoothing bandwidth

parameter where higher values of h yield a smooth estimate of the density [62]. Let k = f̂h(t
∗)

be selected as a threshold where ti with f̂(ti) > k define the collection of high density times

{ti|f̂h(ti) > k} = (τ1, . . . , τm) where τ1 < . . . < τm. This selection of knots is carefully placed

to avoid over fitting regions of the time domains that are barren or extremely sparse. This

is desirable for periods where GPS tracking devices are out-of-operation for an extended

period, but it is still desirable to fit regions with dense recordings with high precision.

As a part of this dissertation, we assess the sensitivity of the (automatic) density-based

knot placement method described above. The assessment of this method was done for 2 of

the jaguars used in the remainder of this work (Jaguar 12 and Jaguar 81). This can be found

in Appendix 7.3.

Continuous-time estimation of distance and speed has been developed for standard con-
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tinuous time models [63]. In the next two sections, I outline a derivation of speed and

distance measures for animal movement in the FDA paradigm.

6.3.2 Differentiation of the Smoothed Position Functions and Derivation of

Rest Period Density Functions

Differentiation of the smoothed position paths is then conveniently estimated using the same

collection of coefficients, −→c lat and
−→c lon, and the derivation functions are defined by

x̂′
lat(t) =

K∑
k=1

clat kϕ
′
k(t), x̂′

lon(t) =
K∑
k=1

clon kϕ
′
k(t) (6.5)

where ϕ′
k(t) is the derivative of the basis expansion [7, 44, 64].

The estimated speed of jaguar position can then be defined by x̂′(t) =
√

(x̂′
lat(t))

2 + (x̂′
lon(t))

2.

Behavioral states of animal movement are generally characterized by different speed of move-

ment. As an example a resting state should be characterized by lower estimated speeds while

migratory, foraging, and other transitory states are characterized by faster speeds. For this

project, I used a speed of 0.25 meters/second as a cutoff between resting and transit states.

Clearly, a literal resting state should have a derivative value of zero, so in this application

resting state has a looser interpretation that characterized by stationary and exceptionally

small changes in position. Similar to before, I subset “resting state” times and derive a

kernel density function for the distribution of resting times, f̂h(t) =
1
nh

∑n
i=1K( t−ti

h
), where

K is Gaussian kernel function and h is a smoothing bandwidth parameter where t1, . . . , tn

are restricted to the set {ti| x̂′(t) < 1}.
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6.3.3 Pairwise Jaguars Distance Functions and Derivation of co-occurrence

Potential Plots

For any pairs of jaguars, J1 and J2, with geographic position monitored on the domain

[a, b] and [c, d], respectively, with a < c < b < d, a distance measure can be defined between

pairwise estimations of position on the refined regular time grid t1, . . . tp where c = t1 and b =

tp, and the distance metric in this work is the WGS84 ellipsoidal distance [65]. This regular

time grid is subsetted from the refined global time grid used to smooth jaguar position;

in this work the refined grid provides an estimate of position every 60 minutes. Although

not finer than the raw grid, this grid resolution was chosen since already provides extensive

interpolation of missing hours, and the smoothed spline model are smaller in size. The choice

of time grid is arbitrary in the FDA paradigm, and it can be readily refined to a desired

resolution. As an example, the smoothed spline models implemented in this project could be

refined to provide 1 minute estimations, and they would still follow the same smoothed path

defined on the selected resolution. There may be clear advantages to estimating movement

on this resolution, but this is a question that will be left to future work.

co-occurrence potential in this work is defined as a density function of times from the

refined and unified time grid where the distance between a 2 or more jaguars is within a

certain threshold. This work only examines pairwise co-occurrence potential, but I discuss

the extension to greater than two jaguars in the Discussion Section. More specifically, I define

the co-occurrence potential function by Ĉh(t) =
1
nh

∑n
i=1K( t−ti

h
), whereK is Gaussian kernel

function and h is a smoothing bandwidth parameter where t1, . . . , tn are restricted to the set

{ti| dist(x̂J1(ti), x̂J2(ti)) < δ}. The parameter δ is a distance threshold, and co-occurrence

potential for this application is set to δ = 1800m. This indicates that times where a pair of

jaguars are estimated to be within this threshold have a high probability of (either passive or

direct) interaction [66]. This threshold is chosen with the intent to only capture time periods

where a high probability of interaction is possible. Higher co-occurrence potential implies
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that there is a larger volume of times on the refined time grid where a pair of jaguars are in

close proximity indicating that there is the potential for an interaction. In previous work,

co-occurrence frequency is defined on the raw time grid for times where a pair of jaguars

were within 200m to 400m of each other. The raw time grid in this work records positions

of jaguars at a maximum of every hour. Within an hour time-window, it is apparent that

jaguars can travel far beyond 200m to 400m since an animal walking slowly at 4 kilometers

per hour in a straight-line can cover 10 times the distance of 400m in an hour.A threshold

distance of 1800m is too far to imply direct interaction at a given time, however, there is

a probability that two jaguars can interact with each other in between known or estimated

positions. For this reason, it is still instructive to compute the density of times where jaguars

fall within a larger radius than 400m.

6.3.4 Mutual Information of Jaguar Movement

Mutual information is a measure of mutual dependence between two random variables, or

more simply, the amount of information gained about one variable by observing the other [28].

Let (X, Y ) be a pair of random variables with values spanning the space (X×Y). The mutual

information between two jointly continuous random variables X and Y is defined by

I(X;Y ) =

∫
Y

∫
X
p(X,Y )(x, y) log

p(X,Y )(x, y)

pX(x)pY (y)
dxdy (6.6)

where p(X,Y ) is the joint probability density function of X and Y , and pX and pY are

the respective marginal density functions. It is clear that if X and Y are independent then

information gained from observing one of the random variables does not provide information

about the other, and recall that for independent random variables, p(X,Y )(x, y) = pX(x)pY (y),

which implies from Equation (4) that I(X;Y ) = 0 [28].

To measure dependence or strength of association between pairs of jaguar movements,

it is clear that a global measure of mutual information is insufficient to measure correlation
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between jaguars since their relationships may be dynamic and shifting. I propose the use of

the localized mutual information measure IL. Other localized mutual information measures

have been derived for various applications [30, 38, 39]. In this work, IL is defined by

IL(X;Y ) =

∫
YL

∫
XL

p(XL,YL)(x, y) log
p(XL,YL)(x, y)

pXL(x)pYL(y)
dxdy (6.7)

where XL and YL are restrictions of the random variable to the domain defined by the

set L = {t|t ∈ [ti − λ, ti + λ]}. The parameter λ defines the bandwidth or radius over which

local mutual information is measured.

Ultimately, the advantage of this approach is to construct a bivariate measure of mutual

information, and finally to generate a mutual information function with respect to time.

For two bivariate random vectors X = (Xlat, Xlon) and Y = (Ylat, Ylon), I define joint local

mutual information by

IL(X, Y |λ) =
√
IL(Xlat;Ylat)2 + IL(Xlon;Ylon)2. (6.8)

Clearly, various weighting schemes for combining local mutual information for latitude

and longitude could be derived. (Also, since the measure of mutual information is measured

from the center of a interval, it may be advantageous to weight the contribution of realizations

of a random variable in the mutual information computation based on their proximity to

the center of the interval although this is not explored here.) Finally, I define the joint local

mutual information function with respect to time by

I(t;λ) = ILi
(X, Y |λ). (6.9)
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where i = 1, . . . , dim(
−→
t ) and

−→
t is the vector of times from the refined time grid. It is

important to note that in this application the values of t are limited to the defined resolution

of the spline model. So each time ti is associated with a given Li, and as such, the pair (ti,Li)

defines a centered window Li over which I is evaluated at a given time ti.

This derived result can be used to monitor periods of time where high and low correlation

between a pair of jaguars is observed, and it provides a tool for monitoring if periodicity in

the strength of their relationships exists. An example we might look for would be strength

of relationships in movement between a male-female pair of jaguars during and between

potential mating periods. Ecologically, higher mutual information indicates that there is a

stronger association of movement since more information about the movement of one jaguar

is explained by the movement of the other.

I also note other methods that have been developed in recent years to model social

interactions within the movement model as opposed to the post-hoc measures of distance, co-

occurrence potential, and correlation of movement (as measured by mutual information) [67,

68]. Although several advantages exist in the use of such methods which rely on continuous-

time and non-parametric smoothing models, there remain important advantages of the use

of semi-parametric smoothing models (as are used in this paper) [69].

