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ABSTRACT

DATA-DRIVEN APPROACHES FOR CYBER-PHYSICAL ATTACK AND DEFENSE
IN MODERN POWER GRIDS

by

Youqi Guo

The University of Wisconsin-Milwaukee, 2022
Under the Supervision of Professor Lingfeng Wang

With the tighter integration of advanced communication and computing technologies,

electrical power system is being transformed to more complex, efficient and sustainable smart

grid. Today, almost every sector of physical power system including generation, transmis-

sion, distribution and consumption has to be monitored, protected and controlled to interact

and communicate with each other through cyber infrastructure. The use of information and

communication technologies (ICTs) has not only enhanced the efficiency and reliability of

smart grid, but also created new vulnerabilities if they are not accompanied by advisable

security reinforcements. Various vulnerabilities that ICTs bring about may leave some sec-

tors of the power system to a wide range of cyber-physical attacks, which are implemented

in cyberspace and may adversely affect the physical infrastructure.

To improve the resiliency of power grids against the threats of cyber-physical attacks,

it is imperative that we identify the risk of such attacks and thereby implement effective

security strategies to protect power systems from the attacks. Therefore, the cyber-physical

security has become a key concern for both industry and academia communities. As a result,

a large amount of efforts have been devoted to the research of cyber-physical attack and

defense in smart grid. In recent years, with the rapid development of artificial intelligence,

the data-driven machine learning approaches have received wide attentions because of their

salient advantages in areas of attack identification and detection, and system control and
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risk mitigation. This dissertation investigates the cyber-physical attack detection, defense

and mitigation by utilizing state-of-the-art data-driven machine learning techniques. Three

research studies are presented in this dissertation, providing useful insight to power system

administrators to identify cyber-physical attacks, mitigate the risk of attacks and protect

critical power system equipments, and thereby enhance power system resiliency.

The first study proposes a novel reinforcement-learning-based dynamic defense strategy

against dynamic load altering attack (D-LAA). A two-player zero-sum Markov game is for-

mulated to analyze the complex interactions between the attacker and the defender, in which

all players are rational and tend to maximize their own benefits. The proposed minimax-

q algorithm is applied to derive the attacker/defender’s Nash equilibrium strategies. The

performance of the proposed model is evaluated on the IEEE 39-bus system. Comparisons

between the dynamic defense strategy and the passive defense strategy are conducted, and

the results verify the advantage of the proposed dynamic defense strategy. To improve the

power system resiliency, this defense strategy can be deployed in advance when such cyber-

physical attacks are anticipated.

The second research presents a new TripleGAN-based defense framework against the

stealthy FDI attacks, which aims to accurately detect the attack and effectively mitigate

the impact at the same time with a few labeled historical measurements. In this model,

the detection is performed by the classifier and the mitigation is carried out by replacing

the tampered measurements with the produced measurement data from the generator. To

improve the detection accuracy and recovery efficiency, an extended loss function integrated

with feature matching is proposed. The simulation results demonstrate that the proposed

defense model is able to accurately detect the stealthy FDI attacks and the recovered state

estimation is sufficiently close to the normal operation status, which thus improves the

power system resilience. Furthermore, under various circumstances (with different numbers

of targeted measurements, different intensities of environmental noise, and fewer historical

data), the obtained results confirm that the proposed techniques exhibit advantages over

other machine learning based detection and recovery methods.
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In the last research work, a data-driven FDI attack model against load frequency control

(LFC) system is proposed based on multi-agent deep reinforcement learning (MA-DRL). In-

stead of using legacy linearized LFC model, AC state estimation (ACSE) is integrated with

LFC to reduce measurement noises and perform bad data detection. Thus, the system envi-

ronment becomes more practical and complex, and more requirements need to be satisfied

for the attacker to perform successful FDI attacks. In order to achieve two attack objec-

tives simultaneously, i.e., stealthily maximizing the frequency deviation and minimizing the

number of compromised measurements, a modified Multi-Agent Deep Deterministic Policy

Gradient (MA-DDPG) algorithm is devised in this study, which treats the two objectives

separately by global and local individual critic networks other than a simple linear combi-

nation. The impact of FDI attack on the LFC with ACSE is also analytically derived. The

simulation results on the New-England 39-bus system demonstrate a good performance of

the proposed FDI attack model compared with other methods. In addition, corresponding

countermeasures based on the critical measurements are discussed and verified.
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Chapter 1

INTRODUCTION

1.1 Overview

As one of the most fundamental and complicated artificial system in modern society, the

electrical power system has been going through more than a hundred years of development

since the first electrical power station was constructed in New York City in 1882. Over the

past few decades, a mass of technical innovations have been adopted by power industry to

cope with unprecedented challenges on power system planning, operation and maintenance.

As of now, with the recent invention and advancement in control, sensing, monitoring and

communication, the legacy power system has evolved into smart grid, which is envisaged

to achieve higher requirements of efficiency, resiliency and sustainability. One of the main

features of smart grid is the integration of cyber infrastructure, which enables the collection

and analysis of data from millions of distributed devices, such as phasor measurement units

(PMU), smart meters, circuit reclosers and breakers. For example, a number of utilities in

the United States deploy Advanced Distribution Management Systems (ADMS) to support

distribution management and optimization. By the collection of a great number of data

from distributed end-points, the control center can achieve volt-VAr optimization (VVO),

conservation voltage reduction (CVR), isolation and restoration, and peak demand manage-

ment through directly communicating with regulating devices, such as load tap changers,

line voltage regulators and line capacitor banks.

However, the beauty of smart grid innovation cuts both ways: deep integration of the
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power system operation with advance computation and communication technologies not only

enhances the overall system efficiency, but at the same time the vulnerability to potential

cyber-attacks would exceedingly soar because of massive network operations. Critical com-

putation and control process in smart grid, such as state estimation, optimal power flow and

CVR, highly rely on a secure and robust cyber infrastructure. The cyber vulnerabilities may

enable malicious adversaries to manipulate system measurements, meter measurements or

even directly sabotage vulnerable critical control process. Such attacks that is implemented

in cyberspace and adversely impact the physical infrastructure are referred as cyber-physical

attacks.

In the past decades, several cyber-physical attacks have been reported in power industry.

In 2003, the control system of the David-Besse nuclear plant in Ohio was invaded through

the Slammer worm, leading to 5 hours offline of the supervisory system. In 2010, a cy-

ber worm ”Stuxnet” attacked the Iranian nuclear fuel enrichment plant. The adversaries

targeted the programmable logic controllers of the supervisory control and data acquisition

(SCADA) system using four zero-day vulnerabilities to bypass the attack detection. As a

result, the centrifuges was forced to work in a unexpected range of speed because of the

malicious alternation on current frequency. This facility had to cease several times because

of a series of major technical problems [1, 2]. In 2015, attackers remotely switched off the

breakers in a series of substations by pre-installed malware, resulting in a widespread out-

age affecting approximately 225,000 customers in the Ukrainian power grid. This blackout

is the first publicly acknowledged incident caused by cyber-physical attacks, which is even

more destructive than natural disasters [3]. As mentioned in [4], cyber security issues are

considered as one of the top priorities for the smart grid construction. Hence, considering

the increasing cyber-physical threats, it is imperative that we understand the risks resulting

from cyber-physical attacks and thus implement effective security strategies against them.
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1.2 Research Objectives and Contributions

These real cyber-threats examples facilitate synergistic efforts from industry practitioners

and research communities towards to the security issues in smart grid. This dissertation

investigates cyber-physical attacks detection, defense and mitigation through data-driven

approaches. The three research studies in this dissertation provide useful insight into power

system operators to identify cyber-physical attacks and protect critical infrastructures, and

thereby power system resiliency gets enhanced. The major contributions are listed as fol-

lowing.

• A two-player zero-sum multistage game considering both dynamic of the attacker and

the defender is proposed. As a newer type of cyber-physical attacks, the dynamic

load altering attacks (D-LAA) is investigated and extended as sequence attacks in

this game, which allow the attacker takes offensive actions one by one based on the

states of system and protection policy. A minimax-q learning scheme is adopted in

this research to effectively find out the optimal defense sequence against chronological

D-LAA. Comparisons between the dynamic defense strategy and the passive defense

strategy are conducted, and the results verify the advantage of the proposed dynamic

defense strategy.

• A novel Triple Generative Adversarial Network (TripleGAN) based defense framework

is developed against the stealthy False Data Injection (FDI) attacks. The proposed

model aims to effectively detect and mitigate the attacks by limited historical mea-

surement data. In this model, the detection is performed by the classifier and the

mitigation is carried out by replacing the tampered measurements with the produced

measurement data from the generator. Further, A new regularization scheme to the

TripleGAN model is developed by integrating feature matching in the loss function to

enhance the detection accuracy and recovery efficiency. The simulation results demon-

strate that the proposed technique can effectively defend the grid against the FDI
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attacks and outperform other machine learning methods

• A data-driven FDI attack model against Load Frequency Control (LFC) system is pro-

posed. Instead of legacy linearized LFC model, AC state estimation (ACSE) is coupled

with LFC to reduce environment noise and filter bad data before sending measurements

to LFC controller, which is more precise and practical for the analysis of interactions

among control areas. Multi-Agent Deep Reinforcement Learning (MA-DRL) method

is used to solve the problem of increasing frequency deviation and minimizing the

number of tampered measurements. In order to achieve these two objectives simul-

taneously, a modified Multi-Agent Deep Deterministic Policy Gradient (MA-DDPG)

algorithm is proposed. The simulation results validate the good performance of pro-

posed FDI attack model compared with other methods. Furthermore, corresponding

countermeasures based on checking out the critical measurements are discussed and

verified.

1.3 Outline of the Dissertation

The rest of this dissertation is organized as follows. Chapter 2 presents related background

knowledge including the description of modern power systems, cyber threats in smart grid,

and data-driven methods and applications. Chapter 3, 4, and 5 present three research work

in detail respectively. Conclusion and future work are given in Chapter 6.
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Chapter 2

BACKGROUND

2.1 Smart Grid

In general, a modern power system consists of generation, transmission, distribution, cus-

tomers, service providers and grid operations. As shown in Fig. 2.1, the electrical energy

and data continually flow among these sectors and maintain all power grids in operation,

which highly rely on wire or wireless communication. In smart grid, the electrical grid is

often referred as physical layer and the communication network is referred as cyber layer.

In the context, all the equipments that directly involved in delivering electricity from points

of generation to customers are categorized into physical layer, while all the network devices,

intelligent electronic devices and servers which are used to monitor, manage and protect this

electricity delivering process belong to cyber layer.

2.1.1 Physical Layer

The physical layer of smart grid is composed of generation, transmission, distribution and

consumption. The physical layer never stops the pace of expansion and development since it

was constructed hundred year ago due to higher and higher electricity demand. Especially

for the last couple of decades, with the integration of Distributed Energy Resources (DERs),

High Voltage Direct Current Transmission (HVDC), electric vehicles (EV), micro-grids, etc,

the electrical grid becomes more assorted, while the new elements also bring in new challenges
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Figure 2.1: Communication and control system of the modern power grids

for power system researchers and operators.

Generation

Electrical generation is the process of converting sources of primary energy to electric power.

As of now, fossil fuels such as coal, peat and natural gas are still the most common resources

utilized in electricity generation. However, methane leaks and carbon dioxide emission from

fossil fuel-based electricity generation are the part of reasons for the greenhouse effect and

climate change. Due to the environmental concerns, more renewable resources generation

are developed, such as solar, wind, geothermal energy, etc. As per the International Energy

Agency (IEA), 85% of global electrical output need to be generated from low-carbon elec-
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tricity generation by 2040 to prevent the worst effects of climate change [5]. Thus, there is

long way to go to build up environmental-friendly power generation and meet the electricity

demand at the same time.

Transmission

Electrical transmission system is to deliver the electricity from power station to the places

near to customers over long distance. To reduce the energy loss, voltage level needs to be

increased by transformers before sending out from power plants. In the US, common trans-

mission systems are overhead High Voltage Alternate Current (HVAC) systems, including

voltage level 138kV, 230kV, 345kV, 500kV and 765kV. Recent years, High Voltage Direct

Current (HVDC) systems attract widespread attentions due to the benefits of economic,

operation and control.

Distribution

The electric distribution system is the final stage in the delivery of electricity, which carries

electricity from transmission system to customers. The voltage is stepped down to medium

voltage level ranging between 4 kV and 35kV at distribution substation with the use of

transformers. Some industrial customers can directly connect to the medium voltage, while

for residential and commercial users, the voltage has to be further stepped down to 120/240V

by service transformer located near the customer’s premises.

Conventionally, the distribution systems only operate as simple distribution lines to carry

electricity to customers. Today, as a result of heavy integration with renewable energy

generations at the distribution level, such as wind farms and solar farms, distribution systems

become more independent from transmission networks. It requires the use of advanced

technology and management to cope with the challenges, such as ADMS, battery storage
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power station, data analytics, etc.

Consumption

Traditionally, the consumption means nothing but passive load at industrial or residential

customers in power industry. Nowadays, the electricity consumers not only use electrical

energy but have options to feed back to the power grid. For example, the maturer DER

techniques enable the customers to install their own DER generation, such as solar rooftop.

Another example is Vehicle to Grid (V2G) technology that enables energy to be pushed back

to the power grid from the battery of electric cars. Although such new types of consumption

loads bring in significant advantages on energy efficiency, high requirements of power grid

capacity, operation reliability and security have to be met. It is also one of the pressing

issues to tackle for power system researchers.

2.1.2 Cyber Layer

The operation of physical power system equipments are undergoing a rise in complex cyber-

infrastructures, which is a critical component of modern power grid. Since today power

system has been evolved into a unprecedented large-scale infrastructure and has to accom-

plish more complicated tasks, almost every part of the physical layer has to be monitored,

protected and controlled in order to interact and communicate with each other well. This is

where the cyber layer come into play.

The cyber layer of smart grid is with the incorporation of Information-Communication

Technologies (ICTs), which comprise four essential categories for the implementation on the

operation of power system, including acquisition, implementation, processing and communi-

cation of subsystems [6–8].
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• Acquisition: Distributed sensors collect system data such as power flow measurement,

bus voltage, frequency, the state of circuit breakers and reclosers and then transmit all

the data via communication medium to the processing stage.

• Processing: Processes data collected from distributed sensors including data cleaning,

data integrity checking, and state estimation. The system operator will know the status

of the real-time system and make decisions for implementation.

• Implementation: Performs the required actions based on the data processing re-

sults. The actions may include sending control signal to corresponding controllable

devices, activating the protecting circuit breakers and relays, and enable or disable

some capacitor banks for volt-var control.

• Communication: The coordination of all subsystems in power network relies on In-

formation Technology (IT) network, which hosts function such as long-distance trans-

mitting, corporate web server, cloud service, etc. IT network enhances the situational

awareness of the network and helps make correct decisions for the operators and effi-

ciently improves the power system reliability. Today, IT network is typically isolated

with firewalls and operated in Virtual Private Network (VPN).

2.2 Cyber Threats in Smart Grids

2.2.1 Cyber-physical Security Concerns of Smart Grids

The use of information and communication technologies (ICTs) has not only enhanced the

efficiency and reliability of the power grids, but also created new vulnerabilities. Cyber-

physical vulnerability is one of existing major security concerns, which are identified as the

weakness resulting from the integration of cyber layer with the physical layer of smart grids.
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Cyber-physical vulnerabilities can be usually targeted through network communication and

intelligent devices vulnerabilities.

• Network communication vulnerabilities: Power system infrastructures rely on

Ethernet-based local area network to communicate and interact with each other. How-

ever, the Ethernet-based networks are vulnerable to interception and Man-in-the-

Middle attacks. Attackers are able to exploit the known vulnerabilities of the existing

internet protocol standards to launch attacks on the network, such as injecting false

data, impersonating components and releasing classified information [9–11]. Most of

communication protocols used in power industry such as Modbus and DNP3 do not

provide enough security measures. The lack of encryption and authentication mecha-

nisms enables the adversaries to alter, spoof and tamper the data in transmission.

• Intelligent devices vulnerabilities: The components that establish the cyber infras-

tructure networks in smart grid may pose serious security concerns, including smart

meters, routing devices, intelligent electronics devices and installed software. Well-

known vulnerabilities of these equipments can be directly utilized by the attackers.

The attackers may also tamper the same devices and then find out the zero-day vul-

nerabilities by comprehensive testing. For example, smart meters may have back doors

that could give full access and control to the users who exploit the factory login ac-

count and credential. Once the attackers take over the control of smart meters, false

data could be injected and the operator might make wrong decisions leading to power

disruption. In addition, the attackers may also use the meters as bot to launch attack

against other components within the network [12].
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2.2.2 Cyber-Physical Attacks

In smart grid, attacks that are implemented in cyberspace and adversely impact the physical

infrastructure are referred as cyber-physical attack. An assessment in [13] has presented that

the major cybersecurity concerns range from exploiting well-known protocols vulnerabilities

to the leakage of confidential information. As one of the most threaten attacks against the

security of smart grid, tremendous research have been addressed on the risk of cyber-physical

attacks. According to the tech report [14], cyber-physical attacks can be classified into three

categories based on the attack target:

1. Control signal attacks: Control signal attacks aim to acquire the physical devices

authority by bypassing the data authentication and integration examinations, and then

operate the devices to achieve malicious objects. Such attacks are usually constructed

to target critical devices in smart grid such smart inverters, Flexible AC Transmission

System (FACTS) devices, Automatic Generation Control (AGC) system, circuit break-

ers, etc. The adversaries may utilize the knowledge about the targeted devices, such

as load flow information and generator ramping limits, to efficiently achieve attack

goals. Although N-1 contingency has been developed and deployed in most power grid

network, a lot of research show that most vulnerable devices might cause cascading

failure by exploiting the clustering-based vulnerability. The well-known control signal

attacks include Aurora attacks [15] and pricing attacks [16].

2. Measurement attacks: Measurement attacks target on altering the sensor measure-

ment data transmitted by the communication channels or directly falsify the sensor

units in the field. Depending on the attackers’ capabilities, they may eavesdrop the

measurement data for reconnaissance, manipulate the firmware of the devices, or even

control sensors to transfer tampered measurement data. For example, an attacker may

implement Domain Name Systems (DNS) hijacking attacks, which changes The DNS

server of the device gateway to a controller server, to transmit all measurement data
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to a malicious server instead of the legitimate server. This type of attack may dis-

able the system operator’s situational awareness to the status of the power grid and

induce wrong operations based on the manipulated measurements. Typical measure-

ment attacks include False Data Injection (FDI) attacks [17], AGC attacks [18], load

redistribution attacks [19], topology attacks [20] and GPS spoofing attacks [21].

