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ABSTRACT
SPLINE MODELING AND LOCALIZED MUTUAL INFORMATION MONITORING

OF PAIRWISE ASSOCIATIONS IN ANIMAL MOVEMENT

by

Andrew Whetten

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Vince Larson and Professor David Spade

Advances in Satellite Imaging and GPS tracking devices have given rise to a new era of

remote sensing and geospatial analysis. In environmental science and conservation ecology,

biotelemetric data recorded is often high-dimensional, spatially and/or temporally, and

functional in nature, meaning that there is an underlying continuity to the biological

process of interest. GPS-tracking of animal movement is commonly characterized by

irregular time-recording of animal position, and the movement relationships between

animals are prone to sudden change. In this dissertation, I propose a spline modeling

approach for exploring interactions and time-dependent correlation between the movement

of apex predators exhibiting territorial and territory-sharing behavior. A measure of

localized mutual information (LMI) is proposed to derive a correlation function for

monitoring changes in the pairwise association between animal movement trajectories. The

properties of the LMI measure are assessed analytically and by simulation under a variety

of circumstances. Advantages and disadvantages of the LMI measure are assessed and

alternate measures of LMI are proposed to handle potential disadvantages. The proposed

measure of LMI is shown to be an effective tool for detecting shifts in the correlation of

animal movements, and seasonal/phasal correlatory structure.
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2 Introduction

In the past two decades, the rapid increase in the quality of GPS-tracking technology has

revolutionized the field of movement ecology [1, 2]. The advancements in animal-tracking

systems have yielded high-precision and densely recorded datasets of wildlife behavior [3].

The current challenge in the field of movement ecology is the appropriate processing and

integration of large volumes of tracked animals and local environmental data into a unified

modeling process to improve the quality of population level inferences [4, 5, 6].

Many models have been proposed in recent years to improve animal trajectory estimation,

relationships of animal movements, and home-range and land use estimates for individual

animals [4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15]. However, in spite of the exceptional characteristics

of these models, there is minimal development of descriptive statistical tools [16, 17, 18, 19].

Descriptive/summary statistics include the widely familiar and elementary topics in statistics

and probability such as mean, median, variance, covariance, quantiles, and many others.

Additionally, there is rich literature on dissimilarity measures and distance metrics that have

paralleled the rise of machine learning modeling [20, 21, 22, 23]. Although a seemingly trivial

topic in modern animal movement modeling, these descriptive measures are the foundation

of any sound modeling process, and the appropriate construction and selection of a measure

inevitably provides increased insight into the process of interest [24, 25].

The correlation coefficient is a descriptive measure used widely across all branches of

statistics. A few household measures of correlation are listed here: Pearson, Spearman,

Kendall [26, 27]. In information theory, a common measure of association is referred to as

mutual information, which is a quantification of the amount of information obtained from

the distribution of a random variable by observing another random variable [28]. Although

correlation measures are often abused or “over-interpreted,” they can be thought of as a

measure of similarity/dissimilarity between observations or variables in a dataset [24, 29].

The use of information theoretic measures in movement ecology has modestly increased
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in recent years [30, 31, 32, 33, 34, 35, 36], and it is instructive to press forward in evaluating

the merits of information theory and its role in animal movement modeling. Single, global

estimations of correlation between animals are insufficient for modeling the complex rela-

tionships of animals over an extended time-period. Animals of the same or different species

can have changes in the relationships of their movement as a result of mating behavior and

critical resource allocation as well as seasonal and environmental changes in an ecosystem

such as urbanization, deforestation, or climate change [37].

In this work, we propose a bandwidth-derived correlation function that accomplishes the

following: (1) locally measures the correlation/association of the movement of two animals,

(2) changes in correlation are successfully detected, (3) the measure can successfully detect

complex relationships in a local domain, and (4) information about correlation in movement

over a larger time-domain can be successfully inferred. The proposed correlation function is a

measure of localized mutual information (LMI) using bivariate (longitudinal and latitudinal)

animal position data. There is modest work in recent years in defining localized mutual

information over a continuum, and the objective of this work is to construct a temporal

measure of localized mutual information, thoroughly assess its qualities, and discuss the

advantages and disadvantages of its implementation in movement ecology [38, 39].

We investigate the properties of the proposed LMI measure by proof and by simulation

where, for a simple example, we confirm the results of an analytical (i.e. by-hand) and

the implemented software solution. Several simulations are also shown afterwards to explore

more complicated movement relationships. The measure has been previously implemented in

a full statistical analysis of a collection of jaguars (Panthera onca) in the Pantanal Ecological

Station in Brazil [40]. The measure is shown to be an effective tool for detecting shifts

and spikes in animal association, and further, in the investigation of jaguar movement, the

measure provides evidence of detecting animals in the same behavioral state, such as two

male jaguars exhibiting similar movements in a mating season.

The simulation studies reveal several characteristics of the proposed measure of LMI

2



which are of important consideration for researchers who intend to study associations in

animal movement and behavior or use the measure for other telemetric, GPS tracking ap-

plications, such as military or citizen transportation movements, or relationships between

animals and human transportation [41]. In the Discussion Section, following the simulations,

we propose one alternative measure of LMI that addresses some of the disadvantages of the

currently implemented measure, and we mention other information theoretic measures that

have the potential to accomplish the same task as mutual information.

3 Background

In this section, we provide brief introductions to key concepts and techniques from informa-

tion theory, spline smoothing, and density estimation. The topics introduced from informa-

tion theory pertain to the main focus of this dissertation, and the latter methods pertain to

the application of the measure in application section of the paper.

3.1 Information Theoretic Measures

In the field of Information Theory, there are many measures that have been derived to

characterize properties of one or more random variables [28]. In this section, we list only the

most basic measures required to understand this work. Later in this work, we mention the

ideas of Relative Entropy and Total Correlation or Multiinformation. They are not described

in any mathematical detail, but they are relevant to future work with localized information

theoretic measures.