6.3.5 Data: Taiama Ecological Station Jaguar Movement Data

I add to the the previous investigation of movement and social interaction of a collection

of jaguars in the Taiamã Ecological Station, Pantanal, Brazil. The majority of jaguars

examined in this project were fitted with Lotek GPS Iridium satellite collars and mon-

itored for periods of 60 to 591 days [71]. The movement of Jaguar 88 was monitored

using a Lotek GPS GlobalStar satellite collar. The authors of the study have made it

public and freely available at DOI: 10.1002/ecy.2379 and also at Dryad Digital Repository

(https://doi.org/10.5061/dryad.2dh0223). In this project, I utilized data from the full moni-

toring periods on 7 jaguars from this region, and Table 6.1 presents the number of recordings
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and the length of the monitoring period. The finest temporal resolution of the data is on

hourly intervals, however there are frequent gaps in recordings where missing measurements

may be present for 2 hours to several days. It is important to disclaim that the authors

of this data did not provide an estimated or empirically computed measure of error radius

associated with each position. Instead, they have reported a dilution of precision of less than

10 which provides moderate to good levels of confidence in animal position. Dilution of pre-

cision refers to the quantification of error propagation in satellite navigation on the precision

of estimated position [70]. Previous work using this data product has also not incorporated

the use of measurement error [19, 71, 72]. Animal movement data with an unreported mea-

surement error is not ideal, but the aim of this project expand on previous analysis in an

effort to provide further understanding of jaguar behavior and interaction. Their findings on

jaguars in this region were accomplished by measuring and studying the co-occurrence and

correlation between several pairs of jaguars. Using trajectories and association rule mining

algorithms and a distance radii of 200m and 400m, they were able to estimate co-occurrence

frequency and a single correlation metric for each jaguar pair [19]. Following the results

section, I discuss the differences between this analysis and previous work which primarily

pertain to the differences between coocurence frequency and co-occurrence potential and

quantifying the correlation between pairs of animals.

The jaguars examined in this project were selected on the condition that they shared an

overlapping monitoring period with at least one jaguar from the monitoring period with the

highest activity monitoring period from December 2014 to the summer of 2015. The final

and more detailed investigation of social interactions is performed for Jaguars 12, 13, 18, 41,

and 81.

For all visualizations used in this work, I numerically transform to time in days from the

earliest available date 10/9/13 for Jaguar 88. As such t = 0 is the first day recorded for

Jaguar 88, and the final day on this scale is t = 591 when the final measurement on Jaguar

13 is recorded, 08/24/15. This is particularly useful for monitoring periodicity and duration
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Table 6.1: Monitoring statistics of Jaguars from the Taiamã Ecological Station
Jaguar Local ID Frequency Monitoring Period

12 2681 12/5/14 to 4/18/15
13 5040 12/7/14 to 8/24/15
18 2314 11/29/14 to 4/13/15
22 4709 9/11/14 to 5/21/15
41 4952 12/5/14 to 8/17/15
81 10988 10/15/13 to 5/29/15
88 1296 10/9/13 to 4/20/14

of events, since it is difficult to quickly understand the number of days or weeks between two

dates.

6.4 Results

The primary challenge in mapping and analyzing relationships between Jaguars at the Ta-

iama Ecological Station is the staggered time windows that each Jaguar is monitored coupled

with the inconsistent temporal resolution of GPS readings. To reach our final selection of 7

jaguars, we removed two jaguars with less the 100 GPS recordings and two jaguars (Jaguar

91 and 92) that were monitored many months after the remaining jaguars (Jaguar 116 and

117). There are 3 females (Jaguars 12, 41, and 88) and 4 males (Jaguars 13, 18, 22, 81). I vi-

sualize the remaining 7 jaguars in Figure 6.1. Across the three plots provided, we can develop

a short narrative of a few major movement characteristics. Within their respective time do-

mains, most of the 7 jaguars have stable fluctuations in position within their territories (with

some clear overlap in territories)[19, 75]. However, Jaguar 81 (male, age=4yrs), the jaguar

with the longest monitoring window, makes a significant territorial transition from residing

in the same region as Jaguar 88 (female, age=5yrs) to the territory of Jaguar 12 (female,

age=4yrs). There appears to be a period of interaction between Jaguar 12 and Jaguar 81,

and then Jaguar 12 makes a temporary but significant migration south for approximately 3

months before returning to the same region again as Jaguar 81. There are other male-female

interactions that not as easily discernible, and more investigation is clearly required.
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Figure 6.1: Visualization of Jaguar Movement in the Taiamã Ecological Station. (Left) The
spatial distribution of GPS recordings is plotted and colored by Jaguar ID. (Right) The
temporal change in each Jaguar’s latitudinal and longitudinal position [73, 74]. A terrain
map of this region is provided in the published work [40]
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In Figure 6.2, I present a detailed visualization of the smoothing of Jaguar 12’s residential

to migratory transition. As a can be seen visually, the fit of this spline model is exceptional

and only a small selection of points are not well fit to the estimated path. This is an

acknowledged sacrifice of information, in exchange for a number of benefits, primarily the

refinement of the time resolution and consistency to a uniform time grid shared by all jaguars.

In Figure 6.3, I present the smoothed spline models for the remaining seven jaguars. Further

tuning of the model for Jaguar 41 and 88 should be considered as some raw locations are not

well-estimated, but Jaguars 13, 18, 22, and 81 have exceptionally well fit models. A well-fit

model loosely refers to a spline model that captures the raw movement path with reasonable

accuracy from a visual inspection, and few positions are poorly estimated. The remaining

jaguars have some points that the spline models did not fit as well under the general temporal

density distribution procedure for knot placement documented in the methods section. There

are some cases where it appears that the spline model “overshot” the path when an animal

changed direction suddenly, or where there were a couple outlier points that the algorithm

did not prioritize fitting. When optimizing a spline model overall minimization of the error

is prioritized as opposed to local minimization of the error. Improvements to the models

could be achieved by increasing knot densities in regions where it appears that the model

is not fitting as well as other regions or deriving a localized spline modeling procedure that

performs piecewise error minimization; these options are left to future work. We will use

these models as is, since the deviations from the raw movement path are still limited, and

most of movement profiles from these jaguars are well captured, meaning that the model is

estimating a smoothed path through the majority of raw positions while avoiding overfitting

to the exact positions in the raw data. All smoothing spline models have been smoothed to

estimate behavior on a 1 hour resolution.

In Figures 6.4 and 6.5, I present the first derivative functions of the each jaguar’s

movement, as well as, the density of rest periods. Rest periods are defined (with some level

of arbitration that is worthy of discussion) as times when the estimated speed of a given
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Figure 6.2: Smoothing Spline Model for Jaguar 12 (female, age=4). (Left) The raw latitude-
by-longitude position and spline model estimations are overlaid. (Right) The raw and
smoothed components (latitude and longitude) are plotted with respect to time in days
where t = 0 identifies the beginning of the study period in this region.
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Figure 6.3: Smoothing Spline Model for Jaguars 13,18,22,41,81, and 88. For brevity, the
decomposition of the spline models to latitude and longitude is not shown.
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jaguar is less than 0.25 meters per second. Any times where this condition is satisfied are

found below the orange line. My working definition of a jaguar rest period is inherently a

binary classification of movement, and the times that satisfy this condition are subsetted

to derive rest-period densities. I emphasize the substantial shift in the rest-period density

structure of Jaguar 12. Jaguar 12 in the first half of her tracked time domain has higher rest

period density, meaning that she is estimated to have more rest periods or periods of slower

movement. In the latter half, her rest period density drastically drops to below a third of

previous levels. No other jaguars show this trends as drastically; Jaguar 81 has a drop in

rest period density during a migratory period prior to entering the initial territory of Jaguar

12. In all of the remaining density plots, however, there is an apparent cyclic nature to rest

period density that is approximately weekly to bi-weekly for most jaguars.

In Figure 6.6, I present the pair-wise distance relationships between several jaguar pairs,

and their respective co-occurrence potential measures [76]. The four selected pairs are chosen

deliberately as many jaguars had zero or near zero co-occurrence potential. The male-female

pairs are Jaguar 12 and 81 and Jaguar 18 and 41, and the male-male pairs are Jaguar 18

and 81 and Jaguar 13 and 81. In the distance function plots, which are all identically scaled

on the vertical axis from 0 to 30,000 meters, we note the significant differences in distance

functions across all chosen pairs. For Jaguar 12 and 81, there is a first encounter with the

highest co-occurrence potential, and then there is an extended period of zero co-occurrence

potential. Following this hiatus, there is an extended period of regularly occurring bursts

of high co-occurrence potential, which is then followed by the long migration of Jaguar 12

away from Jaguar 18. At the end of their shared time domain Jaguar 12 returns and there

is a short period of moderate co-occurrence potential that is evidence of some final return

to territory sharing before we lose sight of their movement. The other male-female pair

(Jaguars 18 and 41) on the other hand, has regular intervals of high co-occurrence, but we

note that in a similar seasonal time window (at approximately Day 500) Jaguar 41 distances

herself from Jaguar 18, but at a much lower magnitude than Jaguar 12.
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Figure 6.4: Spline model estimation of speed and rest period density for Jaguars 12,13,18,22.
(Upper) A horizontal orange line is plotted at a speed of 0.25 m/s. (Lower) All hours in the
spline model that are estimated to have speeds lower than this line are subsetted as a new
vector to compute the density of rest periods. The selected bandwidth for estimation varies
by jaguar and they range from approximately 4 to 12 days. As a result, a detected shift in
the density of rest periods over time would indicate a shift to lower or higher density of rest
periods occurring in a 4 to 12 day window.