3. Control-signal-measurement attacks: This type of attacks are coordinated attacks

that target on both the control signals and measurements. The control signal attacks

can cause significant consequences in short period, while the measurement attacks can

cover the ongoing control signal attacks. In this way, the manipulated measurements

could pass anomaly detection mechanisms. Some researches reveal that the attackers

may use the coordinated attacks to design stealthy control signal attacks through

disguise the attack consequences and without being detected by attack detection and

mitigation systems. Typical control-signal-measurement attacks include line outage

masking attacks [22] and Stuxnet-like attacks [23].

2.2.3 Cyber-Physical Defense

Cyber-physcial defense is obviously the focus of ongoing research efforts, where various reac-

tive (acting as mitigation) and proactive (acting in anticipation) defense methodologies are

proposed to increase the ability to detect and identify attacks, reduce the risk of threats and

initiate mitigation countermeasures to restore the system operations. According to different

methodologies of defense approaches, cyber-physical defense can be categorized as follows.

1. Protecting measurement sensors: As mentioned above, the majority of attacks are

launched on the system control and measurement signal. Thus, a common approach

is to strategically select and secure critical control or measurement signal. In [24], the

authors present that attackers aim to design attack vector avoiding some well-protected
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measurements and states. From the defender’s perspective, the system administrator

should find out the sets of the critical measurements and the verified state that ensure

the adversaries are not able to craft stealthy attack vectors. The concern here is the

economic cost of the protection and verification of a large number of measurement

sensors. Zhao et al. [25] develop an enhanced detection method against FDI attacks by

checking the statistical consistency of measurements from a limited number of sensors.

In [26] a short-term measurement forecasting is proposed to improve the MNU data

redundancy. The authors propose a vector autoregression method as the prediction

process that captures the interdependencies between the events in different time slots

to detect FDI attacks in [27]. An optimal PMU placement study is conducted in [28],

which maximizes the determinant of the empirical observability of Gram matrix. In

[29], a multi-layer detection method is proposed against simultaneous GPS spoofing

attacks for limited number of PMUs.

2. Modeling and algorithmic improvement: Another major category the defense ap-

proaches is the enhancement of the detection models and algorithms. In [30], Matrix

Separation is introduced to defend against the sparse FDI attack sequence based on the

separation of nominal states and anomalies matrices, which is solve by two methods:

the nuclear norm minimization and low-rank matrix factorization. A new detection

method is derived in [31] by calculating the metrics of Kullback-Leibler distance (KLD)

between two probability distributions, i.e., historical and tampered measurements, to

track the dynamics of the measurement variations. Ashok et al. [32] state that the

existing cyber-physical defense focuses on either redundant measurements or the cy-

bersecurity of sensors and communication channels. These offline approaches make

specific assumptions about the attacks and systems, which are restrictive. One so-

lution of PMUs placement or security mechanism may not be generalized to another

system configuration. Thus, the authors propose an online anomaly detection that

covers more attack scenarios. The proposed method leverages online information ob-
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tained from load forecasts, generation schedules, and real-time data from PMUs to

detect anomaly measurements.

3. Moving target defense: Computational burden and real-time implementation are

the major concerns of aforementioned operational defense approaches. As an emerging

technique, moving target defense (MTD), is originally proposed to improve network

security [33]. MTD can dynamically change the system configuration thus increasing

the difficulty of successful exploits and required effort for the malicious attackers. With

the properly crafted MTD perturbation, the attacker’s knowledge about the system is

always outdated. Recently, MTD has been introduced in the cyber-physical security

of smart grid to provide proactive defense, which is an alternative way to traditional

remedial defense. Compared with the MTD in the network system, MTD in smart

grid which is a cyber-physical system is more complicated since the physical dispatch

of control and measurement is required. The concept of MTD was first introduced

into the physical layer of the power system by Davis et al. [34]. In general, MTD dy-

namically modify impedance perturbations using distributed flexible AC transmission

system (D-FACTS) to invalidate the knowledge of power network configuration for the

attackers. Two essential steps are required to construct MTD: planning and opera-

tion. In the MTD planning stage, the utilities install D-FACTS strategically selected

subset of transmission lines, which is referred as D-FACTS placement problem. After

the allocation of D-FACTS devices, the system operator continuously determine the

setpoint of D-FACTS devices under various demand conditions to ensure all devices

work as expected.

4. Watermarking: Watermarking is originally used to identify the ownership of the

copyright of noise-tolerant signals such as audio, video, or image data. It also can be

used to check the integrity and authenticity of a signal. The first use of watermarking to

defend the replay attack employed in Stuxnet was introduced by [35], where the physical

watermarking is utilized as control theoretic method to authenticate the correct control
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operation. The methodology is that by introducing a probe signal into the system, an

expected response is supposed to be found in the true measurement feedback because

of system dynamics. As a result, if the attacker is not aware of the watermarking

in advance, the launched attack would be detected. In [36], the authors extend the

physical watermarking to dynamic watermarking against more intelligent adversaries.

The proposed approach ensures that the amount of distortion that the attacker can

add are constrained to an average of power of zero by implementing the correlation

detector, no matter in which way the adversarial sensors collude.

Besides the aforementioned model-based defense methods, another noteworthy category of

defense approaches is on data-driven machine learning methods. The data-driven defense

approaches are presented in Section 3 in this chapter.

2.2.4 Challenges and Opportunities

Although the tremendous research efforts have been put into the cyber-physical security in

smart grid, some challenges and problems remain to be addressed. Various potential cyber-

physical attacks and corresponding countermeasures still need to be further investigated.

Meanwhile, the firmware of some critical infrastructures such as advanced meters, controlled

regulation devices and data servers are outdated while no further upgrading plan due to

financial issues. In addition, the emerging integration with new technologies including electric

vehicles, solar panels, big data and 5G wireless communication have strong impacts on the

smart grid but also will create new vulnerabilities in future. Although these are the challenges

to modern power systems, they also provide a lot of opportunities to upgrade the current

infrastructures, just as how power system has been evolving the last hundreds years.
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2.3 Data-Driven Approaches and Applications in Power

Systems

With the booming development of artificial intelligence (AI) recent years, the data-driven

machine learning approaches have been gaining traction because of two salient advantages: 1)

the construction of the data-driven approaches may depend on the network topology; 2) this

approach is usually sensitive to time-variance measurement, which can be very effective in

detecting one time interval cyber-physical attacks created based on the spatial-relationship

of smart grids. Many researches have been conducted to the design and application of

data-driven machine learning methods in power systems. Machine learning techniques have

demonstrated great competence in extracting information from large amount of raw data

available in smart grid. Some general techniques are summarized as below.

• Classification: When data samples are well labelled by experts indicating the class

they should belong to, supervised learning based classification can be utilized. Su-

pervised learning algorithm can analyzed the training data samples and generate an

inferred function. After fully training, a model can be derived to determine the class

labels for unseen instances. Many different classification algorithms have been de-

veloped and widely used in various areas, such as support vector machines (SVM),

random forest, logistic regression, neural networks, etc. Recent years, the supervised

learning techniques have been widely investigated to tackle power system security is-

sues. For example, a trained binary-classifier can be used to check that the transmitted

measurement data are secured or attacked. As for specific algorithm, for instance, a

SVM attains is a hyperplane specified by a group of optimized parameters. During the

detection stage, a new given data sample will be classified according to its location in

terms of the hyperplane.

• Clustering: When the amount of data samples is too large to label, semi-supervised
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or unsupervised machine learning techniques can be applied, which is referred as clus-

tering. The unlabelled data will be grouped in light of likeness or contrast through

this technique. An example of application in power system is to cluster a large amount

of Advanced Measurement Infrastructure (AMI) data collected from various end-users

to predict the electricity consuming pattern of different areas. As for the algorithms,

K-means clustering and hierarchical clustering are distance based methods that are

appropriate for cases with evenly distributed data samples, and density based methods

such as deep brief network perform better when the clusters have different densities.

• Reinforcement learning: Reinforcement learning (RL) is another machine learning

technique that concerned with how intelligent agents take actions in an environment

to maximize the cumulative reward. In the area of cyber-physical security in power

systems, RL is always used to investigate the interaction between the attackers and

the system operators. As a result, the optimal defense actions for system adminis-

trators can be obtained and the defense strategy may be deployed in advance when

corresponding cyber-physical attacks are anticipated.

All machine learning techniques try to discover certain unseen rules or patterns from available

data, while it may be hard or even impossible to model-based methods. As we know, the

model obtained via such machine learning techniques could only be as good as the data,

and this reveals one of the major drawbacks of the data-driven methods - the model after

training is only able to make inductions but not deductions considering that it might not

have fully incorporated the inherent nature of the system that it oversees. However, data-

driven methods often turn out to be the best options in practice rather than model-based

methods when developing an accurate model-based solution is too difficult, even impossible

at all. Besides, the data-driven methods can automate and speed up the induction process,

and provide extra benefits in terms of efficiency and efficacy compared to human experts.

Several specific applications of data driven machine learning techniques in power systems

are introduced in the following research work.
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2.4 Summary

This chapter provides background knowledge about smart grids, cyber vulnerabilities and

threats of smart grid, and data-driven approaches and applications in power system. Detailed

research work are presented in the following chapters.
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Chapter 3

GAME-THEORETIC BASED

DYNAMIC DEFENSE STRATEGY

The work reported in this chapter has been partially published in the following article:

Youqi Guo, Lingfeng Wang, Zhaoxi Liu, Yitong Shen, ”Reinforcement-learning-based
dynamic defense strategy of multistage game against dynamic load altering attack”,
International Journal of Electrical Power & Energy Systems, Volume 131, 2021,

https://doi.org/10.1016/j.ijepes.2021.107113.

3.1 Overview

As the current power grid is highly interconnected and more information and communication

technologies (ICTs) are being deployed recently, it could be the target of malicious cyber-

physical attacks. Dynamic load altering attacks (D-LAAs), as a special case of load altering

attacks, could be performed to interfere the demand response and ultimately force certain

generators off-line. Cascading failures due to transmission line overloads may also be trig-

gered. In this chapter, we propose a new dynamic defense strategy against D-LAAs through

a multistage game between the attacker and the defender which is solved by minimax-q

learning. Different from the static game, the multistage game considers the attacker and

defender’s action sequences and the optimal strategies at each state are learned. After each

time step, the cascading failure is measured, and the load shedding is used as the feedback for
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the attacker to generate the next action strategy. The performance of the proposed model is

evaluated on the IEEE 39-bus system. Comparisons between the dynamic defense strategy

and the passive defense strategy are conducted, and the results verify the advantage of the

proposed dynamic defense strategy. To improve the power system resilience, this defense

strategy can be deployed in advance when such cyber-physical attacks are anticipated.

3.2 Related Work

Load Altering Attack (LAA) is a representative cyber-physical attack with the aim to ma-

liciously control and alter a group of remotely accessible yet unsecured controllable loads.

A successful LAA can disturb the balance between the power demand and supply, causing

frequency and angle instability and consequently system blackout through circuit overflow

or generator tripping. The potential vulnerable loads to LAAs can be frequency-responsive

loads [37, 38], data center’s computational load [39], loads with direct load control (DLC)

which is one of the most common demand side management programs [40,41], etc.

LAAs can be categorized into static load altering attack (S-LAA) (which is mainly focused

on the amount of vulnerable loads) and dynamic load altering attack (D-LAA) (which is

additionally concerned with the trajectory of the changes that are made in the vulnerable

loads). Reference [42] introduces and models S-LAA in smart grids, and the studies in [43–45]

address the prevention or detection of LAAs. Unlike these investigations, reference [46]

introduces, characterizes and classifies D-LAAs as a new class of cyber-physical attacks

against the power grids. In [47], the authors present a protection scheme using energy

storage systems to improve the power grid’s reaction to D-LAAs.

Game theory is oftentimes used to help people understand the situations in which decision-

makers interact, e.g., between attackers and defenders. There is a wide range of situations

to which game theory can be applied: political candidates competing, companies competing
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in business, bidders bidding in an auction, and so on [48]. Various games are formulated to

illuminate different economic, political, engineering phenomena, such as general sum, zero-

sum and potential games. Recently, researchers recognized the critical role of game-theoretic

approaches in power grid security. The security games introduce an analytical framework

with a rich mathematical basis for modelling the interactions between intentional attackers

whose aim is to disrupt the power grid and operators defending it [49, 50]. The games in

power grid security are classified into two categories: static and dynamic games. The static

game can be considered as a one-shot process, which means players only take one action.

A wealth of research [51–56] has emerged on the static defense schemes against malicious

attacks in the smart grid. In [51], the authors present a comprehensive and quantitative

static game framework for the power system security problem. Under this framework, a

new criterion is derived to seek reliable defense strategies. In [52], a zero-sum static game

model is proposed to provide security policies in the cyber layer with corresponding resilient

control in the physical layer. In [53], Farraj et al. analyze the cyber switching attacks and

corresponding mitigation method by the zero-determinant strategy in an iterative game.

The strategy allows the electric power utility (EPU) to stabilize the power grid in the face of

cyber switching attacks. A game equilibrium is obtained by a zero-sum static game between

intentional attackers and defenders to provide a reliable fusion-based defense scheme for the

communication network of power systems in [54]. In [55], the effect of the compromised

active power measurements on the electricity price is quantified. This situation is modeled

as a zero-sum game between the defender and the attacker who performs the bad data in-

jection attack on the measurements. For defending against denial-of-service (DoS) attacks,

Li et al. [56] investigate the interaction between the sensor nodes and adversaries.

On the other hand, dynamic games have been a largely underexplored domain in the

power grid security area. Most existing work mentioned previously are focused on static

games or static defenses without considering dynamic processes. In dynamic or multistage

games, attackers can compromise multiple components in a time sequence [57]. For some
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practical cases, to obtain the maximum profit or achieve the attack objective, attackers have

to take offensive actions one by one based on the defender’s protection policy and the next

steady state of system. Note that full knowledge and observation of the target system are

required for the players. In [58], the authors propose a stochastic game to protect the power

system against coordinated cyber-physical attacks. Although two states are considered, the

game proposed in [58] is more like a one-shot game because the attacker can only target one

element at a time. There is no more dynamic evolution in this game. Ma et al. consider

a multi-act dynamic game in the electricity market for defending against jamming attacks

in [59]. Dynamic programming is adopted to solve the game. To carry out the recursions,

knowing the model of environment is necessary. In [60], a q-learning method is devised to

solve a multistage game. The attacker’s actions are considered while the defender’s actions

are pre-defined rather than evolving by interacting with the attacker’s action and system

state.

Furthermore, machine learning methods are being applied to address cyber-physical se-

curity issues in power systems for attack detection, analysis of defense strategy, and fault

diagnosis. In [61], a deep-learning-based algorithm to detect power theft and false data

injection (FDI) attack on real-time measurements is proposed. The authors in [62] use Q-

learning to analyze vulnerabilities of the power system in sequential topological attacks.

Wang et al. [63] develop a deep learning method for fault diagnosis of power plants. A hi-

erarchical deep domain adaptation (HDDA) approach is proposed to apply a classifier with

labeled data under one loading condition to detect faults with unlabeled data under another

loading condition.
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3.3 Research Contribution

Thus far, the focus in power grid security against malicious attacks has been mainly on

static defense schemes. In contrast, in this chapter, we address a new dynamic defense pol-

icy against multistage D-LAA, which is concerned with dynamic interactions between the

attacker and defender. The attack-defense interaction is modeled by a two-player zero-sum

multistage game and the solution is obtained based on minimax-q learning. Unlike dynamic

programming solution given in [59] that requires exact knowledge of the model of environ-

ment, the proposed minimax-q learning based solution in this chapter goes from experience

to policies by learning a model rather than needing a model. The main contributions of this

research are summarized as follows:

• The one-shot dynamic load altering attacks (D-LAA) in [46] is extended to a sequence

attack. The corresponding cascading failures caused by D-LAA are studied holistically.

It allows the attacker takes offensive actions one by one based on the states of system

and adversary’s protection policy to achieve much higher attack objective.

• A two-player zero-sum multistage game considering both dynamic of the attacker and

the defender is proposed.Different from the one-shot games that lack dynamic evolve-

ment of the attack-defense sequence and passive defense strategies where the evolve-

ment of defender’s actions is neglected in the existing literature, a minimax-q learning

scheme is adopted in this chapter to effectively find out the optimal defense sequence

against chronological D-LAA considering dynamic interactions between the attacker

and the defender. This is also the main difference between the proposed dynamic

defense and the existing research.

• This dynamic defense strategy is compared with the static (passive) defense policy.

The simulation results show that the power grid with the proposed defense strategy

does have lower load loss due to D-LAAs.
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3.4 Related Preliminaries

In this section, some related preliminaries are presented including the mathematical model

of D-LAAs, optimal load shedding problem and cascading failures.

3.4.1 Dynamic Load Altering Attack

D-LAA Implementation Principle

The basic threat model is adopted from reference [46]. As mentioned, D-LAA is concerned

with the volume as well as the trajectory of the changes in the vulnerable load. In a closed-

loop D-LAA, referring to Fig. 3.1, the attacker tries to manipulate the vulnerable load (P1)

with constant monitoring at the sensor bus for the grid conditions. Although there are

various approaches to measure the grid conditions and alter the load, in this research we

limit our scope to the power system frequency obtained from the installed frequency sensors

and frequency-responsive loads. A successful D-LAA can be conducted only if there are

sufficient potential vulnerable loads to be compromised. The attack objective is to deviate

the frequency from the system’s nominal value and eventually push one generator off-line.

To implement a D-LAA, there are three main steps that the attacker must undertake:

• Install the frequency monitor at the sensor bus and constantly send frequency acqui-

sitions to the D-LAA controller. In general, it is not difficult to monitor the frequency

of power system using an inexpensive commercial sensor.

• Based on the mechanism of the attack controller and the feedback signal, calculate the

amount of vulnerable load which needs to be compromised at the victim bus.