3.1.1 Entropy

The entropy of a random variableX is the average level of information or uncertainty inherent

to the potential outcomes of X. Widely referred to as Shannon’s entropy, the concept is, in

principle, analogous to the definition of entropy in thermodynamics [28].

3



Shannon’s entropy of X, denoted by H(X), is the expected value of the information

content I(X) of a variable expressed by

H(X) = E[I(X)] = E[−log(P (X)]. (3.1)

The information content I(X) = −logP (X) is an operator that assign a level of surprise

where high probability events that can be realized from X are assigned “low surprise” values

and low probability (rare) events are assigned “high surprise” values. If there are many low

probability events that are possible, we expect the average level of surprise in X to be higher.

Entropy can be written explicitly as

H(X) = −
n∑

i=1

P (xi)logbP (xi) (3.2)

where xi correspond to the possible values of a discrete random variable. It is common

practice for b = 2, e, or 10, and the choice of b only affects the units by which entropy is

measured. For a continuous random variable, Shannon’s entropy is expressed by

H(X) = E[−log(f(x))] = −
∫
X
f(x)log(f(x))dx (3.3)

where f(x) is the probability density function of the random variable X. Although some

variables are defined with underlying continuity, the computation of entropy is achieved us-

ing unsupervised discretization strategies in order to efficiently compute H(X) using Equa-

tion 3.2. This is discussed further when relevant in this work.
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3.1.2 Conditional and Joint Entropy

Conditional entropy is a quantification of the amount of information needed to explain the

outcome of a random variable Y given that another random variable X is known [28]. The

conditional entropy of Y given X is expressed by

H(Y |X) = −
∑

x∈X ,y∈Y

p(x, y)log

(
p(x, y)

p(x)

)
. (3.4)

If X and Y are independent, then H(Y |X) = H(Y ). Conversely, conditional entropy equals

zero only when the value of Y is perfectly explained/determined by the value of X.

Joint entropy is the measure of uncertainty associated with two or more variables. Also

referred to as the joint Shannon entropy, it can be expressed for two random variables X

and Y by

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y)log(p(x, y)). (3.5)

There are many important properties of all measures of entropy that tie back to the

properties of information, I(p). For an event with probability p, I(p) has a domain of

p ∈ (0, 1]. The following properties hold:

1. I(p) monotonically decreases as the probability, p, occurring increases.

2. I(p) is non-negative.

3. If p = 1, then I(p) = 0. Certain events do not contain information.

4. Independent events, with p1 and p2 provide summative information. (I(p1 · p2) =

I(p1) + I(p2)).
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3.1.3 Mutual Information

Mutual information is a measure of mutual dependence or association between two random

variables X and Y , and it is a measure of the amount of information, measured in the

same units as entropy, obtained about one variable by observing another. Up until this

point, we have used I to denote the information content. However, in standard Information

Theory notation, mutual information is also defined with the symbol I; the only difference

that distinguishes the two is that mutual information is an operator that accepts two random

variable inputs as opposed to one. The mutual information, I, of two jointly discrete random

variables X and Y is expressed by

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y)log

(
p(X,Y )(x, y)

p(X)(x)p(Y )(y)

)
, (3.6)

where p(X,Y ) is the joint probability mass function (pmf) of X and Y and pX and pY are their

respective marginal distributions. Subscripts have been introduced on the all pmfs starting

in this section to ensure that the formula consisting of variables for differing pmf and the

joint pmf are clearly labeled. The intuition behind the construction of this measure rests in

the concept of the magnitude of independence/dependence between two random variables.

If X and Y are perfectly independent, then observing either X or Y does not provide any

information about the other variable. In Equation 3.6, if X and Y are independent, then

equation becomes

I(X, Y ) =
∑
y∈Y

∑
x∈X

p(X,Y )(x, y)log

(
p(X)(x)p(Y )(y)

p(X)(x)p(Y )(y)

)
=
∑
y∈Y

∑
x∈X

p(X,Y )(x, y)log(1) = 0. (3.7)

Mutual information can be shown to be nonnegative and symmetric measure (I(X, Y ) ≥

0, and I(X, Y ) = I(Y,X)) [28]. Mutual information is directly related to joint and con-

ditional entropy, and it is practical to use this relationship to study properties of mutual

information. Mutual information is the amount of entropy remaining in a variable, X, after
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subtraction that amount of entropy from the same variable given that another variable, Y ,

was known. By symmetry of the measure and the properties of entropy, mutual information

can be expressed in a number of useful forms given in the next steps of work:

I(X, Y ) = H(X)−H(X|Y ) (3.8)

I(X, Y ) = H(Y )−H(Y |X) (3.9)

I(X, Y ) = H(X) +H(Y )−H(Y,X) (3.10)

3.2 Smoothing Splines

In the environmental sciences, among many other applications, many processes are observed

which are continuous spatially or evolve/change over time in a continous manner. Many of

these processes may also have an underlying smoothness which is theorhetically understood,

but when empirically measured, the smoothness is lost to (white) noise, random variation,

instrumentation error/insensitivity, and gaps in spatial or temporal domain measurements.

All of these natural outcomes from empirical data collection can potentially obscure the

underlying process which is of interest to study.

Smoothing splines are estimated functions, denoted generally by f̂(t), are obtained from

empirical (discretely and often non-uniformly measured) observations yi where t the spatial

or temporal grid on which observations are measured/recorded. They are used to estimate a

target f(ti). Cubic (polynomial) splines are a common choice for many smoothing problems.

We briefly outline the general smoothing problem objective function here. More details of

the implemented smoothing spline procedure can be found in the Smoothing Splines of Apex

Predator Movement chapter of this dissertation.