78



Figure 6.5: Spline model estimation of speed and rest period density for Jaguars 41,81,88.
Refer to the caption of 6.4 for the interpretation.
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For the male-male pairs, Jaguar 13 and 81 only have high co-occurrence for a small time-

window while Jaguar 81 is still migrating to new territory. Jaguar 18 (M) and Jaguar 81’s

(M) relationship is particularly interesting as there is an early period of high co-occurrence,

and then, during the period of high co-occurrence between Jaguar 12 (F) and 81 (M), there is

a hiatus in their co-occurrence. High co-occurrence between these two males is then resumed

once Jaguar 12 (F) leaves the territory and they move within short distances of each other

for an extended period which ends before the return of Jaguar 12.

I present the localized mutual information profiles for the same four pairs jaguars in

Figure 6.7 using a bandwidth of λ = 48 hours. This bandwidth identifies that the measure

of localized mutual information is computed for a 4 day period centered on a given time.

For Jaguar 12 (F) and 81 (M), there is a cyclical spike in the strength of association (i.e.

local mutual information) immediately prior to and during most of the periods of high co-

occurrence potential. The times of strongest association in movement occur during the

second and longest period of high co-occurrence from approximately Day 475 to Day 510,

and when Jaguar 12 returns at the end of the study period. On the other hand, Jaguars 18

and 41, although regularly experiencing period of high co-occurrence, do not show a similar

associative trends. There movement has the strongest association early in the study period

and then it gradually decline in the following weeks.

For the male-male pairs of jaguars, there are repeated periods of high mutual association

that do not show clear trends with co-occurrence potential. For Jaguar 13 (M) and 18 (M),

there is a drop in the strength of association in their movement in the final weeks of the study

and this is when these two jaguars are consistently the furthest apart. Interestingly, Jaguar

18 and 81 (male-male pair) have the strongest association in their movement at a similar time

to the peak in association between Jaguar 12 and 81 (female-male pair). The female-male

pair have a peak in association at Day 478, and the male-male pair have a peak in association

at Day 471. These two associations are characterized by a zero-level co-occurrence between

the male pairs of jaguars, and increasing co-occurrence potential between the female-male
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Table 6.2: Peak association in between Jaguar Pairs. Distance and localized mutual infor-
mation are summarized by quantiles for pairs 12 vs. 81, 18 vs. 81, and 18 vs 41 for a time
window of interest surrounding a peak in association of movement as measured by localized
mutual information.
Jaguar Pair Time Window Metric Min Q1 Q2 Q3 Max
12 (F) vs 18 (M) Day 476 to 479 Dist (m) 118.4 591.1 1212.0 2299.0 2874.1

Mut Info 0.385 0.447 0.499 0.612 0.667
18 (M) vs 81 (M) Day 469 to 471 Dist (m) 7069.5 9174.9 10641.1 11562 12537

Mut Info 0.316 0.416 0.519 0.637 0.744
18 (M) vs 41 (F) Day 455 to 477 Dist (m) 156.0 1736.0 2071.2 2922.6 4039.1

Mut Info 0.266 0.406 0.515 0.634 0.999

pair.

In order to further investigate the cause of these spikes and drops in mutual information,

it becomes highly instructive to summarize the pairwise distance and localized mutual in-

formation for these pairs of jaguars in addition to the pair of Jaguars 18 (M) and 41 (F).

This is shown in Table 6.2. Between Days 476 to 479, Jaguars 12 (F) and 81 (M) are in

close proximity with an estimated median hourly distance of 1212m apart and a minimum

estimated distance of 118.4m apart. The spike in their correlatory movement peaks in this

window marks that their relationship in this time is characterized by periods of direct in-

teraction. Jaguars 18 (M) and 81 (M) during their peak in movement association in the

time window from Day 469 to 471 is not direct as the minimum estimated distance between

these jaguars is 7069m. However, in the time window from Day 455 to 477 (which overlaps

this time), Jaguars 18 (M) and 41 (F) have an estimated median distance of 2071m and a

minimum distance of 156.0 meters with extended periods of high co-occurrence potential.

What is especially interesting about these observations is that the peak in association between

the two male jaguars is that it characterized by a periods when both male jaguars have close

interaction with females. The comparison of localized mutual information plots for Jaguar’s

12, 18, 41, and 81, provides a clear characterization of interaction on a local male and female

jaguar behaviors.
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Figure 6.6: (Upper) Distance plots for Jaguars 12-81, 18-81, 13-81, and 18-41. Distance is
derived from pairs of smoothed spline models. A horizontal line at Distance=1800m is placed
to mark the defined threshold of co-occurrence. (Lower) All times that distance between a
pairs of jaguars are subsetted to derive the density of times where jaguars fall within this
threshold. The spacing and duration of close proximity is accentuated and this measure of
co-occurrence provides easy access to measures of duration and frequency of co-occurrence
or gaps in co-occurrence.

6.5 Discussion:

The apparent complexity of jaguar movement and interaction in the Taiamã Ecological

Station is driven by the high density of jaguars [19, 57]. Monitoring the complex fine-scale

movement of multiple animal with shifts in territorial and social nature differs from previous

examinations of animal movement using smoothing spline models [7, 53, 54, 55]. This work

provides a preliminary strategies for monitoring movement, behavior, social interactions, and

the strength of association between animal movement, all of which are best explored on a

refined and unified time grid smoothed using spline models.

The Taiama Ecological Station is a crucial conservation region for jaguars, and it is the

region with the largest known density of jaguars, and further, this region provides insights

into the needs of an ecosystem to sustain a large volume of neotropical apex predators [57,

78, 79]. Recent work has shown that the size of this conservation region is insufficient to

protect this specific feline population. The study of space-use and animal interaction is a

crucial step to assessing the conservation needs for this species[80, 81].
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Figure 6.7: Localized mutual information plots. (Left) The localized mutual information
with a bandwidth of λ = 48 hours for each time point in the refined time grid is plotted
by each pair of Jaguars. The y-axis is scaled by the maximum localized mutual information
at each time point and as a result the range of the y-axis is from 0.00 to 1.00. As a result,
the scaled localized mutual information can be handle similarly to a measure of correlation,
where 0.00 denotes no correlation between the movements and 1.00 defines a perfect unity
in movement. (Right) The overall spread of localized mutual information measures across
the time grid is summarized using boxplots.
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As the objective of this work is comparative to the recent work on pairwise jaguar in-

teractions, I compare the primary differences and potential advantages over Fontes et. al.

2021.

1. co-occurrence potential vs. co-occurrence frequency : Although measurement error is

not considered in either analysis, it is crucial to acknowledge error in position and

choose a metric for examining distance between animals that accounts for movements

that may occur between known positions. co-occurrence frequency is defined in previ-

ous work on a very close proximity of 200m and 400m which can be advantageous in

the sense that jaguars within this range are almost surely aware of each other. How-

ever, simply counting the instances of co-occurrence in this way does not provide a tool

for measuring and visualizing periods where co-occurrences are realized in high or low

densities. It is clear that a period with a high density of co-occurrences is more likely to

contain interaction since there are more opportunities for an interaction to take place.

Given that the raw recordings are at best defined on a 1 hour resolution, it is evident

that even over dense or difficult terrain, jaguars have the potential to cover a distance

many magnitudes farther than 400m. Additionally, loud mating calls are used by the

species to attract mates far beyond this range, and scent and scrape markings are

other methods of communication by this largely solitary predator [50]. co-occurrence

potential in this work is a simple extension of co-occurrence frequency where a larger

distance is used for measuring frequency, and the densities of these frequencies is used

to derive a probability density function that identifies time windows where there is a

greater probability of an interaction. The visualization of co-occurrence in this way

provides a convenient tool for examining complex patterns in co-occurrence between

animals or differences between pairs of animals.

2. Localized Mutual Information Functions vs Trajectory and Association Rule Mining

Correlation Metric: The derivation of a single correlation coefficient as laid out in

Fontes et. al. 2021, it is attractive in its simplicity and use of interpretable association
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rules. However, as is evident in the relationship between Jaguar 12 and Jaguar 81,

shifts in behavior states over time result in shifts in the association of movement. This

is apparent for most pairs of jaguars. There is always some level of associations be-

tween animals of the same species in the same local ecosystem, even if there is no direct

interaction. As an example, as shown in the state matrices in Fontes et. al., there are

overlapping times of day where Jaguars are resting or in other transitory states [19].