• Remotely control and alter the victim load at the amount that is calculated in the last

step. The feasibility of remotely altering the load is discussed in [64].
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Figure 3.1: Single-point closed-loop D-LAA

Attack Model

In power systems, theoretically, the power flow between buses i and j is a nonlinear function

of bus voltages and the impedance of transmission lines. The active power flow can be given

as follows:

Pij = ViVj [Gijcos(ϕi − ϕj) +Bijsin(ϕi − ϕj)] (3.1)

where V is the voltage magnitude, ϕ is the phase angle in the corresponding bus, and G and

B are the real and imaginary parts of the impedance, respectively. Note that Gij can be

considered as zero because the resistance of the transmission lines is significantly less than

the reactance in practice. Furthermore, the difference of voltage phase angle between two

buses is small and the voltage magnitude in each bus is very close to unity in the per-unit

system. Thus, further approximation for the power flow equation can be written as:

Pij = Bij(ϕi − ϕj). (3.2)

Specifically, consider a power system with G generator buses and L load buses. Let then
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N = G ∪ L represents the set of all buses in this grid. For a bus i ∈ N , the total amount of

power flow can be separated into the power injection of the generator PG
i at bus i ∈ G and

power absorbed by load PL
i at bus i ∈ L. Defining δi as the voltage phase angle of the i-th

generator bus, θi as the voltage phase angle at i-th load bus and Bij as the admittance value

between buses i and j, the linearized power flow equations based on equation (3.2) can be

written as:

PG
i =

∑
j∈G

Bij(δi − δj) +
∑
j∈L

Bij(δi − θj), (3.3)

−PL
i =

∑
j∈G

Bij(θi − δj) +
∑
j∈L

Bij(θi − θj). (3.4)

To model the dynamic behavior of each generator, the swing equations are used for the

generator bus:

δ̇i = ωi, (3.5)

Miω̇i = PM
i − PG

i −DG
i ωi, (3.6)

where ωi is the rotor angular frequency deviation of generator bus i,Mi is the rotor inertia of

each generator, PM
i is the mechanical power input andDG

i represents the damping coefficient.

Note that PM
i and DG

i must be positive.

Specifically, the turbine-governor controller and the load-frequency controller can be in-

tegrated together as a proportional-integral (PI) controller, aimed at maintaining the rotor

angular frequency at its nominal level to affect the mechanical power input [65]. The PI

controller is represented as:

PM
i = −(KP

i ωi +KI
i

∫ t

0

ωi), K
P
i , K

I
i > 0, (3.7)

where KP
i and KI

i are the proportional and integral controller coefficients, respectively. As
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a result, the rotor frequency dynamics in equation (3.6) can be rewritten by expressing

the mechanical power for each generator in terms of frequency deviation ωi, as defined in

equation (3.7). It becomes:

Miω̇i = −(KP
i ωi +KI

i

∫ t

0

ωi)− PG
i −DG

i ωi. (3.8)

According to equation (3.3), we obtain:

Miω̇i = −(KP
i +DG

i )ωi −KI
i δi −

∑
j∈G

Bij(δi − δj)−
∑
j∈L

Bij(δi − θj). (3.9)

In this way, expressions (3.5), (3.4), (3.9) formulate the complete dynamical model and

can be written as the following linear state-space descriptor system:
I 0 0

0 0 0

0 0 M



δ̇

θ̇

ω̇

 =


0 I 0

BLG BLL 0

−(KI +BGG) −BGL −(KP +DG)



δ

θ

ω

+


0

PL

0

 , (3.10)

where B is the imaginary part of the admittance matrix:

Bbus =

BGG BGL

BLG BLL

 . (3.11)

Now, we consider a single-point closed-loop D-LAA that is performed at victim load bus

v and the frequency sensor is installed at a generator bus s aiming to push this particular

generator off-line. Suppose a proportional-integral controller is used by the attacker, creating

a large deviation while less load is needed. Let KL
p and KL

I denote the attack controller’s

proportional and integral gains at the generator bus (sensor bus) s, respectively. We can
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write the compromised power consumption level P̄L
v at victim bus v:

P̄L
v = PL

v −KL
p ωs −KL

I

∫ t

0

ωs. (3.12)

As a result, the system dynamics subjects to the above D-LAA becomes
I 0 0

0 0 0

0 0 M



δ̇

θ̇

ω̇

 =


0 I 0

BLG −KL
I BLL −KL

P

−(KI +BGG) −BGL −(KP +DG)



δ

θ

ω

+


0

PL

0

 . (3.13)

From equation (3.13), when the system is under attack, the attacker can affect the system

dynamics and compromise the system stability by adjusting the attack controller matricesKL
p

and KL
I . In particular, the system becomes unstable if the attacker is capable of moving the

system poles to the right-half complex plane assuming the vulnerable load is large enough.

Considering generators are generally equipped with various relays in the modern power

system [66], a single-point closed-loop D-LAA may push the generator off-line and disconnect

it from the grid.

Control Scheme of Closed-loop D-LAA

It is worth mentioning that PI control in (3.7) is not the only option to successfully implement

D-LAA. In general, the closed-loop D-LAA can be viewed as a frequency controller which

makes the compromised loads react to frequency deviants in the opposite direction of the

normal demand response for frequency regulation. It has been discussed in [46] that “the

attacker may use a bang-bang, P, PI, or PID controller, or any other more complex feedback

control system mechanism” for the closed-loop D-LAA, and a P control model is used in [46]

to formulate the D-LAA. In this work, the P control based D-LAA attack model in [46] is

extended to a more general PI control based model. The models provide effective methods
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for the modeling of malicious D-LAA actions against the frequency control of the grid. The

proposed model keeps the direction of D-LAA actions opposite to the normal frequency

control of the grid. Furthermore, the focus of this work is not to design attack controller

but rather to develop a dynamic defense framework plan by minimax-q learning against such

multistage attacks. This method and idea are not affected by the controller selection and

can potentially be extended to other multistage attacks.

D-LAA Implementation

The D-LLA is launched by altering the remotely controllable demands instead of the out-

puts of the generation units in the grid. Referring to Fig. 3.1 the adversary only needs to

hack into the remote load control systems to adjust the power consumption trajectory by

constantly monitoring the frequency signals to implement D-LAA. Such remote load con-

trol systems extensively exist in demand response programs. Specifically, an attacker may

aim to compromise command signals in Direct Load Control (DLC) programs that often

involve two-way communications between the power system operator and loads or aggre-

gators [67]. The adversary may utilize the vulnerability in any of these communications

infrastructures to gain direct and remote access and control over the load through the load

control mechanism. These loads that are potentially vulnerable to D-LAA attack include air

conditioners [68], building lighting system [69], water heaters [70] and electric vehicles [71].

For example, considering the heating, ventilation and air conditioning (HVAC) demand in

buildings, after intruding into the communication between the building and grid operator,

the attacker could generate desired aggregated load profile by orchestrated periodic on/off

signals to each component, e.g., air conditioner and fan.

To set the parameters in the controller-based model of D-LAA, the attacker needs to know

or estimate the system dynamic model including the system frequency control settings and

grid topology, which do not change frequently and are considered constant during the attack.
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The only signal that needs to be updated in real time by the attacker when implementing the

closed-loop D-LAA is the frequency signal. Thus, following the work in [46], it is assumed in

this research that the attacker can constantly monitor the frequency signals via the attacker’s

installed sensors or by hacking into an existing monitoring infrastructure of the grid.

3.4.2 Optimal Load Shedding

As mentioned, when a system is attacked and the topological structure of the system is

changed, such as a generator being off-line, a transmission line being tripped by relay/man

or a system partition being caused, load shedding must be performed to regain stability.

Considering a power system with n buses the optimal load shedding problem can be for-

mulated as a constrained optimization problem with the physical constraints of the power

flows [58,72,73]:

min
zg ,zl

=
n∑

i=1

wlizli, (3.14)

subject to,

Λ′BΛϕ− (p+ z) = 0, (3.15)

pgmin ≤ pg + zg ≤ pgmax, (3.16)

zgmin ≤ zg ≤ zgmax, (3.17)

plmin ≤ pl − zl ≤ pl, (3.18)

ϕmin ≤ Λϕ ≤ ϕmax, (3.19)

where wl = [wl1, wl2, ..., wln]
T is the weight vector representing the relative importance of

different load buses; vector z = [zg; zl], in which vector zg refers to the re-dispatched power

at each generation bus; vector zl is the load to be shed at each load bus; vector p = [pg; pl],

in which vector pg represents the original active power output at each generation bus; vector

pl is the demand at each load bus; vector ϕ represents the phase angle at each bus; Λ
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is the incidence matrix for the topology of the grid; and B is the diagonal matrix of the

transmission-line admittances. Constraint (3.15) represents the power balance at each bus;

constraint (3.16) is the power output limit of the generation; constraints (3.17) and (3.18)

are the constraints of the generation redispatch and load shedding respectively; Constraint

(3.19) limits the phase angle difference of the connected buses of each transmission line in

the grid.

3.4.3 Cascading Failures and D-LAA in Sequence

A successful single D-LAA with the aim to disconnect a generator may cause cascading

failures during the post-attack stage. Due to the excessive load demand after attack, load

shedding is an inevitable option for the system operator [42]. The optimal load shedding

technology has been discussed and presented in Section 3.4.2. After the load shedding is

carried out, a DC power flow analysis is performed to check for overloads on the transmission

lines. If a transmission line is overloaded by over 50%, it will be tripped by the operator.

Then the balance between the generation and demand is checked again and these steps are

repeated until entering into the next steady state.

On the other hand, for causing a more severe damage to the power system such as

more load shedding or generation losses, the attacker may perform the D-LAAs in sequence

(one-by-one). For example, the attacker may perform a D-LAA to force a generator to be

disconnected from the grid and trigger cascading failures. Then, based on the current state

and system topology of the post-attack stage, the new proper victim and sensor buses are

selected and another D-LAA can be performed. The attacker may repeat this process until

the attack goal is achieved.

There is a main concern for the D-LAA sequence: how to choose the best attack controller

gain for each step? For the ease of analysis, it is assumed the frequency sensor is placed
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at the generator bus, that is, the sensor bus is always one of the generator buses, and all

portions of loads are controllable at each vulnerable load bus. As mentioned previously, the

attacker may destabilize the system by changing the controller gain matrix KL
P . From the

control perspective, the locations of system poles change with the increase of KL
P and once

the pole(s) are moved to right-half plane the system becomes unstable. Fig. 3.2 shows how

the root locus analysis helps the attacker find the minimum attack gain.

The minimum vulnerable load that must be compromised can be calculated by equation

(3.12). If the minimum amount of load is not larger than the total load at this load bus,

the selections of victim load bus and sensor bus are feasible. The attacker tries to make

the least effort to achieve the attack goal, so for the same sensor bus when there are two

feasible victim buses the attacker tends to choose the one with less minimum compromised

load. Once a D-LAA is successfully performed and the cascading failures are triggered, the

system enters into the next steady state and the attacker may choose the new feasible victim

and sensor buses to conduct the next attack. In simulations, we can change the entries of

matrix B in equation (3.13) based on the current system topology because Bij = 0 if the

transmission line between buses i and j is tripped.

3.5 Game-theoretic Analysis of Attack-defense Inter-

actions

In this section, the behaviors of the attacker and defender are modeled using a two-player

zero-sum multistage game. As introduced in Section 1, game theory helps people understand

the interactions between the decision-makers. For the analysis of power system security, the

attacker and defender are considered as two decision-makers or players. The attacker can be

hackers, organized terrorists or other criminals. The defender is the system administrator

who monitors the power system network and implements security measures. The attacker
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Figure 3.2: Root locus plot of power system under a D-LAA attack

intends to cause the maximum damage to power grid while the defender strives to minimize

the impact. Thus, the defender’s gain is regarded as the opposite of the attacker’s gain. In

the attack, the adversary may compromise components in sequence instead of at the same

time, in order to cause more damage and decrease the risk of being detected. Similarly, the

defender has to change defense actions with a dynamic attacker. Thus, both the attacker

and defender have to adjust their actions based on the observation of their past actions

and current states. In this way, the attack-defense game falls exactly into the category of

two-player zero-sum games.

This game can be considered as a 5-tuple (SS , AA, AD, RA, RD) Markov game, where
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Figure 3.3: The interaction between players and the system

• SS def
=== {s1, ..., sNs} denotes the system’s state space;

• AA def
=== {a1, ..., aNA

} denotes the attacker’s action space;

• AD def
=== {d1, ..., dND

} denotes the defender’s action space;

• RA = [RA
a,d(s)]NA×ND

denotes the attacker’s expected reward associated with attack

action a ∈ AA against defense action d ∈ AD in state s ∈ SS; and

• RD = [RD
a,d(s)]NA×ND

denotes the defender’s expected reward associated with defense

action d ∈ AD against attack action a ∈ AA in state s ∈ SS.

Fig. 3.3 illustrates a typical player-system interaction for the two-player game. The attacker

obtains system state s and takes the attack action a, and will receive reward RA. Meanwhile,

the defender will conduct the same process and receive reward RD.
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3.5.1 Action Spaces

Attacker’s target is to implement D-LAA aiming to disconnect one generator and cause cas-

cading failures. Attacker’s action a ∈ AA means trying to force one generator disconnecting

from the main grid at a time step. The defender’s action is related to protect a generator

bus. However, the defender can restrain this attack on generators by protecting the load

on corresponding victim buses. As discussed in Section II-B, a successful D-LAA needs a

victim bus and a sensor bus. The defender may follow the same method in Section II-B to

obtain all vulnerable loads that can be potentially controlled by the attacker. Thus, protect-

ing the victim load is an effective method against D-LAA. That is, the physical meaning of

protection action is to protect the potential victim load rather than protecting these gener-

ators. Currently, the load can be protected by implementing reinforced security measures,

e.g., adding hardware and software based security components, at both the communication

level [74] and device level [75, 76]. For example, reference [74] proposes a method in which

the administrator can temporarily revoke the certificate of some nodes. In this way, these

nodes are excluded from the grid’s communication network, that is, the attacker is not able

to remotely alter these loads.

In this research, it is assumed that when a defense action is performed on a load bus,

the load at the protected bus PL
v cannot be manipulated by the attacker. Note that not all

loads can be targeted by attacker to implement D-LAA because some loads are traditional

types which cannot be remotely manipulated.

3.5.2 System States

This game is played over a finite state space denoted by SS. States are formulated as a

combination of the statuses of all transmission lines of the power grid. For each state s, the
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Figure 3.4: Transition from one state to the next steady state

status of the transmission lines is represented by a binary number ‘1’ or ‘0’.

St(l) =

 1 if line l works properly

0 if line l is out-of-service,
(3.20)

Fig. 3.4 shows the transition process from one state to the next steady state through

some intermediate states. At state s, attack (D-LAA in this research) is launched and one

generator is pushed to be disconnected from the grid due to instability. The load is shed

based on the model in Section 3.4.2 and the demand is balanced. Then, a DC power flow

analysis is applied to decide if any overloads occur on the transmission lines. Generally, the

transmission line is tripped if the overload exceeds 50%. The system repeats this process

until the generation and demand is balanced and there is no overloaded transmission line.

Please see Section 3.4.3 for more details.

3.5.3 Attacker and Defender’s Policies and Rewards

There are two players in the game: the attacker and the defender. At state s, the players

choose their respective actions a ∈ AA and d ∈ AD independently, and immediately receive

rewards RA
a,d(s) and RD

a,d(s), respectively. In this zero-sum game, the defender’s expected

reward is opposite to the attacker’s expected reward, denoted by RA
a,d(s) = −RD

a,d(s). The
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rewards for players are assigned following the conditions given as:

RA
a,d(s) =


0 if load shedding z(t) = z(t− 1)

1 if z(t− 1) < z(t) < N

10 if z(t) ⩾ N,

(3.21)

and

RD
a,d(s) =


0 if load shedding z(t) = z(t− 1)

−1 if z(t− 1) < z(t) < N

−10 if z(t) ⩾ N,

(3.22)

where z represents the total load shedding caused by the D-LAA attack and N is the attack

objective.

Now we have specified the immediate rewards of the attacker and the defender at each

state, but have not indicated how these rewards are aggregated into an overall payoff. The

most commonly used aggregation method is the discounted-sum reward. For an attack

action a and a defense action d, the discounted-sum rewards of the attacker and defender

considering deterministic state transition are represented as:

QA(s, a, d) =
∞∑
t=0

γtRA
a,d(s(t)), (3.23)

QD(s, a, d) =
∞∑
t=0

γtRD
a,d(s(t)), (3.24)

where QA and QD represent game values for the attacker and the defender, respectively;

and γ ∈ (0, 1) is the discount factor. A smaller value of γ implies the agent emphasizes the

immediate reward while a larger value indicates more concerns about future rewards. For a

given state s, the attacker’s strategy is defined as probability distributions over action space

AA, i.e.,

πA(s) = [Pr(a(s) = a1), P r(a(s) = a2), ..., P r(a(s) = aNA
)]T , (3.25)
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which satisfies
NA∑
i=1

Pr(a(s) = ai) = 1 | ai ∈ AA. Similarly, the defender’s strategy is given as:

πD(s) = [Pr(d(s) = d1), P r(d(s) = d2), ..., P r(d(s) = dND
)]T (3.26)

and
ND∑
i=1

Pr(d(s) = di) = 1 | di ∈ AD.

When only one entry of the strategies described above is nonzero (and equal to 1), πA and

πD are called pure strategy and players always adopt this action at state s(t). Otherwise,

they are mixed strategies which are adopted in this research. Note that in this multi-stage

game, the attacker and defender choose their different targets in time sequence until the

attack objective is achieved.

3.5.4 Nash Equilibrium

In this game, the defender tries to minimize the discounted sum of expected reward QD

while the attacker aims to maximize it. Nash equilibrium is a common solution to solve the

players’ optimal strategies for such a Markov game [48,77]. Nash equilibrium is a state that

no player has a unilateral incentive to change actions as that would reduce their rewards,

that is, each agent plays best response to their opponents. For the proposed game model, a

Nash equilibrium can be mathematically defined as follows:

Definition 1 In the proposed zero-sum two-player Markov game, a Nash equilibrium is a

pair of mixed optimal strategies (π∗
A, π

∗
D) for all mixed strategies πA and πD for all states

s ∈ S

QA(s, π
∗
A, π

∗
D) ⩾ QA(s, πA, π

∗
D), (3.27)

QD(s, π
∗
A, π

∗
D) ⩾ QD(s, π

∗
A, πD). (3.28)
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For such a two-player game, it is proved that unique Nash Equilibrium exists in stationary

strategies (for all t) by Shapley [78]. That is, the mixed optimal attack/defense strategies can

be solved for each state instead of each time t. In general, the stationary optimal strategy

can be solved recursively by dynamic programming if environment of the model is known

such as in [58,59].

3.6 Proposed Solution Approach

3.6.1 Minimax-q Learning

In this section, we propose a new dynamic defense solution for the two-player zero-sum

Markov game based on the minimax-q learning approach. Our objective is to characterize

the attacker’s and the defender’s Nash equilibrium strategies for each state s ∈ SS and

their attack/defense actions in time sequence, where all players are rational and tend to

maximize their own benefits. The attacker and the defender are completely competitive

and do not cooperate with each other. Minimax-q learning [79] is used in conjunction with

Markov games. As a modification of q-learning which just considers the opponent as part

of the environment, this algorithm treats the Q function not just from the state/action

pairs to values, but from the state/action/action to values, i.e., Q(s, a, d). Thus, both

players’ actions and their interactions are modeled more explicitly. The minimax-q learning

algorithm is adopted to approach real unknown state value function V (s) by interacting with

the environment and then players obtain the optimal Nash strategies by the learned state

value function. Furthermore, a state-action value function (Q function) is to quantify the

performance for a player to apply a particular action following a policy π in a state. From

the defender’s perspective, the Q function can be defined as:

QD(s, a, d) = (1− αt)QD(s, a, d) + αt(R
D + γ

∑
s′∈S

VD(s
′)), (3.29)
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and the state value function V (s) is defined as:

VD(s
′) = min

πD

max
a

∑
a

Q(s′, a, d)πD(s
′), (3.30)

where αt denotes the learning rate for adjusting the step size. To improve the convergence

rate of this algorithm, a polynomial learning rate is adopted as 1/tβ where β ∈ (1/2, 1).