Let (ti, yi) with i = 1, . . . , n be a set of observations which are realization from a random

variable Y on a temporal or spatial grid T . These observations are assumed to be modeled

by yi = f(ti)+ ϵi where f is the continuous, differentiable function we are trying to estimate
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and ϵi are an unknown, independent error term that is “concealing” the process that we are

observing only by the raw data, yi. Generally, it is assumed that ϵi has an expected value of

zero and has constant variance. This could be violated in cases where some instrumentation

is known to have error which has substantial bias or is know to have larger error under some

regularly or irregularly occurring conditions while the process is observed.

The cubic smoothing spline estimate f̂ of the function f is defined to be the minimizer

of

n∑
i=1

{yi − f̂(ti)}2 + λ

∫
f̂ ′′(ti)

2dx, (3.11)

where f̂ is assumed to be twice differentiable, λ ≥ 0 is a smoothing parameter that penalizes

the roughness of the estimated function [42, 43]. As λ → ∞, all roughness is eliminated

from f̂ and the estimate converges to a linear least squares estimate through the data yi.

As λ → 0, f̂ converges to an exact spline interpolation of the raw data. Clearly, in a

smoothing application, neither of these are ideal scenarios since a strict interpolation will

yield extremely noisy functions with poor differential properties, and linear functions “wash

out” all functional features such as local maximia, minima, periodicity, non-monotonicity

etc. There are multiple strategies for defining and optimizing a smoothing spline, and we

largely follow Ramsay and Silverman’s outline of roughness-penalty smoothing spline opti-

mization [42, 43, 45, 44, 46].

3.3 Kernel Density Estimation

Kernel density estimation (KDE) is a nonparametric method used to acquire an estimate of

a probability density function of a random variable. The fundamental objective of KDE is

interrelated/inseparable from those found in smoothing splines problems since the estimation

of a probability density function required the estimation of a smoothed pdf from finitely (and

possibly noisy) sampled data.
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Let {ti|i = 1, . . . , n} be independent and identically distributed samples, given by points

ti, drawn from a univariate distribution with an unknown density, f . The shape of the

distribution, denoted by f , has a KDE expressed by

f̂(t) =
1

n

n∑
i=1

Kh(t− ti) =
1

nh

n∑
i=1

K

(
t− ti
h

)
, (3.12)

where K is the kernel which is a non-negative function, Kh is referred to as the scaled kernel

defined Kh = 1/hK(x/h) [62]. Similar to smoothing splines, h > 0 is a smoothing parameter

called the bandwidth. Many kernel functions can provide appropriate estimates of f but the

Gaussian/normal kernel K(t) = Φ(t) is most often used. Ultimately, KDE is the sum of

several (generally identical) functions (kernels) that are each localized around a respective

ti, and the “width of influence” of each function is restricted by h.

4 Author’s Note

Prior to the drafting of this dissertation, the application section of this paper entitled Smooth-

ing Splines of Apex Predator Movement: Functional Modeling Strategies for Exploring An-

imal Behavior and Social Interactions has been published [40]. Although improvements to

the measure implemented in this paper are proposed later in this work, it is instructive to

verify properties of the original measure.

In this work, we add some additional details to the application section, specifically a

sensitivity assessment justifying the automatic density-based knot placement technique used

to smooth jaguar trajectories.

5 Localized Mutual Information

Consider bivariate vectors X = (X1, X2) and Y = (Y1, Y2) which define the movement paths,

X and Y , of two animals. The pair of variables (X, Y ) have values over the space X × Y

where X1 and Y1 are vectors corresponding to the longitudinal position of the animals on
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a unified time grid, and X2 and Y2 correspond similarly for the latitudinal position. In

this section, we construct the definition of LMI from the respective latitude and longitude

components.

The components of LMI, ILi
(Xj, Yj|λ) with j = 1, 2, are a measure of localized mutual

information for the jth directional component defined by

ILi
(Xj, Yj|λ) =

∑∑
x∈XjLi

y∈YjLi

p(Xj ,Yj)(x, y) log
p(Xj ,Yj)(x, y)

pXj
(x)pYj

(y)
dxdy for j = 1, 2.

The restriction of the mutual information to the localized neighborhood is given by the

space XjLi
×YjLi

. This is a restriction of the domain of X, Y to their respective probability

density functions on the time domain defined by Li. In our work, we define Li = {t|t ∈

[ti−λ, ti+λ], where Li is a collection of time points, {t}, that mark the timing of observations

of X and Y . The value λ, also referred to as the bandwidth (bw), is an integer value that

defines the local collection time points {t} that surround the ith time point, ti.

A joint measure of mutual information, ILi
, can be constructed from the directional

components as follows:

ILi
(X, Y |λ) =

√
ILi

(X1, Y1|λ)2 + ILi
(X2, Y2|λ)2

.

To construct the final LMI measure, we compute the mutual information, ILi
, at every

available time point ti for the local neighborhood defined by t ∈ [ti−λ, ti+λ]. The bandwidth,

chosen by the user, must be considered with knowledge of the application of interest. The

proposed measure of LMI is then defined by

I(t;λ) = ILi
(X, Y |λ) with Li = {t|t ∈ [ti−λ, ti+λ]}.
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5.1 General Properties

The LMI measure I(t;λ) is expected to carry many of the properties of a global measure

of mutual information. Namely, in this section, we verify the non-negativity of the measure

and the monotonicity of the relationship between LMI and a correlation coefficient ρ. Ulti-

mately, it is of interest to ensure that any derived measure of association is on a scale that

is comparable to a standard correlation coefficient, and further that the measure behaves

similarly on such as scale.

Property 1: I(t;λ) is nonnegative (i.e. I(t;λ) ≥ 0).

Since the mutual information of any collection of realizations is positive, it follows that

ILi
(X, Y ) ≥ 0. More importantly, for any a, b ∈ R, it follows that

√
a2 + b2 ≥ 0. Therefore,

it is clear that I(t;λ) = ILi
(X, Y |λ) ≥ 0.

Proposition 1: I(t;λ) is symmetric.