It follows that some mutual information between jaguars is evident as movements in

the region may be connected through animal gender, daylight, and shifts in weather

or climate. In the localized mutual information functions derived in this work, spikes

or periods of relatively higher correlation denote stronger relationships between a pair

of jaguars. More simply, local mutual information functions can be thought of as a

time-dependent measure of correlation or association of animal movement. The ability

for this method to captures association of movement regardless of direct proximity

is a critical advantage in adapting correlation analysis of animal movement beyond

co-occurrence studies. This is most clearly illustrated in the ability of the proposed lo-

calized mutual information measure to detect a spike in similarity of movement between

two males (Jaguar 18 and 81) when they are both interacting (or in close proximity of a

female. It is only after this spike that they move closer to each other and observe a spike

in co-occurrence potential. It is important to note that the proposed LMI measure and

movement associations driven by scent and scrape marking patterns should be explored

further via simulation studies. The integration of GPS tracking data and geographical

distribution of scent and scrape marking patterns would permit for the testing of the

influence of scent and scrape marking behavior on animal movement [51]. This would

provide crucial insight since scent and scrape marking data would represent the true

population of jaguars of a region which may assist in explaining behaviors of observed

jaguars in the presence of unobserved jaguars. The spike in the Jaguar 18 and 81’s

coocccurence potential following provides evidence of increased male-male interaction
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only once females have distanced themselves from each respective male.

3. Extension to higher-order interactions : Although not shown in this work, the meth-

ods implemented have the ability to be extended to monitor three way interaction.

co-occurrence potential for any given jaguar, in relation to two or more other jaguars,

would be the density function of time recordings on the refined time grid where any

jaguar is within a set radius (such as 1800m). The localized mutual information mea-

sure could be readily adapted to measure partial mutual information [82], where the

association between two jaguars is measured while controlling for another jaguar. It

is important to note, that in both this work and Fontes et. al., the interpretations

are based solely on observed individuals, and there are still challenges present in in-

terpreting interactions detecting between pairs of jaguars when there are likely other

interactions with unobserved individuals.

As mentioned briefly above, jaguar social interaction, although primarily characterized

by direct (or close-proximity) interaction, is not the only form of social interaction that exists

and should be detectable. Like many apex predators, territorial marking, is a common form

of passive communication. Jaguars may deliberately avoid or follow these routes which should

be characterized by higher associations between animals. Young male have a tendency to be

nomadic and older jaguars tend to have established territory with minimal overlap (where

overlap is typically shared with females in the region). Female jaguars behavior is also

generally characterized by a temporary associations with a male, and then they avoid male

interactions when caring for cubs[58, 83, 66, 84, 85].

All of these characteristics of jaguar movement and interaction are detectable in this anal-

ysis. Jaguar 12 (female; age = 4) and Jaguar 81 are detected to have strong but temporary

associations which increase in frequency as time progresses, and then there is a rapid dis-

tancing between the pair and the association in their movement drops for over two months.

The ability to detect an increase in frequency in high co-occurrence is visually inconclusive

without the use of co-occurrence potential plots. Finally, their association and co-occurrence
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potential increase at the end of the study as she returns to her baseline territory at the be-

ginning of the study. Jaguar 12’s resting behavior also shows distinct shifts from the period

of high co-occurrence potential with Jaguar 81 to the farthest point in her migration south.

It is suspect that Jaguar 12’s sudden drop in rest period densities suggests a shift between

mating and cub rearing movement behaviors where she is depended on to make successful

hunts to provide for her young. Females are generally considered to have smaller home

ranges, but the seasonal shifts in this Jaguar 12’s behavior for months of this year show

evidence that some females have multiple or shifting home ranges during mating and cub-

raising periods [57]. That fact that some female jaguars make longer temporary migrations

proceeding interactions with male should be considered when defining an appropriate con-

servation region for the species since the time spent away from males is a critical time for

survival of the next generation of cubs.

The nomadic behavior of Jaguar 81, which is recorded at a fine-scale for almost two

years, provides particular insights regarding male-male relationships between established

and nomadic male interactions. Jaguar 13 and 81 only seem to interact for a brief time in

passing, and Jaguar 81 continues to move past Jaguar 13’s territory. However, Jaguar 18 and

81 show evidence of coexisting in a similar region with distinct shifts in behavior. Jaguar 18

and 81 have the strong associations in movement in the presence of a local female. Jaguar

18 keeps at a farther distance from Jaguar 81 once high co-occurrence between Jaguar 12

and 81 begin, and Jaguar 18 is not shown to near Jaguar 81 until Jaguar 12 has initiated a

prompt departure from the region.

The migrations of Jaguar 12 and 81 provide evidence that interacting with high co-

occurrence potential in regions of high population density utilize expansive regions of land

(upwards of 30km) [57]. This is critical to understand as conservation efforts demand esti-

mations of the required conservation area for endangered species [78, 79]. With any region of

higher jaguar density, this work confirms that increasing conservation land for jaguar’s will

only aid their ability to coexist in higher abundance [80], since longer migration’s (greater
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than 30km) of a terrestrial predator could easily span outside of protected areas with a radius

of less than 60km. As the movement of all jaguars in this region are not observed, it would

be hypothesized and left to future work to examine how often migrations of this level take

place in regions with high densities of apex neotropical predators.

Smooth spline modeling of jaguar movement, as demonstrated in this study, is not without

some caveats that should demand further attention in future work. As mentioned earlier,

smoothing of paths requires some sacrifice of the exactness of position, and some particular

movements are more difficult to catch than others. For animal telemetry, spline models are

subject to over- and under-fitting challenges which can be observed in Fig 6.3. Some paths

are clearly more variable than the smoothed model suggests, and depending on the density of

time measurements in some region, the model may tend to overshoot or undershoot a sharp

change in direction. As in recent developments in standard continuous time models, there are

opportunities to improve the fit of the model by accounting for geographic features/barriers,

social encounters, atmospheric conditions etc [86]. Random walk schematics have shown

great potential improving the modeling of animal movement, and these methods should be

adapted to the FDA paradigm.

In this analysis, there is no accounting of measurement error, which is a significant

element of most animal telemetry data. The data used in this study did not publicly provide

measurement error to pair with GPS point estimates of position. As mentioned previously,

some recent work has provided possible methods for accounting for measurement error in

spline models, and these should be adaptable to many applications in animal movement.

The use of information theory in animal telemetry is sparse, but this work demonstrates

the value of adapting measures of entropy and mutual information to animal telemetry. The

derived measure of localized mutual information, verifies that although the distance between

jaguars has a tendency to yield higher associations in their movement, this is not uniformly

true and there are strong associative movements between male-male and male female pairs

that can occur far beyond the co-occurrence potential threshold that I have defined in this
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work.

In overview, the approach used in this work effectively handles the challenges of spatial

and temporal density, modeling continuity and differentiability of spatial movement, and

multivariate characterization of animal behavior. To elaborate on the latter, the spline mod-

els that I construct in this work retain information about animal position and rate of change

of position while refining the movement uniformly with other animals which ultimately allows

for a unique and visual-friendly characterization of shifts in interaction and social behavior.

I commend past work in the study and modeling of animal telemetry, social interac-

tion monitoring, and I encourage further work in modeling of these complex processes and

relationships.

6.6 Data Accessibility:

Jaguar movement database: a GPS-based movement dataset of an apex predator in the

Neotropics. [71, 72]

The authors of the study own the data set and made it public and freely available at the

Dryad Digital Repository with the following DOI accession number- DOI: 10.1002/ecy.2379.

It can also be accessed via the following link: https://doi.org/10.5061/dryad.2dh0223. The

data is also available on Movebank at doi:10.5441/001/1.3c4fv0m4.

7 Appendix

7.1 Violation of Triangle Inequality Proposed Dissimilarity Measure

Ultimately, any measure of dissimilarity or distance is intended to define a relationship

between two elements of interest. This is most easily examined and visualized for 2D and

3D geometric problems. However, it is required in many application to measure dissimilarity

or distance in a more abstract space. This space may be characterized by a complex processes
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(such as in spline models), or in many statistical applications, the space is characterized by

a large collection of variables.

In this section, we briefly show that a dissimilarity measure of interest is not a distance

metric by violation of the triangle inequality. Let d(X, Y ) = 1− I∗(X, Y ) where I∗(X, Y ) =

I(X,Y )
I(Y,Y )

as mention in Section 5.1. The triangle equality holds under the condition that

d(X,Z) ≤ d(X, Y ) + d(Y, Z).

Substituting our proposed measure d, we have that

1− I(X,Z)

I(X,X)
≤ 1− I(X, Y )

I(X,X)
+ 1− I(Y, Z)

I(Y, Y )
, (7.1)

and further,

− I(X,Z)

I(X,X)
≤ − I(X, Y )

I(X,X)
+ 1− I(Y, Z)

I(Y, Y )
. (7.2)

Rewriting mutual information in terms of entropy I(X, Y ) = H(X) − H(X|Y ), it follows

that

−H(X)−H(X|Z)
H(X)−H(X|X)

≤ 1− H(X)−H(X|Y )

H(X)−H(X|X)
− H(Y )−H(Y |Z)

H(Y )−H(Y |Y )
. (7.3)

Note that H(X,X) = 0 and H(Y, Y ) = 0. With this fact, we multiply the inequality by

−H(X) which gives

H(X)−H(X|Z) ≤ H(X)−H(X)−H(X|Y ) +
H(X)

H(Y )
(H(Y )−H(Y |Z)). (7.4)

The next several steps are simplifications of the inequality.