Note that in equation (3.30), minmax is adopted to find the best response instead of

playing actions with the highest Q in [60]. Equation (3.30) can be converted to a linear

constraint optimization problem to obtain the optimal strategy at state s:

min
πD

VD(s),

s.t. VD(s) ≥
∑
d

Q(s, a, d)πD(s), ∀a ∈ AA. (3.31)

Similarly, the attacker’s state value function and Q function can be dually derived:

QA(s, a, d) = (1− αt)QA(s, a, d) + αt(R
A + γ

∑
s′∈S

VA(s
′)), (3.32)

VA(s
′) = min

πA

max
d

∑
d

Q(s′, a, d)πA(s
′). (3.33)

The optimal strategy of the attacker can also be obtained by linear programming in

(3.33):

max
πA

VA(s),

s.t. VA(s) ≥
∑
a

Q(s, a, d)πA(s), ∀d ∈ AD. (3.34)

The procedure to compute the Nash equilibrium at each state and the attack/defense

sequence are detailed in Algorithm 3.
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Algorithm 1 Minimax-q Learning Algorithm

1: Initialize Q0(s, a, d), V (s), πA, and πD
2: Obtain feasible D-LAA target for initial state discussed in Section 3.4.3 as action space

for attack/defense
3: Define exploration probability ϵ and learning rate α
4: for number of episodes do
5: while Attack objective is not reached do
6: Select current state s
7: if Generated random number < ϵ then
8: Take random attack and defense action
9: else
10: Take attack and defense action based on Q-table
11: end if
12: Execute actions
13: Calculate load shedding by (3.14), overloads, and cascades
14: Determine next s′

15: Assign reward by equations(3.21) and (3.22)
16: Update state-action value function Q by equations (3.29) and (3.32)
17: Solve state value functions (3.30) and (3.33) by linear programming and update

V (s) and πA(s) πD(s)
18: Update feasible D-LAA target for attack/defense’s action space
19: Update s = s′

20: end while
21: end for
22: Find optimal strategies and sequences of actions for attacker and defender
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In the proposed algorithm, the game starts with the initialization of Q function, state

value function V and attacker/defender’s policy. Then the system is evaluated to obtain

feasible D-LAA attack discussed in Section 3.4.3. Note that for simulations, instead of

observing the root-locus plot, we can analytically obtain the minimum compromised load

by gradually increasing controller KL
P until the system is unstable. In the beginning, the

initial state is assumed at the normal operation condition, that is, all transmission lines and

generators are active and work properly. A ϵ-greedy strategy is also adopted to balance the

exploration and exploitation [80]. With ϵ-greedy, the agent plays a random action with a

probability 0 < ϵ < 1, instead of making the best decision given in the Q-function. With

the execution of the actions, a certain generator is disconnected from the power grid due

to the D-LAA if the corresponding load is not protected by the defender. Load shedding

of the current state is calculated and cascading overloads on the transmission lines may

be triggered until the system enters into the next steady state s′. Instant rewards are

assigned to the attacker and the defender by equations (3.21) and (3.22) and the value of

Q-function is updated. Strategies πA(s) and πD(s) and state value V are solved by linear

programming. Then, based on the new topology of system and state, feasible targets for the

attack/defense’s action spaces are decided. The game is repeated until the attack objective

is reached. Ideally, if the process above (from step 4 to step 20) repeats for enough times, i.e.,

Q matrix is updated at each state by enough times, the players will learn the real complex

relationships between the actions and outcomes. Thus, such relationships are reinforced in

this process and eventually the players find their optimal Nash equilibrium strategies. Note

that the optimal attack/defense sequence is not unique and in this study we evaluate the

performance by computing the average impact to the system.

Furthermore, this defense strategy is not a real-time one but is more like a pre-stipulated

plan against low-probability high-impact attacks, such us D-LAA in this research, to min-

imize the damage. According to the features of D-LAA attacks, the defender can find an

optimal policy for each state against potential vicious attacker if both play rationally. The
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defense strategy can be deployed in advance when such attacks are anticipated to improve

the resilience of the power system.

In this chapter, the proposed work focuses only on the D-LAA scenario. Nevertheless,

because the proposed defense method is based on minimax-q learning which works with

Markov game, this work can be extended to other multistage attacks, e.g., Load Redistri-

bution (LR) attacks and line switching attacks, as long as the action spaces and cascading

failures are redesigned following specific attack mechanisms. The power grid operator may

make multiple such stored plans based on different types of attacks and defense actions.

3.6.2 Discussion on Computational Complexity

The computational complexity is O(S2MAMD) per iteration in Algorithm 1, where MA and

MD are the numbers of strategies for the attacker and the defender, respectively. Because

single-point D-LAA is considered in this research, i.e., the attacker and the defender select

one bus to compromise and protect at one time, MA =

 1

A

 and MD =

 1

D

, where

A and D represent the numbers of total possible attack and defense actions, respectively. It

can be seen that the computational complexity increases linearly with more attack/defense

options. As for S, more possible states will cause relatively quicker increase of the compu-

tational complexity.

3.7 Simulation Results and Analysis

Now we evaluate the performance of the proposed minimax-q learning for this two-player

zero-sum Markov game on the IEEE 39-bus system that consists of 46 transmission lines and

10 generators. The results of dynamic defense strategy may provide useful insight for grid

operators to improve the resiliency of power systems. Comparisons with the existing passive
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Figure 3.5: IEEE 39-bus system

and dynamic defense strategies are conducted to illustrate the importance of deploying the

proposed dynamic strategy against D-LAA.

3.7.1 System Parameters

Fig. 5.4 shows the IEEE 39-bus system based on a 10-machine New-England power network.

There are 10 generators, 46 transmission lines and 19 loads. There are two loops in the

simulation: episodes and runs. The episodes loop is the main loop in which the attacker and

the defender interact to learn the optimal policy. The attacker and the defender complete

a bunch of actions in sequence. As the number of episodes increases, the attacker tends

to approach the optimal policy. At the end of the episodes, the attacker and the defender
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Table 3.1: Simulation parameters for IEEE 39-bus system

No. Parameter Value

1 Number of Generators, G 10
2 Total Transmission lines 46
3 Discount Factor, γ 0.8
4 Learning Rate Coefficient, β 0.7
5 Initial Exploration Probability, ϵ 0.9
6 Number of Episodes 1000
7 Number of Runs 50
8 Maximum Iteration per Episode 100
9 Total Capacity 6245MW
10 Attack Objective at least 50% load shedding

reach the Nash equilibrium point. A number of runs are conducted to deduce different Nash

equilibria. Therefore, the whole game simulation is conducted for many runs. Each run

includes a number of episodes. The number of episodes is the required number of trials

for the agent in the learning process. The initial exploration rate ϵ is 0.9 and decreases

10% every 20 episodes to ensure the convergence. Other simulation parameters are given in

Table 3.1.

3.7.2 Selection of Vulnerable Bus and Attacker/defender’s Action

Space

As discussed in Section II, not all loads can be considered vulnerable to D-LAAs. Some

loads are traditional ones and may not even have smart meters or any demand response

equipment, which the attacker cannot remotely manipulate. In this case, we assume that only

eight load buses have vulnerable loads. They can potentially become victim buses, i.e., V =

{4, 6, 7, 12, 18, 19, 23, 29}. On the other hand, according to [81], generators {31, 35, 37, 38}

represent nuclear stations which are fully protected. Thus, frequency sensors are assumed

to be placed only at S = {30, 32, 33, 34, 36, 39} that are considered as fossil and hydro
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Table 3.2: Minimum portion of vulnerable load that must be compromised at initial state

Victim Bus
Sensor Bus

30 32 33 34 36 39

4 62 92.5 79.1 69 125 46.2
6 4.9 0.91 1.2 3.7 3.6 128
7 0.72 12.4 0.6 64.5 5.1 5.1
12 73.9 23.5 48.6 77.2 89.5 89
18 146 8.5 117 222 189 46.5
19 48.1 0.77 7.4 1.5 0.62 66.8
23 280 1.9 15.6 2.8 1.9 72
29 4.6 58.5 12.7 4.7 4 0.54

stations. Thus, the attacker’s action space is AA = {30, 32, 33, 34, 36, 39}. Table 3.2 shows

the minimum portion of the vulnerable load that must be compromised to guarantee a

successful D-LAA at the initial state. We assume KL
I a pre-tuned parameter and there is

no need to change it for simplicity of calculation. The highlighted cells indicate the attacker

could launch D-LAA on the corresponding sensor bus and victim bus. For the initial state,

the attacker is not able to compromise generator 34 because there are not enough loads to be

manipulated for the given vulnerable buses. Therefore, for the initial state, the attacker can

perform D-LAA to disconnect generators {30, 32, 33, 36, 39}. Furthermore, at each visited

unique state, Table. 3.2 is updated for the next selection of the attack target. Based on

the same table, the defender also decides the protection action that should be taken. The

defender’s action space is denoted as AD = {30, 32, 33, 34, 36, 39}. As mentioned previously,

the physical meaning of the protection action is not to protect these generators but to protect

the corresponding potential victim load. For example, at the initial state, when the defender

selects action “30”, it means the load on the corresponding victim bus 7 is protected.

3.7.3 Game-theoretic Attack/Defense

Figs. 3.6 and 3.7 show the convergence curves of the optimal number of attacker/defender’s

actions. After adequate learning and exploration, we can see that both players reach the
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Figure 3.6: Convergence of the defender’s number of actions
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Figure 3.7: Convergence of the attacker’s number of actions

optimal number of actions. Among 50 independent runs, the attacker needs three actions in

sequence to achieve the objective and the defender also needs the same number of actions
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to minimize the load shedding caused by D-LAAs. The average computing time per run is

about 564s. We need to emphasize again that the defense strategy is not real-time but off-

line trained pre-stipulated plan against the low-probability high-impact D-LAA. The defense

plan can be deployed in advance when such attacks are anticipated. Therefore, the proposed

strategy can adequately meet the time requirement of practical applications.
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Figure 3.8: Convergence of the total load shedding

Fig. 3.8 depicts the convergence of the total load shedding. The average load shedding

converges to around 3400 MW after 50 runs. From the three figures, we can portray how

the algorithm works especially in the intermediate process. In the early stage of learning

process, because of the large exploration rate ϵ and inaccurate Q matrix, both the attacker

and defender take actions randomly or wrongly. Thus, they may take more additional

steps and the total amounts of load shedding is not stable. With the decrease of ϵ and

the update of Q matrix, the curves gradually converge. At the end of the process, the Q

matrix is updated for enough times and the players learn the real relationships between the
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actions and outcomes. The policies at each state converge to the optimal Nash Equilibrium

strategies.
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Figure 3.9: Probability of attacker’s action at each state

Figs. 3.9 and 3.10 show the attacker’s and defender’s optimal policies when Nash Equi-

librium is reached at each unique state. For this situation, both the attacker and defender

have no unilateral incentive to alter their actions, because they have maximized their profits.

The physical meaning of the Nash Equilibrium status for this case is that the defender can

minimize the damage (load shedding) if they both play rationally their optimal strategies.

The system operators are advised to adopt these strategies for each possible state against

the D-LAA. Specifically, there is no need to place any defensive strategies for some states
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Figure 3.10: Probability of defender’s action at each state

because there are not enough vulnerable loads to alter for disconnecting generators from the

power grid. Note that mixed strategy at some states. Regarding the actual implementation

in practice, the operator may change the defense plan according to the probabilities of the

optimal policy. For instance, at state 9, the probabilities of defender’s action on generators

(30, 32, 33, 34, 36, 39) are (0, 0.165, 0, 0.835, 0, 0), respectively. Thus, the system adminis-

trator may plan to take protective actions for bus 34 with a probability of 0.835 and protect

bus 32 with a probability of 0.165 at each interval of the actions. The results provide useful

information for power system operators to thwart dynamic load altering attacks.
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Table 3.3: Defender’s action sequences for dynamic defense strategy

Runs Defense sequence
Physical meaning
(protected buses)

Total load shedding
(MW)

1 (33, 39, 30) (7, 19, 23) 3421.1

2 (30, 39, 32) (7, 29, 4) 3709.6

3 (39, 32, 34) (29, 12, 18) 3315.2

. . . ... . . . ... . . . ... . . . ...

25 (39, 30, 32) (29, 19, 12) 4005

26 (33, 32, 30) (7, 29, 6) 3321.9

. . . ... . . . ... . . . ... . . . ...

49 (36, 34, 33) (19, 18, 6) 3200.2

50 (39, 32, 34) (29, 12, 18) 3315.6

The defensive action sequences are shown in Table 3.3. For this game, total 11 unique

defense sequences are found and the average load shedding can be calculated as 3398.2MW.

As mentioned in Section 3.7.2, the defense action sequence indicates the protected generators

identified by the defender while the actual actions of the defense strategy are to protect the

corresponding victim load buses. For example, for the first run, this action sequence indicates

that the defender tries to protect the loads on victim buses (7, 19, 23).

3.7.4 Comparison with Passive Defense Strategy

To illustrate the importance of dynamic defense strategy, we compare our results with the

passive defense strategy in this section. For a passive strategy, the defensive actions are

predefined and the attacker is trained to find the optimal attack strategy in the presence of

the passive defender. Considering the limited resources the operator has, we assume only

two loads can be protected at a time. In this case study, three different predefined protected

load sets are considered: (7, 29), (4, 29) and (6, 7). They are denoted as passive defense

case I, II and III respectively. We adopt a similar algorithm by calculating the largest value

51



Table 3.4: Attacker’s action sequences for passive defense strategy I

Runs Attack action sequence Total load shedding (MW)

1 (32, 39, 36) 3856.4

2 (32, 39, 36) 3856.4

3 (32, 36, 30) 3725

. . . ... . . . ... . . . ...

25 (32, 39, 36) 3856.4

26 (32, 39, 36) 3856.4

. . . ... . . . ... . . . ...

49 (32, 36, 30) 3725

50 (32, 39, 36) 3856.4

Table 3.5: Attacker’s action sequences for passive defense strategy II

Runs Attack action sequence Total load shedding (MW)

1 (32, 36, 34) 3564.7

2 (32, 34, 36) 3649.2

3 (32, 36, 34) 3564.7

. . . ... . . . ... . . . ...

25 (32, 30, 34) 3425.7

26 (32, 34, 36) 3649.2

. . . ... . . . ... . . . ...

49 (32, 36, 34) 3564.7

50 (32, 34, 36) 3649.2

instead of solving minimax in equation (3.33). The attack objective is to cause at least 50%

load shedding.

Because the defense strategy is passive and unchangeable, we analyze the performance

from the attacker’s perspective. Table 3.4, 3.5 and 3.6 show the attack sequences of different

runs and the total load shedding. It is found in table 3.7 that the attacker’s action converges
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Table 3.6: Attacker’s action sequences for passive defense strategy III

Runs Attack action sequence Total load shedding (MW)

1 (36, 39, 30) 3992

2 (39, 32, 36) 3710.3

3 (36, 39, 30) 3992

. . . ... . . . ... . . . ...

25 (36, 39, 30) 3992

26 (36, 39, 30) 3992

. . . ... . . . ... . . . ...

49 (39, 32, 36) 3710.3

50 (36, 39, 30) 3992

Table 3.7: Total load shedding of different defense strategies

Proposed dynamic defense 3398.2MW

Passive defense I 3827.5MW

Passive defense II 3601.9MW

Passive defense III 3894.5MW

Dynamic defense in [82] 3709.6MW

to a sequence of three actions, and the total amounts of load shedding for the passive defense

I, II and III are 12.6%, 6.0% and 14.6% more than that obtained by the dynamic defense

strategy, respectively. The comparison shows the proposed dynamic defense method is more

effective against the single point D-LAA.

3.7.5 Comparison with Dynamic Defense Strategy

In this section, the proposed dynamic defense strategy is compared with the dynamic strat-

egy in [82]. In [82], the dynamic defense strategy is obtained by the pre-calculated worst-case

dynamic attack, which ignores the adversarial game between the rational attacker and de-
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fender, and their future expected gains. This is the main difference between the proposed

models in this chapter and [82]. To compare by same standards, the attack objective is

still at least 50% load shedding. The last row of table 3.7 shows that the total amount of

load shedding by applying the defense plan in [82] is 9.2% higher than that obtained by

the proposed strategy in this research. One reason of the result is that the outcome of two

players’ game, i.e., the attacker and defender, is not always the best for one of them but

inclines a Nash equilibrium mentioned in Section 3.4. Thus, the defense strategy derived by

the worst-case dynamic attack, i.e., unilateral optimal attack, results in the worse outcome

because the interaction between two rational players in each state of the Markov game for

D-LAA is not considered. In general, the proposed model formulates a more complex and

realistic game considering two rational players’ game, which leads to better performance for

the defense against D-LAA.

3.7.6 Summary

This chapter proposes a novel reinforcement-learning-based dynamic defense solution against

the single point D-LAA in power grid, where considering the attacker/defender’s action

sequence. We have derived the D-LAA in time sequence considering cascading failures at

each state. A two-player zero-sum Markov game is formulated to analyze the complex

interactions between the attacker and the defender, in which all players are rational and

tend to maximize their own benefits. The proposed minimax-q algorithm is applied to

derive the attacker/defender’s Nash equilibrium strategies. The IEEE 39-bus system is used

to test the proposed algorithm and evaluate the dynamic defense strategy against D-LAA.

Simulation results are compared with the existing passive and dynamic defense strategies,

which indicates the proposed dynamic strategy exhibits a better performance. The system

operator is informed to enforce the optimal dynamic defense strategy at each state in advance

to improve the power system resiliency.
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Chapter 4

GAN BASED STEALTHY FDIA

DETECTION AND MITIGATION

4.1 Overview

False data injection (FDI) attacks are emerging as a severe cyber threat to modern power

systems, which manipulate the state estimation results by tampering with the measurements.