It is sufficient to show that ILi
(X, Y |λ) = ILi

(Y,X|λ). Since ILi
(X1, Y1|λ) = ILi

(Y1, X1|λ)

and ILi
(X2, Y2|λ) = ILi

(Y2, X2|λ) for any Li, it is clear that
√

ILi
(X1, Y1|λ)2 + ILi

(X2, Y2|λ)2 =√
ILi

(Y1, X1|λ)2 + ILi
(Y2, X2|λ)2. Therefore, ILi

(X, Y |λ) = ILi
(Y,X|λ), and I(t;λ) is sym-

metric ∀Li. □

Proposition 2: As the linear correlation coefficient of normally distributed X and Y

increases, then I(t;λ) increases (↑).

Proof: It is sufficient to show that the proposition holds for any Li in the time domain

T. In other words, for any Li, it must be shown that as the correlation coefficients for either

directional component increase then ILi
(X, Y ) ↑.

It is known that the mutual information between two vectors X and Y on an interval Li

can be expressed by ILi
(X, Y ) = HLi

(X) +HLi
(Y )−HLi

(X, Y ). For a continuous random

variable, X, subsetted to the realizations on the domain Li = {t|t ∈ [ti−λ, ti+λ]}, Shannon’s

entropy is defined by HLi
(X) = −

∫
XL⟩

f(x)lnf(x)dx [28]. Assume that X ∼ N(0, 1) and

Y ∼ N(0, 1). We define association here as an increase in the linear correlation coefficient ρ
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Figure 5.1: The relationship between mutual information and the correlation coefficient, ρ,
for normally distributed X, Y using a 300 equally spaced values of ρ ∈ (−1, 1)

between two random variables. Then it follows that


HLi

(X) = 1
2
log2πe

HLi
(Y ) = 1

2
log2πe

HLi
(X, Y ) = 1

2
log((2πe)2(1− ρ2)

,

where ρ is the correlation coefficient between X and Y [28, 47]. It follows that

ILi
(X, Y ) = 1

2
log2πe+ 1

2
log2πe− 1

2
log((2πe)2(1− ρ2))

ILi
(X, Y ) = −1

2
log(1− ρ2).

Refer to Figure 5.1 for a visual of the relationship between ρ and mutual information. It
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is clear that lim
ρ→1

− 1
2
log(1− ρ2) = +∞, lim

ρ→−1
− 1

2
log(1− ρ2) = +∞, and

lim
ρ→0

− 1
2
log((1− ρ)2) = −1

2
log(1) = 0.

In the remainder of the proof, we do not address what happens to ILi
if ρ1 or ρ2 decreases

while the other increases. There is clearly a competing effect on ILi
and since the process of

interest is 2 dimensional, it is not clear that there is a increase in overall correlation across

all directional components unless the correlation of both or at least one increases while the

other is fixed.

Since ILi
is monotonic on [−1, 0) and ILi

is monotonic on (0, 1], it follows that as |ρ| ↑,

then ILi
↑. If X = (X1, X2) and Y = (Y1, Y2), then

ILi
(X, Y |λ) =

√
ILi

(X1, Y1)2 + ILi
(X2, Y2)2 =

√
(−1

2
log(1− ρ21))

2 + (−1
2
log(1− ρ22))

2.

Then if |ρ1| ↑ or |ρ2| ↑ while the other remains fixed, then ILi
(X, Y |λ) ↑. Since Li is an

arbitrary window within T, then this holds for any Li as defined by the pair (ti,Li). □

Although not examined in the proof of Proposition 3, it is important to emphasize that

X ∼ N(0, 1), Y ∼ N(0, 1), and the integration of their respective pdfs assumes continuity

when in the actual estimation pdf’s empirically, this is computed by discretizing each pdf to

a pmf.

Boundary Value Condition:

The most apparent concern with the boundary cases for a bandwidth derived measure is

the decreasing size of available samples of position with the bandwidth Li. If no boundary

condition is coerced on I(t|λ), then at t0, Li = {t|t ∈ [t0, ti+λ]} and at tf , Li = {t|t ∈

[ti−λ, tf ]} where t0 and tf correspond to the first and last position of an animal detected

or estimated. In this work, we set Li for all near boundary ti according to the following

condition. If ti−λ < t0, then Li = {t|t ∈ [t0, t0+2λ]}. If ti+λ > tf , then Li = {t|t ∈ [tf−2λ, tf ]}.

This boundary condition coerces every time point ti to have equal size Li, where any of

the near boundary ti all have the same LMI. This is done to ensure that the boundaries of

the time domain are well-behaved. A reduction in the sample of observed times will have a

direct effect on the computed LMI which is not of direct interest.

13



For many GPS-derived animal movement applications the sampled locations of an animal

are densely recorded over extended time periods, and the number of ti that this affects is

minimal for most considered bandwidths, λ.

Violation of the Distance Metric Properties:

With any measure of dissimilarity, it is important to assess if the measure meets the

requirements to be classified as a distance metric. It is known that mutual information is

not a distance metric as it violates the triangle inequality I(X,Z) ≤ I(X, Y ) + I(Y, Z) [28].

However, more simply, a distance metric d must satisfy d(X, Y ) = 0 when X = Y . For

mutual information this is clearly violated since I(X, Y ) ̸= 0 when X = Y . (In simpler

terms, LMI is not equal to zero for two animals when they are the same animal.)

As I(X, Y ) unbounded in the positive direction, it would be natural to consider inverting

a scaled version of the measure so that a measure of zero identifies two objects that are

close and a measure of 1 identifies objects that are far apart. It can also be shown with

a few steps of mathematics that taking a measure defined by d(X, Y ) = 1 − I∗(X, Y ) is

not a distance metric (where I∗ is the mutual information between X and Y scaled by the

maximum possible mutual information defined by I∗(X, Y ) = I(X,Y )
I(X,X)

). Here it is now clear

that d(X, Y ) = 0 when X = Y , but we show the violation of the triangle inequality in

Appendix A1 7.1.