H(X)−H(X|Z) ≤ H(X)−H(X|Y )− H(X)H(Y |Z)
H(Y )

. (7.5)
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−H(X|Z) ≤ −H(X|Y )− H(X)H(Y |Z)
H(Y )

. (7.6)

H(X|Z) ≥ H(X|Y ) +
H(X)H(Y |Z)

H(Y )
. (7.7)

Since X, Y, Z are arbitrarily defined random variables, it is not implied that H(X|Z) ≥

H(X|Y ), and therefore, it cannot be confirmed that a more extreme requirement ofH(X|Z) ≥

H(X|Y ) + H(X)H(Y |Z)
H(Y )

. Hence, d(X, Y ) is not a distance metric.

7.2 Alternate Binning Procedure results for Analytically Evaluated LMI

Simulation

In this section, we report two other binning procedures referred to as “Equal Width Binning”

and “Global Equal Width Binning.” These procedures, although not exactly identical to the

rudimentary binning procedure used to evaluate LMI analytically, are more similar to the

analytic solution. More details on the implemented binning procedures can be found at the

following source [48].

As shown in Figure 7.1 and 7.2, these binning procedures follow the analytical solution

more closely. We emphasize that the binning procedure used in the analytical evaluation is

a simplification of the binning process and it is only performed to confirm the similarity of

the results from the computational approach implemented.

7.3 Sensitivity Analysis of Density-Based Knot Placement Procedure for

Smoothing Spline Models

As mentioned in Section 6.3.1, smoothing animal movement superficially is straightforward,

but, in the case of the Jaguar Movement Database, the raw time grid is realized with highly

disparate densities in the collection of animal positions. Although they do not occur fre-
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Figure 7.1: Implementation of Simulation 1 from Section 5.2.2 using Equal Width Binning.
As is depicted the decline in LMI matches the timing of the decline from the analytic eval-
uation.
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Figure 7.2: Implementation of Simulation 1 from Section 5.2.2 using Global Equal Width
Binning. As is depicted the decline in LMI matches the timing of the decline from the
analytic evaluation.
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quently in the time domain, they occur enough to hinder the spline model from meaningfully

characterizing jaguar movement for generic placement of equally spaced knot.

An density-based knot placement method has been proposed in this work to avoid the

labor of manual knot selection, which is an arduous task when it is not always clear for

larger datasets where the knots are best placed. Specifically, our objective here is to avoid

over-fitting complex movement behavior in regions where we have no information about

the movement of an animal. The knot placement procedure is summarized again below for

convenience.

Let (t1, . . . , tn) be independently and identically distributed time samples from an un-

known distribution fh. We estimate the density of sampled times for a given jaguar using

kernel density estimation defined by f̂h(t) = 1
nh

∑n
i=1K( t−ti

h
), where K is gaussian kernel

function and h is a smoothing bandwidth parameter where higher values of h yield a smooth

estimate of the density [62]. Let k = f̂h(t
∗) be selected as a threshold where ti with f̂(ti) > k

define the collection of high density times {ti|f̂h(ti) > k} = (τ1, . . . , τm) where τ1 < . . . < τm.

The method shows promise from our application section of this work, but it is instructive

to further understand the sensitivity in the selection of the parameter k. We explore this for

Jaguar 12 (Female, Age = 4) and Jaguar 81 (Male, Age = 4).

Figure 7.3 and 7.4 show the kernel density of the time grid for both animals. For both

of their time domains, there is a high density of recorded animal positions, and there are

infrequent drops in the density. It is clear from these images that a small bandwidth has been

chosen to derive the density functions for both figures, and this is an intentional choice: we

want to remove a sparse number of knots occurring in relatively short time spans. A rougher

density function (with a smaller bandwidth) will retain information about low density areas

on a small time domains than a smoother density function (with a larger bandwidth). In both

figures, we have considered a selection of potential k-values which will be used to determine

the location of knots. With an original selection of uniformly spaced knots on the time grid

shown in these images, any knots located at a time where the density is above k will be
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retained as knots in the smoothing process. Otherwise, the knot is removed.

In Figures 7.5 and 7.6, the smoothing spline models are visualized by their respective lat-

itude and longitude components. As k decreases, we observe that the spline model estimates

increasingly complex/extreme behavior in regions with lower raw time grid density. This is

easiest to see visually in Figure 7.5 at t = 480 and in Figure 7.6 around t = 550. It is clear

from these images that visual inspection and evaluation of knot placement is inadequate,

and the density-based knot placement method is a versatile and simple method to improve

spline model fit for data with variable/sporadic collection of information about a process.
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Figure 7.3: Density of the raw time grid for Jaguar 12 is shown as a kernel density plot. The
selection k-values are marked by horizontal colored lines. Lower lines are characterized by
having more knots in lower density portions of the time domain.
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Figure 7.4: Density of the raw time grid for Jaguar 81 is shown as a kernel density plot. The
selection k-values are marked by horizontal colored lines. Lower lines are characterized by
having more knots in lower density portions of the time domain. Jaguar 81’s time domain is
approximately 4x longer that Jaguar 12’s time domain, and the y-axis for these plots should
not be compared directly.
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Figure 7.5: Smoothing splines for Jaguar 12 with 6 different magnitudes of k. As k decreases,
we observe that the spline model estimates increasingly complex/extreme behavior in regions
with lower raw time grid density.
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Figure 7.6: Smoothing splines for Jaguar 12 with 6 different magnitudes of k. As k decreases,
we observe that the spline model estimates increasingly complex/extreme behavior in regions
with lower raw time grid density. Jaguar 81’s spline models are overall much better behaved
across most values of k, near the end of the time domain note in Figure 7.4 the long period of
lower density. The is the first region that the spline model begins to have issues estimating
for very low values of k.
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7.4 Starter Code for LMI

# Load packages f o r v i s u a l i z a t i o n and an array o f in format ion

# t h e o r e t i c measures

l ibrary ( i n f o th eo )

l ibrary ( ggp lot2 )

l ibrary ( RColorBrewer )

l ibrary ( gr idExtra )

# LMI Function Proposed in the Whetten 2021 Prepr in t :

# November 2021

# DOI: 10.13140/RG.2 .2 .23971 .37923/1 or

# h t t p s ://www. r e s ea r chga t e . net/ pu b l i c a t i o n/356406518

# Loca l i z ed Mutual Informat ion Monitoring o f Pairwise

# Assoc ia t i ons in Animal Movement

# Pro jec t : Loca l i z ed Mutual Informat ion o f Pairwise Animal Movement

# Assoc ia t ion

# LMI Function

# Inputs :

# t t i l d e − a ( nx1 ) vec t o r o f t imes from the un i f i e d time g r i d ( same

# time g r i d f o r both animals )

# animal1 x , animal2 x − the l o n g i t u d i n a l ( nx1 ) v e c t o r s f o r each

# animal ’ s p o s i t i o n

# animal1 y , animal2 y − the l a t i t u d i n a l ( nx1 ) v e c t o r s f o r each

# animal ’ s p o s i t i o n

# bw − the bandwidth ( lambda ) va lue d e f i n i n g a neighborhood
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# ( of s i z e 2∗bw) o f time po in t s w i th in a d i s t ance o f bw

# from the cen te r o f the i n t e r v a l

# b ins − the number o f b in s used to d i s c r e t i z e the

# neighborhood/ i n t e r v a l o f width 2∗bw

# Notes :

#−b in s shou ld be >= 2;

# bw can be >= 1 but note t ha t bw ’ s t ha t are c l o s e r to one y i e l d very

# noisy LMI func t i on s .

# bw can be as l a r g e as l e n g t h ( t t i l d e ) but t h i s would j u s t g i v e a

# func t i on o f g l o b a l mutual in format ion measures a l l o f the

# same/ s im i l a r va lue

local mut i n f o <− function ( t t i l d e , animal1 x , animal1 y , animal2 x ,

animal2 y , bw, numbins ){

# Create empty v e c t o r s to pass d i r e c t i o n a l and j o i n t components

# of LMI

l o c mut l a t <− as .numeric ( )

l o c mut lon <− as .numeric ( )

l o c mut j o i n t <− as .numeric ( )

l o c mut max <− as .numeric ( )

l o c mut j o i n t max <− as .numeric ( )

l o c mut max lon <− as .numeric ( )

l o c mut max l a t <− as .numeric ( )
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# pass number o f b in s parameter

nb <− numbins

# For loop computing the LMI at each time t i on a neighborhood o f

# [ t i−bw , t i +bw ]

for ( i in 1 : length ( animal1 x ) ){

# de f i n e neighborhood

l o c time sub <− ( i−bw ) : ( i+bw)