In this chapter, a novel Triple Generative Adversarial Network (TripleGAN) based defense

framework is developed against the stealthy FDI attacks. The proposed model aims to

effectively detect and mitigate the attacks with limited historical measurement data. In

this model, the detection is performed by the classifier and the mitigation is carried out

by replacing the tampered measurements with the produced measurement data from the

generator. The advantages are that the detection module is integrated and trained with the

mitigation module together, and they reinforce the performance of each other. To improve

the detection accuracy and recovery efficiency, an extended loss function integrating feature

matching is proposed. Simulation results on the IEEE 118-bus system demonstrate that the

proposed defense model can accurately detect the stealthy FDI attacks and reconstruct the

state estimation modified by the manipulated measurements, which thus improves the power

system resilience. Further, the results confirm that the proposed techniques outperform other

existing machine learning detection and recovery methods.
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4.2 Related Work

The stealthy FDI attack on electric power systems was first investigated in [83], where the

well-constructed attack sequence could mislead the state estimation without being detected

by the residual-based bad data detector (BDD). According to the survey [84], the main FDI

attack detection algorithms are classified into two categories based on different approaches:

model-based [27,30,31,85,86] and data-based [61,63,87–94] algorithms. In [85], the authors

utilize recursive Weighted Least Squares (WLS) estimator to enhance the convergence speed

in their detection scheme. Zhao et al. propose a vector autoregression (VAR) method as

the prediction process that captures the interdependencies between the events in different

time slots to detect the FDI attack [27]. In [30, 86], Matrix Separation (MS) is introduced

to defend against the sparse FDI attack sequence based on the separation of nominal states

and anomalies matrices. A new detection method is derived by calculating the metrics of

Kullback-Leibler distance (KLD) to track the dynamics of the measurement variations [31].

The associated underlying idea is that if the measurements are corrupted by FDI attacks,

the distribution of the measurements variation will deviate and the KLD will become larger.

Aside from the model-based methods, the data-based especially machine learning meth-

ods have been widely investigated to tackle the FDI attack detection problem. Support

Vector Machine (SVM) is the most well-studied algorithm in this research area because of

its simplicity [87–89]. The main drawback of SVM is the choice of the kernel function and

the detection accuracy. Artificial neural network (ANN) is another prevalent method in clas-

sification and estimation. A number of different types of neural networks have been applied

in the FDI detection problems, such as feedforward neural network (FNN) [90], recurrent

neural network (RNN) [91, 92] and convolutional neural network (CNN) [63, 93]. In [61], a

deep belief network (DBN) is proposed to enable real-time detection, which reduces the time

for training the networks. An online detection algorithm is derived by the model-free rein-

forcement learning based on a partially observable Markov decision process [94]. To defend

56



against FDI attacks, a greedy approach is deployed to protect certain meter measurements

based on the linearized measurement model [95]. Such a greedy approach is also used to

promote the PMU deployment for defense against the FDI attacks. Yang et al. [96] propose a

defense methodology by finding the optimal attack strategy and then protecting the critical

sensor nodes. In [97,98], a graphic method is developed for defense against the FDI on state

estimation. A twofold mitigation strategy is proposed in [99] using a multi-agent system. In

particular, the authors present a voting protocol to arrive at collective decisions among the

agents on mitigating the effects of stealthy FDI attacks. In [100], the researchers demon-

strate a data analytical method employing the margin setting algorithm. A joint admittance

perturbation and meter protection strategy is developed by [101], where the resiliency of the

state estimation is enhanced under stealthy FDI attacks.

Recently, a new deep neural network model called Generative Adversarial Network (GAN)

has attracted much attention [102]. GAN can be considered as a two-player game between

the generator, which learns to produce samples following the distribution of real data, and

the discriminator, which attempts to distinguish the real and produced data. The two

components contest with each other in the game until the Nash equilibrium is achieved.

Although there are a few GAN-based studies addressing the cyber-attacks problem on power

systems [103, 104], they solely solve the attack detection or data recovering issue without

deeply leveraging the advantage of GAN, where the two components of GAN reinforce each

other. It implies that the attack detection and mitigation (data recovering) can be carried out

in one GAN-based structure and have better performance than being implemented separately.

4.3 Research Contributions

Even with the use of machine learning techniques discussed above, detecting and defending

against stealthy FDI attacks are still highly challenging. Firstly, most of the supervised
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methods rely on a large amount of labeled normal and corrupted data to learn from, but

in practice we can hardly acquire enough labeled corrupted data as attacks are generally

rare [105]. Secondly, though unsupervised learning techniques are good solutions to han-

dling the lack of labeled data, they are inadequate for the attack detection problem due

to the concerns of result accuracy and usefulness. Furthermore, their control bounds are

not flexible or effective enough for indirect attacks. At last, several GAN-based structures

are proposed for this defense task [106, 107]. However, in these methods, the discriminator

plays two incompatible roles: the classifier for predicting the labels and discriminator for

distinguishing the generated samples. On the one hand, the discriminator should identify the

fake sample produced from the generator as the fake one with non-zero probability. On the

other hand, the discriminator should always treat it as a real sample and predict the correct

class confidently as a classifier converges to the real data distribution. Based on empirical

results, the two conflicted convergence points indicate that the generator and the classifier

(i.e., discriminator) may not simultaneously converge to the real data distribution. Thus,

these challenges motivate us to develop a new model for defending against the stealthy FDI

attacks on power systems.

This chapter presents a novel defense methodology to perform attack detection and miti-

gation by utilizing Triple Generative Adversarial Networks (TripleGAN) [108], which extends

the original GAN to semi-supervised learning by employing a classifier. The main focus of

this framework is to accurately detect the stealthy attacks and reconstruct the corrupted

data at the same time with limited historical labelled measurement data. The classifier and

generator are the key components in the proposed model (refer to Fig. 4.2). Specifically, the

classifier can determine whether the measurement data are compromised and the generator

collectively provides a reconstructed data set in case the attack occurs. Moreover, compared

with the TripleGAN [108], the proposed model redesigns the loss function of the generator by

integrating feature matching for generating the state estimation data efficiently to replace

the tampered measurements. The main contributions of this research are summarized as
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follows:

• A new defense framework is proposed to defend the grid against stealthy FDI attacks

with limited historical labeled measurement data. By taking advantage of the features

of TripleGAN, the proposed method can promptly and accurately detect unobservable

FDI attacks and effectively recover the state measurement data manipulated by the

attacker. In this way, the impacts of such attacks are mitigated. To the best knowledge

of the authors, this is the first paper that uses TripleGAN to perform the detection

and mitigation task in power systems at the same time. This research is meaningful

and critical to improving the power system security and resiliency.

• A new regularization scheme to the TripleGAN model is developed by integrating

feature matching in the loss function to enhance the detection accuracy and recovery

efficiency.

• A comparison between the proposed method and a series of semi-supervised and su-

pervised methods is performed. The simulation results from the IEEE 118-bus system

demonstrate that the proposed technique can effectively defend the grid against the

FDI attacks and outperform other machine learning methods. The results also verify

that the classifier and generator reinforce each other to enhance the performance of

detection and recovery.

4.4 System Model

This section presents the mathematical formulation of stealthy FDI attacks against the state

estimation in power grids.

59



4.4.1 State Estimation

In power grids, electric power is transmitted from power plants to consumers connected by

transmission lines. Theoretically, the power flow between bus i and j is a function of the bus

voltages and the impedance of the transmission line. The active power flow can be written

as:

Pij = |Vi||Vj| [Gijcos(θi − θj) +Bijsin(θi − θj)] , (4.1)

where V is the voltage magnitude, θ is the phase angle in the corresponding bus, G and

B are the real and imaginary parts of the admittance, respectively. To further narrow the

power flow statement, Gij can be considered zero because the resistance of the transmission

lines is significantly less than the reactance regarding the transmission systems in practice.

For the most typical operating conditions, the voltage phase angle difference between two

buses is small and the voltage magnitude on each bus is very close to unity in the per-unit

system. Thus, further simplification for the power flow equation can be given as:

Pij = Bij(θi − θj). (4.2)

Expression (4.2) is the DC power flow model which gives the formulation of line power flows

in power systems.

To ensure stable and secure operation of the power system, the states (e.g., voltage phase

angles) need to be estimated with the measured data collected by the Supervisory Control

and Data Acquisition (SCADA) systems. Accurate state estimation is important to the

Energy Management System (EMS) for regulating power flow and contingency analysis [109].

In the state estimation problem, the relationship between measured value z and state vector

x is constructed as:

z = h(x) + e, (4.3)

where x ∈ RN contains the voltage phase angles θi, i ∈ [1, N ] (N does not include reference
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angle on slack bus), z ∈ RM is the vector of measured active power in transmission lines,

e ∈ RM is a random Gaussian measurement noise vector with diagonal variance matrix

Σ ∈ RM×M and h(·) dictates the relation between z and x. If the DC power flow equation

(4.2) is applied, i.e., h(x) = P = B(xi − xj), the Jacobian matrix H = ∂h
∂x
, H ∈ RM×Ncan

be considered as constant matrix.

Hence, equation (4.3) can be rewritten as follows:

z = Hx+ e. (4.4)

Specifically, expression (4.4) implies that the N phase angles are estimated by observing M

real-time active power measurements.

Given the measurements z, the estimated state vector can be calculated by the weighted

least-squares (WLS) method:

x̂ = (HTΣH)−1HTΣz. (4.5)

In this research, the aforementioned DC state estimation based on DC power flow is used for

analysis and simulation with the following assumptions: 1) the resistances of the transmission

lines are considered as zero, 2) the voltage phase angle difference between two buses is small,

and 3) the bus voltage magnitudes are assumed to be 1.0 per unit. For more details about

state estimation please refer to [110,111].

4.4.2 Stealthy FDI Attack

The goal of the attacker in performing FDI attacks is to inject a false data sequence a ∈

RM into the measurements without being detected. The tampered observation model is

represented as follows:

ẑa = Hx+ a+ e. (4.6)
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For conventional bad data detection (BDD), the measurement residual is examined in

l2-norm η = ∥ẑ − Hx̂∥22 to detect the attacks. If η > τ , where τ ∈ R is a predetermined

threshold to balance the probabilities of detection and false alarms, then the power system

operator decides that the measurements are attacked [22].

Based on the detection methodology explained above, the corrupted observation ẑa that

cannot be detected by BDD can be characterized as follows [61]:

∥ẑa −Hx̂a∥2 = ∥z+ a−H(x̂+ c)∥2

= ∥z−Hx̂+ (a−Hc)∥2

≤ ∥z−Hx̂∥2 + ∥(a−Hc)∥2 ≤ τ,

(4.7)

By observing (4.7), if ∥a−Hc∥ ≤ τa, where τa = τ −∥z−Hx̂∥2, the FDI attacks can bypass

the BDD mechanism. Therefore, we can conclude the sufficient condition for stealthy FDI

attack as follows:

a = Hc+ t, (4.8)

where c and t are vectors designed by the attacker, and ∥t∥2 ≤ τa.

4.4.3 Constructing Valid stealthy FDI Attack with Limited Access

to Measurements

Note that in the aforementioned discussion, the FDI attack vector a can be sparse which is

reasonable in practice. The modern power system consists of a large number of measure-

ments while the attacker may not be able to attack all of them because of limited resources.

Therefore, it is assumed that the attacker has access to k measurements and only can modify

these k measurements. As a result, the attacker cannot randomly choose vector c and use

a = Hc as the attack sequence. For the measurements that are not targeted by the attacker,

the injected errors must remain 0. [17] develops a method which allows us to easily generate
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a sparse attack vector a that satisfies the above condition.

Theorem 1 a=Hc if and only if Ba=0, where B = H
(
HTH

)−1
HT − I.

Let m × k matrix B′ = (bi1, ...bik), where bi is the i-th column vector of B and vector

a′ = (ai1, ...aik), where ai is the desired nonzero element of a.

The solution is a′ =
(
I−B′†B′)d, where B′† is the Moore-Penrose pseudo inverse of B′,

and d is an arbitrary nonzero vector of length k. With a nonzero solution a′, the attacker

can generate the attack vector a by filling 0s as the remaining elements in a.

4.5 Proposed Methodology

The proposed defense framework is built based on TripleGAN with the improved loss func-

tions and the Adam optimization algorithm. This section firstly introduces the overview and

mechanism of the whole framework, and then describes the redesigned loss function using

feature matching and the Adam optimization algorithm.

4.5.1 Defense Framework Overview

The fundamental idea of the framework is to construct a model against FDI attacks which

conducts the detection and mitigation with a small set of labeled historical measurements.

Fig. 4.1 shows the proposed detection and mitigation mechanism against stealthy FDI

attacks.

Offline training stage: In the offline stage, the TripleGAN model is trained by the col-

lected historical data including a small amount of labeled and a large amount of unlabeled
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Figure 4.1: The proposed defense framework against FDI attacks

normal/tampered measurement data. The TripleGAN consists of three deep neural net-

works, namely the generator, the classifier and the discriminator. By iteratively updating

each other, the classifier can predict a label (tampered or normal) for the input measure-

ments and the generator can produce fake samples following the normal data distribution to

replace the bad measurements.

Online processing stage: In the online stage, the real-time collected measurements are

sent to the conventional BDD, checking the deviation of the measurement residual. Once the

attack alarm is triggered, these bad data are passed to the generator module. The generated

data from the generator is sent back to control center for recovering the state estimation.

On the other hand, if the real-time measurements pass the BDD mechanism, the classifier

will determine if the measurements are manipulated by the stealthy FDI attack discussed in

Section II.
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Figure 4.2: Structure of the TripleGAN

4.5.2 Triple Generative Adversarial Network

Although the original GAN is a powerful tool in computer vision and image processing ar-

eas, there are several problems for its application in our problem: (1) the generator and

the classifier (discriminator) may not align to the data distribution at the same time; (2)

the generator is not able to control the feature of the generated data. For this case, we use

the triple generative adversarial network (TripleGAN) developed in [108], which performs

excellent classification and generation at the same time. TripleGAN can be considered as an

extension of the standard GAN based on the three-player game to characterize the process

of classification and generation. Here are some notations used for this model. The true mea-

surement input is denoted as x and the label is denoted as y indicating if the corresponding

measurement is normal or is compromised by the attacker, with the distribution denoted by

p(x, y). The true marginal distributions of x and y are denoted as p(x) and p(y), respectively.

The structure of TripleGAN is shown in Fig. 4.2. TripleGAN consists of three compo-
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nents: a generator (G), a classifier (C) and a discriminator (D). Specifically, the generator

is to produce data following the distribution of the historical true measurement data, and

the classifier is to label the data that follow the true distribution. The discriminator plays

the sole role to distinguish the generated data-label pair and true historical data pair. By

training them iteratively, the TripleGAN achieves an equilibrium such that the generator

and the classifier both converge to the true data distribution. All the three components are

characterized as deep neural networks. For the attack detection and mitigation problem in

this research, the trained classifier is to determine whether the collected measurement data

is tampered with or not, and the bad data can be replaced by the generated data produced

from the generator, thus mitigating the impact of FDI attacks.

Generator (G): The generator aims to characterize the conditional distribution pg(x|y) ≈

p(x|y). For pg(x|y), x is transformed from noise z given the label y, that is, x = G(z, y). z is

defined that can be easily sampled from a simple distribution pz(z). Thus a generated data-

label can be synthesized from G by extracting yg ∼ p(y) and xg ∼ pg(x|y). The synthesized

pair is from the joint distribution pg(x, y) = p(y)pg(x|y).

Classifier (C): The classifier C aims to characterize the distribution pc(y|x) ≈ p(y|x).

After sampling xc from p(x), C produces a label yc that follows the conditional distribution

pc(y|x). Similarly, this data-label pair is from the joint distribution pc(x, y) = p(x)pc(y|x).

Discriminator (D): The discriminator aims to identify if a data-label pair comes from

the true data or the synthesized fake data. Clearly, the fake data-label pairs (xc, yc) and

(xg, yg) are sent to the discriminator. The data-label pairs from the true data distribution

are also delivered to D as positive samples.

The loss functions from the G, C and D can be formulated as:

min
G
V (G,C,D) = Epg(x,y)[log(1−D(xg, yg)], (4.9)

min
C
V (G,C,D) = Epc(y|x)[log(1−D(xc, yc))], (4.10)
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max
D

V (G,C,D) = Epx,y [logD(xl, yl)]

+ γEpc(y,x)[log(1−D(xc, yc))]

+ (1− γ)Epg(x,y)[log(1−D(xg, yg)].

(4.11)

Combining the objective functions above, a three-player minimax game with value func-

tion V (G,C,D) can be formulated as:

min
C,G

max
D

V (G,C,D) = Ep(x,y)[logD(x, y)]

+γEpc(x,y)[log(1−D(x, y))]

+(1− γ)Epg(x,y)[log(1−D(G(y, z), y))] +RC,

(4.12)

where γ ∈ (0, 1) is a coefficient constant to control the weights of generation and classifica-

tion. RC = Ep(x,y) [− log pc(y|x)] is the cross-entropy loss on the labeled data to C, which

guarantees the uniqueness of the equilibrium p(x, y) = pg(x, y) = pc(x, y). The equilibrium

proof is provided in [108]. In this minimax game, the discriminator competes with the gen-

erator and classifier while G and C do not compete with each other. The generator aims to

produce high-fidelity data, and the classifier attempts to accurately predict the unlabelled

data.

4.5.3 Feature Matching

Though the basic theory of TripleGAN has been proved and demonstrated, there is room

for further improvement by tailoring it to our problem. The main concern here is about

the stability of the TripleGAN training with the measurement data collected from the power

system. There is a certain chance that the generator does not converge to true data distribu-

tion resulting that the reconstructed state estimation is far away from the true states. This

motivates us to improve the method for a more stable convergence of the generator. Inspired

by [107], we adopt the feature matching technique and modify the TripleGAN loss functions.
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The fundamental idea is to add a new objective to the generator that enforces the generated

data matching with the statistics of the expected distribution, instead of only using the dis-

criminator to distinguish the data-label pairs from the true data and the synthesized data.

Reference [107] indicates the new objective for the generator as:

∥∥Ex∼p(x,y)f(x)− Ez∼pz(z)f(G(z))
∥∥2

2
, (4.13)

where f(·) denotes the feature associated with a hidden layer of the discriminator. That

is, the generator is forced to match the feature on a hidden layer of the discriminator. To

implement it in the TripleGAN, the categories of the samples in (4.13) are taken into account.