If the properties of a distance metric are desired, an alternative information theoretic

measure of association, referred to as relative entropy can be implemented. It does not

violate the triangle inequality [28], and as such the entirety of work could be defined and

assessed similarly using relative entropy. Going forward, we continue to refer to mutual

information as a measure of dissimilarity as opposed to a measure of distance (i.e. a distance

metric).
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5.2 Simulation Studies

In order to investigate the advantages and disadvantages of the proposed measure, it is

instructive to generate simulations with known global mutual information and/or known

associative structure over periods of constant behavior and report the LMI computed over

these regions and those of transitioning behavior. More specifically, the sensitivity of the

measure to the choice of bandwidth, λ, the number of bins (or simply bins) used to discretize

a pmf for the movement paths over any Li, and the signal-to-noise ratio are the parameters

of primary interest. The distance between the position of animals is of secondary interest,

but is implicitly investigated here as well.

In the construction of simple movement simulations, we consider scenarios where LMI is

both ideal and non-ideal, and a discussion of how to handle the non-ideal scenarios follows.

Six simulation scenarios are investigated:

1. Simulation 1: A “Dead or Alive” movement model where mutual information is feasibly

derived by hand for verification of measure.

2. Simulation 2: A “Shift-Sensitivity” model where global mutual information is known

for a period of strong association and a period of lower association.

3. Simulation 3: “Cross-directional Relationship” detection where one animal’s latitudinal

movement has a strong relationship with the other animal’s longitudinal movement

while a weak relationship exists between their matching directional movements.

4. Simulation 4: Delayed Onset/Following Behaviors where one animal follows the move-

ment of the other.

5. Simulation 5: “Resolution Challenges” where the bandwidth and pdf discretization

parameter sensitivity are examined in the presence of Brownian movement, and low

versus high temporal resolution.
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6. Simulation 6: A random walk simulation of male-female jaguar relationships [40].

In all simulations, the choice of bandwidth, λ, will be investigated, and in the other

simulations, bins, and the signal-to-noise ratio will be examined at an array of values. The

relevance of each of the movement behaviors is discussed in more detail in each of the

following sections.

5.2.1 Template code for Simulations

All simulations use the same generic format outlined in this section. In the simplest terms,

the simulations are performed by generating a uniform time vector and then selecting a

function or set of functions for the latitudinal and longitudinal components of each animals

movement. Figure 5.2 shows the general pseudo code template used for all simulations. In

some of the later simulations minor deviations from this procedure were implemented to

induce more complicated attributes such as autocorrelated random errors to induce random

walk movement trajectories.

5.2.2 Simulation 1: Analytical Verification of LMI

The objective of our preliminary simulation is to verify and provide further insight into the

mechanics of the proposed LMI measure. In this simulation T1, T2, and T3 mark the start,

middle, and end of the simulation. In a 2-dimensional space, two of the simplest scenarios

that can be examined are when two animals have identical linear movement, or when one

animal moves constantly while the other animal is stationary. The sudden halting movement

behavior could characterize a resting, critically injured, or deceased animal. The transition

in the behavior on one animal will occur at T2. The simulation visualized and evaluated

in this section combines both of these simple scenarios into one to explore the transition

properties of LMI.

In Figure 5.3, we outline the analytical checks visually that are performed on LMI for
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Figure 5.2: Code outline for the simulation generation procedure.
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Figure 5.3: Summary of Analytical Verification of LMI Measure. The verification consists
of measuring standard/global measure of mutual information from (T1, T2) and (T2, T3) re-
spectively. LMI is also confirmed for localized regions completely contained with (T1, T2)
and (T2, T3) and also for a localized region containing T2 where there is at least 1 point on
a uniform time grid in both (T1, T2) and (T2, T3). The trajectories of the animals in (T1, T2)
are identical/parallel linear movements, and in (T2, T3) animal 2 is stationary while the other
continues as before.

this simulation. First, we confirm the global/standard mutual information (GMI) for each of

the two states of the simulation. Then we compute LMI analytically for three time points:

(1) ti1 = ti with (ti−λ, ti+λ) ⊂ (T1, T2), (2) ti2 = ti with T2 ∈ (ti−λ, ti+λ), and (3) ti3 = ti with

(ti−λ, ti+λ) ⊂ (T2, T3).

After manually computing these values for LMI and GMI, we overlay these results with

the implemented code of the measure, and discuss why subtle or substantial differences exist.

This simulation model for the first animal is defined by


x(ti) = ti − 0.05 + ϵti ti ∈ [0, 1]

y(ti) = ti + ϵti

,

and for the second animal
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x(ti) = ti + 0.05 + ϵti ti ∈ [0, 0.5)

y(ti) = ti + ϵti

x(ti) = 0 + x(ti = 0.5) + ϵti ti ∈ (0.5, 1.0]

y(ti) = 0 + y(ti = 0.5) + ϵti

.

To increase the simplicity of this model for analytical verification, the random error term

is set to 0. In most simulations following this section, the error term is assumed to be

independent and identically distributed. Intuitively, it is expected that if two animals move

with the exact same behavior with no noise induced into the process, a perfect association in

their movements will be detected. It also follows intuition that there should be no association

in the movement of two animals if one animal is motionless and the other is moving with a

clearly defined functional behavior.

Computing GMI and LMI

Recall from Equation 3.8 that

I(X1, X2) = H(X1) +H(X2)−H(X1, X2). (5.1)

Until defined otherwise in this section, X1 and X2 denote only the latitudinal move-

ment. Since any LMI component measure with a local neighborhood completely contained

in (T1, T2) or (T2, T3) is identical to the GMI on these intervals (with a subset of points), we

only need to compute I(X1, X2) at (T1, T2), (T2, T3) to verify the LMI in these regions. We

compute LMI at Ti2 by determining the proportion of points in the window [ti−λ, ti+λ] on

either side of T2.