# f i l t e r out time po in t s ou t s i d e o f t 0 and t f

l o c time sub <− l o c time sub [ l o c time sub > 0 ]

l o c time sub <− l o c time sub [ l o c time sub <= length ( animal1 x ) ]

i f ( length ( l o c time sub)−1 < 2∗bw & max( l o c time sub ) ==

max( length ( t t i l d e ) ) ){

l o c time sub <− (max( l o c time sub−2∗bw ) ) :max( l o c time sub )

}

i f ( length ( l o c time sub)−1 < 2∗bw & min( l o c time sub ) ==1){

l o c time sub <− (min( l o c time sub ) ) : (min( l o c time sub+2∗bw) )

}

# Compute LMI fo r l a t , lon , and i d e n t i f y the max LMI fo r

# each on the same i n t e r v a l

l o c mut l a t [ i ] <− mutinformation (

d i s c r e t i z e ( animal1 y [ l o c time sub ] ,

nbins = nb , d i s c = ” equa l f r e q ” ) ,

d i s c r e t i z e ( animal2 y [ l o c time sub ] ,

nbins = nb , d i s c = ” equa l f r e q ” ) )

l o c mut lon [ i ] <− mutinformation (
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d i s c r e t i z e ( animal1 x [ l o c time sub ] ,

nbins = nb ) ,

d i s c r e t i z e ( animal2 x [ l o c time sub ] ,

nbins = nb ) )

l o c mut max lon [ i ] <− mutinformation (

d i s c r e t i z e ( animal1 x [ l o c time sub ] ,

nbins = nb , d i s c = ” equa l f r e q ” ) ,

d i s c r e t i z e ( animal1 x [ l o c time sub ] ,

nbins = nb , d i s c = ” equa l f r e q ” ) )

l o c mut max l a t [ i ] <− mutinformation (

d i s c r e t i z e ( animal1 y [ l o c time sub ] ,

nbins = nb ) ,

d i s c r e t i z e ( animal1 y [ l o c time sub ] ,

nbins = nb ) )

# Compute j o i n t LMI and j o i n t max LMI

l o c mut j o i n t [ i ] <− sqrt ( ( l o c mut l a t [ i ] ) ˆ 2 +

( l o c mut lon [ i ] )ˆ2)

l o c mut j o i n t max[ i ] <− sqrt ( l o c mut max l a t [ i ] ˆ2 +

l o c mut max lon [ i ] ˆ 2 )

}

# output f i n a l dataframe

#df f i n a l <− as . data . frame ( cb ind ( t t i l d e , l o c mut l a t ,

l o c mut lon , l o c mut j o i n t , l o c mut j o i n t max) )

df f i n a l <− as . data . frame (cbind ( t t i l d e , l o c mut la t ,

l o c mut max l a t , l o c mut lon , l o c mut max lon ,

l o c mut j o i n t , l o c mut j o i n t max) )

#l i s t f i n a l <− l i s t ( d f f i n a l , b in temp1 , b in temp 2)
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return (df f i n a l )

#return ( l i s t f i n a l )

########################################################

############ 1 s t Simulat ion from LMI Prepr in t ##########

########################################################

# Refer to paper to see d e t a i l e d exp l ana t i on o f t h i s s imu la t i on

# This code a l s o i n c l u d e s the g gp l o t 2 code to r e p l i c a t e the

# f i r s t v i s u a l i z a t i o n

# Define func t i on to genera te movement model and compute

# LMI us ing LMI func t i on from above

# Function ou tpu t s l i s t wi th the LMI dataframe , the

# po s i t i o n dataframe and some other d e t a i l s .

s h i f t sen <− function ( band , r e r r 1 , r e r r 2 , nbins ){

# band = 4

# r err 1 = 0

# r err 2 = 0

# nbins = 2

#

vt <− seq (0 , 1 , length . out=100)

no i s e 1 <− rnorm(100 , mean = 0 , sd = r e r r 1)

no i s e 2 <− rnorm(100 , mean = 0 , sd = r e r r 2)

animal l a t 1 <− vt + no i s e 1

animal l a t 2 <− vt [ vt < 0 . 5 ] + no i s e 2 [ 1 : 5 0 ]

animal l a t 2 <− c ( animal l a t 2 , vt [ vt >= 0 . 5 ] ∗0 +
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animal l a t 2 [ 5 0 ] + no i s e 2 [ 5 1 : 1 0 0 ] )

animal lon 1 <− ( vt − 0 . 05 )

animal lon 2 <− vt [ vt < 0 . 5 0 ] + 0 .05 #+ noise 2 [ 1 : 9 0 ]

animal lon 2 <− c ( animal lon 2 , vt [ vt >= 0 . 5 ] ∗0 +

animal lon 2 [ 5 0 ] + no i s e 2 [ 5 1 : 1 0 0 ] )

p o s i t i o n df <− as . data . frame (cbind ( animal lon 1 , animal l a t 1 ,

animal lon 2 , animal l a t 2 ) )

# Overa l l GMI

# from t = [1 , 15 ]

ba s e l i n e GMI <− sqrt (

mutinformation (

d i s c r e t i z e ( animal lon 1 [ 1 : 5 0 ] ) ,

d i s c r e t i z e ( animal lon 2 [ 1 : 5 0 ] ) ) ˆ 2 +

mutinformation (

d i s c r e t i z e ( animal l a t 1 [ 1 : 5 0 ] ) ,

d i s c r e t i z e ( animal l a t 2 [ 1 : 5 0 ] ) ) ˆ 2 )

# t = [15 , 30]

s h i f t GMI <− sqrt (

mutinformation (

d i s c r e t i z e ( animal lon 1 [ 5 1 : 1 0 0 ] ) ,

d i s c r e t i z e ( animal lon 2 [ 5 1 : 1 0 0 ] ) ) ˆ 2 +

mutinformation ( d i s c r e t i z e ( animal l a t 1 [ 5 1 : 1 0 0 ] ) ,

d i s c r e t i z e ( animal l a t 2 [ 5 1 : 1 0 0 ] ) ) ˆ 2 )
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mut df <−local mut i n f o ( t t i l d e = vt ,

animal lon 1 ,

animal l a t 1 ,

animal lon 2 ,

animal l a t 2 ,

bw = band ,

numbins = nbins )

l i s t return <− l i s t ( ”Overa l l GMI” = c ( b a s e l i n e GMI, s h i f t GMI) ,

”Animal Po s i t i on s ” = po s i t i o n df ,

”LMI Bandwidth” = band ,

”Noise Magnitude ( normal random e r r o r ) ” =

c ( r e r r 1 , r e r r 2 ) ,

”LMI Function” = mut df )

return ( l i s t return )

}

# Write genera l f unc t i on f o r genera t ing the computed

# ana l y t i c s o l u t i o n f o r LMI

t t i l <− seq (0 , 1 , length . out=100)

t rans <− 0 .5

ana l y t i c s o l <− function ( t t i l d e , t rans time , bw, b ins ){

l <− length ( t t i l d e )

lmi a <− rep (0 ,100)

prop <− rep (0 ,100)

for ( i in 1 : l ) {
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# i=1

i f ( t t i l d e [ i + bw] < t rans time |

i s .na( t t i l d e [ i + bw ] ) ==TRUE){

i f ( i s .na( t t i l d e [ i + bw ] ) ==FALSE){

lmi a [ i ] <− log ( b ins )

prop [ i ] = 1

}

}

else i f ( t t i l d e [ i + bw] > t rans time &

t t i l d e [ i − bw] < t rans time ){

l window <− length ( t t i l d e [ ( i−bw ) : ( i+bw ) ] )

sum phase1 <− sum( t t i l d e [ ( i−bw ) : ( i+bw) ] < t rans time )

prop [ i ] <− sum phase1/ l window

# Compute ana l y t i c So lu t i on

lmi a [ i ] <− prop [ i ] ∗ log ( b ins )

}

}

temp df <− as . data . frame (cbind ( lmi a , prop ) )

return ( temp df )

}

sim 1 e r r0 bw4 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw8 <− s h i f t sen ( band = 8 ,

r e r r 1 = 0 , r e r r 2 = 0 , nbins = 8)
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sim 1 e r r0 bw12 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw16 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw32 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw4 b2 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw8 b2 <− s h i f t sen ( band = 8 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw12 b2 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw16 b2 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw32 b2 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw4 b16 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw8 b16 <− s h i f t sen ( band = 8 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw12 b16 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw16 b16 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw32 b16 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,
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r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw4 b32 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw8 b32 <− s h i f t sen ( band = 8 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw12 b32 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw16 b32 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw32 b32 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