The objective is modified as follows:

Rl =
∑
i

||E(x,y)∼p(x,y)Ω(y, i)fC(x)

− E(z,yg)∼pz(z)Ω(yg, i)fC(G(z, yg))||22,
(4.14)

where fC(·) denotes the features on the hidden layer of the classifier C; Ω(·) denotes a

binary function which returns 1 if the inputs are equal and 0 otherwise. i ∈ (0, 1) is the

class index representing normal and tampered measurement data. Further, to enforce the

consistency between the classifier and generator, a semantic matching is adopted to regularize

the generator:

Rs = E(z,yg)∼pz(z)[−yg log pc(x, y)(G(z, yg))]. (4.15)

The advantage of Rs is it can directly improve the classification through utilizing the gener-

ated data which has been regulated byRl. Thus, by including the feature matching objective

terms, the optimization of the generator as (4.9) can be modified as:

min
G
V (G,C,D) = Epg(x,y)[log(1−D(xg, yg)] +Rs +Rl. (4.16)

The complete training process of the TripleGAN is shown in Algorithm 3. For the
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objective function given above, the three components are trained alternately by the stochastic

gradient descent method. The neural network weights θd, θc and θg are updated based on

the loss functions in each iteration in steps 4, 6 and 7, respectively.

Algorithm 2 TripleGAN Training Process

Input: Historical measurement data; minibatch size mg, mc and md; learning rate α
1: Initialize generator, classifier, and discriminator weight as θg, θc and θd
2: for number of training iterations do
3: Sample minibatch of md instances from historical data (xl, yl) ∼ p(x, y); sample mini-

batch of mc instances from data pair (xc, yc) ∼ pc(x, y); sample minibatch of mg

instances from data (xg, yg) ∼ pg(x, y)
4: Update D by stochastic gradient descent:

gθd ← ∇θd [
1
md

(
∑

(xl,yl)
logD(xl, yl))

+ α
mc

∑
(xc,yc)

log(1−D(xc, yc))

+1−α
mg

∑
(xg ,yg)

log(1−D(xg, yg))]

θd ← θd · Adam(θd, gθd)
5: Compute Rc:

RC = − 1
md

∑
(xd,yd)

log pc(yd|xd)
6: Update C by Adam gradient descent:

gθc ← ∇θc [
−α
mc

∑
(xc,yc)

log pc(yc|xc) log(1−D(xc, yc)) + R̂c]

θc ← θc · Adam(θc, gθc)
7: Update G by Adam gradient descent:

gθg ← ∇θg [−1−α
mg

∑
(xg ,yg)

log(1−D(xg, yg)) +Rs +Rl]

θg ← θg · Adam(θg, gθg)
8: end for

In Algorithm 3, the Adam optimization algorithm is used for the stochastic gradient

descent. This algorithm, proposed by Kingma and Ba in [112], is based on adaptive estimates

of lower-order moments, which aims to address the gradient-based stochastic optimization

problem with large datasets and high dimensional spaces. The main advantage of the Adam

algorithm lies in its higher computational efficiency which renders it to be well suited for

tackling problems with a large set of data and parameters.
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Figure 4.3: IEEE 118-bus system

4.6 Simulation Results and Analysis

Simulations were conducted on the IEEE 118-bus system to evaluate the performance of the

proposed model against FDI attacks as Fig. 4.3 [113]. The tampered system data by FDI

attacks were simulated on the MATLAB/MATPOWER platform using DC state estimation

model discussed in Section II. In total there are 30,000 training samples (which are normal

and attacked scenarios) including a certain portion of labeled data. The proposed TripleGAN

is trained on the nVidia 1080Ti GPU with an Intel Core i7 CPU of 2.8 Ghz and 16-GB RAM.

Each result is the average of 3 runs.
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4.6.1 Parameter Selection

• The test system contains 186 measurements which are the line active power flows of

each branch (z ∈ R186), and 117 voltage phase angles of individual buses as the system

states (x ∈ R117). The phase angle on the reference bus is excluded since it is fixed

and known. Measurement noise is modeled as a random Gaussian vector e ∼ N (0,Σ)

with the standard deviation Σ = 0.001p.u.

• In this study, the F1 score is used to measure the accuracy:

F1 = 2
Pr ×Re

Pr +Re

, (4.17)

where Pr and Re are the precision and the recall, respectively, and they are calculated

by the following equations:

Pr =
True Positive

Predicted Positive
, Re =

True Positive

Actual Positive
.

The precision is the ratio of the correctly predicted positive (normal) data to the total

predicted normal data and the recall is the ratio of the correctly predicted positive

data to all the normal data in the actual class. In general, the bigger the value of F1

score is, the more accurate the classifier is.

• Dataset: In total, the measurements consist of 30,000 training samples and 6,000

testing samples. There are 500 randomly selected labeled instances among the training

data.

• Learning Rate α: The learning rate is a hyper-parameter that controls the step of ad-

justing the weights of the network with respect to the loss gradient. In this simulation,

the learning rate α is set to be 0.001.

• γ in equation (4.12) determines the relative importance of generation and classification.
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The higher γ is, the more the weights are placed on classification. In the following

simulations, γ is fixed at 0.5 for the balance of the classifier and generator.

• For a fair comparison, all detection results are averaged by 3 runs with different ini-

tialization settings.

• All parameters in the Adam algorithm follow [112].

• The mean relative errors (MRE) are used to evaluate the performance of the generated

data. The state estimation (the phase angle at each bus) computed from the generated

data is compared with the normal operation data as:

MRE =
1

N

N∑
i=1

|xgi − xi
xi

|. (4.18)

• The detailed structure of our TripleGAN is presented in Table 4.1.

Table 4.1: TripleGAN architecture

Generator G Discriminator D Classifier C

Input Class y, Noise z Input 1x186 measurement Input 1x186 measurement
Class y

MLP 50 units, ReLU MLP 120 units,ReLU MLP 80 units, ReLU
MLP 50 units, ReLU MLP 120 units, ReLU MLP 80 units, ReLU

MLP 186 units MLP 186 units, ReLU MLP 80 units, ReLU
MLP 1 unit,sigmoid 2-class sigmoid

4.6.2 Convergence of Proposed TripleGAN-based model

The convergence curve of error rate for the test data is shown as 4.4. The model is trained

using the dataset defined in Section IV-A and can reach good detection result in 50 epochs.
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Figure 4.4: Convergence of proposed TripleGAN-based model

4.6.3 FDI Attack Detection

Firstly, the proposed method is compared with two semi-supervised learning algorithms,

S3VM [89] and Improved-GAN [107], with different numbers of compromised measurements

k. The attack vector is formed following the method in Section II-C to guarantee that the

compromised measurements can bypass the residual-based BDD. The selection of targeted

measurement sensors are chosen randomly, and the attack intensity is fixed as 30%. The

attack intensity is used to define the percentage of compromised measurements of the magni-
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tude of normal measurements. In general, the state estimation results deviate further away

from the normal values with higher attack intensity. Note that k ≥ m−n+1 to keep the at-

tack unobservable by BDD [17]. Fig. 4.5 shows the quantitative results. Among these three

semi-supervised classifiers, the proposed TripleGAN-based framework outperforms others

substantially, especially for the situation where fewer measurement sensors are injected by

bad data. The F1 score of our model is 4% to 12% higher than other two methods when

k is less than 120. Note that the more measurements the attacker compromises, the more

accurate the detection is, which is reasonable from the data correlation perspective. On the

other hand, the attacker may cause severer damage to the system with more compromised

measurements but under higher risk of being detected. Thus, the attacker tends to seek a

trade-off between the attack impact and the risk of exposure.

Then, the robustness of the proposed TripleGAN detection to the noise in the data

acquisition environment is evaluated. In this case, the number of compromised measurements

k is fixed at 160 and the environmental noise e ∼ N (0,Σ) with the standard deviation Σ

changing from 0.001 p.u. to 0.02 p.u. [110]. Intuitively, the detection accuracy decreases

with a higher level of the environmental noise because the corrupted and normal data are

less distinguishable. However, a detection structure with good robustness can mitigate this

trend. Fig. 4.6 demonstrates that the proposed detection scheme is more robust to the

environmental noise compared with S3VM and Improved-GAN. It is found from Fig. 4.6

that even with Σ = 0.02 p.u. environmental noise, the proposed TripleGAN-based detection

still achieves an F1 score of 0.9 which is higher than the others.

Lastly, the proposed TripleGAN detection method is compared with two supervised

methods, SVM [87] and kNN [114], on a small labeled dataset including 500 normal and

compromised samples. To perform the supervised learning of TripleGAN, the losses on un-

labeled data as presented in Section III are removed and all the networks are the same as

the semi-supervised learning. The comparison is still based on the number of compromised

measurements and the environmental noise as shown in Fig. 4.7 and 4.8. Because of a

74



80 100 120 140 160 180

k

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

F
1 

sc
or

e
S3VM
SGAN
TGAN

Figure 4.5: Detection performance of S3VM, SGAN and TripleGAN with different numbers
of compromised measurements

smaller set of training data which is reasonable in the real world, all the F1 scores are worse

than the semi-supervised learning cases in Fig. 4.5 and 4.6. Nevertheless, the proposed

TripleGAN-based detection framework exhibits a better detection performance and higher

robustness to the environmental noise.
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Figure 4.6: Detection performance of S3VM, SGAN and TripleGAN with different StD of
environmental noise

4.6.4 Attack Mitigation

As discussed in Section III, the proposed mitigation principle is to generate new measurement

data which are sufficiently close to the true measurements to replace the tampered data. The

generated data corrects the state estimator. Thus, to evaluate the proposed defense model,

we firstly compare the reconstructed data with the normal data from the state estimator as

shown in Fig. 4.9, 4.10 and 4.11. Due to the space limitation, only three attack scenarios

are presented here: 80, 100 and 140 tampered measurements which are randomly selected.

The results demonstrate that state estimation is robust to the stealthy FDI attacks with the
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Figure 4.7: Detection performance of SVM, kNN and TripleGAN with different numbers of
compromised measurements on small labeled dataset

proposed defense model. The phase angles are sufficiently close to the true values, where the

impact of FDI attacks is mitigated in the power grid.

Next, the results are evaluated quantitatively compared with the data generated by

the semi-supervised GAN (SGAN) [107] and Conditional GAN (CGAN) [115]. Table 4.2

summarizes the MRE of three GAN models. In all three attack scenarios, the recovered data

obtained by the proposed TripleGAN has smaller MRE than SGAN and CGAN, which means

the data is closer to the states calculated by true measurements. The reason why CGAN has

the relatively worst performance is that CGAN has to be trained with fully labeled data.
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Figure 4.8: Detection performance of SVM, kNN and TripleGAN with different StD of
environmental noise on small labeled dataset

In our case, there are only 500 labels in the 30,000 training samples and CGAN does not

leverage the large amount of unlabeled data. Overall, the mitigation results confirm that

the proposed TripleGAN-based model can recover the tampered data caused by FDI attacks

and thus lead to a better performance than the others.
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Figure 4.9: Phase angle in state estimation with 80 corrupted measurements

Table 4.2: MRE of TripleGAN and standard GAN

Number of corrupted measurements 80 100 140

SGAN [107] 2.48% 2.86% 3.05%
CGAN [115] 3.69% 4.15% 6.73%
TripleGAN 1.42% 2.04% 2.21%

Table 4.3: Performance of different numbers of labeled samples for TripleGAN-based
framework

Number of Labeled Samples 200 500 900 1400

Detection F1 Score 0.927 0.938 0.941 0.945
Generation MRE 2.40% 1.95% 1.84% 1.78%

79



0 20 40 60 80 100 120

bus number

-5

0

5

10

15

20

25

30

35

40

45

P
ha

se
 a

ng
le

true
tampered data
reconstructed data

Figure 4.10: Phase angle in state estimation with 100 corrupted measurements

4.6.5 Impact of the number of labeled data on performance

Table 4.3 compares the performance of the proposed model using different numbers of labeled

samples. Apparently, the larger the portion of labeled data is, the better the performance

of the model has. However, we emphasize that there are limited labeled samples in our

dataset in practice because detected and observed cyber-attacks records for power system

are rare (but the damage is severe once it happens). Since the operation data are highly

confidential for electric utility companies, we assume that 1% to 2% compromised data are

labeled. Furthermore, for the cases when the number of labeled samples is larger than 500,

the performance is improved finitely. The results prove that our proposed model performs

satisfactorily on 30,000 training samples with 500 labeled samples.
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Figure 4.11: Phase angle in state estimation with 140 corrupted measurements

4.7 Summary

This chapter proposes a novel TripleGAN-based defense framework against the stealthy

FDI attacks, which aims to accurately detect the attack and effectively mitigate its impact

at the same time with a few labeled historical measurements. The state estimation and

stealthy FDI cyber-attack model are first introduced in this chapter. Then, the detection

and mitigation defense framework is proposed including offline training and online processing.

In the offline training stage, the TripleGAN model is trained by the collected historical data

including a small amount of labelled and a large amount of unlabeled normal/tampered

measurements. The detection (performed by the classifier) is integrated and trained with

the mitigation (performed by the generator) together and they reinforce each other. To
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enhance the detection accuracy and recovery efficiency, an extended loss function is proposed

by including feature matching. In the online processing stage, the classifier is used to detect

if the measurements are tampered by FDI attack. If the attack alarm is triggered, the

tampered measurements are replaced by the generated data from the generator and sent

back to control center for recovering the sate estimation and informing further decisions. F1

Score and MRE are used to evaluate the detection and mitigation performance.

The simulation results demonstrate that the proposed defense model is able to accurately

detect the stealthy FDI attacks and the recovered state estimation is sufficiently close to the

normal operation status, which thus improves the power system resilience. Furthermore,

under various circumstances (with different numbers of targeted measurements, different

intensities of environmental noise, and fewer historical data), the obtained results confirm

that the proposed techniques exhibit some advantages over other machine learning based

detection and recovery methods.
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Chapter 5

DATA-DRIVEN FDIA MODEL

AGAINST LOAD FREQUENCY

CONTROL

5.1 Overview

With the tighter integration of physical power system and cyber system, the security of Load

Frequency Control (LFC) system has attracted wide attention recently. As a major class of

cyber threats to power systems, False Data Injection (FDI) attacks inject well-crafted attack

data into the data collected by the LFC system, which may mislead the decision-making of

control center and compromise the secure operation of power systems. In this chapter, a

data-driven FDI attack model based on multi-agent deep reinforcement learning (MA-DRL)

against LFC system is proposed. Instead of using legacy linearized LFC model, AC state es-

timation (ACSE) is integrated with LFC to reduce measurement noise and perform bad data

detection. Thus, the system environment becomes more practical and complex, and more

requirements need to be satisfied for the attacker to perform successful FDI attacks. In order

to achieve two attack objectives simultaneously, i.e., stealthily maximizing the frequency de-

viation and minimizing the number of compromised measurements, a modified Multi-Agent

Deep Deterministic Policy Gradient (MA-DDPG) algorithm is devised in this study, which

treats the two objectives separately by global and local individual critic networks other than
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a simple linear combination. The impact of FDI attack on the LFC with ACSE is also

analytically derived. The obtained Laplace-domain transfer function can be used to replace

the global critic network to accelerate offline training process. During the online execution,

each attacker of LFC control area cooperatively injects the optimal attack vector only by its

own local measurements. Simulation results on the New-England 39-bus system verify the

effectiveness of the proposed FDI attack model compared with other methods. In addition,

corresponding countermeasures based on the critical measurements are discussed.

5.2 Related Work

The load frequency control (LFC) system aims to restore system frequency and eliminate the

imbalance between power generation and load demand, where the imbalance is generally a

consequence of scheduled or unscheduled fluctuation of load [85,116]. As the basic function

of Automatic Generation Control (AGC), the LFC system computes control command based

on Area Control Error (ACE) collected from the distributed sensors. The control command

is then sent to the generator to adjust the power output to balance the load demand change,

thereby the deviated grid frequency is brought back to the nominal value and can be kept

within a specific fluctuation range.

However, as deeper integration and coupling with cyber system, the LFC system faces

severe security challenges. LFC relies on modern communication technologies for data col-

lection and feedback, and requires high integrity of the collected data, so it is vulnerable

to cyber attacks [104, 117]. False Data Injection (FDI) attack is one of the most threaten-

ing cyber attacks to LFC system, since the data collection devices usually are not deployed

with complicated encryption technology due to real-time performance requirements and the

field data being transmitted by susceptible communication channels to the LFC control cen-

ter [118]. The vulnerability of data collection and transmission can be exploited by malicious
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adversaries to perform FDI attacks in order to cause shocks in power system and severe grid

accidents. Thus, it is imperative to investigate the threat of FDI attacks to LFC system and

the corresponding defense strategy.

Presently, there are many model-based FDI attack studies to LFC system. In [18],

the impact of data integrity attacks on AGC on power system frequency is proposed and

demonstrated. In [119], the authors propose a coordinated FDI attack which is a combination

of several attack templates. This coordinated attack is verified to cause wider parameter

deviation in shorter execution time. In Ref. [120], the resonance attacks to LFC is studied.

The attacker can craftily modify the input of generator based on resonance source and quickly

cause the power plant unstable. The authors in [121] propose the FDI attack and defense

model on LFC based on Generative Adversarial Network (GAN). In [122], the FDI attack

that targets on frequency sensor and the corresponding decentralized detection framework

are studied. Whereas, the FDI attack models [18,119–122] directly target on ACE signal or

frequency sensor, which are usually not easy and practical to perform because the data link

of ACE is always well-protected by isolated cable instead of transmitting signals by wireless

networks, and as a global parameter, grid frequency can be easily monitored and verified by

sensors deployed in the control center.

On the other hand, with the development of high-performance computing technologies,

State Estimation (SE) is integrated to LFC to reduce measurement noise and perform faulty

data detection [123]. SE system ensures the measurements are free of environmental noise

and bad data and then the improved measurements without noise are transmitted to LFC

control center, leading to more accurate control signal. The SE is also vulnerable to FDI

attack that targets on distributed measurements [124], yet more careful attack structure

design needs to be considered. In order to persistently impact the operation of SE and

then interfere with LFC control, the injected false data have to be stealthy to avoid being

detected by Bad Data Detector (BDD), such as l2-norm detection. In addition, attackers

attempt to minimize the number of tampered measurements due to limited computing and
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communication resources. In the literature, crafting stealthy FDI has been widely studied

on linear power flow model for DC state estimation (DCSE). In [125], a stealthy FDI attack

against DCSE is proposed, where the minimum set of attacked meters can be obtained by the

observability of the system. A coordinated FDI attack is designed in [126], where the physical

topology can be coordinated modified to mislead the results of SE. In [30,127–129], with only

incomplete system information, the stealthy FDI attack is crafted and system matrix can be

estimated by model-based or data-driven methods. As for more practical AC state estimation

(ACSE) based on nonlinear power flow, reference [130] analyzes the vulnerability of ACSE

and generalizes a common FDI attack policy. In [131], a nonlinear optimization-based attack

policy which can be computed by semi-definite programming is designed. In [25], the authors

propose and analyze the uncertainties for launching successful FDI attacks with the upper

bound under the condition of incomplete system information. In [132, 133], FDI attacks

without network information are derived, where the network parameters are extracted by

the analytical algorithm or GAN-based machine learning method.