Computing LMI, which is ultimately a combination of latitudinal and longitudinal move-

ment, is done by each component respectively. Until the end of this section, we only show

latitudinal calculations. The combination of latitudinal and longitudinal calculations are
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shown as the final step. Since the movement of each animal is constant or stationary, the

discretized densities (pmfs) are uniformly distributed across each “bin.” Bins, where N is

used to denote the number of bins, are the terms used to describe the discretization or

“binning” of locations into groups based on proximity. The pmfs are defined by

(T1, T2) → pX1(x1) = pX2(x2) = 1/N, pX1,X2(x1, x2) = 1/N (5.2)

(T2, T3) → pX1(x1) = 1/N, pX2(x2) = 1, pX1,X2(x1, x2) = 1/N (5.3)

The simplicity of the marginal and joint pmfs listed above is visualized in Figure 5.4 which

illustrates the discretization process of this movement model. In Figure 5.4, blue and red

squares identify the discretized location of animal 1 and animal 2 respectively, and the yellow

circles mark the starting and end locations for each animal as well as the location where the

shift in animal association occurs. The latitudinal behavior modeled here is identical to

the constructed models where animal 1’s position is uniformly distributed within each blue

square and animal 2’s position is likewise, but all red squares from t ∈ [T2, T3] are stacked

in the same region. When computing the GMI for the time periods [T1, T2] and [T2, T3], the

summation of the pmf’s in the entropy components of the equation for mutual information

consist of summing N = 5 squares (since 5 squares fall in each time period). Since the

locations are uniformly distributed into each of the 5 bins shown in this visual, then it is

clear that pX1(x1) = pX2(x2) = 1/N for (T1, T2). On (T2, T3), it is clear for Animal 2 that all

locations are in the same bin, so the pmf is singular pX2(x2) = 1.

The joint pmfs for longitude can also be visually understood from Figure 5.4. The image

is simplified in Figure 5.5 to avoid ambiguity. Although there are N2 potential bins for the

locations to be distributed across, the positions in this simulation fall into only N bins on

each time window so the probability of the observing both animals in a single bin is 1/N .

By Equation 3.8 and following the notation from the Background Section, we compute

each of the entropy components at the same time, and then combine the results afterwards
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Figure 5.4: Longitudinal Movement of Both Animals discretized on a 0.1 resolution. Yellow
circles denote the start and end time locations of the simulation as well as the time of the
shift in behavior association.
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Figure 5.5: Joint Distribution Longitudinal Movement of Both Animals discretized on a 0.1
resolution with N = 5. In both time windows, the longitude is uniformly distributed across
5 bins. For simplicity, the vertical axis is not labeled here.

to report mutual information.

(T1, T2) H(X2) = −
∑

pX2(x2)log pX2(x2) = −
N∑
i=1

1/N log(1/N) = log(N) (5.4)

(T2, T3) H(X2) = −
N∑
i=1

1 log(1) = 0 (5.5)

ti2 H(X2) = −

(
q∗N∑
i=1

1/N log(1/N) +
N∑

q∗N+1

1log(1)

)
= q log(N), (5.6)

where q is the proportion of time points that are in the time period (T1, T2).
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Similarly,

(T1, T2) H(X1) = −
∑

pX1(x1)log pX1(x1) = −
N∑
i=1

1/N log(1/N) = log(N) (5.7)

(T2, T3) H(X1) = −
N∑
i=1

1/N log(1/N) = log(N) (5.8)

ti2 H(X1) = −
N∑
i=1

1/N log(1/N) = log(N) (5.9)

Recall that joint entropy of X1 and X2 is expressed by

H(X1, X2) = −
∑
x1∈X1

∑
X2∈X2

pX1,X2(x1, x2)log(pX1,X2(x1, x2). (5.10)

It follows from Figure 5.5, that half of the bins (of equal width) would be characterized

with a joint pmf similar to the left hand image and the other half would be similar to the

right hand image. This is shown in Figure 5.6 . It is clear that the joint pmf for a local

domain in this region is still pX1,X2(x1, x2) = 1/N . Therefore, the double summation can be

simplified to a single summation for each time expressed by

(T1, T2) H(X1, X2) = −
N∑
i=1

1/Nlog(1/N) = log(N) (5.11)

(T2, T3) H(X1, X2) = −
N∑
i=1

1/N log(1/N) = log(N) (5.12)

ti2 H(X1, X2) = −
N∑
i=1

1/N log(1/N) = log(N) (5.13)

Finally, combining all the entropy calculations, we have the following calculations for
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Figure 5.6: Joint Distribution Longitudinal Movement of Both Animals discretized on an un-
defined resolution with N = 6. In both time windows, the longitude is uniformly distributed
across 5 bins. For simplicity, the vertical axis is not labeled here, and only the transition
time T2 is labeled on the horizontal axis. The scale of the horizontal axis is dependent on
the size of λ.
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GMI and LMI:

(t1, t2) I(XLat1, XLat2) = log(N) + log(N)− log(N) = log(N) (5.14)

(t2, t3) I(XLat1, XLat2) = log(N) + 0− log(N) = 0 (5.15)

ti2 ILi
(XLat1, XLat2) = log(N) + q ∗ log(N)− log(N) = q log(N), (5.16)

where XLat1 and XLat2 replace X1 and X2 as a reminder that this work is only for

the latitudinal dimension. Recall that because of the homogeniety of (t1, t2) and (t2, t3),

I(XLat1, XLat2) = ILi
(XLat1, XLat2) in both intervals.

These analytical results identify that identical movement is equivalent to the entropy of

the shared movement vector. This is clearly the maximum attainable mutual information.

It follows our intuition that linear and stationary movement have zero-valued association

(as measured by mutual information), and, at the exact value of the shift from linear to

stationary movement for animal 2, the LMI is equal to half of the maximum attainable

mutual information. A small modification to the prior work reveals that ILi
(XLat1, XLat2) =

1/2 log(N) at exactly T2 since q = 1/2 at this location.