# Blank Plo t t emp la t e s to ove r l ay f i n a l LMI r e s u l t s

gg time <− ggp lot ( ) +

theme ( text = element text ( family=”Times” , s i z e =20) ,

plot . t i t l e = element text ( s i z e = 20 , co l ou r = ”black ” ) ,

plot . background = element rect ( f i l l = ”white ” ) ,

axis . text=element text ( s i z e =20, c o l o r = ”black ” ) ,

axis . t i t l e = element text ( family=”Times” , s i z e =20,

co l ou r = ”black ” ) ,

panel . background = element rect ( f i l l = ” ivory1 ” ,

co l ou r = ”black ” ) ,

panel . grid . major = element l i n e ( co l ou r = ”grey18 ” ,

l i n e t yp e = ”dotted ” ) ,

panel . grid . minor . x=element blank ( ) ,

panel . grid . minor . y=element blank ( ) ,
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legend . p o s i t i o n = ”none” ) + xlab ( ”Time” ) + ylab ( ”LMI( t i ) ” )

gg pos <− ggp lot ( ) +

theme ( text = element text ( family=”Times” , s i z e =20) ,

plot . t i t l e = element text ( s i z e = 20 , co l ou r = ”black ” ) ,

plot . background = element rect ( f i l l = ”white ” ) ,

axis . text=element text ( s i z e =20, c o l o r = ”black ” ) ,

axis . t i t l e = element text ( family=”Times” , s i z e =20,

co l ou r = ”black ” ) ,

panel . background = element rect ( f i l l = ” ivory1 ” ,

co l ou r = ”black ” ) ,

panel . grid . major = element l i n e ( co l ou r = ”grey18 ” ,

l i n e t yp e = ”dotted ” ) ,

panel . grid . minor . x=element blank ( ) ,

panel . grid . minor . y=element blank ( ) ,

legend . p o s i t i o n = ”none” ) + xlab ( ”Long Pos i t i on ” ) +

ylab ( ”Lat Pos i t i on ” )

gg pos <− gg pos +

geom point (data = sim 1 e r r0 bw16$ ‘ AnimalPosit ions ‘ ,

aes ( animal lon 1 , animal l a t 1 ) ,

col = ” roya lb lu e ” , alpha =0.4 , s i z e = 2 . 5 ) +

geom point (data = sim 1 e r r0 bw16$ ‘ Animal Pos i t i ons ‘ ,

aes ( animal lon 2 , animal l a t 2 ) ,

col = ” l ight sa lmon ” , alpha =0.4 , s i z e =2.5)

gg time <− gg time +

geom point (data = sim 1 e r r0 bw16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut j o i n t / l o c mut j o i n t max) ,
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col = ”navy” , alpha =0.5 , s i z e =2.5)

# FIGURE 1

gg pos

gg time <− ggp lot ( ) +

theme ( text = element text ( family=”Times” , s i z e =20) ,

plot . t i t l e = element text ( s i z e = 20 , co l ou r = ”black ” ) ,

plot . background = element rect ( f i l l = ”white ” ) ,

axis . text=element text ( s i z e =20, c o l o r = ”black ” ) ,

axis . t i t l e = element text ( family=”Times” , s i z e =20,

co l ou r = ”black ” ) ,

panel . background = element rect ( f i l l = ” ivory1 ” ,

co l ou r = ”black ” ) ,

panel . grid . major = element l i n e ( co l ou r = ”grey18 ” ,

l i n e t yp e = ”dotted ” ) ,

panel . grid . minor . x=element blank ( ) ,

panel . grid . minor . y=element blank ( ) ,

legend . p o s i t i o n = ”none” ) + xlab ( ”Time” ) + ylab ( ” ” )

###########################################

###########################################

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 2)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,
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bw=8, b ins = 2)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=16, b ins = 2)

#a bw32 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=32, b ins = 2)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ” ) + g g t i t l e ( ”bw = 4 ,

b ins = 2”)+

geom point (data = sim 1 e r r0 bw4 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

col = ”goldenrod1 ” , s i z e =1.25) +

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 2”)+

geom point (data = sim 1 e r r0 bw8 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 2”)+

geom point (data = sim 1 e r r0 bw16 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

112



gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 2”)+

geom point (data = sim 1 e r r0 bw32 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 2 ) , yend=log ( 2 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25)

gg b2 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol= 4 )

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 8)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=8, b ins = 8)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=16, b ins = 8)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ”)+

g g t i t l e ( ”bw = 4 , b ins = 8”)+

geom point (data = sim 1 e r r0 bw4$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” ,

alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 8”)+
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geom point (data = sim 1 e r r0 bw8$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 8”)+

geom point (data = sim 1 e r r0 bw16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 8”)+

geom point (data = sim 1 e r r0 bw32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 8 ) , yend=log ( 8 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom point ( aes ( x=0.5 , y=0.5∗ log ( 8 ) ) ,

col = ”goldenrod1 ” , s i z e = 2 . 5 )

gg b8 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol = 4 )

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 16)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=8, b ins = 16)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,
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bw=16, b ins = 16)

#a bw32 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=32, b ins = 16)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ”)+

g g t i t l e ( ”bw = 4 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw4 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw8 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” ,

alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw16 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw32 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 16 ) , yend=log ( 1 6 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +
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geom point ( aes ( x=0.5 , y=0.5∗ log ( 1 6 ) ) ,

col = ”goldenrod1 ” , s i z e = 2 . 5 )

gg b16 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol = 4 )

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 32)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=8, b ins = 32)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=16, b ins = 32)

a bw32 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=32, b ins = 32)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ”)+

g g t i t l e ( ”bw = 4 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw4 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw8 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw16 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +
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geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw32 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 32 ) , yend=log ( 3 2 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom point ( aes ( x=0.5 , y=0.5∗ log ( 3 2 ) ) ,

col = ”goldenrod1 ” , s i z e = 2 . 5 )

gg b32 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol = 4 )

grid . arrange ( gg b2 , gg b8 , gg b16 , gg b32 , ncol = 1)

}
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movement behavior: using trajectories and association rule mining algorithms to

unveil behavioral states and social interactions. PLOS ONE 16(2): e0246233.

https://doi.org/10.1371/journal.pone.0246233

[20] Hastie, T., Tibshirani, R.,, Friedman, J. (2001). The Elements of Statistical Learning.

New York, NY, USA: Springer New York Inc..

119



[21] Khaled Fawagreh, Mohamed Medhat Gaber, Eyad Elyan (2014) Random forests: from

early developments to recent advancements, Systems Science and Control Engineering,

2:1, 602-609, DOI: 10.1080/21642583.2014.956265

[22] Gower, J.C., Properties of Euclidean and non-Euclidean distance matrices. Lin-

ear Algebra and its Applications. Volume 67. 1985. Pages 81-97. ISSN 0024-

3795,https://doi.org/10.1016/0024-3795(85)90187-9.

[23] Boriah S., Chandola V., Kumar V. (2008). Similarity measures for categorical data:

A comparative evaluation. In: Proceedings of the 8th SIAM International Conference on

Data Mining, SIAM, p. 243-254.

[24] Whetten AB, Demler H. Detection of Multidecadal Changes in Vegetation Dynamics

and Association with Intra-annual Climate Variability in the Columbia River Basin. In

ArXiv e-prints (May 2021). arXiv: 2105.08864 [q-bio.QM]

[25] Binbin Lu, Martin Charlton, Paul Harris, A. Stewart Fotheringham (2014) Geographi-

cally weighted regression with a non-Euclidean distance metric: a case study using hedonic

house price data, International Journal of Geographical Information Science, 28:4, 660-681,

DOI: 10.1080/13658816.2013.865739

[26] Kendall, M. G. (1938). A new measure of rank correlation, Biometrika, 30, 81–93. doi:

10.1093/biomet/30.1-2.81.

[27] Schaeffer, M. S., Levitt, E. E. (1956). Concerning Kendall’s tau, a non-

parametric correlation coefficient. Psychological Bulletin, 53(4), 338–346.

https://doi.org/10.1037/h0045013

[28] Cover, T.M.; Thomas, J.A. (1991). Elements of Information Theory (Wiley ed.). ISBN

978-0-471-24195-9.

[29] Gervini, D. and Khanal, M. (2019). Exploring patterns of demand in bike sharing sys-

tems via replicated point process models. Journal of the Royal Statistical Society Series

C: Applied Statistics 68 585-602.

120



[30] Owoeye K., Musolesi M., Hailes S. Characterizing animal movement patterns across

different scales and habitats using information theory. bioRxiv 311241. 2018. doi:

https://doi.org/10.1101/311241

[31] S. Butail, F. Ladu, D. Spinello, and M. Porfiri. Information flow in animal-robot inter-

actions. Entropy, 16(3):1315–1330, 2014.

[32] S. Butail, V. Mwaffo, and M. Porfiri. Model-free information-theoretic approach to infer

leadership in pairs of zebrafish. Physical Review E, 93(4):042411, 2016

[33] F. Hu, L.-J. Nie, and S.-J. Fu. Information dynamics in the interaction between a prey

and a predator fish. Entropy, 17(10):7230–7241, 2015.

[34] M. Kadota, E. J. White, S. Torisawa, K. Komeyama, and T. Takagi. Employing relative

entropy techniques for assessing modifications in animal behavior. PLOS ONE, 6(12):1–6,

2011.

[35] W. M. Lord, J. Sun, N. T. Ouellette, and E. M. Bolt. Inference of causal information flow

in collective animal behavior. IEEE Transactions on Molecular, Biological and Multi-Scale

Communications, 2(1):107–116, 2016.