Although FDI attacks against SE have been widely studied in the aforementioned re-

search, the impact of FDI attacks on LFC system integrated with SE is an underexplored

domain in the power system security area. In [134], the optimal FDI attack sequence against

AGC is derived by analyzing the impact of FDIA on AGC. Although the SE is included in

this research, the linearized LFC and DCSE system is adopted such that the derived optimal

attack could be easily detected by widely used ACSE in practical power systems. In addition,

the computational burden for each step might be overlooked especially for the attackers with

limited resources. In [135], a framework of FDI attack along with denial-of-service (DoS)

attack is proposed, where the false data is injected at frequency and power flow sensors.

However, SE is not considered in this research, so the attack lacks stealthiness which could

be easily detected.

The above presented work motivates us to design a data-driven stealthy FDI attack

scheme against LFC system applied in centralized learning and distributed execution way. To
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fill the research gaps mentioned in the above literature review, this research proposes a novel

MA-DRL based FDI attack model against LFC system integrated with AC state estimation.

Considering the different characteristics of LFC control areas in the multi-area power system,

the attack vector injected in power measurements for each control area adjusts its value at

each time step and cooperatively maximizes the grid frequency deviation and minimizes the

number of tampered measurements at the same time. The principle of the proposed method

consists of offline centralized training and online distributed implementation stages. At

offline stage, attack of each LFC control area design is formulated as MA-DRL to maximize

their objectives. During online execution, the attacker of each area cooperatively adjusts its

attack vector only by its own local measurements. The main contributions of this article are

summarized as follows.

• A data-driven FDI attack model against LFC system is proposed. Instead of legacy

linearized LFC model, AC state estimation is coupled with LFC to reduce environment

noise and filter bad data before sending measurements to LFC controller, which is more

precise and practical for the analysis of interactions among control areas.

• MA-DRL method is used to solve the problem of increasing frequency deviation and

minimizing the number of tampered measurements. In order to achieve these two

objectives simultaneously, a modified MA-DDPG algorithm is proposed in this chapter.

Unlike a simple linear combination of the two objectives in [63], the proposed algorithm

handles them separately by global and local individual critic networks compared to

standard MA-DDPG.

• The impact of FDI attack on the LFC system is analytically derived. A closed-form

Laplace-domain model is obtained and then utilized to replace global critic network to

accelerate the training process and reduce the performance variance.

• During online execution, the trained FDI attack model is verified in a more complex

and practical system in Matlab/simulink. The detailed dynamic transient model of
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three-phase synchronous machines and resistance of all the lines and transformers are

taken into account. The simulation results validate the good performance of proposed

FDI attack model compared with other methods. Furthermore, corresponding counter-

measures based on checking out the critical measurements are discussed and verified.

5.3 System Models

In this section, Load Frequency Control (LFC) integrating State Estimation (SE) and FDI

attack against LFC model in power grids are introduced.

5.3.1 Load Frequency Control and State Estimation

Frequency status has to be monitored all the time and regulated periodically in power sys-

tem, since frequency deviation from the nominal value caused by imbalance between power

generation and load demand can directly impact power grid security, reliability and opera-

tion. Thus, in order to ensure the balance between load and generation, LFC is enforced to

bring the deviated frequency back to the nominal value. Each frequency controller has the

area control error (ACE) as its control input:

ACEi = ∆Ptie,i +Bi∆fi, (5.1)

where ∆Ptie,i and ∆fi are tie-line power flow deviation and frequency deviation for control

area i, Bi is constant. However, tie-line power flow sensors are usually noisy and faulty, which

may mislead the LFC controller and impact frequency stability. State Estimation (SE) can

reduce measurement noise and perform faulty sensor detection at the same time, which yields

more accurate control signal to LFC. Especially in recent years, with the development of high-

performance computing, the execution time of SE is significantly reduced and integrating
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Figure 5.1: Overview of LFC with State Estimation

SE to LFC becomes feasible [123,136].

Fig. 5.1 depicts the LFC pipelined with SE. The control center collects measurements z

from distributed power flow and frequency sensors and calculates the grid state x̂ through

state estimation. ACE signal is a linear combination of tie-line’s power deviation of each

area ∆Ptie and measured grid frequency deviation ∆f , where ∆Ptie is computed based on

state estimation x̂. Then ACE is transmitted to the control unit of generators to specify

their setpoints.

For the state estimation problem, considering a system with m measurements and n state

variables, the relation between measured value z and state vector x can be constructed by

the nonlinear measurement model, i.e., AC state estimation (ACSE):

z = h(x) + e, (5.2)
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where z ∈ Rmx1 is the measurement vector; x ∈ Rn×1 is system state vector; e ∈ Rm×1 is the

measurement noise vector which is assumed to follow Gaussian distribution with zero mean

and covariance matrix R ∈ Rm×m; and h(·) is a nonlinear function. The state estimator can

be solved by minimizing the weighted least squares (WLS) criterion, yielding

x̂ = argmin
x

[z − h(x)]TR−1[z − h(x)]. (5.3)

The solution to (5.3) can be obtained by applying the Gauss-Newton iterative algorithm:

xk+1 = xk + (U(x))−1H
(
xk

)T
R−1

(
z − h

(
xk

))
, (5.4)

U(x) = H
(
xk

)T
R−1H

(
xk

)
, (5.5)

where k is the iteration index; and H is the Jacobian matrix. After conducting estimation,

l2-norm Bad Data Detector (BDD) is performed to detect the existence of bad data by

checking if the following inequality holds:

∥r∥ = ∥z − h(x̂)∥ ≥ τ (5.6)

where τ is a detection threshold of the l2-norm detector.

5.3.2 Attack Model of LFC and SE

For a typical multi-area power grid, LFC model of the ith area is shown in Fig. 5.2. Each

area consists of the generator, governor, steam turbine and load. As widely reported in the

literature, system dynamics of the ith area can be represented by the differential equations

90



Figure 5.2: FDI Attack against LFC

as follows:

∆ḟi =
1

2Hi

(∆Pm,i −∆PLoad,i −∆Ptie,i)−
D

2Hi

∆fi, (5.7)

∆Ṗm,i =
1

TS,i
∆Pg,i −

1

TS,i
∆Pm,i, (5.8)

∆Ṗg,i =
1

TG,i

∆Pc,i −
1

RiTG,i

∆fi −
1

TG,i

∆Pg,i. (5.9)

∆Ṗc,i = KiACEi. (5.10)

The variables’ notations are summarized in nomenclature.

Due to the state estimation unit being integrated, equation (5.1) becomes

ACEi = ∆P̂tie,i +Bi∆fi, (5.11)

where ∆P̂tie,i is tie-line power flow deviation calculated by estimated states for the ith area.

As can be seen in Fig. 5.2, FDI attack may be achieved by exploiting ACE signals, fre-
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quency sensors or power flow sensors. Among the three potential compromising approaches,

the data streams that transmitting ACE signals from the control center to the generators

are usually hard to attack, because they are well-protected by isolated cable instead of trans-

mitting signals by wireless networks. Since the grid frequency is a global parameter of power

system, the measurements from remote sensors can be easily monitored and verified by sen-

sors deployed in the control center. Therefore, in this research we focus on FDI attacks on

the power flow sensor measurements. Note that other than attacking geographically dis-

tributed power flow sensors, targeting the sensor data links is more practical for attackers

to avoid the tedious hacking process.

The goal of the attacker in performing FDI attacks is to inject a false data sequence

a into measurements without being detected by bad data detector (BDD). The tampered

measurement matrix can be represented as:

za = z + a. (5.12)

In order to perform FDI attack stealthily, attack sequence a has to bypass the l2-norm

detector. Based on the aforementioned detector methodology, the attacked measurement

residual ra is given by:

∥ra∥ = ∥za − h (x̂a)∥ = ∥z + a− h(x̂+ c)∥

= ∥z + a− h(x̂+ c) + h(x̂)− h(x̂)∥

= ∥r + a− h(x̂+ c) + h(x̂)∥,

(5.13)

where c represents the changes of state variable. From equation (5.13), it is observed that

if a = h(x̂+ c) + h(x̂), attacked measurement residual ∥ra∥ = ∥r∥ ≤ τ , which means that

the tampered measurement could avoid being detected by l2-norm detector.

Moreover, the grid operator may apply other data quality check on z. For example, z

should not significantly change in a short time period. Therefore, each element of attack
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sequence a has to be bounded in a small range around zero:

amin ≤ a ≤ amax. (5.14)

Under the premise of satisfying (5.14), the number of compromised sensors for each LFC

area should be as fewer as possible. Intuitively, if fewer sensors are altered, the attack is

harder to be recognized by the operator. In this way, those detection mechanisms which are

designed to be insensitive to natural random noises will not be altered.

For such FDI attacks, the goal is to maximize the frequency deviation to sabotage the

stability of power systems. However, due to the constraints in (5.13), (5.14) and number of

accessible sensors, the hacker might not be able to cause enough frequency deviation in one

shot. Instead, the hacker can inject a series attack vectors to create the insecure frequency

deviation.

In this research, the following assumptions are made to perform the mentioned stealthy

FDI attacks: 1) the hacker has priori knowledge of the power system topology, including the

line parameters, amin and amax; 2) The hacker could only alter real-time measurements in

sub-area S but would have access to reading the whole power flow measurements. Thus, the

attack vector a is subject to a[j] = 0 if j /∈ S, where a[j] is the jth element of the attack

vector; and 3) the hacker is able to change all the measurements S.
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5.4 Multi-Agent Deep Reinforcement Learning FDI At-

tack

5.4.1 Framework Overview

In this study, the stealthy FDI attack against LFC problem is formulated in a MA-DRL

framework. Each LFC area’s attack of multi-area power system can be viewed as a DRL

agent. Reinforcement learning explores the optimal actions policy to maximize the agents’

long-term performance by interacting with the environment that is the LFC model defined in

equations (5.7)-(5.10). As such, the FDI attack problem can be formulated in a distributed

manner by utilizing MA-DRL.

The schematic of the proposed framework is illustrated in Fig. 5.3. The method is divided

into offline centralized learning and online decentralized execution. At the offline stage, each

agent is modeled based on artificial neural network (ANN). The agents try out different

actions, i.e. attack vectors, interacting with the LFC system. The obtained action-states

and reward are employed to iteratively update the ANN parameters of agents with global

objective. At the online stage, each agent collects its own states, i.e., local observation, and

calculate attack vector for each LFC area based on trained ANN at online stage. In this

manner, agents in different areas will cooperatively adjust the attack vector according to

their state observations to maximize frequency deviation in a fully distributed way.

5.4.2 Markov Decision Process

The MA-DRL generally formulates its environment as a multi-agent extension Markov De-

cision Process (MDP). At time step t, MDP with N agents is defined as a set of states

st ∈ S that describes the environment for all agents, a set of actions ati ∈ Ai and a set
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Figure 5.3: Framework of the Proposed Approach
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of observations oti ∈ Oi. Action space A consists of {A1,...,AN} and observation space O

contains {O1,...,ON}. Each agent uses its own policy πi(o
t
i) to select actions and then the

next state is produced according to state transition model T (st+1|st, at). State transition

defines the dynamics of the environment depending on the equations (5.7)-(5.10) in this pa-

per. Each agent receives new observation ot+1
i reward rti as a function of the state and the

agent’s action. The aim of each agent is to find out policy π∗
i which maximizes its own total

expected discounted return E[
∑T

t=0 γ
trti ], where γ ∈ [0, 1] is the discount factor and T is the

time horizon.

Definitions of agents, state, action and reward in this chapter are discussed as follows.

• Agents: In a multi-area power system, each agent represents the attacker of each LFC

area.

• Action: The actions are defined as attack vectors. Each agent is able to continually

adjust its attack vector ai to modify the state of the environment.

• State and Observation: The states are defined as the system-wide frequency de-

viation {∆f t
1...∆f

t
N}, sensor measurements {zt1...ztN} and number of attacked sensors

{kt1...ktN}. These states reflect the impact caused by FDI attack and the magnitude of

these injected attack vectors. The observation of each agent is defined as its own fre-

quency deviation, derivative of frequency deviation, sensory measurements and number

of attacked sensors, i.e., local measurements ∆f t
i , d∆f

t
i /dt, zi and ki.

• Reward: The design of reward function is crucial because it evaluates the effectiveness

of actions and determines the pattern that agents learn. Rewards are usually stipulated

based on agents’ objectives. For the case in this research, two components need to be

taken into account: causing more frequency variation and not being detected by BDD.
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Thus, two separate rewards are designed as:

R1ti =
N∑
i=0

(∆fi)
2/N (5.15)

R2ti =

 −Raki, if ki < kmax,i ,

−Rb, otherwise,
(5.16)

where ki is the number of altered sensors for the ith LFC area; Ra represents the positive

constant for scaling the reward; Rb is large positive constants for harsh penalty if ki

is larger than a constant threshold kmax,i, e.g., 90% sensors of the ith area. Reward

(5.15) represents the average frequency deviation of all LFC areas, where each agent

will be awarded larger rewards with larger average frequency deviation. Reward (5.16)

is designed to minimize the number of attacked sensors to not trigger detection alert.

It is worth mentioning that all agents have the same reward in (5.15) given the system-

wide information, while in (5.16) each agent is awarded different reward. Thus, R1ti can

be considered as global reward denoted as Rgti and R2
t
i is denoted as Rlti representing

local individual reward. The total reward rti can be expressed as a function of Rgti and

Rlti,

rti = F (Rgti , Rl
t
i) (5.17)

How to handle function F will be discussed later.

5.4.3 Multi-Agent Deep Deterministic Policy Gradient

The essential problem for the MDP mentioned above is to learn an optimal policy to maxi-

mize the long-term expected discounted return. One of the state-of-the-art solving process

is MADDPG [137], which is a multi-agent and actor-critic DRL algorithm.

In this algorithm, each agent is characterized by ANN denoted as µi(·|θi), i.e., actor,
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mapping from observation to action, where θi is the weight parameters of the actor. The

offline centralized training aims to learn the optimal weights for each agent. Policy Gradient

method allows that parameter θi is adjusted directly to maximize the objective function

J(θi) by moving the policy in the direction of the gradient of J(θi):

J(θi) = E
st+1∼T,ati∼µi

T∑
t=0

γtrti . (5.18)

The gradient for agent i is given by

∇J(θi) = E
st∼D

[
∇θiQ

(
st, at1, . . . , a

t
N

)
|ati=µi(oti|θi)

]
. (5.19)

where D is the replay buffer that contains a collection of experience; Q(·) is the centralized

action-value function that evaluates the performance of actor. By taking the chain rule, the

equation (5.19) can be divided into the gradient of Q with respect to ai and the gradient of

the policy with respect to θ,

∇J(θi) = E
st∼D

[
∇θiµi(o

t
i|θi)∇ati

Q
(
st, at1, . . . , a

t
N

)
|ati=µi(oti|θi)

]
, (5.20)

Next, the action-value function Q (st, at1, . . . , a
t
N) is parameterized by ϕ, i.e., critic, denoted

by Q(·|ϕ) for agent i. It can be updated by minimizing the following loss:

L(ϕ) = E
st∼D

[
(Q(st, at1, . . . , a

t
N | ϕ)− yti)2

]
, (5.21)

where

yt = rt + γQ′(st+1, at+1′
1 , . . . , at+1′

N | ϕ′
i)|at+1′

i
= µ′

i

(
ot+1
i

)
. (5.22)

µ′
i(·|θ′i) and Q′(·|ϕ′) are the target actor and critic networks with delayed parameters θ′i and

ϕ′, respectively. They are used to estimate yt that is the reference value for Q. The weights
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are updated by slowly tracking the actor and critic network.

θ′i ← τθi + (1− τ)θ′i
ϕ′ ← τϕ+ (1− τ)ϕ′

(5.23)

5.5 The Proposed Solution Process

In this section, a novel modified training process is presented as the extension of MADDPG.

The basic idea is to combine MADDPG with single agent DDPG together and optimize the

global objective.

5.5.1 Local Critic

Hitherto, the only remaining problem is how to deal with the two different reward or control

goals described in (5.15) and (5.16). To achieve both objectives, generally the reward function

(5.17) for each agent i can be designed as:

rti = (α)Rgti + (1− α)Rlti (5.24)

where α ∈ (0, 1) is the weight assigned to both rewards. The main concern on equation (5.24)

is the stability issue. Since there are two reward components, oscillation of the policy between

the local reward Rlti and global reward Rgti may ensue. In addition, α can be either set as

a constant which may not balance the two rewards, or trained as a parameter that is very

time-consuming. Thus, the local individual critic denoted as Ql
i(s, ai|ϕl

i) approximated by a

neural network with weights ϕl
i for agent i is introduced besides global critic Q(s, a1, ..., aN)

to handle the local reward. Note that comparing to Q(s, a1, ...aN) in equation (5.19) that

receives the actions of all agents and the environment states, the local critic Ql
i(s, ai) only

considers its own actions for agent i. Moreover, each agent has its individual local critic
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Ql
i(·|ϕl

i) while the global critic Q(·|ϕ) is a shared network between all N agents during

learning process. By adopting the local critic, the gradient equation (5.20) becomes

∇J(θi) = E
st∼D

[
∇θiµi(o

t
i|θi)∇ati

Q (st, at1, . . . , a
t
N)

]
+ E

oti,a
t
i∼D

[
∇θiµi(o

t
i|θi)∇ati

Ql
i (s

t, ati)
] (5.25)

where ati = µi(o
t
i|θi). MADDPG is still used to update the first term of equation (5.25)

maximizing the global reward Rg:

L(ϕ) = E
st∼D

[
(Q(st, at1, . . . , a

t
N | ϕ)− ytg)2

]
, (5.26)

where

ytg = Rgt + γQ′(st+1, at+1′
1 , . . . , at+1′

N | ϕ′)|at+1′
i

= µ′
i

(
ot+1

)
. (5.27)

The slight difference between equations (5.26)-(5.27) and (5.21)-(5.22) is that average reward

rti is replaced by global reward Rgti .

The second term of equation (5.25) is updated by the single-agent DDPG maximizing

local reward Rl,

L(ϕi) = E
st,ati∼D

[
(Ql

i(s
t, ati | ϕi)− ytli)2

]
, (5.28)

where

ytli = Rlti + γQl′
i (s

t+1, at+1′
i | ϕl′

i )|at+1′
i

= µ′
i

(
ot+1
i

)
. (5.29)

Similarly, target local critic Ql′
i (·|ϕl′

i ) is also adopted to improve the stability of learning. In

this way, by introducing the local critic, the agent learns to maximize the global and local

rewards simultaneously.
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5.5.2 DDPG based Solution Method

Although the problem of two separate rewards is solved by the aforementioned local critic

technique, the offline training program for such multi-area power systems could be very

time-consuming. In addition, the action gradients estimated by critic may cause high vari-

ance, especially for the global critic regarding the reward (5.15). Considering the frequency

dynamics is differentiable in power systems, the mentioned DDPG method can be derived

without the critic approximations.