Note that as shown in these equations, mutual information is theoretically unbounded as

the number of bins, N, increases. However, the gains in mutual information by increasing N in

our simulation are penalized logarithmically, and the interpretability of mutual information

is jeopardized as N approaches and surpasses the number of sampling points in the movement

vectors. Increasing N to equaling or surpassing the number of sampling points defeats the

purpose of discretization.

In Figure 5.7, the latitude-longitude movement trajectories from this simulation are

shown as a reference for the remainder of this section. In Figure 5.8, the analytical calcula-

tions for the latitude component are plotted over the computed localized mutual information

using several combinations of bandwidth (bw) and bins. An arbitrary time domain of [0, 1] is

used. The upper and central plots of Figure 5.8 provide largely harmonious results with a few
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nuances regarding boundary/end-point precision and the binning procedure implemented in

the code. In the implemented code, we use a computationally faster binning procedure re-

ferred to as equal frequency binning as opposed to uniform or equal width binning. The equal

frequency binning procedure reduces the number of bins input if it is not possible to assign

a value to every bin. The details of this procedure and end-point binning decision rules

are not the primary focus in this work, and more information can be found in the following

source [48]. For the bottom-left plots of Figure 5.8, the large discrepancies are a result of the

mentioned binning-reduction which lowers the log(N) to log(N −m) where m is the amount

of bins removed. In the bottom-right plots of Figure 5.8, the large discrepancies are caused

by the large bandwidth relative to grid-resolution choice and the end-point LMI condition

chosen in the General Properties Section of this work. In brief, as the bandwidth increases

to spanning the full time grid, LMI simply converges to the GMI from (t1, t3) which has a

value of 1/2 log(N). The work to show this is identical to our calculation for LMI at t2, and

is therefore not shown. For the lowest row of plots in Figure 5.8, with bw = 32, we have not

evaluated the full analytic solution since the extremely large bandwidth requires additional

boundary condition considerations that are not the main focus of this section.

The binning procedure implemented computationally in this sections and all remaining

section has several differences which are dominantly attributed to equal frequency binning, as

opposed to equal width binning, and the machine learning bin reduction strategies have been

studied further in [48]. These differences result in discrepancies in the grouping/discretizing

of locations which account for differences in the timing of the drop in LMI, the maximum

potential LMI Equal width binning is shown in Appendix 7.2

Now, we bring together the longitudinal and latitudinal LMI components to derive the

final LMI measure plots. Recall that ILi
=
√
ILi

(XLon1, XLon2)2 + ILi
(XLat1, XLat2)2. Then

it follows that
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# i=1

i f ( t t i l d e [ i + bw] < t rans time |

i s .na( t t i l d e [ i + bw ] ) ==TRUE){

i f ( i s .na( t t i l d e [ i + bw ] ) ==FALSE){

lmi a [ i ] <− log ( b ins )

prop [ i ] = 1

}

}

else i f ( t t i l d e [ i + bw] > t rans time &

t t i l d e [ i − bw] < t rans time ){

l window <− length ( t t i l d e [ ( i−bw ) : ( i+bw ) ] )

sum phase1 <− sum( t t i l d e [ ( i−bw ) : ( i+bw) ] < t rans time )

prop [ i ] <− sum phase1/ l window

# Compute ana l y t i c So lu t i on

lmi a [ i ] <− prop [ i ] ∗ log ( b ins )

}

}

temp df <− as . data . frame (cbind ( lmi a , prop ) )

return ( temp df )

}

sim 1 e r r0 bw4 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw8 <− s h i f t sen ( band = 8 ,

r e r r 1 = 0 , r e r r 2 = 0 , nbins = 8)
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sim 1 e r r0 bw12 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw16 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw32 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 8)

sim 1 e r r0 bw4 b2 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw8 b2 <− s h i f t sen ( band = 8 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw12 b2 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw16 b2 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw32 b2 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 2)

sim 1 e r r0 bw4 b16 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw8 b16 <− s h i f t sen ( band = 8 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw12 b16 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw16 b16 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw32 b16 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,
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r e r r 2 = 0 , nbins = 16)

sim 1 e r r0 bw4 b32 <− s h i f t sen ( band = 4 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw8 b32 <− s h i f t sen ( band = 8 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw12 b32 <− s h i f t sen ( band = 12 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw16 b32 <− s h i f t sen ( band = 16 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

sim 1 e r r0 bw32 b32 <− s h i f t sen ( band = 32 , r e r r 1 = 0 ,

r e r r 2 = 0 , nbins = 32)

# Blank Plo t t emp la t e s to ove r l ay f i n a l LMI r e s u l t s

gg time <− ggp lot ( ) +

theme ( text = element text ( family=”Times” , s i z e =20) ,

plot . t i t l e = element text ( s i z e = 20 , co l ou r = ”black ” ) ,

plot . background = element rect ( f i l l = ”white ” ) ,

axis . text=element text ( s i z e =20, c o l o r = ”black ” ) ,

axis . t i t l e = element text ( family=”Times” , s i z e =20,

co l ou r = ”black ” ) ,

panel . background = element rect ( f i l l = ” ivory1 ” ,

co l ou r = ”black ” ) ,

panel . grid . major = element l i n e ( co l ou r = ”grey18 ” ,

l i n e t yp e = ”dotted ” ) ,

panel . grid . minor . x=element blank ( ) ,

panel . grid . minor . y=element blank ( ) ,
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legend . p o s i t i o n = ”none” ) + xlab ( ”Time” ) + ylab ( ”LMI( t i ) ” )

gg pos <− ggp lot ( ) +

theme ( text = element text ( family=”Times” , s i z e =20) ,

plot . t i t l e = element text ( s i z e = 20 , co l ou r = ”black ” ) ,

plot . background = element rect ( f i l l = ”white ” ) ,

axis . text=element text ( s i z e =20, c o l o r = ”black ” ) ,

axis . t i t l e = element text ( family=”Times” , s i z e =20,

co l ou r = ”black ” ) ,

panel . background = element rect ( f i l l = ” ivory1 ” ,

co l ou r = ”black ” ) ,

panel . grid . major = element l i n e ( co l ou r = ”grey18 ” ,

l i n e t yp e = ”dotted ” ) ,

panel . grid . minor . x=element blank ( ) ,

panel . grid . minor . y=element blank ( ) ,

legend . p o s i t i o n = ”none” ) + xlab ( ”Long Pos i t i on ” ) +

ylab ( ”Lat Pos i t i on ” )