[36] Rocchini, D.; Thouverai, E.; Marcantonio, M.; Iannacito, M.; Da Re, D.; Torresani, M.;

Bacaro, G.; Bazzichetto, M.; Bernardi, A.; Foody, G.M.; et al. rasterdiv—An Information

Theory tailored R package for measuring ecosystem heterogeneity from space: To the

origin and back. Methods Ecol. Evol. 2021, 12, 1093–1102.

[37] Jeffrey J. Thompson, Ronaldo G. Morato, et. al. (2021) Environmental and anthro-

pogenic factors synergistically affect space use of jaguars. Current Biology. 31 (15): 3457-

3466. ISSN 0960-9822. https://doi.org/10.1016/j.cub.2021.06.029.

[38] Dai S., Zhan S., Song N. Adaptive Active Contour Model: a Localized Mutual Infor-

mation Approach for Medical Image Segmentation. (2015). KSII Transactions on Internet

and Information Systems, 9(5). https://doi.org/10.3837/tiis.2015.05.016

121



[39] Klein S., et. al. Automatic segmentation of the prostate in 3D MR images by atlas

matching using localized mutual information.2008. Volume35, Issue4.Pages 1407-1417.

https://doi.org/10.1118/1.2842076

[40] Whetten A.B., Smoothing Splines of Apex Predator Movement: Functional modeling

strategies for exploring animal behavior and social interactions. Ecology and Evolution.

Vol 11 (21). DOI: 10.1002/ece3.8294

[41] Torres LG, Thompson DR, Bearhop S, Votier SC, Taylor GA, Sagar PM, et al. White-

capped albatrosses alter fine-scale foraging behavior patterns when associated with fishing

vessels. Mar Ecol Prog Ser. 2011; 428: 289–301.

[42] Green, P. J.; Silverman, B.W. (1994). Nonparametric Regression and Generalized Linear

Models: A roughness penalty approach. Chapman and Hall.

[43] Hastie, T. J.; Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and

Hall. ISBN 978-0-412-34390-2.

[44] Ramsay, J.O., and Silverman, B.W. (2005). Functional Data Analysis (second edition).

Springer, New York.

[45] Ramsay J., Dalzell C. (1991). Some Tools for Functional Data Analysis. Journal of the

Royal Statistical Society. Series B (Methodological), 53(3), 539-572.

[46] De Boor C. 1978. A practical guide to splines.

[47] Gel’fand, I.M.; Yaglom, A.M. (1957). ”Calculation of amount of information about

a random function contained in another such function”. American Mathematical Soci-

ety Translations. Series 2. 12: 199–246. doi:10.1090/trans2/012/09. ISBN 9780821817124.

English translation of original in Uspekhi Matematicheskikh Nauk 12 (1): 3-52.

[48] Meyer, P. E. (2008). Information-Theoretic Variable Selection and Network Inference

from Microarray Data. PhD thesis of the Universite Libre de Bruxelles.

[49] Wong JB, Lisovski S, Alisauskas RT, English W and others (2021) Arctic terns from

circumpolar breeding colonies share common migratory routes. Mar Ecol Prog Ser 671:191-

206. https://doi.org/10.3354/meps13779

122



[50] Palomares, F. et. al. (2018). Scraping marking behaviour of the largest Neotropical

felids. PeerJ, 6, e4983. https://doi.org/10.7717/peerj.4983

[51] Towns V. et. al. (2017). Marking behaviours of jaguars in a tropical rainforest of southern

Mexico. CAT news. 66. 33-35.

[52] Ullah S., Finch C.F. ((2013). Applications of functional data analysis: A systematic

review. BMC Med Res Methodol 13, 43.

[53] Hooten M.B., Johnson D.S., Basis Function Models for Animal Movement, Journal

of the American Statistical Association, 10.1080/01621459.2016.1246250, 112, 518, (578-

589), (2016).

[54] Henning B., Kist A., Pinheiro A., Camargo R.L, Batista T.M., Carneiro E.M, dos Reis

S.F., Modelling Animal Activity as Curves: An Approach Using Wavelet-Based Func-

tional Data Analysis, Open Journal of Statistics, 10.4236/ojs.2017.72016, 07, 02, (203-

215), (2017).

[55] Hefley T.J., Broms K.M., Brost B.M., Buderman F.E., Kay S.L., Scharf H.R., Tipton

J.R., Williams P.J., Hooten M.B., The basis function approach for modeling autocorrela-

tion in ecological data, Ecology, 10.1002/ecy.1674, 98, 3, (632-646), (2017).

[56] Anderson-Sprecher R., and Lenth R.V. ”Spline estimation of paths using bearings-only

tracking data.” Journal of the American statistical association 91.433 (1996): 276-283.

[57] Morato R.G., Stabach J.A., Fleming C.H., Calabrese J.M., Paula R.C.D., Ferraz

K.M.P.M., et al. Space Use and Movement of a Neotropical Top Predator: The Endangered

Jaguar. PLOS ONE. 2016; 11: e0168176. https://doi.org/10.1371/journal.pone.0168176

PMID: 28030568

[58] Cavalcanti SMC, Gese EM. Spatial Ecology and Social Interactions of Jaguars

(Panthera onca) in the Southern Pantanal, Brazil. J Mammal. 2009; 90: 935–945.

https://doi.org/10.1644/08-MAMM-A-188.1

[59] Sneha J., Shuangge Ma. Functional Measurement Error in Functional Regression. Can-

dian Journal of Statistics. Volume48, Issue2.2020.https://doi.org/10.1002/cjs.11529

123



[60] Cai X. Methods for handling measurement error and sources of varia-

tion in functional data models. Columbia Commons. 2015. Doctoral Thesis.

https://doi.org/10.7916/D8M907CJ

[61] Hooten, M.B., et al. ”Animal movement models for migratory individuals and groups.”

Methods in Ecology and Evolution 9.7 (2018): 1692-1705

[62] Wand, M.P; Jones, M.C. (1995). Kernel Smoothing. London: Chapman Hall/CRC.

ISBN 978-0-412-55270-0.

[63] Noonan M.J., Fleming C.H., Akre T.S. et al. Scale-insensitive estimation of

speed and distance traveled from animal tracking data. Mov Ecol 7, 35 (2019).

https://doi.org/10.1186/s40462-019-0177-1

[64] Buderman F.E., et al. ”Large-scale movement behavior in a reintroduced predator pop-

ulation.” Ecography 41.1 (2018): 126-139.

[65] Hijman R.J. (2019). geosphere: Spherical Trigonometry. R package version 1.5-10.

https://CRAN.R-project.org/package=geosphere

[66] Harmsen B.J., Foster R.J., Gutierrez S.M., Marin S.Y., Doncaster C.P., Scrape-marking

behavior of jaguars (Panthera onca) and pumas (Puma concolor), Journal of Mammal-

ogy, Volume 91, Issue 5, 15 October 2010, Pages 1225–1234, https://doi.org/10.1644/09-

MAMM-A-416.1

[67] Scharf, H.R., et al. ”Dynamic social networks based on movement.” The Annals of

Applied Statistics 10.4 (2016): 2182-2202.

[68] Scharf, H.R., et al. ”Process convolution approaches for modeling interacting trajecto-

ries.” Environmetrics 29.3 (2018): e2487.

[69] Hamdy M., arXiv:1906.10221 [stat.ME]

[70] Langley R. 1999. Dilution of precision. — GPS World 10: 52–59.

[71] Morato R.G., Thompson J.J., Paviolo A., Torre J.A. de L, Lima F., McBride R.T., et

al. Jaguar movement data- base: a GPS-based movement dataset of an apex predator in

124



the Neotropics. Ecology. 2018; 99: 1691– 1691. https://doi.org/10.1002/ecy.2379 PMID:

29961270

[72] Morato R.G., Kantek D.L.Z., Miyazaki S., Deluque T., de Paula R.C. (2021) Data from:

Jaguar movement database—a GPS-based movement dataset of an apex predator in the

Neotropics. Movebank Data Repository. doi:10.5441/001/1.3c4fv0m4

[73] Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,

2016.

[74] Baptiste A. (2017). gridExtra: Miscellaneous Functions for ”Grid” Graphics. R package

version 2.3. https://CRAN.R-project.org/package=gridExtra

[75] Charlotte E. Eriksson, et. al. Extensive aquatic subsidies lead to territorial

breakdown and high density of an apex predator. bioRxiv 2021.03.29.437596; doi:

https://doi.org/10.1101/2021.03.29.437596

[76] Hijmans R.J. (2019). geosphere: Spherical Trigonometry. R package version 1.5-10.

https://CRAN.R-project.org/package=geosphere

[77] Meyer P.E. (2014). infotheo: Information-Theoretic Measures. R package version 1.2.0.

https://CRAN.R-project.org/package=infotheo

[78] Kantek D.L.Z and Onuma S.S.M. Jaguar Conservation in the region of Taiamã Ecolog-
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