Firstly, since the global objective is to maximize the average frequency deviation, the

action-value Q function can be modeled as:

Q
(
st, at1, . . . , a

t
N

)
=

N∑
i=0

(∆fi)
2/N, (5.30)

where, Q is dependent on the all agents’ actions, i.e., (at1, . . . , a
t
N), and the state information

s. Next gradient of action-value Q function with respect to attack vector ai needs to be

quantified. For agent i in the ith area, taking gradient with respect to ai on both sides of

equation (5.30), it becomes:

∇aiQ = 2∆fi
∂∆fi
∂ai

. (5.31)

Now, the gradient of frequency deviation in different areas with respect to the attack vector ai

needs to be estimated. Using the diagram in Fig. 5.3 and equations (5.7)-(5.13), the transfer

function between frequency deviation and attack can be derived. Note that generally the

load disturbance ∆Pload is not affected by attack and thus ∇a∆Pload = 0. The relationship

between the frequency deviation and the attack vector can be obtained as follows:

∆Fi(s) =
1

ξ4s4 + ξ3s3 + ξ2s2 + ξ1s+ ξ0s
Ai(s) (5.32)
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where the s represents s-domain for Laplace transformation; the coefficients

ξ4 = 2HTgTs, (5.33)

ξ3 =
2H(Tg + Ts) +DRTgTs

DTgTsV ψ
, (5.34)

ξ2 =
2HTgTs(DTgTs + 2HTg + 2HTs)

Rψ(Tg + Ts)
, (5.35)

ξ1 =
2H +DTg +DTs

TgTsKV ψ
, (5.36)

ξ0 = BK/R. (5.37)

Note that the index i of the parameters that stands for LFC area is omitted for simplicity.

Here, ψ2 is defined as a column vector that selects relevant elements in power flow measure-

ment and aggregates them as Ptie; V is the improved measurement after state estimation

when no attack vector is injected, i.e., h(x̂).

Then, the relationship between ∆f(t) and a(t) can be derived by multiplying ξ4s
4+ξ3s

3+

ξ2s
2 + ξ1s+ ξ0s on both sides of equation (5.32) and taking Laplace inverse transformation.

Next, the gradient of variables with respect to a(t) can be calculated as:

∇a∆f(t) =
1

ξ0

(
1− ξ1

d∆f(t)

dt

)
− ξ2
ξ0
∇a

d2∆f(t)

dt2
(5.38)

−ξ3
ξ0
∇a

d3∆f(t)

dt3
− ξ4
ξ0
∇a

d4∆f(t)

dt4
. (5.39)

If high-order terms of ∆f are neglected in (5.38), by substituting the frequency gradient into

(5.31), the estimation for the ∇aiQ is obtained:

∇aiQ ≈ 2∆fi
1

ξ0

(
1− ξ1

d∆fi
dt

)
. (5.40)

Hitherto, the global critic ANN Q(·|ϕ) and loss calculation (5.26) are not needed anymore

because we already derive the estimation of ∇ati
Q component in the first term of (5.25).

Then, the gradient of actions with respect to the parameters of each agent ∇θiµi(o
t
i|θi) in
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(5.25) can be computed as follows,

∇
θ
(k)
i
µi(o

t
i|θi) = ∇θk

i

(
f
(n)

θk
i

(
. . . f

(1)

θk
i
(X)

))
, (5.41)

where f
(l)(·)
θ is the activation function in the lth layer, and X is the input vector of ANN.

Note that the local criticQl
i(s, ai|ϕl

i) and equations (5.28)(5.29) still remain for optimizing the

local objective for each agent. The detailed training algorithm is summarized in Algorithm

3.

5.5.3 Training and Execution Processes

At the offline training stage, each agent has individual actor and local critic network. As

can be seen in Algorithm (3), the training process starts with the initialization of each neural

network. The episodes loop is the main loop, in which each agent interacts with the power

system environment to learn the optimal control policy for the generator. As the number of

episodes increases, each attack agent tends to approach the optimal policy that maximizes

the frequency deviation and probability of not being detected.

Each episode consists of a number of iterations. The number of iterations should not

be too large for reducing negative effects of ineffective actions. For each iteration time step

t, attack actions are determined by exploration at = µ(st|θ) + N t
r , where Nr ∼ (0, σ2) is

Gaussian noise. Along with the training, the exploration rate is decreased by reducing the

noise. Then according to grid dynamics (5.7)-(5.13), system’s next state and rewards are

observed as (st, at, Rlt, s(t+1)). Note that Rl is a vector instead of a scalar number since each

agent is awarded with different local rewards. These observations are stored in the replay

buffer D. All networks at each time step t are updated by uniformly sampling minibatch

from the replay buffer, which avoid the divergence of learning caused by using sequential

samples. At the end of the episodes, each attack agent learns an optimal policy. At the
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Algorithm 3 The Proposed MA-DRL Training Algorithm

1: Randomly initialize local critic network Ql
i(oi, ai|ϕl

i) and actor network µi(s, a|θi)
2: Initialize target network Ql′

i and µ′
i by ϕ

l′
i ← ϕl

i and θ
′
i ← θi

3: for episode =1 to M do
4: Initialize power system environment
5: Initialize a random process Nr for action exploration
6: Receive initial state s1
7: for t=1 to T do
8: Determine actions by at = µ(st|θ) +N t

r

9: Execute actions at = (a1, ...aN) and observe new state S(t+1) and obtained reward
Rlt

10: Store (st, at, Rgt, Rlt, s(t+1)) to replay buffer D
11: Sample a random minibatch of m samples (sk, ak, Rlk, s(k+1)) from D
12: Calculate the policy gradient

∇aki
Q ≈ 2∆fi

1
ξ0

(
1− ξ1 d∆fi

dt

)
13: Calculate the policy gradient

∇
θ
(k)
i
µi(o

k
i |θi) = ∇θk

i

(
f
(n)

θk
i

[
. . . f

(1)

θk
i
(X)

])
14: for Agent i to N do
15: Set ykli = Rlki + γQl′

i (o
k+1, ak+1′

i | ϕl′
i )|ak+1′

i =µ′
i(o

k+1
i )

16: Update local critic by minimizing the loss
L(ϕi) =

1
m

∑
k

E
oki ,a

k
i ∼D

[
(Ql

i(s
k, aki | ϕi)− ykli)2

]
17: Update actor policy by 1

m

∑
k

(∇θiµi(o
k
i |θi)∇aki

Qi

(
sk, ak1, . . . , a

k
N

)
+

∇θiµi(o
k
i |θi)∇aki

Ql
i

(
sk, aki

)
)

18: end for
19: Update target network parameters for each agent i

θ′i ← τθi + (1− τ)θ′i
ϕl′
i ← τϕl

i + (1− τ)ϕl′
i

20: end for
21: end for
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online stage, the attack agent will only use the local measurements from the power system

to inject attack vector.

5.6 Simulation Results

In this section, comparative simulation studies are carried out on the New England 39-bus

system to evaluate the performance of the proposed FDI attack. All tests are performed in

the Matlab/simulink environment with deep learning toolbox version 2020b in a computer

with 16 GB RAM and 2.8 GHz CPU. The MA-DRL model trained in a Python environment

is imported to Matlab/Simulink and tested on a more realistic 39-bus system.

5.6.1 Test Environment

The simulations are performed on a fully-modeled 39-bus system in Matlab/simulink, where

the detailed dynamic transient model of synchronous machines is adopted. The 39-bus sys-

tem is divided into three areas as shown in Fig. (5.4). The tie lines are line1,2, line3,4,

line16,17 and line14,15. LFC controllers are equipped for the generators on buses 30, 32,

35 and 38, while the remaining generators are under simple primary control. It is assumed

that the measurements z in the power system are the following: 1) active power and reactive

power flows on all lines at both ends of the line; 2) active power and reactive power injections

at buses with loads. Total numbers of measurements and accessible measurements for each

area are summarized in Table 5.2. Detailed system parameters of generators, loads, trans-

formers, and buses are presented in [138]. The proposed FDI attack method is compared

with standard MADDPG where the reward is designed in equation (5.24), and a common

FDI attack method in [130].

The neural network architecture of actor for each agent is a four-layer ANN which has
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Figure 5.4: New England 39-bus system

one input layer, three fully-connected hidden layers and one output layer. The number of

inputs and outputs correspond to the number of measurements for each area. The batch

normalization is applied to the input and the Sigmoid function is selected as the activation

function for each layer. It is worth mentioning that the attack magnitude constraints (5.14)

are applied in the neural network during training. Specifically, the output ai for each actor

can be bounded by the Sigmoid function at the output of the network. For this case, amin

and amax are set as -5MW and 5MW, respectively. As such, the agent learns the attack

cannot exceed the limits. During the training process, memory replay buffer and mini-batch
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Figure 5.5: Local reward convergence curve

size are set as 1000 and 256, respectively. The network is updated by Adam optimizer to

accelerate the training process with a learning rate 0.001. The exploration parameter σi

decreases by 0.05% per time step.

5.6.2 Simulation Results

Fig. 5.5 delineates the average convergence curve for agents. It can be observed that as

the training process proceeds, the average reward increases, that is, each agent learns to

minimize the number of corrupt sensors. The learning curve becomes flat after 600 episodes.

Note that the local reward converges a little slower than the global reward. One of the

reasons is that at around 400th episode, the agents’ policy fluctuates and is almost trapped

by a local optimal point during the exploration process but then the agents climb out and

ultimately achieve the goal.

In addition, since all the agents possess identical observation and action space, the number

of trainable parameters of Q-function can be represented as O(n(odim+adim)), where n is the
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Figure 5.6: The frequency deviation comparison for different methods

number of agents; adim and odim are the dimensionality of the action and observation space,

respectively. Compared with the standard MADDPG Q-function with O(n2(odim + adim))

parameters, the proposed MADDPG decreases the parametric space linearly.

The frequency response is presented in Fig. 5.6 to compare the attack impact of proposed

MA-DRL method with standard MA-DRL and analytical FDI attack method in [25]. Note

that the frequency is the average frequency deviation of all areas. The FDI attacks are

implemented at 15s. The analytical FDIA method is a one-shot approach, which means

the attack is only performed at 15s without subsequent attack injection, while FDI attack

vectors for the other two methods are adjusted and injected every time step based on the

states for that time.
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It can be seen in Fig. 5.6 that the frequency is largely deviated, which implies the stability

of power system is compromised. Time-to-emergency (TTE) is used for evaluating the three

methods, where TTE is the time from the start of attack to the first time that the average

frequency deviation of all the areas is out of a limit range. For this case, the frequency

deviation limits are set as [-0.2Hz, 0.2Hz], since if the frequency deviation is out of this

range, power system operator would be alerted of the abnormal situation and corresponding

remedial actions would be taken, such as load shedding and generator disconnection leading

to potential equipment damage.

Table 5.1: TTE comparison

Method TTE

Proposed MA-DRL FDIA 28.6s
Standard MA-DRL FDIA 29.2s

Analytical FDIA 33.3s

Table 5.1 demonstrates the TTE comparison. The TTE of the proposed attack method

is 2.1% and 16.4% faster than other two methods, which means the attacker could reach

frequency deviation limits quickly and the probability of being revealed is decreased by

adopting the proposed MA-DRL FDI attack.

Table 5.2: Minimum compromised measurements

Area 1 Area 2 Area 3

Total Meas. 65 81 58
Accessible Meas. 22 27 20
Proposed FDIA 14 23 11

Standard MA-DRL FDIA 19 22 13
Analytical FDIA 18 27 13

The number of measurements that have to be compromised of each attack step is shown

in Fig. 5.7. In this comparison, only the proposed FDIA and standard MA-DRL FDIA

are presented since the analytical FDIA is a one-shot attack. The minimum number of at-

tacked measurements are summarized in Table 5.2. It can be seen from the results that via
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110



the proposed MA-DRL training process, the attack vectors are injected every step with the

minimum number of affected measurements that can cause the largest impact for that step.

Compared with other two approaches, our proposed method overall impacts less measure-

ments, which will be more difficult to be detected by power system operator. Consequently,

the proposed MA-DRL based FDIA approach may significantly sabotage the power system

stability and minimize the compromised measurement to avoid being revealed at the same

time.

5.6.3 Countermeasure Discussion

From the analysis of the proposed FDIA, it can be seen that the whole attack sequence

is a time series combination of various single attacks. Therefore, it is difficult to verify

every single measurement fed into LFC controller; and even the system possesses enough

computational power, the result may not be correct because the injected attack vectors

keep changing based on the system state at every attack step. One best way to tackle this

problem is to analyze the critical measurements that are vulnerable to such attacks. For

these vulnerable sensors, extra protection measures or technologies can be deployed such as

software-defined networking (SDN) [139], up-to-date firmware [101], and physical isolation.

In order to evaluate the vulnerability of line sensors, Criticality Index (CI) is used in this

research, which counts the frequency of targeted measurements in the attack sequence. The

CI for the proposed FDIA against IEEE-39 bus system is shown in Fig. 5.8. It can be seen

19 measurements’ CI values are larger than 0.9, which means these measurements has high

probability to be targeted in the attack sequence. The sensors corresponding to these 19

measurements can be identified as critical sensors which may warrant further protection.

To analyze the effect of critical measurements with 0.9 or higher CI, 19 measurements

mentioned above are removed from accessible measurements set and the frequency deviation
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due to the proposed FDIA is shown in Fig. 5.9. It indicates that deploying higher pro-

tection for the critical measurements will significantly decrease the frequency deviation and

cause less damage to the power system. The results provide useful insight for power system

administrators to address planning and protection issues to improve power system resiliency.

5.7 Summary

In this chapter, a MA-DRL based FDI attack model against the LFC system is proposed.

Instead of using legacy linearized LFC model, AC state estimation (ACSE) is coupled with

LFC to ensure the collected measurements are free of noise and bad data, thereby the system

environment becomes more practical and complex. For this model, there are two attack

112



0 5 10 15 20 25 30 35

Time

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

F
re

qu
en

cy
 D

ev
ia

tio
n

Proposed MA-DRL FDIA

Figure 5.9: The frequency deviation when critical measurements are well-protected

objectives, i.e., stealthily maximizing the frequency deviation and minimizing the number

of compromised measurements. A modified MA-DDPG algorithm is devised to achieve the

two objectives simultaneously, which treats them separately by global and local individual

critic networks other than a simple linear combination. The impact of the FDI attack on

the LFC integrated with ACSE is also analytically derived. A Laplace-domain transfer

function is obtained and can be used to replace the global critic network to accelerate the

offline training process and reduce the variance. During the online execution, each attacker

of LFC control area cooperatively injects the optimal attack vector only by its own local

measurements. The simulation results on the New-England 39-bus system demonstrate the

good performance of the proposed FDI attack model compared with other methods. In

addition, corresponding countermeasures based on the critical measurements are discussed

and verified. The proposed model and results provide useful insight into system planning for
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power system administrators to identify and protect the critical measurements, and thereby

power system resiliency is improved.
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Chapter 6

CONCLUSIONS

In the previous chapters, all research work in this article are presented. A summary is showed

for reviewing the major achievement of this dissertation in this chapter. In the end, some

goals which have not been not fully achieved and some future work are suggested.

6.1 Summary of Results

This dissertation is focused on cyber-physical attack detection, defense and mitigation using

the state-of-the-art data-driven machine learning technologies. Three research work are con-

ducted and presented in this article. The results demonstrate the effectiveness and efficiency

of proposed models on cyber-physical attack detection and mitigation. These studies provide

helpful insight to power system administrators against cyber-physical attacks and thereby

power system resiliency gets enhanced.

The first research is focused on reinforcement-learning-based dynamic defense strategy

against one of the major cyber-physical attacks: dynamic load altering attack (D-LAA).

Cascading failures of the chronological D-LAA attack is investigated. A two-player zero-

sum Markov game is formulated to analyze the interactions between the attacker and the

defender. A minimax-q learning algorithm is also derived to solve Nash equilibrium strategy

for the attacker and defender. The performance of the proposed model is evaluated on the

IEEE 39-bus system. The results are compared with passive defense strategy and verify the
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advantage of the proposed dynamic defense strategy. To improve the power system resiliency,

this proposed defense strategy can be deployed in advance when D-LAAs are predicted.

In the second study, a Triple Generative Adversarial Network (TripleGAN) based defense

framework is derived against stealthy false data injection (FDI) attacks. The proposed model

is used to effectively detect and mitigate the FDI attacks with limited historical measure-

ment data. To improve the detection accuracy and data recovery efficiency, a extended loss

function integrating with feature matching is designed. Simulation is conducted on the IEEE

118-bus system and the result verifies that the proposed defense model can accurately detect

the stealthy FDI attacks and reconstruct the state estimation modified by the manipulated

measurements. Further, the results confirm that the proposed techniques outperform other

existing machine learning detection and recovery methods.

The last research proposes a data-driven FDI attack model based on multi-agent deep

reinforcement learning (MA-DRL) against load frequency control (LFC) system integrated

with AC state estimation (ACSE). Considering the different characteristics of LFC control

areas in the multi-area power system, the attack vector injected in power measurements for

each control area adjusts its value at each time step and cooperatively maximizes the grid

frequency deviation and minimizes the number of tampered measurements at the same time.

For this model, there are two attack objectives, i.e., stealthily maximizing the frequency

deviation and minimizing the number of compromised measurements. A modified Multi-

Agent Deep Deterministic Policy Gradient (MA-DDPG) algorithm is devised to achieve the

two objectives simultaneously, which treats them separately by global and local individual

critic networks other than a simple linear combination. The impact of the FDI attack on

the LFC integrated with ACSE is also analytically derived. A Laplace-domain transfer

function is obtained and can be used to replace the global critic network to accelerate the

offline training process and reduce the variance. Simulation results on the New-England 39-

bus system verify the effectiveness of the proposed FDI attack model compared with other

methods. In addition, corresponding countermeasures based on the critical measurements
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are discussed.

6.2 Future Research

1. Distributed algorithms will be developed to further enhance the effectiveness of the dy-

namic defense strategy, such as the learning automata including linear reward-inaction

and linear reward-penalty.

2. The proposed TripleGAN based attack and mitigation model in chapter 4 could be

generalized to cope with more types of cyber-physical attacks, which requires more

elaborated model structure design.

3. For the FDI attack model, it is necessary to investigate the scenario that the attacker

only knows part of system information instead of full knowledge. This will make the

assumption more practical and realistic.

4. The defense method proposed in chapter 5 is to protect identified critical measurement,

which may not be very efficient in cost. More powerful detection algorithm should be

developed and directly integrated with LFC.
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