gg pos <− gg pos +

geom point (data = sim 1 e r r0 bw16$ ‘ AnimalPosit ions ‘ ,

aes ( animal lon 1 , animal l a t 1 ) ,

col = ” roya lb lu e ” , alpha =0.4 , s i z e = 2 . 5 ) +

geom point (data = sim 1 e r r0 bw16$ ‘ Animal Pos i t i ons ‘ ,

aes ( animal lon 2 , animal l a t 2 ) ,

col = ” l ight sa lmon ” , alpha =0.4 , s i z e =2.5)

gg time <− gg time +

geom point (data = sim 1 e r r0 bw16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut j o i n t / l o c mut j o i n t max) ,
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col = ”navy” , alpha =0.5 , s i z e =2.5)

# FIGURE 1

gg pos

gg time <− ggp lot ( ) +

theme ( text = element text ( family=”Times” , s i z e =20) ,

plot . t i t l e = element text ( s i z e = 20 , co l ou r = ”black ” ) ,

plot . background = element rect ( f i l l = ”white ” ) ,

axis . text=element text ( s i z e =20, c o l o r = ”black ” ) ,

axis . t i t l e = element text ( family=”Times” , s i z e =20,

co l ou r = ”black ” ) ,

panel . background = element rect ( f i l l = ” ivory1 ” ,

co l ou r = ”black ” ) ,

panel . grid . major = element l i n e ( co l ou r = ”grey18 ” ,

l i n e t yp e = ”dotted ” ) ,

panel . grid . minor . x=element blank ( ) ,

panel . grid . minor . y=element blank ( ) ,

legend . p o s i t i o n = ”none” ) + xlab ( ”Time” ) + ylab ( ” ” )

###########################################

###########################################

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 2)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,
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bw=8, b ins = 2)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=16, b ins = 2)

#a bw32 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=32, b ins = 2)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ” ) + g g t i t l e ( ”bw = 4 ,

b ins = 2”)+

geom point (data = sim 1 e r r0 bw4 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

col = ”goldenrod1 ” , s i z e =1.25) +

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 2”)+

geom point (data = sim 1 e r r0 bw8 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 2”)+

geom point (data = sim 1 e r r0 bw16 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

112



gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 2”)+

geom point (data = sim 1 e r r0 bw32 b2$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 ,

s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 2 ) , yend=log ( 2 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25)

gg b2 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol= 4 )

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 8)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=8, b ins = 8)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=16, b ins = 8)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ”)+

g g t i t l e ( ”bw = 4 , b ins = 8”)+

geom point (data = sim 1 e r r0 bw4$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” ,

alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 8”)+
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geom point (data = sim 1 e r r0 bw8$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 8”)+

geom point (data = sim 1 e r r0 bw16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) , col = ”goldenrod1 ” ,

s i z e = 1 . 2 )

gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 8”)+

geom point (data = sim 1 e r r0 bw32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 8 ) , yend=log ( 8 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom point ( aes ( x=0.5 , y=0.5∗ log ( 8 ) ) ,

col = ”goldenrod1 ” , s i z e = 2 . 5 )

gg b8 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol = 4 )

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 16)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=8, b ins = 16)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,
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bw=16, b ins = 16)

#a bw32 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=32, b ins = 16)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ”)+

g g t i t l e ( ”bw = 4 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw4 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw8 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” ,

alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw16 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 16”)+

geom point (data = sim 1 e r r0 bw32 b16$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 16 ) , yend=log ( 1 6 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +
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geom point ( aes ( x=0.5 , y=0.5∗ log ( 1 6 ) ) ,

col = ”goldenrod1 ” , s i z e = 2 . 5 )

gg b16 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol = 4 )

a bw4 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=4, b ins = 32)

a bw8 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=8, b ins = 32)

a bw16 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=16, b ins = 32)

a bw32 <− ana l y t i c s o l ( t t i l d e = t t i l , t rans time = trans ,

bw=32, b ins = 32)

gg time bw4 <− gg time + ylab ( ”LMI( t i ) ”)+

g g t i t l e ( ”bw = 4 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw4 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw4$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw8 <− gg time + g g t i t l e ( ”bw = 8 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw8 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom l i n e ( aes ( x=t t i l , y=a bw8$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw16 <− gg time + g g t i t l e ( ”bw = 16 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw16 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +
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geom l i n e ( aes ( x=t t i l , y=a bw16$ lmi a ) ,

col = ”goldenrod1 ” , s i z e = 1 . 2 )

gg time bw32 <− gg time + g g t i t l e ( ”bw = 32 , b ins = 32”)+

geom point (data = sim 1 e r r0 bw32 b32$ ‘LMI Function ‘ ,

aes ( t t i l d e , l o c mut l a t ) , col = ”navy” , alpha =0.5 , s i z e =2.5) +

geom segment ( aes ( x=0,xend=0.5 ,y=log ( 32 ) , yend=log ( 3 2 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom segment ( aes ( x=0.5 , xend=1.0 ,y=log ( 1 ) , yend=log ( 1 ) ) ,

col = ”goldenrod1 ” , s i z e =1.25) +

geom point ( aes ( x=0.5 , y=0.5∗ log ( 3 2 ) ) ,

col = ”goldenrod1 ” , s i z e = 2 . 5 )

gg b32 <− grid . arrange ( gg time bw4 , gg time bw8 ,

gg time bw16 , gg time bw32 , ncol = 4 )

grid . arrange ( gg b2 , gg b8 , gg b16 , gg b32 , ncol = 1)

}
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